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Abstract. While recommender systems based on collaborative filtering have be-
come an essential tool to help users access items of interest, it has been indicated
that collaborative filtering enables an adversary to perform passive privacy at-
tacks, a type of the most damaging and easy-to-perform privacy attacks. In a
passive privacy attack, the dynamic nature of a recommender system allows an
adversary with a moderate amount of background knowledge to infer a user’s
transaction through temporal changes in the public related-item lists (RILs). Un-
like the traditional solutions that manipulate the underlying user-item rating ma-
trix, in this paper, we respond to passive privacy attacks by directly anonymizing
the RILs, which are the real outputs rendered to an adversary. This fundamen-
tal switch allows us to provide a novel rigorous inference-proof privacy guaran-
tee, known as δ-bound, with desirable data utility and scalability. We propose
anonymization algorithms based on suppression and a novel mechanism, permu-
tation, tailored to our problem. Experiments on real-life data demonstrate that our
solutions are both effective and efficient.

1 Introduction
In recent years, recommender systems have been increasingly deployed in diverse ap-
plications as an effective tool to cope with information overload. Among various ap-
proaches developed for recommender systems, collaborative filtering (CF) [1] is prob-
ably the most successful technique that has been widely adopted. As a standard practice,
many CF systems release related-item lists (RILs) as a means of engaging users. For
example, e-commerce service providers like Amazon and Netflix have incorporated CF
as an essential component to help users find items of interest. Amazon provides RILs as
the “Customers who bought this item also bought” feature, while Netflix presents RILs
as the “More like” feature. These RILs serve the role of explanations of sorts, which
can motivate users to take recommendations seriously.

Though successful as a means of boosting user engagement, it has been recently
shown by Calandrino et al. [2] that release of RILs brings substantial privacy risks w.r.t.
a fairly simple attack model, known as passive privacy attack. In a passive privacy at-
tack, an adversary possesses a moderate amount of background knowledge in the form
of a subset of items that a target user has bought/rated and aims to infer whether a
target item exists in the target user’s transaction. In the sequel, we use the terms buy
and rate interchangeably. The adversary monitors the public RIL of each background
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(a) A sample user-item rating matrix (b) Public RILs at different timestamps

Fig. 1. A sample user-item rating matrix and its public RILs

item (i.e., items in the background knowledge) over a period of time. If the target item
appears afresh and/or moves up in the RILs of a sufficiently large subset of the back-
ground items, the adversary infers that the target item has been added to the target user’s
transaction. Here is an example that illustrates the idea of passive privacy attacks.

Example 1. Consider a recommender system associated with the user-item rating ma-
trix in Fig. 1(a). Suppose at time T1 an attacker knows that Alice (user 5) has bought
items i2, i3, i7 and i8 from their daily conversation, and is interested to learn if Alice
has bought a sensitive item i6. The adversary then monitors the temporal changes of the
public RILs of i2, i3, i7 and i8. Let the new ratings made during (T1, T2] be the shaded
ones in Fig. 1(a). At time T2, by comparing the RILs with those at T1, the attacker ob-
serves that i6 appears or moves up in the RILs of i2, i3, i7 and i8, and consequently
infers that Alice has bought i6.

Example 1 demonstrates the possibility of a passive privacy attack. In a real-world
recommender system, each change in an RIL is the effect of thousands of transactions.
The move-up or appearance of a target item in some background items’ RILs may not
even be caused by the target user. Thus, one natural question to ask is “how likely will
a passive privacy attack succeed in a real-world recommender system?”. Calandrino
et al. [2] perform a comprehensive experimental study on four real-world systems, in-
cluding Amazon, Hunch, LibraryThing and Last.fm, and show that it is possible to infer
a target user’s unknown transaction with over 90% accuracy on Amazon, Hunch and
LibraryThing and 70% accuracy on Last.fm. In particular, passive privacy attacks are
able to successfully infer a third of the test users’ transactions with no error on Hunch.
This finding is astonishing as it suggests that the simple passive privacy attack model is
surprisingly effective in real-world recommender systems. Therefore there is an urgent
need to develop techniques for preventing passive privacy attacks.

Privacy issues in CF have been studied before. With the exception of very few
works [3, 4], most proposed solutions [5–11] resort to a distributed paradigm in which
user information is kept on local machines and recommendations are generated through
the collaboration between a central server and client machines. While this paradigm
provides promising privacy guarantees by shielding individual data from the server, it
is not the current practice of real-world recommender systems. The distributed solution
requires substantial architectural changes to existing recommender systems. Worse, the
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distributed setting does not prevent passive privacy attacks because the attacks do not
require access to individual user data, but instead rely on aggregate outputs.

Unfortunately, the only works [3, 4] in the centralized setting do not address passive
privacy attacks either. Polat and Du [3] suggest to add uniform noise to the user-item
rating matrix. However, no formal privacy analysis is provided. In fact, we show in
Section 6 that adding uniform noise does not really prevent passive privacy attacks and
cannot achieve meaningful utility for RILs. McSherry and Mironov [4] ground their
work on differential privacy [12], which is known for its rigorous privacy guarantee.
They study how to construct a differentially private item covariance matrix, however
they do not consider updates to the matrix, an intrinsic characteristic of recommender
systems. Furthermore, we argue that differential privacy is not suitable for our prob-
lem because recent research [13] indicates that differential privacy does not provide
inferential privacy, which is vital to thwart passive privacy attacks.

