

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part II, LNCS 8422, pp. 251–265, 2014.
© Springer International Publishing Switzerland 2014

Any Suggestions? Active Schema Support
for Structuring Web Information

Silviu Homoceanu, Felix Geilert, Christian Pek, and Wolf-Tilo Balke

IFIS TU Braunschweig, Mühlenpfordstraße 23, 38106 Braunschweig, Germany
{silviu,balke}@ifis.cs.tu-bs.de,

{f.geilert,c.pek}@tu-bs.de

Abstract. Backed up by major Web players schema.org is the latest broad initi-
ative for structuring Web information. Unfortunately, a representative analysis
on a corpus of 733 million Web documents shows that, a year after its introduc-
tion, only 1.56% of documents featured any schema.org annotations. A proba-
ble reason is that providing annotations is quite tiresome, hindering wide-spread
adoption. Here even state-of-the-art tools like Google’s Structured Data Markup
Helper offer only limited support. In this paper we propose SASS, a system for
automatically finding high quality schema suggestions for page content, to ease
the annotation process. SASS intelligently blends supervised machine learning
techniques with simple user feedback. Moreover, additional support features for
binding attributes to values even further reduces the necessary effort. We show
that SASS is superior to current tools for schema.org annotations.

Keywords: Schema.org, semantic annotation, metadata, structuring unstruc-
tured data.

1 Introduction

The Web is a vast source of information and continues to grow at a very fast pace.
Unfortunately most of the information is in the form of unstructured text, making it
hard to query. Recognizing the importance of structured data for enabling complex
queries, the problem of algorithmically structuring information on the Web has been
extensively researched, see e.g., [3, 4, 15]. However, current automatic approaches
still face quality problems and require significant effort for extracting, transforming
and loading data. Thus, from a practical perspective they are not yet mature enough to
keep up with the volume and velocity, at which new data is published on the Web.

In contrast, the Linked Open Data (LOD) [1, 2] initiative tried a manual approach.
It offers technology for information providers to directly publish data online in struc-
tured form and interlinked with other data. LOD is very flexible since it allows for
each data publisher to define its own structure. But this flexibility comes at a price
[7]: Although data stores may overlap in terms of the data stored, the vocabulary used
for structuring (and thus querying) may seriously differ. Ontology alignment has been
proposed as a remedy, but the quality of results is still not convincing [11, 12].

252 S. Homoceanu et al.

To avoid all these problems while improving their query capabilities, major Web
search engine providers went a slightly different way. Their managed approach
builds on a collection of ready-made schemas accessible on schema.org, which are
centrally managed by Bing, Google, Yahoo! and Yandex. These schemas are used as
a vocabulary to be embedded in the HTML source code of a page using microdata.
The main incentive for page owners to use schema.org is that once a Web page fea-
tures content annotated with schema.org’s vocabulary, any search engine can present
it as a rich snippet. Furthermore, the Web page has a higher chance of being found by
users interested in that very specific content, too. Indeed, motivating page owners to
annotate their data with schema.org vocabulary has multiple advantages:

• The effort is spread over many shoulders reducing the effects of volume
and velocity at which new data comes to the Web;

• annotations are of high quality – the one creating the data should under-
stand its semantic meaning best;

• the structure is centrally managed and data can be queried globally with-
out complicated alignment operations like in the case of LOD;

• complex queries with Web data are enables, ultimately fostering semantic
search for the next generation Web.

But is schema.org being adopted by page owners? An in depth analysis on the ac-
ceptance of schema.org reveals, that the number of annotations is in fact very small.
The main reason is that the annotation process is quite demanding. Annotators have to
repeatedly switch between the page to annotate and schema.org, while browsing
through more than 500 schemas with numerous attributes each to find the best
matches. Furthermore, adding the actual markup can be tiresome, especially for pub-
lishers using “What You See Is What You Get” content management systems.

Sharing the confidence that schema.org will empower complex queries with Web
data, we propose SASS (Schema.org Annotation Support System), a two stage ap-
proach offering support for annotating with schema.org. Analyzing any web page, in
the first stage the system finds suggestions for schemas matching page content. For
this purpose, simple models are trained with common machine learning techniques.
But to gain high precision SASS then relies on user feedback to validate and fine tune
proper schema annotations. The second stage specifically focuses on aiding users in
associating schema attributes to values from the page content: typical attributes for
items of a certain schema have a higher chance of being mentioned in the item data.
SASS thus encourages users to consider attributes in order of their typicality. Finally,
the system directly generates the HTML code enriched with schema.org annotations.
Through the semi-automatic schema matching process and the benefits of considering
typical attributes first, our system is superior to solutions like Google’s Structured
Data Markup Helper (www.google.com/webmasters/markup-helper) or the method
recently presented in [13] offering only graphical interface support.

The contribution of this paper can be summarized as follows: we first perform an
extensive analysis on the acceptance of semantic annotation technologies with an in-
depth focus on schema.org. We then present the design of our annotation support
system SASS that relies on lessons learned from the analysis; and finally we present
and evaluate machine learning methods for supporting semi-automatic annotations.

