
Greedy Filtering: A Scalable Algorithm
for K-Nearest Neighbor Graph Construction

Youngki Park1, Sungchan Park1, Sang-goo Lee1, and Woosung Jung2

1 School of Computer Science and Engineering, Seoul National University
{ypark,baksalchan,sglee}@europa.snu.ac.kr

2 Department of Computer Engineering, Chungbuk National University
wsjung@cbnu.ac.kr

Abstract. Finding the k-nearest neighbors for every node is one of the
most important data mining tasks as a primitive operation in the field
of Information Retrieval and Recommender Systems. However, existing
approaches to this problem do not perform as well when the number
of nodes or dimensions is scaled up. In this paper, we present greedy
filtering, an efficient and scalable algorithm for finding an approximate
k-nearest neighbor graph by filtering node pairs whose large value dimen-
sions do not match at all. In order to avoid skewness in the results and
guarantee a time complexity of O(n), our algorithm chooses essentially a
fixed number of node pairs as candidates for every node. We also present
a faster version of greedy filtering based on the use of inverted indices
for the node prefixes. We conduct extensive experiments in which we
(i) compare our approaches to the state-of-the-art algorithms in seven
different types of datasets, and (ii) adopt other algorithms in related
fields (similarity join, top-k similarity join and similarity search fields)
to solve this problem and evaluate them. The experimental results show
that greedy filtering guarantees a high level of accuracy while also being
much faster than other algorithms for large amounts of high-dimensional
data.

Keywords: k-nearest neighbor graph, similarity join, similarity search.

1 Introduction

Constructing a k-Nearest Neighbor (k-NN) graph is an important data mining
task which returns a list of the most similar k nodes for every node [1]. For
example, assuming that we constructed a k-NN graph whose nodes represent
users, we can quickly recommend items to user u by examining the purchase
lists of u’s nearest neighbors. Furthermore, if we implement an enterprise search
system, we can easily provide an additional feature that finds k documents most
similar to recently viewed documents.

We can calculate the similarities of all possible pairs of k-NN graph nodes
by a brute-force search, for a total of n(n − 1)/2. However, because there are
many nodes and dimensions (features) in the general datasets, not only does
calculating the similarity between a node pair require a relatively long execution

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part I, LNCS 8421, pp. 327–341, 2014.
© Springer International Publishing Switzerland 2014

328 Y. Park et al.

time, but the total execution time will be very large. The inverted index join
algorithm [2] is much faster than a brute-force search in sparse datasets. It is
one of the fastest algorithms among those producing exact k-NN graphs, but it
also requires O(n2) asymptotic time complexity and its actual execution time
grows exponentially.

Another way to construct a k-NN graph is to execute a k-nearest neighbor
algorithm such as locality sensitive hashing (LSH) iteratively. LSH algorithms
[3, 4, 5, 11] first generate a certain number of signatures for every node. When a
query node is given, the LSH compares its signatures to those of the other nodes.
Because we have to execute the algorithm for every node, the graph construction
time will be long unless one query can be executed in a short time.

As far as we know, NN-Descent [6] is the most efficient approach for con-
structing k-NN graphs. It randomly selects k-NN lists first before exploiting the
heuristic in which a neighbor of a neighbor of a node is also be a neighbor of the
node. This dramatically reduces the number of comparisons while retaining a
reasonably high level of accuracy. Although the performance is adequate as the
number of nodes grows, it does not perform well when the number of dimensions
is scaled up.

In this paper, we present greedy filtering, an efficient, scalable algorithm for
k-NN graph construction. This finds an approximate k-NN graph by filtering
node pairs whose large value dimensions do not match at all. In order to avoid
skewness in the results and guarantee a time complexity of O(n), our algorithm
selects essentially a fixed number of node pairs as candidates for every node. We
also present a faster version of greedy filtering based on the use of inverted indices
for the prefixes of nodes. We demonstrate the effectiveness of these algorithms
through extensive experiments where we compare various types of algorithms
and datasets. More specifically, our contributions are as follows:

– We propose a novel algorithm to construct a k-NN graph. Unlike existing
algorithms, the proposed algorithm performs well as the number of nodes or
dimensions is scaled up. We also present a faster version of the algorithm
based on inverted indices (Section 3).

– We present several ways to construct a k-NN graph based on the top-k sim-
ilarity join, similarity join, and similarity search algorithms (Section 4.1).
Additionally, we show their weaknesses by analyzing their experimental re-
sults (Section 4.2).

– We conduct extensive experiments in which we compare our approaches to
existing algorithms in seven different types of datasets. The experimental
results show that greedy filtering guarantees a high level of accuracy while
also being much faster than the other algorithms for large amounts of high
dimensional data. We also analyze the properties of the algorithms with the
TF-IDF weighting scheme (Section 4.2).

