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Abstract. Location-selection problem underlines many spatial decision-
making applications. In this paper, we study an interesting location-
selection problem which can find many applications such as banking
outlet and hotel locations selections. In particular, given a number of
spatial objects and a set of location candidates, we select some locations
which maximize the influence but minimize the cost. The influence of
a location is defined by the number of spatial objects within a given
distance; and the cost of a location is indicated by the minimum payment
for such location, which is measured by quality vectors. We show that a
straightforward extension of a skyline approach is inefficient, as it needs
to compute the influence and cost for all the location candidates relying
on many expensive range queries. To overcome this weakness, we extend
the Branch and Bound Skyline (BBS) method with a novel spatial join
algorithm. We derive influence and cost bounds to prune irrelevant R-tree
entries and to early confirm part of the final answers. Theoretical analysis
and extensive experiments demonstrate the efficiency and scalability of
our proposed algorithms.

1 Introduction

Location selection has been an emerging problem with many commercial ap-
plications. For example, telecom service providers store huge volumes of loca-
tion data to provide data monetization applications to the third party, such as
banking outlet and hotel locations selections. In many scenarios, additional at-
tributes besides the location are available in a spatial object. For example, a
hotel has a spatial position as well as quality attributes such as star, service, etc.
These attributes can improve the price-performance of selected locations. Un-
fortunately, traditionally location selections only take the spatial distance into
account [7, 22, 25], which ignore non-spatial attributes.

In this paper, we select locations in terms of both spatial distances and qual-
ity vectors. In particular, we select locations to maximize their influences but
minimize their costs. Given a distance threshold δ, a location l’s influence is
measured by the number of existing spatial objects within the distance δ from l.
It indicates how many objects the location can potentially influence. As shown
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in Figure 1(a), there are four location candidates (l1, l2, l3 and l4) and a bunch
of existing spatial objects. Here l2 impacts the most number of objects since its
δ-neighborhood contains four existing spatial objects.

Given a distance threshold δ, a location l’s cost is measured by the payment for
obtaining minimal quality vectors 1 to dominate all the existing objects within
the distance δ from l. The concept of dominance [3] is proposed to compare two
quality vectors. One quality vector vi dominates another vector vj if vi is no
worse than vj on all attributes and better than vj on at least one attribute. As
shown in Figure 1(a), the minimal quality vector to dominate all the objects in
l2’s δ-neighborhood is 〈5, 10, 5〉. Furthermore, we assume there is a monotonic
function which maps a quality vector to a numerical cost. For instance, the cost
of l2 can be defined as f(l2) = f(〈5, 10, 5〉) = 1

2 · (5 + 10 + 5) = 10.
In this paper, we adopt the skyline query [3] to define our location selection

problem. Given a set of objects, the skyline operator returns a subset of objects
such that the object in the subset is not dominated by any other objects. In
particular, we select locations whose influence and cost are not dominated by
any other locations. The skyline points of locations in Figure 1(a) are shown in
Figure 1(b). Suppose that the influence and cost are 〈3, 10〉 for l1, 〈4, 10〉 for l2,
〈2, 5〉 for l3, and 〈1, 6〉 for l4. Then 〈l2, l3〉 is the result of the skyline location
selection.
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Fig. 1. The Example in the Spatial and Skyline Perspective

A straightforward solution to address the skyline location selection problem is
that we compute the influence and the cost for each of the location candidates,
and then use existing skyline query algorithms to generate the skyline points.
For large data sets this is infeasible since it relies on expensive range queries to
compute the influence and the cost for all the locations.

We develop an efficient algorithm to answer a skyline location selection query.
First, we build two R-trees on the location set L and the object set O, denoted

1 Without loss of generality, we assume that larger values are preferred in the domi-
nance comparison throughout the paper.
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as RL and RO, respectively. At high-level, the algorithm descends the two R-
trees in the branch and bound manner, progressively joining RL entries with RO

entries to compute the two bounds of the influence and the cost for each entry
eL in RL; then based on the generated skyline points, the algorithm decides
whether to prune an entry eL, or to access its children until all leaf entries of RL

are accessed. During the two R-trees traversal, we use a min-heap to control the
accessing order of RL entries, which can ensure that an irrelevant R-tree node
is not visited before its dominance skyline point is generated.

The contributions of this paper are summarized as follows.

