
ρ-uncertainty Anonymization by Partial

Suppression�

Xiao Jia1, Chao Pan1, Xinhui Xu1, Kenny Q. Zhu1, and Eric Lo2

1 Shanghai Jiao Tong University, China
kzhu@cs.sjtu.edu.cn

2 Hong Kong Polytechnic University, China

Abstract. We present a novel framework for set-valued data anonymiza-
tion by partial suppression regardless of the amount of background knowl-
edge the attacker possesses, and can be adapted to both space-time and
quality-time trade-offs in a “pay-as-you-go” approach. While minimizing
the number of item deletions, the framework attempts to either preserve
the original data distribution or retain mineable useful association rules,
which targets statistical analysis and association mining, two major data
mining applications on set-valued data.

1 Introduction

Set-valued data sources are valuable in many data mining and data analysis
tasks. For example, retail companies may want to know what items are top
sellers (e.g., milk), or whether there is an association between the purchase of
two or more items (e.g., people who buy flour also buy milk). According to our
observation there are two main categories of set-valued data analysis: one is
statistical analysis such as computing max, min and average values; the other
is mining of association rules between items. In many cases, analysis tasks are
outsourced to other external companies or individuals, or simply published to the
general masses for scientific and public research purposes.

Publishing set-valued, and especially transactional data, can pose significant
privacy risks. Set-valued transactions consist of one or more data items, which
can be divided into two categories: non-sensitive and sensitive. Privacy is in
general associated with the sensitive items. Table 1(a) shows an example of retail
transactions in which each record (row) represents a set of items purchased in a
single transaction by an individual. All the items are non-sensitive, except the
condom which is sensitive. An individual’s privacy is breached if he or she can be
re-identified, or associated with a record in the data which contains one or more
sensitive items. Past research has shown that such breach is possible through
linking attacks [7], e.g. linking milk with condom in Table 1(a).

The privacy model we want to achieve is called ρ-uncertainty, where no sen-
sitive association rules can be inferred with a confidence higher than ρ [3]. The

� Kenny Q. Zhu is the contact author and is supported by NSFC grants 61100050,
61033002, 61373031 and Google Faculty Research Award.

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part II, LNCS 8422, pp. 188–202, 2014.
c© Springer International Publishing Switzerland 2014

ρ-uncertainty Anonymization by Partial Suppression 189

Table 1. A Retail Dataset and Anonymization Results

(a) Original Dataset

TID Transaction

1 bread, milk, condom

2 bread, milk

3 milk, condom

4 flour, fruits

5 flour, condom

6 bread, fruits

7 fruits, condom

(b) Global Suppression

TID Transaction

1 bread, milk, condom

2 bread, milk

3 milk, condom

4 flour, fruits

5 flour, condom

6 bread, fruits

7 fruits, condom

(c) Our Approach 1

TID Transaction

1 bread, milk, condom

2 bread, milk

3 milk, condom

4 flour, fruits

5 flour, condom

6 bread, fruits

7 fruits, condom

(d) Our Approach 2

TID Transaction

1 bread, milk, condom

2 bread, milk

3 milk, condom

4 flour, fruits

5 flour, condom

6 bread, fruits

7 fruits, condom

most popular approach to achieve ρ-uncertainty is called “global suppression”
[3] in which once an occurrence of an item t is determined to be removed from
one record, all occurrences of t are removed from the whole dataset. We instead
opt to partially suppress the data set so only some occurrences of item t are
deleted. Table 1 shows the example dataset and three anonymized datasets pro-
duced by global suppression and our approaches. The orginal dataset is not safe
because sensitive rules such as {bread, milk} → condom can be inferred with
confidence great than 1/3 (1/2 in this case), which is our threshold. Table 1(b) is
the anonymized dataset where all the occurrences of the sensitive item condom
are deleted due to global suppression. Table 1(c) shows the anonymized dataset
produced by our first approach, which is optimized to preserve data distribu-
tion, so different items (condom and flour) are deleted to make the dataset safe.
Table 1(d) is the result of our second approach, which is optimized to preserve
important data association in the original dataset, so only two occurrences of
the item condom are deleted for safety. Even in such a small dataset, both our
approaches outperform global suppression in the number of deletions (2 vs. 4)
while retaining useful information at the same time.