Our Contributions. To our best knowledge, ours is the first remedy to passive privacy
attacks in CF, a type of the most damaging and easy-to-perform privacy attacks. Our
contributions are summarized as follows.

First, we analyze the cause of passive privacy attacks, and accordingly propose a
novel inference-proof privacy model called δ-bound to limit the probability of a suc-
cessful passive privacy attack. We establish the critical condition for a user-item rating
matrix to satisfy δ-bound, which enables effective algorithms for achieving δ-bound.

Second, deviating from the direction of existing studies that manipulates the under-
lying user-item rating matrix, we address the problem by directly anonymizing RILs.
This departure is supported by the fact that, in real-life recommender systems, an ad-
versary does not have access to the underlying matrix, and is critical to both data utility
and scalability. We propose two anonymization algorithms, one based on suppression
and the other based on a novel anonymization mechanism, permutation, tailored to our
problem. We show that permutation provides better utility.

Third, our anonymization algorithms take into consideration the inherent dynamics
of a recommender system. We propose the concept of attack window to model a real-
world adversary. Our algorithms ensure that the released RILs are private within any
attack window in that they satisfy δ-bound w.r.t. passive privacy attacks.

Finally, through an extensive empirical study on real data, we demonstrate that our
approach can be seamlessly incorporated into existing recommender systems to provide
formal protection against passive privacy attacks while incurring slight utility loss.

2 Related Work

Centralized Private Recommender Systems. There are very few studies on providing
privacy protection in centralized recommender systems [3, 4]. Polat and Du [3] suggest
users to add uniform noise to their ratings and then send the perturbed ratings to a central
recommender system. However, this approach neither provides a formal privacy guar-
antee and nor prevents passive privacy attacks. McSherry and Mironov [4] show how to
generate differentially private item covariance matrices that could be used by the leading
algorithms for the Netflix Prize. However, it is not known how to apply their approach
to a dynamic setting. In contrast, our method aims to support a dynamic recommender
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system. With a different goal, Machanavajjhala et al. [14] study the privacy-utility trade-
offs in personalized social recommendations. The paper shows that, under differential
privacy, it is not possible to obtain accurate social recommendations without disclosing
sensitive links in a social graph in many real-world settings. These findings motivate us
to define a customized privacy model for recommender systems.

Distributed Private Recommender Systems. A large body of research [5–11] resorts
to distributed storage and computation of user ratings to protect individual privacy.
Canny [5] addresses privacy issues in CF by cryptographic techniques. Users first con-
struct an aggregate model of the user-item rating matrix and then use local computation
to get personalized recommendations. Individual privacy is protected by multi-party
secure computation. In a later paper [6], Canny proposes a new method based on a
probabilistic factor analysis model to achieve better accuracy. Zhang et al. [7] indicate
that adding noise with the same perturbation variance allows an adversary to derive
significant amount of original information. They propose a two-way communication
privacy-preserving scheme, where users perturb their ratings based on the server’s guid-
ance. Berkvosky et al. [8] assume that users are connected in a pure decentralized P2P
platform and autonomously keep and maintain their ratings in a pure decentralized man-
ner. Users have full control of when and how to expose their data using three general
data obfuscation policies. Ahn and Amatriain [10] consider a variant of the traditional
CF, known as expert CF, in which recommendations are drawn from a pool of domain
experts. Li et al. [11] motivate their approach by an active privacy attack model. They
propose to identify item-user interest groups and separate users’ private interests from
their public interests. While this method reduces the chance of privacy attacks, it fails
to provide a formal privacy guarantee.

A related research area is privacy-preserving transaction data publishing [15] whose
goal is to release anonymized transaction databases that satisfy certain privacy models.
However, anonymizing the underlying database (e.g., the rating matrix) leads to unde-
sirable data utility and scalability in our problem.

3 Preliminaries

3.1 Item-to-Item Recommendation

A common recommendation model followed by many popular websites is to provide,
for every item, a list of its top-N related items, known as item-to-item recommenda-
tion [2]. Item-to-item recommendations take as input a user-item rating matrix M in
which rows correspond to users and columns correspond to items. The set of all users
form the user universe, denoted by U ; the set of all items form the item universe, de-
noted by I . Each cell in this matrix represents a user’s stated preference (e.g., ratings for
movies or historical purchasing information) on an item, and its value is usually within
a given range (e.g., {1, · · · , 5}) or a special symbol “-”, indicating that the preference
is unknown. A sample user-item rating matrix is illustrated in Fig. 1(a).

