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Abstract. In recent years,the number of cores on a chip has been grow-
ing exponentially, enabling an ever-increasing number of processes to
execute in parallel. Having been developed originally for single-core pro-
cessors, database (DB) management systems (DBMSs) running on multi-
core processors suffer from cache conflicts as the number of concurrently
executing DB processes (DBPs) increases. In this paper, we propose
CARIC-DA, middleware for achieving higher performance in DBMSs on
multicore processors by reducing cache misses with a new cache-conscious
dispatcher for concurrent queries. CARIC-DA logically range-partitions
the data set into multiple subsets. This enables different processor cores
to access different subsets by ensuring that different DBPs are pinned
to different cores and by dispatching queries to DBPs according to the
data partitioning information. In this way, CARIC-DA is expected to
achieve better performance via a higher cache hit rate for each core’s
private cache. It can also balance the loads between cores by chang-
ing the range of each subset. Note that CARIC-DA is pure middleware,
which avoids any modification to existing operating systems (OSs) and
DBMSs, thereby making it more practical. We implemented a prototype
that uses unmodified existing Linux and PostgreSQL environments. The
performance evaluation against benchmarks revealed that CARIC-DA
achieved improved cache hit rates and higher performance.

Keywords: multicore, OLTP, middleware.

1 Introduction

In the computer industry, multicore processing is a growing trend as single-core
processors rapidly reach the physical limits of possible complexity and speed [1].
Nowadays, multicore processors are widely utilized by many applications and are
becoming the standard computing platform. However, these processors are far
from realizing their potential performance when dealing with data-intensive ap-
plications such as database (DB) management systems (DBMSs). This is because
advances in the speed of commodity multicore processors far outpace advances in
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memory latency [2], leading to processors wasting much time waiting for required
items of data.

The cache level therefore becomes critical for overcoming the “memory wall”
in DBMS applications. Some experimental researches indicate that the adverse
memory-access pattern in DB workloads results in poor cache locality and imply
that data placement should focus on the last-level cache (LLC) [3,4]. However,
as increasing numbers of cores are becoming integrated into a single chip, re-
searchers’ attention is being diverted from the LLC to other cache levels. For
modern multicore processors, it is usual to provide at least two levels of cache
for the private use of each processor core in addition to an LLC for data shar-
ing between several cores. For example, the AMD Opteron 6174 [5], which has
12 physical processor cores, provides two levels of private cache for each core,
namely a 64-KB level-one (L1) instruction cache, a 64-KB L1 data cache, and
a 512-KB level-two (L2) cache. Recent research indicates that increasing the
number of cores that share an LLC does not cause an inordinate number of ad-
ditional cache misses, with different workloads exhibiting significant data sharing
between cores [6]. As the cache levels become more complex, access to the LLC
involves more clock cycles because LLC access latency has increased greatly
during recent decades. These changes in cache levels indicate that it is increas-
ingly important to bring data beyond the LLC and closer to L1. In this paper,
we first analyze how various scheduling strategies for concurrent DB processes
(DBPs) on different processor cores affect the performance of private-cache lev-
els, which are closer to the execution unit than is the LLC. We then propose a
middleware-based solution to provide efficient data access to the private-cache
levels for concurrent OLTP-style transactions on a multicore platform.

1.1 Private-Cache Contentions

For multicore systems, all concurrent DBPs dealing with the various queries
will be scheduled to run concurrently on different processor cores. However, a
different DBP-schedule decision will lead to different cache performance.

For example, Figure 1 shows three queries of Q1, Q2 and Q3 need to be
dispatched to run on the two processor cores Core1 and Core2. In Plan1 of
Figure 1, Q1 and Q2 are dispatched to co-run on Core1. Q1 is executed first and
the data in the range [1–50] are loaded into the private cache of Core1. After the
execution of Q1, the context switches to Q2. The data needed for Q2, namely
[1–40], are already cached at that cache level and the resulting cache hit is as
desired. However, the situation for Plan2 of Figure 1 is different. If Q1 and Q3
are dispatched for the same core, consider the situation when the execution of
Q1 has finished and Q3 starts to run. The existing data, in the range [1–50] are
not used at all by Q3. The cache has therefore to reload a new data set [50–100].