To the best of our knowledge, the partial suppression technique has not been
studied in the context of set-valued data anonymization before. We choose to
solve the set-valued data anonymization problem by partial suppression be-
cause global suppression tends to delete more items than necessary, and the
removal of all occurrences of the same item not only changes the data distribu-
tion significantly but also makes mining association rules about the deleted items

190 X. Jia et al.

impossible. The problem of anonymization by suppression (global or partial) is
very challenging [1,18], exactly because, (i) the number of possible inferences
from a given dataset is exponential, and (ii) the size of the search space, i.e. the
number of ways to suppress the data is also exponential to the number of data
items. We therefore propose two heuristics in this paper to anonymize input data
in two different ways, giving rise to the two kinds of output in Table 1.

The main contributions of this paper are as follows.

1. To the best of our knowledge, we are the first to propose an effective partial
suppression framework for anonymizing set-valued data (Section 2 and 3).

2. We adopt a “pay-as-you-go” approach based on divide-and-conquer, which
can be adapted to achieve both space-time and quality-time trade-offs (Sec-
tion 3 and 4). Our two heuristics can be adapted to either preserve data
distribution or retain useful association in the data (Section 3).

3. Experiments show that our algorithm outperforms the peers in preserving
the original data distribution (more than 100 times better than peers) or
retaining mineable useful association rules while reducing the item deletions
by large margins (Section 4).

2 Problem Definition

This section introduces the privacy model and data utility before formally de-
scribing the problem of partial suppression.

2.1 Privacy Model

X → Y is a sensitive association rule iff Y contains at least one sensitive item.
The principle privacy model in this paper maintains that a table is safe iff no
sensitive rules can be inferred with a confidence higher than threshold ρ [3]. It
is easy to show that, if all sensitive association rules with one-item consequent
from T are safe then all sensitive association rules are safe and hence T is safe.

Formally, we define quasi-identifier (also qid) to be any itemset (including
sensitive items) drawn from any record in table T . A qid q is safe w.r.t. ρ iff
conf(q → e) ≤ ρ, for any sensitive item e in T . We say T is safe w.r.t. ρ iff q is
safe w.r.t. ρ for any qid q in T . A suppressor is a function S : T �→ T ′ where T ′

is a suppressed table which is safe w.r.t. ρ. There are many different ways to
suppress a table. The goal is to find a suppressor that maximizes the utility of
the suppressed table.

2.2 Data Utility

In this paper, we identify two major uses of an anonymized table: statistical anal-
ysis and association rule mining. In the first case, we want the anonymized table
to have a distribution as close to the original table as possible; in the second case,
we would like the anonymized data to retain all non-sensitive association rules

ρ-uncertainty Anonymization by Partial Suppression 191

while introducing few or no spurious rules. In both scenarios, the common goal
is to minimize the information loss, i.e., the total number of items suppressed.

With these two scenarios in mind, we define two variants of an objective
function f(T, T ′) as:

f(T, T ′) =

⎧
⎪⎨

⎪⎩

NS(T, T ′) ·KL(T ′ || T) (data distribution)

NS(T,T ′)
J(nr(T),nr(T ′)) (rule mining)

(1)

where

NS(T, T ′) =

∑
e∈D(T)(supT (e)− supT ′(e))

∑
e∈D(T) supT (e)

(2)

KL(P || Q) =
∑

i

Q(i)log
Q(i)

P (i)
(3)

J(A,B) =
|A ∩B|
|A ∪B| . (4)

Here D(T) denotes the domain of items in T , supT (e) denotes the support of
item e in T , nr(T) denotes the set of all non-sensitive associations rules mineable
from T with sufficient support and confidence, the functions NS, KL and J
represent total number of suppressions (normalized to 1), K-L divergence[11]
and Jaccard similarity[10], respectively. K-L divergence measures the distance
between two probability distributions, while Jaccard similarity measures the
similarity between two sets.

