
Secure Computation on Outsourced Data:

A 10-year Retrospective

Hakan Hacıgümüş1, Bala Iyer2, and Sharad Mehrotra3

1 NEC Labs America
hakanh@acm.org

2 IBM Silicon Valley Lab.
balaiyer@us.ibm.com

3 University of California, Irvine, USA
sharad@ics.uci.edu

Abstract. This paper outlines the “behind the scene” story of how we
wrote the DASFAA 2004 paper on secure computation on outsourced
data to support SQL aggregation queries. We then describe some of the
research we have done following the paper.

1 Paper Background

This paper was a result of a successful collaboration between IBM Silicon Val-
ley Laboratory and the University of California, Irvine that explored the idea
of outsourcing database management to third-party service providers. At the
time, service-based software architectures and software-as-a-service were emerg-
ing concepts. Such architectures, made possible by the advances in high-speed
networking and ubiquitous connectivity, provided numerous advantages: it al-
leviated the need for organizations to purchase and deploy expensive software
and hardware to run the software on, deal with software upgrades, hire pro-
fessionals to help maintain the infrastructure etc. Instead, in the software as a
service model (also known also, at the time, as the application service provider
(ASP) model), the end-users could rent the software over the Internet and pay
for what they used. The model was very attractive in the light of the fact that
around that time, people costs were beginning to dominate the overall costs of
IT solutions. The ASP model, helped bring the people costs down significantly
since the task of administration and software maintenance was now outsourced
to service providers bringing in economy of scales.

Our collaboration started on a fateful SIGMOD Conference meeting that
brought authors of this paper together. The key question we asked was: Given
the emerging software-as-a-service, what will it take to provide data manage-
ment as a service (or the DAS model as we called it)? In the DAS model, the
service provider would provide seamless mechanisms for organizations to create,
store, access their databases. Moreover, the responsibility of data management,
i.e. database backup, administration, restoration, database reorganization to re-
claim space, migration to new versions without impacting availability, etc. will

S.S. Bhowmick et al. (Eds.): DASFAA 2014, Part I, LNCS 8421, pp. 16–27, 2014.
c© Springer International Publishing Switzerland 2014



Secure Computation on Outsourced Data: A 10-year Retrospective 17

be taken over by service providers. Users wishing to access data will now access
it using the hardware and software at the service provider instead of their own
organizations computing infrastructure. The application will not be impacted
due to outages in software, hardware, and networking changes or failures at the
database service provider sites. The DAS model will alleviate the problem of
purchasing, installing, maintaining and updating the software and administer-
ing the system. Instead, users will be able to use the ready system maintained
by service provider for its database needs.

1.1 Technical Challenges

Intuitively, we felt that database-as-a-service (or DASmodel as we called it) would
inherit all the advantages of the software-as-a-servicemodel – even more so, given
that for organizations data management, given its complexity, is a significant por-
tionof theoverall ITexpense.Furthermore,datamanagement, at the time(as is still
the case) has a significant people cost requiring professionals to create, implement,
and tune data management solutions. Given, what we felt was a unique opportu-
nity business opportunity;we explorednew challenges thatwould arise ifwewere to
adopt a service-oriented model for data management. Our first paper on the topic
appeared in the ICDE 2002 conference that raised multiple challenges in support-
ing theDASmodel. Inparticular,we identified three challenges: a) appropriateuser
interfaces through which database services and data is presented to the end-user -
the interfacemust be easy to use, yet be sufficiently powerful to allow users to build
complex application; b) hiding the additional latencies that arise due to remote
data access that sits across the network at the service provider sites; and c) most
importantly, the challenge of data confidentiality – it was (and still is) well recog-
nized that organizations view data to be amongst their most valuable assets. In the
DASmodel, the users data sits on the premises of the third-party service providers
where it could be used / misused in ways that can no longer be controlled by data
owners. The confidentiality challenge consisted of two distinct security problems:
First, if the DAS model was to succeed, it was imperative that mechanisms be de-
veloped to empower service providers to provide sufficient security guarantees to
the end-user. Appropriate firewall technologies, of course, help prevent malicious
outsider attacks. Given the value of data to organizations, and the danger of litiga-
tions given data thefts, our goal became using encryption mechanisms to protect
users confidentiality even if data at rest (in disks) gets stolen. Data management
when data is stored encrypted in disks was less understood at the time (and to date
has not been fully addressed). It led to a variety of challenges such as what gran-
ularity should the data be encrypted at (e.g., page level, record level, field level),
what type of encryption technique should be used to encrypt data, how should key-
management be performed, how should the pages/files be organized, how should
indices be built upon encrypted data, what are the performance implications of en-
cryption, what are the impacts on query optimization and processing, etc. Many of
these challenges were addressed by us in subsequent papers [15, 10–12].

