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Abstract. More and more trajectory data are available as streams due
to the unprecedented prevalence of mobile positioning devices. Mean-
while, an increasing number of applications are designed to be dependent
on real-time trajectory streams. Therefore, the protection of ownership
rights over such data becomes a necessity. In this paper, we propose an
online watermarking scheme that can be used for the rights protection
of trajectory streams. The scheme works in a finite window, single-pass
streaming model. It embeds watermark by modifying feature distances
extracted from the streams. The fact that these feature distances can be
recovered ensures a consistent overlap between the recovered watermark
and the embedded one. Experimental results verify the robustness of the
scheme against domain-specific attacks, including geometric transforma-
tions, noise addition, trajectory segmentation and compression.

Keywords: Rights protection, trajectory streams, watermarking, ro-
bustness.

1 Introduction

Recent advances in mobile positioning devices such as smart phones and in-
car navigation units made it possible for users to collect large amounts of GPS
trajectories. After expensive and laborious data acquiring process, companies
and institutions frequently outsource their trajectory data for profit or research
collaborations. Therefore, the rights protection for the owner over the precious
data becomes an important issue.

Watermarking is one of the most important techniques that can be used for
the rights protection of digital data. Basically, watermarking means slightly mod-
ifying the host data and forcing it to imply certain secret information. The infor-
mation (i.e., watermark) is identifiable and can be detected from the (possibly
modified) data for ownership assertion [1]. In fact, watermarking is predomi-
nantly used for the rights protection of digital contents, e.g., images [2], audios
[3], videos [4] and vector maps [5][6][7]. For trajectory databases, two water-
marking schemes have been proposed [8][9]. Given a trajectory set, both schemes
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embed watermark by slightly modifying coordinates of locations in trajectories.
And both schemes are robust against certain data modifications (attacks) such
as geometric transformations and noise addition.

However, as other kinds of data collected from sensors, trajectory data often
come to databases in a streaming fashion. As Sion et. al noted [10][11], batched
watermarking schemes, such as schemes in [8] and [9], are not applicable to
streaming data. Such schemes can embed and detect watermark only when the
entire dataset is available, while attacks may come before the entire dataset is
collected. For example, suppose taxi company A obtains trajectories from its
affiliated taxies and sells the data to service provider B for real-time passenger-
hunting recommendation (for taxi drivers) [12]. If the data is not watermarked,
and there is another service provider C who needs the data to support the
passenger ridesharing service [13], then B can simply re-direct the trajectory
stream to C for profit. In this scenario, online watermarking schemes [10][11]
should be employed to embed watermark immediately after the taxi company
receiving the data.

Moreover, any (batched or online) watermarking scheme should be robust
against certain domain-specific transformations (attacks). For trajectory data,
attacks like geometric transformations and noise addition have been considered
and handled in [8] and [9]. However, in those two schemes, two important data
operations are not considered: trajectory segmentation and trajectory compres-
sion. Simply speaking, trajectory segmentation is used to filter out subsets of
trajectory locations for sub-trajectory mining [14][15], while trajectory compres-
sion aims to reduce the size of trajectory data to resolve the inefficiency in data
transmission, querying, mining and rendering processes [16][17][18]. Both oper-
ations (attacks), may not influence the usability of trajectory data in certain
scenarios, however, can modify the data in a significant magnitude, and in turn,
harm the watermark embedded in the data. A watermarking scheme designed
for trajectory data should have the ability to handle those two attacks.

Considering the problems mentioned, in this paper, we propose for the first
time an online watermarking scheme for the rights protection of trajectory
streams. The scheme operates in a finite window, single-pass streaming model.
The main idea is to embed watermark into the feature distances, i.e., distances
between pairs of feature locations in trajectories, and the feature locations are
identified using the proposed Time Interpolated Feature Location Selection al-
gorithm. In addition to traditional attacks (i.e., geometric transformations and
noise addition), our scheme is also robust against trajectory segmentation and
compression. Our contributions include (1) the identification of the problem of
watermarking trajectory streams and major types of attacks on the data; (2)
the design and analysis of new watermarking scheme for the data; (3) a proof of
the scheme’s robustness against the considered attacks based on experimental
evaluation.