Greedy Filtering: A Scalable Algorithm 329

Fig. 1. Example of Greedy Filtering [1]: The prefixes of vectors are colored. We assume
that the hidden elements (as described by the ellipse) have a value of 0 and k = 2.

2 Preliminaries

2.1 Problem Formulation

Let G be a graph with n nodes and no edges, V be the set of nodes of the graph,
and D be the set of dimensions of the nodes. Each node v ∈ V is represented
by a vector, which is an ordered set of elements e1, e2, ..., e∣v∣−1, e∣v∣ such that
each has a pair consisting of a dimension and a value, ⟨di, rj⟩, where d ∈ D and
0 ≤ rj ∈ R ≤ 1. The values are normalized by L2-norm such that the following
equation holds:

∑
⟨di∈D,rj∈R⟩∈V

r2j = 1. (1)

Definition 1 (k-NN Graph Construction): Given a set of vectors V , the k-NN
graph construction returns for each vector x ∈ V , argmaxk

y∈V ∧x≠y (sim(x, y)),
where argmaxk returns the k arguments that give the highest values.

We use the cosine similarity as the similarity measure for k-NN graph con-
struction. The cosine similarity is defined as follows:

sim(vi ∈ V, vj ∈ V) =
vi ⋅ vj

∥vi ∥∥vj∥
= vi ⋅ vj . (2)

Example 1: In Figure 1, if we assume that the hidden elements (as described
by the ellipse) have a value of 0 and k = 2, the k-nearest neighbors of v1 are v2
and v4, because sim(v1, v2), sim(v1, v3), sim(v1, v4), and sim(v1, v5) are 0.42,
0.13, 0.34, 0.28, respectively. The k-NN graph is obtained by finding k-nearest
neighbors for every vector: {v2, v4} ,{v4, v1} ,{v2, v4} ,{v2, v1} ,{v1, v4}.

2.2 Related Work

The k-NN graph construction is closely related to other fields, such as the simi-
larity join, top-k similarity join, and similarity search fields. First, we introduce
the similarity join problem as follows:

330 Y. Park et al.

Definition 2 (Similarity Join): Given a set of vectors V and a similarity thresh-
old ε, a similarity join algorithm returns all possible pairs ⟨vi ∈ V, vj ∈ V ⟩ such
that sim(vi, vj) ≥ ε.

The inverted index join algorithm [2] for similarity join builds inverted indices
for all dimensions and then exploits them to calculate the similarities. While it
performs much faster than the brute-force search algorithm for sparse datasets,
it still has to calculate all of the similarities between the vectors. On the other
hand, prefix filtering techniques [2, 7, 8] effectively reduce the search space. They
sort the elements of all vectors by their dimensions and set the prefixes such that
the similarity between two vectors is below a threshold when their prefixes do
not have a common dimension. As a result, we can easily prune many vector
pairs by only looking at their prefixes.

The top-k similarity join is identical to the similarity join with regards to
finding the most similar pairs. The difference is that it is based on a parameter
k instead of ε. The top-k similarity join is defined as follows:

Definition 3 (Top-k Similarity Join): Given a set of vectors V and a parame-
ter k, a top-k similarity join algorithm returns argmaxk

⟨x∈V,y∈V ⟩∧x≠y (sim(x, y)) ,

where argmaxk returns the k arguments that give the highest values.

The most common strategy is to calculate the similarities of the most proba-
ble vector pairs first and then to iterate this step until a stop condition occurs.
For example, Kim et al. [9] estimates a similarity value ε corresponding to the
parameter k, selects the most probable candidates, and continues to select can-
didates until it can be guaranteed that all vector pairs excluding those that were
already selected as the candidates have similarity values of less than ε. Similarly,
Xiao et al. [10] stops its iteration when it can be guaranteed that the similarity
value of the next probable vector pair is not greater than that of any candidate
that has been selected.

Lastly, we define the similarity search problem as follows. This is usually re-
ferred to as the approximate k-Nearest Neighbor Search problem (k-NNS) [3].

Definition 4 (Similarity Search): Given a set of vectors V , a parameter k and
a query vector x ∈ V , the similarity search returns argmaxk

y∈V ∧x≠y (sim(x, y)),
where argmaxk returns the k arguments that give the highest values.

The Locality-Sensitive Hashing (LSH) scheme is one of the most common
approaches for similarity search. It initially generates for every node a certain
number m of signatures, s1, s2, ..., sm−1, sm. When a query vector is given, the
LSH compares its signatures to those of the other vectors. Because the degree
of signature match between two vectors indicates the similarity between them,
we can find the k-nearest neighbors based on the results of the matches. The
method used for generating signatures mainly depends on the target similarity
measure. For example, Broder et al. [11] represents a shingle vector-based ap-
proach for the jaccard similarity measure; while Charikar et al. [5] presents a
random hyperplane-based approach for cosine similarity.