For OLTP applications which have big database, the whole data set is not
uniformly accessed, and there is access skew for different subsets. If the queries
which accessing data in the same subset co-run on one core, cache hit rate
becomes better. Furthermore, the appropriate co-running of multiple DBPs on
the same core (Plan1) can restrict the data access for each core’s private cache



284 F. Xi, T. Mishima, and H. Yokota

Fig. 1. Different query schedule strategies will cause different cache utilizations for
private caches

to within a specific subset of the data in the whole DB, with the probability of
cache hits thereby being improved.

The objective of our work is to provide a good co-running solution for concur-
rent queries to achieve higher private-cache utilization. The DBMS contains the
data needs information for all its DBPs, and it has the ability to provide a good
co-running strategy for the various DBPs. However, the scheduling of DBPs on
processor cores is decided by the OS. The OS has no information about the co-
running strategy provided by the DBMS.Therefore, in our approach, we achieve
better private-cache utilization by importing OS functions into existing DBMSs.

1.2 The CARIC-DA Framework and Our Contribution

In this paper, we propose a framework—Core Affinity with Range Index for
Cache-conscious Data Access (CARIC-DA)—that ensures that queries accessing
the data set in a specific value range always run on the same processor core.

We use the core-affinity setting function provided by the OS to ensure that
each DBP will always run on a specific processor core. The predefined value-
range-based execute-core selection strategy serves as a range index for the
CARIC-DA framework. CARIC-DA provides a function that enables the dis-
patching of all queries accessing the data in the same value range for execution
by a specific DBP. The load balance between the processor cores is managed by
a dynamic load-balancing process in CARIC-DA that adjusts the value range in
the range index, according to the skew.

A major feature of our proposed solution is that all the functions provided
by the CARIC-DA framework can be implemented as middleware over the ex-
isting OS and DBMS. Furthermore, CARIC-DA is pure middleware that does
not require any modification to existing OSs and DBMSs, which is important
because software for an existing DBMS is usually very large and complex, and
any modification would be a time-consuming challenge.

The CARIC-DA is designed to optimize the performance for online transac-
tion processing (OLTP) systems. A typical OLTP workload consists of a large
number of concurrent, short-lived transactions, each accessing a small fraction
(ones or tens of records) of a large dataset. Furthermore, the smaller cache foot-
prints of these transactions make the data sharing between sequences of transac-
tions possible in the private cache levels which are relatively small. In contrast,
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the OLAP applications with queries involving aggregation and join operations
on large amounts of data cannot benefit from our middleware. Although this
may appear a limitation, it is not so in the context of database applications as
there is no solution optimal for all applications [7].

There are different access skews in both of the transactions and data subsets.
Some transactions occur much more frequently than other transactions. The fre-
quent occurring transactions only access specific parts of some tables instead of
all tables. Therefore, even the whole database for the real world OLTP appli-
cations might be in different sizes, the primary working set is not changed too
much. The relatively modest primary working set can be captured by modern
LLC [6]. As more cache resources are becoming integrated into a single chip,
there is much possibility to cache the modest primary working set in the higher
cache levels (private caches). To our knowledge, CARIC-DA is the first multicore-
optimized middleware addressing the private-cache levels for concurrent queries.
Furthermore, our paper gives several insights about how individual cache levels
contribute towards improving performance through detailed experiments. Espe-
cially we highlight the role of the L2 cache. Experiments show that our proposal
can reduce the L2 cache miss rate by 56% and reduce the L1 cache miss rate by
6%–10%. In addition, CARIC-DA can increase the throughput by up to 25% for
a TPC-C workload [8].

2 Related Work

In recent years, enlarged LLC caches have been used in an attempt to achieve
better performance by capturing larger working sets. Unfortunately, many DB
operations have relatively modest primary working sets and cannot benefit from
larger LLCs. Furthermore, larger LLC caches require more time to service a
hit. Hardavellas et al. [6] noticed this problem and pointed out that DB systems
must optimize for locality in high-level caches (such as L1 cache) instead of LLC.
STEPS [9] improves the L1 instruction-cache performance for OLTP workloads,
but improvement in data locality remains a problem for high cache levels. Our
CARIC-DA focuses on both of the L1 and L2 caches (private-cache levels).