The remainder of this paper is organized as follows. Section 2.4 outlines the
major challenges. It introduces the scenario and the underlying processing model,
discusses associated attacks and overviews related work. Then, the proposed
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online watermarking scheme is given in Section 3. Finally, performance study
and conclusions are given in Section 4 and 5 respectively.

2 Challenges

2.1 Scenario

Fig. 1 shows the general scenario of watermarking streaming data, which was
firstly demonstrated in [10]. In the scenario, streaming data is modeled as an
(almost) infinite timed sequence of values of a particular type (e.g., temperature,
stock market data). The watermarking technique is used to deter a malicious
customer (licensed data user B in Fig. 1), with direct stream access, to re-
sell possibly modified trajectory streams to others (unlicensed data user C for
example) for profit. The challenges are that the underlying watermarking scheme
should operate in a finite window, single pass model (i.e., online model), and
needs to be robust against domain-specific attacks.

Fig. 1. Stream Watermarking Scenario

out inwindow size ϖ

Fig. 2. Space Bounded Processing Window

2.2 Processing Model

The stream processing should be both time and space bounded [10]. The time
bound derives from the fact that it has to keep up with incoming data. For
space bound, as demonstrated in Fig. 2, we model the space by the concept of a
processing window of size �: no more than � of locations can be stored locally
at the processing time. As more incoming data become available, the scheme
should push older locations out to free up space for new locations.

2.3 Attack Model

The attacks that can be applied to the watermarked data are domain-specific.
In this paper, since our purpose is to watermark trajectory streams, we identify
several meaningful attacks on trajectory data as: (A1) geometric transforma-
tions (i.e., translation, rotation and scaling), (A2) noise addition, (A3) trajec-
tory segmentation, and (A4) trajectory compression. A1 and A2 are intuitive
[8][9] hence no further explanation will be outlined here. While A3 and A4 are
more complicated, before explaining these two attacks, we give three definitions
as follows [23].
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A Trajectory Stream T is a possibly unbounded sequence of time-stamped lo-
cations, denoted as T = {〈x1, y1, t1〉, 〈x2, y2, t2〉, . . . , 〈xn, yn, tn〉, . . .}, where ti is
an element of a numerable, disjoint Time Schedule defined as TS = {0, 1, 2, . . .},
xi, yi represent geographic coordinates of the moving object at sampling time ti.

The (a, b)-Segmented Trajectory Ta:b of a trajectory streamT is a subset of con-
secutive locations of T , denoted as Ta:b = {〈xi, yi, ti〉|a ≤ ti ≤ b, 〈xi, yi, ti〉 ∈ T }.
Given a distance threshold ε, trajectory T ε is a ε-Simplified Trajectory of a
trajectory stream T , if T ε � T , ∀Lti = 〈xi, yi, ti〉 ∈ T − T ε, dist(Lti , T

ε) ≤ ε,
where dist() is a certain distance function. ∀Lti ∈ T ε, we call it a feature
location.

Trajectory segmentation (compression) attack means extracting segmented
(simplified) trajectories and re-streaming them for profit. The implementation
of trajectory segmentation is straightforward. While for trajectory compression,
many online trajectory simplification algorithms can be employed for attack
[16][18] [19][20][21]. Those algorithms also take compression ratio (i.e., the size
of the original trajectory divided by the size of the compressed trajectory) as
threshold, and return simplified trajectories satisfying compression ratio con-
straints as compressed trajectories. Both attacks, may not influence the usability
of trajectory data in certain scenarios [14][15][19][20], however, can modify the
data in a significant magnitude, and in turn, harm the watermark embedded in
the data. In this paper, all the attacks (A1 to A4) will be properly considered
and handled. To the authors’ knowledge, this is the first piece of rights pro-
tection work that takes trajectory segmentation and compression into account
as attacks.