2.3 Optimal Partial Suppression Problem

The optimal partial supression problem is to find a Partial Suppressor S which
anonymizes an input set-valued table T to minimize the objective function:

min
S

f(T, S(T))

such that S(T) is safe w.r.t. to our privacy model.

3 Partial Suppression Algorithm

The Optimal Suppression Problem defined in Section 2 is an NP-hard problem.
We therefore present the partial suppression algorithm as a heuristic solution to
the Optimal Suppression Problem. To simplify the discussion of the algorithm,
we make the following definitions.

Definition 1 (Number of Suppressions). To disable an unsafe rule q → e,
the number of items of type t ∈ q ∪ {e} that need to be suppressed is

Ns(t, q → e) =

{
sup(q ∪ {e})− sup(q)ρ t = e
sup(q∪{e})−sup(q)ρ

1−ρ t ∈ q

192 X. Jia et al.

In other words, for each sensitive rule r, we need to delete mint Ns(t, r) items
of type t to make it safe. In this work, we select these items randomly for deletion.

Definition 2 (Leftover Items). The leftover of item type t is defined as

leftover(t) = supT ′({t})/supT ({t})
T is the original data and T ′ is the intermediate suppressing result. The ratio
shows the percentage of remaining items of type t in the intermediate result T ′.

The key intuition of our algorithm is that although the total number of “bad”
sensitive association rules maybe, in the worst case, exponential in the original
data, incremental “invalidation” of some of the rules through partial suppression
of a small number of affected items can massively reduce the number of these
bad rules, which leads to quick convergence to a solution, that is, a safe data
set. Next we present the basic algorithm of this framework.

3.1 The Basic Algorithm

PartialSuppressor (Algorithm 1) presents the top-level algorithm. The par-
tial suppressor iterates over the table T , and for each record T [i], the algorithm
first generates qids from T [i] and sanitizes the unsafe ones. The suppressor ter-
minates when the whole table is scanned and there is no unsafe qid .

Algorithm 1. PartialSuppressor(T, bmax)

1: T0 ← T (original table)
2: loop
3: Initialize the sup of all qids to 0
4: while |B| < bmax and i ≤ |T | do
5: Fill B with qids generated by T [i]
6: Update sup of all qids
7: i ← i+ 1
8: end while
9: if B contains an unsafe qids then
10: SanitizeBuffer(T0, T,B)
11: safe ← false
12: end if
13: if i ≥ |T | and safe then
14: break
15: else if i ≥ |T | then
16: i ← 1
17: safe ← true
18: end if
19: end loop

A qid is a combination of different items, and the number of distinct qids to
be enumerated is exponential. We therefore introduce a qid buffer of capacity
bmax to balance the space consumption with the generation time. The value of

ρ-uncertainty Anonymization by Partial Suppression 193

bmax is significant. Small bmax values cause repetitive generation of qids, while
large bmax values cause useless generation of qids which do not exist by the time
to process them in the queue.

3.2 Buffer Sanitization

Each time qid buffer B is ready, SanitizeBuffer (Algorithm 2) is invoked to
start processing qids in B and make all of them safe. DS(T) denotes the domain
of all sensitive items in T . We first partition qids in B into two groups, safe and
unsafe. Then in each iteration (Lines 2-18), SanitizeBuffer picks the “best”
(according to heuristic functions H) unsafe sensitive association rule to sanitize
(Lines 6 and 8). SuppressionPolicy in SanitizeBuffer uses one of the the
following two heuristic function.