To generate a list of related items for an item i, we calculate item similarity scores be-
tween i and other items. The similarity scores can be calculated based on some popular
approaches, such as Pearson correlation and vector cosine similarity [16]. The related
item list (RIL) of an item i is then generated by taking the top-N items that have the
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largest similarity scores. We call all RILs for all items published at a timestamp Tk an
RIL release, denoted by Rk . We denote a single RIL of an item j at timestamp Tk by
Rj

k. Two sample RIL releases are given in Fig. 1(b).

3.2 Attack Model

In this section, we briefly review passive privacy attacks [2] in CF. In the setting of
passive privacy attacks, an adversary possesses some background knowledge in the form
of a subset of items that have been rated by a target user, and seeks to infer whether
some other item, called a target item, has been rated/bought by the user, from the public
RIL releases published by the recommender system.

As mentioned in Section 3.1, in item-to-item recommendations, for each item, the
recommender system provides an RIL according to item similarity scores. Let an ad-
versary’s background knowledge on a target user ut be B and the target item be it /∈ B.
The adversary monitors the changes of the RIL of each background item in B over time.
If it appears afresh and/or moves up in the RILs of a sufficiently large number of back-
ground items, indicating the increased similarities between background items and it,
the adversary might infer that it has been added to ut’s transaction, i.e., ut has bought
it, with high accuracy.

In reality, an adversary could launch passive privacy attacks by observing the tem-
poral changes between any two RIL releases. However, it is unrealistic to assume that
an adversary will perform privacy attacks over an unreasonably long timeframe (e.g.,
several months or even several years). Therefore, we propose the concept of attack
window to model a real-world adversary. Without loss of generality, we assume that
the RIL releases are generated at consecutive discrete timestamps and an adversary
performs attacks at a particular timestamp. We note that this reflects the behavior of
real-world recommender systems as RILs are indeed periodically updated. At time Tk,
an adversary’s attack window WTk

contains the RIL releases generated at timestamps
Tk, Tk−1, · · · , Tk−|WTk

|+1, where |WTk
| is the size of WTk

, namely the number of
RIL releases within WTk

. The adversary performs privacy attacks by comparing any
two RIL releases within his attack window.

4 Our Privacy Model

To thwart passive privacy attacks in CF, a formal notion of privacy is needed. In the con-
text of privacy-preserving data publishing, where an anonymized relational database is
published, a plethora of privacy models have been proposed [17]. In contrast, in our
problem, recommender systems never publish anonymized rating matrices but only ag-
gregate RILs. In this paper, we propose a novel inference-proof privacy notion, known
as δ-bound, tailored for passive privacy attacks in CF. Let Tran(u) denote the transac-
tion of user u, i.e., the set of items bought by u.

Definition 1. (δ-bound) Let B be the background knowledge on user u in the form of a
subset of items drawn from Tran(u), i.e., B ⊂ Tran(u). A recommender system satisfies
δ-bound with respect to a given attack window W if by comparing any two RIL releases
R1 and R2 within W , maxu∈U,i∈(I−B) Pr(i ∈ Tran(u) | B,R1,R2) ≤ δ, where



Thwarting Passive Privacy Attacks in Collaborative Filtering 223

i ∈ (I − B) is any item that either appears afresh or moves up in R2, and 0 ≤ δ ≤ 1
is the given privacy requirement.

Intuitively, the definition of δ-bound thwarts passive privacy attacks in item-to-item
CF by limiting the probability of a successful attack on any user with any background
items to at most δ. A smaller δ value provides more stringent privacy protection, but may
lead to worse data utility. This unveils the fundamental trade-off between privacy and
data utility in our problem. We will explore this trade-off in designing our anonymiza-
tion algorithms in Section 5.

We now analyze the cause of passive privacy attacks and consequently derive the
critical condition under which a recommender system enjoys δ-bound. The fundamental
cause of passive privacy attacks is that the target user ut’s rating a target item it will
increase the similarity scores between it and the background items B, which might lead
to its move-up or appearance in some background items’ RILs. So essentially B acts as
the quasi-identifier, which could potentially be leveraged to identify ut. ut’s privacy is
at risk if B is possessed by only very few users. Consider an extreme example, where
ut is the only user who previously rated B. Suppose that no user who previously rated
just part of B rated it during the time period (T1, T2]. Then observing the appearance
or move-up of it in the RILs of B at T2 allows the adversary to infer that ut has rated
it with 100% probability.

Based on this intuition, one possible way to alleviate passive privacy attacks is to
require every piece of background knowledge to be shared by a sufficient number of
users. However, this criterion alone is still not adequate to ensure δ-bound. Consider an
example where, besides ut, there are another 9 users who also rated B. Suppose, during
(T1, T2], all of them rated it. By observing the appearance or move-up of it in B’s
RILs, an adversary’s probability of success is still 100%. So, to guarantee δ-bound, it is
critical to limit the portion of users who are associated with the background knowledge
B and also rated it. Let Sup(B) ≥ 1 be the number of users u associated with B (i.e.,
B ⊂ Tran(u)) at time T2, Sup(B ∪ {it}) be the number of users who are associated
with both B and it at T2. We establish the theorem below.