Greedy Filtering: A Scalable Algorithm 331

1 ∣v∣

V
al

ue

Element Position

prefix suffix
+
+
++

(a) Value Distribution

1 ∣v∣

V
F

Element Position

prefix suffix

+++
+++++++++++
+++++++
++++++
+++++
+++++
++++
++++
+++
+++
+++
+++
+++
++

(b) Vector Frequency Distribution

Fig. 2. Typical Distributions After Performing Our Pre-Processing Steps

Note that the problem definitions in related work are analogous to that of
k-NN graph construction such that the abovementioned solutions can also be
applied to constructing k-NN graphs. For example, if we know all of the simi-
larities between vectors by the inverted index join algorithm, we can obtain the
k-NN graph by taking the most similar k vectors for each vector and throw-
ing the rest away. However, these types of approaches do not perform well as
the number of nodes or dimensions is scaled up. In Section 4, we discuss these
issues in detail, present several ways to construct a k-NN graph based on the
algorithms of these fields, and analyze their performance results.

A few approaches have been presented for the purpose of the k-NN graph con-
struction. Examples include kNN-overlap [12], kNN-glue [12], and NN-Descent
[6]. The process of the first two algorithms is as follows: (i) all of the vectors are
divided into subsets, (ii) k-NN graphs for the subsets are recursively computed,
and (iii) the results are formed into a final k-NN graph. Then a heuristic in
which a neighbor of a neighbor of a vector is also the neighbor of the vector is
additionally applied to improve the accuracy further. On the other hand, the
NN-Descent algorithm exploits only the above heuristic, but in a more sophis-
ticated way by adopting four additional optimization techniques: the local join,
incremental search, sampling, and early termination techniques. The experimen-
tal results show that although NN-Descent outperforms the other algorithms in
terms of accuracy and execution time, it does not perform well as the number of
dimensions scales up [6]. In the rest of this paper, we present novel approaches
to cope with this problem and compare the approaches to existing algorithms.

3 Constructing a k-Nearest Neighbor Graph

3.1 Greedy Filtering

Before presenting our algorithms, we introduce several distributions of datasets,
as follows: Figure 2(a) shows the value of each element of a vector v ∈ V , where
the value of the ith element is larger than that of (i + 1)th element. Figure 2(b)
shows the vector frequency of the ith element of a vector v ∈ V , where the vector

332 Y. Park et al.

frequency of the ith element is smaller than that of (i+1)th element. Let dim(e)
be the dimension of element e. Then the vector frequency of the element e is
defined as the number of vectors that have the element of dimension dim(e).

An interesting finding is that regardless of the dataset used, the dataset often
follows distributions similar to those shown in Figure 2(a) and Figure 2(b) by
performing some of the most common pre-processing steps. If we sort the ele-
ments of each vector in descending order according to their values, their value
distributions will be similar to the distribution shown in Figure 2(a). Note that
this pre-processing step does not change the similarity values between vectors.
Furthermore, if we weigh the value of each element according to a scheme that
adds weights to the values corresponding to sparse dimensions, such as IDF,
TF-IDF, or BM25, then the vector frequency distributions will be similar to the
distribution shown in Figure 2(b). These weighting schemes are widely used in
Information Retrieval and Recommender Systems along with popular similarity
measures [13].

Let v′ and v′′ be the prefix and suffix of vector v ∈ V , respectively. The
prefix v′ consists of the first n elements and the suffix v′′ consists of the last
m elements such that ∣v∣ = n + m. Then sim(vi ∈ V, vj ∈ V) = sim(v′i, v

′
j) +

sim(v′i, v
′′
j) + sim(v′′i , v

′
j) + sim(v′′i , v

′′
j). Our intuition is as follows: assuming

that the elements of each vector follows the distributions shown in Figure 2 and
that the prefix and suffix of each vector is determined beforehand, sim(vi, vj)
would not have a high value when sim(v′i, v

′
j) = 0 because, first, sim(v′i, v

′′
j)

would not have a high value; the vector frequencies of the elements in v′i are so
small that there is a low probability that v′i and v′′j have a common dimension.
Although there are some common dimensions in their elements, the values of
the elements in v′′j are so small that they do not increase the similarity value
significantly. For a similar reason, sim(v′′i , v

′
j) and sim(v′′i , v

′′
j) would not have

a high value: The elements of high values have low vector frequencies and the
elements of high vector frequencies have low values. When sim(v′i, v

′
j) ≠ 0, on

the other hand, sim(vi, vj) would have a relatively high value because v′i and v′j
have the highest values.

If we generalize this intuition, we can assert that two vectors are not one of
the k-nearest neighbors of each other if their prefixes do not have a single com-
mon dimension. That is to say, we would obtain an approximate k-NN graph
by calculating the similarities between vectors that have at least one common
dimension in their prefixes. Note that the vector frequencies of the prefixes are
so small that they usually do not have a common dimension. Thus we can prune
many vector pairs without computing the actual similarities. Because this ap-
proach initially checks whether the dimensions of large values match, we call it
greedy filtering.