Algorithm 2. SanitizeBuffer(T0, T, B)

1: P ← SuppressionPolicy()
2: repeat
3: pick an unsafe qid q from B
4: E ← {e | conf(q → e) > ρ ∧ e ∈ DS(T)}
5: if P = Distribution then
6: (d, q, e) ← argmax

d∈q∪E,q,e∈E
Hdist(d, q, e, T0, T)

7: else if P = Mine then
8: (d, q, e) ← argmin

d∈q∪E,q,e∈E
Hmine(d, q, e)

9: end if
10: X ← q ∪ {e}
11: k ← Ns(d, q → e)
12: while k > 0 do
13: pick a record R from T where R ⊆ C(X)
14: R ← R− {d}
15: Update sup of qids contained in R
16: k ← k − 1
17: end while
18: until there is no unsafe qid in B

Preservation of Data Distribution. Consider an unsafe sensitive association
rule q → e where conf(q → e) > ρ, and q ∈ B. To reduce conf(q, e) below ρ,
we suppress a number of items of type t ∈ q ∪ {e} from C(q ∪ {e}).1 We hope to
minimize KL(T || T0) (see Equation (3)). From Equation (3), we observe that
by suppressing some items of type t where T (t) > T0(t),

2 the KL divergence
tends to decrease, thus we define the following heuristic function

Hdist(t, q, e, T0, T) =
T (t)log T (t)

T0(t)

Ns(t, q → e)
. (5)

1 We define C(X) = {T [i]|X ⊆ T [i], 1 ≤ i ≤ |T |}.
2 We denote the probability of item type t in T as T (t), which is computed by supT (t)

|T | .

194 X. Jia et al.

The maximizing this function aims at suppressing item type t which maximally
recovers the original data distribution and minimizes the number of deletions.

Preservation of Useful Rules. A spurious rule (q → e) is introduced when the
denominator of conf(q → e), sup(q), is sufficiently small so that the confidence
appears large enough. However, if sup(q) is too small, the rule would not have
enough support and can be ignored. Therefore, our objective is to suppress those
items which have been suppressed before to minimize the support of the potential
spurious rules. Therefore, we seek to minimize

Hmine(t, q, e) = leftover(t) ·Ns(t, q → e)

3.3 Optimization with Divide-and-Conquer

When data is very large we can speed up by a divide-and-conquer (DnC) frame-
work that partitions the input data dynamically, runs PartialSuppressor on
them individually and combines the results in the end. This approach is cor-
rect in the sense that if each suppressed partition is safe, so is the combined
data. This approach also gives rise to the parallel execution on multi-core or
distributed environments which provides further speed-up (this will be shown in
Section 4).

Algorithm 3. DNCSplitData(T, tmax)

1: if Cost(T) > tmax then
2: Split T equally into T1 , T2

3: DNCSplitData(T1, tmax)
4: DNCSplitData(T2, tmax)
5: else
6: PartialSuppressor(T, bmax)
7: end if

Algorithm 3 splits the input table whenever the estimated cost of suppressing
that table is greater than tmax. Cost is estimated as:

Cost(T) =
|T | · 2 N

|T |

|D(T)| (6)

where N is the total number of items in T .

4 Experimental Results

We conducted a series of experiments on 4 main datasets in Table 2. BMS-
POS and BMS-WebView are introduced in [20] and are commonly used for

ρ-uncertainty Anonymization by Partial Suppression 195

Table 2. Five Original Datasets

Dataset Description Recs Dom. Sensitive Non-Sens.
Size items items

BMS-POS Point-of-sale data from 515597 1657 1183355 2183665
(POS) a large electronics retailer

BMS-WebView Click-stream data from 77512 3340 137605 220673
(WV) e-commerce web site

Retail Retail market basket data 88162 16470 340462 568114

Syn Synthetic data with max 493193 5000 828435 1242917
record length = 50

data mining. Retail is the retail market basket data [2]. Syn is the synthetic
data in which each item is generated with equal probability and the max record
length is 50. We randomly designate 40% of the item types in each dataset as
sensitive items and the rest as non-sensitive. To evaluation the performance of
rule mining, we produce four additional datasets by truncating all records in the
original datasets to 5 items only, and denote such datasets as “cutoff = 5”.

