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    Chapter 14   
 An Application of Exploratory Data Analysis 
in the Development of Game-Based 
Assessments 

             Kristen     E.     DiCerbo     ,     Maria     Bertling     ,     Shonté     Stephenson     ,     Yue     Jia     , 
    Robert     J.     Mislevy     ,     Malcolm     Bauer     , and     G.     Tanner     Jackson    

    Abstract     While the richness of data from games holds promise for making inferences 
about players’ knowledge, skills, and attributes (KSAs), standard methods for scoring 
and analysis do not exist. A key to serious game analytics that measure player KSAs 
is the identifi cation of player actions that can serve as evidence in scoring models. 
While game-based assessments may be designed with hypotheses about this evi-
dence, the open nature of game play requires exploration of records of player actions 
to understand the data obtained and to generate new hypotheses. This chapter demon-
strates the use of the 4R’s of Exploratory Data Analysis (EDA): revelation, resis-
tance, re-expression, and residuals to gain close familiarity with data, avoid being 
fooled, and uncover unexpected patterns. The interactive and iterative nature of 
EDA allows for the generation of hypotheses about the processes that generated the 
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observed data. Through this framework, possible evidence pieces emerge and the 
chapter concludes with an explanation of how these can be combined in a measurement 
model using Bayesian Networks.  

  Keywords     Exploratory data analysis   •   Game-based assessment   •   Evidence model   
•   Data visualization   •   Re-expression   •   Residuals  

1         Introduction 

 The past decade has seen a growing push for games in learning spaces (Gee,  2003 ). 
A new generation of promising educational games has emerged allowing for deep 
exploration of broad concepts (Klopfer, Osterweil, & Salen,  2009 ). Games support 
sociocultural and situative approaches to learning in which players interact with 
peers and their environment to develop knowledge and understanding of the world 
(Steinkuehler,  2004 ). In addition, data from games provide information about the 
process a player used to arrive at a fi nal product, suggesting great potential for gen-
erating new insights regarding student actions as they relate to complex knowledge, 
skills, and attributes (Mislevy, Behrens, DiCerbo, Frezzo, & West,  2012 ). Game- 
based assessments (GBAs) have the potential to combine the rich problems, engage-
ment, and motivation from games with the evidentiary arguments of assessment. 

 However, the potential of games as assessment tools can be met only if replicable 
methods for aligning game play with learning standards and formative assessment 
objectives can be developed. New interactive digital games elevate both the avail-
ability of student micro-patterns (small, repeatable segments of play actions) and the 
importance of understanding them as they refl ect variation in strategy or evolving 
psychological states. While the richness of the data holds promise for making impor-
tant inferences, standard methods for scoring and analysis do not exist. In addition, 
the open nature of many games means students often engage in unexpected actions 
in the game. This requires multiple cycles of data exploration, hypothesis generation, 
and confi rmation on the part of the analyst to fully understand the relationships of 
game play actions to inferences about players. 

 Assessment is fundamentally about designing situations which elicit evidence 
about aspects of what learners know and can do. Evidence-Centered Design (ECD; 
Mislevy, Steinberg, & Almond,  2002 ) provides a framework for specifying these 
arguments. It defi nes the following models:

•    Student model—What we want to know about the learner  
•   Task model—What activities the learner will undertake  
•   Evidence model—How we link the work produced in the task to the constructs 

in the student model. The evidence model contains two pieces:  
•   Scoring model—How we will identify evidence in the learners’ work product  
•   Measurement model—The statistical techniques we use to link the evidence to 

the elements in the student model    

K.E. DiCerbo et al.
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 This chapter will focus largely on the scoring model, or the identifi cation of the 
important elements in the record of player actions to extract and pass to our mea-
surement models. For multiple choice items, the scoring model is simple. The work 
product is a list of selected options. The scoring rule for each item is, “if selection 
matches correct response, then mark correct, otherwise mark incorrect.” However, 
when the work product is a log fi le of actions a student has taken in a game, it is less 
clear how to identify the scoring rules, much less apply them. What are the actions 
in the game that will tell us about the knowledge, skills, and attributes of interest? 
Our usual assessment routines and psychometric processes cannot be easily lifted 
from our traditional assessments and applied to GBAs. 

 In designing GBAs, the specifi cation of the scoring model is an iterative process. 
Design begins with hypotheses about what player actions will be important for 
making inferences. However, most games are complex systems. Before diving 
directly into confi rming these hypotheses, it is important we understand the data 
obtained from the game and also seek to uncover unexpected patterns in the data 
that may generate new hypotheses. Exploratory Data Analysis (EDA; Tukey,  1977 ) 
provides a helpful framework by which to consider the processes of hypothesis 
generation and exposition of patterns in data. While EDA techniques are not new, 
the application of these older (but often overlooked) methods in this new context 
provides a way to facilitate new ways of identifying evidence for inferences about 
player knowledge, skills, and attributes. This chapter will focus on the use of EDA 
to gain close familiarity with game-based assessment data, avoid being fooled, and 
uncover unexpected patterns while developing an understanding of what features 
of player game play provide evidence about our constructs of interest. The fi nal 
section of the chapter will demonstrate how these uncovered evidence fragments 
can then be inserted into a measurement model to estimate profi ciency of game 
players. The scoring model and measurement model in combination allow the 
translation of game play into inferences about knowledge, skills, and attributes. 
The chapter will use analysis of data from SimCityEDU to demonstrate the concepts 
of the EDA framework. 