 Any Suggestions? Active Schema Support for Structuring Web Information 253

2 Web-Scale Analysis on Data Annotation Technologies

Semantic annotation technologies for Web content started to gain importance about a
decade ago. Introduced in 2005, microformats are the first important semantic annota-
tion technology. But microformats cover only few entity types annotated through gener-
ic HTML “class” attribute. This complicates both the process of annotation and of
finding annotations. Attempting to tackle the problems that microformats have, the
W3C proposed RDFa as a standard in 2008. It introduces special data annotation
attributes for HTML. However it has no centralized vocabulary, leading to heavy frag-
mentation: Different sources may use different vocabulary to describe the same data.
This hinders the process of automatically interpreting or querying data as a whole.

To tackle this problem, search engine providers proposed microdata, a semantic
annotation technique relying on few global attributes and a standard vocabulary. The
first such vocabulary was “data-vocabulary” proposed by Google in 2009. In mid-
2011 Bing, Yahoo and Yandex joined Google’s initiative. The “data-vocabulary” was
extended to a collection of schemas. Made available on schema.org, this collection is
evolving continuously to reflect data being published on the Web. To provide for a
high level of quality, new schema proposals are reviewed for approval by a standardi-
zation committee. An example of a Web page for the movie “Iron Man 3” annotated
with schema.org is presented in Figure 1.

a)

b)

Fig. 1. Web Page section presenting information about movie Iron Man 3. (a) before
and b) after annotating it with schema.org.

254 S. Homoceanu et al.

Currently, there are 529 schemas on schema.org, organized in a 5 level hierarchical
structure. Each level introduces a higher degree of specificity. At the root of the hie-
rarchy, there is an all-encompassing schema called “Thing” with 6 general attributes
suitable for describing all kinds of entities. Attributes are inherited from parent to
child schemas. They may be of basic types e.g., text, boolean, number, etc. or they
may in turn represent schemas. For example, for schema Movie, the attribute actor is
of type Person which is itself a schema on schema.org. From a structural stance
schema.org is similar to DBpedia, the central data repository in LOD. Overall DBpe-
dia comprises 458 schemas. DBpedia maps its structural information to schema.org
through the “owl:equivalentClass” attribute. However, the mapping is relatively
small: Only 45 links are provided in the current version of DBpedia despite far more
semantic similarities easy to spot on manual samples.

To assess the acceptance of schema.org we analyzed ClueWeb12, a publicly avail-
able corpus comprising English sites only. The corpus has about 733 million pages,
crawled between February and May 2012. It comprises pages of broad interest: The
initial seeds for the crawl consisted of 3 million websites with the highest PageRank
from a previous Web scale crawl. Our analysis shows that about a year after its intro-
duction, only 1.56% of the websites from ClueWeb12 used schema.org to annotate
data. The numbers of pages annotated with mainstream data annotation techniques
found in the ClueWeb12 documents are presented in Table 1. The use of different
standards reflects the chronology of their adoption: Microformats are the most spread
followed by RDFa, microdata and schema.org. It’s interesting to notice that while
microdata was introduced just a year after RDFa, there is a noticeable difference be-
tween their usage rates. The reason for this behavior is that when it was introduced,
RDFa was presented as the prime technology for semantic annotation. Many content
providers adopted it. Further developments brought by Google in 2009 have been
regarded as yet another annotation method. It was only in mid-2011 when microdata
became the main annotation technology for the newly proposed schema.org that mi-
crodata started gaining momentum. In fact, out of 15 million documents annotated
with microdata, 12 million (80%) represent schema.org annotations.

Table 1. Distribution of Annotations in ClueWeb12

Data Found URLs

Microformats 97,240,541 (12.44%)
RDFa 59,234,836 (7.58%)

Microdata 15,210,614 (1.95)
schema.org 12,166,333 (1.56%)

Out of the 296 schemas available in mid-2012 when ClueWeb12 was crawled, only

244 schemas have been used. To retrieve the state of schema.org at that time we used
the Internet Archive (web.archive.org/web/20120519231229/www.schema.org/docs/
full.html). The number of annotations per schemas (Table 2) follows a power
law distribution with just 10 highest ranking schemas being used for 80% of the anno-
tations and 17 schemas making for already 90% of all annotations. From the low

 Any Suggestions? Active Schema Support for Structuring Web Information 255

occurring schemas in the long tail, 127 schemas occur less than 1000 times and 96
schemas occur even less than 100 times.

Schemas on schema.org are quite extensive. They include on average 34 attributes.
"Thing" is with 6 attributes the smallest schema while "ExercisePlan" with 71
attributes is the most extensive schema on schema.org. The annotations however are
by far not as extensive as the structure allows. On average over all annotations, only
4.7 attributes were used. This accounts for about 10% of the attributes available in the
corresponding schemas despite remaining data and existing matching attributes. It
seems users are satisfied with just annotating some of the attributes. Most probably,
this behavior is driven by the fact that rich snippets can only present a few attributes.
In consequence users annotate only those few attributes that they consider should be
included in the rich snippet. This way, from a user perspective, both the effort of an-
notating additional information and the risk that the rich snippet would present a ran-
dom selection out of a broader number of annotated attributes are minimized.