The second confidentiality challenge came from the issue whether end-users
(data owners) will indeed trust service providers with their data (irrespective of



18 H. Hacıgümüş, B. Iyer, and S. Mehrotra

whether or not service providers follow best practices to prevent data from being
stolen through malicious outsiders). There could be several reasons for distrust.
The service provider model allows providers to be anywhere over the Internet,
possibly outside international boundaries and hence outside the jurisdictional
control of the legal systems accessible to data owners. Furthermore, as has been
validated through numerous security surveys since then, insider attacks at the
service providers are a major vulnerability in service-oriented models. Even if
the service provider is a well-intentioned honest organization, a disgruntled or a
malicious employee (of the service provider) could steal data for either personal
gains or defaming a service provider.

This second challenge led us to explore a new approach to data management
in the context of DAS model wherein the data is encrypted appropriately at the
data owner site and is never visible in plaintext at the service provider. This
way, even if there is the data stored at the service provider is made visible,
data confidentiality is preserved since the data is encrypted. This was an ideal
solution for the DAS model. However, the approach led us to the challenge of
implementing SQL queries (i.e., relational operators such as selections, joins,
etc.) over encrypted data representation. Cryptographic techniques that allow
predicates to be evaluated over encrypted data representation (now known as
searchable encryption) had not developed at the time [1, 2, 4, 21]. Even to date,
such techniques are not efficient enough to be considered as a general solution
that works well under most/all conditions. Instead, we devised an information
theoretic approach which we called bucketization that allowed us to evaluate
predicates though at the technique could admit false positives. This led us di-
rectly to partitioned computation of SQL queries collaboratively between the
service provider and the client side wherein part of the predicate evaluation
would be done at the service provider with some filtering at the client side to
determine the true answer. This work on partitioned execution of SQL queries
appeared in ACM SIGMOD 2002 conference wherein it was recently recognized
through a SIGMOD Test-of-Time award in 2012.

1.2 Aggregations over Encrypted Data

While our SIGMOD paper addressed how predicate searches in SQL queries
could be done collaboratively by appropriately partitioning the computation, it,
nonetheless, had a gaping hole when it came to supporting even the simplest ag-
gregation queries. To see this consider a simple aggregation query such as SELECT
sum(salary) from EMPLOYEE that adds up the total salary of all the employees
in an organization. While bucketization was devised to support predicate evalu-
ations, and could hence be used to implement selections, joins, and through the
algebra for partitioned computation, fairly complex SQL queries, it could not
support aggregation efficiently. A query such as above would require the entire
EMPLOYEE table (or at least the projection to the salary field to be transmit-
ted across the network to the client side where it would be decrypted and then
added. While bucketization provided us with a way to evaluate predicates, it
did not provide us with a way to compute on the encrypted data directly. What



Secure Computation on Outsourced Data: A 10-year Retrospective 19

we needed was to incorporate homomorphic encryption techniques into the data
representation to enable computing over encrypted data into the DAS model.

Homomorphic encryption techniques are a form of encryption that allow spe-
cific form of computations to be performed on cipher text such that the resulting
output is the encrypted form of the true result of the computation. Thus, de-
crypting the resulting cipher text would yield the true answer to the query.
Homomorphic encryption would permit us to compute the above aggregation
query efficiently – if, for instance, the salary field was encrypted using such an
encryption, we could add the salaries over the encrypted representation on the
server, and then transmit the result to the client where the result could be de-
crypted. This would completely eliminate the need to transmit the whole relation
to the client side bringing tremendous savings.