– We define a type of optimal location selection problem that takes into ac-
count not only spatial distance but also non-spatial quality vectors associated
to locations. Our problem definition returns optimal locations that can po-
tentially influent the largest number of objects in proximity at the lowest
costs. Our approach employs the skyline dominance concept that is popu-
lar for multi-criteria optimization, and therefore it requires no specific user
intervention in selecting optimal locations.

– We propose a novel location selection algorithm. Tight influence and cost
bounds are derived to prune irrelevant R-tree entries and to early confirm
part of the final answers.

– We provide theoretical analysis on the IO cost of our algorithm based on a
spatial join cost model.

– We conduct extensive experiments to evaluate our algorithm under various
settings.

The remainder of this paper is organized as follows. Section 2 gives the defini-
tions and the problem statement. Section 3 proposes our algorithm for the prob-
lem. Section 4 provides the IO cost analysis of our algorithm. Section 5 evaluates
our proposed algorithm experimentally. Section 6 reviews related works. Finally,
section 7 concludes the paper and discusses the future work.

2 Problem Definition

In this section, we formally define the location selection problem. A location is
a point λ = 〈x, y〉 where x and y are coordinate values in a 2-dimensional space.
We assume that there are c quality dimensions and D = D1 ×D2 × . . .×Dc is
the quality space. A quality vector is a c-dimensional point p = (d1, d2, . . . , dc),
where di ∈ Di(1 ≤ i ≤ c). Then, a spatial object o is composed of a location
λ and a quality vector ψ associated with that location, i.e., o = 〈λ, ψ〉. We
use o.loc and o.p to denote a location object o’s location and quality vector
respectively. For a spatial object set O, we use πP (O) to denote all the quality
vectors associated with spatial objects in O, i.e. πP (O) = {o.p | o ∈ O}. We
define the key components of our problem as follows.

δ-Neighborhood: Given a location loc, a spatial object set O, and a distance
threshold δ, loc’s δ-Neighborhood, termed as Nδ(loc, O), is the subset of objects
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in O that are within the distance δ from loc. Formally, Nδ(loc, O) = {o | o ∈
O∧‖o.loc, o‖ ≤ δ}. The cardinality of a location’s δ-Neighborhood indicates the
location’s potential influence.

Quality Dominance: Given two quality vectors p and p′, p dominates p′ if
p is no worse than p′ on all attributes and p is better than p′ on at least one
attribute. We use p ≺ p′ to denote that p dominates p′. Given a quality vector
p, there can be multiple quality vectors that dominate p. Each of them is called
p’s quality dominator. Given a quality vector set P , we use p ≺ P to indicate
that p is P ’s dominator.

Cost Functions: Given a quality vector q ∈ D, the cost function fg
cost(q)

returns a cost value of real type, i.e. fg
cost : D → R. For example, a cost function

can be defined as the weighted sum of all quality attribute values, i.e., f c
cost(q) =∑c

i=1 wi · q.di. Here, wi is zero if quality dimension Di has no impact on the
dominance cost; wi > 0 if the dominance cost is proportional to the values on
quality dimension Di; otherwise wi < 0. Note that it is natural to define cost
functions that are monotonic with respect to dominance. We say a cost function
fcost is monotonic if and only if fcost(q) ≥ fcost(q

′) for any two quality vectors
that satisfy q ≺ q′. This is consistent with the intuition that better quality is
achieved at a higher cost.

Minimum Quality Dominance Cost: Among all the quality dominators, we
are interested in the one with the minimum cost. Given a quality space D, a set
of quality vectors P ⊆ D, and a cost function fcost , we use D(P ) to denote P ’s
minimum cost quality dominator such that

1. D(P ) ≺ P ;
2. ∀p′ ∈ D and p′ ≺ P , fcost(p

′) ≥ fcost(D(P )).

Then, we define C(P ) = fcost(D(P )) to denote P ’s Minimum Quality Domi-
nance Cost.

Note that D(P ) is a quality vector and C(P ) is a scalar value. As we assume
large values are preferred in the dominance comparison, D(P ).di = min{(p.di) |
p ≺ P}.

Location Dominance: Given a spatial object set O, a distance threshold δ,
and a cost function fcost , a location loc1 location dominates another location
loc2, termed as loc1 ≺ loc2, if and only if

1. |Nδ(loc1, O)| ≥ |Nδ(loc2, O)|;
2. C(πP (Nδ(loc1, O))) ≤ C(πP (Nδ(loc2, O)));
3. |Nδ(loc1, O)| > |Nδ(loc2, O)| or C(πP (Nδ(loc1, O))) < C(πP (Nδ(loc2, O))).