We compare our algorithm with the global suppression algorithm (named
Global) and generalization algorithm (named TDControl) of Cao et al. [3].3 Our
algorithm has two variants, Dist and Mine, which optimize for data distribution
and rule mining, respectively. Experiments that failed to complete in 2 hours is
marked as “N/A” or an empty place in the bar charts. We run all the experiments
on Linux 2.6.34) with an Intel 16-core 2.4GHz CPU and 8GB RAM.

In what follows, we first present results in data utility, then the performance
of the algorithms, and then the effects of changing various parameters in our
algorithm. Finally, we compare with a permutation method which utilizes a
similar privacy model but with different optimization goals. Unless otherwise
noted, we use the following default parameters: bmax = 106 , tmax = 500.

4.1 Data Utility

We compare the algorithms in terms of information loss, data distribution, and
association rule mining.

Figure 1 shows thatMine is uniformly better among the other four techniques.
It suppresses only about 26% items in POS and WV and about 35% items in
Retail, while the other four techniques incur on average 10% more losses than
Mine and up to 75% losses in the worst case. We notice that Dist performs
worse than Global even though it tries to minimize the information loss at each
iteration. The reason is that it also tries to retain the data distribution. Further,
we argue that for applications that require data statistics, the distribution, that
is, summary information, is more useful than the details, hence losing some
detailed information is acceptable. Note that Global and TDControl failed to
complete in some datasets, because these methods don’t scale very well.

3 The source code of these algorithms was directly obtained from Cao.

196 X. Jia et al.

(a) ρ = 0.3 (b) ρ = 0.7

Fig. 1. Comparisons in Information Loss

(a) ρ = 0.3 (b) ρ = 0.7

Fig. 2. Comparisons in Symmetric K-L Divergence

To determine the similarity between the item frequency distribution of original
data and that of the anonymized data, we use the Kullback-Leibler divergence
(also called relative entropy) as our standard. To prevent zero denominators, we
modified Equation (4) to a symmetric form [6] defined as

S(H1||H2) =
1

2
KL(H1||H1 ⊕H2) +

1

2
KL(H2||H1 ⊕H2)

where H1⊕H2 represents the union of distributions H1 and H2. Figure 2 shows
that Dist outperforms the peers as its output has the highest resemblance to
the original datasets. On the contrary, TDControl is the worst performer since
generalization algorithm creates a lot of new items while suppressing too many
item types globally. Since the symmetric relative entropy of Dist is very small,
y-axis is in logrithmic scale to improve visibility. Therefore, the actual difference
in K-L divergence is two or three orders of magnitude.

The most common criticism of partial suppression is that it changes the sup-
port of good rules in the data and introduces spurious rules in rule mining.
In this experiment, we test the algorithms on data sets with the max record
length=5 (cutoff=5), and check the rules mined from the anonymized data with
support equals to 0.05% 4 and confidence equals to 70% and 30%. Figure 3 gives

4 We choose this support level just to reflect a practical scenario.

ρ-uncertainty Anonymization by Partial Suppression 197

(a) ρ = 0.3 (b) ρ = 0.7

Fig. 3. Association Rules Mining with Support 0.05%

the results. Both TDControl and Global perform badly in this category, with
negligible number of original rules remaining after anonymization. Conversely,
all of the partial suppression algorithms manage to retain most of the rules and
the Jaccard Similarity reaches 80% in some datasets which shows our heuristic
works very well. Specifically, Mine performs the best among partial algorithms.
The rules generated from TDControl are all in general form which is totally
different from the original one. To enable comparison, we specialize the more
general rules from the result of TDControl into rules of original level of abstrac-
tion in the generalization hierarchy. For example, we can specialize a rule {dairy
product → grains} into: milk → wheat, milk → rice, yogurt → wheat, etc. Take
WV as an example, there are 4 rules left in the result of TDControl when the
ρ is 0.7 and the number becomes 28673 after specialization, which makes the
results almost invisible.

4.2 Performance

Next we evaluate the time performance and scalability of our algorithms.