Definition 5 (Match): Let vi and vj be the vectors in V, and let ei and ej be
any of the elements of vi and vj , respectively. We hold that ei and ej match if
dim(ei) = dim(ej). We also say that vi and vj match if any ei ∈ vi and ej ∈ vj
match.

Greedy Filtering: A Scalable Algorithm 333

Definition 6 (Greedy Filtering): Greedy filtering returns for each vector x ∈ V ,
argmaxk

y∈V ∧x≠y∧match(x,y) (sim(x, y)), where argmaxk returns the k arguments
that give the highest values, and match(x, y) is true if and only if x and y match.

Example 2: Figure 1 shows an example of greedy filtering, where the prefixes
are colored. If we assume that the hidden elements (described by ellipse) have a
value of 0 and k = 2, greedy filtering calculates the similarities of ⟨v1, v2⟩, ⟨v1, v3⟩,
⟨v1, v4⟩, ⟨v1, v5⟩, ⟨v2, v3⟩, ⟨v4, v5⟩, and ⟨v1, v4⟩, filters out ⟨v2, v4⟩, ⟨v2, v5⟩, ⟨v3, v4⟩
and ⟨v3, v5⟩, and returns k-nearest neighbors for every vector: {v2, v4} , {v3, v1} ,
{v2, v1} , {v5, v1} , {v4, v1} .

Note that the result of Example 2 is slightly different from that of Example 1,
because greedy filtering is an approximate algorithm. If the dataset follows the
distributions similar to those of Figure 2, the algorithm will be more accurate.
In Section 4, we will justify our intuition in more detail.

3.2 Prefix Selection Scheme

If we set the prefix such that ∣v′i∣ = ∣vi∣ ,∀vi ∈ V , then greedy filtering generates
the exact k-NN graph though its execution time will be very long. On the other
hand, if we set the prefix such that ∣v′i∣ = 0,∀vi ∈ V , then greedy filtering returns a
graph with no edges while the algorithm will terminate immediately. Note that
the elapsed time of greedy filtering and the quality of the constructed graph
depend on the prefix selection scheme. In general, there is a tradeoff between
time and quality.

Assume that greedy filtering can find the approximate k-nearest neighbors for
vi ∈ V if the number of matched vectors of vi is equal to or greater than a small
value μ. Then if for each vector vi we find v′i such that ∣v′i∣ is minimized and
the number of matched vectors of vi is at least μ, then we can expect a rapid
execution of the algorithm and a graph of good quality.

Algorithm 1 describes our prefix selection scheme, where ejvi denotes the jth

element of vector vi and dim(e) denotes the dimension of element e. In line
2, we initially prepare an empty list for each dimension. Because one list L[di]
contains vectors that have the dimension of di in their prefixes, if any list has the
two different vectors vi and vj , then greedy filtering will calculate the similarity
between them. In lines 7-8, we insert the vectors in R into the lists, meaning
that we increase the prefixes of the vectors in R by 1. In lines 10-13, we estimate
the number of matched vectors, denoted by M , for each vi ∈ R. In lines 14-16,
we check the stop conditions for each vector and determine which vectors will
increase their prefixes again.

Note that Algorithm 1 sacrifices two factors for the performance and ease of
implementation. First, it allows the duplicate execution of the brute-force search
(lines 19-20 of Algorithm 1 and lines 3-5 of Algorithm 2). If the two vectors v′i and
v′j have the d number of dimensions that match, we will calculate the d number of
calculations of sim(vi, vj). Although we can avoid these redundant computations
by exploiting a hash table, this is not good for scalability in general. Second, we
overestimate the value μ for a similar reason: if the two vectors v′i and v′j have

334 Y. Park et al.

Algorithm 1. Greedy-Filtering (V,μ)
Input: a set of vectors V , a parameter μ
Output: k-NN queues Q

1 begin
2 L[di] ←� φ,∀di ∈D /* candidates */
3 C ←� 1 /* an iteration counter */
4 R ←� V /* vectors to be processed */
5 repeat
6 /* find candidates */
7 for vi ∈ R do
8 add vi to L[dim(eCvi)]

9 /* check stop conditions */
10 for vi ∈ R do
11 M ←� 0
12 for j ← 1 to C do
13 M ←�M + ∣L[dim(ejvi)]∣

14 if M ≥ μ or C ≥ ∣vi∣ then
15 P [vi] ←� C
16 remove vi from R

17 C ←� C + 1

18 until ∣R∣ > 0
19 if default algorithm then
20 return Brute-force-search(L)

21 else
22 return Inverted-index-join(V,P)

d number of dimensions that match, then M increases by d instead of 1. Also,
we calculate the value of M only once per iteration; this makes M slightly larger.