With all definitions formulated above, we give the problem statement of op-
timal location selection as follows.
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Problem 1. Given a location set L, a spatial object set O, a distance threshold δ,
and a cost function fcost , an optimal location selection returns from L a subset of
locations that are not location dominated by any others. Formally, the Optimal
Location Selection (OLS) problem is defined as:

OLS(L,O, δ) = {l | l ∈ L,  ∃l′ ∈ L ∧ l′ ≺ l} (1)

3 Algorithms for Optimal Location Selection

In this section, we present algorithms for defined optimal location selection. We
start from the naive loop algorithm, and then describe the spatial join based
algorithm.

Algorithm 1. Loop(Spatial object set O’s R-tree RO, location set L, distance
threshold δ)

1: S ← ∅
2: for each location l ∈ L do
3: Nδ(l, O) ← Range Query(l, δ, RO)
4: p ← (0, . . . 0) � c-dimensional point
5: for each object o ∈ Nδ(l, O) do
6: p[i] ← max(p[i], o.p[i])

7: cost ← fcost(p) � C(πP (Nδ(l, O)))
8: influence ← |Nδ(l, O)|
9: candidate ← (l, influence , cost)
10: dominanceCheck(S, candidate)

11: return S

Algorithm 2. dominanceCheck(Current skyline S, a candidate candidate)

1: flag ← false
2: for each tuple tp ∈ S do
3: if tp ≺ candidate then
4: flag ← true; break
5: else if candidate ≺ tp then
6: remove tp from S

7: if flag = false then
8: add candidate to S

3.1 The Loop Algorithm

We develop a loop algorithm shown in Algorithm 1 as the baseline algorithm.
The idea is that: for each location l ∈ L, we issue a range query on the object
set O to get l’s δ-neighborhood Nδ(l, O). All objects in the δ-neighborhood are
checked to obtain the minimum cost quality dominator. Then, the influence and
cost of a location candidate are computed. Finally, the candidate is checked
against all generated optimal locations in terms of location dominance. This
dominance check is shown in Algorithm 2.
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3.2 The Join Algorithm

To reduce the computation overhead of influence and cost, we propose a spatial
join based algorithm. The basic idea is that we make use of the R-tree [9] based
spatial join [4] to find the δ-neighborhood for location candidates.

Suppose that spatial attributes of the location set L and the object set O are
indexed by the R-trees RL and RO respectively. The locations in L are joined
with the objects in O based on the two R-trees: an entry eL from RL are joined
with a set of overlapped entries from RO. These relevant entries are defined as
eL’s join list. We use eL.JL to denote eL’s join list. Intuitively, we avoid to find
the joint list from the whole object data set, and make use of the spatial join to
obtain the joint list only from relevant object R-tree entries. Thus the IO cost
of operations on the object set O is significantly reduced.

To further reduce the overhead of influence and cost computations for irrele-
vant location candidates, we derive the influence bound and the cost bound for
all locations in a given location R-tree entry eL. The two bounds are used in the
join algorithm to prune irrelevant RL and RO nodes.

Influence Bound. We introduce the δ-Minkow-ski region [2] to derive the
influence bound. Given a distance threshold δ, a location entry eL’s δ-Minkow-ski
region, denoted by Ξ(eL, δ), is the set of all locations whose minimum distance
from eL is within threshold δ. Formally, we define

Ξ(eL, δ) = {t ∈ R
2 | distmin(t, eL) ≤ δ} (2)

We are interested in those objects from O that fall into Region Ξ(eL, δ). Ac-
cordingly, we define eL’s δ-Minkowski region with respect to O as follows.

ΞO(eL, δ) = {o ∈ O | o.loc ∈ Ξ(eL, δ)} (3)

Given a spatial object set O and a distance threshold δ, we define the influence
bound of eL, termed as BIO,δ(eL), to be the number of objects in ΞO(eL, δ).

BIO,δ(eL) = |ΞO(eL, δ)| (4)

If e′L is a descent entry of eL, we have ΞO(e
′
L, δ) ⊆ ΞO(eL, δ). Therefore, we

have the following lemma that guarantees the correctness of the influence bound.