2.4 Related Work

An Online Watermarking Scheme (OLWS) has been proposed in [11] (which is
extended based on the work in [10]) to watermark streaming data. The scheme
takes general data streams (e.g., temperature, stock market data, etc.) as input.
The attacks considered are summarization, extreme sampling, segmentation, ge-
ometric transformations and noise addition. During the embedding, the scheme
firstly initializes a data normalization process, and then identifies major extremes
(which are composed of values at and close to local minimums or maximums)
based on the normalized data. Finally, the scheme embeds one watermark bit
into all the values in a major extreme if the extreme satisfies a certain selec-
tion criterion.

The scheme works well for general data streams, however, it is not suitable
for trajectory streams. On the one hand, the attacks faced by an OLWS for tra-
jectory streams are different (see Section 2.3). For example, the scheme may be
ineffective under trajectory compression: locations with local minimum or max-
imum coordinates are not necessarily the feature locations in a trajectory, and
may be deleted after compression. On the other hand, the robustness against
geometric transformations of the scheme mainly depends on the data normaliza-
tion process, which can only be done based on a known data distribution. If the
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distribution is unknown, an additional initial discovery run should be employed
to learn one. For trajectories that are composed of locations representing the
motion of real objects, such distribution may not exist or is difficult to find out.
Therefore, the technique of this work cannot be employed in this paper to handle
geometric transformation attacks for trajectory streams.

The resistance to geometric transformations and noise addition have been
achieved in two batched trajectory watermarking schemes [8][9]. The scheme in
[8] and [9] embeds watermark into distance ratios and Fourier coefficients of
locations respectively. Since both the cover data are geometrical invariants, the
schemes can properly withstand geometric transformations. And the resistance
of the schemes to noise addition is achieved by embedding the watermark bits
into the properly selected bits of the cover data. These two schemes also have two
problems for trajectory streams. First, none of the schemes operates in online
setting, which makes the schemes not applicable for the scenario. Second, both
schemes embed watermark based on all the locations in the trajectories. Hence,
they are fragile to trajectory compression attack (work in [9] is also fragile to
trajectory segmentation).

In summary, due to the unique properties of streaming trajectory data and
the corresponding attacks, an online scheme for watermarking trajectory streams
that can handle the attacks outlined in Section 2.3 is in need.

3 Watermarking Trajectory Streams

The basic idea of the proposed watermarking scheme is based on two observa-
tions. First, feature locations of trajectories will survive trajectory compression
attack, if the malicious attacker wants to preserve the usability of the trajecto-
ries. Second, distances between pairs of locations will not change if the trajectory
is translated or rotated as a whole.

Therefore, the proposed watermarking scheme embeds watermark into feature
distances (i.e., distances between pairs of feature locations) with the following
process: (1) identify the feature locations in the trajectory stream as processing
window advancing; (2) if two consecutive feature locations appear in a same
processing window, calculate the (feature) distance between the locations; (3)
determine a watermark bit of the global watermark based on the distance ac-
cording to a selection criterion, and embed the bit into the distance. The fact
that these feature distances can be recovered ensures a consistent overlap (or
even complete identity) between the recovered watermark and the embedded
one (in the un-attacked data). In the watermark detection process, (4) the fea-
ture locations are identified and the feature distances are calculated; for every
feature distance, (5) the selection criterion in (3) is used once again to match the
distance and the watermark bit, the corresponding 1-bit watermark is extracted,
and ultimately the global watermark is gradually reconstructed, by using ma-
jority voting.

In the following we firstly introduce the proposed Time Interpolated Feature
Location Selection (TIFLS) algorithm in Section 3.1. The algorithm can identify
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stable feature locations from an attacked trajectory stream. Then, we give the
watermark embedding method in Section 3.2, by employing TIFLS for feature
location identification. The watermark detection method is introduced in Section
3.3. At last, parameters used in the scheme are discussed in Section 3.4.