Table 2. Top-20 Schema.org Annotations on the ClueWeb12 Corpus

Schemas Occurrences Average Nr.
of Attributes

Percentage
(Schema.org)

http://schema.org/Blog 5,536,592 5.56 19.57%
http://schema.org/PostalAddress 3,486,397 3.62 12.32%
http://schema.org/Product 2,983,587 2.28 10.54%
http://schema.org/LocalBusiness 2,720,790 3.29 9.62%
http://schema.org/Person 2,246,303 4.97 7.94%
http://schema.org/MusicRecording 1,580,764 2.77 5.59%
http://schema.org/Offer 1,564,257 1.32 5.53%
http://schema.org/Article 1,127,413 1.04 3.99%
http://schema.org/NewsArticle 823,572 3.81 2.91%
http://schema.org/BlogPosting 767,382 3.32 2.71%
http://schema.org/WebPage 659,964 4.11 2.33%
http://schema.org/Review 470,343 3.20 1.66%
http://schema.org/Organization 407,557 1.35 1.44%
http://schema.org/Event 400,721 2.69 1.42%
http://schema.org/VideoObject 396,993 0.47 1.40%
http://schema.org/Place 380,055 2.50 1.34%
http://schema.org/AggregateRating 342,864 1.66 1.21%
http://schema.org/CreativeWork 232,585 2.30 0.82%
http://schema.org/MusicGroup 223,363 1.15 0.78%
http://schema.org/JobPosting 168,542 4.38 0.60%

3 Learning to Annotate Unstructured Data with Schema.org

The benefits of building a structured Web are obvious and the approach followed by
schema.org seems promising. Most of the data annotated with schema.org vocabulary
represents e-shopping entities like products, restaurants or hotels. Indeed economic
factors may have driven the adoption of schema.org for e-shopping relevant data. For

256 S. Homoceanu et al.

the rest, the benefit of having pages presented as rich snippets seems rather small
when compared to the effort of annotating data.

Unfortunately, as we have seen, schema.org annotations are not yet used broadly.
The main reason invoked insistently on technology blogs on the Web is that the actual
process of annotating Web data with schema.org is quite demanding, see e.g.,
http://readwrite.com/2011/06/07/is_schemaorg_really_a_google_land_grab. In partic-
ular, the structure is centrally managed by schema.org and not at the liberty of annota-
tors like in the case of RDFa. This means that when annotating pages one has to:

a) repeatedly switch between the Web page to annotate and schema.org,
b) to browse through hundreds of schemas with tens of attributes each trying to

find those schemas and attributes that best match the data on the Web page,
c) and finally to write the microdata annotation with corresponding schema.org

URL resources into the HTML code of the page.
With such a complicated process it’s no wonder that 1.1% of all found annotations

are erroneous. Most frequent errors were bad resource identifiers caused by miss-
pelled schemas or attributes or by schemas and attribute names incorrectly referred
through synonyms.

We believe that providing support for the annotation process will make using
schema.org much more attractive for all kinds of data. For this purpose, we propose
SASS, a system to assist page owners in:

1. matching schemas from schema.org to the content of a web page,
2. linking the attributes of the matched schemas to the corresponding values

from the page,
3. and automatically generating the updated HTML page to include the

schema.org annotations.
In contrast to simple tool s like Google’s Structured Data Markup Helper or the

system presented in [13], SASS goes beyond a mere user interface and actively ana-
lyzes page content, to find and propose the best matching schemas, to the user.

Let us take a closer look at SASS’s basic interactive annotation workflow (cf. also
Algorithm 1): Once a page has been created and before publishing it on the Web, the
owner loads the HTML source file into SASS’s Web-based annotation support sys-
tem. First the system finds matches between schemas and pieces of page content,
using models that have been trained with machine learning techniques on data anno-
tated in ClueWeb12. Theoretically, any selection comprising consecutive words from
the page content is a possible candidate for the matching. But considering all possible
selections of page content is not feasible. Fortunately, the layout expressed through
HTML elements says much about how information is semantically connected. With
the help of the Document Object Model (DOM) API the HTML page is represented
as a logical structure that connects HTML elements to page content in a hierarchical
DOM tree node structure. These nodes envelop the pieces of content that are matched
to the schemas. Starting from the most fine-granular nodes (nodes are processed in the
reversed order of the depth-first search) the content of each node is checked for possi-
ble match with all schemas from schema.org. Once a match is found, the user is re-
quested to provide feedback. If the match is accepted by the user, the system goes in
the second stage of linking schema attributes to values.

