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Preface

Leukemias cause the greatest number of deaths of children in the developed world
and some developing countries. Advances in the treatment of this disease laid the
foundation for much of what is known today about the treatment of cancer. In some
places in the world, survival rates of nearly 90 % have been attained for children
with leukemia. Despite these enormous achievements, not all countries have been
able to reach such survival rates for children with this disease. Even in countries
where cure of this illness is most probable, the anxiety that accompanies a diagnosis
of leukemia in the family and the suffering provoked by this disease underscore the
great necessity of seeking measures to prevent this disease. However, it is difficult
to prevent something when little is known about how and why it occurs. Nevertheless,
in the history of medicine there have been examples showing that, despite not
knowing with precision the cause of a disease, the fact of having a “theory” or a
theoretical model that supposes the causes leading to the occurrence of that disease
can lead to prevention of the illness. Such was the case of cholera in London in the
time of John Snow (1813—1858). In the mid-nineteenth century the cause of cholera
was not known, but Snow’s theoretical model of the pattern of outbreak of the
disease permitted him to postulate measures to end the outbreak.

The objective of this book is to expand a little more on what is known about the
origin of childhood leukemias. Although this volume contains some theoretical
aspects concerning the origin of childhood leukemia, the major portion of the con-
tent focuses on the different aspects that permit us to understand how leukemia
originates in children. First, a series of definitions is presented, followed by a dis-
cussion of the different environmental considerations that have been proposed and
studied as contributing factors in the development of leukemia. In addition to the
factors associated with the development of leukemia, another aspect, time, is con-
sidered as a variable—a window of vulnerability in a child’s life when environmen-
tal factors may more readily affect the child, thereby enabling the development of
the disease. Thereafter, an analysis of the possible role of some viruses in the devel-
opment of leukemia, most notably lymphocytic T-cell leukemia, is presented.

A later chapter describes one of the most interesting models aimed at
understanding childhood leukemia: the origin of leukemia in children with Down
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syndrome. Myeloid and lymphoid leukemias in the child with Down syndrome have
presented the medical and research community with a great opportunity for
understanding how this disease develops. Further chapters deal with other interesting
topics, such as the molecular origin of lymphoid leukemias in children, and how a
niche in the bone marrow can contribute to the development of leukemia. Lastly a
theoretical model is presented, which attempts to integrate all the aspects described
in the preceding chapters, thereby allowing researchers to understand more about
how acute leukemia begins in children and, as a result, to begin to visualize possible
strategies for the prevention of this type of cancer.

This book is the commencement of a vast project—trying to understand the etiol-
ogy of acute leukemias in children. The authors do not pretend that the ideas con-
tained this book describe the manner in which leukemia originates; rather, the
authors present data, ideas, and theories that may serve as starting points from
which investigators will be able to further the understanding of how the factors
involved in this disease interact.

In the continuing study of the causes and origin of leukemias in children, I think
it imperative that the research be conducted in a more integrated manner, such that
advances made in the various disciplines are woven together to achieve a better
understanding of, and possibly the development of an integrated theory for,
leukemias in children. For the epidemiologist, molecular biologist, cellular biologist,
and those pediatricians and hematologists interested in the origins of childhood
leukemia, this book will provide a general vision of this disease from the point of
view of researchers who have been working in this field. The readers will be the best
critics and a major stimulus for a reinvigoration of these research efforts, such that
more theories on leukemias in children may be combined, thus producing a broader
panorama of the origin of this illness in children.

México, D.F., Mexico Juan Manuel Mejia-Aranguré
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Chapter 1
Introduction: Childhood Leukemia

Aurora Medina-Sanson

Abstract Childhood leukemia is universal, with the same molecular mechanisms
at play in children of different genetic and environmental backgrounds. Leukemia is
regional as well, and the factors that influence its occurrence and outcome can be
affected by ethnic, environmental, geographic, and social circumstances. Childhood
leukemia is also unique for every person, such that two individuals with apparently
the same disease can respond in a different way to the same treatment and exhibit a
different toxicity pattern.

As an introduction to this book, this chapter contains an overview of childhood
acute leukemias, covering the relevant aspects of the two main subtypes that occur
in pediatric patients, with the aim of providing a basis for the understanding of this
heterogeneous group of malignancies.

Keywords Childhood leukemia ¢ Overview

General Issues

Leukemias comprise a heterogeneous group of neoplastic disorders resulting from
a multistep process through the interaction of several acquired genetic alterations in
a specific stem/progenitor hematopoietic cell population. The progeny of the trans-
formed cell form a clone of leukemic cells that is capable of indefinite
self-renewal.

The cells of the leukemic clone proliferate without maturing to end cells and
dying; uncontrolled expansion of these malignant hematopoietic cells interferes
with normal hematopoiesis, and leukemic cells eventually spread through the
circulation and invade tissues and organs outside the bone morrow. The cell in
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which the leukemic transformation occurs may be a lymphoid precursor, a myeloid
precursor, or a pluripotent hematopoietic stem cell, giving rise to a number of leu-
kemia subtypes.

The causes of childhood leukemia are not well understood, and the pursuit of
causative factors has spanned more than half a century, focusing on infectious,
genetic, physical, and chemical theories. Although several epidemiological risk
factors have been identified, most of them are unproven or controversial and only a
few have so far been conclusive; these include some inherited syndromes, inherited
immune conditions, a brother or sister with leukemia, immune system suppression,
history of exposure to high levels of radiation, or exposure to antineoplastic agents
and other chemicals such as benzene (Buffler et al. 2005).

In virtually all countries, leukemia is the most commonly diagnosed form of
cancer in childhood, accounting for about 25-35 % of all cancers occurring before
the age of 15 years.

Classification of Leukemia

Leukemias are broadly classified into acute and chronic and further subdivided into
lymphoid and myeloid according to their cellular origin. In children, approximately
80 % are acute lymphoblastic (also called lymphocytic or lymphoid) leukemia
(ALL), around 17 % are acute myeloid (also termed myelocytic, myelogenous, or
non-lymphoblastic) leukemia (AML), and the remaining 2-3 % are essentially
Philadelphia chromosome-positive chronic myelogenous leukemia and juvenile
myelomonocytic leukemia (Gloeckler et al. 1999). Each leukemia subtype represents
a heterogeneous group of disorders that exhibit differences in pathophysiology,
morphology, immunophenotype, cytogenetic/molecular characteristics, clinical
behavior, response to treatment, and prognosis.

The study of several detectable features in leukemic cells at diagnosis has enabled
the classification of childhood leukemias from different perspectives: morphological,
immunobiological, and cytogenetic. However, at present the classification of acute
leukemia is evolving into increasingly complex entities, since important biological
differences are becoming recognized. Therefore, the new classification systems
integrate the key morphological features of leukemia cell types, immunophenotype,
and cytogenetic/molecular characteristics.

The first internationally accepted system was a morphological classification
proposed by the French-American-British (FAB) Cooperative Group in 1976
(Bennett et al. 1976) and reviewed in 1985 (Bennet et al. 1985). This system
requires examination of peripheral blood and bone marrow smears and perfor-
mance of differential counts. For the diagnosis of acute leukemia, the FAB
scheme arbitrarily set the percentage of bone marrow blast cells at 30 % or
more.
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This classification included three subtypes of ALL (L1, L2, and L3) and eight
subtypes of AML (MO to M7), which were differentiated based on morphological
characteristics and immunophenotypic profile or electron microscopic characteris-
tics for those cases that could not be accurately identified by morphology.

For AML diagnosis, the FAB classification established that at least 30 % of
non-erythroid cells must be blast cells, with lymphocytes, plasma cells, and macro-
phages also being excluded from the differential count of non-erythroid cells.

According to the 1982 reviewed-FAB system, M0 designates AML with mini-
mal morphological or cytochemical differentiation. M1 and M2 AMLs have mini-
mal or moderate granulocytic differentiation, and the myeloperoxidase (MPO) or
Sudan black B (SBB) stains are positive in more than 3 % of the blasts; M2, unlike
M1, exhibits maturation at or beyond the promyelocyte stage. M3 is the acute
promyelocytic leukemia (APL), which has a variant form (M3v), MPO and SBB
reactions are strongly positive, and the presence of the characteristic morphologi-
cal features of APL is diagnostic despite blast cell percentage. M4 refers to AML
with mixed myelomonocytic differentiation; it has positivity for SBB or MPO and
both specific and nonspecific esterase. M5 is the monoblastic leukemia, distin-
guished from the others because 80 % or more of all non-erythroid cells in the
bone marrow are monocytic cells; MS5a has a maturation index <4 % and M5b
>4 %; the monoblasts and promonocytes in acute myelomonocytic (M4) and
monoblastic/monocytic (M5) leukemia are considered as “blast equivalents”
when the percentage of blasts is calculated; a-naphthyl butyrate esterase is spe-
cific and exhibits a strong reaction, whereas MPO and SBB show weak diffuse
reactivity. In case of erythroid predominance, a diagnosis of AML M6 can be
made when >50 % erythroblasts of total nucleated cells and at least 30 % of non-
erythroid cells are blast cells; M6a is a myeloid leukemia with dysplastic back-
ground erythropoiesis and M6b, acute erythroblastic leukemia; unlike normal
erythroblasts, M6 AML erythroblasts, especially pronormoblasts, present coarse
positivity of periodic acid-Schiff (PAS). M7 designates acute megakaryoblastic
leukemia, whose diagnosis is usually made by immunophenotyping using platelet
antigens such as CD41, CD42, and CD61 or ultrastructural examination; mega-
karyoblasts exhibit positivity for acid phosphatase and a-naphthyl acetate esterase
reaction and a negative reaction with a-naphthyl butyrate esterase; they are nega-
tive for MPO, SBB, and chloroacetyl esterase, whereas PAS is only positive in the
more mature cells.

For ALL, the distinction between L1 and L2 is no longer relevant because mor-
phology does not predict immunophenotype, genetic abnormalities, or clinical
behavior. The L3 subtype of ALL represents the leukemic phase of high-grade
Burkitt, non-Hodgkin lymphoma with a mature B-cell immunophenotype, and its
identification has therapeutic implications. ALL is currently characterized only
according to immunophenotype and cytogenetic/molecular features.

The FAB classification allowed uniform diagnosis and classification of leukemias
over three decades but has been largely abandoned in practice.1994 Saw the
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publication of the Revised European-American Lymphoma (REAL) Classification
system, which included all lymphoid leukemias and lymphomas recognized until
that time. This system classified lymphoid malignancies as B-cell neoplasms, T-cell
and putative natural killer cell neoplasms, and Hodgkin’s disease. In its approach to
leukemias, the REAL system used the FAB group model but also considered clinical
features and genetic characteristics. The REAL Classification is still used by some
pathologists and clinicians (Harris et al. 1994).

Leukemia has also been extensively classified from an immunological point of
view. According to the primary lineage, acute leukemias can be either myeloid or
lymphoid precursor neoplasms, which are subdivided into B-cell precursor (BCP)
or T lineage. Uncommon cases that cannot be assigned to one lineage are diagnosed
as having ambiguous lineage leukemia, including both acute undifferentiated
leukemia and mixed phenotype acute leukemia (also known as acute biphenotypic
or hybrid leukemia).

The EGIL group (European Group for the Immunological Characterization of
Leukemias) proposed in 1995 a system to establish a guideline for the characterization
of acute leukemias based on the expression of individual cluster of differentiation
(CD) markers to provide a uniform basis for the diagnosis of the various development
subgroups. It classified acute leukemia as B- or T-lineage ALL, AML, or
biphenotypic. The consensus established a 20 % minimum threshold to define a
positive reaction of blast cells to a given monoclonal antibody (Bene et al. 1995).
However, the EGIL system has several limitations and has not been widely used for
childhood leukemia.

The World Health Organization classification for hematopoietic and lymphoid
neoplasms, developed in 2001 and revised in 2008, was superior to the previously
proposed schemes and is currently the most widely used classification system for
acute leukemias (Swerdlow et al. 2008; Vardiman et al. 2009). For both lymphoid
and myeloid leukemias, this classification contributed toward improving the entities
previously defined. It essentially follows the FAB morphological, cytochemical,
and immunophenotypic criteria but requires cytogenetic/molecular analysis of
leukemic blasts.

The threshold for the diagnosis of AML was decreased from 30 % to 20 % in
bone marrow, and those patients with the recurrent karyotypic abnormalities t(8;21)
(922;922), inv(16)(p13q22), or t(16;16)(p13;922), and t(15;17)(q22;ql2) are
considered to have AML despite blast percentage. With respect to ALL, there is no
agreed-upon lower limit for the percentage of blasts needed to definitively diagnose
lymphoblastic leukemia, but it is advised that diagnosis be avoided when there are
fewer than 20 % blasts.

This group also outlined the criteria for ambiguous lineage, where most cases are
classified as mixed phenotype acute leukemia, although acute undifferentiated
leukemias and natural killer lymphoblastic leukemias are also included. Table 1.1
describes the World Health Organization (WHO) classification of the lymphoid and
myeloid neoplasms and the criteria to define ambiguous lineage leukemia.
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Table 1.1 WHO classification of acute leukemias

Subtype

Description

Precursor lymphoid neoplasms

B lymphoblastic
leukemia/lymphoma not
otherwise specified
(NOS)

B lymphoblastic
leukemia/lymphoma with
recurrent genetic
abnormalities

T lymphoblastic
leukemia/lymphoma

Acute myeloid leukemia

AML with characteristic
genetic abnormalities

AML with multilineage
dysplasia

AML and MDS, therapy
related

AML NOS

B lymphoblasts are almost always positive for the B-cell markers
CD19, cytoplasmic CD79a and cytoplasmic CD22, CD10, surface
CD22, CD24, PAXS, and TdT, whereas CD20 and CD34 are
variable; CD13 and CD33 may be expressed
Includes
B lymphoblastic leukemia/lymphoma with t(9; 22)(q34; q11.2);
BCR-ABLI
B lymphoblastic leukemia/lymphoma with t(v;11q23); MLL
rearranged
B lymphoblastic leukemia/lymphoma with t(12;21)(p13;
q22);TEL-AMLI (ETV6-RUNX1)
B lymphoblastic leukemia/lymphoma with hyperdiploidy
B lymphoblastic leukemia/lymphoma with hypodiploidy
B lymphoblastic leukemia/lymphoma with t(5; 14)(q31; q32);
IL3-IGH
B lymphoblastic leukemia/lymphoma with t(1; 19)(q23; q13.3);
E2A-PBXI1(TCF3-PBX1I)
T lymphoblasts are usually TdT positive and variably express
CDla, CD2, CD3, CD4, CD5, CD7, and CD8; CD10 may be
positive

Includes

AML with translocations between chromosomes 8 and 21
[t(8;21)]
AML with inversions in chromosome 16
AML with translocations between chromosomes 15 and 17
[t(15;17)]

In general, these patients have a higher rate of remission and a
better prognosis compared with other types of AML
Includes patients who have had a prior myelodysplastic syndrome
(MDS) or myeloproliferative disease that transforms into
AML. This occurs most often in elderly patients and often has a
WOrse prognosis
Includes patients who have had prior chemotherapy and/or radiation
and subsequently develop AML or MDS. These may have specific
chromosomal abnormalities and often carry a worse prognosis
Includes other subtypes of AML that do not fit into the above
categories (AML with minimal differentiation, AML without and
with maturation, acute myelomonocytic leukemia, acute
monoblastic and monocytic leukemia, acute erythroid leukemia,
acute megakaryoblastic leukemia, acute basophilic leukemia, and
acute panmyelosis with myelofibrosis)

(continued)
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Description

Acute leukemia of ambiguous lineage

Acute undifferentiated
leukemia (AUL)

Mixed phenotype acute
leukemia (MPAL) with
t(9;22)(q34;q11.2);
BCR-ABL1

Mixed phenotype acute
leukemia with t(v;11q23);
MLL rearranged

Mixed phenotype acute
leukemia, B/myeloid,
NOS

Mixed phenotype acute
leukemia, T/myeloid,
NOS

Mixed phenotype acute
leukemia, NOS-rare types

Other ambiguous lineage
leukemias

Blasts lack T or myeloid lineage-specific markers MPO and cCD3
and do not express B-cell-specific markers such as cCD22,
c¢CD79a, or strong CD19

The great majority of cases have blasts meeting criteria for B and
myeloid lineage, though some cases have T and myeloid blasts.
Triphenotypic leukemia has also been reported. All cases have
either the t(9;22) translocation or the BCR-ABLI rearrangement
Presence of lymphoblast population CD19 positive, CD-10
negative, B-precursor (pro B) immunophenotype, frequently
positive for CD15; CD22 and CD79a are often weak. Cases also
fulfill criteria for myeloid lineage and a separate population of
myeloid, usually monoblastic leukemic cells, is commonly found.
All cases have MLL gene rearrangements

Blasts meet criteria for both B-lymphoid and myeloid lineage
assignment. Myeloperoxidase (MPO)-positive myeloblasts or
monoblasts commonly express myeloid-associated markers
including CD13, CD33, or CD117. Expression of more mature
B-cell markers, such as CD20, may occur

Blasts meet criteria for both T-lymphoid and myeloid lineage
assignment. MPO-positive myeloblasts or monoblasts commonly
express myeloid-associated markers including CD13, CD33, or
CD117. In addition to CD3, the T-cell component commonly
expresses other T-cell markers including CD7, CD5, and CD2

In some cases, leukemic blasts show clear-cut evidence of both

B- and T-lineage commitment. There are also few cases with
trilineage assignment

Leukemias express combinations of markers that do not allow
classification as either AUL or MPAL. Examples may include cases
with T-cell associated, but not T-cell--specific markers such as CD7
and CD5 without cytoplasmic CD3 along with myeloid-associated
antigens (CD13 or CD33) without MPO

Acute Lymphoblastic Leukemia

ALL incidence is around 41 cases per 1,000,000 individuals younger than 15 years
(Surveillance Epidemiology and End Results (SEER) 1975-2010; Shah and
Coleman 2007), but its global incidence has important variations, with the highest
rates in Costa Rica and the lowest in Mali and other African countries (Stiller and
Parkin 1996). Occurrence rate is higher in Caucasian populations of Europe and
North America (Stiller and Parkin 1996). Childhood ALL peaks between 1 and
7 years of age, although age variations have also been noted between individuals of
different geographical regions and socioeconomic backgrounds. In developed coun-
tries, the age distribution of ALL shows a major peak between 1 and 5 years of age,
with a slow decline toward adolescence (Gurney et al. 1995; Mc Nally et al. 2000;
Parkin 1988a), whereas in some developing countries, the diagnosis of ALL may be
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infrequent below the age of 5 years (Parkin et al. 2003; Williams 1984; Babatunde
et al. 2008).

In low-income countries or in poorer communities, a decreased leukemia
incidence has been reported internationally (Kroll et al. 2012), and higher
socioeconomic status has been associated with a higher risk of childhood ALL,
although the evidence for socioeconomic status contribution in ALL incidence is
not conclusive (Poole et al. 2006; Raaschou-Nielsen et al. 2004).

Explanations for this progress-related difference in leukemia incidence have
focused on the relationship between delayed exposure to infectious agents and
leukemogenesis. Development accompanies improvement in hygiene practices and
better health access and is expected to lead to a reduction in exposition to infections.
In addition, reduction in infant mortality might have also contributed to the higher
ALL incidence, since children survive and reach an age when they can develop a
malignant neoplasia. Affluence, industrialization, and urbanization, and an increase
to some degree in the number of people working in industry, may also be factors in
the exposition of children to leukemogens through parental occupation.

Variation in the global incidence of childhood leukemia may also result from the
hidden real epidemiology of the developing world. Many countries lack national
data registries and data sources, or the quality of the information is often inadequate
because of underdiagnosis, registration bias, and rate calculation artifacts. In this
context, comparisons between countries and epidemiological conclusions are
unreliable.

With respect to ethnicity, rates of ALL are higher in Hispanic children than in
any other ethnic/racial groups. Hispanics have 1.3 times of the risk for ALL
compared with non-Hispanic white children (Matasar et al. 2006; Perez-Saldivar
et al. 2011; Surveillance Epidemiology and End Results (SEER) 1975-2010;
Greaves et al. 1993; Linabery and Ross 2008). These differences between ethnic
population subgroups could suggest genetic predisposition, higher exposure to leu-
kemogens, or the interaction of both factors.

Genetics and Biology

Clonal chromosome abnormalities can be detected in 70-75 % of ALL children at
the time of diagnosis (Mrézek et al. 2009). These genetic changes commonly affect
cellular processes that control B- and T-cell differentiation and proliferation. The
molecular mechanisms by which various oncogenic proteins exert their function
and their respective effects are being extensively investigated.

Numerous genetic and biological features that influence leukemogenesis and
leukemia behavior have been identified as a result of the application of standard
diagnostic methods such as a conventional karyotype and polymerase chain reaction
(PCR) and through intensive research using the new genomic technologies. These
technologies include gene expression profiling, transcriptome profiling, whole-
genome sequencing studies, genome-wide analyses, genome-wide association
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studies (GWAS), mutation analysis, microsatellite analyses, and microarray and
non-microarray-based DNA methylation assays, among others.

Genetic alterations range from point mutations to gross gains and losses of
chromosomal material, other structural rearrangements, loss of heterozygosity, and
uniparental disomy. Epigenetic changes comprise silencing of gene expression via
DNA hypermethylation, aberrant methylation of CpG islands, histone modifications,
microRNA alterations, and dysregulation of DNA binding proteins. All these
changes can influence clinical behavior and drug effects (Paulsson et al. 2010;
Mullighan et al. 2007; Burke and Bhatla 2014). In addition to their diagnostic
importance, there is a growing body of evidence indicating the relevance of
cytogenetic aberrations in the identification of genes that play a central role in
leukemogenesis and in the understanding of the processes implicated in biological
and clinical behavior of childhood leukemia.

Chromosomal rearrangements (e.g., translocations, deletions, inversions,
duplications) are considered as the cytogenetic traits of acute leukemia and result in
the production of genetic mutations that play a direct role in the transformation of
hematopoietic stem cells. These recurrent chromosomal aberrations can be either
structural (balanced or unbalanced) or numerical. The balanced aberrations are
primarily reciprocal translocations, with rearrangement but without visible gain or
loss of chromosome material.

Translocations are produced by double-strand breaks in different chromosomes
or different regions of one chromosome, which are then recombined through non-
homologous end-joining mechanisms (Greaves and Wiemels 2003; Pfeiffer et al.
2000). They frequently result in fusion genes coding for chimeric proteins that have
a key role in leukemogenesis.

These well-established genetic alterations have been associated with specific
biological and clinical subtypes.

Genetic Subgroups

Genetically different ALL subtypes with individual gene expression profiling,
biology, and response to therapy include a number of BCP subgroups and T-cell
leukemias (Pui and Evans 1998; Yeoh et al. 2002).

The cytogenetic subgroups of precursor BCP-ALL comprise high hyperdiploidy,
hypodiploidy, the chromosomal translocations ETV6-RUNX1, BCR-ABL, and E2A-
PBX1, and the MLL gene rearrangements.

High hyperdiploidy is one of the largest cytogenetic subsets of childhood
ALL. Occurring in 25-30 % of the patients with BCP-ALL, it has been associated
with young age at diagnosis and low white blood cell (WBC) counts and is
uncommon in T-cell ALL (Paulsson and Johanson 2009). High hyperdiploidy is
characterized by specific nonrandom gains of extra chromosomes. Karyotypes
contain a chromosome number of 51-67 and the DNA index is >1.16. The most
common gained chromosomes are +21, +X, +14, +6, +18, +4, +17, and +10, each
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of which is gained in more than 50 % of hyperdiploid ALL patients, followed by
chromosomes 8, 5, 11, and 12, gains that occur more often in patients with 57 or
more chromosomes (Heerema et al. 2007).

Extreme hypodiploidy is defined as fewer than 44 chromosomes or a DNA index
below 0.81. It is estimated to occur in around 7 % of childhood ALL cases and has
been considered a separate subtype of childhood ALL, because international
analyses of large groups of hypodiploid ALL patients have found that those with 43
or fewer chromosomes have a very poor prognosis (Gadner et al. 2006; Heerema
et al. 1999; Raimondi et al. 2003).

The cytogenetically cryptic recurrent translocation t(12;21)(p13;q22)/ETV6-
RUNXI(TEL-AMLI) represents the most common chromosomal rearrangement in
childhood ALL, occurring in approximately 25 % of children. Patients are typically
young and have B-cell precursor ALL (Shurtleff et al. 1995). The ETV6-RUNX1
translocation results in the fusion of the dimerization domain of ETV6 to almost the
entire DNA binding and activating regions of the RUNXI/ gene, generating an
aberrant transcription factor (Golub et al. 1995; Zelent et al. 2004; Romana et al.
1995).

It is acquired prenatally during fetal hematopoiesis but requires additional
somatic mutations for overt leukemia, and through a slow mutational process ETV6-
RUNX-positive lymphoblasts are transformed, targeting the promoters, enhancers,
and first exons of genes that normally regulate B-cell differentiation (Papaemmanuil
et al. 2014).

The translocation t(9;22)(q34;q11.2)/BCR-ABLI, also known as the Philadelphia
chromosome, occurs in 1-3 % of children ALL, is almost exclusively correlated to
precursor B-cell ALL, and is more frequent in older patients with high WBC counts
at diagnosis (Forestier et al. 2000). This translocation leads to the production of a
chimeric protein with augmented tyrosine kinase activity that causes activation of
numerous cell-signaling pathways, contributing to transformation of hematopoietic
cells.