3.1 Time Interpolated Feature Location Selection

To guarantee that the embedded watermark is still detectable after various at-
tacks, the feature locations used for watermark embedding should be recovered
after attack. Many online simplification algorithms have been proposed to iden-
tify feature locations in a trajectory stream [16][18][19][20][21]. The basic in-
tuition behind those algorithms is that the locally characteristic locations may
also be characteristic in a global view. Hence, the process of feature location
selection can be described as, (1) fill up the processing window with incoming
locations; (2) select feature locations in the current window based on a certain
batched simplification method (e.g., Douglas-Peucher algorithm in [22]), free the
window and repeat the process. The intuition is reasonable and the results are
satisfactory. However, these solutions for feature location selection are ineffec-
tive in our scenario: for a possibly compressed and/or segmented trajectory, the
selected feature locations may change (i.e., cannot be recovered), since the loca-
tions filled in every processing window may be very different from those fetched
from the original trajectory.

Therefore, in this paper, we identify feature locations based on Time Window
defined as follows. ATime Window TWm is a ω-sized consecutive subset of TS,
denoted as TWm = {ts, . . . , te}, where m ∈ {0, 1, 2, . . .}, ts, te ∈ TS, ts = ω ∗m,
te = ts + ω − 1. Then, given a trajectory stream T , and a time window TWm,
we can deduce a projection of T on TWm as Tm = {< xi, yi, ti > |ti ∈ TWm, <
xi, yi, ti >∈ T }

Based on the notations, given a threshold ε, for every TWm, our Time In-
terpolated Feature Location Selection (TIFLS) algorithm identifies a location as
feature location from its corresponding Tm if (1) among other locations in Tm,
the location has the largest Synchronous Euclidean Distance (SED) according
to the reference line; (2) its SED is larger than ε. The reference line is the line
connecting the locations with boundary times of TWm as sampling times (i.e.,
Lts and Lte , we call these locations boundary locations hereafter).

TIFLS is not a simplification algorithm. Rather, it identifies the location which
meets the characteristic conditions in each Tm as feature location for watermark
embedding. Hence, these feature locations are very likely to be recovered during
watermark detection, even after attack. One can deduce that if a segmented tra-
jectory covers more than two time windows, then in the worst case, trajectory
segmentation only influences the first and the last Tm with respect to the seg-
mented trajectory stream. The feature location in each inner Tm can be properly
recovered. Meanwhile, after trajectory compression (denote T c the compressed
trajectory stream), every T c

m is a subset of the original Tm. Compared with other
locations, the feature locations will more likely get through trajectory compres-
sion, and be identified by TIFLS.
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The only problem left is that the boundary locations may not exist in the input
trajectory. We solve the problem by interpolating a virtual location for every
missing boundary location, based on the locations that exist in the trajectory
and adjacent to the boundary location. Given two locations La and Lc, a < c−1,
interpolating a location Lb (a < b < c) means finding the Lb with −→v ab =
b−a
c−a

−→v ac, where −→v ij denote the vector from Li to Lj in the Euclidean plane.
The virtual boundary location can excellently simulate the real location, since
the SED between any boundary location deleted due to compression and the
compressed trajectory should be less than a certain threshold (see the notation
of compression attack in Section 2.3).

3.2 Watermark Embedding

To synchronize processing window and time window, we define the time coverage
of a processing window as follows. The Time Coverage TC of a processing
window is a consecutive subset of TS, denoted as TC = {tf , . . . , tl}, where tf
and tl is the sampling time of the first and the last location in the processing
window respectively.

Let TCc denote the time coverage of the current processing window, our
watermark embedding algorithm can be described as follows. In the first step,
(1) forward the processing window, apply TIFLS on every Tm with TWm � TCc,
until a feature location Lf is identified; (2) push out the locations previous to Lf ,
i.e., the first location in the current processing window is Lf , a feature location.

Then, in the second step, as locations streaming in, as long as a time win-
dow TWm is completely covered by TCc (i.e., TWm � TCc), apply TIFLS on
its corresponding Tm for feature location identification. If a feature location is
identified, go to the third step. Otherwise, if no feature location is identified until
the processing window is full, push out the locations in and previous to the last
Tm with TWm � TCc, and return to the first step.

