
Topical Presentation of Search Results

on Database�

Hao Hu1,2, Mingxi Zhang1,2, Zhenying He1,2, Peng Wang1,2,
Wei Wang1,2, and Chengfei Liu3

1 School of Computer Science, Fudan University, Shanghai, China
2 Shanghai Key Laboratory of Data Science, Fudan University

3 Faculty of ICT, Swinburne University of Technology, Melbourne, Australia
{huhao,10110240025,zhenying,pengwang5,weiwang1}@fudan.edu.cn,

cliu@swin.edu.au

Abstract. Clustering and faceting are two ways of presenting search
results in database. Clustering shows the summary of the answer space
by grouping similar results. However, clusters are not self-explanatory,
thus users cannot clearly identify what can be found inside each cluster.
On the other hand, faceting groups results by labelling, but there might
be too many facets that overwhelm users.

In this paper, we propose a novel approach, topical presentation, to
better present the search results. We reckon that an effective presenta-
tion technique should be able to cluster results into reasonable number
of groups with intelligible meaning, and provide as much information as
possible on the first screen. We define and study the presentation prop-
erties first, and then propose efficient algorithms to provide real time
presentation. Extensive experiments on real datasets show the effective-
ness and efficiency of the proposed method.

1 Introduction

Database query results can be presented in a ranked list, in clusters or in facets.
Ranked list is popular; however, it does not help navigate the answer space. In
contrast, clustering and faceting are designed for users to quickly get a general
picture of the whole answer space first, and then to locate relevant results. How-
ever, several issues remain to be studied. Let us first consider a simple example.

Example 1. Consider a laptop database that maintains information like Brand,
Screen Size, CPU type, etc. First, assume the results are presented in clusters. Ta-
ble 1 shows a typical interface, similar laptops are grouped into the same cluster, and
can be accessed by hyperlink in Zoom-in field. There are two shortcomings. (1) Clusters
may be ambiguous (i.e., not self-explanatory). Users could be puzzled of what can be

� This work was supported in part by NSFC grants (61170007, 60673133, 61033010,
61103009), the Key Project of Shanghai Municipal Science and Technology Commis-
sion (Scientific Innovation Act Plan, Grant No.13511504804), and ARC discovery
project DP110102407.

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part II, LNCS 8422, pp. 343–360, 2014.
c© Springer International Publishing Switzerland 2014

344 H. Hu et al.

Table 1. Clustering example

ID Brand Price Color CPU ScreenSize Zoom-in
05 Dell 539 Black Intel i3 14 311 more laptops like this
06 Apple 1499 Silver Intel i5 13 217 more laptops like this
07 HP 559 Black Intel i7 13.3 87 more laptops like this
08 Sony 729 Pink Intel i3 14 65 more laptops like this

Table 2. Results after ap-
plying Zoom-in

Brand Price Color CPU ...
Dell 539 Black Intel i5 ...
HP 549 Black Intel i7 ...
Dell 559 Silver Intel i5 ...
HP 559 Pink Intel i3 ...

found through the hyperlink. We refer to this as S1 (shortcoming 1, unknown label).
(2) For thousands of results (S2, result overwhelming), if the number of clusters k is
set small, each cluster may also contain many results, this might lead to other issues.
(i) Presenting each cluster may overwhelm users.
(ii) Results in one cluster may not be similar to each other. Table 2 shows the results

after applying Zoom-in to the first cluster in Table 1. These laptops are considered
similar according to the distance measure of the system. However, in fact, a novice
user might think Dell and HP are similar for some reasons such as the prices are
nearly the same, while a professional user may consider them quite different. This
is a negative effect of S1, as the semantic similarity is unknown to users.

Second, assume the results are presented by faceting, such as amazon.com. Facets (i.e.,
labels) are listed on the left side of each returned web page. Actually, when submitting
“laptop” as keyword, there are more than 100 facets, which cannot be fulfilled on the
first screen. Each facet represents a group of results, and too many facets may lead to
dissatisfaction as well (S3, facets overwhelming). �

Clustering solves the result overwhelming issue (S2) by setting a fixed number
of clusters. However, each cluster is not self-explanatory. On the other hand,
faceting groups results with labels; nevertheless, it might overwhelm users (S3).

In this paper, we try to combine the advantages of both sides. However,
straightforward solutions may not be applicable.

On one hand, directly adopting label extraction methods [17,20] for clustering
is improper. First, most label extraction methods are designed for document sets,
while these methods are effective for texts, we cannot make the most of them
for structured data. Second, label extraction methods often employ supervised
learning algorithms, they emphasize the quality. However, result presentation
requires real time interaction in practice.

On the other hand, selecting a few facets to avoid overwhelming may deliver
insufficient information. Most of the facet selection methods [12,6] only consider
result size, i.e., the goal is to select k facet groups that maximize the total result
size. In the amazon example, top-3 facets are “windows 7”, “windows 8”, and
“windows vista”. Though too large facets could cover more tuples, they deliver
not sufficient information on the first screen.

In this paper, we study how to present search results on database. Specifically,
the goals that a good presentation approach should meet are as follows.
G1. (Goal 1, on S1) Each grouped results (packages) should be intelligible (i.e.,

packages should have labels), hence users can understand it easily.
G2. (On S2) Reasonable size of each package should be ensured, thus users are

not overwhelmed. We do not prefer packages with too many tuples (over-
whelming users) or too few tuples (providing insufficient information).

Topical Presentation of Search Results on Database 345

G3. (On S3) Due to the first screen size, only k packages can be presented,
we should make these summarized k packages bring as much information as
possible, so as to give users a more informative picture of the result set.

We propose a topical presentation (TP) approach for these goals. TP takes
query result as input, and outputs k intelligible packages, where each package is
neither too large nor too small, and collectively, the k packages aim to provide
maximal information. To this end, we first need to generate all packages, and
then summarize them.

We have identified three challenges. First, there are many packages in prac-
tice, we need to efficiently generate them and then summarize them. Second,
the information of each package is hard to measure. Entropy-based measures are
well studied in information theory. However, it is inappropriate to adopt these
measures for packages with labels, because defining row wise entropy or defin-
ing the distribution of tuples is hard. Another difference is that entropy-based
methods measure the information of the package, whereas we need to measure
the information of both the package and its labels. Third, the k packages might
overlap. For G3, TP needs to maximize the information without the overlapped
tuples. Intuitively, the goal of summarizing packages is to expose users (1) as
many tuples as possible and (2) as many labels as possible. However, the two
aspects are inversely proportional (e.g., a facet with label “windows 8” consists
more laptops than a facet with labels “windows 8” and “DELL”).

To tackle the challenges, TP first analyzes how to get labelled groups (G1),
then determines the acceptance for groups to achieve a reasonable group size
(G2). Next, we introduce a metric to measure the information of each group.
Finally, a fast algorithm is proposed to select k groups with maximal information
(G3). We achieve this goal based on the maximizing k-set coverage principle.