Homomorphic encryption can be classified as partially homomorphic that al-
lows only one operation (i.e., either multiplication, or addition) to be performed
over the encrypted domain or fully homomorphic that allows both the operations
to be evaluated in cipher text. Examples of partially homomorphic techniques
are unpadded RSA that allows multiplication, and Paillier cryptosystem that
supports addition over encrypted representation. Given that aggregation queries
could involve both multiplication and addition, we required a fully homomorphic
encryption. The need and the power of the fully homomorphic cryptosystem has
been long recognized. A secure solution to such a encryption method, however,
remained an open problem in cryptography for over 30 years and has only re-
cently been solved by the work of Gentry [6, 27, 5], which has recently led to a
large number of innovations in homomorphic cryptosystems. To date, however,
an efficient implementation of fully homomorphic system to be of practical value
in general remains illusive to the best of our knowledge.

2 Aggregation Queries over Encrypted Data

Our focus and goal at the time, was not as much on improving cryptography,
but rather on exploring how efficient query processing could be implemented in
the DAS model if such a fully homomorphic crypto system were to be made
available. To make progress, we chose the fully homomorphic cryptosystem, PH
(Privacy Homomorphism), proposed originally in [26] even though it was known
not to be fully secure. We give a background on PH as follows:

2.1 Background on Privacy Homomorphisms

Definition of PH: Assume A is the domain of unencrypted values, Ek an
encryption function using key k, and Dk the corresponding decryption function,
i.e., ∀a ∈ A, Dk(Ek(a)) = a. Let α̃ = {α1, α2, . . . , αn} and β̃ = {β1, β2, . . . , βn}
be two (related) function families. The functions in α̃ are defined on the domain
A and the functions on β̃ are defined on the domain of encrypted values of
A. (Ek,Dk, α̃, β̃) is defined as a privacy homomorphism if Dk(βi(Ek(a1), Ek(a2)
, . . . , Ek(am))) = αi(a1, a2, . . . , am) : 1 � i � n. Informally, (Ek,Dk, α̃, β̃) is a



20 H. Hacıgümüş, B. Iyer, and S. Mehrotra

privacy homomorphism on domain A, if the result of the application of function
αi on values may be obtained by decrypting the result of βi applied to the
encrypted form of the same values.

Given the above general definition of PH, we next describe a specific homo-
morphism proposed in [26] that we will use in the remainder of the paper. We
illustrate how the PH can be used to compute basic arithmetic operators through
an example.

• The key, k = (p, q), where p and q are prime numbers, is chosen by the client
who owns the data.
• n = p · q, p and q are needed for encryption/decryption and are hidden from
the server. n is revealed to the server. The difficulty of factorization forms the
basis of encryption.
• Ek(a) = (a mod p, a mod q), where a ∈ Zn. We will refer to these two compo-
nents as the p component and q component, respectively.
• Dk(d1, d2) = d1qq

−1 + d2pp
−1 (mod n) , where d1 = a (mod p), d2 = a

(mod q), and q−1 is such that qq−1 = 1 (mod p) and p−1 is such that pp−1 = 1
(mod q). (1)
• α̃ = {+n,−n,×n}, that is addition, subtraction, and multiplication in mod n.
• β̃ = {+,−,×}, where operations are performed componentwise.

Example: Let p = 5, q = 7. Hence, n = pq = 35, k = (5, 7). Assume that the
client wants to add a1 and a2, where a1 = 5, a2 = 6. E(a1) = (0, 5), E(a2) =
(1, 6) (previously computed) are stored on the server. The server is instructed to
compute E(a1) + E(a2) componentwise (i.e., without decrypting the data). The
computation E(a1)+E(a2) = (0+1, 5+6) = (1, 11). The result, (1, 11) is returned
to the client. The client decrypts (1, 11) using the function (d1qq

−1 + d2pp
−1)

(mod n) = (1·7·3+11·5·3) (mod 35) = 186 (mod 35), which evaluates to 11,
the sum of 5 and 6.1 The scheme extends to multiplication and subtraction.

2.2 Extensions to PH

Notice that PH could directly be used to support aggregation in SQL queries
since it is fully homomorphic. We were, however, faced with a few challenges
listed below which became the topic of our technical contribution in this DAS-
FAA 2004 paper. The full discussion can be found in [7].