Lemma 1. Given a spatial object set O, a distance threshold δ, and a location
entry eL, any location l’s influence cannot be larger than eL’s influence bound,
i.e. |Nδ(l, O)| ≤ BIO,δ(eL).

Proof. The lemma is proved by the fact that ∀l ∈ eL, Nδ(l, O) ⊆ ΞO(eL, δ).

Cost Bound. Given a spatial object set O and a distance threshold δ, we term
the cost bound of eL as BCO,δ(eL). Intuitively, BCO,δ(eL) can be the cost to
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dominate the most disadvantaged quality vector among all that are associated
to locations in eL. Since we assume large values are preferred in the dominance
comparison, the most disadvantaged quality vector is the one that has the min-
imum value on all attributes. Then, that (virtual) quality vector is defined as
mdq(ΞO(eL, δ)) where mdq.di = min{p.di | p ∈ πP (ΞO(eL, δ))}.

Given a quality cost function fcost, we define the cost bound BCO,δ(eL) as
the cost to dominate this most disadvantaged quality vector.

BCO,δ(eL) = fcost(mdq(ΞO(eL, δ))) (5)

The correctness of this cost bound is guaranteed by the following lemma.

Lemma 2. Given a spatial object set O, a distance threshold δ, and an location
entry eL, eL’s cost bound is larger than or equal to that of its any descent entry
e′L, i.e. BCO,δ(e

′
L) ≥ BCO,δ(eL).

Proof. Suppose the most disadvantaged quality vectors in ΞO(eL, δ) and
ΞO(e

′
L, δ) are mdq and mdq′ respectively. We have mdq.di = min{p.di | p ∈

πP (ΞO(eL, δ))} and mdq′.di = min{p.di | p ∈ πP (ΞO(e
′
L, δ))}. Since e′L ⊆ eL,

we have ΞO(e
′
L, δ) ⊆ ΞO(eL, δ). Therefore, we have mdq′.di ≥ mdq.di. Due

to the monotonicity of the quality cost function fcost, we have fcost(mdq′) ≥
fcost(mdq), i.e., BCO,δ(e

′
L) ≥ BCO,δ(eL).

As a remark, the cost of a location in the entry eL satisfies C(πP (Nδ(l, O))) =
fcost(D(πP (Nδ(l, O)))) ≥ BCO,δ(eL).

The Join Algorithm. We propose the join algorithm in Algorithm 3 and
Algorithm 4. To make use of the influence bound, we index the object set O with
an aggregate R-tree RO in which each non-leaf node entry e has an additional
filed e.count. Here e.count is the total number of all spatial objects in e. Similarly,
to make use of the cost bound, each non-leaf node entry e in RO has another
additional filed e.ψ, which is a quality vector defined as follows.

e.ψ.di = min{o.p.di | o ∈ e} (6)

Thus, we extend each non-leaf node entry e in object R-tree RO with two extra
fields e.count and e.ψ. Since the calculation of the two bounds is in the course of
the spatial join, no additional IO costs on RO and RL are introduced. Accessing
all location entries in RL is prioritized by a min-heap. A location entry eL is
pushed to the heap with a key which equals to BCO,δ(eL) −

∑
e∈eL.JL e.count,

i.e. the difference between the influence and cost bound. When the value of two
keys are the same, we randomly select one entry as the lower value key. The min-
heap ensures that irrelevant R-tree nodes will not be visited before its dominance
skyline point is generated.

As a remark, our algorithm follows the spirit of the well-established Branch-
and-Bound Skyline (BBS) algorithm [15] that prioritizes R-tree node access to
ensure that skyline points are always generated before their dominating R-tree
nodes are visited. The difference is that we integrate the branch-and-bound to
the spatial join algorithm such that the θ-neighborhood of a location can be
efficiently found.
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Algorithm 3. Join Together(Spatial object set O’s combined R-tree RO, lo-
cation set L’s R-tree RL, distance threshold δ)