Table 3. Topical presentation example

ID Brand Color CPU ScreenSize Subtopic
01 Dell Black Intel i5 14 186 Dell Black laptops
02 Sony Pink Intel i5 15 17 Sony 15 inches laptops

03 Lenovo Black Intel i5 14 168 Intel i5 14 inches laptops
04 MacBook Silver Intel i7 14 66 Silver MacOS laptops

For Example 1,
four intelligible groups
are shown in Ta-
ble 3. We choose a
representative tuple
for each group. Each
group is assigned with several labels (highlighted in boxes) to describe the com-
monality of tuples in it. These groups help users to learn the answer space from
different aspects. We aim to provide maximal information by choosing most
representative labels in these groups.
Contributions. (1) We propose and define the TP problem. (2) We propose
a metric to measure the information of each package. (3) We suggest a novel
mechanism for summarizing many packages into k, and propose a fast algorithm.
(4) Extensive experiments are performed to evaluate the proposed approach.
Roadmap. Section 2 defines the problem (G1). Section 3 generates acceptable
packages (G2). In Section 4, we summarize the packages (G3). Section 5 shows
the experiments, Section 6 and Section 7 discuss the related work and conclusion.

346 H. Hu et al.

2 Problem Definition

We adopt the labels used in faceting to deliver clear meaning. Labels are from at-
tribute values of tuples. This section begins with preliminaries, and then defines
the problem. The terminology in OLAP is used. Table 4 lists some notations.

Table 4. Notations used in this paper

Symbol Description Symbol Description Symbol Description
T relation l label D attribute space

mt meta-topic OS(Pst) overall score o(Pst) overview ability
st subtopic OSm(P) informative score m(Pst) meaningfulness

π(mt) partition of mt M set of packages that sup(Pst) support of Pst
Pst package of st are from one mt IC summary set
P package set R query result set cha(t,l) character for label l in t

2.1 Preliminaries

Definition 1 (Meta-topic). Let T=(A1,...,An) be a relation with attributes Ai.
A meta-topic on T is a combination of attributes: mt=(x1,...,xn) where xi=Ai or
xi=∗ (1≤i≤n), and ∗ is a meta symbol meaning that the attribute is generalized. The
partition of mt (denoted as π(mt)) is a set of tuple sets, where each tuple set consists
of tuples with same values on non-∗ attributes of mt, i.e.,

π(mt)={s|∀ti,tj∈s:ti[vk]=tj [vk] if xk �=∗,1≤k≤n} (1)

where ti[vk] denotes the value of attribute Ak in tuple ti.
For mt=(x1,...,xn) and mt′=(y1,...,yn), mt is an ancestor of mt′ (i.e., mt�mt′) if

xi=yi for each xi �=∗, and there exists j∈[1,n] such that xj=∗ but yj �=∗. �

Take Table 3 as an example, assume there are only 4 attributes, T = (Brand,

Color, CPU, ScreenSize), the partition of meta-topic (∗,Color,CPU,∗) contains
three tuple sets (we use IDs in Table 3 to represent each tuple), {01,03},{02},{04}.
Moreover, (∗,∗, CPU,∗) � (∗,Color, CPU, ∗).

Corollary 1 (Refinement). Given mt, mt′, if mt′�mt, then π(mt) refines π(mt′),
i.e., ∀s∈π(mt),∃s′∈π(mt′):s⊆s′. �

In Table 3, tuple sets {{01,03},{02},{04}} refines {{01,02,03},{04}}, where the
latter is the partition of (∗,∗,CPU,∗). For tuple set {01,02,03}, tuples share com-
mon label Intel i5. All common labels of a tuple set consist of its subtopic.

Definition 2 (Subtopic). Given a relation T , and a meta-topic mt=(x1,...,xn), a
subtopic for mt, denoted as st∈mt, is a combination of attribute values: st=(z1,...,zn)
where zi∈Ai (if xi=Ai) or zi=∗ (if xi=∗). We call each non-∗ zi a label of st, and
refer to all tuples of a subtopic st as a package (denoted as Pst), i.e.,

Pst={t|t∈T,t[vk]=zk if zk �=∗,1≤k≤n} (2)

The support of Pst is defined as sup(Pst)=|Pst|/|T |. Packages of all subtopics consist
of π(mt), if all the subtopics are from mt. i.e., ∪∀st∈mtPst=π(mt). �

For example, (∗,∗,Intel i5,∗) is a subtopic, it is an instance of meta-topic
(∗,∗,CPU,∗). The package of this subtopic is P(∗,∗,Intel i5,∗) = {01,02,03}. If
there are only 4 tuples in T , its support is 0.75.

Topical Presentation of Search Results on Database 347

In this paper, we assume all tuples are in one table and attribute values are
categorical. For numeric data, we assume it has been suitably discretized.

A subtopic can also be viewed as a label set. We use notations in set theory,
such as |st|, st1 ∪ st2, st1 ∩ st2, to denote the number of labels in st, all distinct
labels, and labels belonging to both st1 and st2, respectively.

2.2 Overview Ability and Meaningfulness

It is obvious that the more labels describing a package (more meaningful), the
less tuples it contains (less overview ability). This is a trade-off between (1) the
overview ability of the answer space; and (2) the meaningfulness of each package.
Overview Ability. It is easy to see that, a package with more tuples has better
overview ability. Therefore, the overview ability of Pst is defined as the propor-
tion of the whole answer space in this paper.

o(Pst) =
∑

t∈Pst
score(t)/

∑
t∈Rscore(t) (3)

where R is the query result set, and score(t) is an adaptation of existing scoring
techniques. For example, score(t) can be the relevance between keyword query
Q and t, or the feedback of t by users.
Meaningfulness. As discussed in Section 1, it is hard to quantify the meaning-
fulness. To this end, we assume that, a package Pst is more meaningful if there
are more labels in st. This is a natural assumption because users are exposed
with subtopics directly; they can learn more information if and only if there are
more labels. The meaningfulness is defined as follows.

m(Pst) = Σl∈stweight(l) (4)

where l ∈ st is a label, weight(l) measures the importance of l. Many approaches
(e.g., query log mining, frequency based scoring) have been proposed for label
scoring. We assume the labels are independent for simplicity, hence the mean-
ingfulness can be denoted as the sum of all label weights.
Overall Score. The overall score for overview ability and meaningfulness of a
package is defined as follows.

OS(Pst) = o(Pst)×m(Pst) (5)

We use the product of o(Pst) andm(Pst) because the two aspects are in inverse
proportion. For a package, we prefer high score of both o(Pst) and m(Pst).
Remark 1. Note that OS(Pst) can be applied to many package ranking methods.
For example, for frequency-based ranking [6] (where a facet/package is ranked
by the number of tuples in it), we could set score(t)=1 and m(Pst)=1. As a
result, the ranking by OS(Pst) is equivalent to the frequency-based ranking.
Remark 2. There are many implementations for score(t) and weight(l), e.g.,
TFIDF, user feedback. Different scenarios require different scoring functions,
thus we leave score(t) and weight(l) untouched, to make OS(Pst) adaptive.
Remark 3. Substituted by Eq. 3 and 4, OS(Pst) =

∑
t∈Pst

∑
l∈stscore(t)weight(l)/

∑
t∈Rscore(t)∝

∑
t∈Pst,l∈stscore(t)weight(l). Denote cha(t,l)=score(t)weight(l) as

the character for label l in tuple t, the overall score can be rewritten as OS(Pst)∝∑
t∈Pst,l∈stcha(t,l).