1.1     Exploratory Data Analysis 

 EDA is a conceptual framework with a core set of ideas and values aimed at providing 
insight into data, and to encourage understanding probabilistic and nonprobabilistic 
models in a way that guards against erroneous conclusions (Behrens, DiCerbo, Yel, 
& Levy,  2012 ). EDA also provides a set of tools that allow researchers to become 
intimately familiar with their data. It encourages the development of mental models 
of the data and processes that created them. 

 EDA holds several complementary goals: to fi nd the unexpected, avoid being 
fooled, and develop rich descriptions. The primary analogy used by Tukey ( 1977 ) to 
communicate these goals is that of the data analyst as detective. The work is essen-
tially exploratory and interactive, involving an iterative process of generating 
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hypotheses and looking for fi t between facts and the tentative theory or theories. 
Detective work also provides a solid analogy for EDA because both are essentially 
 bottom-up processes of hypothesis formulation and data collection. 

 Tukey (e.g.,  1986 ) did not consider methodology as a bifurcation between explor-
atory and confi rmatory, but considered quantitative methods to be applied in stages of 
exploratory, rough confi rmatory, and confi rmatory data analyses. In this view, EDA is 
aimed at the initial goals of hypothesis generation and pattern detection following the 
detective analogy. It is therefore differentiated from the (correctly) maligned practice 
of snooping through data to fi nd the data and model that will most likely lead to 
signifi cant results. Rather, EDA generates hypotheses that are later confi rmed with 
separate data. Rough confi rmatory data analysis is sometimes equated with null-
hypothesis signifi cance testing that is often what is taught in statistics courses. Strict 
confi rmatory analyses involve the more sophisticated testing of specifi c relationships 
and contrasts that is less common in research practice. As a researcher moves through 
these stages, she moves from hypothesis generation to hypothesis testing and from 
pattern identifi cation to pattern confi rmation. 

 In the context of EDA, the data analyst performs an iterative series of interactions 
with the data, all the while generating various observations and hypotheses about the 
forms of the data and the likely underlying processes that generated them. Therefore, 
to return to the original problem, EDA allows us to iteratively generate hypotheses 
about the patterns in the game data and their relationships to levels of knowledge, 
skills, and attributes. EDA provides a set of tools by which to accomplish this. We can 
think of them in relation to four R’s (Hoaglin, Mosteller, & Tukey,  1983 ): revelation, 
re-expression, resistance, and residuals. Revelation refers to uncovering the unex-
pected, largely through visualization. Re-expression involves careful understanding of 
the distributions of variables. Resistance implies using methods that are not overly 
infl uenced by extreme or unusual data. Finally, residuals provide a means by which 
to evaluate and iterate with models. Each of these will be discussed further with 
examples in the remainder of the chapter.  

1.2     Context 

 For illustrative purposes, references will be made throughout the chapter to 
SimCityEDU (  www.simcityedu.org    ), developed by GlassLab. SimCityEDU, 
based on the popular SimCity commercial game, offers players various challenges 
that ask players to solve problems facing a city, generally requiring them to bal-
ance elements of environmental impact, infrastructure needs, and employment. 
The game scenarios are designed to assess systems thinking. Often named on lists 
of twenty- fi rst century skills, systems thinking is also a cross-cutting concept in 
the Next Generation Science Standards (NGSS; NGSS Lead States,  2013 ). 
Essentially, it is the understanding of how various components of a system infl uence 
each other. 

K.E. DiCerbo et al.
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 Starting with a strong research-based theory or cognitive model is preferable 
(but not required) in the development of GBAs because it can provide clear hypoth-
eses to design, categorize, and evaluate evidence that can be further explored through 
EDA. The aim is to jumpstart the design of GBAs using an initial psychological 
theory of students’ likely changes in competency toward the learning goals during 
game play. This approach leverages existing models of learning and how peoples’ 
understanding of concepts potentially progress through qualitative changes in a par-
ticular developmental sequence (e.g., learning progressions of how their thinking 
develops from simpler more univariate concepts to more complex interactive systems; 
c.f., Heritage,  2008 ). These learning progressions, or cognitive models, help to 
inform design and development of GBAs, but the models themselves are also subject 
to iterative refi nement as data are collected during playtesting, mini-tryouts, pilots, 
and larger-scale studies. Following a review of existing conceptualizations of 
systems thinking, a learning progression for the construct was developed as part of 
the student model for the game. Table  14.1  presents a summary of the systems 
thinking learning progression used in SimCityEDU.

   The examples described in this chapter relate to efforts to uncover evidence in 
players’ game actions related to systems thinking. While SimCityEDU consists of 
four scenarios, discussion here focuses on the third, which requires players to balance 
maintaining enough power in the city with reducing air pollution. Players explore 
the city and fi nd that coal plants are primary producers of pollution, while other 
industrial areas also contribute to the problem. Players can reduce pollution by 
bulldozing coal plants, but that will reduce power in the city. They can dezone indus-
trial areas, but that alone will not result in large enough changes to please the city 
inhabitants (and get the player to a full three-star solution). 

 The process of analyzing the various actions players take in the game relies on the 
telemetry system of the game, or the remote collection of player actions and game 
states. Log fi les of telemetry data are collected for every game session and detail actions 
the player has taken in chronological order. The following sections seek to identify 
elements of game play that may provide insight into players’ systems thinking using 
the principles of revelation, resistance, re-expression, and residuals with SimCityEDU 
data from 751 US middle school players who participated in beta testing of the game.   