Table 3. Comparison in Time Performance (ρ = 0.7, tmax = 300)

Algorithm POS WV Retail Syn

TDControl 183 30 156 476

Global 1027 81 646 N/A

Dist 395 151 171 130

Mine 1554 478 256 132

From Table 3, TDControl is the clear winner for two of the four datasets.
Mine does not perform well in BMS-POS. The reason is that Mine incurs the
least information loss among all the competiting methods. This means most
of the original data remains unsuppressed. Given the large scale of BMS-POS,
checking whether the dataset is safe in each iteration is therefore more time

198 X. Jia et al.

(a) With DnC (b) Without DnC

Fig. 4. Scale-up with Input Data (ρ = 0.7)

consuming than other methods or in other datasets. Results for Global are not
available for Syn because it runs out of memory.

Next experiment illustrates the scalability of our algorithm w.r.t. data size.
We choose Retail as our target dataset here because Retail has the maximum
average record length of 10.6. We run partial algorithms on 1/5, 2/5 through 5/5
of Retail respectively. Figure 4 shows the time cost of our algorithm increases
reasonably with the input data size with or without DnC. Furthermore, increased
level of partitioning causes the algorithm to witness superlinear speedup in Fig-
ure 4(a). In particular, the dataset is automatically divided into 4, 8, 16 and 32
parts at 1/5, 2/5, 3/5 and the whole of the data, respectively.

4.3 Effects of Parameters on Performance

In this section, we study the effects of tmax, bmax on the quality of solution (in
terms of information loss) and time performance.

We choose Retail as the target dataset again since Retail is the most time-
consuming dataset that can terminate within acceptable time without DnC strat-
egy. The value of tmax determines the size of a partition in DnC. Here, we eval-
uate how partitioning helps with time performance and its possible effects on
suppression quality. Figure 5(a) shows the relationship between partitions and
information loss. The lines of Dist is flat, indicating that increasing tmax doesn’t
cost us the quality of the solution. Mine shows a slight descending tendency at
first and then tends to be flat. We argue that a reasonable tmax will not cause
our result quality to deteriorate. On the other hand, Figure 5(b) shows that time
cost increases dramatically with the increase of tmax. The reason is that parti-
tioning decreases the cost of enumerating qids which is the most time-consuming
part in our algorithm. Moreover, parallel processing is also a major reason for
the acceleration.

Next experiment (See Figure 6) illustrates the impact of varying bmax on
performance. We choose WV as our target dataset since the number of distinct
qids are relatively smaller than other datasets and our algorithm can terminate
even when we set a small bmax.

ρ-uncertainty Anonymization by Partial Suppression 199

(a) Information Loss (b) Time Performance

Fig. 5. Variation of tmax (ρ = 0.7)

(a) Information Loss (b) Time Performance

Fig. 6. Variation of Buffer Size bmax (ρ = 0.7)

Note first that varying bmax has no effect on the information loss which in-
dicates that this parameter is purely for performance tuning. At lower values,
increasing bmax gives almost exponential savings in running time. But as bmax

reaches a certain point, the speedup saturates, which suggests that given the
fixed size of the data, when B is large enough to accommodate all qids at once
after some iterations, further increase in bmax is not useful. The line for Mine
hasn’t saturdated because Mine suppresses fewer items and retains more qids,
hence requires a much larger buffer.

4.4 A Comparison to Permutation Method

In this section, we compare our algorithms with a permutation method [8] which
we call M . The privacy model of M states that the probability of associating
any transaction R ∈ T with any sensitive item e ∈ DS(T) is below 1/p, where
p is known as a privacy degree. This model is similar to ours when ρ = 1/p,
which allows us to compare three variants of our algorithm against M where
p = 4, 6, 8, 10 on dataset WV which was reported in [8]. Figure 7(a) shows
the result on K-L divergence. All variants of our algorithm outperform M in
preserving the data distribution. Figure 7(b) shows timing results. Even though
M is faster, our algorithms terminate within acceptable time.