The translocation t(1;19)(q23;p13)/TCF3-PBX1(E2A-PBX]) is associated with
pre-B ALL and results in the fusion of the TCF3 gene on chromosome locus 19p13
with the PBX1 gene on chromosome locus 1q23, generating a chimeric transcription
factor that contains the N-terminal transactivation domain of TCF3 fused to the
C-terminal DNA binding homeodomain of PBXI. The chimeric oncoprotein is
generally a transcriptional activator that seems to interfere with key regulatory
pathways and functions of leukemia biology, including the WNT and apoptosis/cell
cycle control pathways, and thus may comprise an essential component for the
propagation and maintenance of the leukemic process (Diakos et al. 2014). African-
American children have a higher frequency of pre-B ALL with the t(1;19) translo-
cation (Pui et al. 2003b).

Rearrangements in the mixed-lineage leukemia (MLL) gene localized at 11q23
occur in approximately 5 % of childhood ALL patients. The most common of them
is the t(4;11)/ALLI-AF4 translocation, which results in the ALL1-AF4 fusion
protein (Raimondi et al. 1989; Harrison et al. 2005). This translocation is mainly
correlated with pro-B immunophenotype and is almost exclusive of infants, who
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typically present with high WBC counts and have a higher incidence of central
nervous system (CNS) leukemia. Translocations lead to a breakage in the MLL gene
where the 5’ part of this gene is retained on the derivative chromosome 11 and fused
with the 3’ part of the partner gene (De Braekeleer et al. 2010). Blasts from infants
with MLL rearrangements are typically CD10 negative and express high levels of
FLT3 (Armstrong et al. 2002).

Approximately one-quarter of B-ALL patients lack the characteristic
chromosomal rearrangements (Pui et al. 2004), but recent studies including the new
genome technologies have identified other recurring molecular genetic abnormalities
with prognostic significance in ALL patients. These include IKZFI deletions,
CRLF?2 overexpression, and JAK2 mutations.

Ikaros (IKZF1) was the first identified member of a family of zinc finger
transcription factors. The function of IKZF1 during early hematopoiesis is required
for differentiation into the three major hematopoietic lineages (Yoshida et al. 2006;
Georgopoulos 2009; Georgopoulos et al. 1994; Dumortier et al. 2003, Dijon et al.
2008). Deletions of IKZF have been identified in about 30 % of high-risk B-cell
precursor (BCP)-ALL and in 83.7 % of BCR-ABLI ALL (Sun et al. 1999; Mullighan
et al. 2007, 2008).

There is also a subgroup of patients with high-risk BCR-ABLI-negative ALL that
is characterized by IKZF I deletion and a genetic profile similar to that of cases with
BCR-ABLI fusion; they have been referred to as Philadelphia-like ALL (Den Boer
et al. 2009).

Some studies have reported an association of IKZF1 deletions with CRLF?2
(cytokine receptor-like factor 2) overexpression and JAK2 (Janus kinase 2)
mutations (Harvey et al. 2010).

The CRLF?2 gene encodes for a type I cytokine receptor that is overexpressed in
approximately 15 % of high-risk pediatric B-ALL that lack MLL, TCF3, ETV6, and
BCR/ABL rearrangements. Its ligand (the thymic stromal lymphopoietin or TSLP)
mediates B-cell precursor proliferation and survival (Levin et al. 1999; Yoda et al.
2010). CRLF2 overexpression occurs at a high incidence in Down syndrome (DS)-
ALL patients (Russell et al. 2009). The majority of DS-ALL patients who
overexpress CRLF2 also have JAK2 mutations, but the association of CRLF2
deregulation with mutations of the JAK2 gene has also been found in non-DS
patients, suggesting an oncogenic cooperation between these two events in the
pathogenesis of BCP-ALL (Russell et al. 2009).

The frequency of activating mutations of the Janus kinases in children with high-
risk non-DS ALL has been reported to be about 10 %, and JAK2 mutations represent
80 % of them (Mullighan et al. 2009b). The JAK2 protein, one of the four members
of the JAK family, is a non-receptor tyrosine kinase that mediates signals from a vari-
ety of cytokines and growth factors. JAK proteins and their downstream transcription
factors, termed STATSs (signal transducers and activators of transcription), conform
the JAK-STAT signaling pathway. Activating JAK mutations and translocations lead
to constitutive activation of their tyrosine kinase activity with oncogenic properties.
JAK?2 mutations occur in about 20 % of pediatric DS-ALL cases and have been
described as a particularly important event in the development of BCP-ALL in these
patients (Malinge et al. 2007; Bercovich et al. 2008).
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Approximately one-third of hyperdiploid (>50 chromosomes) cases harbors a
mutation involving the FLT3, NRAS, KRAS, or PTPNI1 genes. These mutations
seem to be mutually exclusive in this group of BCP-ALL patients and are very rare
in T-ALL (Paulsson et al. 2008).

Recurrent cytogenetic aberrations can be detected in about half of the pediatric
T-ALL patients (Raimondi 1993), and some translocations and molecular markers
have been correlated to T-ALL subtypes.

T-ALL chromosomal abnormalities often include reciprocal translocations that
disrupt developmentally important transcription factor genes, as a result of
rearrangements to loci for the T-cell receptor (TCR) genes, most commonly 7CRa
(14q11.2) and TCRb (7q35). TCR genes are frequently translocated to basic helix-
loop-helix (bHLH) genes (MYC, TALI, TAL2, LYLI1, bHLHBI), cysteine-rich genes
(LMO1,LMO?2), or homeodomain genes (HOX11/TLX1, HOX11L2/ TLX3, members
of the HOXA cluster) (Aifantis et al. 2008). Some of them are not translocation
breakpoints but are defined as mutations or overexpression of distinct genes.

TALI (T-cell acute lymphocytic leukemia 1; also known as SCL) is the most
common bHLH gene, with aberrant expression observed in T-ALL cases. This
transcriptional regulator was first identified in T-ALL patients with the t(1;14)
(p32;q11) translocation, which is observed in 3 % of cases (Chen et al. 1990; Carroll
et al. 1990). Other translocations involving homeodomain genes have also been
described. About 20 % of pediatric T-ALL patients have the HOX11L2 (TLX3)-
BCL11B fusion (Bernard et al. 2001).

The most commonly mutated genes in T-cell ALL are not cytogenetically
detectable and include NOTCHI, FBXW7, PTEN, CDKN2A/B, CDKNIB, 6ql5-
16.1, PHF6, WT1, LEF 1, JAKI, IL7R, FLT3, NRAS, BCL11B, and PTPN?2.

NOTCHLI is one of the most important genes in T-cell leukemogenesis and is one of
the most extensively studied; it is involved in the regulation of several cellular processes
including differentiation, proliferation, apoptosis, adhesion, and spatial development.
NOTCHI1 mutations are observed in 34-71 % of T-ALL (Larson Gedman et al. 2009).

Genetic Polymorphisms

The risk of childhood leukemia, as in other complex diseases, is likely to be
influenced by independent and interactive effects of genes and environmental
exposures. Genetic and biological features can influence the pathogenesis of ALL
and the risk of treatment failure. Individual differences in drug responses are an
important cause of resistance to treatment and adverse drug reactions.

Recently published GWAS have identified several single-nucleotide
polymorphisms associated with an increased risk of ALL development. Most of
these polymorphic sites are localized in genes that encode transcription factors tak-
ing part in hematopoiesis (Enciso-Mora et al. 2012; Georgopoulos 2009).

Some of these genetic polymorphisms may also contribute to racial disparities in the
incidence and treatment outcome of childhood leukemia (Xu et al. 2012; Chen et al.
1997; Pollock et al. 2000; Evans and Relling 2004; Kishi et al. 2007; Pui et al. 1993).
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A higher proportion and different distribution of some TPMT variants has been
reported in Hispanic patients with ALL (Moreno-Guerrero et al. 2013; Garrido et al.
2013; Taja-Chayeb et al. 2008).

Immunophenotype

Hematopoietic cells express different antigens at various stages of development.
These antigens can be identified by monoclonal or polyclonal antibodies tagged
with a fluorescent label. Immunophenotype represents the individual expression
pattern of nuclear, cytoplasmic, and cell surface antigens.

Immunological markers that identify BCP blasts include HLA-DR, TdT,
CD19, cytoplasmic CD22, and CD79a (CD79b is less useful, since it is expressed
later in development) and/or CD34. CD10 is expressed in both T and B lineage,
but more commonly in B-lineage blast cells. Precursor B-lineage ALL has been
subdivided into four groups: pro-B ALL (also called early pre-B), which expresses
HLA-DR, TdT, CD19, and CD10 (with negative cytoplasmic immunoglobulin);
pre-B ALL, characterized by the expression of cytoplasmic immunoglobulin and
CD10; transitional pre-B ALL, characterized by surface expression of heavy-
chain membrane immunoglobulin; and mature B-ALL, in which the blast cells
express surface light and heavy-chain membrane immunoglobulin and lack TdT
and CD34. However, this subtype distinction of BCP-ALL does not appear to be
clinically relevant.

For T-lineage blasts, the most specific antibody is CD3, whereas CD2, CD4,
CD5, and CD7 are less specific. Recently a new category of T-cell ALL to distinguish
early T-cell precursor from other T-cell blasts was described. This was named early
T-cell precursor ALL and comprises up to 15 % of T-ALL (Coustan-Smith et al.
2009). This subtype is characterized by lack of expression of the T-lineage cell
surface markers CDla and CD8, weak or absent expression of CDS5, aberrant
expression of myeloid and hematopoietic stem cell markers (CD13, CD33, CD34,
and CD117), and a gene expression profile similar to that of the murine early T-cell
precursor.

In high-income countries, BCP-ALL represents about 85 % of the cases, and
15 % are of T-cell lineage (Greaves et al. 1993); however, some studies have reported
a higher frequency of T-ALL subtype in low- and middle-income countries or in
economically deprived communities (Bachir et al. 2009; Bhargava et al. 1988;
Taskov et al. 1995; Kamel et al. 1990; Rajalakshmy et al. 1997; Kamat et al. 1985).

Clinical Presentation

Acute leukemia patients present with signs and symptoms related to the decreased
production of normal marrow elements, with manifestations resulting from direct
infiltration of extramedullary sites by leukemic blasts or with signs caused by
complications such as cell tumor lysis, leukostasis, or coagulopathy.
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Many of these symptoms are nonspecific complaints such as weakness, lethargy,
fatigue, fever, and bleeding, which can be misdiagnosed as some common diseases
of childhood. Fever with or without evidence of infection is one of the most common
symptoms of acute leukemia, particularly ALL.

Signs and Symptoms of Bone Marrow Failure

Proliferation of leukemic cells and the subsequent decreased production of normal
blood cells may result in anemia, thrombocytopenia, and neutropenia, which cause
most of the clinical manifestations of acute leukemia.

The classical symptoms of anemia include pallor, fatigue, intolerance to physical
exercise, palpitations, dyspneaon physical exertion, and dizziness. Thrombocytopenia
typically produces cutaneous and mucosal bleeding, with petechiae, purpura, and
ecchymosis, predominantly on the lower extremities, and especially when platelet
count falls below 20,000/pL. Hemorrhage in other sites is less frequent, but
potentially life-threatening hemorrhage may occur, particularly in patients with
hyperleukocytosis, and involves the lung, CNS, and gastrointestinal tract. Patients
with absolute neutrophil counts of <500 cells/pL have a higher risk of infection.

Signs and Symptoms Related to Organ and Tissue Infiltration

The most common sites of infiltration include the lymph nodes, spleen, and liver.
Mediastinal mass is more common in patients with T-cell ALL; these children can
present without respiratory symptoms or exhibit signs of tracheobronchial
compression such as cough or dyspnea. CNS infiltration can be asymptomatic, but
some cases may present vomiting and headaches. As many as 25-30 % of infants
with congenital leukemia present single or multiple skin lesions attributable to
cutaneous infiltration by leukemic cells (leukemia cutis). Only one-third of
childhood leukemia cutis cases are seen in ALL; skin is rarely affected in older
children and must be distinguished from other non-leukemic cutaneous lesions.
Some patients may experience gingival swelling that may result from infiltration of
leukemic cells into the gum tissue or from neutropenia-associated gingivitis.
Massive bone marrow infiltration frequently manifests as bone pain, which can be
severe and often atypical in distribution.

Signs and Symptoms Caused by Life-Threatening Complications

Most complications represent medical emergencies that demand immediate
intervention.

High tumor burden and high rates of leukemia cell proliferation can result in
tumor lysis syndrome, which is asymptomatic in most cases, but patients with
severe hyperuricemia or hyperphosphatemia can develop renal failure with oliguria
or anuria.
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Leukostasis is another potentially fatal complication that occurs in cases of
hyperleukocytosis (>100,000 cells/pL); the CNS and lungs are the most commonly
affected sites. Symptoms of leukostasis include respiratory distress, confusion,
dizziness, headache, tinnitus, blurred vision, somnolence, stupor, delirium, and
coma, resulting from tissue hypoxia secondary to vascular obstruction by a large
number of leukemic blasts in the peripheral circulation. It is less common in patients
with ALL than in those with AML.

Signs and symptoms of infection, generally caused by an impaired immunological
response, are frequently present at diagnosis. Fever can be the first sign, and
respiratory symptoms with or without lung findings of pneumonia are the most
common manifestations of a life-threatening infection in ALL patients at diagnosis.

Diagnosis

An accurate diagnosis is critical for appropriate treatment assignment and is crucial
in the probability of survival of leukemia patients.

The minimal standards to diagnose acute lymphoblastic leukemia in children
include a good morphological evaluation with cytochemical assessment, examination
of the cerebrospinal fluid (CSF) by cytospin for the presence of leukemic blasts, and
a chest radiograph to detect mediastinal involvement. In addition, immunological
features and recurrent genetic abnormalities should be assessed to attain an
appropriate stratification and treatment assignment.

Initial Approach

Childhood leukemia diagnosis is based primarily on clinical features. The suspicion
of acute leukemia should lead to the performance of a hemogram, with differential
leukocyte count.

Up to 50 % of the patients present with leukopenia, and a low neutrophil count is
a common finding, regardless of the total leukocyte number; leukocytosis is usually
due to the presence of leukemic and other immature cells in the circulation. Anemia
might be present in up to 80 % of the cases, which is characteristically normocytic/
normochromic. In 75 % of cases, the platelet count is below 100,000/puL.

These findings, along with examination of the peripheral blood smear for blast, lead
to the decision to perform a bone marrow aspiration or a marrow biopsy in select cases,
which are the key procedures in establishing the definitive diagnosis of acute leukemia.

Once the bone marrow aspiration is performed, diagnosis starts with morpho-
logical analysis of Romanowsky, Wright Giemsa or May-Griinwald Giemsa stained
bone morrow smears, followed by cytochemical studies including myeloperoxidase
MPO, SBB, PAS, and esterase stains.



1 Introduction: Childhood Leukemia 15

Morphological diagnosis is based on cell characteristics such as size, presence of
nucleoli, nuclear chromatin, nuclear shape, nucleus/cytoplasm ratio, and the amount
and appearance of cytoplasm (vacuolation, granules, basophilia). It represents the
first approach to leukemia demonstration and lineage definition.

In addition to the blood cell counts, other routine laboratory studies must be
carried out to assess pretreatment organ function and to detect a preexisting medical
condition, emergencies, or complications such as tumor lysis syndrome,
hypercalcemia, and renal failure.

Some specific studies must also be performed to assess extramedullary disease,
including examination of the CSF by cytospin for the presence of blast cells and
chest radiography to detect mediastinal enlargement.

Mediastinal mass is defined as a mass of greater than one-third the thoracic
diameter at the level of the fifth thoracic vertebra.

CNS status includes three categories: CNS-1, no detectable blast cells in a sample
of cerebrospinal fluid; CNS-2, <5 WBC/mm? with blast cells in a sample with <10
erythrocytes/mm?; and CNS-3, >5 WBC/mm? with blast cells in a sample with <10
erythrocytes/mm? or traumatic lumbar puncture (>10 erythrocytes/mm?) with blast
cells or the presence of affected cranial nerves or a cerebral mass detected by cranial
computed tomography or magnetic resonance imaging (MRI) (Pui and Howard
2008).

Immunophenotyping

Immunophenotyping can be performed on cell suspensions of peripheral blood or
bone marrow cells through measuring the percentage of positivity for specific anti-
gens by flow cytometry or on histological sections using immunohistochemistry,
when considered necessary. It enables reliable definition of leukemia lineage, pro-
vides relevant information to identify prognostic differences within a subtype, and
allows the detection of one or more leukemia-associated immunophenotype that can
be used for monitoring minimal residual disease.

Multiple combinations of antibodies have been proposed for diagnostic immuno-
phenotyping, and most consensuses recommend the use of an initial panel of anti-
bodies for lineage orientation and a second panel for the characterization of
sublineages (van Dongen et al. 2012; Bene et al. 1995, 2011; Bain et al. 2002;
Stewart et al. 1997).

Cytogenetic and Molecular Analysis
Cytogenetic analysis is essential for a more accurate diagnosis and classification; it

provides specific tumor markers that are essential in prognostic assessment and as
an additional tool for monitoring residual disease.
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Successful cytogenetic analysis is more often possible on a bone marrow aspirate
than on peripheral blood cells. Routine techniques used to detect leukemia-specific
chromosome abnormalities or their molecular equivalents include conventional
G-banding cytogenetic analysis, standard and multicolor fluorescence in situ
hybridization (FISH), PCR-based assays, and standard sequencing for clinical
screening of mutations.

Conventional cytogenetics requires cell culture and quality metaphases for anal-
ysis, and this method depends on the availability of analyzable metaphases; there-
fore, FISH and reverse transcriptase-PCR are necessary as screening tools.

Flow cytometry is used for quantitating the relative DNA content in leukemic
cells using a fluorochrome that binds to DNA. The DNA index is the quantity of
DNA content in the test cell population in relation to that in the nuclei of normal
matched diploid cells (Ilymphocytes). A DNA index of 1.0 indicates no detectable
change in the DNA content on leukemic cells with respect to normal cells and cor-
responds to diploid cells in the GO/G1 phase. Abnormal changes in the DNA index
(aneuploidy) may represent gain or loss of genetic material. A DNA index <1 rep-
resents hypodiploidy, whereas >1 indicates hyperdiploidy. A DNA index of 1.16 or
higher indicates a modal chromosome number of 54 or more.

Specific markers of each leukemia subtype were explained in detail in a previous
section.

Thiopurine Methyltransferase Genotype

Polymorphisms of drug-metabolizing enzymes have been associated with
increased toxicity on the one hand and with increased or decreased efficacy of the
treatment on the other hand (Kishi et al. 2007). Thiopurine S-methyltransferase
(TPMT) is a key enzyme in the inactivation of thiopurine drugs such as 6-mercap-
topurine. TPMT genotyping represents one of the best examples of the clinical
application of pharmacogenetic studies. Polymorphisms of this enzyme are asso-
ciated with increased toxicity of 6-mercaptopurine but also with increased effi-
cacy indicated by improved relapse-free survival. In many centers, this analysis is
performed routinely as a part of the diagnostic workup to individualize the doses
of thiopurine drugs.

Minimal Residual Disease

It is estimated that the total number of leukemic blasts at diagnosis is around 10'2.
The majority of patients achieve complete remission after induction chemotherapy,
however at this time, up to 10'° malignant cells still remain in the patient, but their
level is beyond the sensitivity level of cytomorphological methods.
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The minimal residual disease (MRD) represents the leukemic cells that remain in
the body after remission at a level beyond the sensitivity of classical cytomorphologi-
cal methods, which can be imprecise and insensitive. MRD identifies leukemia-spe-
cific features that distinguish leukemia cells from normal hematopoietic precursors
and provides specific and sensitive measurements of low levels of leukemic cells.

For clinical purposes, MRD detection methods can only include flow cytometric
detection of aberrant leukemia-associated immunophenotypes, PCR amplification
of immunoglobulin and TCR genes, or PCR amplification of oncogenic fusion tran-
scripts when present (Bruggemann et al. 2012).

The most feasible and reliable technique to detect MRD is flow cytometry, which
has been the most commonly used method in the BFM, St Jude, and Children’s
Oncology Group (COG) protocols (Chauvenet et al. 2007; Sievers et al. 2003;
Coustan-Smith et al. 2003).

Prognostic Factors and Risk Stratification

The recognition of different factors that influence leukemia behavior and response to
treatment has allowed stratification of patients into risk groups to help decide whether a
child with leukemia should receive a standard or a more intensive treatment; this includes
the identification of those patients who would benefit from a stem cell transplant.

Prognostic indicators include variables related to the patient, leukemic cells, or
treatment response. However, more intensive therapy has changed their prognostic
significance over the years.

Clinical and Laboratory Features

Age at diagnosis is one of the most significant predictors of clinical outcome
(Hossain et al. 2014; Webb et al. 2001; Moricke et al. 2005). Children younger than
1 and older than 10 years have a less favorable prognosis than those between 1 and
9 years, and it seems that patients aged between 1 and 4 have an even better outcome
than those in the age group 5-9. This may be explained in part by the age-dependent
distribution of genetic alterations that strongly influence prognosis, such as BCR-
ABLI fusion, which is more frequent in older children, or the MLL rearrangements
characteristic of infants who have a unique biology (Kang et al. 2012).

Most studies have identified that boys have a worse prognosis than girls. This has
been partially attributable to the risk of testicular relapse, the higher incidence of
T-immunophenotype, unfavorable DNA index, and a higher rate of bone marrow
and CNS relapse among boys, but other genetic and endocrine effects may be
present as well (Pui et al. 1999).
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Some reports describe poorer outcomes in black and Hispanic children when
compared with white and Asian/Pacific Islander children (Kadan-Lottick et al.
2003; Macharia 1996; Parkin 1988b; Goggins and Fiona 2012). However, the effect
of race on prognosis has been controversial, since these differences might depend
on social factors and treatment differences between populations.

The extent of extramedullary disease at diagnosis (hepatosplenomegaly, massive
lymphadenopathy, presence of mediastinal mass, or testicular disease) was in the
past a useful prognostic indicator. However, with the current therapeutic protocols,
these features, including testicular involvement, no longer have prognostic
significance (Sirvent et al. 2007).

CNS leukemia has an impact on outcome; CNS3 patients have a higher risk of
CNS and bone marrow relapse than children classified as CNS1 or CNS2 (Biirger
et al. 2003).

Most studies have found a lower survival in DS patients. A recent COG study
reported that DS patients have a lower rate of the favorable cytogenetic lesions and
inferior event-free survival (EFS) and overall survival (OS), but when children with
MLL translocations, BCR-ABLI, ETV6-RUNXI, and trisomies 4 and 10 were
excluded, the EFS and OS were similar for children with and without DS (Maloney
et al. 2010).

There is a linear relation between initial WBC count and outcome in children
with ALL. The threshold to delimit prognosis has been established as 50,000/pL,
and those patients with WBC counts greater than 50,000/pL are accepted as having
a poorer prognosis.

In addition to age and gender, some other host characteristics such as nutritional
status, low socioeconomic status, and concomitant diseases have been correlated
with patient outcome (Mejia-Arangure et al. 1999; Sala et al. 2004; Lobato-
Mendizébal et al. 2003; Viana et al. 1994; Smith et al. 2006; Gupta et al. 2014;
Kadan-Lottick et al. 2003).

Prognostic Factors Related to Blast Features

Immunophenotype Specific immunophenotypic profiles have been associated
with prognosis.

Traditionally, T-cell leukemia has been considered as an adverse feature,
particularly when accompanied by a WBC count >50,000/pL. The prognostic
significance of high WBC counts at diagnosis in T-cell ALL has also been
contradictory, since most patients with T-cell ALL have the same outcome as those
with BCP-ALL (Pullen et al. 1999). Patients with the early T-cell leukemia subtype
have the highest risk of remission failure or hematological relapse among T-cell
ALL patients, with a survival that ranges from 10 to 14 % at 10 years compared with
patients with typical T-ALL, whose 10-year survival is between 57 and 72 %. With
the exception of the early T-cell leukemia subtype, subdivision into T-cell
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developmental subgroups is not predictive for outcome, and immunophenotype is
no longer considered an independent prognostic factor (Coustan-Smith et al. 2009;
van Grotel et al. 2008a).

Among BCP-ALL cases, CD34 expression has been significantly associated
with favorable presenting features and a better outcome with respect to CD34-
negative cases. In contrast, CD34 expression in pediatric T-cell ALL has been asso-
ciated with initial CNS leukemia and adverse prognostic features (Pui et al. 1993)
or with poor survival (van Grotel et al. 2008b).

Cytogenetics The underlying genetic lesions in ALL leukemia subtypes affect
significantly the response to chemotherapy and prognosis.

High hyperdiploidy is an independent prognostic factor, with complete remission
rates approaching 100 % in some studies and 5-year EFS rates between 71 and 83 %
(Moorman et al. 2003; Trueworthy et al. 1992).

Patients with the concurrent presence of +4, +10, and +17 have been reported to
have especially favorable prognosis (Heerema et al. 2000; Sutcliffe et al. 2005).

The prognosis of children with the t(12;21)/ETV6L-RUNX]I translocation, often
correlated with favorable features, is generally associated with good clinical
outcome, and 94 % of these patients experience rapid early responses to therapy
(Kanerva et al. 2004; Rubnitz et al. 1997, 2008; Forestier et al. 2008).

Hypodiploid (<44 chromosomes) has a very bad prognosis, and outcome seems
to worsen with decreasing chromosome modal number. In the current COG risk
stratification system, patients with leukemic cells containing <44 chromosomes or
with DNA index <0.81 are considered very high risk (Schultz et al. 2007).