   Table 14.1    Systems thinking learning progression from SimCityEDU   

 Level 1—Acausal 
 The player is not reasoning systematically about causes and effects 
 Level 2—Univariate 
 The player tends to focus on a single causal relationship in the system 
 Level 3a—Early multivariate 
 The player has considered multiple effects resulting from a single cause 
 Level 3b—Multivariate 
 The player has considered multiple causes in relation to their multiple effects 
 Level 4—Emergent patterns 
 The player attends to and intervenes on emergent patterns of causality that arise over time 
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2     Revelation 

 Revelation refers to Tukey’s ( 1977 ) statement that “The greatest value of a picture 
is when it forces us to notice what we never expected to see” (p. vi). Graphics are the 
primary tool for the exploratory data analyst. Graphical representations can display 
large amounts of information using relatively little space and expose relationships 
among pieces of information better than other representations. Here we are talking 
not about visualization for public display, but for fi nding patterns in relationships. 
Tools for this include things like boxplots and scatterplot matrices (a grid of scat-
terplots similar to a correlation matrix except with graphs) in addition to interactive 
graphics that allow the analyst to explore relationships with a few clicks. For example, 
a scatterplot may reveal a cluster of outliers. Interactive graphics allow the analyst 
to highlight them on the screen and examine their values on other variables to further 
understand what differentiates this group. 

 The initial goal of data analysis should be to become very familiar with the data. 
Instead of beginning an analysis by producing tables of descriptive statistics, fol-
lowed by a big correlation matrix, EDA suggests beginning by looking at histo-
grams, followed by scatterplots, scatterplot matrices, and boxplots. Let’s take an 
example from the third scenario of SimCityEDU. The successful player will fi nd 
out that coal power plants are the biggest pollution generators as well as the major 
energy producers and, therefore, both important and destructive for the city. Further, 
students engaged with this scenario need to discover that there are other energy 
sources available for them, such as solar or wind plants that are environmentally 
friendly. They have to fi gure out how replacing of coal power plants with green 
energy sources will allow them to reduce pollution while maintaining power in the 
city. We began with a rough hypothesis that just bulldozing coal plants without plac-
ing green energy would indicate a lower level of systems thinking because it indi-
cated players were only considering a single effect of coal plants (namely pollution) 
rather than the multiple effects (power and pollution). 

 One of the fi rst types of analyses is simply to examine the different actions and 
outcomes of game play. A common next step is to run the means and standard devia-
tions, resulting in a table like the one in Table  14.2 . Pollution is the fi nal amount of 

  Table 14.2    Means and 
standard deviations of select 
outcomes and actions from 
SimCityEDU  

 Outcomes and actions  Mean  SD 

 Pollution  15,956,941  18,258,294 
 Bulldoze coal  3.17  1.952 
 Place new coal  0.20  0.745 
 Turned off coal  0.41  0.970 
 Turned on coal  0.17  0.678 
 Place wind/solar  2.58  2.366 
 Bulldoze wind/solar  0.26  1.008 
 Turned on wind/solar  0.07  0.370 
 Turned off wind/solar  0.09  0.430 
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pollution in the city. Bulldozing refers to how players can eliminate buildings in the 
city (they use a bulldozing tool to knock them down). Placing refers to putting a new 
building in the city. Turning off and on are options to allow the energy plants to be 
active or not. Coal refers to coal plants while solar/wind refer to the alternative 
energy power plants available. So, on average, players knocked down 3.17 coal 
plants during their play, for example.

   This representation does not tell us about the distribution or the outliers. However, 
a histogram like that in Fig.  14.1  for pollution does a better job showing these. If 
researchers start with visualizations fi rst, they will better be able to interpret what 
numbers like those in Table  14.2  are indicating (or not indicating).  

 Here we see that pollution is quite skewed towards low values and actually 
appears to be trimodal. These three apparent groups in the outcome variable were 
not initially expected. The game was designed such that lower levels of pollution 
should be indicative higher levels of systems thinking, as players need to understand 
the system in order to successfully lower pollution without driving the city into a 
power failure. The identifi cation of three groupings of pollution scores, however, 
was not intentional and raises questions about how game actions relate to these 
outcomes, and to systems thinking. While the groupings do not mean that the 
intended relationship of lower pollution to higher levels of systems thinking do not 
hold, it does mean that we must determine whether these groupings are artifacts 
of game design or whether they map to the levels of systems thinking. The latter 
would be a benefi cial, but unexpected, result. 

 In Fig.  14.2 , we can see the distributions of some of the other game actions. Note 
that bulldozing 4–6 coal plants is common. There are only six possible coal plant/
generators in the original city, so anyone who bulldozed more than that must have 
placed new ones down. Understanding both the skew of the distributions and the 
location of outliers will lead into the re-expression and resistance work to follow.  

  Fig. 14.1    Histogram of fi nal 
pollution values       
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 Once we looked at this univariate information, we started looking at relationships 
between variables. A common technique to examine bivariate relationships is the 
creation of a correlation matrix like that in Table  14.3 .