200 X. Jia et al.

(a) K-L Divergence (b) Time Performance

Fig. 7. Comparison with Permutation

5 Related Work

Privacy-preserving data publishing of relational tables has been well studied
in the past decade since the original proposal of k-anonymity by Sweeney et
al. [12]. Recently, privacy protection of set-valued data has received increasing
interest. The original set-valued data privacy problem was defined in the con-
text of association rule hiding [1,15,16], in which the data publisher wishes to
“sanitize” the set-valued data (or micro-data) so that all sensitive or “bad” as-
sociate rules cannot be discovered while all (or most) “good” rules remain in the
published data. Subsequently, a number of privacy models including (h, k, p)-
coherence [18], km-anonymity [14], k-anonymity [9] and ρ-uncertainty [3] have
been proposed. km-anonymity and k-anonymity are carried over directly from
relational data privacy, while (h, k, p)-coherence and ρ-uncertainty protect the
privacy by bounding the confidence and the support of any sensitive association
rule inferrable from the data. This is also the privacy model this paper adopts.

A number of anonymization techniques were developed for these models.
These generally fall in four categories: global/local generalization [14,9,3], global
suppression [18,3], permutation [8] and perturbation [19,4]. Next we briefly dis-
cuss the pros and cons of these anonymization techniques.

Generalization replaces a specific value by a generalized value, e.g., “milk” by
“dairy product”, according to a generalization hierarchy [7]. While generalization
preserves the correctness of the data, it compromises accuracy and preciseness.
Worse still, association rule mining is impossible unless the data users have
access to the same generalization taxonomy and they agree to the target level
of generalization. For instance, if the users don’t intend to mine rules involving
“dairy products”, then all generalizations to “dairy products” are useless.

Global suppression is a technique that deletes all items of some types so that
the resulting dataset is safe. The advantage is that it preserves the support of
existing rules that don’t involve deleted items and hence retains these rules [18],
and also it doesn’t introduce additional/spurious association rules. The obvious
disadvantage is that it can cause unnecessary information loss. In the past, par-
tial suppression has not been attempted mainly due to its perceived side effects
of changing the support of inference rules in the original data [18,3,15,16]. But
our work shows that partial suppression introduces limited amount of new rules

ρ-uncertainty Anonymization by Partial Suppression 201

while preserving many more original ones than global suppression. Furthermore,
it preserves the data distribution much better than other competing methods.

Permutation was introduced by Xiao et al. [17] for relational data and was
extended by Ghinita et al. [8] for transactional data. Ghinita et al. propose two
novel anonymization techniques for sparse high-dimensional data by introducing
two representations for transactional data. However the limitation is that the
quasi-identifier is restricted to contain only non-sensitive items, which means
they only consider associations between quasi-identifier and sensitive items, and
not among sensitive items. Manolis et al. [13] introduced “disassociation” which
also severs the links between values attributed to the same entity but does not set
a clear distinction between sensitive and non-sensitive attributes. In this paper,
we consider all kinds of associations and try best to retain them.

Perturbation is developed for statistical disclosure control [7]. Common per-
turbation methods include additive noise, data swapping, and synthetic data gen-
eration. Their common criticism is that they damage the data integrity by adding
noises and spurious values, which makes the results of downstream analysis unre-
liable. Perturbation, however, is useful in non-deterministic privacy model such
as differential privacy [5], as attempted by Chen et al. [4] in a probabilistic
top-down partitioning algorithm based on a context-free taxonomy.

The most relevant work to this paper is by Xu et al. [18] and Cao et al. [3].
The (h, k, p)-coherence model by Xu et al. requires that the attacker’s prior
knowledge to be no more than p public (non-sensitive) items, and any inferrable
rule must be supported by at least k records while the confidence of such rules
is at most h%. They believe private items are essential for research and there-
fore only remove public items to satisfy the privacy model. They developed an
efficient greedy algorithm using global suppression. In this paper, we do not re-
strict the size or the type of the background knowledge, and we use a partial
suppression technique to achieve less information loss and also better retain the
original data distribution.