The t(1;19)(q23;p13)(TCF3-PBX]1) translocation was formerly associated with a
less favorable outcome when conventional antimetabolite-based treatment was
used, but its adverse effect on survival was annulled by the use of more intensive
chemotherapy regimens; the current 5-year EFS rate is >80 % in Western countries,
which is similar to that of ETV6-RUNXI positive or high-hyperdiploid BCP-ALL
(Raimondi et al. 1990; Borowitz et al. 1993).

In the past, the (9;22)(q34;q11.2)/BCR-ABLI translocation was associated with
a dismal outcome; however, with the addition of imatinib to the existing intensive
chemotherapy regimens, it has been possible to increase the 3-year EFS to 80.5 %
without stem cell transplantation (Schultz et al. 2009).

Translocations involving the MLL gene (11q23) are associated with a worse
prognosis in infants under 12 months compared with older children who carry these
rearrangements, since infants often exhibit poor early response to prednisone and a
high rate of failure when conventional chemotherapy is used (Pui et al. 2003a;
Pieters et al. 2007).

IKZF1, CRLF2, and JAK? gene alterations are independent prognostic factors in
patients with pediatric BCP-ALL (Mullighan et al. 2009a, b; Yung et al. 2011;
Harvey et al. 2010; Palmi et al. 2012; Ensor et al. 2010; Cario et al. 2010; Den Boer
et al. 2009; Kuiper et al. 2010; Chen et al. 2012; Mi et al. 2012).

Furthermore, IKZF'1 deletions of the entire gene or of specific exons have been
identified as predictor of outcome in pediatric acute lymphoblastic leukemia,
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independently of BCR-ABLI status (Dorge et al. 2013). Since BCR-ABLI ALL has
a poor prognosis, these findings suggest that the mutation of IKZFI is a key
determinant of the poor outcome of both BCR-ABLI-positive and BCR-ABLI-
negative patients.

In T-cell leukemia, TAL1 or HOX11L2 rearrangements have been associated
with good and poor outcomes, respectively. Cases with high versus low TALI
expression levels demonstrated a trend toward good outcome. Most cases with
lower TAL1 levels were HOX11L2- or CALM-AF10-positive. Thus, overexpression
of HOX11, which is associated with thymic T-ALL, may confer a favorable
prognosis. Other groups observed inferior outcomes in HOX11L2- and SIL-TAL-
positive T-ALL. NOTCH]1-activating mutations, identified in up to 50 % of T-ALL
cases, have unclear prognostic relevance (van Grotel et al. 2008a).

Response to Initial Therapy

The rapidity of response to initial therapy and the level of MRD at the end of
induction are associated with long-term outcome.

The prednisone response, initially used by the BFM protocols, has been
extensively accepted as an important prognostic factor. It is evaluated on day 8§ after
7 days of monotherapy with prednisone by counting the absolute number of blasts
in the peripheral blood. A good prednisone response is defined as <1,000 blasts/
mm?, and patients with >1,000 blasts/mm? are poor responders (Dérdelmann et al.
1999).

The response in the bone marrow after 1 or 2 weeks of induction therapy has also
been widely used as a prognostic indicator. Rapid early responders (those who
exhibit <5 % blasts in a bone marrow at day 7 of induction) have the best EFS. Lack
of response in bone marrow on day 14 is an independent predictor of inferior
outcome. Children who do not achieve morphological and clinical remission
(defined as <5 % blasts in a bone marrow with normal cellularity and the absence of
other evidence of leukemia), after the standard 4- to 6-week induction period, have
the highest rate of relapse and the poorest survival (Pui et al. 2010; Bhojwani et al.
2009). Overall long-term survival for children who fail induction chemotherapy is
only about 32 %, and these patients are considered to be at very high risk.

In recent years, it has been clearly demonstrated that the level of MRD at the end
of induction represents one of the most powerful prognostic factors. It allows a
more precise definition of remission, responsiveness to therapy, and expected long-
term survival; therefore, measurement of MRD has been incorporated in many
trials.

The COG identified that measurement of MRD in the peripheral blood at day 8
provides information that helps to detect patients with an exceptionally good
outcome who can reach a 97 £ 1 % 5-year EFS. This subset of patients is defined by
meeting National Cancer Institute Standard Risk (NCI SR) criteria, namely, absence
of CNS3 or testicular disease, having either double trisomies or TEL-AMLI, and
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absence of MRD in both the day-8 peripheral blood and day-29 bone marrow
samples, and achieves an excellent outcome with a therapy that does not need the
use of anthracyclines or alkylating agents (Borowitz et al. 2008).

Risk-Group Assignment

The original NCI/Rome criteria distinguished two risk groups based exclusively on
age and initial WBC: Standard risk (about 60 % of the patients with 4-year EFS
rate, approximately 80 %) included those cases with age between 1.00 and 9.99 years
and initial WBC at diagnosis <50,000/pL (the current 5-year EFS for these patients
is higher than 85 %), and high risk (about 40 % of the patients with 4-year EFS rate,
approximately 65 %) comprised all others (Smith et al. 1996).

Over time many prognostic factors have been identified, but even when some of
them have been demonstrated to affect outcome, not all have been used for risk
stratification.

Risk stratification criteria and nomenclature have considerable variation among the
major pediatric ALL study groups. Most of them use a combination of clinical, labora-
tory, cytogenetic, and response to therapy features to stratify patients into risk groups.

Since 2000, BFM protocols categorize ALL mainly on the basis of prednisone
prophase response and MRD measurements at two time points, end of induction
(week 5) and end of consolidation (week 12) (Conter et al. 2010). Three risk groups
are included: (1) standard risk, patients who are MRD-negative (<107*) at both time
points; (2) intermediate risk, patients who have positive MRD at week 5 and low
MRD (<107%) at week 12; and (3) high risk, patients with high MRD (>107%) at week
12. Patients with a poor response to the prednisone prophase are also considered in
the high-risk group, regardless of subsequent MRD measurements, and patients
with the t(9;22) or the t(4;11) translocations are also classified as high risk, despite
early response measures.

The COG end induction risk stratification algorithm for B-precursor ALL
considers the NCI/Rome criteria, immunophenotype and cytogenetic/molecular
features, as well as early response data, which must be available by day 35 of
induction. This risk stratification system includes four categories: (1) low risk, NCI/
Rome standard risk, with trisomy of chromosomes 4, 10, and 17 (“triple trisomies”)
or TEL-AML1, which comprises about 40 % of NCI SR with a projected 5-year
EFS of at least 85 %; (2) standard risk, NCI/Rome standard risk non-TEL, non-
triple trisomies, which includes around 60 % of NCI SR with EFS of 80 %; (3) high
risk, NCI/Rome high risk, with an EFS of 70-75 %; and (4) very high risk, Ph+,
hypodiploid (fewer than 45 chromosomes), failure to achieve remission at the end
of induction therapy, which corresponds to approximately 5 % of all ALL cases,
with a projected 5-year EFS of 45 % or below (Schultz et al. 2007). It is noteworthy
that in nearly 2,000 children with ALL who entered on the COG classification and
treatment study P9900, about half of all events occurred among patients who were
MRD negative at the end of induction.
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Cytogenetic/molecular features and MRD have become the leading criteria to
stratify ALL patients in most industrialized countries; however, expensive laboratory
techniques are not affordable in many low- and middle-income countries where
these stratification systems are not a reality.

For more than 20 years, NCI/Rome risk criteria in combination with
cytomorphological response were used for risk definition, and they continue to be
the basis to stratify ALL patients in many countries of the developing world. NCI
criteria together with prednisone and early marrow response (days 7 and 14), in
addition to immunophenotype and cytogenetics when available, allow stratification
into two or three risk groups (Fronkova et al. 2008).

Treatment and Outcome

Between the late 1960s and the present, the outcome of pediatric ALL has evolved
from an overall survival of less than 10 % to approximately 75-80 % (Pui 2006),
partly because of the current risk-oriented treatment strategies (Pui et al. 2009;
Salzer et al. 2010; Mitchell et al. 2010; Schmiegelow et al. 2010).

At diagnosis, the prompt recognition and treatment of life-threatening
complications, such as leukostasis, tumor lysis, coagulopathy/hemorrhage, or
sepsis, is a key aspect in reducing early mortality.

The treatment is given in several phases: induction/intensification, consolidation,
maintenance, and CNS-directed therapy, each of which has a specific goal.

Steroid prophase In the first week of treatment and before starting the induction
chemotherapy, the BFM protocols utilize a prophase with oral prednisone as a
single agent at a dose of up to 60 mg/m? to avoid metabolic complications and
assess prednisone response.

Induction The induction phase involves an intensive treatment aimed to achieve
remission and restore normal hematopoiesis. This intensive therapy lasts 4-6 weeks;
it reduces 99.9 % of the total number of leukemic cells and allows attaining
remission in approximately 98 % of the cases.

Drug combinations typically include a glucocorticoid (prednisone or
dexamethasone), vincristine, and L-asparaginase. The addition of an anthracycline
continues to be controversial; it has been shown that anthracyclines are effective
against bone marrow relapse but do not seem to increase significantly the EFS, and
since they appear to have a valuable antileukemic effect but involve increased
toxicity, especially cardiac, they should probably be reserved for higher-risk patients
(Childhood Acute Lymphoblastic Leukaemia Collaborative Group 2009). Another
point of discussion is whether to use dexamethasone or prednisone. When
dexamethasone was compared with prednisone at a ratio of 1:6-7, an advantage in
EFS was found with dexamethasone (Bostrom et al. 2003; Mitchell et al. 2005).
However, at a ratio of 1:10, this benefit was not found (Igarashi et al. 2005).
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Three forms of L-asparaginase have been used in the treatment of children with
ALL, namely, native Escherichia coli L-asparaginase, Erwinia L-asparaginase,
and pegylated (PEG)-L-asparaginase, each with different pharmacological and
pharmacokinetic profiles. PEG-L-asparaginase has several advantages, including
a longer half-life; it is less immunogenic and has a lower probability of devel-
oping neutralizing antibodies, so many study groups have incorporated PEG-
asparaginase in their treatment protocols. A single dose of PEG-L-asparaginase
given in conjunction with vincristine and prednisone during induction therapy
appeared to have similar activity and toxicity as nine doses of intramuscular E.
coli L-asparaginase given three times a week for 3 weeks (Avramis et al. 2002).
Three intramuscular doses of PEG-L-asparaginase can safely replace 21 intra-
muscular doses of native asparaginase (Gaynon et al. 2010). While only PEG-
L-asparaginase and Erwinia L-asparaginase are available in the United States,
native E. coli L-asparaginase remains the main form in many centers, particularly
in developing countries. Some protocols intensify the induction phase with two
more drugs that may include cyclophosphamide, L-asparaginase, cytarabine, or
epipodophyllotoxins.

A bone marrow aspirate must be taken at different points of induction treatment
to confirm that the child has achieved remission.

About 2-3 % of children diagnosed with ALL respond poorly to initial
chemotherapy (Silverman et al. 1999; Oudot et al. 2008). The overall survival rate
for these children who fail to go into remission following induction therapy is 32 %,
because they often receive high-dose chemotherapy followed by a stem cell
transplant. This approach has been questioned in recent years, and it has been shown
that some children may not need a stem cell transplant.

In addition, another 1 % of the patients will fail induction therapy because of
early death (most often caused by infection or bleeding), although a significantly
higher frequency of early deaths has been described in developing countries (Gupta
et al. 2011; Advani et al. 1999; Asim et al. 2011).

Consolidation This phase starts when the remission/intensification phase is
concluded, and its goal is to reinforce the remission in the bone marrow and to
provide CNS prophylaxis. Many current protocols use high-dose systemic
methotrexate (four doses given biweekly) together with intrathecal chemotherapy
(methotrexate, cytarabine, and hydrocortisone).

Maintenance This phase is aimed to ensure continuation of remission and eradi-
cate residual leukemic cells. The drugs used in this phase depend on the assigned
risk.

For low-risk patients, there is a tendency to reduce the use of drugs associ-
ated with higher risk of severe late toxic effects, such as anthracyclines and
alkylating agents. These patients are generally treated with monthly pulses of
vincristine plus steroid with daily oral 6-metcaptopurine and weekly parenteral
(preferably intravenous) methotrexate (Childhood ALL Collaborative Group
1996).
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For high-risk patients most current protocols intensify post-remission therapy by
using combinations of drugs (Moricke et al. 2008; Reiter et al. 1994; Pui et al.
2000). Epipodophyllotoxins have been eliminated from most current protocols to
reduce the risk of second malignancies.

Maintenance treatment lasts for about 2 years from complete remission for girls
and up to 3 years for boys (Moricke et al. 2008; Gaynon et al. 2010, Pui et al. 2010).

CNS-directed therapy The CNS is a sanctuary site for leukemic cells, which are
protected from systemic chemotherapy by the blood-brain barrier. Approaches to
CNS prophylaxis include radiation (cranial or craniospinal), intrathecal
chemotherapy, high-dose systemic chemotherapy, or combinations of these.
However, the long-term neurological and neuroendocrine sequelae and the risk of
secondary CNS neoplasms, in addition to the proven effectiveness of intrathecal
chemotherapy alone, have led to the abandonment of cranial irradiation or to limit it
to selected patients with a high risk of CNS relapse (Pui et al. 2009). The doses of
intrathecally administered drugs are based on age. Intrathecal chemotherapy for
CNS therapy is given during induction and must be continued throughout
maintenance therapy. Effective CNS prophylactic regimens have reduced the
incidence of isolated CNS relapse to less than 5 %.

Hematopoietic stem cell transplant (HSCT) Owing to the associated morbidity
and mortality and long-term effects of this procedure, it is reserved for selected
children with very high-risk ALL and for some patients who relapse after standard
treatment.

For induction failure, several leukemia groups recommend allogeneic HSCT;
however, it has recently been suggested that some of these children may do well if
they receive additional chemotherapy rather than a stem cell transplant. Patients
who fail induction and have T-cell leukemia appear to have a superior outcome with
allogeneic stem cell transplantation than with chemotherapy, whereas patients who
have BCP leukemia without other adverse features appear to do better with
chemotherapy (Schrappe et al. 2012).

Radiotherapy In the past, radiation was routinely used for patients with proven
CNS or testicular leukemia at diagnosis, but this approach is controversial. For
prophylaxis and primary CNS infiltration, it tends to be abandoned even in cases
with T-cell leukemia, and radiation is now reserved for patients who relapse (Kelly
et al. 2014; Pui et al. 2009; Kamps et al. 2002, Gustafsson et al. 2000; Gaynon et al.
2010). In the case of testicular infiltration at diagnosis, it has been reported that
these patients may be treated with chemotherapy alone (Hijiya et al. 2005), although
there is not enough evidence to recommend this practice.

The outcome of newly diagnosed pediatric ALL has increased significantly over
the past decades. More than 95 % of children achieve remission, and approximately
80 % are expected to be long-term event-free survivors (Hunger et al. 2012). The
5-year EFS varies considerably depending on risk category and ranges from 95 %
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for low risk to 30 % for very high risk, with infant leukemia having the worst
outcomes. Infants younger than 1 year (about 3 % of patients) have EFS of less than
50 %, and around 20 % for those patients aged less than 90 days (Pui et al. 1995).

In low-income countries, pediatric ALL can also be a highly curable malignancy
when intensive chemotherapy protocols are used together with appropriate
supportive therapy, and recent studies have reported overall survival rates from
60 % to almost 80 % (Bajel et al. 2008; Arya et al. 2011; Muwakkit et al. 2012).

However, not all countries, regions, or social sectors have benefited to the same
extent from the progress in ALL treatment. Limited health access, insufficient
infrastructure, understaffed units, low sanitary conditions, malnutrition, cultural
barriers, and other socioeconomic factors affect the outcome of many children who
live in low- and middle-income countries, and the current survival rates for ALL
continue to be lower than 35 % in some of these countries (Farmer et al. 2010;
Metzger et al. 2003; Rajajee et al. 1999; Ribeiro et al. 2007; Gupta et al. 2011;
Howard et al. 2008). In view of this, therapy protocols should be adapted to local
resources and conditions to limit toxic deaths while maximizing treatment efficacy
(Hunger et al. 2009; Bonilla et al. 2000; Magrath et al. 2005).

Relapsed ALL

Similarly to frontline ALL therapy, treatment outcome for relapsed patients depends
on clinical and biological characteristics of the disease, the time from diagnosis, and
site of relapse. Only about one-third of all children with first relapsed ALL can be
cured by risk-oriented therapies using conventional intensive chemotherapy and
radiotherapy, with percentages ranging from O to 70 % depending on the pattern of
prognostic factors present at relapse (Nguyen et al. 2008; Roy et al. 2005; Schroeder
et al. 1995). The use of novel therapies such as monoclonal antibodies, targeted
molecules, and some new chemotherapeutic agents is opening new opportunities for
some patients. Clofarabine, a second-generation purine analog approved in pediatric
leukemia, alone or in combination with other chemotherapy agents, is replacing
HSCT for intermediate- and high-risk patients (Tallen et al. 2010; Eckert et al. 2013).

Acute Myeloid Leukemia

AML is less common than ALL, at a ratio of one case of AML for every four of
ALL. This relationship is reversed in the neonatal period, where 95 % of all
leukemias are AML, whereas in infants younger than 1 year, the ratio is 1:2. The
annual standardized rate is usually between 4 and 7 per million. Its peak incidence
occurs in the first year of life and then decreases until age 4 and remains relatively
uniform thereafter (Gurney et al. 1995).
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Although there is no clear variation between geographical regions, the promy-
elocytic subtype seems to have a higher incidence rate among Hispanic/Latino pop-
ulation (Malta Corea et al. 1993; Hernandez et al. 2000; Douer et al. 1996), and the
higher relative frequency of AML in some series appears to be due to a deficit of
ALL.

Genetics and Biology

Characterization of leukemia-associated chromosome translocations has contributed
to the understanding of AML pathogenesis. The genes involved in such alterations
encode proteins normally implicated in the control of hematopoietic cell growth and
differentiation.

The t(8;21)(q22;922)/RUNX1(AMLI,CBFA2)-ETOMTGS, RUNXIT) translo-
cation, which is associated with the AML subtype M2, is the most commonly
detected recurrent cytogenetic and molecular abnormality in AML. It results from
the fusion of the RUNXI (AMLI, CBFA2) gene, located on chromosome 21, with
the ETO (MTGS8, RUNXITI) gene, located on chromosome 8. RUNX/ is a member
of the core-binding factor (CBF) family of transcription factors required for the
homeostasis of hematopoietic stem and progenitor cells and expansion of hema-
topoietic stem and progenitor cells, and ETO is a member of the E-box family of
transcription factors (Erickson et al. 1992). The chimeric protein resulting from
the fusion gene AMLI-ETO (RUNXI-RUNXITI) functions principally by transac-
tivating or repressing RUNX1 target genes including critical regulators of myeloid
progenitor expansion (Lam et al. 2014) or genes that may prolong cell life span
such as BCL-2 (Klampfer et al. 1996). It has also been shown that AMLI-ETO
is able to promote leukemogenesis in p21WAFI1-deficient cells (Peterson et al.
2007).

The recurrent chromosomal abnormality inv(16)(p13g22) and the less common
t(16;16)(p13q22) translocation create a fusion between the CBFp gene on 16q22
and MYHI11 on 16p13, the gene encoding smooth muscle myosin heavy chain
(SMMHC) (Liu et al. 1993). The resulting CBFp-MYHI11 fusion gene, which
encodes the oncoprotein CBFp-SMMHC, is found in practically all patients with
the FAB M4 with eosinophilia subtype AML (Liu et al. 1995).

AML with t(15;17)(q22;q21)/PML-RARA (also known as APL) is a distinct
clinicopathological entity defined by the presence of the PML-RARA fusion,
regardless of blast count (Arber et al. 2008). This translocation leads to the fusion
of the retinoic acid receptor o (RARA) to various partner genes. The genes involved
are PML, located on chromosome 15, and the RARA gene on chromosome 17,
which form the fusion PML-RARA gene expressed exclusively in the APL subtype.
The normal RARA is a transcription factor involved in the differentiation of myeloid
cells; it needs all-trans retinoic acid (ATRA) (its ligand) to transactivate genes. The
resultant RARA chimeric oncoproteins are involved in the pathogenesis of the APL
and contribute to leukemic transformation by dominant inhibition of the expression
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of target genes that are important for cellular differentiation. Fusion PML-RARA
protein remains sensitive to ATRA as do most RARA fusion proteins; however, the
non-PML-RARA promyelocytic leukemic cells need very high doses of ATRA to
differentiate.

Approximately 15-20 % of all pediatric AML patients harbor translocations
involving the MLL gene (Balgobind et al. 2011), and most infants with acute
monoblastic leukemias have MLL rearrangements (Sorensen et al. 1994). The more
common translocations in childhood AML include t(9;11)(p22;q23), t(11;19)
(q23;p13.1), t(11;19)(q23;p13.3), and t(10;11)(p12;923), (Raimondi et al. 1999).

AML with t(9;11)(p22;q23);MLLT3-MLL is the only translocation involving the
MLL gene included in the WHO 2008 classification of AML as a distinct biological
category. This subtype characteristically manifests with proliferation of monoblasts
and/or promonocytes (blasts or blast equivalents >20 %) and has the morphologi-
cal, cytochemical, and immunophenotypic features of these cells, although full
monocytic differentiation is not often present.

AML with the t(1;22)(p13;q13)/RBM15/MKLI translocation is quite uncommon
(1-3 % of the cases). So far, it has only been found in acute megakaryocytic
leukemia, specifically in children younger than 3 years, and is not associated with
DS (Martinez-Climent et al. 1995). The t(1;22) involves the RBM15 and MKLI
genes. The fusion protein may modulate chromatin organization, HOX differentiation
pathways, or extracellular signaling pathways (Ma et al. 2001).

In 20-25 % of childhood AML cases, no chromosomal abnormalities are visible
by conventional karyotyping and are referred to as cytogenetically normal
AML. Several mutations have been identified in the normal karyotype subgroup,
including mutations in the FLT3 (FMS-like tyrosine kinase 3), NPMI
(nucleophosmin), CEPBA (CCAAT/enhancer-binding protein alpha), and WTI
(Wilms’ tumor 1) genes.

FLT3 is a protein originally identified in bone marrow CD34-positive cells that
has been found in blast cells from most AML and BCP-ALL (Hunte et al. 1995;
Carow et al. 1996). Its ligand (FL) is an early-acting factor that promotes survival,
proliferation, and differentiation of primitive hematopoietic progenitor cells (Lyman
et al. 1993). It participates in the activation of several downstream signaling
pathways, such as the Ras/Raf/MAPK and PI3 kinase cascades.

Internal tandem duplications and/or insertions and, rarely, deletions in the FLT3
gene are the most frequent genetic aberration described in AML, implicated in
20-25 % of all AMLs. Infants with MLL rearrangements often have FL73 mutations;
they are also seen in 4—12 % of AML cases with t(8;21), and some reports suggest
that this mutation is an adverse prognostic finding in AML with t(8;21) translocation
(Boissel et al. 2006).

Mutations in the NPM1 gene occur in approximately 7 % of children with
AML. The nucleophosmin protein regulates the alternate reading frame (ARF)-p53
tumor-suppressor pathway (Colombo et al. 2002). These mutations have been
associated with all morphological subtypes with the exception of M5 AML and are
characteristically CD34-negative at diagnosis (Cazzaniga et al. 2005; Cordell et al.
1999).
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Another group of mutations that occur in AML patients with normal karyotype
are CEPBA (CCAAT/enhancer-binding protein alpha) gene mutations, present in
nearly 5 % of pediatric AML patients and 17 % of those with normal karyotypes
(Ho et al. 2009). The CEPBA gene encodes the protein C/EBPa, a transcription
factor that regulates proliferation and controls terminal granulocytic differentiation
(Lekstrom-Himes and Xanthopoulos 1998).

WTI mutations have been reported in 6.5-12 % of childhood AML patients
(Sano et al. 2013; Hollink et al. 2009a). Wtl is a transcriptional activator of the
erythropoietin gene. Loss of WTI expression results in diminished erythropoi-
etin receptor (EpoR) expression in hematopoietic progenitors, suggesting that
activation of the EpoR gene by Wt1 is an important mechanism in normal hema-
topoiesis (Dame et al. 2006). WTI mutations cause translation of an aberrant
protein with loss of normal function and might therefore result in stem cell
proliferation and blocking of differentiation, thereby contributing to leukemo-
genesis (Hollink et al. 2009a).

Clinical Presentation

Most of the signs and symptoms are common to both acute leukemias in children;
however, some AML subtypes are associated with specific features.

In acute monocytic leukemia, extramedullary infiltration occurs more commonly
than in other subtypes of AML and includes the lungs, colon, meninges, lymph
nodes, orbit, and gums.

Disseminated intravascular coagulation can occur in any subtype of acute
leukemia at initial presentation because of rapid cell turnover or sepsis, although it
is characteristic of promyelocytic AML. This condition can result in severe, life-
threatening hemorrhagic and thrombotic events; therefore, it is essential that cases
of APL be rapidly identified.

Rarely, the first sign of AML is the development of a solid leukemic mass outside
of the bone marrow. This tumor, known as myeloid sarcoma, chloroma, or
granulocytic sarcoma, may occur in almost any part of the body.

Diagnosis

Some specific morphological findings, such as Auer rods, make obvious that cells
belong to one or more of the myeloid lineage, and negative MPO or SBB stains help
to diagnose ALL, although acute monocytic leukemia usually gives a negative stain
with MPO; therefore, nonspecific esterase activity might be useful for discernment
when immunophenotype and other more reliable diagnostic resources are not
available.
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Immunophenotype

The myeloid-related antigens CD13, CD33, CD65, CD117, and myeloperoxidase
identify one or more of the myeloid lineages in the leukemic cells. For identification
of AML with monocytic differentiation, the specific markers include CD4, CD11b,
CD14, CD16, CD36, CD56, CD64, and HLA-DR, and less often expressed CD34,
compared with non-monocytic AML. As single markers, none of these is sufficiently
sensitive and specific for identifying monocytic AML (Xu et al. 2006).