   This suggests a moderate negative correlation between pollution and bulldozing 
coal, but not with other variables related to coal levels. However, the numbers them-
selves do not provide information about the patterns of relationship (for example, 
linearity and nonlinearity). To see those, scatterplot matrices such as the ones in 
Fig.  14.3  are helpful.  
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  Fig. 14.2    Histograms of placing and bulldozing energy sources       

   Table 14.3    Correlation matrix among coal events, alternative energy events, and end state 
pollution   

 Pollution  Bulldoze coal  Place new coal  Turned off coal  Turned on coal 

 Pollution  1.00 
 Bulldoze coal  −.54  1.00 
 Place new coal  .07  .35  1.00 
 Turned off coal  −.03  −.31  −.04  1.00 
 Turned on coal  .06  −.19  −.01  .82  1.00 
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 Figure  14.3  shows all of the actions that can increase or decrease the amount of 
coal production in the city. This matrix works like a correlation matrix such that each 
square is the scatterplot of the row and column variable with distributions of each 
variable on the diagonal. So the second box on the top row shows us the relationship 
between bulldozing coal and pollution. One thing that is apparent looking at this box 
is that there are some players that do not bulldoze any coal plants, but still end up 
with low pollution. These will require more investigation. Looking at the far right 
column, the fourth box down shows the relationship between turning coal plants off 
and on. When a player enters the game, all of the coal plants are on. This graph sug-
gests that many of the players that turn a plant off proceed to turn it back on again. 
This behavior coincides with observations made during play testing that the turning 
off behavior is often a “testing” behavior in which the player can test the effect of 
turning a coal plant off without the permanency of bulldozing it. However, it is clear 
that this action is often reversed by turning it back on. Therefore, when we are looking 

  Fig. 14.3    Scatterplot matrix of relationship between coal activities and pollution       
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to determine the total amount of coal removal, what we actually need is a measure of 
net removal that takes into account the reversal of removal actions. 

 We therefore created a variable adding the number of bulldozing coal and turning 
off coal actions and then subtracting the placing new coal and turning on coal actions 
to get a measure of net coal removal. The fi rst time we created this variable and plotted 
the net coal removal against pollution, the result was that shown in Fig.  14.4 .  

 In analyzing this, we were drawn to the three fi lled in black data points in the lower 
right of the fi gure. These were apparently individuals who had high net coal removal 
but continued to have relatively high pollution values. In order to search for other 
explanations for their pollution values, we returned to their log fi les. Rather than 
fi nding some other variable to explain the high pollution, we found that they had in 
fact placed additional coal plants that had not been properly coded in the automated 
scripts that clean the data. Here our visualizations helped us identify an error in our 
own data cleaning processes, and avoiding being fooled by incorrect data. Going 
back and fi xing the coding of these values yielded the graph in Fig.  14.5 .   

3     Resistance 

 Because a primary goal of EDA is to avoid being fooled, resistance is an important 
aspect of using EDA tools. Resistant methods are methods that are less sensitive 
to large disruptions in small parts of the data (Mallows,  1983 ). Thus, they help us 
reduce the effects of extreme or unusual data. Note that this is different than robust-
ness in that robustness deals with the ability of a statistic to give adequate estimates 
when assumptions are violated. Resistant methods are those that generally do not 
have these assumptions. In general, there are three primary strategies for improving 

  Fig. 14.4    First attempt to 
visually analyze relationship 
between net coal removal and 
pollution       
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resistance. The fi rst is to use rank-based measures (e.g., the median) and absolute 
values, rather than measures based on sums (e.g., the mean) or sums-of-squares 
(such as the variance). While the mean has a smaller standard error than the median, 
and so may be an appropriate estimator for many confi rmatory tests, the median is 
less affected by extreme scores or other types of perturbations that may be unex-
pected or unknown in the exploratory stages of research. For measures of spread, 
the interquartile range is the most common resistant method. The second general 
resistance building strategy is to use a procedure that emphasizes more centrally 
located scores, and uses less weight for more extreme values. This category includes 
trimmed statistics in which values past a certain point are weighted to zero, and 
thereby dropped from any estimation procedures. A third approach is to reduce the 
scope of the data one chooses to model on the basis of knowledge about extreme 
scores and the processes they represent. Depending on the application and the intended 
use of results, different methods will be appropriate in different situations. 

3.1     Dealing with Outliers 

 Because an important goal of EDA is to develop understandings and descriptions of 
data, it is important to recognize that the data arise in specifi c contexts and contain 
background assumptions, even when these assumptions are unrecognized. This context 
and background can help us determine how to deal with outliers. Do we keep them 
or pull them out? 

 The fundamental question to ask is: Do we know something about these observa-
tions that suggests they come from a different process than the process we are seeking 
to understand? In games, numerous unintended processes could lead to outlying 

  Fig. 14.5    Corrected 
scatterplot of relationship 
between net coal removal and 
pollution       
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 values: failure to understand instructions, exploring the environment, following their 
own goals, failure to pay attention to the task, or equipment or data failures. Games 
often encourage exploration and player agency, which means that players can often be 
observed doing things unrelated to the processes we wish to observe. 

 As an example, when we create a scatterplot of the net industrial zoning (another 
factor that should reduce pollution) versus pollution, we get the plot in Fig.  14.6 . 
There is clearly one outlier who removed more than 500 industrial zones from the 
city. Further examination of this individual’s log fi le revealed this individual also 
bulldozed 349 residential structures (median for the sample = 4) and 64 commercial 
structures (median = 3) while also dezoning 556 residential areas (median = 3) and 
171 commercial areas (median = 0). This is an individual who appears to be seeking 
to destroy or eliminate most of the pre-built city. This is clearly a different goal than 
that intended and means we really cannot make any inferences about this individu-
al’s level of systems thinking. As a result, this is a case where it is justifi able to 
remove an outlier.  

 Alternately, when we look back at the scatterplot in Fig.  14.5 , we could call the 
two values in the upper left outliers. They have higher pollution than any other players 
and lower net coal removal. However, these players’ frequencies on other bulldozing 
and zoning variables are consistent with other players. There is no evidence that 
these players are not attempting to reduce pollution, they just are not doing it very 
well. Therefore, they were left in the sample, but the inclusion of their more extreme 
values point to the need for reporting of medians and interquartile ranges when 
reporting descriptive statistics. The most important aspect in either case is that a care-
ful and detailed description of the full data, the reduced data, and the impact of the 
outlying data be reported. Unfortunately, the extremely terse descriptions seen in a 
lot of research reporting is inconsistent with this highly descriptive approach.   