Theorem 1. Consider an adversary with background knowledge B on any target user
ut. The adversary aims to infer the existence of the target item it ∈ (I−B) in Tran(ut)
by comparing two RIL releases R1 and R2 published at time T1 and T2, respectively.
If Sup(B∪it)

Sup(B) ≤ δ, then Pr(it ∈ Tran(ut) | B,R1,R2) ≤ δ.

Theorem 1 bridges the gap between an attacker’s probability of success and the un-
derlying user-item rating matrix, and enables us to guarantee δ-bound by examining the
supports in the matrix.

5 Anonymization Algorithms

Achieving δ-bound deals with privacy guarantee. Another equally important aspect of
our problem is preserving utility of the RILs. For simplicity of exposition, in this paper
we consider the standard utility metric recall [18] to measure the quality of anonymized
RILs. Essentially, an anonymization algorithm results in better recall if the original RILs
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and the anonymized RILs contain more common items. It is straightforward to extend
our algorithms to other utility metrics.

Our solution employs two anonymization mechanisms: suppression, a popular mech-
anism used in privacy-preserving data publishing [17], and permutation, a novel mech-
anism tailored to our problem. Suppression refers to the operation of suppressing an
item from an RIL, while permutation refers to the operation of permuting an item that
has moved up in an RIL to a position equal to or lower than its original position.

Before elaborating on our algorithms, we give the terminology and notations used in
our solution. Recall that an RIL release at timestamp Tk is the set of RILs of all items
published at Tk, denoted by Rk. The RIL of an item j at Tk is denoted by Rj

k. Given
two timestamps T1 and T2 with T1 < T2 (i.e., T1 is before T2), we say that an item i
distinguishes between Rj

1 and Rj
2 if one of the following holds: 1) i appears in Rj

2 but
not in Rj

1, or 2) i appears in both Rj
1 and Rj

2 but its position in Rj
2 is higher than its

position in Rj
1 (i.e., i moves up in Rj

2).

5.1 Suppression-Based Anonymization

Static Release. We start by presenting a simple case, where we are concerned with
only two RIL releases (i.e., the attacker’s attack window is of size 2). We refer to such
a scenario as static release. Our goal is to make the second RIL release satisfy δ-bound
w.r.t. the first release. We provide an overview of our approach in Algorithm 1.

Algorithm 1. Suppression-based anonymization algorithm for static release
Input: User-item rating matrix M , RIL release R1 at time T1, privacy parameter δ
Output: Anonymized RIL release R2 at time T2

1: Generate R2 from M ;
2: for each item i ∈ I do
3: Generate the set of items Si whose RILs are distinguished by i;
4: for each item i ∈ I with Si �= ∅ do
5: Vi = GenerateViolatingBorder(Si, δ,M)
6: Li = IdentifySuppressionLocation(Vi);
7: for each location l ∈ Li do
8: Suppress(i, l,M);
9: return Suppressed R2;

Identify Potential Privacy Threats (Lines 2-3). Since an adversary leverages the tempo-
ral changes of the RILs to make inference attacks, the first task is to identify, for each
item i, the set of items whose successive RILs at time T1 and T2 are distinguished by
i. This set of items are referred to as potential violating items of i, denoted by Si. For
example, for the two RIL releases in Fig. 1(b), the set of potential violating items of
i6 is Si6 = {i2, i3, i7, i8}. An adversary could use any subset of Si as his background
knowledge to infer the existence of i in a target user’s transaction.

Determine Suppression Locations (Lines 5-6). Not all these potential violating items
(or their combinations, i.e., itemsets) will cause actual privacy threats. Among potential
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violating items, we identify the itemsets where real privacy threats arise, that is, when
an adversary uses the itemsets as his background knowledge, he is able to infer the
target item with probability> δ. We eliminate the threats by suppressing the target item
from some RILs while achieving minimum utility loss. There are two major technical
challenges in doing this, which Algorithm 1 addresses: 1) how to calculate a set of
suppression locations s.t. the resultant utility loss is minimized (Lines 5-6); 2) how to
suppress an item from an RIL without incurring new privacy threats (Line 8).

For the first challenge, we show that the problem is NP-hard (see Theorem 3 below)
and provide an approximation algorithm. For a target item it, an adversary’s background
knowledge could be any subset of Sit . Therefore, we have to guarantee that the prob-
ability of inferring the presence of it in any target user’s transaction from any itemset
B ⊆ Sit , viewed as background knowledge on the target user, is ≤ δ. We refer to this
probability as the breach probability associated with the background knowledge (i.e.,
itemset) B. We point out that the problem structure does not satisfy any natural mono-
tonicity: indeed, the breach probability associated with an itemset may be more or less
than that of its superset. Thus, in the worst case, we must check the breach probability
for every itemset (except the empty set) of Sit , which has exponential complexity. Note
that every item i ∈ I could be a target item.