The minimal panel required to diagnose AML according to the WHO and EGIL
includes CD34, CD117,CD11b,CDl11c,CD13,CD14, CD15, CD33, CD64, CD65,
MPO, lysozyme, CD41, and CD61.

Prognostic Factors

The aim of defining risk groups in AML is to identify both those patients with a high
probability of treatment response and a low relapse rate and those with a lower
response rate and higher probability of relapse.

Age is considered one of the most significant prognostic factors. Several groups
have found that younger children have a lower risk of relapse and EFS no worse
than older children (Abrahamsson et al. 2005; Estey et al. 1987; Rubnitz et al. 2012;
Smith et al. 2005; Webb et al. 2001; Medina-Sanson et al. 2015).

The AML-BFM 83 and 87 studies identified that a WBC count >100,000/pL was
an independent prognostic factor, indicating a high risk, especially for early failure
(Creutzig et al. 1999).

A correlation between response to the first induction course and disease outcome has
been described by the BFM and other groups (Creutzig et al. 1999; Lie et al. 2005).

t(8;21), inv(16)(p13.1;q22)/CBFB-MYHI1, and t(16;16)(p13.1;q22)/CBFp-
MYH]11 are the only favorable genetic abnormalities for which there are strong data
based on large numbers of pediatric patients (Harrison et al. 2010; von Neuhoff
et al. 2010).

AMLs with MLL rearrangements conform a heterogeneous group with several
outcomes, mostly dependent on the type of translocation. The 5-year OS that ranges
from 100 % for the t(1;11) to 22 % for t(6;11) translocation may depend on the
translocation partner (Balgobind et al. 2009). Another analysis found that cases
with the t(9;11) have a better prognosis than those who carry other MLL
rearrangements, and in fact this translocation represents one of the most favorable
genetic factors for patients with AML (Rubnitz et al. 2002).

In the subset of AML patients with normal karyotype, the mutations with proven
prognostic significance include FLT3-ITD, biallelic CEBPA mutations, and NPM 1.

A study of 91 pediatric patients with AML trialed in the Children’s Cancer Group
(CCG)-2891 found that FLT3-ITD mutations represent the single most significant,
independent prognostic factor for poor outcome in pediatric AML, regardless of
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diagnostic WBC counts, induction regimen, or cytogenetic markers. EFS at 8 years
for patients with and without FLT3/ITD mutations were 7 % and 44 %, respectively
(Meshinchi et al. 2001). However, a recent study suggests that the poor prognosis of
FLT3/ITD in pediatric AML depends on the allelic ratio between mutant and wild-
type FLT3, and only those cases with an allelic ratio >0.4 have a very poor outcome
(Meshinchi et al. 2006).

The presence of biallelic CEBPA mutations is an independent prognostic factor
for improved outcome (Ho et al. 2009).

NPM1 mutations have been associated with a favorable prognosis (OS rates
>80 %), but only in the absence of karyotype abnormalities and FLT3 mutations
(Hollink et al. 2009b; Staffas et al. 2011; Brown et al. 2007).

It has also been found that patients with W7/ mutation have a dismal prognosis
(5-year OS 21 %). However, the impact of this mutation has not been completely
elucidated and is probably dependent on the FLT3 status (Ho et al. 2010).

For PML patients, the most important adverse prognostic factor is the presenting
WBC count. A leukocyte count greater than 10,000 cells/pL is associated with an
EFS of approximately 60 % (Ortega et al. 2005). In the current pediatric protocols,
patients are considered low or high risk on the basis of WBC counts lower or higher
than 10,000 cells/pL, respectively.

The microgranular variant (M3v), the presence of a bcr3 PML breakpoint, and
FLT3-ITD mutations have also been associated with a poor prognosis (Tallman
2008; Creutzig et al. 2001; Kaspers and Creutzig 2005; Lange et al. 2008;
Abrahamsson et al. 2011; Stevens et al. 1998; Rubnitz et al. 2012).

Children with DS, who characteristically present the FAB subtypes M7, M6, and
MO, start before the age of 5 years, have a low WBC at diagnosis and mutations in
the GATAI gene (Lange et al. 1998), and exhibit high sensitivity to chemotherapy
(Ravindranath et al. 1992; Lie et al. 1996) and a good outcome when moderate
intensity chemotherapy is used (Creutzig et al. 2005b).

It has been reported that ethnicity may also influence survival. A COG study
found that Hispanic and black children with AML have worse survival than white
children (Aplenc et al. 2006) and that this might be related to genetic differences
(Medina-Sanson et al. 2015; Davies et al. 2001).

Risk-Group Assignment

Risk-adjusted therapy approaches in childhood AML are becoming as important as
in ALL. In the past, clinical, laboratory, and blast features in addition to
morphological response were the basis of risk assignment. However, novel
significant predictors of disease outcome are emerging, and the current criteria for
risk stratification are based on cytogenetic on molecular characteristics, together
with assessment of response measured either by MRD or bone marrow response
(Abrahamsson et al. 2011; Wheatley et al. 1999; Langebrake et al. 2006, Rubnitz
et al. 2010).
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In the COG trials, the combination of cytogenetic, molecular, and MRD informa-
tion is being used to stratify patients into two groups. Low-risk AML includes cases
with mutations involving CBF, CEBPA, and NPM and those with no MRD at the
end of induction therapy. This group represents approximately 73 % of patients,
with a predicted survival close to 75 %. The high-risk group includes patients with
adverse cytogenetic abnormalities such as monosomy 7, del(5q), high FLT3-ITD to
wild-type allelic ratio, or MRD positive at the end of induction and has a survival
rate of <35 % (Pui et al. 2011; Meshinchi et al. 2006).

According to the AML-BFM 83 and 87 studies, a combination of morphological
and response criteria was sufficient to stratify AML patients. The standard-risk group
defined by favorable morphology and a blast cell reduction on day 15 (not required for
M3) comprises 31 % of all patients with OS, EFS, and disease-free survival (DFS) at
5 years of 73 % (standard error [SE] 4 %), 68 % (SE 5 %), and 76 % (SE 4 %), respec-
tively (Creutzig et al. 1999). In the last decade, the BFM-AML protocols have incor-
porated standardized quantitative assessment of MRD for stratification (Langebrake
et al. 2006), and it seems that MRD monitoring using methods that target leukemia-
associated genes such as WT'l, PRAME, CCL23, GAGED2, MSLN, SPAG6, and ST18
has a strong independent prognostic significance (Steinbach et al. 2015).

The MRC developed an index to stratify AML patients into three risk groups
based on morphological response after course one and cytogenetics: good, favorable
karyotype or M3, irrespective of response status or presence of additional
abnormalities; standard, neither good nor poor; and poor, adverse karyotype or
resistant disease and no good-risk features. Survival for these three groups was
70 %, 48 %, and 15 %, respectively, and relapse rates were 33 %, 50 %, and 78 %
(Wheatley et al. 1999).

Risk stratification of those patients whose leukemia lack favorable or unfavorable
genetic features should be assessed based on response to therapy.

In many developing countries, sophisticated diagnostic resources are unavailable,
and it has been necessary to develop more realistic approaches.

In Mexico, for instance, a modification of the NOPHO-AML 93 schedule was
adopted as a feasible national protocol, where the risk stratification is based on the
morphological response to the first induction course assessed in bone marrow by
morphology on day 16. Good-risk patients are those with less than 5 % blasts after
the first cycle. Therapy is intensified until response, and if remission is not achieved,
the child is classified as a nonresponder (Lie et al. 2005).

Treatment and Outcome

Current pediatric AML protocols result in 85-90 % complete remission rates
(Kaspers and Creutzig 2005). The long-term survival rates for patients who achieve
remission are in the range of 60-70 % with EFS rates between 45 % and 55 %
(Lange et al. 2008; Lie et al. 2005; Abrahamsson et al. 2011; Creutzig et al. 2001;
Stevens et al. 1998).
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Improvement in pediatric AML survival is to a large extent the result of intensive
supportive care, better risk-group stratification, and better use of the old drugs rather
than the introduction of new agents. Short drug-intensive regimens are the basis of
AML therapy. Treatment generally consists of remission induction, followed by
consolidation with either chemotherapy or stem cell transplantation, and includes
CNS-directed therapy.

Induction This phase is intended to obtain remission and restore normal
hematopoiesis. Most pediatric induction regimens are based on the intensive use of
a nucleoside analog (usually cytarabine) and an anthracycline (daunorubicin or
idarubicin) or mitoxantrone, with or without etoposide or thioguanine (Gibson et al.
2005; Lie et al. 2005). The intensification of this phase by increasing the dose of
cytarabine or the number of doses has not proved to be superior to standard doses
(Becton et al. 2006; Rubnitz et al. 2010), and when etoposide was compared with
thioguanine, similar results were obtained in complete remission rates and DFS
(Hann et al. 1997).

The use of G-CSF after induction therapy did not decrease the incidence of
infectious complications or treatment-related mortality in the AML-BFM 98 trial
(Creutzig et al. 2006).

Consolidation Post-remission chemotherapy is limited by acute toxicity and late
effects, including secondary malignancies. Once remission is achieved, most
patients are treated with intensive chemotherapy, generally high-dose cytarabine,
anthracyclines with or without mitoxantrone, and other non-cross-resistant drugs.

There are important differences among the pediatric clinical trial groups in the
approach to treating AML after remission. The Medical Research Council (MRC)
Study Group uses high doses of anthracyclines (Gibson et al. 2005), whereas
consolidation regimens of the NOPHO (Lie et al. 2005) and the St Jude AML Study
Group are based on high-dose cytarabine. The AML-BFM study group has used
both drugs in relatively high doses (Creutzig et al. 2005a). However, survival rates
are similar despite these different approaches.

CNS-directed therapy Although overt CNS leukemia is relatively rare in AML,
the use of high-dose systemic chemotherapy and intrathecal chemotherapy, with or
without cranial irradiation, is considered part of the standard treatment for AML
(Creutzig et al. 2005a; Pui et al. 1985).

Allogenic Hematopoietic Stem Cell Transplant (allo-HSCT) There is general
agreement among pediatric AML study groups to postpone allo-HSCT to second
remission in low-risk patients, but the role of HSCT for intermediate-risk and high-
risk AML patients in first remission is controversial. Some researchers have shown
an advantage for allo-HSCT on survival probability for patients with intermediate-
and high-risk AML (Horan et al. 2008; Woods et al. 2001). The procedure is being
abandoned by several groups, even for high-risk cases, since it does not seem to be
superior to current conventional chemotherapy (Gibson et al. 2005; Creutzig and
Reinhardt 2002; Kelly et al. 2014). A recent review of clinical trials showed that the
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OS rates of patients who underwent HSCT have been similar to those who received
standard chemotherapy (Niewerth et al. 2010).

Acute Promyelocytic Leukemia

The treatment of the APL subtype is very different and generally includes three
phases: induction, consolidation/intensification, and maintenance for a total duration
of 1-2 years (Sanz et al. 2010; Creutzig et al. 2010). Standard therapy consists of
the combination of ATRA with chemotherapy (Testi et al. 2005; Fenaux et al. 2000;
Gregory et al. 2009). ATRA is a differentiation therapy used for the cases carrying
the t(15;17). It acts by binding to the PML/RARA fusion protein overcoming the
differentiation block and allowing the blasts to terminally differentiate and to
undergo apoptosis. Arsenic trioxide (ATO) is an alternative differentiating agent
that has been particularly used in cases that do not respond to ATRA and in those
that harbor the t(11;17). Although experience with ATO in children is limited, the
results of its use as single agent are similar to those obtained with ATRA plus
chemotherapy, with minimal toxicity (Zhou et al. 2010; George et al. 2004).

The intensive chemotherapy regimens often result in significant toxicity and
relatively high rates of treatment-related deaths. Therefore, less toxic and more
effective therapies for pediatric AML are being investigated (Moore et al. 2013).

Refractory and Relapsed AML

Although chemotherapy will induce complete remission in approximately 90 % of
children, approximately one-third will relapse. The probability of OS ranges from
16 to 34 % after relapse (Gorman et al. 2010; Rubnitz et al. 2007; Abrahamsson
et al. 2007; Aladjidi et al. 2003; Wells et al. 2003; Webb et al. 1999).

Optimal reinduction therapy for pediatric relapsed AML is unknown. The first
randomized study in pediatric relapsed AML showed the benefit of liposomal
daunorubicin to the FLAG (fludarabine, cytarabine, and granulocyte colony-
stimulating factor) reinduction regimen in AML (Kaspers et al. 2013).

Allo-HSCT is generally indicated for patients who achieve complete remission.

Novel strategies are being tested for refractory and relapsed AML, including the
use of clofarabine and tyrosine kinase inhibitors.

Concluding Remarks

Over the past 50 years, improvements in therapy and supportive care by
interdisciplinary teamwork and cooperation on the national or international level
have increased the cure rates for childhood acute leukemia in industrialized countries
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from near zero to about 80-85 % in the case of childhood ALL and to around 60 %
for pediatric patients with AML.

However, global disparities in incidence and mortality between population
groups have been documented. Differences in survival are largely explained by
factors such as inadequate or delayed access to health care, availability of resources,
and sanitation.

From the public health point of view, mortality from leukemia is an important
co-indicator in assessing the quality of health care, and the contrast in childhood
leukemia survival strongly correlates with the development of the countries. It is a
reality that improvements in survival have not benefited all leukemia children from
different geographical locations to the same extent, as a result of deprived
socioeconomic conditions. Almost four-fifths of the 185,000-250,000 children
diagnosed with cancer worldwide each year live in low- and middle-income
countries, where there is still a strong need for resources to provide the minimum
standards for cancer therapy.

In the United States, Canada, Western Europe, and Australia, more than 90 % of
children and adolescents who are diagnosed with cancer each year are treated at
specialized hospitals or Pediatric Oncology units that have enough resources to
diagnose, treat, and provide comprehensive care for children and adolescents with
cancer, and most of them are enrolled in clinical trials. However, minority
populations are often underrepresented in these trials and therefore may be difficult
to appropriately assess whether the existing cancer therapies provide equal benefit
to all population groups.

On the other hand, it is the Pediatric Oncology of the low-income and many
middle-income countries which often lacks the minimum diagnostic and treatment
standards resources to treat pediatric cancer patients, such as immunophenotyping,
cytogenetics, linear accelerators, MRI and positron-emission tomography scanners,
and enough number of trained staff. Some of these resources are available in
pediatric oncology services of a few tertiary centers, mainly in the largest cities, but
even when present remain inaccessible to most of the population.

The main goal continues to be improvement in treatment results. Even if pediatric
oncology has a low priority, the institution, in each country or large province, of at
least one pediatric cancer unit may improve not only cancer treatment but also
medical care in general. Care standards must be improved by promoting education
among the first-contact health personnel and staff involved in childhood cancer
treatment and by setting algorithms for the diagnosis and initial approach to children
with suspected cancer.

International organizations are already contributing to the development of pediatric
oncology worldwide, but much still remains to be done, and a great challenge for the
future will be the planning of pediatric oncology in developing countries to exploit the
existing health-care infrastructure and complement resources between the existing
pediatric oncology services (human resources, infrastructure for diagnosis and treat-
ment, support therapy), adapt the standard therapies, and implement logistic strategies
to build regional network systems that may allow an equal and just delivery of health
care for pediatric cancer patients in countries with lower resources.
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Abstract Acute leukemia (AL) is the most common type of cancer in children under
15 years of age and represents one of the leading causes of mortality among children
worldwide. Despite advancements in the knowledge of the biology and treatment of
AL, the etiology remains unresolved. A small number of risk factors have been
reported as established for the development of this disease, but they explain less than
10 % of cases, leaving 90 % of cases without an identified causation.

Case-control studies have been the main research designs used to investigate the
causes of AL in children. The importance of case-control studies rests on the assump-
tion that data on individuals is essential for gaining an understanding of the environ-
mental causes of childhood leukemia and adds great value to the genetic research.

Genetic or environmental factors alone may not be responsible for causing child-
hood AL. Rather, it is thought that an interaction between genetic susceptibility and
exposures to certain environmental factors in a specific time window can contribute
to the development of this disease.
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Identifying the causes of childhood AL would lead to the establishment of effec-
tive preventive measures in children who are at high risk of developing this disease,
reducing incidence and mortality rates, the costs of medical care, and other conse-
quences associated with childhood leukemia. Therefore, we need to implement a
new framework for the etiology of AL. We believe that solving key elements of this
puzzle can lead to prevention of the development of AL in children.

Keywords Leukemia * Children * Epidemiology * Etiology * Prevention

Introduction

Acute leukemia (AL) is the most common type of cancer in children under
15 years of age, representing 34 % of all childhood cancers. AL is one of the
leading causes of mortality among children worldwide (Siegel et al. 2012).
Acute lymphoblastic leukemia (ALL) is the most frequent subtype of AL (80—
85 % of cases), followed by acute myeloblastic leukemia (AML; 15-20 % of
cases) (Greenlee et al. 2000; Gurney et al. 1995a; Margolin et al. 2006). AL
incidence rates vary among countries, the highest being reported for Costa
Rica, Hispanics in Los Angeles, and Mexico (Parkin et al. 1998; Pérez-Saldivar
et al. 2011).

Despite advancements in the knowledge of the biology and treatment for this
disease, the identification of the etiology of AL has not been adequate (Carroll et al.
2003; Ludwig et al. 2003; Rowley 1999). Known risk factors explain less than 10 %
of cases (Inaba et al. 2013; Buffler et al. 2005), with the remaining 90 % having an
unresolved causation.

Etiology of AL in children is considered to be multicausal, and many studies
have been conducted to date to investigate whether environmental, genetic, and
other potential risk factors are associated with its development. It has been pointed
out that childhood AL seems to result from the interaction between individual
genetic susceptibility and exposure to environmental carcinogenic agents within a
specific time window (Inaba et al. 2013; Buffler et al. 2005).

The purpose of this chapter is to summarize the current scientific evidence on the
etiology and prevention of AL in children.

Research Designs Used to Investigate the Causes of AL
in Children

Case-control studies have been the main research design used to investigate the
causes of childhood AL. The importance of case-control studies rests on the
assumption that data on individuals are essential for gaining an understanding
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of the environmental causes of childhood leukemia and add great value to the
genetic research.

Observational studies have some limitations with regard to scientific strength
when searching for the causes of a disease because they cannot deal definitively
with bias, chance, and confounding (Fletcher et al. 2014). One of the most recent
approaches to investigate the causes of childhood leukemia takes into account not
only the investigation of environmental or genetic risk factors independently but
also gene-environmental interactions through the pooling of previously collected
data from individual observational studies to improve statistical power (Metayer
et al. 2013a).

Risk Factors for the Development of AL in Children

Established Risk Factors

After years of exhaustive investigation on the etiology of childhood AL, a small
number of risk factors have been reported as established for the development of this
disease (Buffler et al. 2005). Among the established risk factors are ionizing
radiation, some genetic syndromes, and some drugs used in chemotherapy.

Ionizing Radiation

Ionizing radiation has properties of an initiator more than a promoter for inducing
DNA alterations in blood lymphocytes, subsequently provoking malignant cell
transformation (Committee to Assess Health Risks from Exposure to Low Levels of
Ionizing Radiation 2006; Bhatti et al. 2008; Harbron 2012). Stewart and Kneale
reported for first time a high incidence of leukemia in children whose mothers had
been exposed to X-rays during the prenatal period. Moreover, a dose-response
relationship between X-ray exposure and childhood AL was observed (Stewart and
Kneale 1970; Stewart et al. 1956). Risk of childhood leukemia after exposure to in
utero radiation has been estimated as 1.5 times above baseline (Miller 1969). Similar
results have been reproduced in multiple studies (Brent 2014), contributing to
modifications in medical practice regarding radiographic examination of women
during pregnancy. Recommendations include that all women of reproductive age
should be evaluated for the possibility of pregnancy in cases requiring radiological
examinations and implementation of ultrasonography as a safe and first-line
diagnostic resource during pregnancy instead of radiography (American College of
Radiology 2008).

On the other hand, further investigation is required to confirm the role played by
postnatal exposure to diagnostic X-rays as a risk factor in the development of
childhood AL (Infante-Rivard 2003; Chokkalingam et al. 2011).
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Childhood Leukemia Predisposition Syndromes

Childhood leukemia predisposition syndromes are Down syndrome (DS),
neurofibromatosis type 1 (NF1), Fanconi anemia (FA), ataxia-telangiectasia,
Nijmegen breakage syndrome, Bloom syndrome (BS), Noonan syndrome (NS),
Diamond-Blackfan anemia, Shwachman-Diamond anemia, and dyskeratosis
congenita (Seif 2011). Genetic abnormalities observed in these patients have
permitted a better understanding of leukemogenesis (Izraeli 2003). Here we address
some of the most studied childhood leukemia predisposition syndromes.

Down Syndrome

DS children are highly susceptible to develop leukemia (10-20 times) in comparison
with the general population. Acute myeloid leukemia-M7 (AML-M7) is the most
common subtype of leukemia seen in DS children and is associated with high
chemosensitivity and toxicity in these patients.

During the neonatal period, about 10 % of DS children may present a transient
abnormal myelopoiesis (Hasle 2001), considered as one of the most important
candidate preleukemic syndromes (approximately 25 % will develop AML during
childhood) to be exhaustively studied, as it could allow the identification of the
mechanisms associated with the progression from a preleukemic state to childhood
leukemia.

On the other hand, DS children are also affected with ALL, a subtype related to
a poor prognosis in these patients (Hitzler and Zipursky 2005; Carroll and Raetz
2012; Patrick et al. 2014).

Leukemogenic mechanisms have been reported in 18-28 % of DS-AL patients
(Fonatsch 2010): susceptibility to viral replication, altered DNA repair, chromosome
fragility, increased number of copies in AMLI gene, GATA I mutations (related with
development of AML), dysregulation in Xp22.33/Yp11.32 region of CRLF?2 gene,
and mutations in the Janus kinase (JAK2) gene (associated with ALL).

In addition, certain environmental exposures have been associated with a high
risk in DS children of developing AL: paternal smoking before pregnancy, paternal
alcohol consumption, passive child exposure to tobacco smoke, exposure to
magnetic fields, infections requiring hospitalization, and, most recently, asthma
(Mezei et al. 2014; Mejia-Aranguré et al. 2003, 2007; Flores-Lujano et al. 2009;
Nufez-Enriquez et al. 2013).

Neurofibromatosis Type 1

NF1 is a genetic disorder with an autosomal dominant transmission characterized
by the presence of multiple benign neoplasms called neurofibromas, skeletal
deformations, and cognitive disorders, among other features. The association
between NF1 and childhood acute myeloblastic leukemia was reported for first time
by McEvoy and Mann (1971). Other authors have reported a 500-fold increased risk
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of developing juvenile myelomonocytic leukemia (JMML) (Stiller et al. 1994) and
a higher incidence of ALL in this population (Yohay 2009; Stiller et al. 1994;
Zvulunov 1996). The reported alterations in the blasts of NF1 patients are loss of
heterozygosity for the NFI gene and elevated levels of Ras-GTP (Shannon et al.
1994; Bollag et al. 1996). Moreover, loss of function of neurofibromin promotes
uncontrolled cell growth and tumorigenesis in these patients through the activation
of the RAS proto-oncogene (Yohay 2009). On the other hand, NF1 patients seem to
have an increased risk for the development of treatment-related leukemias
(Perentesis 2001).

Fanconi Anemia

Fanconi anemia (FA) is an inherited syndrome that frequently begins with mani-
festations of childhood leukemia. The most frequent leukemia is AML (94 %) in
adolescents (Rosenberg et al. 2003; Alter 2003), and patients with FA have a 500-
fold increase in risk for the development of AML compared with the general
population (Alter et al. 2010; Shimamura and Alter 2010). Genetic abnormalities
in these patients include mutations in 17 genes, deletion 7q, gain of 13 g, deletion
of 20q, gain of 1q, monosomy 7, and gain of 3q (Schneider et al. 2015; Moldovan
and D’Andrea 2009; Vaz et al. 2010; Butturini et al. 1994). The mechanisms
reported as associated with predisposition to leukemia in children are disruptions
of regular DNA double-strand break (DSB) repair by homologous recombination,
which may lead to misrepairs and genetic instability (Popp and Bohlander 2010).

Bloom Syndrome

The most affected populations with BS are the Ashkenazi Jewish from Eastern
Europe and Israel, accounting for approximately one-third of BS cases (Seif 2011).
These patients frequently present immunodeficiency, infertility, and short stature.
The BS-mutated gene is called BLM, located at 15926.1 (German 1993; Straughen
et al. 1996), which codes for the DNA repair enzyme RecQL3 helicase, resulting
in genomic instability that may progress to leukemia. BS children and adolescents
are at high risk of developing both types of leukemia (ALL and AML) that may
result in death (Sanz and German 2014). Recently, a higher frequency of mono-
somy 7 and deletions of the long arm of chromosome 7 have been observed in
patients with BS and myeloid neoplasms compared with non-BS patients (Poppe
et al. 2001).