  Fig. 14.6    Scatterplot of 
pollution and net industrial 
zoning       
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4     Re-expression 

 Data often come to the exploratory data analyst in messy, nonstandard, or simply 
not-useful ways. This may be overlooked if one assumes the data distributions are 
always well behaved, or that statistical techniques are suffi ciently robust that we can 
ignore any deviations that might arise, and therefore skip detailed examination. 
In fact, it is quite often the case that insuffi cient attention has been paid to scaling 
issues either in advance, or during the modeling phase, and it is not until the failure of 
confi rmatory methods that a careful examination of scaling is undertaken. Addressing 
appropriate scaling in advance of modeling is called re-expression and is a fundamen-
tal activity of EDA. Recently, advances in modeling have resulted in the ability to 
model distributions and nonlinearity, but still require careful consideration of underly-
ing distributions in order to specify the appropriate model. Re-expression here refers 
solely to attempts to address the scaling of the data, as opposed to smoothing, for 
example, which aims at reducing the variability of the data. 

 The distribution most commonly “assumed” by statistical tests is the “normal” 
distribution. In EDA, the term “normal distribution” is avoided in favor of “Gaussian 
distribution” to avoid the connotation of prototypicality or social desirability. 
A Gaussian shape is sought because this will generally move the data toward more 
equal-interval measurement through symmetry, will often stabilize variance, and 
can quite often yield forms of the data that lend themselves to other modeling 
approaches (Behrens,  1997 ). 

4.1     Re-expression Prior to Modeling 

 Although mathematically equivalent to what is called transformation in other 
traditions, re-expression is so named to refl ect the idea that the numerical changes 
are aimed at appropriate distributions rather than radical change. An appropriate 
re- expression can often be found by moving up or down the ladder of re-expression 
(Tukey,  1977 ). The ladder of re-expression is a series of exponents one may apply 
to original data that show considerable skew. Recognizing the raw data exists in the 
form of X1, moving up the ladder would consist of raising the data to X2 or X3. 
Moving down the ladder suggests changing the data to the scale of X1/2, −X-1/2, 
−X-1, −X-2, and so on. The position on the ladder occupied by X0 is generally 
replaced with the re-expression of log(X), where the log is usually either taken to be 
the base 10 logarithm or the natural logarithm; the choice between them is arbitrary 
but may be made for interpretation. Gelman and Hill ( 2007 ) for example, suggest 
that the base 10 logarithm yields easier interpretation of data while the natural loga-
rithm yields easier interpretation of coeffi cients in models. Note that the Box-Cox 
power transformation is one more formal method by which to search for and apply 
the best means of re-expression. 

 To choose an appropriate transformation, one moves up or down the ladder 
(i.e., takes each data point and applies the appropriate exponent) toward the bulk 
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of the data. This means moving down the ladder for distributions with positive 
skew and up the ladder for distributions with negative skew. To demonstrate this 
process, we can examine the distribution of the end state pollution values. These 
are initially highly skewed and were re-expressed with both a square root and log 
transformations (Fig.  14.7 ). The square root transformation shifted the distribu-
tion somewhat to the right but still leaves some skew (skew: 0.48). However, the log 
of pollution shifted the data too far, resulting in a negatively skewed distribution 
(skew: −2.91).  

 A common objection to re-expression is that the results of analyses involving 
re-expressed variables are diffi cult to interpret. This is true in some cases, however, 
we wish to provide an example of interpretation of log re-expression in regression 
to demonstrate that this should not be a barrier for some of our most common 
 analyses. In the situation where the dependent variable is re-expressed as a log of 
the original variable while the independent variables are not, we say that a one unit 
change in the independent variable yields a 100*coeffi cient percent change in the 
dependent variable. In the case where the independent variable is re-expressed as a 
log but the dependent variable is unchanged, we interpret the result as a 1 % change 
in the independent variable results in a coeffi cient/100 change in the dependent vari-
able. When both the independent and dependent variables are re-expressed as logs, 
we can interpret the regression result to mean that a 1 % increase in the independent 
variable leads to a coeffi cient percent increase in the dependent variable. It should 
be noted that re-expression alters the relative distance between data points. So, 
although the points all remain in the same order, there is a loss of information that 
may be undesirable when those distances are meant to be interpretable, such as 
might be the case with variables such as age or GPA (Osborne,  2002 ). 

 Although some researchers may reject the notion of re-expression as “tinkering” 
with the data, our experience has been that this view is primarily a result of lack of 
experience with the new scales. In fact, in many instances individuals use scale re-
expressions with little thought. For example, the familiar practice of using a propor-
tion is seldom questioned, nor is the more common re-expression to z-scores. Many 
common measurements, such as the Richter scale and decibel are transformations.  
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4.2     Modeling Distributions 

 The re-expression discussed up to this point has involved re-expression of individual 
variables prior to model fi tting. This work is important in that it builds familiarity 
with the data, helps to understand different possible strategies, and suggests possi-
ble approaches for picking a computational model for an analysis. Rodgers ( 2010 ) 
discusses a “quiet methodological revolution” (p. 1) in which the traditional null 
hypothesis–testing paradigm is replaced with one of building, evaluating, and com-
paring models. The focus of the new paradigm is on developing models that best fi t 
the data, rather than manipulating the data to fi t the assumptions of a test of a null 
hypothesis and may involve re-expression to better bring out relationships. 