Let W be the watermark to be embedded, each wi ∈ {0, 1} be the i-th bit
of W , and Ls be the feature location identified in the second step. In the third
step, we embed one watermark bit into Ls as follows. (1) calculate the distance
dfs between Lf and Ls as dfs = ||−→v fs||, where || ◦ || signifies the L2 norm of
a vector. Let β control the bitwise position in dfs in which the watermark bit
will be embedded, and msb(d, β) return the bits of d that are higher than β. (2)
calculate i as i = H(msb(dfs, β), k) mod l, where H() is a cryptographic hash
function such as MD5, l is the bit length of W , and k is a secret key given by
data owner. (3) replace the β-th bit of dfs as the ith bit of W , wi, to get the

watermarked distance dwfs. (4) find the Lw
s satisfying −→v w

fs =
dw
fs

dfs

−→v fs, where Lw
s

is exactly the watermarked location of Ls, and −→v w
fs is the vector from Lf to

Lw
s in in the Euclidean plane. Finally, push out the locations previous to Lw

s

from the current processing window, denote Lw
s as the current Lf , return to the

second step.
To guarantee at least two complete time windows can be synchronized in a

same processing window, ω should be set to be less than or equal to �/3. The
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(a) Original trajectory

(b) A filled-up Processing Window

L4 L5 L7 L8 L9 •••
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Processing Window
T2 T4

(c) Processing Window after (b)

Processing Window

•••

T5

(d) Processing Window: L17 is embedded

Processing Window

•••L17
wL11 L16 L17 L20 L21 L22 L24 L25

L11 L16 L17 L20 L21 L22 L24 L25 L24 L25

Fig. 3. Watermark Embedding Process

cryptographic hash function is employed in (2) of the third step to force the
malicious attacker into a guessing with respect to the watermark bit embedded.
Its power derives strength from both the one-wayness and randomness proper-
ties [24]. While the reason behind the use of the most significant bits of dfs is
resilience to minor alterations and errors due to watermark embedding and noise
addition attack. The embedding strategy employed in (3) of the third step can
be easily extended to use quantization index modulation [25] (as we did in the
experiments). The method can provide the watermarking scheme with resistance
to noise distortion. One can refer to [25] for details about the method.

Fig. 3 illustrates the watermark embedding process, in which � is set to 12,
ω to 4. Fig. 3 (a) shows the original trajectory. Fig. 3 (b) demonstrates the
filled-up processing window, by assuming the feature location identified in the
first step is L5, and no feature location is identified in the second step. The time
coverage of this processing window is TCc = {5, 6, . . . , 25}. Hence TW2, TW3,
TW4 and TW5 are completely covered by TCc, and T2, T4 and T5 has been
considered by TILFS for feature location identification. Fig. 3 (c) demonstrates
the next processing window corresponding to Fig. 3 (b): locations previous to L24

are pushed out. Fig. 3 (d) demonstrates the processing window after a feature
location (L17 in this particular example) is identified and a watermark bit is
embedded.

3.3 Watermark Detection

In the detection process, the watermark is gradually reconstructed as more and
more locations are processed. The reconstruction relies on an array of majority
voting buckets as follows. For each bit wi in the original watermark W , let B0

i

and B1
i be the buckets (unsigned integers) which are incremented each time a

corresponding 0/1 bit wd
i is recovered from the streams. The actual wi will be

estimated by the difference between B0
i and B1

i , i.e., if B
0
i −B1

i > ϑ, then the es-
timated value for this particular bit becomes we

i = 0, otherwise, if B1
i −B0

i > ϑ,
we

i = 1, where ϑ ≥ 0. The rationale behind this mechanism is that for un-
watermarked streams, the probability of detecting wd

i = 0 and wd
i = 1 would be
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equal, thus yielding virtually identical values for B0
i and B1

i . In this case, wi will
be undefined and the object will be regarded as un-watermarked 1.

Detection starts by identifying feature locations and calculating feature dis-
tances. As long as a feature distance di is calculated, the corresponding j =
H(msb(di, β), k) mod l is determined, then di was likely used for the embedding
of the j-th bit of W . The bit is then extracted from the β-th bit of di depending
on its value. Then, the corresponding bucket B0

j or B1
j is incremented by 1.