348 H. Hu et al.

2.3 Problem Definition

Problem 1 (TP). Given search results R, attribute space D=∪|D|
i=1Ai and an integer

k. Let OSm(·) be the informative score of multiple packages, and P be all packages on
D, the topical presentation (TP) problem is to select a summary set IC , that

max
IC⊆P,|IC |=k

OSm(IC),s.t.∀Pst∈IC
{
Pst is acceptable
st is on D

where OSm(IC)=f(∪Pst∈ICOS(Pst)) measures the information of all packages in IC .

Following the previous example, in frequency-based ranking, OSm(IC) =
∑

Pst∈IC
OS(Pst), and in set cover ranking, OSm(IC) = | ∪Pst∈IC Pst|.

In Problem 1, each Pst∈IC is required to be acceptable due to G2, and
OSm(IC) is required to be maximal due to G3. To compute IC , we need all
packages P, informative score OSm(·), and a fast algorithm. These issues are
discussed next.

3 Package Generation

Given search results R and attribute space D, by the definition of subtopic, we
can use the group-by in SQL to generate packages. The DBMS could return all
packages of a meta-topic mt, if we group-by all non-∗ values in mt. However,
it needs to execute the group-by 2|D| times, since there are 2|D| meta-topics on
D. This is time consuming. Besides, not all packages are interesting, consider
a package with st = (DELL,Pink, Intel i5,13inches), actually, there is only one
laptop in this package, thus presenting it on the first screen might not be desired.

We now describe acceptable packages and the package generation algorithm.

3.1 Acceptable Package

An acceptable package is valid, and has neither too many nor too few tuples.
Valid Packages Due to the finer-than relation between meta-topics (Corollary
1), if π(mt1) refines π(mt2), then the partition of their meet (a partition refines
both mt1 and mt2), π(mt1 ∧mt2) is equivalent to π(mt1). In order to eliminate
the redundancy, we propose the notion of valid package.

Definition 3 (Valid Package). A package Pst, st∈mt, is valid if there is no
descendant mt′ of mt(i.e., more specific than mt) such that Pst′∈mt′=Pst. �

The intuition of valid package is that if two packages are same in tuples, but
different in subtopics, e.g., (∗,Pink,Intel i5,∗) and (∗,Pink,Intel i5,13inches).
We prefer the latter package, for it has more meaning.
Example 2 The finer-than relation of meta-topics is a partial order and it is a

complete lattice. Fig. 1 shows a table T and the lat-

tice. π((A,∗,∗)) refines π((∗,B,∗)), thus the partition

of their meet π((A,B,∗)), is the same with π((A,∗,∗)).
Therefore, packages from π((A,∗,∗)) are invalid. Be-

sides, packages from π((A,∗,C)) and π((∗,∗,C)) are

also invalid.

ID
1
2
3
4
5 (*, *, *)

(A, *, *) (*, B, *) (*, *, C)

(A, B, *) (A, *, C) (*, B, C)

(A, B, C)
A B C D, ...
Table T

((A((,, *,, C))CC

((*,, *,, C))CC((A((,, *,,)*)

a1 b1 c1
((((w1, w2

a1 b1 c2 w1, w2
a2 b2 c3 ((

,
((

,
w1, w2

a2 b2 c3
,

w1, w2
a3 b2 c3

,
w1, w2

Fig. 1. Illustration on Lattice,
the attribute space D = ABC

Topical Presentation of Search Results on Database 349

Package Support Threshold. For packages with too many or too few tu-
ples, we need to determine the maximal and mini-
mal support (denoted by min sup and max sup) as
thresholds. The thresholds can be set by system ad-
ministrators according to experience, or by users. One
can easily determine min sup by setting a minimal
package size (e.g., 5, 10, or 15). However, determining
max sup is hard, it depends on the result size |R| and
the distribution of tuples.

In this work, we report that for real dataset, the

min_sup max_sup

space = 2
space = 3
space = 5
space = 6
Power fit of
Power fit of
Power fit of
Power fit of

1E-3 0.01 0.1 1
1

10

100

1000

10000

O
M

Support

Fig. 2. Zipf distribution

support is described by a Zipf distribution over the meaningfulness of packages.
Fig. 2 shows the meaningfulness is inversely proportional to the support. The
packages are generated from 511 laptops with 11 attributes, and for all packages
with the same support, we sum their meaningfulness as overall meaning, i.e.,
OM(s)=

∑
sup(Pst)=sm(Pst). We can see that Zipf distribution is obeyed for dif-

ferent attribute space. Therefore, following [11], we estimate max sup according
to the transition point (denoted as tp) calculation of Zipf ’s second law.

OM(tp) =
1

2

{
−1 +

√
1 + 8count(OM(1/|R|))

}
(6)

where count(OM(1/|R|)) counts the number of packages with support 1/|R|. This
equation is adapted from [8]. Several support values s may satisfy OM(s)=

OM(tp), and we choose a minimal one as max sup.
Remark 4. Determining the threshold may have other choices. For example,
we can set an overall score min os and mark packages with OS(Pst)≤min os
unacceptable. However, it is hard to determine min os. Extensive turning work
needs to be done for a better min os.

3.2 An Apriori Style Approach

A naive package generation method generates all packages first and then removes
unacceptable ones. However, this BaselineGeneration algorithm is inefficient.

Algorithm 1. FastPackageGeneration

Input : Query result set R, attribute space D
Output: all acceptable packages

1 let Mt(1)={mt1,mt2,...,mt|D|} be 1-size meta-topics constructed from D;

2 for k=1 to |D|−1 do
3 generate packages from each meta-topic in Mt(k);
4 remove invalid and too small packages, mark too big packages as “removed”;
5 generate k+1-size meta-topics Mt(k+1) with Mt(k);

Algorithm 1 (FG for short) is a fast generation algorithm using the valid and
threshold conditions for filtering. To find invalid packages as soon as possible,
we iterate meta-topics level-wise, where k-size meta-topics are used to explore
k+1-size meta-topics. When iterating, we check the thresholds and the validity
to avoid generating the unacceptable packages (Line 4), thus the searching space
is reduced. When storing packages in each meta-topic, we use a heap to keep
them ordered by overall score.

350 H. Hu et al.

4 Summarization

We now define the summarization goal OSm(·) and describe the algorithms.

4.1 Summarization Goal

Clustering is commonly adopted for summarization. We can define a distance
measure between packages, and then cluster all packages into k clusters. However,
it is hard to define a distance, e.g., Jaccard distance cannot tell the difference
between two packages from one meta-topic, since there are no overlapped tuples.