The DORA [10] is a typical work which focus on the optimization for
OLTP workloads on multicore platforms. Furthermore it shares similarities with
CARIC-DA at the idea of range partitioning. Rather than the CARIC-DA which
optimizes the cache performance, DORA is designed to reduce the lock con-
tentions. DORA decomposes each transaction to smaller actions and assigns
actions to different threads. It may be very challenging for existing DBMSs
to benefit from the DORA, as making the conventional thread-to-transaction
DBMS to support multiple threads for one transaction is rather complex. On
the other hand, our CARIC-DA does not touch any existing functions of exist-
ing DBMSs.

The MCC-DB [4] introduces functions from the OS to improve cache utiliza-
tion for DBMSs. However, they introduce a cache-partitioning function, which is
not supported by general purpose OSs. In contrast, we rely on the CPU-affinity
function, which is well supported by most modern OSs.
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The CPU-affinity function is already used for performance improvement in a
variety of applications. Foong et al. [11] present a full experiment-based analysis
of network-protocol performance under various affinity modes on SMP servers
and report good gains in performance by changing only the affinity modes. How-
ever, their experiences and results are only limited to network applications and
cannot be directly adopted by DBMS applications, which are much more com-
plex and have intensive data accesses.

3 The CARIC-DA Framework

To provide good private-cache utilization for each processor core, we should con-
sider dispatching those queries that access the same data set to enable execution
on the same core. One straightforward approach would be to change the process-
scheduling strategy in the existing OS. However, considering the complexity of
existing OSs, this would be impractical. Our CARIC-DA offers a more practi-
cal approach which can be easily implemented as pure middleware over existing
software, with no modification being needed in either the DBMS or the OS.

3.1 Design Overview

Different queries have different data needs, and this determines how much a
query can benefit from accessing accumulated private-cache data. Therefore,
we should co-run different queries according to their data needs. In principle,
the following two points are critical to achieving good private-cache utilization.
First, we make queries that access data in the same value range co-run on the
same processor core. This strategy can enable a query to reuse the cached data
loaded by a forerunner. Second, we make queries that access data in different
value ranges run on different processor cores. This is because queries with the
same data needs that co-run with a query with different data needs will cause a
cache-pollution problem in which the frequently accessed data are replaced by
one-time-accessed data. Our CARIC-DA framework broadly follows these two
principles and achieves its goal by the two-step strategy described below.

1. Data Set and DB-process Binding. The first step is for CARIC-DA to asso-
ciate each DBP with a disjoint subset of the DB and to ensure that queries
that access data in the same subset are executed by the same DBP. As an
example, consider a table with 3k lines. Suppose that there are three DBPs,
namely DBP1, DBP2, and DBP3, in our system. Each DBP can access a
disjoint subset of 1k lines, such as DBP1 accessing the lines numbered 1–1k.
All queries that access lines numbered 1–1k will be dispatched for execution
by DBP1, which can access the data in this subset, but queries with a data
need for line number 1500 will be assigned to DBP2.

2. DB-process and Processor-core Binding. Second, we aim to force each DBP
to run only on a specific processor core by setting the CPU affinity for each
DBP. The core affinity setting is achieved via a function provided by the
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Fig. 2. Extensions of the CARIC-DA framework to conventional DBMSs

Linux OS called the CPU affinity. For example, if a CPU affinity of 1 is set
for DBP1, this DBP will always run on processor core 1 and will never be
scheduled for any other processor core by the OS.

In the first step, we create a binding between a data set and a DBP. In the
second step, we create a binding between a DBP and a processor core. In this
way, we reach the goal, namely bindings between data sets and cores. For the
example, all queries that access lines numbered 1–1k are dispatched to run on
processor core 1. In addition, all queries accessing data in different subsets are
dispatched to run on other processor cores. This satisfies the two critical points
needed to achieve the good private-cache utilization described above.

3.2 Core Components of CARIC-DA

Figure 2 shows an overview of the CARIC-DA framework and its main com-
ponents, which extend an existing DBMS and OS by introducing a middleware
subsystem comprising several subcomponents.