Division Operation: The PH we use does not support division. SQL aggre-
gation, however, requires the handling of division. As an example, consider the
SQL clause SUM (expense / currency ratio) on a table where expenses are
listed in different currencies. Let us consider the first two terms of this sum-
mation; a1

c1
+ a2

c2
. The numerator and denominator of the sum are a1c2 + a2c1

and c1c2, respectively. Both only involve addition and multiplication, which are
supported by the PH. The inability of the PH to handle division is compensated
in query processing. The numerator and the denominator for the division are

1 n is selected in such a way that results always fall in [0, n); for this example [0, 35).



Secure Computation on Outsourced Data: A 10-year Retrospective 21

computed separately and returned to the client for final computation. Then, the
client decrypts both and performs the division.

Floating Point Number Representation: As defined, our PH is defined
over the integer domain [26]. SQL has a float or real number data type. Our
PH needs to be extended to handle real number arithmetic. Our suggestion is to
treat real number as fractions. Arithmetic of fractions may be carried out using
the technique used for division operation. Numerators and denominators are
computed separately by the server on encrypted data and both sent to the client
for final decryption and division. Consider the following example for floating
point arithmetic.

Example 1. Let p = 11, q = 13. Hence, n = pq = 143, k = (11, 13). Let us
assume that the user wants to compute x = a1 + a2 for a1 = 1.8, a2 = 0.5.
Hence, E(a1) = ((7, 5), (10, 10)), E(a2) = ((5, 5), (10, 10)).

E(a1)+E(a2) = E(an
1 )

E(ad
1)
+

E(an
2 )

E(ad
2)

=
E(an

1 )+E(an
2 )

E(ad
1)

= (7,5)+(5,5)
(10,10) = (12,10)

(10,10) (mod 143)

This result is sent to the client, and the client performs decryption as follows:
a1 + a2 = 12·13·6+66·11·6

10·13·6+10·11·6 = 23
10 (mod 143) = 2.3

Handling Negative Numbers: Negative numbers can be dealt by offsetting
the range of numbers. To see the need for this, recall that arithmetic is defined
on modulo n in PH. For example, the numbers 33 and -2 are indistinguishable
when we represent them in modulo 35. That is, 33 (mod 35) ≡ -2 (mod 35).

Let the maximum value that can be represented in the computer system be
vmax > 0 and the minimum value be vmin = −vmax. Then the possible value
range would be [vmin, vmax]. We first map this range into another range, which
is [0, 2vmax]. In this new range, any value x < vmax is interpreted as a negative
number relative to value of vmax. By defining that, an actual value x is mapped
to a shifted

After these definitions, arithmetic operations should be mapped accordingly
as well. For example, addition is mapped as x + y = x′ + y′ − (vmax − vmin)
and similarly subtraction is mapped as x − y = x′ − y′ + (vmax − vmin). It is
obvious that the server should have the encrypted value for (vmax−vmin), which
will be computed with same encryption scheme and stored once. To illustrate
the problem we stated above and the mapping scheme, consider the following
example.

2.3 Security Extension to the PH

In this section we show how we addressed a security exposure, test for equality
by the server, in the given PH scheme.

Preventing Test for Equality: Picking n such that n > vmax − vmin (as we
did above) enables the server to test for equality. Say x and y are two numbers
encrypted as (xp, xq) and (yp, yq), respectively. Let z = x ∗ y, which implies
in the encrypted domain, (zp, zq) = (xp, xq) ∗ (yp, yq). The server could start
adding (xp, xq) to itself every time checking the equality between the sum and



22 H. Hacıgümüş, B. Iyer, and S. Mehrotra

(zp, zq). When the equality is satisfied, the server learns the unencrypted value
of y. Thus, (zp, zq) = (xp, xq) + (xp, xq) + . . .+ (xp, xq)

︸ ︷︷ ︸

y times

.