This paper explores a different approach by leveraging the principle of maxi-
mizing k-set coverage. Specifically, we consider the goal of summarization as the
following: maximizing overview ability and meaningfulness. Intuitively, this pro-
vides users the best balance between overview and understanding of summaries.

This principle is better illustrated in Fig. 3. Assume we want to pick two pack-
ages out of the four total packages (e.g., k=2). Selecting P2 and P3 allows users
to view 9 of 12 tuples, and learn 19 units of tuple
characters directly: 12 can be learned from 6-item
package P2 (2 characters per tuple) and 8 from 4-
item package P3, minus 1 character that is dou-
ble counted because of the 1-item overlapping. In
contrast, selecting the two non-overlapping pack-
ages P1 and P4 only gets 12 characters.
We now define the informative score OSm(·).

(a1,*,c1) P1 ()
(*,b1,c1)P2 (())
(a2,*,c1)P3 ()
(*,b1,c2)P4P1 P2 P3 P4

SubtopicPackage

Fig. 3. Summary with 4 pack-
ages. Each node is a tuple, the
lines gather tuples into pack-
ages. The character cha(t,l) is
set to 1 for simplicity.

Definition 4 (Character Coverage). Given a package set P=∪n
i=1Psti , the in-

formative score OSm(P) is defined as the Character Coverage, where the Character
Coverage is the sum of all distinct characters.

OSm(P)=
n∑

i=1

∑

l∈sti
t∈Psti

cha(t,l)−
∑

i�=j

∑

l∈sti∩stj
t∈Psti

∩Pstj

cha(t,l)+
∑

i�=j �=k

∑

l∈sti∩stj∩stk
t∈Psti

∩Pstj
∩Pstk

cha(t,l)

−······±
∑

l∈st1∩···∩stn
t∈Pst1

∩···∩Pstn

cha(t,l)

(7)

This is an adaptation of the Inclusion-Exclusion Principle (a technique to
compute the cardinality of the union of sets). OSm(P) has following properties.

Corollary 2. Given a package set P and package Pst, if P∩Pst=∅, then OSm(P∪
Pst)=OSm(P)+OS(Pst).

Corollary 3. Given a package set P and package Pst, OSm(P∪Pst)≤OSm(P)+
OS(Pst).

Corollary 2 and 3 are extended from the Inclusion-Exclusion Principle.
The TP problem now aims to find k packages with maximal character coverage

OSm(P). This differs from previous ranking methods, since OSm(P) considers
labels. We refer to ComputeCCov as the function to compute OSm(P).

Topical Presentation of Search Results on Database 351

4.2 Greedy Summarization Algorithm

Unfortunately, the objective function OSm(·) is NP-hard to optimize.

Theorem 1. The TP problem is NP-hard.
Proof. The basic idea is by reduction from the Weighted Maximum Coverage problem
[9], which can be stated as follows. Given an integer k, and m sets S=∪m

i=1Si over a
set of elements E, each element ei is assigned with a weight w(ei). The goal is to find
a k-set cover C (C⊆S,|C|=k) with maximum weight

∑
ei∈Cw(ei). The TP problems

is, given a set of packages P=∪n
i=1Psti over a set of tuples R, each package is assigned

with an overall scoring OS(Pst)∝∑
t,lcha(t,l). The goal is to find the set of k packages

IC (IC⊆P ,|IC |=k) with maximized OSm(IC). Now, we transform an instance of the
Weighted Maximum Coverage problem to an instance of the TP problem.

Assume the attribute space size is d, and we construct d elements for each tuple
ti, denoted as {ei1,...,eid}. There are d|R| elements. Each eij is assigned with weight
w(eij)=cha(i,j), where cha(i,j) is the character of label j for tuple ti. For a package
Pstr , we construct a set Sr={eij |ti∈Pstr ,j is a label in str}. There are |P| sets in total.
This transformation takes polynomial time. By Definition 4, OSm(IC) calculates the
sum of distinct characters, which is exactly

∑
eij∈Cw(eij). It is now obvious that C

maximizing
∑

eij∈Cw(eij) iff. the set of k packages IC maximizes OSm(IC). �
Algorithm 2 (BS for short) is a greedy summary algorithm. It starts by putting

the package with the largest overall score into I (Line 1). At each iteration, it
selects the package Psti that, together with the previously chosen packages I,
produces the highest character coverage (Line 4). The algorithm stops after k
packages have been chosen, and outputs I. Consider again the example in Fig.
3, when k = 2, BS produces {P2,P3}; and when k = 3, it produces {P1,P2,P3}.
Algorithm 2. BaselineSummarization
Input: P=∪n

i=1Psti and k, the desired number of packages
Output: I

1 Initialize I={}, and let package t be the largest overall score package in P;
2 I=I∪{t}, and remove t from P;
3 while |I|<k do
4 t=maxt∈P(ComputeCCov(I∪{t}));
5 I=I∪{t}, remove t from P;

BS is directly adapted from the greedy algorithm designed for Maximum k-Set
Cover problem. It is known to have a (1−1/e) approximation ratio [9].

BS computes the coverage in each iteration (Line 4), thus it can be expensive in
practice. Function ComputeCCov has an exponential complexity, since each sub-
part in Eq. 7 may require the summation of an exponential number of packages.
As a result, summarization by maximizing OSm(P) turns to be hard.

4.3 Improved Summarization Algorithm

We now present pruning conditions to reduce the invocations of ComputeCCov.
The key observation is that, there is no intersecting tuple between packages
from one meta-topic. For example, in Fig. 3, if P1 and P3 are from meta-topic
(Brand,∗,CPU), then P1∩P3 = ∅. This is obvious because each laptop has one
brand and one CPU type, hence it belongs to only one package.

352 H. Hu et al.

Formally, given a package set P with m meta-topics, P=∪m
i=1M

i, let M i be

packages from the i-th meta-topic (i.e., M i=∪|Mi|
x=1 Pstix

, where each subtopic stix
belongs to the i-th meta-topic), we have Pstix

∩Pstiy
=∅ for x �=y. As described in

Section 3.2, M i is sorted in descending order of OS(Pstix
). Note that this package

disjoint feature offers interesting information in each iteration of BS. We do not
need to check all remaining packages to find a maximum character coverage. To
give a better illustration, we first state the 3 filters and then show an example.

Specifically, for P=∪m
i=1M

i, if I=∪m
i=1I

i is the summary set in each iteration
in Algorithm BS, Ii={Ii1,Ii2,...} consists of packages selected from M i, then:
1. InitialFilter Assume the initial largest package t in P comes from M i, if

OS(Psti2
)>OS(Pstr1

) holds for every Pstr1
(r∈[1,m], r �=i), then Psti2

should be selected.

This can be continued until there exists a package Pstr1
such that OS(Psti

j
)<OS(Pstr1

)

holds for some r �=i. Moreover, at the iteration that initial filter fails, only packages in

Mr with OS(Pstij
)<OS(Pstr1

) need to be checked, others can be skipped.