Noonan Syndrome
Association between NS and JMML has been most frequently reported during the

first years of life. NS patients have somatic mutations in the PTPN11, NRAS, KRAS,
SHOC2, NF1, SOS1, RAFI, and CBL genes encoding components of the
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RAS/MAPK pathway (Tartaglia et al. 2010; Hyakuna et al. 2015), the mutations of
PTPNI1 gene being the most commonly observed alteration in up to 40 % of cases
with NS and JMML (Choong et al. 1999; Kratz et al. 2005; Niihori et al. 2005;
Niemeyer et al. 2010). In addition, Thr73Ile and p.Asp61His specific mutations in
PTPNI11 gene have been linked with a good and poor prognosis of the JMML in NS
patients, respectively (Strullu et al. 2014).

Chemotherapy-Related Acute Myeloid Leukemia in Children (t-AML)

After a child is diagnosed with cancer the initial treatment is based on chemotherapy
agents. It is noteworthy that chemotherapy carries some adverse effects in children’s
health, one of the most serious being the development of secondary leukemia as a
result of mutations generated by chemotherapy (Pizzo 2011). Nowadays, this
complication is more frequently observed than in the past because the survival rates
for children with cancer have substantially improved.

Childhood AML is the most frequent subtype of leukemia following chemo-
therapy (Hoffmann et al. 1995). The development of t-AML depends on exposure
to specific chemotherapeutic agents (alkylating, epipodophyllotoxins, and DNA-
topoisomerase II inhibitors) and dose- and time-related characteristics (time of
exposure, cumulative dose, and the dose intensity) of the previously used chemo-
therapeutic agent (Ratain et al. 1987; Levine and Bloomfield 1986; Pedersen-
Bjergaard et al. 1998).

In general, the cytogenetic abnormalities and gene mutations that have been
reported for children with de novo AML and with t-AML are the same; however,
some differences in specific mutations between these two groups (t-AML patients
have a higher frequency of p53 point mutations and lower frequency of FLT3 and
NPM1 mutations compared with de novo AML patients) have been reported
(Grimwade et al. 1998; Slovak et al. 2000; Byrd et al. 2002; Sanderson et al. 2006;
Greenberg et al. 1997). Notably, the prognosis of t-AML is directly related to the
presence or absence of certain cytogenetic features (Schoch et al. 2004; Joannides
and Grimwade 2010).

Possible Risk Factors

The investigation on the causes of childhood leukemia has allowed identification of
some possible environmental and/or genetic risk factors for the development of AL
in children. Moreover, different periods of life have been explored to investigate the
role played by environmental and genetic factors in the development of AL in
children (Fig. 2.1).
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Fig. 2.1 Periods of life explored to investigate the role played by genetic and environmental
factors in the development of acute leukemia in children

Environmental Factors
Extremely Low-Frequency Magnetic Fields

The International Agency of Research on Cancer (IARC) classified extremely low-
frequency magnetic fields (ELF-MF) as “possible carcinogens to humans” (Gobba
et al. 2009). The role played by ELF-MF exposure on the etiology of AL in children
has been studied for many years (Mezei et al. 2008; Schiiz et al. 2007); however,
imprecise estimations have been observed in various meta-analyses (Kheifets et al.
2010) possibly due to measurement errors, selection bias, and confounding
factors.

The measurement of the ELF-MF exposure has been different across studies.
The proximity to power lines, average of historical current supply data, and wire
codes have been used as proxy variables to evaluate the ELF-MF exposure. In this
regard, it has been pointed out that the assessment of the individual’s ELF-MF
exposure through proxy variables may lead to measurement errors (Rothman 1993;
Greenland et al. 2000). Alternatively, direct magnetic field measurements (24-h
child bedroom and spot measurements at the front door of the residence) by using
gaussmeters have been recently introduced (Brain et al. 2003).

Selection bias in studies on ELF-MF exposure and AL are possibly related to a
low participation rate of controls with low socioeconomic status (SES) (related to
high levels of ELF-MF exposure) in comparison with participation rate of cases
(Schiiz et al. 2007) and/or because of a lower participation rate of cases compared
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with controls (Calvente et al. 2010; Hatch et al. 2000; Kheifets and Shimkhada
2005). Some more recent studies searching for the association between ELF-MF
exposure and childhood AL have been designed to avoid selection and differential
misclassification biases (Sermage-Faure et al. 2013).

Potential confounders that have been described for the association between
ELF-MF are SES, residential mobility, type of residence, degree of social contact,
traffic density, and the exposure to electrical contact currents (Jones et al. 1993;
Hatch et al. 2000; Gurney et al. 1995b; Feychting et al. 1998; Kheifets et al. 2006,
2010; Does et al. 2011).

Various experimental studies have been conducted until now to evaluate the bio-
logical plausibility of the ELF-MF exposure as risk factor for the development of
AL in children. However, no effects of ELF-MF have been confirmed either in vitro
or in vivo experiments at different levels of exposure (National Research Council
(US)/Committee on the Possible Effects of Electromagnetic Fields on Biologic
Systems 1997; Lagroye et al. 2011; Swanson and Kheifets 2012).

Allergic Diseases

Associations between allergies and the development of AL in children have been
investigated in several epidemiologic studies, but results are not conclusive, as
different studies have revealed that allergies are risk factors or protective factors
(Schiiz et al. 2003; Soderberg et al. 2006; Rosenbaum et al. 2005; Hughes et al.
2007; Chang et al. 2009; Rudant et al. 2010; Spector et al. 2004). Importantly, a
case-control study conducted by the Mexican Inter-institutional Group for the
Identification of the Causes of Childhood Leukemia in DS children (a population
with an intrinsic immune dysregulation) (Kusters et al. 2009) reported that
asthma was a risk factor for AL, whereas skin allergy was a protective factor
(Nufiez-Enriquez et al. 2013). Contrasting results may reflect the heterogeneity
of AL and allergies; they seem to share common biological and immune
mechanisms.

Three hypotheses have been proposed to explain positive and negative asso-
ciations between allergic diseases and AL in children. To explain the role of
allergies as a risk factor for cancer, the “antigenic stimulation hypothesis” has
been proposed, which states that the chronic stimulation of the immune system
will provoke randomly occurring pro-oncogenic mutations in actively dividing
cells (Soderberg et al. 2004). Two hypotheses put forth to explain inverse allergy-
AL association are the “immune-surveillance hypothesis,” which suggests that
allergic diseases enhance the immune system’s ability to detect and eliminate
neoplastic cells, and the “adrenal hypothesis” (Schmiegelow et al. 2008), which
proposes that infections produce changes in the hypothalamus-pituitary-adrenal
axis and subsequently an elevation in plasmatic cortisol, provoking the elimina-
tion of leukemic and preleukemic cells. This mechanism would be possible in
allergic conditions because the drugs commonly used to treat allergies include
corticosteroids (Allergy UK British Allergy Foundation 2012), which could
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provide the same protective effect against the development of AL provided by
early infections.

Important limitations of studies on the association between allergies and AL
have been the study design, exposure data source, and latency period (Linabery
etal. 2010). Moreover, the biological plausibility of this association remains unclear.

Infections

The role of infection in the etiology of leukemia was revealed for the first time more
than 90 years ago through a series of cases reported by Gordon Ward in 1917. These
cases included 1,457 children with AL (Ward 1917).

One of the most relevant researches in this topic was conducted by Kinlen et al.,
who found a relationship between a high incidence of AL and infectious diseases in
children who lived near rural areas. Kinlen’s findings resulted in the emergence of a
hypothesis proposing that leukemia originates from exposure to an infectious agent
in a mixed population (rural-urban), causing an abnormal immune response that
increases the risk of developing the disease (Kinlen 1995).

Afterward, Greaves et al. using biological and epidemiological data on AL, sug-
gested the hypothesis of late infection, which comprises two stages. The first stage
starts with a mutation in utero at the same time that precursor B cells are developing,
and a second stage takes place during the postnatal period, in which the cell that
underwent a mutation would be exposed to a common late infection in the first year
of the child’s life, resulting in the development of AL (Greaves 1988). Moreover, a
third hypothesis was then proposed by Smith et al., who considered that AL origi-
nates from in utero exposure to infection (Smith 1997).

Case-control studies represent the main type of epidemiological studies con-
ducted so far on the association between infection and AL in children (McNally and
Eden 2004). The results of these studies appear to suggest a lower risk of developing
AL among children who were exposed to early infections compared with those who
were not exposed. No such association, however, has been reported by other authors;
therefore, infections that occur during the first year of life are still considered to be
a controversial exposure factor (Flores-Lujano et al. 2013).

In addition, different types of infections have been evaluated in epidemio-
logic studies. The most frequently studied are respiratory tract infections, gas-
troenteritis, and those caused by specific infectious agents (e.g., retroviruses).
However, there is no evidence to date from experimental studies of a specific
infectious agent definitively linked with childhood leukemia (Morales-Sdnchez
et al. 2013).

Over time, some indicators have been used to quantify the exposure to infection.
These indicators, designated as “proxies,” include socioeconomic status, surgical
history, allergic diseases, immunizations, attendance at daycare, breastfeeding,
neonatal infections, and prenatal history, among others. A better exposure assessment
has been recommended to achieve better epidemiological evidence regarding
infection and AL development (Urayama et al. 2010).
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Parental Exposures

It is thought that parental exposures may be relevant as risk factors for the
development of AL during the preconception period, when germ cells may be
damaged, during pregnancy, and postnatally, when carcinogenic agents may provoke
mutations (Infante-Rivard et al. 1991; Monge et al. 2007).

Father’s Occupational Exposure

The role played by the father’s occupational exposure to carcinogenic agents in the
risk of developing ALL in his offspring is controversial (Keegan et al. 2012).
Pertinent studies had the following weaknesses: (1) information about occupational
exposure was obtained from secondary sources or by using the occupation or the
industrial branch as an indicator of the exposure; (2) the interviewed workers either
had ignored the substances to which they were exposed or could not remember their
past exposures; and (3) when exposure was characterized, only the duration of
exposure was taken into account, with no consideration given either to the frequency
or intensity of exposure or to other variables such as the use of personal protective
equipment (Van Maele-Fabry et al. 2010; Keegan et al. 2012; Savitz and Chen 1990;
O’Leary et al. 1991; Colt and Blair 1998). This has resulted in a misclassification of
the exposure.

Furthermore, in epidemiologic studies, when attempting to prove the occupa-
tional effect of a specific position or of exposure to a particular substance, the sam-
ple sizes have been unsatisfactory (Savitz and Chen 1990; O’Leary et al. 1991; Colt
and Blair 1998). These are difficult problems to solve, because occupations and
exposures to substances associated with childhood cancer are infrequently found in
the general population; therefore, the risks obtained have been inconsistent and
inaccurate (Annegers and Johnson 1992). Ward and colleagues (2003) recom-
mended one way to increase accuracy in this type of studies; they pointed out that it
is better to conduct studies with large sample sizes when studying specific sub-
stances as risk factors, as these types of exposure are very rare among the general
population (Ward et al. 2003). In addition, taking into account the very low fre-
quency of childhood ALL makes it more difficult to investigate associations with
rare exposures because it implies a larger sample size (Mejfa-Arangure 2013).

Genetic Susceptibility and Gene-Environment Interaction

Recently, it has been reported that genetic factors or environmental factors alone
may not be responsible for causing leukemia. Rather, it is thought that an interaction
between genetic susceptibility and exposures to certain environmental factors can
contribute to the development of this disease in children (Table 2.1).

Genetic susceptibility refers to inherited factors that modulate disease risk, either
via the factors’ main effects or, more likely, via the interaction with other inherited
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factors (gene-gene interactions) or exogenous exposures such as chemicals, dietary
factors, and infectious agents (gene-environment interactions) (Chokkalingam and
Buffler2008). Notably, there is evidence of prenatal molecular damage (chromosomal
alterations and mutations) in the lymphoid or myeloid progenitors of children with
AL (Greaves 2003; Collins-Underwood and Mullighan 2011). Moreover, AL in
children has been associated with the presence of various genetic polymorphisms
altering the mechanism of the genes that encode enzymes involved in the xenobiotic
metabolism (cytochrome P450 [CYP450], NAD(P)H quinone oxidoreductase I
[NPQO1], myeloperoxidase [MPO], glutathione S-transferase [GST], and
N-acetyltransferase [NAT]) and the membrane transport multidrug resistance
[MDR1] gene.

The cancer susceptibility genes belong to one of three classes: (1) gatekeepers,
(2) caretakers, and (3) landscapers (Kinzler and Vogelstein 1998). Gatekeeper genes
regulate growth and differentiation pathways of the cell through oncogenes and
tumor-suppressor genes. These gatekeeper genes either stop the cell from
proliferating by repairing damage to the DNA or eliminate the cell via programmed
cell death (apoptosis) (Kotnis et al. 2005). In addition, they have the capacity to
maintain the integrity of the genome preventing DNA damage from carcinogens
through two sets of enzymes: (1) enzymes that detoxify endogenous and exogenous
carcinogens, called xenobiotic-metabolizing enzymes, and (2) enzymes that repair
damage in the DNA from the carcinogens. Finally, landscaper genes encode gene
products that control the microenvironment in which cells grow (Kinzler and
Vogelstein 1998).

Xenobiotic Metabolism

Our bodies have evolved host metabolic enzymes and other protective enzymes to
protect us against the deleterious effects of carcinogens present in both the diet and
the environment. The complete metabolism of xenobiotic comprises two enzymatic
phases: phase I (bioactivation) and phase II (detoxification). This metabolism helps
to maintain a critical balance of activation and inactivation of a wide range of
chemical exposures of relevance to ALL, including chemical carcinogens,
insecticides, drugs, petroleum products, nitrosamines, polycyclic aromatic
hydrocarbons, and environmental pollutants (Chokkalingam et al. 2012). The
cytochrome P450 (CYP450) superfamily of genes involve most of the phase I
enzyme system where CYPI and CYP2 have been involved in the area of cancer
susceptibility. Studies have shown that CYPAImI, CYPIAIm2, and polymorphism
of CYP2E] are more prevalent and increase a child’s susceptibility to leukemia. A
study published by Infante-Rivard in 2000 evaluated the contribution of gene-
environment interaction, CYPIAmI and CYP1AIm2 polymorphisms, and pesticide
exposure to the risk of childhood leukemia. The authors reported significant odds
ratios of interaction among carriers of the CYPIAmI and CYPIAIm2 genotypes
(Labuda et al. 1999; Infante-Rivard et al. 2000).
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GST and NAT1 and NAT?2 polymorphisms are potential risk modifiers of child-
hood leukemia. The null genotypes of GST-mu-1 (GSTM1), GST-theta-1 (GSTT1),
and low-function GST-pi-1 (GSTPI) and slow NAT2 acetylation genotypes were
shown to be associated with an increased risk of childhood ALL (Coles and
Kadlubar 2003; Chen et al. 1997; Krajinovic et al. 2000). There are several reports
on the interaction of several genes. For example, a case-control study conducted in
ALL patients and healthy controls from a French-Canadian population examined
the phase I polymorphisms, CYPIAI and CYP2D6, as well as phase II enzymes
GSTM1, GSTTI, NATI, and NAT2. The NAT2 slow-acetylator, CYPIAI*2A, and
GSTM1 null genotypes were shown to be significant risk determinants of ALL
(OR=1.6, 1.8, and 1.8, respectively), whereas polymorphisms in CYP2D6 and
GSTTI genes did not seem to play an important role in the etiology of ALL (Sinnett
et al. 2000).

Membrane transporter genes such a MDR1 (multidrug resistance 1), also known
as ABCBI (adenosine triphosphate-binding cassette family B transporter 1), act as
efflux pumps to expel compounds from the cell and are strategically expressed in
anatomical regions of the body that act as epithelial barriers or perform excretory
functions (Yan et al. 2014). Polymorphisms of ABCDI/MDRI gene have been
shown to play a key role in the genetic susceptibility to cancers, including childhood
leukemia (Jamroziak et al. 2004, 2005). A study by Jamroziak et al. in 2004 reported
a significantly increased risk of ALL in children who carried the homozygous vari-
ant genotype of the C3435T polymorphism (Jamroziak et al. 2004). Afterward,
another study examined the potential interactions between xenobiotic transport and
metabolism genes that were significantly associated with childhood ALL, including
ABCBI, ARNT, CYP2CS8, CYPIA2, CYPIBI, and IDH1, with self-reported house-
hold chemical exposures early in childhood in the modulation of childhood ALL
risk. This study focused on haplotype findings observed in both Hispanic and non-
Hispanic ethnicities. The MDRI gene was significantly associated with a higher risk
of childhood ALL and showed a significant interaction/association with indoor
insecticides (Chokkalingam et al. 2012). The authors concluded that the increased
risk of ALL associated with paint and indoor insecticide use was seen only in spe-
cific haplotypes of genes that work in concert with chemical use to modulate risk
(Chokkalingam et al. 2012).

Folate Metabolism

5,10-Methylenetetrahydrofolate reductase (MTHFR) is of relevance in folate
metabolism. Changes in MTHFR activity due to polymorphisms in the MTHFR
gene could confer susceptibility to cancer. Folate deficiency induces chromosomal
damage, formation of fragile sites, and micronuclei, often associated with
tumorigenesis (Kim 2000). There are reports of a protective effect against the risk
of childhood ALL when folate supplementation is taken during pregnancy
(Thompson et al. 2001). Two of the most studied gene variants in folate metabolism
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in relation to the risk of ALL are MTHFR 677C>T and MTHFR 1298A>C. Both
MTHEFR variants reduce susceptibility of adult and childhood lymphoid leukemia
but not myeloid leukemia (Weisberg et al. 1998). Low-function variants of MTHFR
result in enhanced thymidine pools and more efficient DNA synthesis and repair
capabilities. This is associated with increased availability of the MTHFR substrate,
5,10-methylenetetrahydrofolate (Weisberg et al. 1998). This dramatically reduces
the double-strand break chromosomal damage and DNA hypomethylation/
dysmethylation observed in proto-oncogenes or tumor-suppressor genes described
in pediatric leukemias (Krajinovic et al. 2004; Siegel et al. 2012). In a stratified
analysis of molecular cytogenetic subgroups, a protective association in carriers of
the MTHFR 677C>T variant was found for leukemias with MLL translocation and
hyperdiploidy. The MTHFR 1298A>C variant was associated with hyperdiploid
leukemias, whereas TEL-AML1 leukemias showed no association with either one of
the variants (Krajinovic et al. 2004).

NAD(P)H dehydrogenase, quinone 1 (NQO1), is a homodimeric flavoprotein that
catalyzes two-electron reduction of a broad range of substrates, mostly quinones
and nitrogen oxides (Siegel et al. 2012; Riley and Workman 1992). The main
function of NQO1 is to reduce the formation of reactive oxygen species by
decreasing one-electron reduction and the associated redox cycling. This has been
shown to play an important role in the activation of some anticancer drugs and
cancer prevention (Wiemels et al. 1999; Faig et al. 2000). In cancer, NQO1 is
expressed at high levels in many solid tumors including the lung, breast, and
pancreas (Ernster 1987; Begleiter et al. 1992; 1997). The NQO1*2 polymorphism
has little or no activity. The NQOI*2, with one allele, has approximately half of the
normal enzyme activity, whereas those with two *2 alleles are NQOI null (Siegel
and Ross 2000; Siegel et al. 2012). The NQOI polymorphism may influence
response to therapy in chronic lymphoblastic leukemia, as patients having NQOI
*1/*2 or *2/*2 genotypes may have low levels of p53 and may respond poorly to
drug therapy. One study by Wiemels et al. in the United Kingdom reported an
association between MLL gene rearrangement in infant leukemia and a low-function
NQOI genotype (Wiemels et al. 1999). The same finding was confirmed in a study
in Germany from 1993 to 1997, supporting the idea of a specific causal mechanism
in infant leukemias that involves genotoxic exposures in utero (Meinert et al. 2000).

Genome-Wide Association Studies

Genome-wide association studies (GWAS) describe the genotyping of thousands of
markers across the genome, which can be customized by adding new regions of
interest together with current gene candidates (Buffler et al. 2005). However, GWAS
studies are associated with high costs. DNA samples must be of very high quality,
and amplified DNA cannot be used. Moreover, multiple comparison problems must
be considered. A proposed approach for using GWAS studies in childhood ALL
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should include three separate stages of genotyping, with the numbers representing a
realistic plan of childhood ALL.:

Stage 1: “Discovery,” 300 K to 1 M single-nucleotide polymorphisms (SNPs) (n ~
800-1,000 cases).

Stage 2: Genotyping within stage 2 samples; replication 1, 15-50 K SNPs (n~
1,200-1,500 cases) of smaller number of SNPs representing positive results from
stage 1.

Stage 3: Positive results from stage 2 would be genotype in stage 3 samples;
replication 2, n~1,200-1,500 cases.

Those that survive the three stages may be considered high-priority regions and
can be followed for marker mapping, sequencing, and laboratory studies to identify
potential causal regions (Kraft and Cox 2008).

Prevention and the Role of the Precautionary Principle
in Childhood AL

Identifying the causes of childhood leukemia would lead to the establishment of
effective preventive measurements in children who are at high risk of developing
this disease, reducing the incidence rates, mortality rates, the costs of medical care,
and other consequences associated with childhood leukemia worldwide.

In this chapter, we have reviewed the known risk factors and explored some other
possible risk factors for the development of AL in children; however, the etiology
and the pathophysiologic mechanisms remain unresolved.

The precautionary principle has been proposed as an anticipatory, proactive
approach that is very close to the notion of prevention in public health before causal
scientific evidence has been established (Eichbaum et al. 1999; Anté et al. 2000;
Colborn et al. 1993; Tickner 2003). Indeed, in scientific literature there are some
clear examples for the application of precautionary principles for a variety of
diseases (Wynder 1994). In the case of childhood leukemia, precautionary principles
should be considered to prevent irreversible damage, even though definitive
scientific evidence on what causes childhood leukemia has not yet been found
(Mezei et al. 2014).

The precautionary principle was initially applied in environmental policies in
some European countries during the years 1960-1970 (Myhr 2010). Internationally
it was implemented in 1992, aimed at not postponing measures to prevent
degradation in the presence of possible damage to the environment (Comisién
Mundial de Etica del Conocimiento Cientifico y la Tecnologia (COMEST) 2005;
Stijkel and Reijnders 1995).

In the field of AL in children, the precautionary principle has been proposed,
taking into account that ELF-MFs have been considered as a possible human
carcinogen and because in various meta-analyses, ELF-MF exposure has been
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linked to the risk of developing AL in children when levels of exposure are higher
than 3 milligauss (mG) (Ahlbom et al. 2000; Greenland et al. 2000; Schiiz et al.
2007; Kheifets et al. 2010).

The proposed precautionary measures for reducing the exposure to ELF-MF are
as follows: (1) increase the distance between the power line and the residence; (2)
configure the wires on the poles in ways that reduce exposure; and (3) consider
placing the distribution and subtransmission lines underground. All options have
been considered as cost-effective measures for reducing the level of exposure to
ELF-MF (Florig 1994; Jamieson and Wartenberg 2001). On the other hand, there
are some issues in applying precautionary measures (Resnik 2004). For example, in
2005 Wiedemann and Schuz, who provided a questionnaire asking participants
about the idea of precautionary measures (no precaution, exposure minimization,
special protection of sensitive areas, and regulation of exposure limits) to avoid the
exposure to ELF-MF, concluded that the implementation of precautionary measures
could provoke concern and fear that it could affect the well-being of the general
population (Wiedemann and Schiitz 2005).

Conclusion

Innovative methods are required for knowing, describing, and dealing with
uncertainty in childhood AL. We have evidence that genetic factors are related to
the risk of AL. Environmental exposure is less clear, but there are many studies
searching for a relationship between genetic susceptibility and environmental
factors that hold promise for the identification of causal factors in AL. However, we
need to implement a new framework for the etiology of AL, as we believe that
solving key elements of this puzzle may lead to prevention of the development of
AL in children.
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Abstract Leukemia is a complex disease that is associated with several causes, one
of which is viral infection. Human T-lymphotropic virus (HTLV) is the most studied
virus and is associated with human leukemia. The epidemiology of HTLV-1 has
been under investigation in several countries and is now well known. In this context
Latin America has shown a high prevalence. Virus family proteins such as Tax and
HBZ modulate several signaling pathways that modulate the biological activities of
the cell, including cell growth and proliferation, which affect the physiology and
immunology of the cell. In this chapter we analyze the most frequent mechanisms
induced by HTLV-1 that affect cell proliferation and the immune response to viral
infection. The effects on these processes can lead to cell transformation and
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avoidance of immune recognition of the virus in affected cells. The epidemiologi-
cal, molecular, and immunological characteristics of HTLV-1 virus involved in
leukemia in humans are reviewed.

Keywords HTLV-1 ¢ Leukemia ¢ Viral leukemia * TAX « HBZ * Immune evasion

Introduction

Several physical, chemical, and biological agents can trigger the mechanisms lead-
ing to the development of leukemia. Viral infection is one important cause (Graves
2006). This chapter outlines the role of viral infection, its epidemiology, and the
mechanisms associated with the proteins of human T-lymphotropic virus (HTLV-1)
that can lead to leukemia.

General Characteristics of HTLV

The discovery of HTLV-1 was published in 1980. The first report described how T
cells from patients with T-cell leukemia were cultured and analyzed by reverse
transcription. Viral particles were identified by electronic microscopy, and the
presence of antibodies in infected patients and the ability of the virus to integrate
into DNA were reported (Poiesz et al. 1980). There are four types of HTLYV, but only
HTLV-1 is associated with leukemia. This virus belongs to the Retroviridae family,
Orthoretrovirinae subfamily, genus Deltaretrovirus. As species, HTLVs are
classified as lymphotropic viruses (Poiesz et al. 1980).