 After completing the scale-motivated methods discussed earlier, exploratory anal-
yses often take advantage of the strengths of generalized linear models. For example, 
while a binary variable may be transformed to a series of logits for early data explo-
ration, the development of a predictive model is most likely to be accomplished using 
a logistic regression form with all the availability of predictive values, residuals, and 
so forth available in common generalized linear models. In other words, data may be 
re-expressed for some analyses, but also left in its raw form and models incorporat-
ing the non-Gaussian distributions used. For example, count data are commonly ana-
lyzed using Poisson (log-linear) models without initial re- expression of the data. 
Weighted least squares can be used when variability is not constant across groups 
(heteroscedasticity). Gelman and Hill ( 2007 ) provide  excellent examples on the 
application of generalized linear models following approaches largely or altogether 
consistent with the views expressed here. Finally, nonparametric methods can be 
explored, although often at the expense of power and loss of information from interval 
level scales.   

5     Residuals 

 George Box ( 1976 ) succinctly summarized the importance of aligning model choice 
with the purpose of the analysis writing: “All models are wrong, some are useful” 
(p. 3). Residuals allow us to understand how our models are wrong. This emphasis 
on residuals leads to an emphasis on an iterative process of model building: A tenta-
tive model is tried based on a best guess (or cursory summary statistics), residuals 
are examined, the model is modifi ed, and residuals are reexamined over again. 

 It is worth a pause here to describe how these models are built. In a traditional 
research view, models are developed from the hypotheses of experts with domain 
knowledge and the existing research base. However, in GBAs we often have very 
weak or nonexistent hypotheses about the relationships among variables of inter-
est. As a result, it is prudent to examine recent advances in methods of model build-
ing. For example, researchers can submit data to Kaggle and set up a competition 
among data scientists to fi nd the best models of the data, essentially crowdsourcing 
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model building. Alternately, statistical techniques such as symbolic regression can 
be used to discover the relationships among variables in a model. In using any of 
these traditional or new techniques, a key is understanding not just the fi t of the 
model, but where misfi t is occurring. 

 In statistics, we use the term residual to mean what is left unexplained by the 
predictor(s). If you are trying to predict someone’s test score by how much they 
studied, you are going to be wrong, for some people by a little and for some people 
by a lot. That amount you are off is what is “left over” of the test score after the 
effect of study time is accounted for. It is the residual. Different models will lead to 
different patterns of residuals. It is not just a case that some are big and some are 
small, but that when they are graphed, we can see patterns. In many models, there 
are assumptions about residuals. For example, in linear regression, a well-fi t model 
will have residuals with a mean of 0 and variance should be constant. However, even 
without specifi c assumptions, examining the pattern of error terms, can yield infor-
mation about how models fi t the collected data. 

 In the EDA tradition, residual is not simply a mathematical defi nition, but a 
foundational philosophy about the nature of data analysis. The primary focus of 
EDA is on the development of compact descriptions of the world. However, these 
descriptions will never be perfect so there will always be some misfi t between our 
model and the data, which really means a misfi t between our model and the world. 

 In the third scenario of SimCityEDU, we wanted to examine the factors that led 
to decreased pollution outcomes in the game (hypothesizing that players who ended 
up with lower pollution while maintaining power had a better understanding of the 
system). In order to test the variables explored above, we ran a linear regression 
model predicting the square root of pollution from the net coal removal, net industry 
removal, and net alternative energy placement. The model was signifi cant, 
 F (3, 745) = 303.5,  p  < .001, R 2  = .55, Cohen’s  f  2  = 1.22. Importantly, all three predic-
tors were signifi cant, indicating they all contribute to pollution values above and 
beyond the other predictors, and engaging in those activities is likely related to 
understanding of the system. These three variables plus the end state are the begin-
nings of evidence we will include in our measurement model. 

 While the model is statistically signifi cant, we should not stop there. We can 
graph the predicted pollution outcomes for each person versus the residuals (see 
Fig.  14.8 ).  

 Looking at the graph, we see that there is a clear pattern in which lower predicted 
values of pollution have higher residuals and higher values of pollution have smaller 
residuals. A biased homoscedastic pattern such as this suggests there is likely an 
unmodeled predictor variable. 

 Based on this information, we will want to adjust our model. We can do this in a 
number of ways. We might try to statistically model the pattern. In this case, we tried 
a general linear model using raw pollution values and a Poisson distribution. This 
yielded an even more extreme linear pattern. Our next path will be to fi nd another 
predictor to add to the equation. It may be that the group that is  under- predicted 
did something else to decrease pollution in the city. Going back to exploratory 
mode and/or using some other data mining techniques might uncover this. 
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There are two cautions with this process. First, there is a point of diminishing 
returns where the improvements made to the model no longer have meaningful 
impact on the decisions to be made. For example, the slightly greater precision in 
estimation of ability may not be useful in informing instructional decisions. Second, 
going down the iterative exploratory road fi ts a model to a particular data set, and 
confi rmation on independent data would be required.  

6     Psychometric Techniques 

 To fi nish the discussion of evidence models in GBAs, we will briefl y review how the 
pieces of evidence identifi ed in EDA are combined using a measurement model in 
order to estimate players’ levels of systems thinking. The EDA processes we saw above 
may yield everything from action counts to times to fi nal scores as evidence fragments. 
While these individually may be interesting, we must also fi nd a way to combine 
these disparate pieces of information to estimate the values of the latent traits we are 
ultimately interested in assessing. This is the work of the measurement model. 