Example 3: Figure 1 shows the result of our prefix selection scheme when μ = 2.
Let M(v) be the value M of the vector v. Initially, the prefix size of each vector
is 1: M(v1) =M(v2) = 1 and M(v3) =M(v4) =M(v5) = 0, because only ⟨v1, v2⟩
match. As the next step, we increase the prefix sizes of all vectors by 1, as
M(vi) < μ,∀vi ∈ V. Then ⟨v1, v5⟩, ⟨v2, v3⟩ and ⟨v4, v5⟩ match. At this point,
M(v1) = M(v2) = M(v5) = 2 and M(v3) = M(v4) = 1. Thus we increase the
prefix sizes of v3 and v4. As we continue until the stop condition is satisfied, our
prefix selection scheme selects the colored elements shown in Figure 1.

Our prefix selection scheme has O(∣V ∣ ∣D∣
2
) time complexity, and the brute-

force search has to compare each vector v to M number of other vectors. However,
our preliminary results show that the prefix sizes are so small that we can regard
D as a constant. Furthermore, we set the variable M close to μ; empirically, M
is not twice as large as μ. Assuming that D is a constant and M = 2μ, the total
complexity of greedy filtering is O(∣V ∣ + 2μ ∣V ∣) = O(∣V ∣).

Greedy Filtering: A Scalable Algorithm 335

Algorithm 2. Brute-force-search (L)
Input: lists for dimensions L
Output: k-NN queues Q

1 begin
2 Q[vi] ←� φ,∀vi ∈ V /* empty queues */
3 for di ∈D do
4 compare all vector pairs ⟨vx, vy⟩ in L[di]
5 update the priority queues, Q[vx] and Q[vy]

6 return Q

3.3 Optimization

Our algorithm uses a brute-force search a constant number of times for each
vector. Because the execution times of the brute-force search highly dependent
on the sizes of the vectors, it will take a relatively long time when a dataset
contains very large vectors. For instance, experimental results show that the
execution time of datasets whose vector sizes are relatively large, such as TREC
4-gram, is longer than that of other datasets.

We present one variation of greedy filtering, called fast greedy filtering. The
main idea of this approach is that if sim(v′i, v

′
j) is relatively high, then sim(vi, vj)

will also be relatively high. Then we can formulate an approximate k-NN graph
by calculating the similarities between prefixes. Algorithm 1 and Algorithm 3
describe the process of this algorithm in detail: ejvi denotes the jth element of
vector vi, and dim(e) and value(e) denote the dimension and value of element
e, respectively. In Algorithm 1, we set the prefix of each vector according to the
abovementioned prefix selection scheme and invoke Algorithm 3. Then in lines
6-12 of Algorithm 3, we calculate the similarities between the current vector
vi ∈ V and the other vectors already indexed and update the k-nearest neighbors
of vi and the indexed vectors. In lines 14-15, we put the current vector vi into
the inverted indices. Unlike greedy filtering, the execution time of fast greedy
filtering is highly dependent on the number of dimensions and the vector fre-
quencies of the datasets rather than the vector sizes.

Definition 7 (Fast Greedy Filtering): For each vector x ∈ V , fast greedy filtering
returns argmaxk

y∈V ∧x≠y∧match(x,y) (sim(x
′, y′)) , where argmaxk returns the k

arguments that give the highest values, and where match(x, y) is true if and
only if x and y match.

Example 4: If we apply fast greedy filtering to the example in Figure 1, the
algorithm returns slightly different results: {v2, v5} , {v3, v2} , {v2, v1} , {v5, v1} ,
{v4, v5} when k = 2.

336 Y. Park et al.

Algorithm 3. Inverted-index-join (L,P)
Input: a set of vectors V , prefix sizes P
Output: k-NN queues Q

1 begin
2 Q[vi] ←� φ,∀vi ∈ V /* empty queues */
3 I[di] ←� φ,∀di ∈D /* empty indices */
4 for vi ∈ V do
5 /* verification phase */
6 C[vj] ←� 0,∀vj ∈ V /* sim(vi, vj) = 0 */
7 for l ← 1 to P [vi] do
8 for ⟨vj , rj⟩ ∈ I[dim(elvi)] do
9 C[vj] ←� C[vj] + rj ∗ value(e

l
vi)

10 for vj ∈ V do
11 if C[vj] > 0 then
12 update the queues, Q[vx] and Q[vy]

13 /* indexing phase */
14 for l ← 1 to P [vi] do
15 add ⟨vi, value(elvi)⟩ to I[dim(elvi)]

16 return Q

4 Experiments

4.1 Experimental Setup

Algorithms. We considered eight types of algorithms for a comparison. Three
algorithms among them adopt the similarity join (abbreviated by SIM) [2], the
top-k similarity join (TOP) [10], and similarity search (LSH) [5] approaches. Two
algorithms among them are NN-Descent (DE1) and Fast NN-Descent (DE2) [6],
originally developed for the purpose of constructing k-NN graphs. The other two
algorithms are greedy filtering (GF1) and fast greedy filtering (GF2) algorithms
as proposed in this paper. Finally, we use the inverted index join (IDX) [2],
which calculates all similarities with inverted indices, as a baseline algorithm. In
all experiments, we set the number of neighbors to 10 (k=10).