 Any Suggestions? Active Schema Support for Structuring Web Information 257

If the proposed match is not correct the user may browse through the set of next
best matching schemas. If there is no suitable match, the user can always refuse the
match recommendation. In this case, the system proceeds to the next node. The
process continues until all nodes have been considered. In Figure 2.a. we present a
snapshot of SASS proposing “Movie” as best matching schema for the Web page
content framed in red. Other schemas showing weaker but still relevant match to the
same content area are also presented on the left hand side (listed in the descending
order of matching strength). In some cases, fine-tuning may be necessary to adjust the
size of the selection marked by the red square. If the user considers that a proposed
schema matches the marked content, but the selection square is either too broad or too
small, the size control elements enable moving up and down the DOM tree node
structure to adjust selection size. Of course, allowing users to fine-tune the selection
region may also lead to conflicting assignments: for instance if the new selection cor-
responds to a node that has already been matched to another schema. Since the con-
tent in each node may be associated to just one schema, in such cases the user is asked
to confirm which assignment is valid.

Once a match has been confirmed, the system proceeds to the second phase of link-
ing the attributes of the chosen schema values from the selected page content. For
schemas, the annotations found in ClueWeb12 are enough for learning schema mod-
els to support the schema-to-page-content matching process. However, our analysis
presented in Section 2 shows that just about 10% of the attributes have actually been
used for annotations. Data for attribute annotations is thus very sparse and learning

Algorithm 1. Content to schemas matching workflow.

Input: HTML – the HTML page content, SORG – the set of schemas from sche-

ma.org

Output: R – result set comprising matching relations between nodes and

schemas, and corresponding list of attributes and values

1: doc ← DOMDocument(HTML)
2: N ← DFS(doc).reverse
3: R ← ;
4: foreach n in N do
5: S ← ; s ← null; A ←
6: if n in R then
7: continue // skip n as it was already added probably by the

user’s adjusting the selection for some other node
8: end if
9: S ← match(n, SORG)

// returns all schemas from schema.org matching the content from n
10: if S ് then ׎
11: s = USER_FEEDBACK(S)
12: if s ് null then
13: A ← bind(n, s) // A contains attribute value pairs obtained

from the attributes to page content associations made by the
user with drag&drop functionality

14: R.add(n, s, A) // if n already exists in R the tuple will be
updated with the new matching

15: end if
16: end if
17: end for

258 S. Homoceanu et al.

algorithms didn’t prove as s
attribute annotations shows
support the system can off
typicality for some item-ty
item-data than other attribu
attributes in the descendin
consider at least those attr
Those attributes are made
dragged-and-dropped on th
(Figure 2.b.). Start-end sele

With the obtained sche
enriches the original HTML
source is finally validated w

Let us now provide a de
approach within the workfl
of matching schemas to un
Section 3.2 the process of c

Fig. 2. Schema.org Annotatio
Mapping schema attributes to H

3.1 Matching Schemas

From a sequence of words
schema.org, the matching p
More formally, given Wn=
content of node n, and S, th
that best match Wn are:

 ܵௐ೙ ൌ
where θ is a quality regulat
match:{Words × URIs} →
certain schema matches th

a

successful as for the schemas matching. The lack of pro
s that this phase would benefit the most from any leve
ffer. We assume that attributes showing higher degree
ype have a higher chance of appearing in the respect
utes. For the confirmed schema, our system displays
g order of their typicality value and encourages users
ributes showing highly typicality for the chosen sche
available on the right hand side of the screen and can
he corresponding values if provided in the page cont
ection sliders allow for fine content selection.
ema matching and attribute value pairs, the system t
L with the corresponding microdata. The generated HTM
with MicrodataJS (github.com/foolip/microdatajs).
etailed description of all core functionalities of the SA
low described above. In Section 3.1 we present the proc
nstructured data - page content enclosed in DOM nodes
computing attribute typicality is discussed.

on Support System: a) Matching schema to unstructured data
HTML elements with corresponding values

to Unstructured Data

(the content of a DOM node) and the list of schemas fr
process finds those schemas that “best” match the cont

={w1, w2, …, wk} the sequence of words representing
he set of URIs for schemas from schema.org, the schemሼݏ௜ | ݏ௜ א ܵ ٿ ሺ݄ܿݐܽ݉ ௡ܹ, ௜ሻݏ ൒ ሽߠ

ting parameter (for our experiments θ was set to 0.5),
 [-1,1] is the function for computing the confidence th
he given set of words. The expression of this funct

a) b)

oper
l of
e of
tive
the

s to
ma.

n be
tent

then
ML

ASS
cess
s. In

a; b)

rom
ent.
the

mas

(1)

and
at a
tion

 Any Suggestions? Active Schema Support for Structuring Web Information 259

depends on the method that is chosen to perform the matching. There are various such
methods. For instance, given that schemas published on schema.org describe various
types of entities, one of the first approaches that come to one's mind for binding these
schemas to unstructured data is entity recognition and named entity recognition. This
has proven to work well for some entity types like products, persons, organizations or
diseases [18]. However, considering the popular entities annotated on the ClueWeb12
corpus (Table 2), most of them describe more abstract entities e.g. “Blog”, “Review”,
“Offer”, “Article”, “BlogPosting”, etc. In fact, out of the top-20 entity types, entity
recognitions systems like OpenNLP (opennlp.apache.org) or StandfordNER [5] rec-
ognize less than half of them. Given an observation Wn, and the annotations extracted
from ClueWeb12 as a training set comprising a large number of observations whose
category of membership is known (the annotated schema) this becomes a problem of
identifying the class for observation Wn. Machine learning methods like Naïve Bayes
classification or Support Vector Machines have proven successful for text classifica-
tion tasks even for more abstract entity types ([8, 9]).