The binding between data set and DBP is achieved by a logical partitioning of
the whole DB. A horizontal partition is adopted for each table. We first choose a
suitable field for a table, which serves as its partition key. A mapping strategy for
coupling the different partition key ranges with different DBPs is then formulated
and stored in our CARIC-DA as the range index (RI). If there are multiple tables,
the various tables are partitioned or overlapped, and mapped separately to all
DBPs. That is, each process is mapped to several subsets for the different tables.

Theoretically any field of a table can be served as a partition key. But in
practice the fields of the primary key of the table or only a subset of them can
achieve good results as we have seen in our experiments. For multi-tables, it’s
better to choose the keys which can be commonly used to well partition most of
the main tables (comparatively big and frequently accessed table). For example,
the primary key of the Customers table of the TPC-C database consists of the
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Warehouse id, the District id and the Customer id. The partition key fields may
be the Warehouse id and the District id. The Warehouse id and the District
id can also well be used to divide the other main tables. Furthermore, it is not
necessarily to divide all of the tables in the database, as it is a trade-off between
cache hit gain and query transfer cost.

The CARIC-DA processes (CDPs) use the mapping information provided by
the RI to dispatch queries to DBPs with different data needs into an appropriate
buffer in the query buffer memory (QBM). There is no physical partitioning of
the DB or changes to the original DBMS, because the mapping work is done by
the CDPs in terms of decomposing and dispatching the various queries according
to the RI while considering access skews. Instead of obtaining queries directly
from clients, each DBP only deals with queries in a specific buffer where the
queries access only a specific data set.

3.3 Query Processing in CARIC-DA

In a traditional DBMS, all queries coming from the same client connection are
always executed by the same DBP. In our CARIC-DA framework, CDPs commu-
nicate with the clients and dispatch the queries to different DBPs. For example,
in Figure 2, CDP2 receives a “select” query from a client. CDP2 first checks the
RI to identify the appropriate mapping between the data set related to this select
query and the DBPs. Suppose DBP1 can access the data set this query requires.
The query will then be put into Buffer1 in the QBM for checking by DBP1.
Whenever DBP1 detects there is a query request, it picks up the query from
Buffer1. The select query is executed and the answer is put back into Buffer1 by
DBP1. CDP2 then transfers the answer in Buffer1 back to the relevant client.

When dealing with a range query that accesses a large data range, the query
request can be divided into several subqueries that are transferred to several
different buffers. If queries require data that are mainly mapped to one DBP,
but that have a small portion (several lines of a table) being mapped to another
DBP, we may prefer to dispatch this kind of query to one DBP instead of two
different DBPs. This is because the query-and-answer transfer is an additional
overhead for our platform, compared with traditional DBMS implementations.
At the system level, if the query-dispatching function provided by the CARIC-
DA framework can bring sufficient improvement to the whole system, the query
transfer will be worth it. We can therefore suppose that a small imbalance will
not affect the overall performance, because the imbalance will relate to only a
few lines of the table and might not justify the extra query-transfer cost.

How to deal with cross-partition transaction is a challenge to our system as
not all of the data sets can be well partitioned in many applications. For trans-
actions which have lower isolation requirements, our middleware can decompose
one transaction into several sub-transactions and dispatch them to different par-
titions. However we avoid transactions which need very high isolation level to
cross different partitions. For the TPC-C benchmark, we assign the New-order
transaction to a specific partition according to the district it related leaving the
Item table no partitioned.
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3.4 Processor-Core Binding for DBPs

Our DBP and processor-core binding is achieved by the CPU-affinity func-
tion, which is the Linux-based ability to bind one or more processes to one
or more processor cores [12]. Other OSs, such as Windows Vista, have long
provided a system call to set the CPU affinity for a process. On most sys-
tems, the interface for setting the CPU affinity uses a “bitmask.” Each bit
indicates the binding of a given task to the corresponding processor core. In
Linux, 11111111111111111111111111111111=4,294,967,295 is the default affin-
ity mask for all processes. Because all bits are set to 1, the process can run on
any processor core. Conversely, the bitmask 1 is much more restrictive. With
only bit 0 being set, the process can run only on processor core 0.