 The simplest psychometric models are classical test theory (CTT) models or 
observed score models, in which scores based on observable variables are added. 
CTT works well when the multiple measures at issue are similar pieces of evidence 
about the same thing—in familiar assessments, for example, correctness across 
many similar test items; in GBAs, this would correspond to independent attempts at 
similar problems, as long as learning is negligible across those attempts. With 
familiar tests, CTT models also prove serviceable for collections of unlike items—
as long as the collection doesn’t change. Since CTT addresses the overall score, 
changing game scenarios or player actions changes the meaning of the scores; it 

  Fig. 14.8    Scatterplot of 
actual pollution versus 
residuals       
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does not lend itself to the rapid versioning of games or their mix-and-match 
 character. In general, CTT does not work as well for situations that are more com-
plicated in any of several ways: for example, where the evidence comes in different 
forms, has dependencies among some of its pieces, pieces depend on different 
mixes of skills in different combinations, profi ciencies are changing across the 
course of observation, or different players contribute different amounts or different 
types of evidence. In the example above, we have information such as net coal 
removal events and total end state pollution. It would not make sense to simply add 
these values up. Latent variable models were invented to deal with assessments with 
these features. 

 Commonly used latent variable models used in educational measurement include 
item response theory (IRT; Yen & Fitzpatrick,  2006 ) and diagnostic classifi cation 
models (von Davier,  2005 ). More detail about latent variable models can be found 
in Mislevy et al. ( 2014 ). Developed in traditional assessment environments, these 
models often have constraints on independence of observations and single dimen-
sionality of observations that are routinely violated in GBA. While modifi cations of 
the models, such as multidimensional IRT have been developed, the multidimen-
sional, dependent evidence with polytomous or continuous observations continue to 
challenge these items. Bayesian inference networks offer another option and have 
shown to be useful in complex assessment systems with nontraditional evidence 
(Almond & Mislevy,  1999 ; Mislevy & Gitomer,  1996 ; VanLehn,  2008 ). There is no 
need to pick “a” model from among them to use in GBA, because different kinds of 
observable variables (counts, strategy usage, features of an system diagram) can all 
be modeled as depending on the same latent variables by using appropriate condi-
tional probability distributions (link functions). Furthermore, it is sometimes useful 
to have multiple models running in parallel, or to have them running at different 
levels of the hierarchical organization of GBA interactions. 

 We focus here on Bayesian inference networks and provide a numerical example 
to give some insight into how the model works in GBA. Bayesian inference net-
works, or Bayes nets for short, are a broad class of models for interrelationships 
among categorical variables. They can express or approximate the various latent- 
variable models mentioned above, and are particularly well suited to fl exible com-
bination of modules that express recurring relationships among kinds of evidence or 
between evidence and profi ciencies (a characteristic that serves well in domains 
such as jurisprudence, intelligence analysis, and medical diagnosis; Schum,  1994 ). 
The model enables us to take advantage jointly of information from theories about 
a learning domain, from design strategies, and accumulating data from players. 
At the beginning, we posit models that refl ect our initial beliefs about the targeted 
aspects of profi ciency and the features of situations (tasks) that will evoke them. 
We build these hypotheses into the forms and the parameterizations of the models. 
By modeling conditional probabilities in terms of parameters, we can express our 
initial expectations as prior probability distributions for the parameters. As data 
arrive, Bayesian machinery allows us to get increasingly improved estimates of 
the model parameters and to examine where and how well the data fi t the model. 
This information helps us fi ne-tune models to better manage evidence, or to modify 

K.E. DiCerbo et al.



337

game situations to provide better evidence. This is a particular advantage of Bayesian 
networks; as long as the student model variables (SMVs) remain the same, it is 
straightforward to incorporate additional forms of evidence, such as new evidence 
fragments discovered from educational data mining (EDM) or new game levels 
added to the game. 

 Koenig, Lee, Iseli, and Wainess ( 2010 ) and Shute ( 2011 ) illustrate the use of 
Bayes nets in GBA, with ECD as the design framework. VanLehn ( 2008 ) provides 
a good overview for related uses in intelligent tutoring systems. An example from 
the Sierra Madre challenge in SimCityEDU illustrates key ideas. 

6.1     A Numerical Example 

 Figure  14.9  gives a numerical example of a part of a Bayes net for the third scenario. 
As we will see, Bayes nets generally require categorical states for the observable 
variables. Recall that in the above analysis the fi nal pollution state appeared to have 
a trimodal distribution. Three groups were identifi ed in the pollution result and com-
bined with fi nal power state to yield fi ve levels of an End State observable variable. 
Similarly the net coal removal variable and net industry zoning variables identifi ed 
above were combined with the net alternate energy placement variable to form a 
Remove Replace variable. Systems Thinking is the latent SMV and Remove Replace 
and End State are two observable variables, as shown in Fig.  14.9  (this is a small 
piece of the Bayes net for demonstration purposes). Recall that Systems Thinking 
has fi ve levels. However, the design of the game targeted gathering evidence for the 
fi rst four. Therefore, the top two levels are collapsed given that with the evidence 

Energy Remove/
Replace

Level1

Systems Thinking

25%

30%

30%

15%

Level2

Level3a

Level3band4

End State

  Fig. 14.9    Bayesian Network with no observed evidence       
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available in the game we cannot differentiate between the two. Figure  14.9  shows 
the prior probabilities we assign to a student being at these levels, before observing 
her performance. Note that although it is traditional for diagrams to display latent 
variables as circles and observed variables as squares, Bayesian Network software 
consistently displays all variables as circles and uses squares when displaying the 
probability distributions, as seen in Fig.  14.9 . The values shown there represent 
beliefs that correspond to how we expect the game to be used. That is, most players 
would be at level 1, 2, or 3a with respect to this context and content, and not at 3b or 
4; however, without evidence, there are near equal probabilities that a player is at 
level 1, 2, or 3a.  