2. InclusiveFilter In the r-th iteration, for packages in M i, starting from Psti1
, if

|I−⋃
Iij∈IiI

i
j |=x, then packages after the (x+1)-th package can be skipped.

3. ExclusiveFilter In the r-th iteration, for packages in M i, starting from Psti1
, if

OSm(Psti1
∪I)−OSm(I)=d, then Pstij

with OS(Pstij
)≤d can be skipped.

We omit the pseudo codes of the filters and refer to them as InitialFilter,
InclusiveFilter and ExclusiveFilter. Consider the example in Fig. 4, as-
sume M1 = {a1,a2,...}, M2 = {b1,b2,...}, mt1 = (A,B,∗) and mt2 = (∗,B,C). The
intersection of every two packages in M1(or M2) is empty, i.e. ai ∩aj = ∅(i �= j).
For simplicity, we use the term “hit” to denote the selection of a package in
each iteration, and refer to δ(ai) as the contribution of package ai, δ(ai) =

OSm(I∪{ai})−OSm(I), thus to find a maximal character coverage can be restated
as to find a package Pstij

with maximal contribution δ(Pstij
).

Initial Filter. The initial filter works at the be-
ginning of BS. Consider the first selected package t
with the largest overall score. Assume t∈M i, then t
is the first package in M i (packages are sorted, i.e.,
t=Psti1

). In this case, ifOS(Psti2
) is larger than all other

OS(Pstk1
)(i �=k), we should select Psti2

directly, for that

the contribution δ(Psti2
) is the largest.

In Fig. 4, a1 is the largest package, thus it is firstly
picked. In the 2nd iteration, a2 hits summary set I
since OS(a2)=19>OS(b1)=11. Similarly, |a3| hits I in
the 3rd iteration. With initial filter, we only need to
check one package in each iteration.

20
19
15
8
5
4
3
...

Initial
Filter

Exclusive
Filter

Inclusive
Filter

a1

a2
a3
a4
a5
a6
a7

b1
b2
b3
b4
b5

M1 M2

11

6
7

6
4
...

Fig. 4. Illustration of fil-
ters. Packages ai and bi
are from meta-topics M1

and M2, the number in
each package is its overall
score.

In the 4th iteration, InitialFilter fails since OS(a4)<OS(b1), thus we need
to check all packages in M1 and M2 to find the next hit. If there is another
meta-topic mt3 with M3={c1,c2,...}, and OS(c1)=5, then we can skip M3 since
OS(a4)>OS(c1), the contribution of all packages in M3 is less than δ(a4)=8.
Inclusive Filter. The initial filter answers the question, “which meta-topic
should be checked to find the hitting package?” However, when it fails, we need

Topical Presentation of Search Results on Database 353

to check all packages. Here, we ask another question, “How many packages do
we need to check in each meta-topic?” Answering this leads us to inclusive filter.

Lemma 1. Given M i=∪|Mi|
j=1 Pstij

in descending order of OS(·), if Pstij
∩I=∅, then

for k∈(j,|M i|], we have δ(Psti
k
)≤δ(Pstij

).

Proof. By Corollary 2, 3, δ(P
sti

k
)=OSm(I∪P

sti
k
)−OSm(I)≤OS(P

sti
k
)≤OS(P

sti
j
)=δ(P

sti
j
). �

By Lemma 1, we can skip Psti
k
(k∈(j,|M i|]) if Pstij

∩I=∅. In Fig. 4, assume

the gray packages have been selected (i.e., I=I1∪I2={a1∪a2∪a3}∪{b1}), and it is
the 5th iteration. Assume |I2−I1|=8, thus for the remaining packages {a4,a5,...}
in M1, if there exists a package that has intersections with I, it can intersect 8
tuples at most, because it is disjoint with I1. Therefore, we claim that in the next
8+1=9 ordinal packages in M1, there must exist one package ak (4≤k<4+9) such
that ak∩I=∅ (Pigeonhole principle), and by Lemma 1, packages {ak+1,ak+2,...}
can be skipped. The scale for package checking is bounded into |I−⋃

jI
i
j |+1.

Exclusive Filter. Exclusive filter calculates the overall score bound instead of
scale bound. It works within each meta-topic. Consider the 5th iteration in Fig.
4, for a4, if the contribution δ(a4)=5, then we only need to check packages with
its overall score larger than 5, because the rest packages cannot hit I with a
less-than-5 overall score.

Algorithm 3. ImprovedSummarization (IS for short)

Input : P=∪m
i=1M

i, k is size of summary set
Output: I

1 upperBound={b1,b2,...,bm};
2 I=∪m

i=1I
i, and initialize each Ii as ∅;

3 let package t∈M i be the largest package in P;

4 Ii=Ii∪{t}, remove t from P;

5 V=InitialFilter(t,M i ,P); � V records the necessity of checking M i

6 while |I|<k do
7 upperBound=UpdateBound(I,V);

8 forall the M i∈P do t=maxt∈{P
sti1

,...,P
sti

bi

}{ComputeCCov(I∪{t})}9 Ii=Ii∪{t},
remove t from P;

Function UpdateBound(I,V)

Input : I={I1,I2,...,Im}, and V=[V1,V2,...,Vm] is the indicator for filtering
Output: upperBound

1 uBd1=InclusiveFilter(I,P,V), uBd2=ExclusiveFilter(I,P,V);
2 upperBound={b1,b2,...,bm};
3 forall the bi in upperBound do bi=min{uBd1[i],uBd2[i]}; � Choose a tighter bound

Improved Summarization Algorithm. InclusiveFilter and
ExclusiveFilter both provide an upper-bound for package checking. When
integrating them, the system can always choose a tighter bound to speed up the
selection (see Function UpdateBound in Algorithm 3). Algorithm 3 summarizes
packages with filters. In the first few selections, initial filter performs reduction by
comparing the first packages in each meta-topic (Line 5). When InitialFilter

fails, a boolean vector V is utilized to indicate whether each meta-topic re-
quires checking (according to the last part of initial filter). In the following
iterations, InclusiveFilter and ExclusiveFilter updates the upper-bound

354 H. Hu et al.

by UpdateBound (Line 7). Algorithm 3 skips many packages, hence is faster
than BS.

Theorem 2. Algorithm 3 and BS produce the same IC . �
The proof is omitted due to the space constraint.

5 Experimental Study

This section reports evaluations on (1) the efficiency of package generation; (2)
the efficiency of summarization; and (3) the quality of summarization.
Setup. We conducted all experiments on a Windows 2008 server, with a 2.83
GHz CPU, 8 GB memory, and 1TB hard disk. The program was coded in C++.
Datasets. We used two real datasets. The first is a laptop dataset. It contains
511 laptops with 11 attributes, such as Brand, CPU, Memory, etc. We assume the
whole laptop dataset as a sample query result, and denote the query as QL.
The second is the IMDB1 dataset. We downloaded the raw IMDB data, and
preprocessed it by removing duplicate movies and missing values. A subset of
the raw data was converted into a large relational table. It has 14 attributes, e.g.,
Year, Country, Producer, Genres. Some attributes (e.g., “actor” and “actress”)
may have more than one values, following [22], we picked the most frequent value
if multiple values exist. After preprocessing, we have 649,506 tuples.