We adopted the similarity join algorithm for k-NN graph construction. First,
we implement the vector similarity join algorithm, MM-join [2], which outper-
forms the All-pairs algorithm [7] in various datasets. Then, we iterate the execu-
tion of the algorithm while decreasing the threshold ε by δ until either at least
s% of vectors find k-nearest neighbors or until the elapsed time is higher than
that of inverted index join. We used the following values in the experiments:
ε = 1.00 (the initial value), δ = 0.05 and s = 30.

Adapting the top-k similarity join algorithm [10] for the k-NN graph con-
struction process is along the same lines as that of the similarity join algorithm,
except (1) we increase the parameter k at each iteration instead of decreasing δ,

Greedy Filtering: A Scalable Algorithm 337

Table 1. Datasets and Statistics

Dataset Statistics ∣V ∣ ∣D∣ Avg. Size Avg. VF
DBLP 250,000 163,841 5.14 7.85
TREC 125,000 484,733 79.83 20.59
Last.fm 125,000 56,362 4.78 10.60

DBLP 4-gram 150,000 279,380 27.97 15.02
TREC 4-gram 50,000 731,199 509.20 34.82
Last.fm 4-gram 100,000 194,519 20.77 10.68

MovieLens 60,000 10,653 141.23 795.44

and (2) because the top-k similarity join algorithm uses sets as data structures,
we need to transform the data structures into vectors and set new upper bounds
for the suffixes of vectors using the prefix filtering and length filtering conditions.
We set s = 70 for the top-k similarity join algorithm.

We also adopted the similarity search algorithm for k-NN graph construction
by executing the algorithm N times. We used random hyperplane-based locality
sensitive hashing for cosine similarity [5]. We cannot adopt other LSH algorithms,
such as those in Broder et al. [11] or Gionis et al. [3], as they were originally
developed for other similarity measures. We set the number of signatures for
each vector to 100.

Datasets. We considered seven types of datasets for a comparison. There are
two document datasets (DBLP1 and TREC2), one text dataset that consists of
music metadata (Last.fm3), three artificial text datasets (DBLP 4-gram, TREC
4-gram and Last.fm 4-gram), and one log dataset that consists of the movie
ratings of users (MovieLens4). Note DBLP 4-gram, TREC 4-gram, and Last.fm
4-gram are derived from DBLP, TREC and Last.fm, respectively. We remove
whitespace characters in the original vectors and extracted the 4-gram sequences
from them. Table 1 shows their major statistics, where ∣V ∣ denotes the number
of vectors and ∣D∣ is the number of dimensions, Avg. Size denotes the average
size of all vectors, and Avg. VF is defined as the average vector frequencies of
all dimensions.

Evaluation Measures. We use the execution time and the scan rate as the
measures of performance. The execution time is measured in seconds; it does not
include the data preprocessing time, which accounts for only a minor portion.
The scan rate is defined as follows:

Scan Rate =
similarity calculations

∣V ∣ (∣V ∣ − 1)/2
(3)

The similarity calculation expresses the exact calculation of the similarity
between a pair. Thus, the brute-force search and the inverted index join always
1 http://dblp.uni-trier.de/xml/
2 http://trec.nist.gov/data/t9_filtering.html/
3 http://www.last.fm/
4 http://grouplens.org/datasets/movielens/

http://dblp.uni-trier.de/xml/
http://trec.nist.gov/data/t9_filtering.html/
http://www.last.fm/
http://grouplens.org/datasets/movielens/

338 Y. Park et al.

have a scan rate of 1, as they calculate all of the similarities between vectors. On
the other hand, fast greedy filtering has a scan rate of 0 because this algorithm
only estimates the degrees of similarity.

We use the level of accuracy as the measure of quality. Assuming that an
algorithm returns k neighbors for each vector, the accuracy of the algorithm is
defined as follows:

Accuracy =
correct k-nearest neighbors

k ∣V ∣
(4)

Weighting Schemes. The value of each element can be weighted by the popular
weighting scheme, such as TF-IDF. Let v be a vector in V and ei be an element
in v. Then, we define the TF-IDF as follows:

tf-idf(ei, v) = (0.5 +
0.5 ∗ value(ei)

max{value(ej) ∶ ej ∈ v}
) ∗ (log

∣V ∣

V F (ei)
) , (5)

Here, value(e) is the initial value of e. In the text datasets, the initial values are
the term frequencies; in the MovieLens dataset, the values are the ratings.