Cao et al. [3] proposed a similar ρ-uncertainty model which is used in this pa-
per. They developed a global suppression method and a top-down generalization-
driven global suppression method (known as TDControl) to eliminate all sensitive
inferences with confidence above a threshold ρ. Their methods suffer from same
woes discussed earlier for generalization and global suppression. Furthermore, TD-
Control assumes that data exhibits some monotonic property under a general-
ization hierarchy. This assumption is questionable. Experiments show that our
algorithm significantly outperforms the two methods in preserving data distribu-
tion and useful inference rules, and in minimizing information losses.

6 Conclusion

We proposed a partial suppression framework including two heuristics which
produce anonymized data that is highly useful to data analytics applications.
Compared to previous approaches, this framework generally deletes fewer items
to satisfy the the same privacy model. We showed that the first heuristic can

202 X. Jia et al.

effectively limit spurious rules while maximally preserving the useful rules mine-
able from the original data. The second heuristic which minimizes the K-L diver-
gence between the anonymized data and the original data helps preserve the data
distribution, which is a feature largely ignored by the privacy community in the
past. Finally the divide-and-conquer strategy effectively controls the execution
time with limited compromise in the solution quality.

References

1. Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M., Verykios, V.: Disclosure
limitation of sensitive rules. In: KDEX (1999)

2. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: Using association rules for product
assortment decisions: A case study. In: Knowledge Discovery and Data Mining, pp.
254–260 (1999)

3. Cao, J., Karras, P., Räıssi, C., Tan, K.-L.: ρ-uncertainty: inference-proof transac-
tion anonymization. In: VLDB, pp. 1033–1044 (2010)

4. Chen, R., Mohammed, N., Fung, B.C.M., Desai, B.C., Xiong, L.: Publishing set-
valued data via differential privacy. VLDB, 1087–1098 (2011)

5. Dwork, C.: Differential privacy:A survey of results. In:Agrawal, M.,Du,D.-Z., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

6. Fisher, K., Walker, D., Zhu, K.Q., White, P.: From dirt to shovels: Fully automatic
tool generation from ad hoc data. In: POPL, pp. 421–434 (2008)

7. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
A survey of recent developments. ACM Comput. Surv. (2010)

8. Ghinita, G., Kalnis, P., Tao, Y.: Anonymous publication of sensitive transactional
data. TKDE, 161–174 (2011)

9. He, Y., Naughton, J.F.: Anonymization of set-valued data via top-down, local
generalization. VLDB, 934–945 (2009)

10. Jaccard, P.: The distribution of the flora in the alphine zone. New Phytologist 11,
37–50 (1912)

11. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical
Statistics 21(1), 79–86 (1951)

12. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst., 557–570 (2002)

13. Terrovitis, M., Liagouris, J., Mamoulis, N., Skiadopoulos, S.: Privacy preservation
by disassociation. PVLDB (2012)

14. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-
valued data. VLDB, 115–125 (2008)

15. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. TKDE, 434–447 (2004)

16. Wu, Y.-H., Chiang, C.-M., Chen, A.L.P.: Hiding sensitive association rules with
limited side effects. TKDE, 29–42 (2007)

17. Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: PVLDB,
pp. 139–150 (2006)

18. Xu, Y., Wang, K., Fu, A.W.-C., Yu, P.S.: Anonymizing transaction databases for
publication. In: KDD, pp. 767–775 (2008)

19. Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate query answering on
anonymized tables. In: ICDE, pp. 116–125 (2007)

20. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule al-
gorithms. In: KDD, pp. 401–406 (2001)

	ρ-uncertainty Anonymization by Partial
Suppression

	1 Introduction
	2 Problem Definition
	2.1 Privacy Model
	2.2 Data Utility
	2.3 Optimal Partial Suppression Problem

	3 Partial Suppression Algorithm
	3.1 The Basic Algorithm
	3.2 Buffer Sanitization
	3.3 Optimization with Divide-and-Conquer

	4 Experimental Results
	4.1 Data Utility
	4.2 Performance
	4.3 Effects of Parameters on Performance
	4.4 A Comparison to Permutation Method

	5 Related Work
	6 Conclusion
	References