3.4 Discussion on Parameters

Except watermark W and secret key k, four parameters should be determined
and used in both watermark embedding and detection, i.e., �, ω, ε and β. W and
k are common to all watermarking schemes. They have been discussed in-depth
in many previous works [3, 6, 16]. Therefore, we focus on the latter four param-
eters. The size of the processing window, �, should be large enough so that it
is possible to identify at least two feature locations in most processing windows.
ω and ε control how characteristic the identified feature locations can be. More
characteristic locations have greater chance to be preserved after compression.
We will discuss the selection of ω and ε in Section 4.1. Consequently, � can be
determined based on the ω and ε used. As to β, it controls the trade-off between
the error introduced and the robustness against noise addition. Obviously, mod-
ification on higher bits of distances will result in larger errors on the trajectory
data. On the other hand, watermark embedded in the lower bits tends to be
more fragile to noise addition. Same as [8], we set β around the bit position of
the data’s tolerance precision to ensure data fidelity.

4 Experimental Results

In this section, we give an empirical study of the proposed watermarking scheme.
The watermarking algorithm was implemented in C++ and run on a computer
with Intel Core CPU (1.8GHz) and 512M RAM. The dataset used in the evalua-
tion is obtained from the T-Drive trajectory data sample provided by Microsoft
T-Drive project [26][27]. The dataset contains a one-week trajectories of 10,357
taxis. The total number of locations in this dataset is about 15 million and the
total distance of the trajectories reaches 9 million kilometers. Each file of this
dataset, which is named by the taxi ID, contains the trajectories of one taxi.

Due to the nature of the data, in the experiments, we simulated for each taxi,
a trajectory stream with one location per 5-second as sampling rate (incoming
data per time unit). During the embedding and detection, β was set as -5 since
the precision tolerance of the location’s coordinates is τ = 10−5. In the following
we verify in turn (1) the performance of TIFLS under various ω and ε; (2) the
robustness of our method against various attacks; (3) the time overhead and the
impact on data quality of the scheme.

1 Considering also the associated random walk probability [11], we set ϑ as

√
B0

i +B1
i

π
.



416 M. Yue et al.

4.1 Evaluation on ω and ε

As we have stated in Section 3.4, the feature locations identified for watermark
embedding should be characteristic enough to withstand trajectory compression.
However, how characteristic the feature locations should be is highly related
to the compression ratio that the scheme aims to resist. As verified in [20],
existing trajectory compression algorithms can compress trajectory data in a
compression ratio up to 10 without resulting in significant SED error on the data.
The compression ratio is defined as the size of the original trajectory divided by
the size of the compressed trajectory [20]. That is, to ensure the usability of
the proposed scheme in real applications, (1) 10% (or less) locations should be
identified as feature locations for embedding, (2) the feature locations identified
should be actually (or positively) characteristic to withstand compression.

In the experiment, we model the two requirements by the concepts of Selec-
tion Ratio (SR) and Characteristic Ratio (CR). SR represents the ratio of the
number of feature locations identified by TIFLS (denoted as f) with respect to
the total number of locations in the trajectories (denoted as n). CR represents
the ratio of the number of positive feature locations (denoted as fp) with respect
to the total number of feature locations identified by TIFLS. While by setting
the compression ratio of Douglas-Peucker algorithm to 10, the positive feature
locations are the locations reported by both TIFLS and Douglas-Peucker algo-
rithm. Namely, we have SR = f/n and CR = fp/f . We use the feature locations
selected by Douglas-Peucker algorithm as reference to evaluate the precision of
TIFLS since as an optimization algorithm, the performance of Douglas-Peucker
algorithm is widely acknowledged. And the algorithm has been extensively em-
ployed in almost all the trajectory compression work to evaluate the performance
of their methods [16][18][19][20][21].