We plug this exposure by adding random noise to the encrypted value. We en-
crypt an original value x as follows; E(x) = (x (mod p)+R(x) ·p, x (mod q)+
R(x) · q), where R(x) is a pseudorandom number generator with seed x. R(x)
value is generated during every insertion/update by the client. This prevents
equality testing for the server and the server cannot remove the noise without
knowing p and q. The noise is automatically removed at the client upon decryp-
tion. In the presence of noise, the following decryption function should be used in
place of equation (1): Dk(d1, d2) = (d1 mod p)qq−1 + (d2 mod q)pp−1 (mod n)
This equation is true because noise had been added in multiples of p for the first
and in multiples of q in the second term. The modulo of each (mod p) and (mod
q) term removes the added noise.

Another benefit of introducing the noise is that p and q components are no
longer stored in modulo p and q, respectively. It makes it additionally difficult
for the server to guess their values.

2.4 Query Processing over Encrypted Data

While PH provided us with a solution to implement the simple aggregation query
about adding salaries of employees we discussed above, we were next faced with a
challenge of computing aggregation queries that contain predicates. Most aggre-
gation SQL queries are not as simple as the one used above tomotivate the need for
a fully homomorphic encryption approach. Consider, for instance, now a slightly
modified query such as SELECT sum(salary) FROM employee WHERE age > 45 and

age < 50. The bucketization not only selected terms which were part of the answer,
but also false positives (which were eliminated on the client side). But this causes
a problem since we cannot compute the answer at the server for aggregation. The
basic idea we came across, which led us to the DASFAA paper, was that in bucke-
tization we could treat buckets as sure or not sure. If we distinguish between them,
we can compute the aggregation over sure things on the client side. Since most ag-
gregations can be computed in a progressivemanner, we could compute part of the
aggregation on the server and transfer the rest when we were unsure to client side,
decrypt and compute the answer on the client side. The strategy would not just
work, but would also tune well by controlling the maximum size of each buckets
and ensuring that number of unsure buckets given queries is limited. We give an
overview of the process as follows:

Given a query Q, our problem is to decompose the query to an appropriate
query QS on the encrypted relations RS such that results of QS can be filtered
at the client in order to compute the results of Q. Ideally, we would like QS

to perform bulk of the work of processing Q. The effectiveness of the decom-
position depends upon the specifics of the conditions involved in Q and on the
server side representation RS of the relations involved. Consider, for example, a
query to retrieve sum of salaries of employee in did = 40. If did is a field-level
encrypted field, the server can exactly identify records that satisfy the condition



Secure Computation on Outsourced Data: A 10-year Retrospective 23

by utilizing the equality between the client-supplied values and the encrypted
values stored on the server. In such a case, aggregation can be fully performed
on the salary attribute of the selected tuples exploiting the PH representation.
If, on the other hand, the condition were more complex, (e.g., did > 35 AND

did < 40), such a query will be mapped to the server side by mapping the did
to the corresponding partitions associated with the did field that cover the range
of values from 35 to 40. Since the tuples satisfying the server side query may
be a superset of the actual answer, aggregation cannot be completely performed
at the server. Our strategy is to separate the qualified records into those that
certainly satisfy the query conditions, and those that may satisfy it - the former
can be aggregated at the server, while the latter will need to be transmitted to
the client, which on decrypting, can filter out those that do not, and aggregate
the rest. The strategy suggests a natural partitioning of the server side query
QS into two queries QS

c and QS
m as follows:

•Certain Query (QS
c ): That selects tuples that certainly qualify the conditions

associated with Q. Results of QS
c can be aggregated at the server.

• Maybe Query (QS
m): That selects etuples corresponding to records that

may qualify the conditions of Q but it cannot be determined for sure without
decrypting. The client decrypts these etuples, and then selects the ones that
actually qualify and performs the rest of the query processing.

To finalize the computation, the client combines results from these queries to
reach the actual answers. We next discuss how a client side query Q is translated
into the two server side representations QS

c and QS
m.

3 Follow-up Work

The work described above on database-as-a-service was part of a successful col-
laboration between IBM and UCI that culminated in a Ph.D. dissertation of
Hakan Hacıgümüş. Our follow up work, motivated and influenced in a large
part by our initial papers on DAS has explored numerous challenges that arose
when we started developing the DAS model. We discuss some of these additional
challenges we explored subsequently below.