1: S ← ∅
2: initialize a min-heap H
3: eroot ← RL.root; eroot.JL ← {RO .root}
4: enheap(H, 〈eroot, eroot.JL, 0, 0, 0〉)
5: while H is not empty do
6: 〈eL, eL.JL, count, cost, v〉 ← deheap(H)
7: if ∃tp ∈ S s.t. tp ≺ (∗, count, cost) then
8: continue
9: if eL is a leaf entry then
10: l ← the location pointed by eL
11: influence ← count
12: candidate ← (l, influence, cost)
13: add candidate to S
14: else
15: read the child node CNL pointed to by eL
16: for each entry ei in CNL do
17: count ← 0; ei.JL ← ∅
18: for each ej in eL.JL do
19: if Ξ(ei, δ) contains ej then
20: add ej to ei.JL; count ← count + ej .count
21: else
22: read the child node CNO pointed to by ej
23: Minkowski(ei, δ, CNO , ei.JL, count)

24: for each entry e ∈ ei.JL do
25: p[i] ← min(p[i], e.ψ[i])

26: cost ← fcost(p)
27: if ∃tp ∈ S s.t. tp ≺ (∗, count, cost) then
28: continue
29: else
30: enheap(H, 〈ei, ei.JL, count, cost, cost− count〉)
31: return S

Algorithm 4. Minkowski(R-tree RL’s entry eL, distance threshold δ, aggre-
gate R-tree RO’s node CNO, aggregate R-tree RO’s entry list JL, count v)

1: for each child entry e in CNO do
2: if Ξ(eL, δ) contains e then
3: add e to JL; v ← v + e.count
4: else
5: read the child node CNP pointed to by e
6: Minkowski(eL, δ, CNP , JL, v)

4 Analysis

In this section, we first prove the correctness of the proposed algorithm. Then,
we provide IO cost analysis for our algorithm.
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4.1 Correctness of the Algorithm

The proof of the correctness is similar to that proposed in [15]. We use Bi and Bc

to denote the influence and cost bound respectively. The difference is that our
algorithm visits entries of the location R-tree RL in ascending order based on
the distance between 〈Bi, Bc〉 and 〈∞, 0〉 on the influence-cost formed coordinate
plane. It is straightforward to prove that our algorithm never prunes a location
entry of RL which contains skyline points.

4.2 IO Cost Analysis

To quantify the IO cost of the proposed algorithm, we extend the concept of
Skyline Search Region (SSR) proposed by [15]. In this paper, the SSR is the
area defined by the skyline points and the two axes of influence and cost. For
example, the SSR area is shaded in Figure 1(b). Our algorithm must access all
the nodes whose 〈Bi, Bc〉 falls into the SSR. In other word, if a node does not
contain any skyline points but its 〈Bi, Bc〉 falls into SSR, it will also be visited
if it has not been pruned.

Lemma 3. If the influence and cost bound of an object entry e does not intersect
the SSR, then there is a skyline point p whose distance to 〈∞, 0〉 is smaller than
the distance between e and 〈∞, 0〉.
Proof. Since the influence and cost bounds of the object R-tree entry dominate
that of all its child node, p dominates all the leaf nodes covered by e.

Theorem 1. An entry of the location R-tree will be pruned if its influence and
cost bounds 〈Bi, Bc〉 fall into the SSR.

Proof. We prove it based on Lemma 3 and the fact that we visit RL in the
order of Bi − Bc. Based on the min-heap structure, if there is a skyline point
that dominates the entry bounded by 〈Bi, Bc〉, the skyline point will be visited
earlier than that entry. Thus the entry will be pruned when it is popped up from
the heap.

Next, we derive IO cost of the Join Together algorithm based on the cost
model proposed in [29]. Let PL(i) be the probability that a level i node’s 〈Bi, Bc〉
is contained by the SSR. The number of node accesses at the ith level of the
location R-tree RL equals:

NAL(i) =
NL

f i+1
L

· PL(i) (7)

where NL is the cardinality of the location candidate data set L and fL is the
node fan-out of RL. Let PL(α, β, i) be the probability that 〈Bi, Bc〉 of a level
i node of RL is contained by the rectangle with the corner points 〈∞, 0〉 and
〈α, β〉. The density of the influence and cost equals:

DL(α, β, i) =
∂2P (α, β, i)

∂α∂β
(8)
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Then we have

PL(i) =

∫ ∫

〈x,y〉∈SSR

DL(x, y, i)dxdy (9)

where x and y is the influence and cost bounds of RL entries respectively. Thus
we obtain the IO cost of location R-tree:

NAL =

hL−1∑

i=1

NAL(i) (10)

where hL is the height of the location R-tree RL.

Lemma 4. To get the join list of an entry in RL, we only expand the join list
of its parent.