HTLV-1 is an enveloped virus with a single-stranded RNA. Its genome is reverse
transcribed, and subsequent alternative splicing gives rise to at least nine different
messenger RNAs, all of which encode the viral structural and functional proteins.
One of the proteins that take part in the induction of leukemia is encoded in open
reading frame (ORF) IV. This protein is called Tax (transactivator of the region X)
(Fig. 3.1). HBZ (basic leucine zipper), or b-zipper protein (b-ZIP), is encoded in
one antisense RNA (Poiesz et al. 1980).

The possibility of viral infections causing leukemia was first proposed in the
nineteenth century. However, this was not confirmed until 1908 when Ellerman and
Bang demonstrated that Jaagsiekte sheep retrovirus could induce erythroleukemia
in chickens. Subsequently, the discovery of new infectious agents with the ability to
induce leukemia in animals rekindled the debate about the roles of viral infections
as causes of leukemia (Greaves 2006). The first evidence of a link between leukemia
and viral infections in primates was reported in the 1970s, when Kawakami et al.
discovered the gibbon ape leukemia virus and demonstrated its association with
myeloid leukemia. Subsequently, Gallo et al. identified a variant of this virus that
caused leukemia in gibbon T cells. In 1972, Sarngadharan et al. measured the
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Fig. 3.1 The scheme show the nine products of transcription, which are encoded along of the viral
nucleic material

activity of viral reverse transcriptase in patients with lymphoblastic acute leukemia,
but the virus could not be isolated. The identification of HTLV was not possible
until 1980, when stabilized T-cell cultures were obtained from patients with T-cell
leukemia that exhibited reverse transcription, and the viral particles were detected
by electron microscopy. The association was demonstrated according to Koch’s
postulates, and specific antibodies were detected in infected patients (Poiesz et al.
1980).

Four types of HTLV have been identified, but only HTLV-1 is associated with
leukemia. HTLVs belong to the family Retroviridae, subfamily Orthoretroviridae,
genus Deltaretrovirus (International Committee on Taxonomy of Viruses 2012).

HTLV-1 is an enveloped virus with a single linear RNA genome; it comprises
one coding region with four ORFs flanked by a large terminal repeat region and a
terminal region called pX (Lairmore and Franchini 2007). The proteins are encoded
as follows (from 5’ to 3’): GAG, Pro-Pol precursors, ENV protein, functional
proteins, expression regulatory proteins, accessory proteins, and others with
unknown functions (Francesconi do Valle et al. 2001) (Fig. 3.1).

Epidemiology

HTLV-1 was the first human retrovirus to be isolated, and its association with
leukemia has been clearly demonstrated. HTLV-1 is distributed throughout the
world and its epidemiology has been well characterized in some countries. In
China, a large cross-sectional study of 5,417 individuals detected HTLV-1 in
0.13 % of samples obtained from donors with hematological malignancies, where
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a high-risk group included patients who were positive for human immunodefi-
ciency virus (HIV), hepatitis B virus, hepatitis C virus (HCV), or Treponema pal-
lidum. Most of the high-risk patients were positive for HTLV-1, and it was
suggested that HTLV-1 infections may occur via coinfection. In addition, it was
suggested that HTLV-1 is not endemic to China (Ma et al. 2013). In Israel, another
study involving a cohort of patients who donated blood over a period of 14 years
showed that 0.005 % were HTLV-1 carriers, i.e., 90 who were positive for HTLV-1,
including 6 who were diagnosed with a malignancy, 3 of whom developed leuke-
mia. Thus, according to that study, only in 0.37 % of HTLV-1 was involved with
leukemia. The authors suggested that their results were high compared with previ-
ous studies because they employed a very long follow-up period (Stienlauf et al.
2013). A study in Japan based on a cohort of 272,043 blood samples obtained
from a regional blood bank also detected a high prevalence of HTLV-1, where the
seroprevalence was higher in females than in males (2.05 % and 1.80 %, respec-
tively). Furthermore, the seroprevalence was higher in older patients in compari-
son with either males or females. The role of age in the transmission of HTLV-1
has been analyzed in the context of sexual activity and pregnancy, where it has
been shown that the prevalence of HTLV-1 infection increased with the age of
pregnancy, and the risk of vertical transfer from the mother to newborns also
increased with age (Eshimaa et al. 2009). Intrafamilial transmission and the fac-
tors involved in the acquisition of HTLV-1 infection in pregnant women were
studied in Brazil, where the prevalence was found to be 1.05 % in a group of 2,766
pregnant women. An analysis of families within this group indicated that 32.6 %
showed reactivity, but there were low associations with the level of education,
age, or ethnic group (Gomes Mello et al. 2014). In Spain, a study of 6,460 subjects
detected a prevalence of 0.06 %, but the authors suggested that the seroprevalence
is actually lower in Spain because most of the HTLV-1-positive patients came
from Latin America and Africa (Trevifio et al. 2012). Some studies performed in
Latin America have reported high prevalence rates. For example, a study in Peru
comprising 638 subjects from 27 indigenous communities detected an HTLV-1
prevalence of 1.9 %, although the prevalence was 4.1 % in one community,
thereby demonstrating its high prevalence in some indigenous populations in
Latin America (Alva et al. 2012). In addition, there is a frequent association
between HTLV-1 and coinfection with other viruses in drug users, e.g., coinfec-
tion with HTLV-1/-2, HIV, and HCV, although the triple coinfection rate was low
(0.8 %) (Prasetyo et al. 2013). This suggests that some lifestyles, such as drug use,
are risk factors for the acquisition of HTLV-1 infection.

HTLV-1 and Leukemia

Despite the oncogenic activity of retrovirus being observed previously in several
animal species (Gallo and Todaro 1976), the correlation between HTLV-1 and
oncogenicity was not cleared in humans until 1980, when viral particles were
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proved in HUT-102 and CTCL-3 cell lines derived from the lymph node and in fresh
peripheral blood lymphocytes of one patient T-cell lymphoma (Reitz et al. 1981).
Recent studies show that adult T-cell leukemia/lymphoma occurs in ~5 % of HTLV-
I-infected individuals (Cook et al. 2014; Akinbami et al. 2014). Although such a
correlation appears low, more than frequency of emergence, some molecular
mechanisms which involve host and viral interaction appear to be more closely
associated. For example, clonality has been more associated with other diseases
such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP),
although in leukemia such a relation is still not clear, and further research is
necessary to discover the role of such mechanism in the development of leukemia
induced by HTLV-1 (Bangham et al. 2014). In addition, adult T-cell leukemia has
been more frequent in geographical regions where HTLV-1 is more frequent, and
age appears to be an important factor because leukemia associated with HTLV-1 is
frequent in adults but not in children. Only a very small number of isolated cases
have been identified in children, e.g., a 15-year-old adolescent in Brazil who devel-
oped a lymphoma of T cells after which HTLV-1 viral infection was confirmed
(Francesconi do Valle et al. 2001).

Some of the molecular mechanisms by which HTLV is able to induce leukemia
are known, but other mechanisms underlying the role of viral infection are not
completely clear. Of the viruses known to cause leukemia, HTLV is perhaps the
most representative and the virus that is most known. Genotype 1 exhibits several
viral proteins that are involved in the mechanisms that lead to cell transformation
(Jun-ichirou and Matsuoka 2007). Two of these proteins, Tax and HBZ, are now
discussed further.

Tax This protein is well recognized as an oncoprotein. Its role lies in the
transactivation of viral transcription through its interaction with the 5’ long terminal
repeat of HTLV-1 (Felber et al. 1985), although it can also transactivate transcription.
Tax interacts with transcription factors such as cAMP response element-binding
protein (CREB) to produce a ternary complex, which regulates the cell cycle
machinery (Tie et al. 1996). Once the virus has control of the cell, several
mechanisms induced by Tax lead to cell immortalization (Fig. 3.2). These processes
are described as follows:

(a) p53 function is silenced through a mechanism that is independent of nuclear
factor (NF)-kB (Jeang et al. 1990).

(b) Antiapoptotic proteins such as Bfl-1, a member of the BCL2 protein family, are
expressed. Such proteins have been shown to contribute to the survival of
HTLV-1-infected cells (Ressler et al. 1997).

(c) Tax-2 causes permanent arrest of the cell in G1, leading to failure of the G1
checkpoint, which can contribute to a nucleotide excision repair deficiency,
leading to genomic instability (Tie et al. 1996).

(d) Genomic stability is reduced. Some studies have identified an association
between Tax and genomic stability and have provided evidence that Tax reduces
genomic stability by downregulating human polymerase 8, which is involved in
DNA repair and blocks the repair of cellular damage (Ressler et al. 1997).
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Fig. 3.2 Mechanisms by which Tax drives the cellular machinery and leads to leukemogenesis

(e) Tax can transactivate the proliferating cell nuclear antigen (PCNA) promoter
and transform infected HTLV-1 cells, leading to changes in the expression of
PCNA protein, which is involved in the regulation of cell proliferation and
DNA replication and repair (Ressler et al. 1997). Tax also reduces the level of
histones by uncoupling replication-dependent histone gene expression and
DNA replication. Histones can also be acetylated by Tax recruitment of the
cellular coactivator CBP/p300 (Nyborg et al. 2010).

HBZ In an in vitro model using T lymphocytes, HBZ was shown to support cell
proliferation. The mechanism involves p65, a member of the NF-kB protein family.
HBZ alters p65 activity by decreasing its affinity for DNA. HBZ also increases the
expression of PDLIM2, which encodes a cell ubiquitin that is responsible for the deg-
radation of p65 (Takashi et al. 2007; Tiejun et al. 2009; Turvey and Broide 2010).

Immunological Mechanisms Involved in Viral Leukemia

The innate immune response is the first line of host defense against viral infection.
Once activated, the innate immune response serves two functions: (1) the production
of effector molecules, which restrict the viral infection, and (2) the initiation of the
acquired immune response, which leads to the complete elimination of the pathogen
from the infected cells (Turvey and Broide 2010). One aspect of the innate immune
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response is the family of molecular receptors known as pattern-recognition recep-
tors (PRRs), which detect pathogen-associated molecular patterns (PAMPs). The
interaction of PRRs with PAMPs is essential for triggering the effector mechanisms
of the innate immune response (Kumar et al. 2011). During viral infection, the
innate immune system recognizes viral nucleic acids (DNA or RNA, either single-
stranded or double-stranded) as PAMPs and viral glycoproteins (Lester and Li
2014).

Three important classes of PRRs have been identified recently: the toll-like
receptors (TLRs), the cytoplasmic proteins (NRLs) (Kawai and Akira 2011), and
the retinoic-inducible gene 1-like receptors (RLRs) (Journo and Mahieux 2011).
These molecules participate in different aspects of signaling that lead to the activa-
tion of transcription factors such as NF-kB. Such factors are important for the syn-
thesis of proinflammatory cytokines, chemokines, and effector molecules such as
type 1 interferons (IFNs), which contribute to the elimination of viral components
and apoptosis of infected cells (Colisson et al. 2010). RLRs activate the inflamma-
some complex, which plays an essential role in the antiviral response (Colisson
et al. 2010). Several families of viruses are associated with PRR activation, includ-
ing HTLV-1, the human retrovirus associated with leukemia of T cells.

The first data on direct binding between HTLV-1 and PRRs from the innate
immune system were reported in an in vitro model of infected plasmacytoid den-
dritic cells (pDCs) (Fig. 3.3). A strong response was observed for the production of



82 J. Arellano-Galindo et al.

IFN-a, which was dependent on the TLR7 receptor (Kane et al. 2011). The addition
of an inhibitor of TLR7 (oligonucleotide A151) and acidification using chloroquine
contributed to the proposed binding of HTLV-1 to TLR7 (Kane et al. 2011). Other
viruses that cause tumors are also related to TLR7, such as the mouse mammary
tumor virus (Kane et al. 2011).

In addition, the immune response acquired involved in the late phase includes
both humoral and cellular mechanisms. The effector molecules of the humoral
response (antibodies) prevent the viral dissemination from the infected cells toward
the cells of adjacent tissues, whereas the cytotoxic cells (CTLs) remove the infected
cells by induction of apoptosis. The antibody response to the protein Tax of HTLV-1
was reported in 2002 (Levin et al. 2002). Such viral antigens induce a cross-linking
of the heterogeneous ribonucleoprotein. It has been suggested that such a mechanism
is involved as a form of molecular mimicry in HTLV-1 infection. In disorders such
as HAM/TSP, it has been proposed that the anti-Tax produced can have an important
role in the inflammation mechanisms in lesions and tissues even up to the blood-
brain barrier, as well as the releasing of autoantigens. HAM/TSP disease shows a
high number of immunoglobulin M antibodies with dominant reactivity to four
immunodominant epitopes of the Tax protein. Other antibodies detected include
envelope proteins with the ability to neutralize viral activity (Tanaka et al. 1994).
CTLs with specific activity to HTLV-1 have also been reported (Bangham 2000). It
has been proposed that high avidity of antibodies and the lytic efficiency of these
cells might correlate with the viral load and be crucial in the outcome of the HTLV-1
infection (Kattan et al. 2009). In addition, the common antigen of HTLV-1 is recog-
nized for CD4+ cells specific to HTLV-1 (Sakaguchi et al. 2008).

Immune Evasion

HTLV-1 uses several strategies to evade the immune response (Fig. 3.4), all of
which involve blocking of cell signaling. One strategy is to interfere with the
signaling pathway leading to IFN-1 production even during a strong immune
response (Oliere et al. 2011; Saha et al. 2010). Some studies suggest that Tax protein
is taking part in the immune evasion by obstruction of the signal of transduction of
IFN-y. Other proteins of HTLV-1 also take part; for example, the HBS protein
inhibits the effector activity of CD4 affecting the cytokine production of THI,
leading to an immunosuppressive effect. Other immune mechanisms that contribute
to HTLV-1 pathogenesis are cell immortality and viral persistence, which allow the
virus to remain within a patient for a long time, often without producing symptoms.
The proviral genome expresses several proteins, of which Tax and HBZ are
considered the most important to viral pathogenesis and persistence (Peloponese
et al. 2006; Nyborg et al. 2010). Tax is a nuclear protein of 40 kDa that is encoded
in ORF X-IV. This protein is an activator of transcription that exerts pleiotropic
effects on the interactions of several signaling pathways (Jaworski et al. 2014). Tax
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is detectable primarily in the nucleus but can be detected in the cytoplasm and is one
of the main oncogenic determinants of HTLV-1. This protein upregulates the
transcription of NF-xB, which leads to deregulation of important genes controlling
cell growth and signal transduction such as cytokines, growth factors, cytokine
receptors, proto-oncogenes, and antiapoptotic proteins involved in the kinase
signaling cascades. Tax also downregulates the tumor-suppressor proteins p53 and
Rb (Kastan et al. 1992).

HBZ, another important protein involved in the regulation of viral transcription,
acts by inhibiting and activating cellular genes (Kastan et al. 1992; Stoppa et al.
2012; Tomita et al. 2007). This protein interacts with p65 and can degrade or
sequestrate c-Jun and disrupt IFN-f (Table 3.1). The dual functions of Tax and HBZ
can modulate the direct or indirect signals of the PRRs, which limit the production
of HTLV-1 ligands such as viral proteins and nucleic acids. The manipulation of the
immune mechanisms associated with HTLV-1 is attributed to p30 and p12 proteins.
These proteins are essential for the productive infection of monocyte-derived
dendritic cells. The role of p12 protein in the viral cycle is not clear, although some
in vitro studies have suggested that this protein participates in the maintenance of
viral infection. For HTLV-1, la p12 binds to MHC class I and prevents its expression
and maturation, leading to the infected cell escaping recognition (Table 3.1) (Satou
and Matsuoka 2012). The viral protein p30 can also modulate innate immunity.
Research using the THP-1 macrophage line has shown that p30 disturbs the signaling
of TLR4. This pathway is critical to the innate immune system’s response to
bacterial infection, and p30 inhibits the production of cytokines normally secreted
under TLR4 stimulation (Chan et al. 2013). Such disturbance of TLR4 induced by
the p30 protein is mediated by the dependent interaction of inhibition of the
transcription factor PU.1 (Table 3.1). p30 protein can also inhibit the proinflammatory
cytokines by causing an increase in the release of interleukin-10, thereby interfering
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Table 3.1 Immune system-related oncogenic mechanisms exploited by HTLV-1

Viral Association with cellular Dysregulated signaling
oncoproteins | event (gatekeeper) pathways Reference
Tax* Cyclic AMP, p300/CBP, Cell cycle, apoptosis, Boxus et al. (2009)
MAD-1 Ras-Erk MAPK
MAD-2, cyclin D1, ChK1 Pathway, PI3K, NF-xkB | Tomita et al. (2007)
and 2
Signaling—interferon Kastan et al. (1992)
JAK/STAT
IRF7, IRF3, Interference
TyK2, STAT2
Phosphorylation of complex Nyborg et al. (2010)
(ISGF3) Nyborg et al. (2010)
CCL2 secretion to attract Suppression of CTLs Toulsa et al. (2010)
Treg cells by Treg cells
p30 TLR4 receptor (monocyte- Dysregulation of Datta et al (2006)
macrophage), transcriptional | macrophages and
activation factor, immune condition of
response to bacteria, immunosuppression
production of cytokines
pl2 MHC Inhibition of maturation |Johnson et al. (2001)
HBZ Inhibition of Th1 Impaired cell-mediated | Miyazato et al.

immunity
Phenotypes of CD4+ T
cells altered

(2014)

Cytokine production, Satou et al. (2012)

expression of Foxp3

*Most potent and studied viral oncoproteins

in the balance between the pro- and anti-inflammatory cytokine responses to bacte-
rial infection. This may explain why some patients with adult T-cell leukemia show
immunodeficiency and susceptibility to bacterial infections and suggests that p30
may be a therapeutic target (Fenizia et al. 2014).

HTLV-1 infection can also affect the acquired immune response. It has been
reported that pl2 CD4+ can induce protection again the cytotoxicity of natural
killer cells (Datta et al. 2006). HTLV-1 primary infection of CD4+ cells can induce
the downregulation of MHC-1, thus affecting effector T, memory, and regulatory
cells (Fig. 3.4). Several studies have reported that HBZ induces the expression of
Foxp3 by modulating transforming growth factor p signaling, which increases the
expression of factors that can change the population phenotype of CD4+ cells, com-
promises cellular immunity, and suppresses the release of Thl cytokines (Johnson
et al. 2001).

In addition, the regulatory complex involved in the generation and migration of
regulatory T cells that express Foxp3 protein has been associated with modifications
of the reprogramming system of these CD4+, CD25+, and CCR4+ cells. This can
lead to reduced expression of Foxp3, which is required to suppress inflammation,
suggesting that HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells (Figs. 3.4
and 3.5) (Miyazato and Matsuoka 2014; Sugata et al. 2012; Toulza et al. 2010). The
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lates the acquired immune response by changing the expression of the protein FOX P3, which
involves to the protein HBZ and transforming growth factor TGF-B. For leading to
immunosuppression

flexibility of differentiation in the programming of CD4+ T cells as part of the
adaptive immune response has been recently associated with the pathogenesis of
inflammatory diseases (Araya et al. 2014; Ishida and Ueda 2011; Miyazato and
Matsuoka 2014; Murphy and Stockinger 2010; Sugata et al. 2012; Toulza et al.
2010). Moreover, the propagation of and pathological damage caused by HTLV-1
involve both the innate and adaptive immune systems. This may explain the long
persistence and immune evasion by this virus.

Conclusion

The epidemiology of HTLV-1 has become clearer in the preceding years. The
knowledge of geographical distribution, risk factors involved in acquiring the viral
infection, and its role in human viral leukemia are important tools in the prevention
and treatment of HTLV-1 viral infection and its clinical implications. In addition, it
is now accepted that viral infection, specifically HTLV-1, is a cause of human leu-
kemia. Several mechanisms triggered during the viral replication are associated
with proteins such as Tax and HBZ, which can affect cell functions to maintain the
survival of the infected cell. However, such effects induce molecular disorders that
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alter the cell cycle, apoptosis, or immune responses and thus can lead to leukemia.
Future research to extend our knowledge about the biology of these proteins is
needed to determine whether they are also potential therapeutic targets.
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Chapter 4
Etiology of Leukemia in Children with Down
Syndrome

Ana C. Xavier, Yubin Ge, and Jeffrey W. Taub

Abstract Down syndrome (DS) or trisomy 21 is the most common congenital
genetic abnormality in the United States, and affected individuals have a unique
predisposition to develop acute leukemias early in life. It is estimated that children
with DS have a 40- and 150-fold increased risk of developing acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML), respectively. The increase in
leukemia risk is likely caused by endogenous alterations of genetic factors, includ-
ing imbalances in chromosome 21-localized genes and altered biochemical path-
ways in DS cells. The hallmark features of DS-AML include the early development
of a precursor disorder known as transient abnormal myelopoiesis (TAM), which
clinically resembles AML but is transient in nature, and the presence of GATAI
(Xp11.23) mutations, which are detectable in the majority of TAM and DS-AML
cases. On the other hand, DS-ALL leukemogenesis is linked to alterations in the
CRLF?2 gene and associated mutations affecting pathways involving either the JAK2
or RAS genes. In this chapter we review current concepts of mechanisms leading to
mutagenesis and leukemia in DS.
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Introduction

Acute leukemia is the most common type of cancer in children. Although the etiol-
ogy of acute leukemias remains largely unknown, there is supporting evidence in
the literature suggesting that leukemogenesis is a multi-step process in which vari-
ous genetic hits may be involved. Remarkable relationships exist between chromo-
some 21 and predisposition to leukemia, leukemogenesis, and response to therapy.
Hallmark features of pediatric acute leukemias frequently involve quantitative and/
or qualitative changes involving chromosome 21.

Down syndrome (DS; trisomy 21) is a disorder characterized by the constitutional
presence of an extra copy of chromosome 21, and such individuals carry a
significantly higher predisposition to develop leukemia, especially early in life. A
progressively better understanding of the processes involved in malignant
transformation in DS cells is providing additional opportunities to answer
fundamental questions that still remain in relation to leukemogenesis and response
to cancer therapy in patients without DS.

DS is the most common birth defect in the United States and is one of the most
studied genetic conditions (Parker et al. 2010). John Langdon Down first described
this disorder in 1866 in a group of children displaying common phenotypic features
and cognitive impairments (Down 1866). It was only in 1959 that the presence of an
extra copy of chromosome 21 was detected as constitutionally present in patients
with DS (Lejeune et al. 1959). The first description of leukemia occurring in a child
with DS was published in 1930 (Cannon 1930). Since then, it has become evident
that individuals with DS have a striking predisposition to develop acute leukemia
early in life and that the elevated risk can extend for several decades (Scholl et al.
1982; Hasle et al. 2000). Interestingly, the increased risk of malignancy seems to be
limited to the development of leukemias only, since solid tumors occur significantly
less frequently in children and adults with DS in comparison with individuals
without DS (Xavier et al. 2009). In terms of leukemia risk, it is estimated that
children with DS have a 40- and 150-fold increased risk of developing acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), respectively, in
comparison with children without DS (Fong and Brodeur 1987; Hasle 2001),
making them a significant proportion of patients enrolled in clinical trials. In fact,
children with DS represent approximately 2 % and 15 % of the pool of pediatric
patients with ALL and AML, respectively (Zeller et al. 2005; Ragab et al. 1991).
The increased risks of both types of acute leukemia in the same individual seem to
be independent (Hellebostad et al. 2005). Interestingly, there is a 500-fold increased
risk of children with DS developing the rare subtype of AML, acute megakaryocytic
leukemia (AMKL; French-American-British [FAB] classification M7) (Zipursky
et al. 1994). AMKL cases correspond to less than 2 % of adult patients with AML
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and up to 10 % of pediatric AML cases (Athale et al. 2001). In contrast, AMKL is
the most common subtype of AML in patients with DS (Zeller et al. 2005; Al-Ahmari
et al. 2006; Rao et al. 2006; Kudo et al. 2007; Reinhardt et al. 2005; O’Brien et al.
2008; Ravindranath et al. 1992; Gamis et al. 2003). This unique increase in leukemia
risk is likely the result of endogenous genetic factors including chromosome
21-localized genes and altered biochemical pathways in DS cells that may drive
leukemogenesis.

Down Syndrome—-Acute Lymphoblastic Leukemia

Essentially there are no clinical distinctions between patients with DS-ALL and
those without it. The peak incidence of ALL in children without DS is between 2
and 5 years, with the majority of cases actually being diagnosed in children aged
2-3 years. Thereafter the incidence steadily decreases, being much less common
among children older than 10 years (Howlader et al. 2013a, b). The age of
presentation for children with DS-ALL is similar (Robison et al. 1984; Pui et al.
1993; Chessells et al. 2001; Whitlock et al. 2005) or slightly older (Ragab et al.
1991; Dordelmann et al. 1998). Strikingly, ALL has been unreported among children
with DS younger than 1 year. No cases of infant DS-ALL were registered among
653 DS cases treated in various collaborative group clinical trials (Ponti di Legno
Study Group) between 1995 and 2004 (Buitenkamp et al. 2014). Similarly, no cases
of infant DS-ALL were present in other large treatment cohorts (Whitlock et al.
2005; Lundin et al. 2014; Arico et al. 2008). The reasons for this apparent protection
against infant ALL in DS remain unknown.

Features including gender, race, initial white blood cell (WBC) count, lymph-
adenopathy, and hepatosplenomegaly are not significantly different between DS and
children without DS with ALL at presentation (Ragab et al. 1991; Pui et al. 1993;
Chessells et al. 2001; Dordelmann et al. 1998). However, DS children with ALL
have a lower frequency of central nervous system involvement at presentation and
less commonly present with an anterior mediastinal mass (Pui et al. 1993; Bassal
et al. 2005), although these findings have not been consistent among different
DS-ALL cohorts (Zeller et al. 2005; Pui et al. 1993; Chessells et al. 2001;
Dordelmann et al. 1998).