In our framework, we set the CPU affinity for both of the DBPs and CDPs.
For data-intensive applications, the DBPs make large data-access demands and
mainly access the data in the DB. The CDPs make frequent accesses to the RI
and QBM. We therefore bind the CDPs and DBPs that access different data
sets to different processor cores to avoid cache-pollution problems.

3.5 Load Balancing

Our framework can not only maintain better cache locality, but also balance the
loads across different processor cores. For example, there were 1,000 queries, with
all of them using the same value range in a data set. Under the mechanism of
static partitioning, all the queries would be dispatched to run on a single proces-
sor core, which would cause load imbalance between processor cores and result
in poor performance. CARIC-DA attempts to balance the load between DBPs
by modifying the value range mapped to different DBPs and to synchronize the
CDPs in dispatching the queries, based on the new data-set mapping informa-
tion of the RI. The load-balancing process regularly gathers the query numbers
processed by each of the N DBPs as a measure of the load on each DBP (li) and
then calculates the sum of li as lsum. The DBP with the biggest load and the
DBP with the smallest load are identified. The load difference is calculated as
ldiff = lbig − lsmall and the skew is defined as skew =

ldiff

lsum
. Tolerating a small

load imbalance is achieved by omitting the rebalancing process whenever skew
is below a threshold. When the skew is bigger than a threshold, Algorithm 1 is
invoked to calculate new data sets (Ri is the range of the ith data set) for the
DBPs.

To describe the algorithm, let lave be the ideal load for each partition. Then

the ideal load for each partition is: lave =
∑N

i=1 li
N . In the first part of the algo-

rithm, we create Nsub subsets by dividing the ranges with li > lave into subsets.
We denote the load and range of each subset as sli and sRi, respectively. We
ensure that sli < lave during the partition process and calculate the data range
sRi for the subsets. In the next part of the algorithm, we merge these subsets
into N data sets that have li = lave. The new data set information will then be
written back to the RI and all CDPs are synchronized to dispatch the queries
according to the new RI.
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Algorithm 1 Calculating new value ranges for DBPs

Create Nsub subsets by dividing sets with li > lave into subsets
Let SN be the serial number of sub-sets, SN ← 1
for i in [1, N ] do

if li > lave then
divide the data set into μ sub-sets where μ ← � li

lave
�;

calculate the load and range for each sub-set SN as slSN ← li
μ
, sRSN ← Ri

μ
,

SN ← SN + 1;
else

slSN ← li, sRSN ← Ri, SN ← SN + 1;

Merge Nsub subsets into N sets with li = lave, j ← 1
for i in [1, N ] do

li ← lave, Ri ← 0
while li > slj do

merge sub-set j into set i (Ri ← Ri + sRj), li ← li − slj , j ← j + 1
if li > 0 then

merge a part of sub-set j into set i (Ri ← Ri+
li
slj

× sRj), sRj ← 1− li
slj

× sRj

.

4 Performance Evaluation

We implemented the CARIC-DA-related functions in the C language as a mid-
dleware subsystem over the existing DBMS (PostgreSQL) and the OS (Linux).
The Oprofile [13] was used to examine the hardware-level performance. We com-
pared our CARIC-DA–PostgreSQL system against an unmodified PostgreSQL
system (Baseline) to investigate the efficiency of our proposed framework.

We used a 48-core DB-server machine for answering clients’ queries. The DB-
server machine had four sockets, with a 12-core AMD Opteron 6174 processor
per socket [5]. Each core had a clock speed of 2.2 GHz and had a 128-KB L1
cache and a 512-KB L2 cache. All 12 cores of a processor shared a 12-MB L3
cache. The server had 32 GB of off-chip memory, and two 500-GB hard-disk
drives. Each of the four client machines had a Intel Xeon E5620 CPU and a 24-
GB memory. To prevent the I/O subsystem from becoming a bottleneck, we set
the value of shared buffers to 20 GB for the PostgreSQL. This setting ensured
that all DB tables in the following experiments could fit in main memory.