To help tame the complexity of checking all subsets of Sit , where it is any candidate
target item, we develop a pruning scheme. Define an itemset s ⊂ Sit to be a minimal
violating itemset provided s has a breach probability > δ and every proper subset of
s has a breach probability ≤ δ. Let Vit be the violating border of it, consisting of
all minimal violating itemsets of it. By definition of minimality, to thwart the privacy
attacks on Vit , it is enough to suppress it from the RIL of one item in v, for every
minimal violating itemset v ∈ Vit . The reason is that, for any v ∈ Vit , no proper subset
of v can be used to succeed in an attack. We next show that it is sufficient to guarantee
δ-bound on all itemsets in Sit by ensuring δ-bound on Vit .
Theorem 2. For two RIL releases R1 and R2, a target user ut and a target item it,
∀v ∈ Vit , suppressing it from the RIL of one item in v ensures ∀s ⊆ Sit , P r(it ∈
Tran(ut)|s,R1,R2) ≤ δ.

The general idea of GenerateViolatingBorder (Line 5) is that if an itemset violates δ-
bound, then there is no need to further examine its supersets. We impose an arbitrary to-
tal order on the items in Si to ensure that each itemset will be checked exactly once. We
iteratively process the itemsets with increasing sizes. The minimal violating itemsets
with size k come from a candidate set generated by joining non-violating itemsets of
size k− 1. Two non-violating itemsets, c1 = {i11, i12, · · · , i1l } and c2 = {i21, i22, · · · , i2l },
can be joined if for all 1 ≤ m ≤ l−1, i1m = i2m and Order(i1l ) > Order(i2l ). The joined
result is c1 �� c2 = {i11, i12, · · · , i1l , i2l }.

For a target item it whose potential violating items do not cause any privacy threat,
we still need to consider all 2|Sit |− 1 itemsets before concluding that there is no threat.
To alleviate the computational cost of these items, we make use of a simple pruning
strategy. Let the number of users who rated it at time T2 be Sup(it), the number of
users rated Sit at T2 be Sup(Sit), and the number of users who rated both Sit and it

at T2 be Sup(Sit ∪ {it}). Since Sup(Sit∪{it})
Sup(Sit )

≤ Sup(it)
Sup(Sit)

, to guarantee that the breach

probability Sup(Sit∪{it})
Sup(Sit )

≤ δ, it is enough to ensure that Sup(Sit) ≥ Sup(it)
δ . Notice
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that, for any subset s ⊂ Sit , Sup(s∪{it})
Sup(s) ≤ Sup(it)

Sup(s) ≤ Sup(it)
Sup(Sit )

≤ δ. Thus, there is no
need to make any checks for subsets of Sit .

Achieving δ-bound on Vit requires to find a set of items from whose RILs we sup-
press the target item it, so that after the suppression, for each potential background
knowledge (i.e., itemset) B, either the breach probability associated with it is ≤ δ or it
does not distinguish the successive RILs of at least one item in B. From a recall point
of view, we would like to minimize the number of items to be suppressed, since each
item suppression leads to a utility loss of 1. This problem can be defined as follows.

Definition 2. (IdentifySuppressionLocation) Given the violating border Vit , select a
set of items Lit such that ∀v ∈ Vit(∃l ∈ Lit(l ∈ v)) and |Lit | is minimized.

The problem is identical to the minimal hitting set (MHS) problem [19], and there-
fore we have the following theorem.
Theorem 3. IdentifySuppressionLocation is NP-hard. There is an O(ln |Vit |)-approxi-
mation algorithm to the optimal solution, which runs in O(|Vit ||I|) time.
Algorithm 2 shows a simple greedy algorithm, which repeatedly picks the item that
belongs to the maximum number of “uncovered” itemsets in Vit , where an itemset is
said to be “covered” if one of the items in the current hitting set belongs to it.

Algorithm 2. IdentifySuppressionLocation
Input: The violating border Vi of item i
Output: A set of locations (items) to suppress Li

1: Li = ∅;
2: C ← the set of items in Vi;
3: while Vi �= ∅ do
4: for each item j ∈ C do
5: nj = |{v ∈ Vi : j ∈ v}|;
6: Add the item j with the maximum nj to Li;
7: Vi = Vi − {v ∈ Vi : j ∈ v}
8: C ← the set of items in Vi;
9: return Li;

Perform Suppression (Algorithm 1, Line 8). To thwart privacy attacks, we suppress the
target item it from the RILs of the items identified by Algorithm 2. Suppressing it from
a RIL will make items with a position lower than Pos(it) (i.e., the position of it in the
RIL) move up one position and introduce a new item into the RIL. Note that the move-
up or appearance of these items might cause many new privacy threats, resulting in both
higher complexity and lower utility. To alleviate this problem, instead of changing the
positions of all items below Pos(it) and introducing a new item to the RIL, we directly
insert a new item at Pos(it) and check its breach probability.

Even inserting a new item i directly at Pos(it) in j’s RIL might lead to substantial
computational cost, because, in the worst case, it demands to examine every possible
combination of the itemsets derived from Si with j, which is of O(2|Si|) complexity.
So we are only interested in items with Si = ∅. In this case, we can perform the check
in constant time. More specifically, we iteratively consider the items not in the RIL in
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the descending order of their similarity scores until we find an item to be inserted at
Pos(it) without incurring new privacy threats. If an item i not in the RIL has Si �= ∅,
we skip i and consider the next item. This process terminates when a qualified item is
found. When i is inserted into j’s RIL, Si is accordingly updated: Si = {j}.