Proof. The lemma is proved by the fact that the join list of a entry is computed
based on its parent’s join list from the heap.

Let PO(j) be the probability that a level j node from RO intersects with un-
pruned entries from RL, we have

NAO(j) =
NO

f j+1
O

· PO(j) · fL (11)

where NO is the cardinality of the object data set O and fO is the node fan-out
of RO, and we have

PO(i) =

∫ ∫

〈x,y〉∈Lunpruned

DL(x, y, i)dxdy (12)

where 〈x, y〉 ∈ Lunpruned denotes the location of a level j node intersects with
an unpruned RL node. Thus we obtain the IO cost of the object R-tree RO:

NAO =

hO−1∑

j=1

NAO(j) (13)

where hO is the height of the location R-tree RO.
Finally, the number of node accesses of both RL and RO equals

NA = NAL +NAO (14)

5 Experimental Studies

5.1 Settings

We use both real and synthetic data sets in our experiments. The real world
US hotel (USH) data set consists of 30,918 hotel records with the schema
(longitude, latitude, review, stars, price). For all hotel records, their
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locations (longitude and latitude) are normalized to the domain [0, 10000] ×
[0, 10000], and their quality attributes are normalized to the domain [0, 1]3. We
perform value conversions on quality attributes to make smaller values prefer-
able. We randomly extract 918 hotels from USH and use their locations as the
location set L. The remaining 3000 hotels form the object set O.

We also generate an object set with three independent quality attributes,
and another object set with three anti-correlated quality attributes. All qual-
ity attribute values are normalized to the range [0, 1]. Both object sets con-
tain 100,000 objects whose locations are randomly assigned within the space
[0, 10000] × [0, 10000]. As larger quality attribute values are preferred in our
setting, we employ a cost function f c

cost(q) =
∑c

i=1 q.di in all experiments.
We set the page size to 4 KB when building the R-trees. All trees have node

capacities between 83 and 169. All algorithms are implemented in Java and run
on a Windows platform with Intel Core 2 CPU (2.54GHz) and 2.0 GB memory.

5.2 Performance of Location Selection Algorithms

We report an experimental evaluation of skyline location selection algorithms,
namely Loop (Algorithm 1) and Join Together (Algorithm 3). To study the effect
of each bound separately, we add Join Influence and Join Cost which use either
the influence or the cost bound only.

In the Join Influence algorithm, each non-leaf Object R-tree entry e has an
extra filed e.count that is the total number of all spatial objects in e. Accessing
all location entries in RL is prioritized by a max-heap with a key which equals
to the influence bound

∑
e∈eL.JL e.count. Similarly, in the Join Cost algorithm,

an extra filed e.ψ is added to the object R-tree entry e. Here e.ψ is defined as
e.ψ.di = min{o.p.di | o ∈ e}. eL is pushed to a min-heap with a key which equals
to the cost bound BCO,δ(eL).

The Impact of the Number of Query Locations: In order to study the
impact of the number of query locations, we vary the number of query locations
in L. All locations in each L are generated at random with the spatial domain
[0, 10000]× [0, 10000]. We set the distance threshold δ to 800.

Figure 2 and Figure 3 show the results of the loop and the join algorithms,
respectively. The join algorithms are significantly more efficient than the loop
algorithm under each setting in the experiments. Because the join algorithms
leverage the R-tree based spatial join to prune many irrelevant nodes. Figure 2
and Figure 3 indicate that the response time of the skyline location selection in-
creases as the number of locations increases for all the algorithms. Figure 3 indi-
cates that the Join Together performs better than Join Influence and Join Cost.
This is because that Join Together makes use of both bounds to prune more
irrelevant nodes.

The Impact of the Distance Threshold δ: Next, we evaluate the impact of
distance threshold δ for all the join algorithms. We use 3000 locations on both
real and synthetic data sets. We vary δ using 80, 400, 800, 2000 and 5000.
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Fig. 2. The Loop Algorithm Performance (δ= 800)
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Fig. 3. The Join Algorithm Performance (δ= 800)

The results shown in Figure 4 indicate that the response time of skyline lo-
cation selection increases when the distance threshold δ is increased. Because a
larger distance indicates that more spatial objects will be involved in the spatial
join and subsequent checks.