First, our approach to partitioned computation was based on supporting se-
cure indexing tags by applying bucketization (a general form of data partition-
ing), which prevents the service provider from learning exact values but still
allows it to check if the record satisfies the query predicate. Bucketization pro-
vided a natural sliding scale confidentiality that allowed us to explore a tradeoff
between security and performance – e.g., if we map all data values to the same
bucket, the approach provides perfect security (since adversary cannot distin-
guish between any data) but it incurs heavy overhead since now the service
provider cannot prune records based on query predicates. Likewise, if we map
each distinct value has a different bucket, the adversary gains significant knowl-
edge about the data, but can also perform potentially perfect pruning in the
context of query processing. Our subsequent work explored the natural trade-
off between security and performance that results in using bucketization as an



24 H. Hacıgümüş, B. Iyer, and S. Mehrotra

underlying technique for supporting SQL queries [13, 9, 14]. Another angle we
explored the DAS model was towards exploiting additional benefits that the DAS
model intrinsically provides. First amongst these is that outsourcing naturally
creates the ability to seamlessly share data with others. Data sharing has, and to
a large degree still remains a significant challenge – organizations often develop
mutual (pairwise) data sharing protocols that implement their sharing policies.
Individuals often share data with each other using diverse mechanisms such as
emails, posting on publicly accessible websites, or physically sharing sharing data
using memory sticks etc. DAS can significantly reduce the burden of data shar-
ing, if a user could, besides outsourcing its data / query processing, could also
outsource the task of data sharing to the database service. Such a solution would
not just alleviate the responsibility of organizations to share the data, but it will
also result result in improved performance and availability since the data (to be
shared) already resides on the service providers. To a large degree, the technol-
ogy has already adopted such an approach at least at the individual levels with
the emergence and proliferation of services such as dropbox and google drive.
Our work, however, explored sharing in the context when service providers were
untrusted (and hence data was appropriately encrypted). Another benefit that
outsourcing provides, particularly, in the context of personal data management,
is that it empowers users to access data from anywhere, anytime, and from any
device. This is particularly useful for data such as Web history, bookmarks, ac-
count information, passwords, etc .that a user may wish to access remotely using
a mobile device or using different machines from environments that are not nec-
essarily trusted. We explored mechanisms wherein trusted computation can be
performed using the outsourced data model through the help of a small-footprint
trusted proxy [18, 17, 16, 20, 19].

Since the time we explored the DAS model, the computing field has witnessed a
major shift in computing paradigm – fueled by the advances in virtualization and
high-speed networking, cloud computing model is emerging that can roughly be
summarized asX as a service , whereX can be virtualized infrastructure (e.g., com-
puting and/or storage), a platform (e.g., OS, programming language execution en-
vironment, databases, web servers, etc.), software applications (e.g., Google apps),
a service or a test environment, etc. Much like what motivated the industrial trend
towards software-as a service (and also ourwork onDAS), the primarymotivator of
cloud computing is the utility computing model (aka pay-as-you go model) where
users get billed for the computers, storage, or any resources based on their usage
with no up-front costs purchasing the hardware/softwareor ofmanaging the IT in-
frastructure. The cloud provides the illusion of limitless resources that one can tap
into in times of need, limited only the the amount one is willing to spend on renting
the resources. Our work on database as a service naturally fits the cloudmodel but
the cloud offers many new challenges and opportunities that we did not originally
explore as part of our work on DAS.

First, unlike our assumption in DAS, where the resources were assumed to be
very limited on the client side, in the cloud setting organizationsmay actually pos-
sess significant resources that meets majority of their storage and computational



Secure Computation on Outsourced Data: A 10-year Retrospective 25

needs. For instance, in the cloud setting data may only be partially outsourced,
e.g., only non-sensitive part of the data may be kept on the cloud. Also, it may
be only at peak query loads that the computation needs to be offloaded to the
cloud. This has implications from the security perspective since much of the pro-
cessing involving sensitive data could be performed at the private side. In DAS,
since the goal was to fully outsource the data and computation, the focus of the
solutions was on devising mechanism to compute on the encrypted representa-
tion (even though such techniques may incur significant overhead). In contrast,
in the cloud environments, since local machines may have significant computa-
tional capabilities, solutions that incur limited amount of data exposure of sensi-
tive data (possibly at a significant performance gain) become attractive. Second,
while our DAS work primarily dealt with database query workload, in a cloud
setting, we may be interested in more general computation mechanisms (i.e. not
only database workloads). For instance, map-reduce (MR) frameworks are used
widely for large-scale data analysis in the cloud. We may, thus, be interested in
secure execution of MR jobs in public clouds.