Multiple Release. We next deal with the case of multiple releases. As discussed in
Section 3.2, at any time Tk, an adversary performs passive privacy attacks by comparing
any two RIL releases within the attack window WTk

. Hence, whenever a recommender
system generates a new RIL release, it has to be secured with respect to all previous
|WTk

| − 1 releases. We assume that the attack window size of an adversary is fixed
at different timestamps. In reality, this assumption can be satisfied by setting a large
enough window size.

We explain the key idea of extending Algorithm 1 for this case. Anonymizing the RIL
release Rk at time Tk works as follows. First, we should generate the potential violating
items of every item i in Rk with respect to each of Rk−1,Rk−2, · · · ,Rk−|WTk

|+1.

Let SRj

i be the potential violating items of i generated by comparing Rk and Rj ,
where k − |WTk

| + 1 ≤ j ≤ k − 1. We calculate the violating border over each
S
Rj

i , denoted by V
Rj

i . To make Rk private for the entire attack window, we need to
eliminate all itemsets from these |WTk

|−1 borders. We take the union of all the borders

Vi = V
Rk−1

i ∪ · · · ∪ V
Rk−|W|+1

i . We prune all itemsets that are the supersets of an
itemset in Vi, i.e., retain only minimal sets in Vi. The rationale of this pruning step is
similar to that of Theorem 2. Second, when we bring in a new item to an RIL, its breach
probability needs to be checked with respect to each of the previous |WTk

|−1 releases.

5.2 Permutation-Based Anonymization

In the suppression-based solution, we do not distinguish between an item’s appearance
and move-up. For items that newly appear in an RIL, we have to suppress them. How-
ever, for items that move up in an RIL, we do not really need to suppress them from
the RIL to thwart passive privacy attacks. To further improve data utility, we introduce
a novel anonymization mechanism tailored to our problem, namely permutation. The
general idea of permutation is to permute the target item to a lower position in the RIL
so that it cannot be used by an adversary to perform a passive privacy attack. If we can-
not find a position to permute without generating new privacy threats, we suppress the
target item from the RIL. So our permutation-based anonymization algorithm employs
both permutation and suppression, but prefers permutation whenever a privacy threat
can be eliminated by permutation.

Static Release. Similarly, we first generate the potential violating items Si for each
item i. Unlike in the suppression-based method, we label each item in Si with either
suppress or permute. If an item gets into Si due to its appearance in an RIL, it is labeled
suppress; otherwise it is labeled permute. For example, in Fig. 1, we label the occur-
rences of i6 in the RILs of i2, i7 and i8 with suppress and its occurrence in i3’s RIL
with permute.

The violating border of Si can be calculated by the GenerateViolatingBorder pro-
cedure described in Section 5.1. For recall, it can be observed that permutation does
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not incur any utility loss. For this reason, we take into consideration the fact that sup-
press and permute are associated with different utility loss when identifying items to
anonymize. We call this new procedure IdentifyAnonymizationLocation. We model
IdentifyAnonymizationLocation as a weighted minimum hitting set (WMHS) prob-
lem. IdentifyAnonymizationLocation chooses at every step the item that maximizes
the score, namely the ratio between the number of uncovered itemsets containing it and
its weight. The weight of an item is calculated based on its utility loss. For an item
labeled suppress, its weight is 1. For an item labeled permute, it does not result in any
utility loss and should receive a weight value 0. However, this leads to a divide-by-zero
problem. Instead, we assign the item a sufficiently small weight value 1

|Vi|+1 . This is
sufficient to guarantee that items labeled permute are always preferred over items la-
beled suppress, because the maximum score of an item labeled suppress is |Vi| while
the minimum score of an item labeled permute is |Vi|+ 1.

To tackle the anonymization locations identified by IdentifyAnonymizationLocation,
we start by suppressing items labeled suppress because these privacy threats cannot be
solved by permutation. Similar to the Suppress procedure described in Section 5.1, we
look for the first item i outside an RIL with Si = ∅, which does not incur any new
privacy threat, as a candidate to replace the suppressed item. One exception is that
in the permutation-based solution we can stop searching once we reach the first item
that was in the previous RIL (for this type of items there is no need to check their
breach probability because our following steps make sure that they cannot be used in
passive privacy attacks, as is shown later). For the moment, we do not assign a par-
ticular position for i and wait for the permutation step. After suppressing all items
labeled suppress, we perform permutation on the RILs that contain locations returned
by IdentifyAnonymizationLocation. In an RIL, for all items that were also in the RIL
at the previous timestamp T1, we assign them the same positions as those at T1; for all
items that were not in the RIL at T1, we randomly assign them to one of the remaining
positions.