There are some noticeable differences in regard to common pediatric prognostic
features that may be secondary to different pathogenesis processes. ALL of the
T-cell phenotype is a very aggressive malignancy derived from T-cell progenitor
cells, accounting for about 15 % of the pediatric leukemia cases in children without
DS (Pizzo and Poplack 2011), and historically has an inferior outcome in compari-
son with acute leukemias of the B-cell phenotype. For reasons that remain unknown,
T-cell ALL occurs rarely among DS children. In fact, several cohorts of patients
with DS-ALL covering a large time span reported no cases of T-cell ALL at all
(Zeller et al. 2005). Lower frequencies of common cytogenetic abnormalities are
also seen among children with DS-ALL. They have a lower incidence of the hyper-
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diploid karyotype, the ETV6-RUNX1 t(12;21) fusion protein (Zeller et al. 2005; Pui
etal. 1993; Lundin et al. 2014), or other genetic alterations such as t(9;22) (q34;q11)
(BCR/IABL fusion gene), MLL rearrangements, and t(1;19) (TCF3-PBXI fusion
gene) (Pui et al. 1993; Chessells 2001; Forestier et al. 2008).

Another important differentiation is that DS children with ALL have an inferior
outcome and a greater incidence of treatment-related mortality compared with chil-
dren without DS with ALL. Early reports showed that despite having similar age
and WBC count at diagnosis, patients with DS-ALL had significantly lower remis-
sion rates, higher mortality rates during induction, and decreased long-term overall
survival (Robison et al. 1984; Kalwinsky et al. 1990; Levitt et al. 1990). These dif-
ferences have since been confirmed by multiple different trials (Ragab et al. 1991;
Pui et al. 1993; Chessells et al. 2001; Whitlock et al. 2005; Dordelmann et al. 1998;
Bassal et al. 2005; Rajantie and Siimes 2003). Intensification of therapy may be
beneficial in improving event-free survival (EFS), although patients with DS-ALL
continue to face excessive treatment-related morbidity and mortality (Ragab et al.
1991; Buitenkamp et al. 2014; Patrick et al. 2014), with higher rates of severe muco-
sitis and infections, owing to more severe and prolonged myelosuppression
(Buitenkamp et al. 2014; Rabin et al. 2012). Systemic toxicity may be intrinsically
related to the constitutional presence of an extra copy of chromosome 21, with sub-
sequent differences in pharmacokinetics of drugs or pharmacodynamic effects in
the tissues (Garre et al. 1987; Buitenkamp et al. 2010). For instance, DS children
poorly tolerated treatment with the antifolate agent, methotrexate. The reduced
folate carrier gene is localized to chromosome 21 (SLCI9AI, 21q22), and its
increased expression in various DS tissues may result in increased intracellular
methotrexate transport and consequent increased cellular toxicity. These unique dis-
tinctions suggest that besides the linkage to leukemogenesis, trisomy 21 is also
linked to metabolism of chemotherapy drugs, toxicity, and response to therapy
(Xavier et al. 2009).

The “Two-Hit” Model of DS-ALL Leukemogenesis

The exact mechanisms by which an additional copy of chromosome 21 predisposes
to leukemia remain unknown. Carcinogenesis is a complex process that results in
essential alterations in cell physiology, usually driven by mutations, genomic
instability, epigenetic events, etc. DNA can be modified spontaneously in nature or
after environmental exposure to mutagenic factors, such as viruses, radiation, or
chemicals. Mutagenesis in certain types of cancer is greatly influenced by
environmental factors, such as tobacco exposure and lung cancer (Doll and Peto
1978), or virus oncogenicity in bladder cancer (Parada et al. 1982).

In terms of leukemogenesis, it has been proposed that pediatric ALL results from
at least two independent and sequential genetic mutations or events (Greaves 1988).
The “two-hit” model of leukemogenesis was postulated by Mel Greaves: a
preleukemic clone would arise in utero during the expansion of the B-cell precursor
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compartment (“first hit”), creating a “preleukemia state,” and a second mutation
(“second hit”) would potentially occur after birth, likely resulting from environmen-
tal exposures such as infections, or even inherited susceptibility (Greaves 2002).
This model is well accepted for ALL cases characterized by the presence of chro-
mosomal translocations that result in functional leukemia fusion genes (e.g., ETV6-
RUNX1 fusion genes) (Greaves 2002).

Trisomy 21 Taking this model into account for DS-ALL, it is possible that the “first
hit” is actually the presence of an extra copy of chromosome 21. A trisomic state
would lead to gene dosage imbalances that promote changes in physiological cell
processes or lead to deleterious mutations. In fact, some studies using DS mouse
models have suggested that the presence of trisomic genes can induce the
development of heart defects (Liu et al. 2011) and promote cognitive behavior
changes. Liver and marrow of DS human fetuses collected at early gestational ages
display expansion of the erythroid and megakaryocytic (Yu et al. 2010) compartments
and changes in lymphopoiesis without the presence of additional mutations,
suggesting that the abnormal fetal hematopoiesis is likely driven by the presence of
an extra copy of chromosome 21 (Chou et al. 2008; Tunstall-Pedoe et al. 2008;
Roberts et al. 2013) (Fig. 4.1).
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Fig. 4.1 Gene dosage imbalances caused by the presence of an extra copy of chromosome 21 in
Down syndrome babies would lead to abnormal fetal hematopoiesis. Consequently, altered
physiological cell processes would promote gene rearrangements and deleterious mutations,
leading to the development of acute lymphoblastic leukemia (a) or acute myeloid leukemia (b)
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Underlining the importance of chromosome 21 in the etiology of leukemias is
the fact that somatic quantitative or qualitative changes in chromosome 21 are com-
monly found in non-DS B-precursor ALL patients. For instance, the t(12;21)
(p13;922) chromosomal translocation that leads to the ETV6-RUNX1 fusion gene is
present in about 20-30 % of the non-DS-ALL pediatric cases (Pui et al. 2008).
Among these patients a large proportion exhibit secondary aberrations, with the
most frequent being the presence of an extra copy of chromosome 21 (Loncarevic
et al. 1999; Ma et al. 2001). High hyperdiploid karyotype (defined as 51-65 chro-
mosomes per cell), which occurs in 20-25 % of the non-DS B-precursor ALL cases
(Paulsson and Johansson 2009), almost uniformly have three to four copies of the
chromosome 21.

Of note, children with DS-ALL may have similar cytogenetic abnormalities such
as t(12;21) (p13;922) or high hyperdiploid karyotype, although these changes are
found in a much smaller proportion of cases (Zeller et al. 2005; Pui et al. 1993;
Dordelmann et al. 1998; Buitenkamp et al. 2014; Arico et al. 2008; Bassal et al.
2005; Chessells 2001; Forestier et al. 2008; Lanza et al. 1997; Maloney et al. 2010).
Interestingly, array comparative genome hybridization analyses of DS-ALL sam-
ples without ETV6-RUNXI fusion showed cytogenetic changes similar to those
found in non-DS ETV6-RUNXI positive ALL samples (Lo et al. 2008). Other estab-
lished genetic alterations such as t(9;22) (q34;q11) (BCR/ABL fusion gene), MLL
rearrangements, and t(1;19) (TCF3-PBX1 fusion gene) are also found in DS-ALL,
but at a lower frequency (Pui et al. 1993; Chessells 2001; Forestier et al. 2008;
Kalwinsky et al. 1990). This suggests that constitutional trisomy 21 may promote an
apparent protection against common recurrent genetic abnormalities in ALL that
involve chromosomal translocations, with consequent reduction of DS children pre-
senting with infant leukemia (MLL-rearranged ALL), Ph+ ALL (BCR-ABL), and
T-cell ALL (multiple different translocations involved) (Zeller et al. 2005;
Buitenkamp et al. 2014). These differences stress the heterogeneity of childhood
leukemia and the complexity of leukemogenesis in different groups of patients.

Chromosome 21-Localized Genes Several chromosome 21-localized genes can
potentially play a role in leukemogenesis in an unbalanced state. RUNX1 (alternative
names AMLI; core-binding factor, runt domain a-subunit 2, CBFA2) is the gene
more frequently implicated in leukemia. RUNX]I is part of the RUNX gene family
(RUNX2 and RUNX3) of transcription factors (TFs) that bind DNA via a Runt
domain and a fB-subunit encoded by the CBFB (core-binding factor, f-subunit,
CBFB) gene. RUNX1 plays key regulatory roles during hematopoiesis via regulation
of various hematopoietic genes (Cohen 2009) which, when altered, result in
leukemia. RUNX] is frequently found translocated in patients with AML (AMLI-
ETO, AMLI-MDSI-EAIl, AMLI-FOG2) (Helbling et al. 2004; McNeil et al. 1999;
Chan et al. 2005) and ALL (ETV6-RUNXI) (Hong et al. 2008), and the chimeric
proteins that result from the fusion induce leukemogenesis.

Nonsense/missense or deletion mutations involving RUNX—that lead to a gene
“haploinsufficient state”—have been found to be causative of an autosomal
dominant disorder known as familiar platelet disorder with associated myeloid
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malignancy (FPD/AML). FPD/AML is characterized by platelet dysfunction,
altered megakaryopoiesis, and elevated risk of developing AML (Song et al. 1999).
In this condition the simple inactivation of one allele is sufficient to predispose to
leukemia (Song et al. 1999). In mouse models, RUNX! haploinsufficiency has been
shown to alter hematopoiesis (Mukouyama et al. 2000). Similarly, Preudhomme
et al. (2000) found an elevated incidence of missense mutations or deletions in the
Runt domain, likely resulting in nonfunctional AMLI protein, in multiple different
cases of hematological disorders characterized by abnormalities of RUNXI,
including acquired trisomy 21 and tetrasomy 21 (Mukouyama et al. 2000; Roumier
et al. 2003). On the other hand, overexpression of RUNXI in a cell model (NIH3T3
cells) induced neoplastic transformation (Kurokawa et al. 1996), suggesting that a
higher RUNXI gene dosage can induce leukemia per se. RUNXI gene amplification
either via multiple copies of chromosome 21 or via high-level amplification
(intrachromosomal amplification or extra chromosomes) has been reported in
pediatric ALL. These cases usually have corresponding increases in AMLI
transcripts that are equivalent to the number of the amplified RUNXI gene
(Busson-Le Coniat et al. 2001). Interestingly, patients with B-precursor ALL and
intrachromosomal amplification of chromosomal 21 (iAMP21) have a very poor
prognosis. Genomic characterization of cases harboring iIAMP21 showed recurrent
abnormalities in other genes such as IKZF 1, CDKN2A/B, PAX5, ETV6, and RBI,
likely secondary to chromosome 21 rearrangements (Rand et al. 2011).

Subsequent Genetic Changes Once perturbed hematopoiesis is established,
multiple additional genetic abnormalities can take place (“second hit”?). Specific
cytogenetic changes have been observed in DS-ALL. Otherwise rare in non-DS-
ALL (<3 %), up to 30 % of the patients with DS-ALL have translocations involving
chromosomes 8 and 14 [t(8;14) (ql11;q32)] (/GH-CEBPD fusion gene) (Forestier
et al. 2008; Moore et al. 2003; Lundin et al. 2009). CCAAT/enhancer-binding
protein & (CEBPD) TF is part of the CEBP family of TFs composed of at least six
multifunctional basic leucine zipper (bZIP) members, which play important roles in
cellular differentiation, particularly hematopoietic tissues, hepatocytes, and
adipocytes. The regulation of these genes is extremely complex and involves
hormones, cytokines, nutrients, toxins, etc. (Ramji and Foka 2002), and all members
of this family have been implicated in leukemias or solid tumors (Ramji and Foka
2002; Nerlov 2007). The fusion of /IGH (immunoglobulin G heavy-chain locus;
IGHGI1) to CEBPD leads to activation of CEBPD and overexpression of the gene by
mechanisms that remain unclear.

More recently, genomic abnormalities of cytokine receptor-like factor 2 (CRLF2)
have been detected in approximately 60 % of DS-ALL cases and seem to be a
unique feature of DS-ALL because of the rarity of non-DS cases with analogous
abnormalities (Mullighan et al. 2009). Similar to the IGH-CEBPD scenario, CRLF2
(Xp22/Ypll) rearrangements can result from either (1) an intrachromosomal
deletion of PAR1 (pseudoautosomal region 1) leading to P2RYS8-CRLF?2 fusion or
(2) atranslocation with the IGH locus at 14932 [(X;14)(p22;q932)/t(Y;14)(p11;q32)]
(Mullighan et al. 2009). Both aberrations lead to overexpression of CEBPD. Prior
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to the CEBPD findings, Malinge et al. had detected a novel JAK2 (9p24) mutation
in a sample from a child with B-precursor DS-ALL that involved a 5-amino-acid
deletion within the JH2 pseudokinase domain (JAK2DeltaIREED) (Malinge et al.
2007). JAK?2 is a tyrosine kinase that phosphorylates cytoplasmic targets essential
for signaling of hematopoietic and growth factor receptors (Kralovics et al. 2005).
Interestingly, expression of JAK2DeltalREED in Ba/F3 cells led to constitutive
activation of the JAK-STAT pathway and growth factor-independent cell proliferation
(Malinge et al. 2007). Subsequently, the presence of JAK2 mutations was found in
a large proportion of patients with DS-ALL (Bercovich et al. 2008; Kearney 2009).
CRLF? alterations were found to be associated with activating JAK2 mutations and
constitutive JAK-STAT activation, which likely contribute to DS-ALL
leukemogenesis (Mullighan et al. 2009; Russell et al. 2009; Hertzberg et al. 2010).
Interestingly, in patients not displaying abnormalities in the JAK2 gene, driver
mutations in RAS (KRAS and NRAS) were found in a high proportion of cases
(Nikolaev et al. 2014). Additional analysis revealed that both RAS and JAK?2 drove
subclonal expansions primarily initiated by CRLF2 rearrangements, and/or
mutations in chromatin remodelers and lymphocyte differentiation factors, providing
new insights in the understanding of DS leukemogenesis (Nikolaev et al. 2014).
Another way of altering expression of CRLF?2 is through gain of chromosome X, a
common abnormality among patients with DS-ALL (38 % in DS-ALL cases versus
20 % of non-DS-ALL cases) (Zeller et al. 2005; Forestier et al. 2008; Baker et al.
2003). All DS cases displaying extra copies of chromosome X also had overexpres-
sion of CRLF2 (Mullighan et al. 2009; Hertzberg et al. 2010), suggesting that
CRLEF?2 alterations are indeed important in DS-ALL generation.

The Environment The “two-hit” model of leukemias suggests that the postnatal
genetic changes needed for leukemia development may be caused by an abnormal
immune response to environmental factors, such as delayed infections (Greaves
2002). Lack of exposure to infections early in life would lead to poor immune system
modulation and potentially result in leukemia (Greaves 1997, 2002). Among chil-
dren with DS-ALL, the Children’s Oncology Group (COG) found a negative asso-
ciation between acute leukemia and any infection in the first 2 years of life, supporting
the idea that early infection may be protective against leukemia in DS children as
well (Canfield et al. 2004). Conversely, a study conducted in Mexico City showed a
nonsignificant association between early infections and DS-ALL (Flores-Lujano
et al. 2009). This study also did not find breastfeeding to be protective of leukemia in
DS (Flores-Lujano et al. 2009). Preconception, in utero, and postnatal medical test
irradiation exposure was also studied by COG, and no positive association was found
with DS-ALL (Linabery et al. 2006). Preconception vitamin supplementation was
found to be protective against DS-ALL (Ross et al. 2005), as well as certain maternal
conditions such as vaginal bleeding (Ognjanovic et al. 2009), while maternal expo-
sure to professional pest exterminators, pesticides, and any chemicals was positively
associated with DS-ALL (Alderton et al. 2006). Larger epidemiology studies are
necessary to confirm or exclude environmental factors in the etiology of DS-ALL.
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Down Syndrome: Acute Myeloid Leukemia (DS-AML)

Myeloid Proliferation Related to Down Syndrome

AMKL is the most common FAB subtype (M7) of patients with DS-AML, with a
frequency ranging from 40 to 100 % of the DS-AML cases in different clinical trials
(Zeller et al. 2005; Al-Ahmari et al. 2006; Rao et al. 2006; Kudo et al. 2007;
Reinhardt et al. 2005; O’Brien et al. 2008; Ravindranath et al. 1992; Gamis et al.
2003). Zipursky et al. (1994) estimated that DS children have a 500-fold increased
risk of developing AMKL compared with children without DS, once more highlight-
ing the unique relationship between trisomy 21 and leukemogenesis for a specific
leukemia phenotype (Zipursky et al. 1994). In contrast, AMKL is estimated to rep-
resent approximately 10 % of pediatric AML cases and 2 % of adult AML cases
(Athale et al. 2001; Tallman et al. 2000).

The differences between DS and non-DS cases are not only restricted to differ-
ences in subtype of myeloid leukemia. Multiple pediatric oncology cooperative
group clinical trials have reported that patients with DS-AML have remarkably high
EFS rates (~80-100 %) when treated with cytarabine/anthracycline-based chemo-
therapy (Zeller et al. 2005; Al-Ahmari et al. 2006; Rao et al. 2006; Kudo et al. 2007,
O’Brien et al. 2008; Ravindranath et al. 1992; Creutzig et al. 2005). In contrast,
AMKL in children without DS is associated with a relatively poor prognosis, with
EFS of less than 40 % (O’Brien et al. 2013).

Interestingly, up to 10 % of newborns with DS will present with a condition
known as transient abnormal myelopoiesis (TAM). This disorder, previously called
“transient leukemia,” is characterized by circulating blast cells in the peripheral
blood with AMKL morphology and immunophenotype. TAM resolves spontane-
ously without chemotherapy in a high proportion of patients (Zipursky 2003).
However, a subset of patients with high-risk features (e.g., hyperleukocytosis,
hepatic failure) requires therapy and has a guarded prognosis (Massey et al. 2006).
TAM is considered a precursor of DS-AML, as approximately 30 % of patients with
DS-TAM will subsequently develop AML or, more commonly, AMKL following
clinical resolution of TAM (Zipursky 2003). Hence, patients with DS-TAM repre-
sent a subgroup of individuals with one of the highest predicted predispositions to
develop acute leukemia.

Prior to the diagnosis of AML, DS patients may develop signs of myelodyspla-
sia, characterized by progressive anemia and thrombocytopenia, dysplastic ery-
throid cells, and megakaryocytes in the bone marrow. The myelodysplastic phase
frequently precedes the development of AML (Zipursky 2003). Both myelodys-
plastic syndrome (MDS) and AML are often referred as the “myeloid leukemia
associated with DS” (ML-DS). TAM and ML-DS are now considered separately
from the other subtypes of AML by the World Health Organization classification
and are designated as Myeloid Proliferation related to DS (MP-DS) (Swerdlow
et al. 2008).
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GATA1 Gene and DS-Acute Myeloid Leukemogenesis

The GATAI Gene. The GATAI gene (GATA-binding protein 1; Xp11.23) encodes a
zinc finger DNA-binding transcriptional factor expressed in erythroid,
megakaryocyte, mast, and eosinophil lineages, which detains critical roles during
normal hematopoiesis. The GATA1 N-terminal region has transactivation activity
and its C-terminal domain binds DNA or other factors (Calligaris et al. 1995).
GATAL1 protein forms essential activating or repressing complexes with other
partner proteins, such as FOG1 (friend of GATA1), CBP (CREB-binding protein),
and Med1 (mediator complex subunit 1), to control and promote differentiation of
erythroid and megakaryocytic cells (Crispino et al. 1999; Blobel et al. 1998; Stumpf
et al. 2006; Crispino 2005). Enforced expression of GATAI in primitive myeloid
cell lines or hematopoietic stem cells induced megakaryocytic/erythroid
differentiation, and loss of self-renewal activity (Visvader et al. 1995; Iwasaki et al.
2003; Yamaguchi et al. 1998; Ferreira et al. 2007). On the other hand, inactivation
of GATAI in amouse model caused death of male mice during gestation from severe
anemia resulting from erythroid development arrest and nonlethal anemia in female
mice that exhibited a heterozygous state due to random inactivation of the X
chromosome (Fujiwara et al. 1996).

There are two GATA1 isoforms that result from alternative translation initia-
tion sites (Calligaris et al. 1995). The GATAI gene encodes a 1.8-kb mRNA
that can be translated in a 47-kDa protein or a shorter 40-kDa protein, known
as GATAls. GATAIs is translated from a downstream initiation site and lacks
the N-terminal transactivation domain. GATA1 and GATA1ls share identical
binding activity but differ in their transactivation capacity (Calligaris et al.
1995). The two isoforms have been shown to be present in mouse embryo tis-
sues (Calligaris et al. 1995), and have been associated with diseases. Nonsense
mutations leading to truncated GATAI proteins have been found not only in
mammals but also in a set of “bloodless” zebrafish mutants characterized by
a severe reduction in blood cell progenitors and circulating blood cells (Lyons
et al. 2002). Loss of GATA1 has also been shown to alter erythropoiesis into
myelopoiesis (Galloway et al. 2005). In humans, germline GATA1 mutations
have been associated with hematopoietic disorders. Patients with X-linked
thrombocytopenia (Nichols et al. 2000; Freson et al. 2001), X-linked throm-
bocytopenia with pB-thalassemia (Yu et al. 2002) or X-linked anemia with or
without neutropenia and/or platelet abnormalities (Hollanda et al. 2006), and
X-linked gray platelet syndrome (Tubman et al. 2007) show various degrees
of anemia, thrombocytopenia, and dyserythropoiesis that result from abnormal
interactions between GATA1 and partner proteins, depending on the location of
the GATAI mutation (Ciovacco et al. 2008). Germline mutations leading to the
formation of GATA1s have also been described (Hollanda et al. 2006). Those
patients presented with anemia, neutropenia, or platelet disorders; however, no
leukemia cases have been described, suggesting that, although altered, GATA1s
can sustain erythropoiesis.
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In 2002, Wechsler et al. (2002) analyzed several samples from individuals with
AML for the presence of GATA I mutations. Mutations were detected uniformly and
exclusively only in DS-AMKL samples. Each of the mutations altered the reading
frame and introduced a premature stop codon in the N-terminal transactivation
domain, leading to GATA1s production (Wechsler et al. 2002). Subsequent studies
showed the uniform presence of acquired GATA I mutations in nearly all TAM and
DS-AMKL cases (Hitzler et al. 2003; Mundschau et al. 2003; Rainis et al. 2003).
The exclusive detection of somatic mutations in the X-linked chromosome gene
GATAI in DS-AMKL cases is a unique association between a gene mutation in a
homogeneous subgroup of leukemia patients, which is linked to altered hematopoi-
esis and the downstream development of leukemia.

The “Mutator Phenotype”. There is no obvious relationship linking a X-linked
chromosome gene mutation with chromosome 21, yet one must exist to account for
the finding of GATA1 mutations only in the DS population (including individuals
with mosaicism of chromosome 21), suggesting the possibility that trisomy 21
induces a “mutator phenotype.” It has been well described that trisomy 21 alters
fetal liver hematopoiesis, promoting expansion of erythroid and megakaryocytic
compartments (Chou et al. 2008; Tunstall-Pedoe et al. 2008; Roberts et al. 2013;
Hoeller et al. 2014). There is also supporting evidence that GATA mutations arise
during fetal development, as GATAI mutations have been retrospectively detected
in Guthrie newborn screening cards from patients with DS-AMKL (Ahmed et al.
2004) and have been detected in DS fetal livers as early as 21 weeks of gestational
age (Taub et al. 2004). However, the exact mechanism of mutagenesis in DS is not
completely understood.

Multiple studies have demonstrated evidence of DNA repair defects in DS cells.
DS lymphocytes showed lower baseline DNA repair, and exhibited increased sen-
sitivity to phytohemagglutinin stimulation, N-methyl-N’-nitro-N-nitrosoguanidine,
and y-irradiation, indicating an increased sensitivity to DNA oxidation, methylation,
and strand breaks (Agarwal et al. 1970; Ankathil et al. 1997; Morawiec et al. 2008;
Lavin et al. 1989). While more than one DNA repair pathway might be affected by
the DS phenotype, base excision repair (BER) deficiency is a compelling candidate
because it repairs these types of DNA damage.

By analyzing all published studies in which sequence data on GATAI mutations
was available, Cabelof et al. (2009) began to elucidate possible mechanisms by
which these sequence alterations arise. Mutational analysis revealed a predominance
of small insertion/deletion, duplication, and base substitution mutations including
G:C>T:A, G:C>A:T, and A:T>G:C. This mutational spectrum suggests that
oxidative stress and aberrant folate metabolism secondary to genes on chromosome
21 (e.g., superoxide dismutase [SOD] and cystathionine-f3-synthase [CBS]) may be
linked to the generation of GATAI mutations. Both CBS and SOD transcripts are
significantly overexpressed in DS-AMKL blasts compared with non-DS-AML
(median 12- and 4-fold, respectively) (Taub et al. 1999). CBS overexpression has
been associated with a functional folate deficiency (Li et al. 2005) and may result in
increased uracil incorporation into DNA, thus providing another mechanism for
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generation of mutations in DS. As the rate-limiting enzyme in the BER pathway,
loss of p-pol (DNA polymerase f3) could result in increased susceptibility to the
mutagenic effects of unrepaired endogenous damage caused by high levels of uracil
incorporation.