We applied TIFLS on 1000 trajectories (each containing 10000 locations) for
feature location identification, and recorded the SR and CR with respect to
different pairs of ω and ε. The results are presented in Table 1. From the results,
the following conclusions can be drawn: (1) the size of time window ω can be
employed to control the SR of the identified locations. Since given a certain ω,
the upper bound of SR is 1/ω. (2) in general, the lower the SR is, the higher
CR will be. However, CR is primarily determined by ε. A larger ε can lead to a
higher CR. If the ε is big enough, even a CR of 1 can be achieved. In real world
applications, ω can be set as the compression ratio the scheme needs to resist.
For ε, an initial determination process can be carried out on a small data sample
(a one-day trajectory streams for example) to ensure a high CR (e.g., CR≥ 0.9).

4.2 Evaluation on Robustness

In the following experiments, watermarks were first embedded into the trajectory
streams. Then, taking the attacked trajectory streams as input, the watermarks
were reconstructed using the detection method. For a watermarking scheme, ro-
bustness means the scheme can detect a reasonable amount of watermark bits
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Table 1. Evaluation on Different ω and ε

ω ε SR CR ω ε SR CR

10

0 0.1 0.481

20

0 0.05 0.568

0.00005 0.069 0.866 0.00005 0.045 0.863

0.0001 0.061 0.894 0.0001 0.039 0.906

0.0005 0.042 0.957 0.0005 0.023 0.951

0.01 0.001 1 0.01 0.001 1

from watermarked data after attacks. Hence, after watermark extraction, the
match rate (MR) is calculated to assess robustness of the scheme, where MR is
defined as the ratio of the number of identical bits between the extracted and
the embedded watermark to the watermark length. Generally, a dataset can be
regarded as watermarked if MR is larger than a given threshold ζ [28]. One can
refer to [28] for the selection of ζ. In the following demonstration, the ω and ε
used in the experiments was 10 and 0.0001 respectively. The size of processing
window, �, was set as 30 since averagely a feature location can be reported from
every 15 locations (since the CR is 0.061).

In the experiments, one important fact that should be noted is that due to the
infinite nature of stream data, watermark detection is a continuous process. It
takes time for the watermark detection to be convergent [10]. Our experimental
results show that the detection converges when averagely each bit receives 60
votes 2. In the following experiments, we always record the converged MR under
various attacks. For a certain attack, the final MR is the average of the converged
MRs reported in different processes using randomly generated watermarks with
64, 128 and 256 as watermark length.

4.2.1 Geometrical Attacks

In this experiment, we applied translation, rotation and scaling to the water-
marked trajectory streams. The magnitudes of the attacks are measured with
relative coordinate offset, rotation angle and scaling factor, and were set to [-
100%, 100%], [-180◦, 180◦] and [0.1, 2]. The experimental results show that if the
trajectories are only translated and rotated (i.e., Scaling = 1), the MRs are the
same and equal to 1. For scaled trajectories, the scheme needs to transform the
coordinates back into their values on the original scale before feature locations
identification and feature distance calculation. This re-scaling and detection has
been employed in various batched watermarking schemes [6][7]. According to our
experimental results, the method is feasible, and the MRs after re-scaling are
equal to 1. The experiment verifies the good preference of the proposed scheme
under geometrical attacks.

2 This means averagely 2000 locations can support a convergent detection of 1-bit,
hence a total of 7500 bits can be embedded into the whole dataset.
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4.2.2 Noise Addition

To verify the resilience of the proposed scheme to noise addition, we insert ran-
dom noise to the locations’ coordinates in the watermarked trajectory streams.
The assumption is that the introduction of noise should not degrade data us-
ability. Hence, the noise added is assumed to be uniformly distributed in the
[0, χ] interval, where χ ≤ τ . The experimental results with respect to different
value of χ are presented in Fig. 4. The figure demonstrates that (1) if the attack
magnitude χ is less than 0.2τ , the MR remains as 1. This is guaranteed by the
power of quantization index modulation. (2) MR decreases with an increasing χ
when χ exceeds 0.2τ . However, even when the χ reaches τ , the watermark can
still be recovered with a considerably high MR.
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4.2.3 Segmentation and Compression

Due to the processing model of our scheme, an active segment that contains
more than � locations or covers 2ω or larger time interval is detectable. Hence,
our scheme can naturally resist trajectory segmentation. The conclusion was also
verified by our experiments: with sufficient active segments, all the watermark
bits can be properly recovered. Namely, as long as the active segments are suf-
ficient enough to support an convergent detection, a MR of 1 can always be
achieved.