We next show the correctness of our permutation-based solution. For an item that
needs to be suppressed, it is replaced by a new item, whose appearance is examined to
be free of privacy threats, and thus randomly assigning a position does not violate the
privacy requirement. For an item that needs to be permuted, we freeze its position to
be the same as before, i.e., as in the previous RIL release, and therefore it cannot be
used by the adversary to perform passive privacy attacks. So the anonymized RILs are
resistant to passive privacy attacks.

Multiple Release. Finally, we explain our permutation-based algorithm for the multiple
release scenario. Algorithm 3 presents our idea in detail. We compare the true Rk at
time Tk with each of the previous |WTk

| − 1 RIL releases within the attack window
WTk

to generate the corresponding potential violating items for each item i, denoted
by S

Rj

i (Lines 2-4). In addition to labeling each potential violating item by suppress
or permute, for an item i labeled permute, we record its position in the RIL in which it
moves up (Line 5).

For each S
Rj

i , we calculate its violating border V
Rj

i (Line 6). Since we have to
make Rk private with respect to all previous |WTk

| − 1 releases, we perform a union
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Algorithm 3. Permutation-based anonymization algorithm for multiple release
Input: User-item rating matrix M , the attack window WTk at time Tk, previous |WTk | − 1 RIL
releases, privacy parameter δ
Output: Anonymized RIL release Rk at time Tk

1: Generate Rk from M ;
2: for each previous RIL release Rj do
3: for each item i ∈ I do
4: Generate the set of items S

Rj

i whose RILs are distinguished by i between Rk and Rj ;

5: Label items in S
Rj

i by suppress or permute and record permute position;

6: V
Rj

i = GenerateViolatingBorder(S
Rj

i , δ,M);
7: for each item i ∈ I do

8: Vi = V
Rk−1

i ∪ · · · ∪ V
Rk−|WTk

|+1

i ;
9: Vi = Label(Vi);

10: Vi = Prune(Vi);
11: for each item i ∈ I with Vi �= ∅ do
12: 〈Li, Ci〉 = IdentifyAnonymizationLocation(Vi);
13: for each location-code pair 〈l, c〉 ∈ 〈Li, Ci〉 do
14: if c = suppress then
15: SuppressMR(i, l,M);
16: else
17: PermuteMR(i, l,M);
18: return Anonymized Rk;

over all V Rj

i (Line 8). In the case of multiple release, the same item might be labeled

both suppress and permute in different V Rj

i and by different positions. To resolve this
inconsistency, we let suppress take precedence over permutation. That is, if an item i

is labeled suppress in any V
Rj

i , it will be labeled suppress in Vi (Line 9), because a
new item’s entering in an RIL cannot be hidden by permuting its position. Also, the
position associated with an item labeled permute is updated to the lowest position of
all its positions in different V Rj

i . We call this lowest position the safe position. It is not
hard to see that only if the item is permuted to a position lower than or equal to its safe
position, it can be immune to passive privacy attacks within the entire attack window. A
similar pruning strategy can be applied on Vi, which removes all supersets of an itemset
in Vi (Line 10).

Vi is then fed into IdentifyAnonymizationLocation (Line 12). The outputs are a set
of items (i.e., locations) in whose RIL i should be anonymized, their corresponding
anonymization codes (either suppress or permute), and safe positions for items labeled
permute. For items labeled suppress, they are processed with the same procedure as
the suppression-based solution for the multiple release scenario (SuppressMR). Here
we focus on PermuteMR (Line 17). In static release, we can restore the items labeled
permute to their previous positions to thwart privacy attacks. However, this is not suf-
ficient for multiple release, because changes of the underlying user-item rating matrix
are different in different time periods.

The key observation is that we have to permute the target item it to a position lower
than or equal to its safe position. We iteratively switch it with the items in the RIL
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with position lower than or equal to it’s safe position and check if the switch incurs any
new privacy threat with respect to all previous |WTk

| − 1 releases. If we cannot find a
permutation without violating the privacy requirement, we suppress it instead.

6 Experiments
In this section, we study the performance of the proposed anonymization algorithms
over the public real-life datasets MovieLens and Flixster. We compare our suppression-
based anonymization algorithm (SUPP) and permutation-based anonymization algo-
rithm (PERM) with the randomized perturbation approach (RP) [3]. Due to the reason
explained in Section 2, we cannot perform a meaningful comparison with the approach
in [4]. All implementations were done in Python, and all experiments were run on a
Linux machine with a 4 Core Intel Xeon CPU and 16GB of RAM.

The objectives of our experiments are: 1) evaluate the utility of various anonymiza-
tion algorithms under different parameters; 2) examine the probability of successful
passive privacy attacks after performing different anonymization algorithms; and 3)
demonstrate the efficiency of our proposed algorithms.

The first dataset MovieLens (http://www.movielens.org) is a popular recommenda-
tion benchmark. It contains 1 million ratings over 4K movies and 6K users. The second
dataset Flixster was crawled from the Flixster website [20], and contains 8.4 million
ratings over 49K movies and 1 million users. Both datasets are time-stamped, and in all
experiments, we follow the classical item-based recommendation framework studied in
[18] to calculate item similarity scores. For RP, we use zero-meaned uniform noise with
small variances. Experimental results obtained under different variances exhibit similar
trends. Due to space limit, we only report the results with the variance equal to 1.