Table 5. Queries on IMDB dataset
QID Query |R| QID Query |R|
QI1 family, Christmas 366 QI2 Revenge 507
QI3 Legend, USA 577 QI4 USA, Hero 1,009
QI5 Magic 1,012 QI6 Hong Kong Comedy 1,197
QI7 Christmas 1,252 QI8 short family Comedy 3,973

Our test set for
IMDB data consists
of 8 queries (denoted
by QI1 to QI8). Ta-
ble 5 lists the queries
and the query result
size. The result size is 1,236.625 on average. Note that the answers vary from dif-
ferent size, thus we can examine the effect when the number of tuples increases.

5.1 Package Generation

We test the efficiency of BaselineGeneration (BG) and FG (see Section 3.2) on
three factors: (1) query result size |R|; (2) threshold (i.e., min sup or max sup);
and (3) attribute space size |D|. The support min sup (max sup) is proportional
to package size, thus we use package size to denote max sup and min sup.

Fig. 5 shows the time cost for each query. Not surprisingly, FG outperforms
BG, especially when |R| gets larger (e.g., QI7, QI8). This is because FG could
avoid producing the too small packages. The number
of them gets larger when |R| increases, hence the
difference of time cost between FG and BG enlarges.

Fig. 6a gives the time cost on varying thresholds.
We set |D|=5 and use QI to denote the average time
cost of QI1 to QI8. The red (blue) axis shows the
time cost on varying max supsize (min supsize).

5

50

500

5000

Ti
m

e
co

st
 (m

s) BG
FG

Fig. 5. Time cost on vary-
ing |R|. We set |D|=5,
min supsize=2, and
max supsize=100.

1 ftp://ftp.fu-berlin.de/pub/misc/movies/database/

ftp://ftp.fu-berlin.de/pub/misc/movies/database/

Topical Presentation of Search Results on Database 355

The time cost of BG is almost unchanged, because BG generates all packages
first and then removes the unacceptable ones, thus the generation time remains
the same. However, the time cost of FG decreases as min supsize gets larger (see
the blue lines). This is because FG does not generate the too-small-packages, and
a larger min supsize often implies more too-small-packages. For max supsize
(see the red lines), FG behaves the same as BG, the time cost of FG is stable. This
is because when removing invalid packages, the too big ones are not removed
physically (Line 4 of FG), thus the search space is not reduced.

1 2 3 4 5 6 7 8 9 10
10

100

1000

10000

G
en

er
at

io
n

Ti
m

e
(m

s)

min_sup
size

 QI,BG QL,BG

 QI,FG(minsup)

 QL,FG(minsup)

 QI,FG(maxsup)

 QL,FG(maxsup)

10090 80 70 60 50 40 30 20 10

max_sup
size

(a) On varying sup

1 2 3 4 5 6 7 8
0

200

400

600

800

min_sup
size

=3, max_sup
size

=100

G
en

er
at

io
n

Ti
m

e
(m

s) QI,BG

 QL,BG

 QI,FG

 QL,FG

(b) On varying |D|
Fig. 6. Package Generation Performance

5 10 15 20 25

0

500

1000

1500

2000

 QI,BS

 QL,BS

 QI,IS

 QL,IS

S
u
m

m
a
r
iz

a
ti
o
n
 T

im
e
 (

m
s
)

(a) On varying k

1 2 3 4 5 6 7 8

0

100

200

300

400 QI,BS

 QI,IS

 QL,BS

 QL,IS

S
u
m

m
a
r
iz

a
ti
o
n
 T

im
e
 (

m
s
)

(b) On varying |D|
Fig. 8. Summarization Performance

Fig. 6b shows the performance on varying |D|. FG outperforms BG significantly
especially for a larger |D|. As we can see, BG fails to produce acceptable packages
within a reasonable amount of time (1 second) as soon as |D| reaches 5 or 6.
This is because more attributes often implies more packages, thus FG could avoid
generating more unacceptable ones.

We can conclude that FG is sufficient for real time
response in most cases. This is critical in our goal of
presentation. In following experiments, we set |D|=
6, min supsize=3 and max supsize=100 by default.

30

300

3000

Ti
m

e
C

os
t (

m
s) BS

IS

Fig. 7. Time cost on varying |R|

5.2 Efficiency of Summarization

We test the efficiency of Algorithm BS and IS on three factors: (1) result size
|R|; (2) attribute space |D|; and (3) the desired number of packages k.

Fig. 7 shows the summarization performance on varying |R|. The time cost
is in log scale. We can see that IS outperforms BS, the time cost is reduced by
72.2% at most and 53.8% on average. Fig. 8a shows the time cost on varying
the number of desired packages k. As we can see, the summarization time has
been reduced 48.1% or more especially when k is large. The advantage of IS

lies in the fact that it reduces the number of packages to be checked, thus the
invocations of ComputeCCov are reduced. A larger |R| (or k) often implies less
packages for checking (compared to BS); hence the time cost is reduced greatly.

Fig. 8b shows the time cost on varying |D|. We set k = 5 to reduce the
advantage caused by larger k. As expected, IS still outperforms BS, especially
for a larger |D| . This is because more attributes often implies more acceptable
packages, thus the number of skipping packages gets larger.

Section 5.1 and 5.2 show the efficiency of algorithms FG and IS. In this work,
we analyze the properties of acceptable packages and meta-topics to perform TP

356 H. Hu et al.

Table 6. # of acceptable packages

max sup 10 20 24 50 100
QL 795 910 928 961 974

max sup 10 20 35 50 100
QI8 1,770 2,073 2,208 2,280 2,363

Table 7. Comparison of each method for QL

tuples # labels OSm(·) # tuples # labels OSm(·)
BS 91 15 255 IS 91 15 255
MFR 106 10 226 SFR 98 5 105
MSC 115 11 252 SSC 99 5 105
MHS 113 10 227 SHS 64 5 105
MDS 101 15 237 SDS 98 5 105

task. Moreover, when computing, we remove (or skip) the unacceptable packages
as soon as possible. Therefore, the time cost of FG and IS are reduced greatly.