4.2 Performance Comparison

Comparison of All Algorithms. Figure 3 and Table 2 show the execution
time, accuracy, and scan rate of all algorithms with a small number of TREC
nodes. We do not specify the accuracy and scan rate of inverted index join in
Table 2, as its accuracy is always 1 and its scan rate is always 0. By the same
token, the scan rates of LSH and GF2 are left blank. We set μ = 300 for our
greedy filtering algorithms.

The experimental results show that the greedy filtering approaches (GF1 and
GF2) outperform all other approximate algorithms in terms of the execution
time, accuracy and scan rate. The second best algorithms behind GF1 and GF2
are the NN-Descent algorithms (DE1 and DE2). However, as already descrbed
in work by Dong et al., the accuracy of the algorithms significantly decreases as
the number of dimensions scales up. The other algorithms require either a long
execution time or return results that are not highly accurate. The top-k similar-
ity join and similarity join algorithms require a considerable amount of time to
construct k-NN graphs, and locality sensitive hashing based on random hyper-
planes requires many signatures (more than 1,000 signatures in our experimental
settings) to ensure a high level of accuracy.

Comparison of All Datasets. Table 3 shows the comparison results of the two
outperformers, greedy filtering and NN-Descent, over the seven types of datasets
with the TF-IDF weighting scheme. The results of their optimized versions are
specified within the parentheses. In this table, we define a new measure, time, as
the execution time divided by the execution time of inverted index join. We set
the parameters μ such that the accuracy of GF1 is at least 90%. The experimental
results show that GF1 outperforms the NN-Descent algorithms in all of the
datasets except for DBLP and MovieLens. Although the execution time of GF1

Greedy Filtering: A Scalable Algorithm 339

10000 20000 30000 40000 50000

E
xe

cu
ti

on
T

im
e

(m
s)

Node Size

SIM

+

+
+

+

++
LSH

×
×

×

×

×

×
TOP

∗
∗

∗

∗

∗

∗
DE1

�
�

�
�

�

�

DE2

∎
∎

∎
∎

∎

∎
GF1

○ ○ ○ ○ ○

○
GF2

● ● ● ● ●

●
IDX

△
△

△

△

△

△

Fig. 3. Execution Time of All Algorithms (TREC)

Table 2. Accuracy and Scan Rate of All Algorithms

Node Accuracy (TREC) Scan Rate (TREC)
SIM LSH TOP DE1 DE2 GF1 GF2 SIM LSH TOP DE1 DE2 GF1 GF2

10K 0.00 0.01 0.68 0.54 0.43 0.96 0.65 0.05 - 0.06 0.27 0.19 0.05 -
20K 0.00 0.01 0.76 0.50 0.38 0.95 0.63 0.07 - 0.08 0.15 0.11 0.03 -
30K 0.00 0.01 0.76 0.48 0.36 0.94 0.62 0.05 - 0.08 0.10 0.08 0.03 -
40K 0.00 0.01 0.78 0.47 0.34 0.93 0.61 0.08 - 0.08 0.08 0.06 0.02 -
50K 0.00 0.01 0.79 0.46 0.33 0.93 0.59 0.05 - 0.08 0.07 0.05 0.02 -

is slower than the times required by the the NN-Descent algorithms for the two
datasets, its accuracy is much higher.

Note that while fast greedy filtering exploits inverted index join instead of
brute-force searches, it is not always faster than greedy filtering. Fast greedy
filtering can be more effective in a dataset for which the vector sizes are relatively
large and the number of dimensions and the vector frequencies are relatively
small. For example, fast greedy filtering outperforms the other algorithms in the
TREC 4-gram datasets, which have the largest average size.

Performance Analysis. Recall that before executing the greedy filtering algo-
rithm, we utilize some of the most common pre-processing steps, as described
in Section 3. First, we weigh the value of each element according to a weight-
ing scheme, and then we sort the elements of each vector in descending order
according to their values. Figure 4 shows the distributions of all of our datasets
after performing these pre-processing steps. Note that the distributions after
pre-processing are similar to those in Figure 2. Note also that Figure 4 and the
experimental results are in accord with our intuition as presented in Section 3:
For example, the distributions of DBLP 4-gram, Last.fm, and TREC in Figure
4 are very similar to those shown in Figure 2; moreover, the experimental re-
sults in Table 3 show that their execution time is better than those of the other

340 Y. Park et al.

Table 3. Comparison of All Datasets

Datasets DE1 (DE2) GF1 (GF2)

(TF-IDF) Time Accu-
racy

Scan
Rate Time Accu-

racy
Scan
Rate

DBLP 0.015
(0.013)

0.14
(0.11)

0.005
(0.004)

0.242
(0.076)

0.98
(0.90)

0.102
(-)

TREC 0.190
(0.140)