Naïve Bayes classifiers rely on probabilities to estimate the class for a given
observation. It compares the “positive” probability that some word sequence is the
observation for some schema to the “negative” probability that the same word se-
quence is an observation for other schemas. In this case the matching function is:

஻௔௬௘௦ሺ݄ܿݐܽ݉ ௡ܹ, ሻݏ ൌ Pሺݏ| ௡ܹሻ െ Pሺݏҧ| ௡ܹሻ (2)

But neither of the two probabilities can be computed directly from the training set.
With the help of Bayes’s Theorem P(s|Wn) can be rewritten in computable form as

P(s|Wn) =
Pሺௐ೙|௦ሻכPሺ௦ሻPሺௐ೙ሻ . Since Wn is a sequence of words that may get pretty long

(Wn={w1, w2, …, wn}), and this exact same sequence may occur rarely in the training
corpus, to achieve statistically significant data samples “naive” statistical indepen-
dence between the words of Wn is assumed. The probability of Wn being an observa-

tion for schema s becomes: P(s|Wn) =
∏ P൫wj|௦൯jస1 ∏Pሺ௦ሻכ P൫wj൯jస1

, and all elements of this formula

can be computed based on the training set: P(s) can be computed as the relative num-
ber of annotations for schema s, P൫wj|ݏ൯ the number of annotations for schema s that
include wj relative to the total number of annotations for s, and P(wj) as the relative
number of annotations including ݓ௝ . The negative probability ܲሺݏҧ| ௡ܹሻ is computed
analogously and the matching function on the Bayes classifier can be rewritten as:

஻௔௬௘௦ሺ݄ܿݐܽ݉ ௡ܹ, ሻݏ ൌ ෑ P൫wj|s൯
jୀ1

כ Pሺsሻ െ ෑ P൫wj|sҧ൯
jୀ1

כ Pሺsҧሻ (3)

Being common to all matching involving Wn, ∏ P൫wj൯jୀ1 can safely be reduced with-
out negative influence on the result. Probabilities for all words from the training set
comprising annotations from ClueWeb12 (excluding stop words) build the statistical
language models for all schemas, which are of course efficiently precomputed before
performing the actual Web site annotations.

Support Vector Machines use a different approach for classification. For
each schema, a training set is built. It comprises annotations of the schema (“positive
annotations”) and annotations of other schemas (“negative annotations”) in equal

260 S. Homoceanu et al.

proportions. Each training set is represented in a multidimensional space (the Vector
Space Model) with terms from all annotations as the space axes and annotations as
points in space. In this representation, SVM finds the hyperplane that best separates
the positive from the negative annotations for each schema. In the classification
process, given observation Wn, and a schema s, SVM represents Wn in the multidi-
mensional term space and determines the side Wn is positioned in with respect to the
hyperplane of s. If it’s the positive side then there is a match. The normalized distance
from Wn to the hyperplane reveals the confidence of the assignment. The closer Wn is
to the hyperplane of s, the less reliable the assignment. In this case, the match
function is:

ௌ௏ெሺ݄ܿݐܽ݉ ௡ܹ, ሻݏ ൌ ሺ݁ܿ݊ܽݐݏ݅݀ ௡ܹ, ௦ሻ (4)ܪ

3.2 The Typicality of Attributes for a Chosen Schema

Schemas on schema.org on average have 34 attributes. But our analysis on annotated
content shows that on average only 4 attributes are actually being annotated. On ma-
nual inspection over annotations for multiple schemas we observed that some of the
prominent attributes were left un-annotated although there was matching content
available. For instance, for movie data, the ‘title’ was always annotated along with
maybe the ‘description’ or ‘director’ attributes. But the ‘genre’ or ‘actors’ were often
left un-annotated. In fact only 38% of the movie annotations also include ‘genre’
although simply by performing keyword search with a list of genres we found that the
information was available in more than 60% of the cases. Clearly, attributes that are
typically associated with the concept of movie will most probably also appear in con-
tent about movies. Unfortunately many of those attributes had less than a hundred
annotations, not enough for building reliable classification models. To support users
in providing more extensive annotations we make it easy for them to find those
attributes having a high chance to appear in the content. For this purpose we ask users
to consider the attributes in the order of their typicality w.r.t. to the chosen schema.

Following on the concept of typicality from the field of cognitive psychology in
[10] we define attribute typicality and present a novel and practical rule for actually
calculating it. This method doesn’t require that attributes themselves be annotated,
schema annotations are enough. It’s built on top of open information extraction tools
and works directly with unstructured data. Starting from content that has been anno-
tated with a certain schema the method is able to compute typicality values for the
schema attributes that it finds, even if no annotation is provided for the attributes. To
be self-contained, in the following we briefly describe the core of attribute typicality.