5.3 Quality of Summarization

This section first validates the necessity of summarization, and then tests the
quality by a case and four metrics. The character cha(t,l) is set to 1.
Comparison Methods. We compared TP with several facet-ranking methods.
(1)FR Frequency-based ranking [6], where facets are ranked by the number of

tuples in them (i.e., the larger support a facet has, the higher it ranks).
(2)SC Set-cover ranking [6], where k facets are selected to maximize the union

of tuples in these facets.
(3)HS Hill-climbing Selection [12], where k facets are selected by hill climbing

technique. We define the cost as the number of tuples exposed to users.
(4)DS Deterministic Selection, where a set of top-k largest overall scoring pack-

ages are chosen (an adaptation of frequency-based ranking with OS(·)).
For faceting, there are single facet and multi facets. In single facet, the tuples

are partitioned according to 1 attribute, and in multi-facets, m attributes. We
compare with both of them. In total, we got 7 competitors: 4 ranking methods,
each of them with 2 kinds of faceting. Note that for single facet, DS and FR are
the same since cha(t,l) = 1. We denote the 7 competitors as SFR (equivalent
to SDS), SSC, SHS, MFR, MSC, MHS, MDS. For a code ‘XYZ’, X indicates the size of
facets, i.e., S for single facet, M for multi-facets. YZ indicates the ranking method.
In following experiments, we also use YZ to denote both SYZ and MYZ.
Necessity. Table 6 describes the number of acceptable packages grows with
max supsize. The support value 24 and 35 are estimated by Eq. 6. Note that
even when max supsize=10, the number of acceptable packages reaches into
hundreds or thousands, it is too large for a user. This result clearly shows that
obtaining a summary of packages is necessary for presentation.
Case study. Table 7 gives a case for QL, and Fig. 9 shows the subtopics re-
turned by 5 methods. In this case, we chose 5 attributes: Brand, CPU, Memory,
HardDrive, GraphicsCard, and set min supsize=3, max supsize=24, and k=5.

As we can see, IS returns more labels with a larger character coverage.
Fig. 9a shows that labels returned by IS are more diverse than others, it
contains labels from all 5 attributes. Moreover, if we measure the diversity
of labels by averaging the number of unique labels in each attribute (i.e.,
LabelDiv(IC) =

∑
Ai∈DNumber of unique labels in Ai/|D|), we can find that IS has the

largest LabelDiv(IC). The label diversity for IS, MDS, MSC, MFR and MHS are
2, 1.8, 1.6, 1.8 and 1.8, respectively. Therefore IS tends to produce informative
packages. However, IS returns less tuples in Table 7. We compare these methods
in detail next.

Topical Presentation of Search Results on Database 357

500 GBAcer 4 GB
HP 4 GB Intel Graphics

500 GB4 GBLenovo
8 GB 750 GBIntel i7

4 GB 640 GB Intel Graphics

22
19
17
16
20

(a) IS

500 GBAcer 4 GB
4 GB Intel Graphics

320 GB4 GBHP
4 GB 320 GB

320 GB Intel Graphics

22
20
20
20
19

640 GB

Lenovo
Dell

(b) MDS

320 GBDell

4 GB 500 GB

24
24
23
22

22

640 GB Intel Graphics

500 GBLenovo

320 GBLenovo
Acer

(c) MSC

4 GB
Intel Graphics

500 GBLenovo
320 GB

Intel i3

6 GB 500 GB

24
24
24
23
22

640 GB

Dell

(d) MFR

Toshiba 6 GB
4 GB

320 GBDell
4 GB 750 GB

500 GB

22
24
23
21
24

Intel i3

Lenovo

(e) MHS

Fig. 9. A Case on QL, each facet is followed by the number of tuples in it

5 10 15 20 25

0

20

40

60

M
e

a
n

in
g

fu
ln

e
s
s

(a) Meaning, SF

5 10 15 20 25

0

30

60

M
e

a
n

in
g

fu
ln

e
s
s

(b) Meaning, MF

5 10 15 20 25

1

2

A
v
e
r
a
g
e
 C

C
o
v
 R

a
ti
o

 SFR

 SSC

 SHS

 SDS

 IS

 BS

(c) OSm(IC) ratio, SF

5 10 15 20 25

0.9

1.0

1.1

1.2

1.3

A
v
e

r
a

g
e

 C
C

o
v
 R

a
ti
o

MFR

MSC

MHS

MDS

IS

(d) OSm(IC) ratio, MF

5 10 15 20 25

0.6

0.8

1.0

P
r
e
c
is

io
n

(e) Precision, SF

5 10 15 20 25

0.3

0.6

0.9

P
r
e
c
is

io
n

(f) Precision, MF

5 10 15 20 25

0.2

0.4

0.6

R
e

c
a

ll

(g) Recall, SF

5 10 15 20 25

0.0

0.2

0.4

0.6

R
e

c
a

ll

(h) Recall, MF

Fig. 10. Summarization quality on varying k. SF stands for 1-facet, and MF multi-
facets

Metrics. For TP and its 7 competitors, we compare (1) meaningfulness, (2)
character coverage, (3) precision and (4) recall, where,

precision(IC)=
distinct tuples in IC

tuples presented to users
, recall(IC)=

distinct tuples in IC
|R| (8)

1.Meaningfulness Fig. 10a and 10b compare the meaningfulness. As we can
see, IS and MDS have more meanings than FR, SC and HS. Recall that FR returns
the top-k support facets, but such facets may often be less meaningful (e.g., in
Fig. 9, MFR only returns 10 labels). On the other hand, the subtopics returned
by IS are as different as possible from each other so as to get a higher character
coverage, thus are likely to be meaningful (e.g., IS gets 15 labels for QL).

The SC selects facets by maximizing the union of tuples, thus it tends to return
facets with more tuples and less overlapping (e.g., the facets of MSC have more
tuples than IS and MDS in Fig. 9). Due to the inverse proportion of package size
and meaningfulness, the meaning of SC is limited (e.g., MSC gets 11 labels). The
HS finds a local optimal coverage for tuples, thus the meaning is also limited.

Note that MDS has more meaning than IS; this is because MDS selects pack-
ages with the highest overall scores, and the meaningfulness is a factor to be
considered. However, there are significant overlapping between facets, hence the
meanings are also overlapped (e.g., MDS has less label diversity than IS for QL).

2.Character coverage Fig. 10c and 10d show that BS and IS produce the high-
est character coverage. Note that IS achieves exactly the same character coverage
as BS, which confirms the correctness of our filters in Section 4.3. Therefore, in
following evaluations we compare only IS with other methods.

358 H. Hu et al.

FR and DS return facets with largest support or overall scoring, which may
neglect the overlapping between facets (e.g., the label diversity of FR and DS is
less than IS for QL). Hence, they fail to return facets with high character cover-
age. On the other hand, MSC and MHS have relatively higher character coverage.
This is because SC and HS aim to maximize the union of tuples, thus are likely
to return disjoint facts (e.g., Lenovo 500GB and Lenovo 320GB in Fig. 9c).
Therefore, they tend to have more distinct characters.

3.Precision Fig. 10e and 10f show the precision of each method. As we can
see, SC and HS get higher score, because they are likely to have less overlaps than
IS, FR and DS due to their optimization goal. For FR and DS, the overlapping
is significant especially for MFR and MDS (e.g., in Fig. 9, MFR has 11 overlapped
tuples, whereas IS has 3). Therefore, their precisions are low. On the other hand,
the precision of IS is close to others especially when k is small (e.g., k < 15), and
outperforms MFR and MDS significantly. This is because when k gets larger, the
overlap between facets may increase (IS aims to find maximal character coverage
instead of maximal tuple coverage). However, in practice, the presentation task
prefers good quality with a relatively small k to avoid overwhelming.