We first used a microbenchmark evaluation to isolate the effects and to provide
in-depth analysis. We then used the TPC-C benchmark [8] to further verify the
effectiveness of our proposal. Our evaluation covered seven areas.

(1)Different core-affinity strategies in our CARIC-DA system.
(2)The separate impacts of CARIC-DA on performance of select-intensive and

insert-intensive workloads.
(3)The scalability of CARIC-DA.
(4)The advantages of CARIC-DA for different cache levels.
(5)The performance of CARIC-DA with data sets of different size.
(6)The efficiency of CARIC-DA when dealing with skewed data sets.
(7)The efficiency of CARIC-DA in handling the TPC-C benchmark.
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Fig. 3. Uniform mixing of
CDPs and DBPs in each
Node

Fig. 4. Clustering CDPs
or DBPs in each Node

Fig. 5. Performance
under different core-
affinity settings

4.1 Core Affinity in CARIC-DA

We first decided how to set the core affinity for the various DBPs and CDPs in
our CARIC-DA system. Figure 3 shows the physical location relationship for the
different logical cores. There are four processors in our platform, with different
physical IDs. In each processor, there are 12 cores with different logical IDs,
shown as several squares located in the two Nodes [14]. We examined the perfor-
mance under two core-affinity strategies for a system with 24 CDPs and 24 DBPs
using the select-intensive transaction from the microbenchmark. Each transac-
tion randomly accesses one line of a TPC-C stock table.

(1)Uniform Mixing: a mixture of DBPs and CDPs in one Node structure
(Fig. 3).

(2)Clustering: all CDPs are bound to cores located in Node 0 and all DBPs
are bound to cores located in Node 1 (Fig. 4).

The average response time with 24 concurrent clients is shown in Figure 5.
The strategy involving the uniform mixing performs better than the strategy
of clustering. Each Node is an integrated-circuit device that includes several
CPU cores, up to four links for general purpose communication to other de-
vices (such as an L3 cache, main memory interfaces). Compared with the CDP,
the DBP is data intensive and makes frequent data requests to both cache and
memory. In the clustering strategy, all six data-intensive DBPs are bound to
the same Node, leading to intensive competition for the shared Node resources.
The competition results in a longer L3-cache and memory-access latency and a
comparatively worse performance. Therefore, we used the uniform-mixing strat-
egy exclusively for the CARIC-DA system in subsequent experiments.

4.2 Microbenchmark Evaluation

In the select-intensive experiment, clients repeatedly send select transaction re-
quests. The select transaction for the microbenchmark has only one query re-
quest for a specific line in the table. In a similar fashion, the insert transaction
request comprises one record-insertion operation. We prepared a DB with only
one table, namely a stock table from TPC-C comprising 100,000 lines. Both
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Fig. 6. Effectiveness of the CARIC-DA framework for sep-
arate select-intensive and insert-intensive transactions

Fig. 7. Throughput of
CARIC-DA systems

select and insert operations randomly generated search keys within the data
range of the 100,000 lines. For CARIC-DA system, we separately set up 3, 6,
12, and 24 CDPs, and 3, 6, 12, and 24 DBPs. There were also 3, 6, 12, and
24 clients, with different clients connecting to different CDPs. In Baseline sys-
tem, the clients connected directly to the PostgreSQL.

Figure 6 (a) indicates that the select operation can benefit significantly from
our CARIC-DA architecture. When there were 24 concurrent clients, the select
transactions are executed 33% faster under CARIC-DA. These results demon-
strate the effectiveness of our CARIC-DA framework in providing better perfor-
mance for select-intensive workloads. However, insert-intensive operations did
not benefit from our CARIC-DA framework. For each insert operation, the re-
lated DBP has to access not only the table data but also some common data,
such as index data and metadata. For example, two DBPs have to update the
same node of the index if the index node is already cached by different DBPs.
The data in one cache will be updated, but this update operation will invalidate
the copy of the data in the other cache. This kind of cache-conflict problem,
caused by accessing common data, cannot be avoided in either the Baseline
system or the CARIC-DA system. The extra transmission cost of queries in
CARIC-DA will then lead to a worse overall performance than for the Base-
line system.