For all experiments, we select the initial timestamp such that the initial RIL release
is generated based on approximately 10% of all ratings in the dataset. For the time gap
between two consecutive RIL releases, we consider it to be a time period for generating
a multiple of 1% of total ratings, e.g., if the time gap is 5, then the number of ratings
generated between the two consecutive RIL releases will be approximately 5% of all
ratings. Results obtained from other settings of these two parameters are very similar,
and hence omitted here. In all experiments, we consider the effect of four tunable pa-
rameters: the attack window size, the time gap between two consecutive RIL releases,
the privacy requirement δ, and the number of items in an RIL N . The following default
values are used unless otherwise specified: 4 for the attack window size, 5 for the time
gap, 0.1 for δ, and 5 for N .

Utility Study. As discussed before, SUPP and PERM only anonymize a few RILs in
which real privacy risks for passive privacy attacks arise. Thus, they will leave most of
the RILs intact. This is confirmed by overall recall, which is defined as the percentage
of items in all original RILs that are retained after the anonymization. We show in Fig. 2
the overall recall of different algorithms on both datasets by varying the four parameters,
namely attack window size, time gap between two consecutive RIL releases, δ, and N .
It can be observed that both SUPP and PERM consistently achieve high overall recall,
while RP cannot provide desirable utility in terms of RILs.

To further examine the utility loss just on the anonymized RILs (by ignoring RILs
which are intact after the anonymization), we also consider targeted recall, which is
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Fig. 2. Utility results on: MovieLens (a)–(d); Flixster (e)–(h)
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Fig. 3. Number of items suppressed by different algorithms: MovieLens (a)–(d); Flixster (e)–(h)

defined as the percentage of items retained in the anonymized RILs (i.e., the RILs in
which suppression and/or permutation are performed). This utility metric is of impor-
tance because we do not want to have anonymized RILs that are substantially different
from the original ones. The experimental results on both datasets, as shown in Fig. 2,
suggest that our algorithms do not significantly destroy the usefulness of any RIL. We
can also observe that PERM achieves better utility than SUPP. We present the numbers
of suppressed items by both PERM and SUPP under varying parameters in Fig. 3. The
results confirm that PERM is more preferable than SUPP in all cases.

Privacy Study. In Fig. 4, for both datasets, we demonstrate that RP cannot prevent
passive privacy attacks: the worst case breach probability over the RILs generated from
the perturbed user-item rating matrix is still extremely high (e.g., 100% for some target
user). In contrast, our algorithms ensure that the breach probability over anonymized
RILs is always less than the given privacy parameter δ.

Efficiency Study. Finally, we show the run-time of our proposed anonymization algo-
rithms under various settings over both datasets in Fig. 5. As can be observed, both
proposed algorithms are efficient, and in most situations, PERM is at least twice as fast
as SUPP. The reason is that the cost of permutation is often much smaller than suppres-
sion, since the latter may need to explore many items beyond an RIL before finding a
qualified replacement. Therefore, we conclude that empirically PERM is a better choice
than SUPP in terms of both utility and efficiency.
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Fig. 4. Attack success probability results on: MovieLens (a)–(d); Flixster (e)–(h)

 0
 5

 10
 15
 20
 25
 30
 35
 40

3 4 5

T
im

e 
(s

)

Att. window size

(a)

SUPP
PERM

 0
 5

 10
 15
 20
 25
 30
 35
 40

5 6 7

T
im

e 
(s

)

Time gap

(b)

SUPP
PERM

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.15 0.2

T
im

e 
(s

)

δ

(c)

SUPP
PERM

 0
 20
 40
 60
 80

 100
 120
 140

5 10 15

T
im

e 
(s

)

N

(d)

SUPP
PERM

 0
 50

 100
 150
 200
 250
 300

3 4 5

T
im

e 
(s

)

Att. window size

(e)

SUPP
PERM

 0
 100
 200
 300
 400
 500
 600
 700

5 6 7

T
im

e 
(s

)

Time gap

(f)

SUPP
PERM

 0
 50

 100
 150
 200
 250
 300

0.1 0.15 0.2

T
im

e 
(s

)

δ

(g)

SUPP
PERM

 0
 100
 200
 300
 400
 500
 600
 700

5 10 15

T
im

e 
(s

)

N

(h)

SUPP
PERM

Fig. 5. Efficiency results on: MovieLens (a)–(d); Flixster (e)–(h)

7 Conclusion

The recent discovery of passive privacy attacks in item-to-item CF has exposed many
real-life recommender systems to a serious compromise of privacy. In this paper, we
propose a novel inference-proof privacy notion called δ-bound for thwarting passive
privacy attacks. We develop anonymization algorithms to achieve δ-bound by means of
a novel anonymization mechanism called permutation. Our solution can be seamlessly
incorporated into existing recommender systems as a post-processing step over the RILs
generated using traditional CF algorithms. Experimental results demonstrate that our
solution maintains high utility and scales to large real-life data.
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