
Cloud-Scale Transaction Processing with ParaDB
System: A Demonstration

Xiaoyan Guo, Yu Cao, Baoyao Zhou, Dong Xiang, and Liyuan Zhao

EMC Labs China
{xiaoyan.guo,yu.cao,baoyao.zhou,dong.xiang,liyuan.zhao}@emc.com

Abstract. Scalability, flexibility, fault-tolerance and self-manageability are de-
sirable features for data management in the cloud. This paper demonstrates
ParaDB, a cloud-scale parallel relational database system optimized for intensive
transaction processing. ParaDB satisfies the aforementioned four features with-
out sacrificing the ACID transactional requirements. ParaDB is designed to break
the petabyte or exabyte barrier and scale out to many thousands of servers while
providing transactional support with strong consistency.

1 Introduction

Relational database management systems (RDBMS) have been extremely successful in
traditional enterprise environments for more than three decades. However, RDBMSs
are no longer competitive choices for cloud-scale applications, since data management
in the cloud desires scalability, flexibility, fault-tolerance and self-manageability, which
cannot be completely well supported by existing RDBMSs.

Recently, numerous NoSQL systems have been proposed for scalable data man-
agement in the cloud, such as Amazon Dynamo, Google BigTable, Yahoo PNUTS,
Facebook Cassandra. These systems do not (fully) support SQL and usually build atop
key-value data storage, where data are partitioned, replicated and then distributed over
multiple nodes to achieve high performance, scalability and availability. However, all
these systems guarantee only eventual consistency or other weak consistency variants.

Although a small number of large-scale Web applications can tolerate weak consis-
tency, almost all enterprise applications demand ACID-compliant transaction process-
ing, so as to guarantee the application correctness and simplify the application logic
design. As such, Google developed Megastore and Percolator on top of BigTable for
more general support of transaction processing. Other recent research works towards
the similar direction include ElasTraS [1] and CloudTPS [2]. However, these systems
still cannot perfectly support cloud-scale enterprise transactional applications.

We thereby present ParaDB, a scalable, flexible, fault-tolerant and self-manageable
parallel database system supporting ACID transaction consistency. Unlike the afore-
mentioned systems, ParaDB facilitates the data management in the cloud by scaling
out a traditional centralized RDBMS. Moreover, since current NoSQL databases usu-
ally expose a subset of functionalities of RDBMS, a straightforward encapsulation of
ParaDB can easily enable existing NoSQL applications to run with ParaDB. ParaDB is
designed to break the petabyte or exabyte barrier and scale out to many thousands of
servers while providing transactional support with strong consistency.

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part II, LNCS 8422, pp. 535–538, 2014.
c© Springer International Publishing Switzerland 2014



536 X. Guo et al.

Fig. 1. ParaDB System Architecture

The major contributions of ParaDB are summarized as follows:
(1) ParaDB employs an intelligent iterative hyper-graph based database partitioning

engine, which minimizes the number of distributed transactions, the major performance
bottleneck. ParaDB also conducts intelligent data re-partitioning and live database mi-
gration without losing load balance and transparency.

(2) ParaDB implements an efficient eager active-active replication mechanism, which
ensures strong ACID consistency in the multi-master configuration, and improves sys-
tem availability and fault-tolerance at the cost of only small performance reduction.

(3) ParaDB deploys multiple identical masters to avoid the single node bottleneck
and improve system scalability, with the help of an efficient and elastic multi-master
metadata synchronization mechanism.

2 System Overview

Figure 1 depicts the high-level system architecture of ParaDB. There are two types of
system nodes: shard server node and master server node. The shard server handles table
storage and query processing. The tables in the database are partitioned, replicated and
then stored at different shard server nodes. The master server serves as a query router
and a distributed transaction coordinator. It only stores the metadata and system status
information. There could be multiple master servers, which can concurrently accept
and process clients’ query requests. ParaDB supports concurrency control, transaction
recovery and consistency management. ParaDB utilizes two-phase commit protocol to
guarantee the ACID properties.

As shown in Figure 1, ParaDB consists of three major functional components,i.e.
intelligent data partitioning, eager and active-active data replication and metadata
management and synchronization, which are described as follows. Due to the space
limitation, we ignore some technical details and the comprehensive performance study,
both of which can be found in the technical report [5].

Intelligent Partitioning. ParaDB considers both the database schema and workloads
to derive an intelligent scheme for data partitioning and query routing, so as to mini-
mize the number of distributed transactions and thus optimize the system performance.



Cloud-Scale Transaction Processing with ParaDB System: A Demonstration 537

In addition, in case of dramatic system configuration changes, database upgrades or
workload shifts, ParaDB also applies intelligent database re-partitioning and live data
migration without losing load balance and transparency. We realize the above function-
alities by constructing an intelligent iterative hyper-graph based database partitioning
engine, which first analyzes the database and workload and constructs a weighted hyper-
graph, then conducts iterative hyper-graph partitioning to obtain the optimal partitioning
scheme. More details about the partitioning engine can be found in the paper [3].