The Concept of Typicality. It has been often shown that some instances of a seman-
tic domain are more suitable than others to represent that domain: For instance Jimmy
Carter is a better example of an American president than William Henry Harrison. In
her quest for defining the psychological concept of typicality, Eleanor Rosch showed
empirically that the more similar an item was to all other items in a domain, the more
typical the item was for that domain. In fact, the experiments show that typicality
strongly correlates (Spearman rhos from 0.84 to 0.95 for six domains) with family

 Any Suggestions? Active Schema Support for Structuring Web Information 261

resemblance a philosophical idea made popular by Ludwig Wittgenstein in [19]. For
family resemblance Wittgenstein postulates that the way in which family members
resemble each other is not defined by a (finite set of) specific property(-ies), but
through a variety of properties that are shared by some, but not necessarily all mem-
bers of a family. Based on this insight, Wittgenstein defines a simple family-member
similarity measure based on property sharing:

 ܵሺ ଵܺ, ܺଶሻ ൌ | ଵܺ ת ܺଶ| (5)

where X1 and X2 are the property sets of two members of the same family. But this
simple measure of family resemblance assumes a larger number of common proper-
ties to increase the perceived typicality, while larger numbers of distinct properties do
not decrease it. In [16] Tversky suggests that typicality increases with the number of
shared properties, but to some degree is negatively affected by distinctive properties:

 ܵሺ ଵܺ, ܺଶሻ ൌ | ଵܺ ת ܺଶ|| ଵܺ ת ܺଶ| ൅ |ߙ ଵܺ െ ܺଶ| ൅ ଶܺ|ߚ െ ଵܺ| (6)

where ߙ and 0 ≤ ߚ are parameters regulating the negative influence of distinctive
properties. For 1 = ߚ = ߙ this measure becomes the well-known Jaccard coefficient.

Following on the theory introduced by Wittgenstein and extended by Tversky,
properties that an entity shares with its family are more typical for the entity than
properties that are shared with other entities. Also in the context of Web data, similar
entities, in our case items that share the same schema, can be considered to form fami-
lies. When talking about factual information extracted from the Web we have to
restrict the notion of family resemblance based on generic properties (like characteris-
tics, capabilities, etc.) to clear cut attributes. Attributes are in this case given by predi-
cates extracted from (subject, predicate, object) triple-relations extracted from text.
Given some family F consisting of n entities ܧଵ, … , ௡ all being annotated with theܧ
same schema, let’s further assume a total of k distinct attributes given by predicates ݌ଵ, … , .௞ are observed for family F in the corresponding entities’ textual annotations݌
Let Xi and Xj represent the attribute sets for two members ܧ௜ and ܧ௝, then: ห ௜ܺ ת ௝ܺห ൌ 1௑೔ת௑ೕሺ݌ଵሻ ൅ 1௑೔ת௑ೕሺ݌ଶሻ ൅ ڮ ൅ 1௑೔ת௑ೕሺ݌௞ሻ (7)

where 1௑ሺ݌ሻ ൌ ൜1 ݂݅ ݌ א ݌ ݂݅ 0ܺ ב ܺ is a simple indicator function.

Now we can rewrite Tversky’s similarity measure to make all attributes explicit:

 ܵ൫ ௜ܺ, ௝ܺ൯ ൌ ∑ 1௑೔ת௑ೕሺ݌௟ሻ௞௟ୀଵห ௜ܺ ת ௝ܺห ൅ หߙ ௜ܺ െ ௝ܺห ൅ หߚ ௝ܺ െ ௜ܺห (8)

According to Tversky, each attribute shared by Xi and Xj contributes evenly to the
similarity score between Xi and Xj. This allows us to calculate the contribution score
of each attribute of any member of the family (in our case schema) to the similarity of
each pair of members: Let p be an attribute of a member from F. The contribution
score of p to the similarity of any two attribute sets Xi and Xj, denoted ܥ௑೔,௑ೕሺ݌ሻ, is:

ሻ݌௑೔,௑ೕሺܥ ൌ 1௑೔ת௑ೕሺ݌ሻห ௜ܺ ת ௝ܺห ൅ หߙ ௜ܺ െ ௝ܺห ൅ หߚ ௝ܺ െ ௜ܺห (9)

Attribute Typicality. Let F be a set of n entities ܧଵ, … , ௡ having the same schemaܧ
type, represented by their respective attribute sets ଵܺ, … , ܺ௡. Let U be the set of all

262 S. Homoceanu et al.

distinct attributes of all entities from F. The typicality Tிሺ݌ሻ of an attribute ݌ א ܷ
w.r.t. F is the average contribution of p to the pairwise similarity of all entities in F:

 ிܶሺ݌ሻ ൌ ଶ௡ܥ1 ڄ ෍ ෍ ሻ௡݌௑೔,௑ೕሺܥ
௝ୀ௜ାଵ

௡ିଵ
௜ୀଵ (10)

where Cଶ௡ represents the number of possible combinations of entities from F.
Typicality values change slowly over time and are influenced only by significant

data evolution. For the purpose of this application, the typicality values for each
attribute of each schema can be computed as an offline process, on a monthly basis.