As to trajectory compression, we compressed the watermarked trajectory
streams using Douglas-Peucker algorithm, by setting compression ratio as 0,
5, 10, 15, 20, 25 and 30 respectively. The detection results corresponding to var-
ious compressed sets are demonstrated in Fig. 5. As we can see, (1) the entire
watermark can be properly recovered, when the compression ratio is less than
10. The reason is that the majority of feature locations survived from the com-
pression attack and can be recovered during the detection. The majority voting
ensures a consistent overlap between the detected watermark and the embed-
ded one. (2) MR decreases to 0.88 (a considerably high level) when compression
ratio reaches 15, since after compression, only 6.67% locations are left in the
compressed trajectories. These locations are not very consistent with the fea-
ture locations reported by TIFLS, which makes a small portion of the feature
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locations used during the embedding unrecoverable in the detection. (3) MR
decreases dramatically when compression ratio reaches 20. The reason is intu-
itive: larger compression ratio causes fewer recovered feature locations. When
compression ratio is 30, only 3.33% locations are left for detection. Even all
these locations were used for embedding and recovered for detection, the feature
distances may change since the consecutive relations among feature locations
change. In this case, the parameters used for the feature location identification
(i.e., ω and ε) should be enlarged to select even more characteristic locations for
watermark embedding.

Another more implicit fact to be noted is that boundary location interpolation
in TIFLS may also cause the selection of wrong feature locations. However, in
the perspective of watermark detection, this is only an extra ‘bad’ consequence
caused by trajectory compression. The good performance of TIFLS for selecting
stable feature locations has been implied by the perfect MR facing reasonable
compression attacks.

4.3 Overhead and Impact on Data Quality

We performed experiments aimed at evaluating the computation overhead of the
proposed watermarking scheme. By far the most computationally intensive op-
eration is the feature location selection. Fortunately, the selection is a single pass
process, which means the time complexity of the scheme is O(n). In this experi-
ment, to avoid the time consumed by waiting for the sampling of new locations,
the sampling rate was set to infinity: during the processing, all the locations are
assumed available as soon as they need to be pushed into the processing window.
We tested the embedding and detection on 100 trajectories, each has 10000 lo-
cations. The process cost 3340ms, which means averagely the processing of each
processing window needs approximately 50μs (67000 processing windows have
been processed in the embedding and detection). The time consumed is negligi-
ble with respective to the time waiting for a processing window to be filled up
(5s ∗ 30 = 150s). Note that our scheme will introduce a maximum transmission
delay of 5 ∗� seconds due to the watermark embedding. However, according to
our experimental results, the average transmission delay of the scheme is only
2.5 ∗�. According to the User Guide of T-Drive Data [27], this delay only in-
troduces an average error of 282 meters for the stream receiver (when � = 30).
The error can be handled by many trajectory prediction methods introduced
in [29].

We also performed experiments evaluating the impact of our watermark em-
bedding on data quality. We adopt the relative error ξ defined in [9]: ξ =
∑

T

||T−Tw||
||T || , where T and Tw represents the original and the corresponding water-

marked trajectory respectively. Our experimental results show that the average
value of ξ over a large number (1000+) of runs is 0.23%, much less than 1%, the
bound that can lead to a visible error [9].
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5 Conclusions

In this paper, we investigated the problem of rights protection for trajectory
streams. We proposed an online watermarking scheme that is resilient to vari-
ous common trajectory transformations. We implemented the proposed water-
marking algorithm and evaluated it experimentally on real data. The method
proves to be resilient to all the considered transformations, including geometric
transformations, noise addition, trajectory segmentation and compression. For
future work we plan to consider the online content authentication for trajectory
streams, which is another important issue related to streaming data security.
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