Eager and Active-Active Replication. In ParaDB, data are replicated within the bound-
aries of shard groups. Each shard group consists of three shard server nodes, which
store identical data. Eager replication means that modifications by a transaction to one
replica of a data item will be applied to other replicas before the transaction commits,
which guarantees strong consistency at all times. Active-active replication means that
every data replica can accept read/write requests of transactions, as well as coordi-
nate the data synchronization with other replicas. We implement an active-active eager
replication protocol based on Postgres-R(SI) [4] with the help of an open-source group
communication system called Spread1, which guarantees that messages will be sent to
all members of a group following a strict and user-specified order. With the atomicity
and total order guaranteed by Spread, our replication protocol can ensure the transac-
tions to be executed (or the changes to be applied) at different nodes in the same order,
therefore enforcing the transaction consistency across different shard server nodes.

Metadata Management and Synchronization. ParaDB deploys multiple master
servers to avoid single node bottleneck. Efficient metadata synchronization mechanisms
are required among these masters. The metadata management component in ParaDB is
responsible for synchronizing the system metadata and the snapshots (e.g. name and
status) for both master nodes and shard nodes. All these distributed coordination func-
tions are realized with the aid of Zookeeper2, an open-source coordination service for
distributed applications, which simplifies the consensus protocol design, and are elastic
when facing new or unpredictable synchronization and management expectations.

3 Demonstration Scenarios

Our demonstration will illustrate both the general properties of ParaDB as a parallel
database system, as well as its unique and novel features like intelligent partitioning
and eager replication. For the purpose of system demonstration, we will install and
run ParaDB on three physical machines, which are virtualized into two master server
nodes and nine shard server nodes, managing sample databases generated by the TPC-
C3 benchmark. In this demonstration, we design four demonstration scenarios.

System Introduction. In this scenario, we will first introduce the motivation of ParaDB
and explain its overall system design and novel features. Then we will dive deeply into
the technical details of the data partitioning, active-active eager replication and metadata
synchronization in ParaDB.

1 http://www.spread.org/
2 http://zookeeper.apache.org/
3 http://www.tpc.org/tpcc/

http://www.spread.org/
http://zookeeper.apache.org/
http://www.tpc.org/tpcc/


538 X. Guo et al.

(a) ParaDB Data Partitioning Controller (b) ParaDB Log Viewer

Fig. 2. ParaDB Demonstration System

Intelligent Partitioning. In this scenario, we will demonstrate how the data partitioning
controller of ParaDB (shown in Figure 2a) semi-automatically and intelligently parti-
tions and replicates database tables. We will show the audience the visualized partition-
ing results for the TPC-C database. Finally, we will illustrate how ParaDB conducts
data re-partitioning and live migration by removing one shard server node.

Eager and Active-Active Replication. In this scenario, we will demonstrate how the
eager active-active replication protocol works, by analyzing the query execution logs
output by the log viewer of ParaDB (shown in Figure 2b). We will verify the correctness
of our protocol by conducting a set of conflicting transactions to be executed concur-
rently at two shard server nodes. We will also demonstrate that shard servers of a shard
group can simultaneously accept and process read/write requests of transactions.

Performance Study. In this scenario, we will demonstrate the performance and scala-
bility of ParaDB, with the log viewer in Figure 2b. We will first conduct experiments
to study the performance impact of our replication protocol. After that, we will sequen-
tially run the TPC-C benchmark queries against three TPC-C databases containing 1000
warehouses, 2000 warehouses and 3000 warehouses respectively, in order to prove that
ParaDB can scale linearly along with the database size.

References

1. Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic Transactional Data Store in the
Cloud. In: USENIX HotCloud (2009)

2. Wei, Z., Pierre, G., Chi, C.-H.: CloudTPS: Scalable Transactions for Web Applications in the
Cloud. In: IEEE Transactions on Services Computing (2011)

3. Cao, Y., Guo, X., Zhou, B., Todd, S.: HOPE: Iterative and Interactive Database Partitioning
for OLTP Workloads. In: ICDE (2014)

4. Wu, S., Bettina, K.: Postgres-R(SI): Combining Replica Control with Concurrency Control
Based on Snapshot Isolation. In: ICDE (2005)

5. Guo, X., Cao, Y., Zhou, B., Xiang, D., Zhao, L.: ParaDB: A Cloud-Scale Paral-
lel Database System for Intensive Transaction Processing. Technical Report (2013),
https://tinyurl.com/paraDB-techreport

https://tinyurl.com/paraDB-techreport

	Cloud-Scale Transaction Processing with ParaDB System: A Demonstration
	1 Introduction
	2 SystemOverview
	3 Demonstration Scenarios
	References