4.Recall Fig. 10g and 10h compare the recall. We can see that IS is close to
SC and HS, also it outperforms FR and DS on most cases. SC and HS are designed
to get the largest tuple coverage, thus they have strong overview ability (e.g.,
the distinct tuples of MSC and MHS ranks the top 2 largest in Table 7). We can
conclude that IS has slightly more overlapped tuples than SC and HS, hence its
overview ability is close to them.

The four metrics test the quality differently. Meaningfulness evaluates the
meaning of packages; character coverage tests both tuples and labels collectively;
precision evaluates the overlaps and recall the overview ability. As we can see,
most existing methods aim to optimize precision and recall, rather than the
meaning. In this work, IS combines meaningfulness and overview ability by
character coverage. The experiments show that IS improves the meaning by
49.1% on average, and losses overview ability slightly by 6.2% at most. Given the
superior performance, we can conclude that IS produces promising summaries.

6 Related Work

Facets. Faceted search has been extensively studied in DB community [4,16,6,12].
Recently, facet-ranking methods are proposed for the facet overwhelming prob-
lem [6,12]. However, most of them focus the number of tuples in each facet; they
neglect to rank facets with labels. Besides, [3] proposes a probabilistic ranking
model, whereas it is designed for documents. On the other hand, [4,6,16] rank
facets by a cost model to minimize the user efforts. They are different from
TP, since TP does not involve the interaction of users. Bin [22] answers aggre-
gate queries, which is similar to subtopics in this paper. However, no further
summarizing was performed for the overwhelming problem.
Clustering. Clustering helps users search the answer space (see [2] for a survey).
Various methods [20,13,17] present the results by finding the naturally close

Topical Presentation of Search Results on Database 359

groups in answer space. However, the clusters are not intelligible. [17] proposes
a labelling clustering method for web pages, whereas it is hard to adopt on
relational data for real time response. [13] is another effective clustering method,
it reduces the tuple overwhelming by further clustering results in each cluster.
Ranking. Ranking and top-k query answering [1,5,14,15] rank results by struc-
tural or statistical information. It is effective, but for navigational queries, users
need to navigate the answer space, hence faceting and clustering are proposed.
Diversification. Diversification could provide more different results. In DB
community, some pioneering approaches [13,7,21,10] have emerged. Bin [13] di-
versifies results by choosing representatives from each cluster. DivQ [7] aims to
discover diversified schemas. BROAD [21] captures both structure and seman-
tic information by a kernel distance metric. These approaches provide different
results, whereas TP provides packages with maximal information.
User Interface. User interfaces (e.g., Skimmer[18], MusiqLens[13], and
DataScope[19]) are designed to give a fast overview of answer space, and mean-
while feed users a small fraction of answers. Clustering or sampling is performed.

7 Conclusion

In this paper, we had proposed TP for presenting search results on database.
To our best knowledge, TP is the first work that addresses the presentation
from both package size and labels. First, we identified acceptable packages and
designed a fast algorithm to generate them. Then we quantified the character
coverage and proposed algorithms for summarization. The experimental results
show that TP yields promising summaries efficiently. In future, we would like to
integrate TP with existing ranking methods.

References

1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database
query results. In: CIDR (2003)

2. Carpineto, C., Osinski, S., Romano, G., Weiss, D.: A survey of web clustering
engines. ACM Comput. Surv. 41(3) (2009)

3. Carterette, B., Chandar, P.: Probabilistic models of ranking novel documents for
faceted topic retrieval. In: CIKM, pp. 1287–1296 (2009)

4. Chakrabarti, K., Chaudhuri, S., won Hwang, S.: Automatic categorization of query
results. In: SIGMOD, pp. 755–766 (2004)

5. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information re-
trieval approach for ranking of database query results. ACMTODS 31(3), 1134–1168
(2006)

6. Dakka, W., Ipeirotis, P.G., Wood, K.R.: Automatic construction of multifaceted
browsing interfaces. In: CIKM, pp. 768–775 (2005)

7. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: DivQ: Diversification for key-
word search over structured databases. In: SIGIR, pp. 331–338 (2010)

8. Donohue, J.C.: Understanding scientific literatures: A Bibliometric Approach. The
MIT Press, Cambridge (1973)

360 H. Hu et al.

9. Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston (1997)

10. Hu, H., Zhang, M., He, Z., Wang, P., Wang, W.: Diversifying query suggestions by
using topics from wikipedia. In: Web Intelligence, pp. 139–146 (2013)

11. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words.
In: ICML, pp. 170–178 (1997)

12. Li, C., Yan, N., Roy, S.B., Lisham, L., Das, G.: Facetedpedia: Dynamic generation
of query-dependent faceted interfaces for wikipedia. In: WWW, pp. 651–660 (2010)

13. Liu, B., Jagadish, H.V.: Using trees to depict a forest. PVLDB 2(1), 133–144 (2009)
14. Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: Top-k keyword query in relational

databases. In: SIGMOD, pp. 115–126 (2007)
15. Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: Spark2: Top-k keyword

query in relational databases. IEEE Trans. Knowl. Data Eng. 23(12), 1763–1780
(2011)

16. Roy, S.B., Wang, H., Das, G., Nambiar, U., Mohania, M.K.: Minimum-effort driven
dynamic faceted search in structured databases. In: CIKM, pp. 13–22 (2008)

17. Scaiella, U., Ferragina, P., Marino, A., Ciaramita, M.: Topical clustering of search
results. In: WSDM, pp. 223–232 (2012)

18. Singh, M., Nandi, A., Jagadish, H.V.: Skimmer: Rapid scrolling of relational query
results. In: SIGMOD Conference, pp. 181–192 (2012)

19. Wu, T., Li, X., Xin, D., Han, J., Lee, J., Redder, R.: Datascope: Viewing database
contents in google maps’ way. In: VLDB, pp. 1314–1317 (2007)

20. Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to cluster web search
results. In: SIGIR, pp. 210–217 (2004)

21. Zhao, F., Zhang, X., Tung, A.K.H., Chen, G.: Broad: Diversified keyword search
in databases. PVLDB 4(12), 1355–1358 (2011)

22. Zhou, B., Pei, J.: Answering aggregate keyword queries on relational databases
using minimal group-bys. In: EDBT, pp. 108–119 (2009)

	Topical Presentation of Search Resultson Database
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Overview Ability and Meaningfulness
	2.3 Problem Definition

	3 Package Generation
	3.1 Acceptable Package
	3.2 An Apriori Style Approach

	4 Summarization
	4.1 Summarization Goal
	4.2 Greedy Summarization Algorithm
	4.3 Improved Summarization Algorithm

	5 Experimental Study
	5.1 Package Generation
	5.2 Efficiency of Summarization
	5.3 Quality of Summarization

	6 Related Work
	7 Conclusion
	References