Another challenge arises from the potential autonomy of the cloud service
providers. It is unlikely that autonomous providers will likely implement new se-
curity protocols and algorithms (specially given significant overheads associated
with adding security and the restrictive nature of cryptographic security for a
large number of practical purposes). For instance, it is difficult to imagine Google
making changes to the underlying storage models, data access protocols and in-
terfaces used by its application services (such as Google Drive, Picasa, etc.) such
that users can store/search/process data in encrypted form. This calls for a new,
robust and more flexible approach to implement privacy and confidentiality of
data in cloud-based applications.

Our current research related to DAS is exploring the above challenges in
the context of cloud computing2. In particular, we have explored a risk-aware
data processing framework for cloud computing that, instead of focusing on
techniques to eliminate possibility of attacks, provides mechanisms to limit /
control the exposure risks. Different ways to steer data through the public and
private machines and the way data is represented when it is on public machines
exhibit different levels of risks and expose a tradeoff between exposure risks and
system specific quality metrics that measure the effectiveness of a cloud based
solution. Given such a tradeoff, the goal of the risk aware computing changes
from purely attempting to maximize the application specific metrics to that of
achieving a balance between performance and sensitive data disclosure risks.
We have explored such a risk based approach for various contexts – HIVE and
SparQL queries over relational data /RDF data as well as lookup queries over
key value stores [25, 24, 22, 23, 3].

Another avenue of our work on cloud computing addresses the issue of auton-
omy of service providers by exploring an middleware-based approach for secu-
rity where end-clients connect to cloud services through a security layer entitled

2 This work is part of the Radicle Project (http://radicle.ics.uci.edu) at UCI
which is funded through in part by the NSF Grant CNS 1118127.

http://radicle.ics.uci.edu


26 H. Hacıgümüş, B. Iyer, and S. Mehrotra

CloudProtect. CloduProtect empowers users with control over their data that
may store in existing cloud-based applications such as Box, Google drive, Picasa,
Google Calendar, etc. It is implemented as a intermediary that intercepts http re-
quests made by the clients, transforms the request to suitably encrypt/decrypt
the data based on the users confidentiality policies before forwarding the re-
quest to the service provider. Encrypted representation of data may interfere
with the users experience with the service - while requests such as CRUD op-
erations (i.e., create, read, update, delete) as well as possibly search can be
performed on encrypted representation, operations such as Google translate re-
quires data to be in plaintext. CloudProtect keeps track of how data is stored on
the server and based on the operation request may launch an exception protocol
wherein encrypted data may be brought back to the client, decrypted and re-
stored at the server before the service request is submitted to the server. Through
the exception protocol, CloudProtect provides continued seamless availability of
Web services. Furthermore, CloudProect supports mechanisms to adapt the data
representation at the service providers to strike a balance between the risk of
data exposure and the service usability (i.e., the number of times an exception
protocol is invoked to meet users request).

Hakan Hacıgümüş followed up with the research work in the larger context
of data management systems in the cloud. In that context, we worked on nu-
merous challenges that need to be overcome before the database systems can
be successfully integrated with the cloud delivery platforms. Some of the re-
search areas include, elastic transactional database systems, large scale, flexible
Big Data Analytics systems in the cloud, workload and resource management in
cloud databases, data-rich mobile applications in the cloud. Many of the areas
are explored in the CloudDB project at the NEC Laboratories of America [8].