 We then create probability tables, like that shown in Fig.  14.10 , that list the proba-
bility of observing each category or state of energy remove and replace given a level 
of systems thinking. So, for example, someone at level 1 of the systems thinking 
progression would have a .33 probability of not removing any coal or industry 
(State 1). The numbers for prior probability and conditional probabilities were fi rst 
justifi ed in terms of what we know about the situation—expectations based on 
knowing the kinds of students who would be players, research on Systems Thinking, 
and the numbers in the example are initial expert-opinion refi ned by data from a 
small scale try-out test. As the general release of the game brings in much large 
volume of data, the Bayes net allows for coherent updating of the conditional prob-
abilities (Mislevy, Almond, Yan, & Steinberg,  1999 ). The model also allows for 
comparing the patterns in the data with the patterns the model can express, so that 
the model or the data-gathering situations can be improved (Levy,  2006 ; Williamson, 
Mislevy, & Almond,  2000 ).  

State1
Systems Think... Level1 Level2 Level3a

Level3band4

Level1

Systems Thinking

Level2

Level3a

15%

30%

30%

25%

Level3band4

State2
0.33
0.3

0.17
0.1

0.07
0.03 0.13

0.23

0.23
0.11
0.05 0.04

0.08
0.14

0.2
0.21
0.33 0.47

0.19
0.14
0.1

End State
0.06
0.04

0.25
State3
State4
State5
State6

  Fig. 14.10    Probability table linking evidence node to student model variable       
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 We created a similar probability table for the variable EndState. Once the probability 
tables are created, we can use the Bayes nets to estimate probabilities, as shown in 
Fig.  14.11 . For example, if we see that someone has not removed any coal plants or 
rezoned any industrial areas, we can then update their probabilities of being at each 
level of the systems thinking progression. In this case, the updating results in the 
estimate that there is a .76 probability that the player is at level 1 (Acausal Thinking) 
in the progression. In this way, we are able to link in-game actions to estimates of 
levels of the learning progression.    

7     Conclusions 

 The goal of the exploratory analysis of SimCityEDU was to identify potential pieces 
of evidence in game play related to systems thinking. The tools presented here were 
useful in identifying these “fragments” of evidence that could then be combined via 
statistical tools such as Bayesian networks. They allowed us to identify errors in our 
data process, suggested how actions might be used by players (e.g., turning off coal 
plants as a test), identify outliers and assess their inclusion in models, and judge 
whether our efforts to identify meaningful variables was complete. The methods of 
EDA are summarized in Table  14.4 .
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Energy Remove/ Re...
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Systems Thinking

71%

13%

10%

5%
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Level3band4

End StateState3
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100%
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0%

0%

0%
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  Fig. 14.11    Bayes Net after observing play       
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   We believe that EDA offers a complementary approach to other analysis traditions. 
For example, EDM is a group of methods aimed discovering novel and useful 
 information from large amounts of educational data. Baker and Yacef ( 2009 ) identi-
fi ed the following fi ve areas of work characteristic of EDM: prediction, clustering, 
relationship mining, distillation of data for human judgment, and discovery with 
models. It is our position that EDA allows for intimacy with data prior to the use of 
these more complex methods. In our experience, practitioners of EDM often wait 
until their models fi t poorly to begin investigating the issues of data familiarity and 
distribution discussed here. In addition, EDA serves as a theory-generating process 
which can inform the data mining models being built (for example, informing the 
list of features used in building automated detectors). We believe beginning with 
EDA techniques would likely result in better fi tting EDM models and more thor-
ough understanding of results. The use of residual techniques will lead to better 
evaluation of the resulting models as well. In the SimCityEDU project, analysis will 
likely move to EDM techniques in an attempt to identify other variables involved in 
the prediction of pollution scores. 

 The work of identifying evidence from GBAs ultimately requires cycles of 
exploration, hypothesis generation, and confi rmation. While EDA is likely good 
practice in analysis of all kinds of data, the generally weak initial hypotheses about 
links between game play and evidence combined with the open nature of game play 
in GBAs make GBA data a prime candidate for the use of the techniques. Our psy-
chometric techniques have progressed to the extent that we can receive the tradi-
tional correct/incorrect data, fi t our established models, and review the output with 
known methods to examine fi t. However, GBAs result in new work products and 
new kinds of evidence that do not easily translate into these techniques. By looking 
back to Tukey’s Exploratory Data Analysis tools, we fi nd a framework and powerful 
tools to lead us forward in analyzing our new game-based assessment data.     

   Table 14.4    Summary of 4R’s of EDA (based on Hoaglin et al.,  1983 )   

 Defi nition  Example 

 Revelation  Uncovering the 
unexpected, most often 
through visualization 

 Identifi cation of a cluster of players whose 
actions led to unexpected game outcomes 

 Resistance  Using methods that are not 
overly infl uenced by 
extreme or unusual data 

 Identifi cation of players whose actions are so 
different than average that they are likely 
pursuing a different goal in game play, 
suggesting we should not make inferences about 
their skill based on our known evidence rules 

 Re-expression  Ensuring match between 
data distributions and 
modeling techniques 

 Use of square root or log-transformed variables 
to better fi t models 

 Residuals  Evaluation of where 
models do not fi t the data, 
encouraging iteration 

 Identifi cation of overprediction of a model at the 
lower end of a scale, suggesting variables are 
missing from the model 
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