4.3 Performance of CARIC-DA under Different Loads

We set up 24 CDPs and 24 DBPs in the DB-server section and repeated the
select-intensive experiment. We gradually increased the number of concurrent
clients to 78 clients. For 78 concurrent clients, the throughput of the CARIC-
DA system is 48% higher than the Baseline system (Fig. 7). The Baseline system
can linearly scale to about 36 concurrent clients, with the rising trend of overall
throughput greatly reducing when there are more than 36 concurrent clients.
This is because the memory bandwidth limits the performance as the number of
concurrent clients increases. In contrast, the 24CDPs–24DBPs system with its
well-designed cache accesses does not show such a decrease in the rising trend
in overall throughput. The CDP will generate one client thread to deal with
the queries in one client connection, and we use the System-V semaphores to
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Fig. 8. Cache miss rates

synchronize the accesses to the QBM by these threads. With an increasing num-
ber of concurrent clients, any untimely scheduling of these semaphores will affect
the system performance and result in a nonlinear throughput growth for the
CARIC-DA system. We also set up two new CARIC-DA systems with 12CDPs–
36DBPs and 8CDPs–40DBPs, respectively (Fig. 7). With reducing numbers of
CDPs, there are more client threads bound to the same core. The performance
of the CDPs limits the overall performance of the 8CDPs–40DBPs system. The
select-intensive transaction is very short and the frequent query-and-answer
transfers between clients and DBPs greatly stress the CARIC-DA middleware.

4.4 Cache Utilization

We repeated the select-intensive experiment for 24CDPs–24DBPs system, and
measured the cache miss rate for the various cache levels separately to confirm
that CARIC-DA is efficient because of its outstanding performance at the var-
ious cache levels. The miss rate is the percentage of misses per total number of
instructions. We observed that the L1 data-cache miss rate increases from 0.73%
to 0.84% as the number of concurrent client threads increases in the Baseline
system (Fig. 8 (a)). However, for the CARIC-DA system, the L1 data-cache miss
rate appears to be only slightly increased (from 0.78% to 0.79%). The CARIC-
DA system can also improve the L1 instruction-cache performance by up to 10%
(Fig.8 (b)). This is because all DBPs are restricted to running on a specific pro-
cessor core, which can avoid frequent context switching in each core. The biggest
cache performance improvement comes from the L2 cache, with an almost 56%
reduction in cache misses compared with that for the Baseline system (Fig. 8
(c)). We also observe that the miss rate for the shared L3 cache can be reduced
by 21% (Fig. 8 (d)).

4.5 Performance of CARIC-DA for Data Sets of Different Sizes

In this section, we describe the effectiveness of our proposal for a variety of
data sets. We compared the average response time and cache utilization of
the select-intensive application with 48 concurrent clients for a 24CDP–24DBP-
based CARIC-DA system with those for the Baseline system, as shown in Figure
9. When increasing the data set to the much larger size of 1,130 MB (3,000,000
tuples), the performance gap between the CARIC-DA system and the Base-
line system narrowed (Fig. 9 (a)). The diminished advantage of our proposal
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Fig. 9. Performance for data sets of different sizes

with very large data sets derives from our RI-based data-access strategy. In the
CARIC-DA system, the L2 cache accesses a smaller subset, whereas the Base-
line system’s L2 caches each access the whole data set. However, as the size of
the whole data set greatly increases to 1,130 MB, the subset size in our pro-
posal is also greatly increased (to 47 MB). The sizes of both the whole data set
and our subset are much beyond the capacity of the small L2 cache (512 KB).
The size difference between the subset in our proposal and the whole data set in
the Baseline system becomes less significant when compared with the size of the
very small L2 cache, and the performance difference between the two systems
decreases. For a real-world workload, data access is skewed and the frequently
accessed data set is much smaller than the whole DB. Taking this data-access
skew into account, our CARIC-DA system shows impressive advantages when
dealing with GB-sized data sets, in comparison with the Baseline system.