4 Evaluation

The approach introduced in this paper requires two stages for performing a full anno-
tation: the first is for matching a piece of content to a schema and the second stage is
for associating attributes proposed by the system in the descending order of their typi-
cality, to page content. The main merits of the system are to suggest best matching
schemas for the first, and to compute attribute typicality for the second stage.

For evaluating the schema matching functionality we prepared two data sets. Each
has about 60,000 annotated web pages randomly harvested from ClueWeb12 compris-
ing annotations with about 110 different schemas each. One of them is used as a train-
ing corpus for the classification methods. The other one is used as a test set. The test
set is stripped of all annotations and provided to our system. We disabled user feed-
back at this stage for evaluation purposes. Instead, each match proposed by the system
is accepted as correct. We compare the pages annotated by the system for both Naïve
Bayes and SVM, to the pages from the original test set and measure the schema
matching effectiveness in terms of precision and recall.

On inspection over the results, about 5% of the schemas were not detected at all.
The reason for this behavior is the fact that these schemas are present in the test set
but they have no or almost no occurrences (up to 10) in the training set. Increasing the
size of the training set helps reducing the number of undetected schemas. In fact,
initial experiments with 10,000 and 30,000 web pages as training sets, with smaller
schema annotation coverage, showed higher numbers of undetected schemas.

Overall, on the 110 schema annotations the system achieves on average 0.59 preci-
sion and 0.51 recall for Naïve Bayes and 0.74 precision and 0.76 recall for SVM,
Simply matching schemas at random, as a comparison method, results in precision
and recall lower than 0.01. The result values vary strongly from schema to schema.
For brevity reasons, in Table 3 we show the results for 15 schemas. The system is
counting on user feedback to even out the so called “false alarms” emphasized by
precision. But the “false dismissals” emphasized by recall are much harder to even
out by the user. The system proposes a list of alternatives (formula 1), but if the
matching schema is missing from this list, the corresponding annotation will most
probably fail. For this reason, the 15 schemas presented in Table 3 are chosen to cover
the whole spectrum of F2-measure values, given that the F2-measure weights recall
twice as much as precision.

 Any Suggestions? Active Schema Support for Structuring Web Information 263

No correlation between the number of occurrences in the training set and results
could be observed. Having hundreds of schema annotations seems to lead to results
similar to having tens of thousands of annotations. A few schemas, especially in the
case of Naïve Bayes, have catastrophic precision and recall values (less than 0.01),
despite occurring more than 4,000 times in the training set. These are schemas with
very broad meaning e.g. “WebPage” or “Thing”. Overall, SVM does better than
Naïve Bayes. But it is interesting to notice that for many schemas the two approaches
seem to complement each other: schemas where the Bayes achieves bad results are
handled much better by SVM and vice versa. This finding encourages us to believe
that approaches relying boosting meta-algorithms like the well know AdaBoost [6]
will provide even better results.

For the second stage, correctness of the typicality value of an attribute can only be
assessed through broad user studies. Our experiments, presented in detail in [10] show
that with the attribute typicality method, the top-10 most typical attributes are selected
with average precision and recall values of 0.78 and 0.6 respectively. The lower recall
value is explained by the fact that attributes are extracted from text, and don’t always
exist in the corresponding schema.org schemas.

Table 3. Precision and Recall values for the matching of schemas with Bayes and SVM

On average the system matches schemas correctly even without user feedback in 2

out of 3 cases. But the overall quality of the results doesn’t encourage us to believe in
the feasibility of a fully automatic annotation system. User input is especially impor-
tant for the attribute annotations. The attributes being presented first, show high typi-
cality values and have a higher chance of appearing in the content to be annotated.
This reduces the effort needed for broader annotations and has the benefit of control-
ling that at least the important attributes are included in the annotation.

264 S. Homoceanu et al.

5 Related Work

Acknowledging the difficulties users have when annotating data with schema.org, a
variety of tools have recently been proposed (schema.rdfs.org/tools.html). Schema-
Creator (schema-creator.org) and microDATAGenerator (microdatagenerator.com)
are two important solutions for form based interface-focused tools for schema.org
annotations. Google’s Structured Data Markup Helper offers more elaborate GUI
support for more comfortable manual content annotation. An in-depth analysis regard-
ing the visualization of un-structured semantic content along with a formal description
of visualization concepts is presented in [13]. Building on these concepts the authors
propose and evaluate a graphical user interface on two application scenarios for anno-
tating data with schema.org. In contrast, our system goes beyond a simple GUI and
makes high quality suggestions for the annotations.

In [17] the authors present MaDaME, a system that infers mappings between
content highlighted by the user and schemas from schema.org. For this purpose the
system relies on WordNet. But the system is only appropriate for annotating named
entities and nouns known to WordNet. Everything else is not supported. Atomic con-
tent like nouns or names also have to be highlighted by the user for the annotation
process as the system doesn’t process pages as a whole. In [14], a tool for adding
schema.org types automatically is presented. It relies on domain knowledge and NER
to extract key terms and to generate structured microdata markup. It requires a high
quality knowledge base with metadata represented in RDF for each schema to be
annotated and has been show to work only on patent data. This will not scale for all
schemas. Furthermore, NER alone cannot deal with all types of schemas from
schema.org.