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

2. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

3. Canim, M., Kantarcioglu, M., Hore, B., Mehrotra, S.: Building disclosure risk aware
query optimizers for relational databases. PVLDB 3(1) (2010)

4. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proc. of ACM CCS
(2006)

5. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. Thesis, Stanford
University (2009)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC
(2009)

7. Hacıgümüş, H.: Privacy in Database-as-a-Service Model. Ph.D. Thesis, Department
of Information and Computer Science, University of California, Irvine (2003)

8. Hacıgümüş, H.: NEC Labs Data Management Research. SIGMOD Record 40(3)
(2011)



Secure Computation on Outsourced Data: A 10-year Retrospective 27

9. Hacıgümüş, H., Hore, B., Iyer, B.R., Mehrotra, S.: Search on encrypted data. In:
Secure Data Management in Decentralized Systems, pp. 383–425 (2007)

10. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Query Optimization in Encrypted Database
Systems. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS,
vol. 3453, pp. 43–55. Springer, Heidelberg (2005)

11. Hacıgümüş, H., Mehrotra, S.: Performance-Conscious Key Management in En-
crypted Databases. In: Proc. of DBSec (2004)

12. Hacıgümüş, H., Mehrotra, S.: Efficient Key Updates in Encrypted Database Sys-
tems. In: Proc. of DBSec (2005)

13. Hore, B., Mehrotra, S., Hacıgümüş: Managing and querying encrypted data. In:
Handbook of Database Security, pp. 163–190 (2008)

14. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proc. of VLDB (2004)

15. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G., Wu, Y.: A Framework for Efficient
Storage Security in RDBMS. In: Bertino, E., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 147–164. Springer, Heidelberg (2004)

16. Jammalamadaka, R.C., Gamboni, R., Mehrotra, S., Seamons, K.E., Venkatasub-
ramanian, N.: gvault: A gmail based cryptographic network file system. In: Proc.
of DBSec (2007)

17. Jammalamadaka, R.C., Gamboni, R., Mehrotra, S., Seamons, K.E., Venkatasub-
ramanian, N.: idataguard: middleware providing a secure network drive interface
to untrusted internet data storage. In: Proc. of EDBT (2008)

18. Jammalamadaka, R.C., Gamboni, R., Mehrotra, S., Seamons, K.E., Venkatasub-
ramanian, N.: A middleware approach for outsourcing data securely. Computers &
Security 32 (2013)

19. Jammalamadaka, R.C., Mehrotra, S., Venkatasubramanian, N.: Pvault: a client
server system providing mobile access to personal data. In: Proc. of StorageSS
(2005)

20. Jammalamadaka, R.C., van der Horst, T.W., Mehrotra, S., Seamons, K.E.,
Venkatasubramanian, N.: Delegate: A proxy based architecture for secure website
access from an untrusted machine. In: Proc. of ACSAC (2006)

21. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM Conference on Computer and Communications Security (2012)

22. Khadilkar, V., Oktay, K.Y., Kantarcioglu, M., Mehrotra, S.: Secure data processing
over hybrid clouds. IEEE Data Eng. Bull. 35(4) (2012)

23. Oktay, K.Y., Khadilkar, V., Hore, B., Kantarcioglu, M., Mehrotra, S., Thuraising-
ham, B.M.: Risk-aware workload distribution in hybrid clouds. In: IEEE CLOUD
(2012)

24. Oktay, K.Y., Khadilkar, V., Kantarcioglu, M., Mehrotra, S.: Risk aware approach
to data confidentiality in cloud computing. In: Bagchi, A., Ray, I. (eds.) ICISS
2013. LNCS, vol. 8303, pp. 27–42. Springer, Heidelberg (2013)

25. Pattuk, E., Kantarcioglu, M., Khadilkar, V., Ulusoy, H., Mehrotra, S.: Bigsecret: A
secure data management framework for key-value stores. In: Proc. of IEEE CLOUD
(2013)

26. Rivest, R.L., Adleman, L.M., Dertouzos, M.: On Data Banks and Privacy Homo-
morphisms. In: Foundations of Secure Computation (1978)

27. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. IACR Cryptology ePrint Archive (2009)


	Secure Computation on Outsourced Data:A 10-year Retrospective
	1 Paper Background
	1.1 Technical Challenges
	1.2 Aggregations over Encrypted Data

	2 Aggregation Queries over Encrypted Data
	2.1 Background on Privacy Homomorphisms
	2.2 Extensions to PH
	2.3 Security Extension to the PH
	2.4 Query Processing over Encrypted Data

	3 Follow-up Work
	References