0.43
(0.27)

0.030
(0.021)

0.030
(0.009)

0.90
(0.56)

0.007
(-)

Last.fm 0.322
(0.189)

0.69
(0.68)

0.014
(0.008)

0.063
(0.149)

0.98
(0.80)

0.003
(-)

DBLP 4-gram 0.066
(0.046)

0.52
(0.34)

0.019
(0.011)

0.004
(0.006)

0.93
(0.59)

0.001
(-)

TREC 4-gram 0.228
(0.163)

0.60
(0.42)

0.066
(0.047)

0.106
(0.003)

0.90
(0.48)

0.035
(-)

Last.fm 4-gram 1.207
(0.800)

0.65
(0.65)

0.013
(0.008)

0.139
(0.204)

0.90
(0.59)

0.001
(-)

MovieLens 0.244
(0.161)

0.55
(0.38)

0.046
(0.028)

0.302
(0.013)

0.90
(0.19)

0.073
(-)

5 10
0.1

0.2

0.3

0.4

Element Position

A
vg

.v
al

ue

DBLP TREC Last.fm DBLP 4-gram
TREC 4-gram Last.fm 4-gram MovieLens

5 10

0

1

2
⋅104

Element Position
A
vg

.V
F

Fig. 4. Distributions of All Datasets

datasets. As another example, the distributions of MovieLens with TF-IDF are
relatively less similar to those shown in Figure 2 in that the element position
does not greatly affect the vector frequency. Thus, their performance is slightly
worse than the performance levels of the other datasets.

5 Conclusion

In this paper, we present greedy filtering, an efficient and scalable algorithm for
finding an approximate k-nearest neighbor graph by filtering node pairs whose
large value dimensions do not match at all. In order to avoid skewness in the
results and guarantee a linear time complexity, our algorithm chooses essentially

Greedy Filtering: A Scalable Algorithm 341

a fixed number of node pairs as candidates for every node. We also present fast
greedy filtering based on the use of inverted indices for the node prefixes. We
demonstrate the effectiveness of these algorithms through extensive experiments
in which we compare various types of algorithms and datasets.

The limitation of our approaches is that they are specialized for high dimen-
sional sparse datasets, weighting schemes that add weight to the values corre-
sponding to sparse dimensions, and cosine similarity measure. In future work,
we would like to extend our approaches to more generalized algorithms.

Acknowledgment. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MSIP) (No.
20110017480). This research was supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the Min-
istry of Science, ICT & Future Planning(NRF-2012R1A1A1043769).

References

[1] Park, Y., Park, S., Lee, S., Jung, W.: Scalable k-nearest neighbor graph construc-
tion based on Greedy Filtering. In: WWW 2013, pp. 227–228 (2013)

[2] Lee, D., Park, J., Shim, J., Lee, S.-g.: An efficient similarity join algorithm with
cosine similarity predicate. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G.
(eds.) DEXA 2010, Part II. LNCS, vol. 6262, pp. 422–436. Springer, Heidelberg
(2010)

[3] Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB 1999, pp. 518–529 (1999)

[4] Durme, B., Lall, A.: Online generation of locality sensitive hash signatures. In:
ACL 2010, pp. 231–235 (2010)

[5] Charikar, M.: Similarity estimation techniques from rounding algorithms. In:
STOC 2002, pp. 380–388 (2002)

[6] Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW 2011, pp. 577–586 (2011)

[7] Bayardo, R., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: WWW
2007, pp. 131–140 (2007)

[8] Xiao, C., Wang, W., Lin, X., Yu, J., Wang, G.: Efficient similarity joins for near-
duplicate detection. ACM Trans. on Database Systems 36(3), 15–41 (2011)

[9] Kim, Y., Shim, K.: Parallel top-k similarity join algorithms using MapReduce. In:
ICDE 2012, pp. 510–521 (2012)

[10] Xiao, C., Wang, W.: X Lin, and H. Shang. Top-k set similarity joins. In: ICDE
2009, pp. 916–927 (2009)

[11] Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering of the web.
Computer Networks and ISDN Systems 29(8), 1157–1166 (1997)

[12] Chen, J., Fang, H., Saad, Y.: Fast approximate kNN graph construction for high
dimensional data via recursive lanczos bisection. The Journal of Machine Learning
Research 10, 1989–2012 (2009)

[13] Said, A., Jain, B., Albayrak, S.: Analyzing weighting schemes in collaborative
filtering: Cold start, post cold start and power users. In: SAC 2012, pp. 2035–2040
(2012)

	Greedy Filtering: A Scalable Algorithm for K-Nearest Neighbor Graph Construction
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Related Work

	3 Constructingak-Nearest Neighbor Graph
	3.1 Greedy Filtering
	3.2 Prefix Selection Scheme
	3.3 Optimization

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison

	5 Conclusion
	References