6 Conclusions and Future Work

The Web is an abundant source of information – however, mostly in unstructured
form. Querying such data is difficult and the quality of results obtained by keyword-
based approaches is far behind the quality offered by querying structured data. Sus-
tained by major Web players and relying on a controlled set of schemas, schema.org
has the potential to change this situation once and for all. Unfortunately, annotating
data with schema.org still is a tiresome process, hindering its wide-spread adoption.
Since state-of-the-art tools like Google’s Markup Helper offer only limited benefits
for annotators, we inspected the feasibility of providing better annotation support.

Driven by insights into schema.org annotations obtained by analyzing a large cor-
pus of 733 million web documents, we derived a set of desirable design goals. A
successful support has to always maintain high annotation suggestion quality, while
using supervised machine learning techniques to cater for the highest possible amount
of automation. Our innovative SASS approach shows that given the right blend of
techniques integrated in an intelligent workflow, existing annotations can indeed be
effectively used for training high quality models for schema matching. Relying on the
concept of attribute typicality SASS first offers those attributes having higher chance
of appearing in the page content. As our evaluations show this indeed essentially

 Any Suggestions? Active Schema Support for Structuring Web Information 265

reduces the effort of searching through attribute lists. Currently, these features make
our system superior to any other tool offering support for schema.org annotations.

Schema matching approaches have different strengths. In future work, we plan to
evaluate the performance of boosting meta-algorithms employing multiple matching
techniques. User feedback generated through the system usage can also be used to
improve the quality of the suggestions, a subject we leave to future work.

References

1. Berners-Lee, T.: Linked Data. Design issues for the World Wide Web Consortium (2006),
http://www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C., et al.: Linked Data - The Story So Far. Int. J. Semant. Web Inf. Syst. (2009)
3. Cafarella, M.J., et al.: WebTables: Exploring the Power of Tables on the Web. PVLDB

(2008)
4. Cafarella, M.J., Etzioni, O.: Navigating Extracted Data with Schema Discovery. Proc. of

the 10th Int. Workshop on Web and Databases, WebDB (2007)
5. Finkel, J.R., et al.: Incorporating Non-local Information into Information Extraction Sys-

tems by Gibbs Sampling. In: Proc. of Annual Meeting of the Assoc. for Comp. Linguistics,
ACL (2005)

6. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. J. Comput. Syst. Sci. 55, 1 (1997)

7. Homoceanu, S., Wille, P., Balke, W.-T.: ProSWIP: Property-based Data Access for Se-
mantic Web Interactive Programming. In: Alani, H., et al. (eds.) ISWC 2013, Part I.
LNCS, vol. 8218, pp. 184–199. Springer, Heidelberg (2013)

8. Homoceanu, S., et al.: Review Driven Customer Segmentation for Improved E-Shopping
Experience. In: Int. Conf. on Web Science, WebSci (2011)

9. Homoceanu, S., et al.: Will I Like It? Providing Product Overviews Based on Opinion Ex-
cerpts. IEEE (2011)

10. Homoceanu, S., Balke, W.-T.: A Chip Off the Old Block – Extracting Typical Attributes
for Entities based on Family Resemblance (2013) (Under submission),
http://www.ifis.cs.tu-bs.de/node/2859

11. Jain, P., et al.: Contextual ontology alignment of LOD with an upper ontology: A case
study with proton. The Semantic Web: Research and Applications (2011)

12. Jain, P., et al.: Ontology Alignment for Linked Open Data. Information. Retrieval. Boston
(2010)

13. Khalili, A., Auer, S.: WYSIWYM – Integrated Visualization, Exploration and Authoring
of Un-structured and Semantic Content. In: WISE (2013)

14. Norbaitiah, A., Lukose, D.: Enriching Webpages with Semantic Information. In: Proc.
Dublin Core and Metadata Applications (2012)

15. Suchanek, F.M., Weikum, G.: YAGO: A Core of Semantic Knowledge Unifying WordNet
and Wikipedia. In: WWW (2007)

16. Tversky, A.: Features of similarity. Psychol. Rev. 84, 4 (1977)
17. Veres, C., Elseth, E.: Schema. org for the Semantic Web with MaDaME. In: Proc. of

I-SEMANTICS (2013)
18. Whitelaw, C., Kehlenbeck, A., Petrovic, N., Ungar, L.: Web-scale named entity recogni-

tion. In: CIKM (2008)
19. Wittgenstein, L.: Philosophical investigations. The MacMillan Company, New York

(1953)

	Any Suggestions? Active Schema Support for Structuring Web Information
	1 Introduction
	2 Web-Scale Analysis on Data Annotation Technologies
	3 Learning to Annotate Unstructured Data with Schema.org
	3.1 Matching Schemas to Unstructured Data
	3.2 The Typicality of Attributes for a Chosen Schema

	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