4.6 Performance of CARIC-DA with Skewed Data Access

We use data sets of 3,000,000 tuples (table size 1,130 MB), 10,000,000 tuples
(table size 3,766 MB), and 15,000,000 tuples (table size 5,649 MB). Fig. 10 plots
the average response time for select-intensive transaction for the data set of
3,000,000 tuples. We calculate the average response time every 10 seconds. Ini-
tially, the distribution of the queries is uniform for the entire data set. However,
at time point 50, the distribution of the load changes, with 50% of the queries
being sent to 10% of the data set (Zipf (0.75) distribution ). We did not use the
dynamic load-balancing function of the CARIC-DA system until time point 100.

After the load change, the performance of the Baseline system improved
slightly, while the performance of the non-load-balanced CARIC-DA system
dropped sharply. After enabling dynamic load balancing in the CARIC-DA sys-
tem, the performance improved dramatically, outperforming the Baseline system
by 39%. For the other two data sets, the dynamic-load-balanced CARIC-DA
system achieved improvements of 41% and 40% above the Baseline system’s
performance. These results confirm the efficiency of our proposal when dealing
with skewed data sets and also substantiated the claim that skew favors the
CARIC-DA system (the advantage is increased from 7.3% to 41%).
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Fig. 10. Performance
with skewed data access

Fig. 11. Throughput
for TPC-C benchmark

Fig. 12. Performance for
different transactions

4.7 TPC-C Benchmarking

We used a 24-warehouse TPC-C data set (∼4.8 GB). For the CARIC-DA system,
we set up 4 CDPs and 44 DBPs and evenly partitioned the 24 warehouses at the
district level. For each transaction, the CDP has only to find the appropriate
buffer in the QBM for the first query of the transaction, with any follow-up
queries directly accessing the same QBM. By monitoring the CPU usage of
CDPs we founded out that CDPs did not need a lot of CPU and 4 CDPs were
sufficient for TPC-C transactions. As shown in Figure 11, the CARIC-DA system
outperforms the Baseline system by 10% to 25%.

The average response times for the five kinds of transactions are shown in
Fig. 12. The CARIC-DA system can optimize the execution time for New-order
transactions by 7% and can greatly optimize the Stock-level transactions by 18%.
The Stock-level transactions will retrieve item information for the most recent
20 orders in a specific district. In our system, a specific DBP only processes the
New-order transactions, which will also access the item information for a specific
district. When a Stock-level transaction follows a New-order transaction, there
is a higher possibility of the item information for recent orders existing at the
private-cache level. For the Baseline system, specific DBPs have to deal with
the New-order transactions from all districts. For recent-order information in
a specific district, therefore, the private-cache hit possibility will be relatively
low. This explains why Stock-level transactions demonstrate great performance
improvements for our proposed system. In the high-concurrency experiment, the
New-order transactions can be further optimized by 11%. For concurrent trans-
actions, more New-order transactions benefit from the CARIC-DA approach,
compared with the no-concurrency situation. In addition, we observed that the
CARIC-DA system can achieve lower abort rates for New-order transactions.
The concurrent transactions which update the same data in a specific district
may cause the serialization error in the Baseline system with the isolation level
of serializable. In the CARIC-DA system, these concurrent transactions will be
sequentially processed and lead to less serialization error. This is the other reason
for the 25% throughput improvement with the CARIC-DA system.
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5 Conclusions

In this paper, we introduced CARIC-DA, which is the first work addressing
the problems for DBMSs of private caches on multicore platforms. Considering
the different access skews in both of the transactions and data subsets, even
the whole database for the real world OLTP applications might be in different
sizes, the primary working sets are small and can be captured in modern LLC.
We researched on the possibility to bring the primary working set beyond the
LLC and closer to processor core (in the private cache levels). We give several
insights about how individual cache levels contribute towards improving per-
formance through detailed experiments and highlight the role of the L2 cache.
CARIC-DA is implemented as pure middleware, enabling the existing DBMS to
be used without modification. Not only can it maintain better locality for each
core’s private cache, but it can also balance loads dynamically across different
cores. Experiments show that the L2 cache miss rate can be reduced by 56%
for select-intensive transactions and the throughput can be improved by 25%
for TPC-C transactions by using our CARIC-DA framework. In future work,
we will use other hardware platforms in additional experiments to investigate
the effectiveness of our framework. Providing better cache-access patterns for
decision support systems will also be a future challenge.
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