The Impact of the Query Location Coverage Area: Finally, we evaluate
the impact of the query location coverage area, i.e., the region of all query
locations in L. We set the number of query locations to 3000, and the distance
threshold δ to 800. We first use a set of small query location coverage areas that
varies from 0.4% to 8.0% of the entire space of interest. The result is shown in
Figure 5(a). The Join Cost outperforms the other two algorithms when all query
locations are distributed in a very small part of the entire space. It indicates
that the cost bound is more effective than the influence bound when all query
locations are very close. When locations are close, their Minkowski regions tend
to overlap intensively, which weakens the influence bound based pruning that
counts on the number of objects in Minkowski regions.

We also use a set of large query location coverage areas that vary from 8%
to 50% of the entire space. The result is shown in Figure 5(b). We see that the
Join Together outperforms the other two algorithms. When the query locations
cover a larger area, there is less overlap among their Minkowski regions. Then,
the influence bound become more effective. Therefore, the combination of both
bounds performs the best among all algorithms.

Summary: The experimental results show that our proposed spatial join algo-
rithms outperforms the baseline method in the skyline location selection. The
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Fig. 4. The Effect of δ (3000 query locations)
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Fig. 5. The Query Area, 3000 locations, δ= 800

combined optimization with the influence and the cost bounds achieves the best
performance in most cases in our experiments.

6 Related Work

Spatial Location Selection. A nearest neighbor (NN) query returns the loca-
tions that are closest to a given location. A NN query can be efficiently processed
via an R-tree on the location data set, in either a depth-first search [17] or a
best-first search [10]. In contrast, the optimal location selection query in this
paper considers not only the spatial distances but also quality attributes.

So far in the literature, various constraints have been proposed to extend
the nearest neighbor concept to select semantically optimal locations or objects.
Du et al. [7] proposed the optimal-location query which returns a location with
maximum influence. Xia et al. [22] defined a different top-t most influential
spatial sites query, which returns t sites with the largest influences. Within the
same context, Zhang et al. [25] proposed the min-dist optimal-location query.
However, these proposals do not consider quality attributes of spatial objects.

Skyline Queries. Borzonyi et al. [3] defined the skyline query as a database
operator, and gave two skyline algorithms: Block Nested Loop (BNL) and Divide-
and-Conquer (D&C). Chomicki et al. [5] proposed a variant of BNL called the
Sort-Filter-Skyline (SFS) algorithm. Godfrey et al. [8] provided a comprehensive
analysis of these non-index-based algorithms and propose a hybrid method with
improvements. Bartolini et al. [1] proposed a presorting based algorithm that is
able to stop dominance tests early. Zhang et al. [26] proposed a dynamic indexing
tree for skyline points (not for the data set), which helps reduce CPU costs in
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sort-based algorithms [1, 5, 8]. None of the above skyline algorithms require any
indexing of the data set.

Alternative skyline algorithms require specific indexes. Tan et al. [20] proposed
two progressive algorithms: Bitmap and Index. The former represents points by
means of bit vectors, while the latter utilizes data transformation and B+-tree
indexing. Kossmann et al. [6] proposed a Nearest Neighbor (NN) method that
identifies skyline points by recursively invoking R∗-tree based depth-first NN
search over different data portions. Papadias et al. [15] proposed a Branch-
and-Bound Skyline (BBS) method that employs an R-tree on the data set. Lee
et al. [12] proposed ZB-tree to access data points in Z-order in order to com-
pute/update skylines more efficiently. Recently, Liu and Chan [14] improved the
ZB-tree with a nested encoding to further speed up skyline computation. How-
ever, these skyline query algorithms do not address the computation overhead
of influence and cost of location candidates.

In [27], the authors proposed several efficient algorithms to process skyline
view queries in batch to address the recommendation problem. Hu et al. [28]
proposed a deterministic algorithm to address the I/O issue of skyline query.
However, none of these works can be directly applied to solve the optimal location
selection problem proposed in this paper. The Cost Bound has the same principle
as the pseudo documents in IR-tree [16], but we use a spatial join to answer a
skyline location selection query.

7 Conclusion and Future Work

In this paper, we defined a skyline location selection problem to maximize the
influence and minimize the cost. We proposed a spatial join algorithm that can
prune irrelevant R-tree nodes. We also conducted theoretical analysis about the
IO cost of the algorithm. The extensive experiments demonstrated the efficiency
and scalability of the proposed algorithm. As for the future works, we are extend-
ing the skyline location selection algorithm to achieve the low-cost scalability in
a distributed data management framework.
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