The relationship between two key BER gene products involved in the repair of
uracil in DNA, uracil DNA glycosylase (UDG) and p-pol, and DS phenotype was
evaluated in DS tissues (Cabelof et al. 2009). UDG is a monofunctional glycosylase
that excises uracil from DNA to initiate BER. Loss of UDG in Escherichia coli and
in mouse models induces mutations characterized predominantly by the G:C>A:T
transition, similar to what was observed in DS (Fix and Glickman 1987). DS
samples exhibited 75 % lower UDG expression than the non-DS (Cabelof et al.
2009). Hence, DS may predispose to mutagenesis through a uracil intermediate as a
result of reduced UDG expression. Interestingly, DS samples (TAM and AMKL
together) showed a 90 % reduction in f-pol expression compared with non-DS-
AMKL samples. This finding is striking, as 50 % reduction in f-pol expression
predisposed mice to develop cancer (Cabelof et al. 2006). Germline p-pol
polymorphisms, leading to slower catalytic rates, cause increased double-strand
breaks, chromosomal aberrations, and cellular transformation (Yamtich et al. 2012).
Furthermore, DNA repair capacity evaluated in DS and non-DS patient samples
provided evidence that the BER pathway was compromised in DS tissues (Cabelof
et al. 2009), suggesting that inability to repair DNA damage may also play critical
roles in the unique susceptibility of DS children to develop leukemia.

The generation of GATAls as an end result of the mutations may provide a
selective growth advantage allowing for the survival of preleukemic clones, which
may ultimately lead to the development of TAM and AMKL in DS. In fact, the
induction of GATAls expression in mice led to hyperproliferation of a unique,
previously unrecognized yolk sac and fetal liver progenitor, which the authors
proposed to account for the transient nature of TAM and the restriction of DS-AMKL
to the first years of life (Li et al. 2005). GATAI knockdown in a DS-AMKL cell
model resulting in lower GATAls protein levels promoted cell differentiation
towards the megakaryocytic lineage, repressed cell proliferation, and increased
basal apoptosis and susceptibility to various chemotherapy drugs, accompanied by
downregulation of Bcl-2 and altered expression of genes related to cell death,
proliferation, and differentiation (Xavier et al. 2011).

Another important aspect is the fetal liver environment. It is possible that the
initial genetic hits that drive leukemogenesis depend on interactions with local
stroma. Miyauchi and Kawaguchi (2014) showed that fetal liver stromal cells, but
not fetal bone marrow, supported the growth of TAM blast progenitors, mainly
through humoral factors. They found high concentrations of hematopoietic growth
factors in culture supernatants of the fetal liver stromal cells, suggesting that a
unique hematopoietic microenvironment may be the key to sustain the growth of
leukemia cells.

Footsteps to Leukemia. GATAI mutations and GATA 1s represent early or initiating
“genetic hits” in a multi-step process of leukemogenesis. Whole-genome and/or
whole-exome sequencing of samples from individuals with DS with TAM showed
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only the exclusive presence of GATA1 mutations (Yoshida et al. 2013). The natural
history of patients with TAM is the spontaneous clinical regression in the majority
of cases with support of care alone (Zipursky 2003). The mechanisms behind TAM
involution remain unknown. However, a proportion of DS children will, after a
period of latency that can last a few years, develop MDS/AMKL that will require
treatment with multi-drug chemotherapy. What drives the full development of leu-
kemia is not completely understood, and the presence of a mutated GATAT1 protein
is unlikely the only driving force in leukemogenesis. This has been shown in studies
using DS mouse models in which the introduction of GATA1s resulted in increased
megakaryopoiesis, abnormalities in the liver and bone marrow, or anemia, but did
not result in leukemia (Alford et al. 2010; Carmichael et al. 2009).

In addition, genomic profile performed on samples from patients with DS-AMKL
have revealed mutations in other target genes, including genes involved in epigenetic
regulation, common signaling pathways, and multiple cohesion components, in
addition to the presence of GATA1 mutations (Yoshida et al. 2013). KIT, FLT3,
JAK2 JAK3, and MPL gene mutations have been identified DS TAM or AMKL
samples (De Vita et al. 2007; Norton et al. 2007). More recently, and using DS
TAM/AMKL exome sequencing and genome-wide single nucleotide polymorphism
(SNP) microarray, Nikolaev et al. found that 40 % of TAM cases and all AMKL
cases showed mutations/deletions other than GATAl in genes proven as
transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAKI, PARK2-
PACRG, EXTI, DLECI, SMC3). Two clonal expansions with different GATAI
mutations were found in a TAM sample, one clone with an additional driver mutation
and a second clone that gave rise to AMKL after accumulation mutations in seven
other genes (Nikolaev et al. 2013). These findings suggested that GATA I mutations
alone are sufficient for clonal expansion, and that the presence of additional
mutations at the TAM stage do not predict AMKL progression. The authors
postulated that leukemia progression requires a “third-hit driver,” putative driver
mutations resulting in aberrant activation of WNT, JAK-STAT, or MAPK-PI3K
pathways and consequent overexpression of MYC (Nikolaev et al. 2013). The
presence of multiple subclones with varying leukemia-initiating potential and self-
renewal capacity was also suggested in a xenograft model of TAM: during serial
transplantation of TAM-derived cells, divergent subclones with another GATAI
mutation and various copy number alterations emerged (Saida et al. 2013).
Epigenetic changes can also contribute to leukemogenesis in DS. Early genome-
wide DNA methylation changes were detected in DS fetal liver mononuclear cells
prior to the presence of GATA1 mutations. These changes were characterized by
loss of DNA methylation at genes associated with development disorders. Gain of
methylation was detected in DS TAM/AMKL samples, affecting different sets of
genes involved in hematopoiesis and the regulation of cell growth and proliferation
(Malinge et al. 2013).

In summary, the mechanism of leukemogenesis in DS children is probably
multifactorial and involves chromosome 21-localized genes as well as genes
localized to other chromosomes. Studying leukemia in DS children is a paradigm to
further improve our understanding of the role of genetic disorders associated with a
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predisposition to develop cancer and the role of specific genes associated with
cancer predisposition. Future work identifying the mechanisms underlying GATA I
mutagenesis and leukemogenesis in DS will shed important light on why DS
children have a significantly higher risk of developing acute leukemia in comparison
with children without DS.
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Chapter 5
Origin of Leukemia in Children with Down
Syndrome

Johann K. Hitzler

Abstract Children with Down syndrome (DS) are more likely to develop acute
myeloid (AML) or acute lymphoblastic leukemia (ALL). AML in children with DS
is initiated during fetal hematopoiesis by somatic mutations of GATA1. Leukemic
blasts of ALL in DS contain rearrangements of CRLF2 in more than half of all
patients. DS is associated with distinct changes of cell subsets during fetal liver
hematopoiesis, of folate/one-carbon metabolism and of cell signaling involving
NFAT, TGF and WNT pathways. Possible genetic mechanisms of the increased risk
for leukemia in DS include gene dosage imbalance of candidate genes and epigenetic
dysregulation of gene expression. Fewer data are available regarding the role of non-
cell-autonomous risk factors, such as abnormal immune function and exposure to
environmental carcinogens, during the development of leukemia in children with DS.

Keywords Down syndrome * GATA1 » CRLF?2 e Fetal liver hematopoiesis * Folate
metabolism ¢ NFAT signaling * Down syndrome critical region * Down syndrome
candidate genes ®* DNA methylation * Histone marks ¢ Carcinogens

Introduction

Leukemia presents with specific phenotypic features and disease mechanisms in chil-
dren with constitutional trisomy 21 (Down syndrome [DS], OMIM 190685 [OMIM]).
The overall incidence of acute leukemia in children with DS is increased 10- to 20-fold
(Hasle 2001; Hasle et al. 2000). Acute myeloid leukemia (AML) in young children
with DS is 150-fold and acute lymphoblastic leukemia (ALL) 40-fold more common
compared with the general pediatric population (Hasle et al. 2000). At the same time,
solid tumors of both childhood and adulthood occur with significantly lower inci-
dence in individuals with DS (Hasle 2001; Hasle et al. 2000; Nizetic and Groet 2012).
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In addition to this specific distribution of malignancies in people with DS, the
clinical presentation of leukemia in children with DS is unique (Roberts and Izraeli
2014). AML occurs at a younger median age in those with DS (1.8 versus 7.5 years;
Lange et al. 1998). Overt AML frequently follows a prodrome of myelodysplasia,
lasting weeks to months, and a neonatal transient accumulation of abnormal
megakaryoblasts (termed transient myeloproliferative disorder [TMD], transient
leukemia [TL], transient abnormal myelopoiesis [TAM]), which spontaneously
resolves within months in the majority of cases (Klusmann et al. 2008; Muramatsu
et al. 2008; Roy et al. 2012a). A subset of 20-30 % of children with TL, however,
go on to develop DS-AML typically within the first 4 years of life (Creutzig et al.
2006; Gamis et al. 2003; Sorrell et al. 2012). Blasts of AML in DS typically are
defined by a megakaryoblastic lineage phenotype and somatic mutations of the gene
coding for the hematopoietic transcription factor GATAI (Roberts and Izraeli 2014;
Roy et al. 2012a; Hitzler and Zipursky 2005; Roberts et al. 2013). Treatment
response is excellent for the majority of patients (event-free survival is approximately
80 %) (Sorrell et al. 2012; Creutzig et al. 2005; Kudo et al. 2007; Taub et al. 2014),
at least in part because of the hypersensitivity of blasts to a number of chemothera-
peutic agents including cytarabine, anthracyclines, and epipodophyllotoxins (Frost
et al. 2000; Taub and Ge 2005; Taub et al. 1996; Zwaan et al. 2002). As a result,
DS-AML is considered both mechanistically and nosologically a distinct form of
leukemia, termed myeloid leukemia of Down syndrome (DS-ML) in the recent
World Health Organization classification (Hasle et al. 2003).

In contrast, ALL in children with DS has a similar age distribution and predomi-
nance of the B-lineage blast phenotype in comparison with the overall pediatric
population (Maloney 2011; Whitlock 2006). The spectrum of cytogenetic features
of ALL in DS (DS-ALL), however, shows a lower prevalence both of common prog-
nostically favorable markers, such as high hyperdiploidy and ETV6-RUNX]1 fusions,
and unfavorable fusions such as BCR-ABLI (Buitenkamp et al. 2014; Forestier et al.
2008; Maloney et al. 2010). Strikingly, T-ALL and infant ALL (<1 year of age) are
very rare and virtually absent, respectively, in children with DS (Buitenkamp et al.
2014). Although a pathognomonic disease mechanism of DS-ALL is at present not
evident, in approximately 60 % of cases DS-ALL blasts contain translocations and
interstitial deletions that result in rearrangement and increased expression of the
CRLF?2 gene (Buitenkamp et al. 2014; Mullighan et al. 2009a). In addition, approxi-
mately half of these cases (25 % of all DS-ALL) harbor activating mutations of
JAK?2 and less frequently of JAK] (Buitenkamp et al. 2014; Mullighan et al. 2009a;
Bercovich et al. 2008). In contrast to the overall pediatric population, in which either
marker is associated with an adverse prognosis of ALL (Cario et al. 2010; Mullighan
et al. 2009b), both markers are prognostically neutral in DS-ALL. Adverse effects
of treatment such as infection, mucositis, and hyperglycemia are more frequent in
children with DS (Whitlock 2006; Bassal et al. 2005) and have been attributed to
agents such as glucocorticoids and methotrexate (Whitlock 2006). Survival out-
comes of ALL are inferior in children with DS (8-year overall survival of 74 % and
event-free survival of 64 %, compared with 89 % and 81 %, respectively, in patients
without DS) (Buitenkamp et al. 2014), attributable to both a higher rate of relapse
and significantly increased treatment-related mortality (Maloney 2011; Buitenkamp
etal. 2014; O’Connor et al. 2014). Fatal infections during all phases of ALL therapy,
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including maintenance therapy, remain a significant barrier to success and highlight
the role of host factors during the treatment of ALL in DS (O’Connor et al. 2014).

Although the incidence of acute leukemia, both AML and ALL, is increased 10- to
20-fold and children with DS have access both to clinical trials and a curative standard
of care, extremely scarce reports of secondary malignancies (Hasle et al. 2000) sug-
gest that second malignancies are particularly rare in children with leukemia and DS.

Given these striking clinical observations concerning acute leukemia in children
with DS, substantial attention has focused on the one shared variable: trisomy 21.
This chapter aims to summarize hypotheses and observations put forth to explain
why leukemia is more frequent in children with DS.

Observations Regarding the Mechanisms of DS-ML and DS-ALL

Requirements for AML in DS
Fetal Hematopoiesis

The first signs of the process that eventually culminates in DS-ML (Fig. 5.1) are
detectable during fetal liver hematopoiesis, based on the appearance of cells harboring

Fetal hematopoiesis

TL DS-ML
10-30% @
(@)
Trisomy 21 l 20%
20%
Apparent
Early resolution
death of TL
% Ao
GATA1 mutation Cooperating mutations

e.g. in cohesin complex,
signal transducer,
epigenetic modifier genes

Fig. 5.1 Stepwise development of acute myeloid leukemia in Down syndrome. GATA ] mutations
in fetal hematopoietic cells with trisomy 21 result in transient leukemia (TL). After apparent
resolution of TL, additional mutations cooperating with mutant GATA1 result in transformation to
myelodysplastic syndrome and AML in a subset
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an acquired mutation of the gene encoding the hematopoietic transcription factor
GATA] (Taub et al. 2004). After birth, approximately 10 % of newborns with DS are
diagnosed with an accumulation of blasts in the blood displaying megakaryoblastic,
erythroid, and myeloid lineage markers in a disorder variably called TL (Zipursky
2003), TMD (Gamis and Smith 2012), and TAM (Roberts et al. 2013; Roberts and
Izraeli 2014). The liver, the site of the immediately preceding developmental stage of
fetal liver hematopoiesis, is the most commonly involved organ, with enlargement due
to cellular infiltration—or residual hematopoiesis, depending on one’s point of view—
and fibrosis attributed to fibrogenic mediators such as platelet-derived growth factor
(Ogawa et al. 2008) secreted by the population of abnormal megakaryoblasts. TL,
therefore, is a disorder of fetal hematopoiesis in the context of cellular trisomy 21.

Trisomy 21 (Constitutional, Mosaicism, Somatic)

The karyotype of TL blasts almost universally shows trisomy 21, with rare excep-
tions (Schifferli et al. 2015), for which subchromosomal gain of genes encoded on
chromosome 21 need to be investigated, confirming the rule rather than questioning
it. In most cases trisomy 21 is constitutional (Down syndrome (OMIM)). Trisomy
21, however, may only be present in a proportion of tissues including the hemato-
poietic one in infants, with TL lacking the typical features of DS (trisomy 21 mosa-
icism) (Zipursky 2003; Gamis et al. 2011). In fact, trisomy 21 may be confined only
to a proportion of hematopoietic cells, including normal cells and the TL blast popu-
lation, or exclusively to the population of TL blasts (Apollonsky et al. 2008; Ono
et al. 2015; Tsai et al. 2011). Trisomy may involve the entire chromosome 21 or a
specific part (segmental trisomy 21) (Korbel et al. 2009; Korenberg et al. 1994). The
functional impact of trisomy 21 on fetal hematopoiesis is discussed below. In sum,
the developmental stage of fetal hematopoiesis and trisomy 21 constitute the first
two classical conditions for the in the development of DS-ML.

Acquired GATA 1 Mutations

Acquired, somatic mutations of the X-linked gene encoding the hematopoietic
transcription factor GATAI are the third of the events cooperating in the develop-
ment of DS-AML (Wechsler et al. 2002). The mutations consist of short insertions/
deletions or point mutations in exon 2, rarely exon 3, and corresponding splice
sites, which introduce a premature stop codon, frame shift, or splice site mutation
(Alford et al. 2011). The result is the translation of a truncated mutant protein
(GATAT1s), which lacks 83 amino-terminal amino acid residues and the encoded
putative transactivation domain and interaction site with proteins such as RUNX1
(Elagib et al. 2003) and E2F (Klusmann et al. 2010a). Expression of GATAls
in vivo is associated with proliferation of megakaryocyte precursors during a fetal
stage of hematopoiesis, but in this system did not interfere with normal adult
murine blood cell formation (Li et al. 2005). This experimental finding, together
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with the observation that corresponding GATA ] mutations if occurring in the germ
line and non-fetal hematopoietic cells are associated with anemia and neutropenia
in males (Hollanda et al. 2006) or Diamond-Blackfan anemia (Sankaran et al.
2012), highlights that GATA1s has a specific functional impact during fetal hema-
topoiesis that results in TL. Of note, expression of Gatals in a murine model
resulted in the transient expansion of fetal megakaryoblastic progenitors with high
proliferative capacity even in the absence of trisomy 21 (Li et al. 2005), suggesting
that a fetal liver hematopoietic progenitor is the likely cell of origin for TL and that
a degree of overlap exists between proliferative and survival stimuli provided to it
by trisomy 21 and GATAs.

TL blasts may be oligoclonal with regard to GATAI mutations (Ahmed et al.
2004; Saida et al. 2013), but the DS-ML clones in the majority of cases are mono-
clonal (Alford et al. 2011). GATAI mutations are concordant within the same indi-
vidual between the stage of TL and DS-AML (Hitzler et al. 2003; Rainis et al. 2003;
Yoshida et al. 2013). These observations are consistent with a model in which
DS-ML or, more precisely, the initial myelodysplastic syndrome (defined by lack of
differentiated blood cells in the peripheral blood, presence of morphologically
abnormal differentiated precursors in the bone marrow, and fewer than <20 % blasts
in the bone marrow) and then overt DS-ML arise from a subclone of TL. Additional
mutations, which chronologically rank as fourth or fifth events, are expected to
function as progression events that propel the GATAI mutant TL clone to fully
transformed DS-ML (Fig. 5.1). The onset of DS-ML and, thus, the timing of these
progression events appears limited to the first 4 years of life (Hasle et al. 2000;
Gamis et al. 2003), defining the maximal time interval for which the preleukemic
TL clone(s) may persist in the environment of postnatal bone marrow hematopoiesis.

Progression Events

The existence of an identifiable preleukemic disorder (TL) and clonally linked, fully
transformed AML (DS-ML) in children with DS provides the unique opportunity of
identifying those genetic events that are associated with the progression of TL to
DS-ML, with a view to functional validation. Cytogenetic analysis had suggested
that somatic trisomy 8 (Massey et al. 2006) and other cytogenetic abnormalities
(Klusmann et al. 2008; Forestier et al. 2008) could be associated with progression
to DS-AML. Mutational screening of DS-ML blasts (Malinge et al. 2008) and co-
expression of Gatal and candidate progression genes in a murine model of DS-ML
(Malinge et al. 2012) led to the identification of activating mutations of the genes
encoding the signal transducer JAK3 and thrombopoietin receptor MPL. Subsequent
studies, however, showed that these events were infrequent in DS-AML (Kiyoi et al.
2007; Norton et al. 2007).

Another approach was the direct comparison of TL and DS-ML blasts, prefera-
bly from the same individual. Early expression studies (Lightfoot et al. 2004;
McElwaine et al. 2004) were hampered by interindividual variability (lack of pairs)
and impurity of analyzed cell fractions.
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Recently, exome sequencing of sample pairs of TL and DS-ML blasts from the
same individuals revealed that, as expected, GATA I mutations are the predominant
and mostly sole mutation detectable in TL blasts (Yoshida et al. 2013; Nikolaev
et al. 2013), arguing against genomic instability as a mechanism. In contrast, blasts
of DS-ML harbored an average of six mutations. Mutations of cohesin complex
genes such as SMCIA, STAG2, and RAD21 were found in 57 % of cases of DS-ML
followed by activating mutations in genes encoding signal transducers (e.g., JAKI-
3, MPL, and SH2B3; 35 % of cases) and epigenetic modifiers (EZH2; 33 % of cases)
(Yoshida et al. 2013). WNT, JAK-STAT, and MAPK/PI3K pathways were targeted
by mutations in DS-ML blasts (Nikolaev et al. 2013). Mutations of cohesin complex
genes had previously been described in blasts of non-DS-AML (Nikolaev et al.
2013; Welch et al. 2012).

These data support a disease model in which initiation of AML is enhanced in
DS by the presence and expansion of target cells during fetal hematopoiesis and the
proliferative effects of mutant GATAl protein, whereas progression from
preleukemia (TL) to AML in DS may rely on generic mechanisms that are also
operative in non-DS-AML.

Requirements for ALL in DS

In contrast to AML, which is a distinct form of leukemia based on age distribution,
blast immunophenotype, disease mechanism (GATAI mutation), drug sensitivity,
prognosis, and treatment approach, a similarly distinct nature of ALL in children
with DS is less obvious. A large retrospective study confirmed inferior survival out-
comes of DS-ALL and pointed to both an increased relapse rate and a higher risk of
treatment-related mortality as the main barriers to success (Buitenkamp et al. 2014).

Approximately 10 % of children with high-risk B-precursor ALL have a gene
rearrangement involving the CRLF2 gene (cytokine receptor-like factor 2), which
consists either of a translocation into the immunoglobulin heavy-chain locus or an
interstitial deletion of within the pseudo-autosomal region of X or' Y (Mullighan et al.
2009a; Harvey et al. 2010). In both cases the expected result is the increased expres-
sion of CRLF?2 and constitutive activation of JAK2/STATS signaling, which in exper-
imental systems endows growth factor-independent growth in vitro (Bercovich et al.
2008). In ALL of children with DS, the corresponding CRLF2 gene rearrangements
are found in as many as 60 % of cases (Buitenkamp et al. 2014; Mullighan et al.
2009a) but do not have an unfavorable prognostic impact. About half of the cases of
DS-ALL with CRLF2 gene rearrangements have additional activating mutations of
JAK2 and, much less frequently, JAK/ (Mullighan et al. 2009a; Bercovich et al.
2008), resulting in constitutive JAK2/STATS signaling. Again, in contrast to non-DS-
ALL, the presence of JAK2 mutations is not associated with unfavorable prognosis in
DS-ALL but offers a target for therapeutic intervention (Roberts et al. 2014; Maude
et al. 2012) that may lack the toxicity of standard chemotherapy for
DS-ALL. Investigators also compared gene expression of DS-ALL blasts with that in
defined cytogenetic subgroups of non-DS B-precursor ALL and discovered a hetero-
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geneity of gene expression between DS-ALL samples that, in contrast to DS-AML,
did not lend support to a unifying disease mechanism in DS-ALL (Hertzberg et al.
2010). Recent findings of distinct epigenetic gene regulation in ALL blasts with tri-
somy 21 (Lane et al. 2014), however, suggest that such differences exist.

The observation that both AML and ALL are significantly more common in chil-
dren with DS suggests that regulation of normal blood cell formation may differ
between children with and without DS in ways that predispose the former to
leukemic transformation.

Developmental Hematopoietic Abnormalities Associated
with Trisomy 21

Expression of mutant GATA1 protein (functionally equivalent to GATA1s) was suf-
ficient to induce the expansion of a megakaryoblastic progenitor with high prolif-
erative capacity during fetal liver hematopoiesis, but had no corresponding impact
on adult blood cell formation (Li et al. 2005). This observation suggests that trans-
forming events, at least in DS-AML, are specific for a developmental stage. Whether
blood cell formation in general is different in individuals with and without DS has
been studied by analysis of hematopoietic stem and progenitor cells (HSPC) derived
from human fetal liver, differentiated embryonic and induced pluripotent stem cells
of individuals with DS, and murine models of human trisomy 21.

Human Fetal Liver Hematopoiesis and Trisomy 21

Based on immunophenotype and colony formation in vitro, the hematopoietic pro-
genitors in the second trimester fetal liver with trisomy 21 show a marked expansion
of megakaryocyte-erythroid progenitors (MEP) (Chou et al. 2008; Roy et al. 2012bj;
Tunstall-Pedoe et al. 2008) and hematopoietic stem cells (HSC) (Roy et al. 2012b),
whereas the number of common myeloid progenitors and granulocyte-macrophage
progenitors (GMP) is decreased (Chou et al. 2008; Roy et al. 2012b; Tunstall-Pedoe
et al. 2008). Megkaryoblastic and erythroid output was increased in colony-forming
assays in vitro and xenograft recipients in vivo (Chou et al. 2008), illustrating an
apparent bias of trisomic human fetal liver hematopoiesis in favor of megakaryo-
and erythropoiesis. Among lymphoid progenitors, the number of lymphoid-primed
multi-potential progenitors and early lymphoid progenitors was maintained, while
the number of committed B-lymphoid progenitors was reduced tenfold (Roy et al.
2012b). Interestingly, the expression of genes that have a role in human hematopoi-
esis and are encoded on chromosome 21, such as ERG, ETS, RUNX1, and SON, was
not different in HSC derived from trisomy and non-trisomic fetal livers (Chou et al.
2008). Analysis of induced human pluripotent stem cells with trisomy 21 (Maclean
et al. 2012) confirmed the increased colony-forming potential of trisomic
hematopoietic progenitors.
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Murine Models of Hematopoiesis in DS

A series of mouse models of human DS has been established (Alford et al. 2010),
which differ by the number of trisomic genes that are orthologous to those encoded
on human chromosome 21 (HSA21). Ts65Dn (Kirsammer et al. 2008), Tc1 (Alford
et al. 2010), and Ts1Cje (Carmichael et al. 2009) mice all show macrocytic red cells
consistent with findings in human DS (Starc 1992). However, only Ts65Dn mice
develop a myeloproliferative disorder over time, which is not linked to fetal hema-
topoiesis (Kirsammer et al. 2008). Furthermore, the number of MEP is smaller and
of GMP increased, opposite to the findings in trisomic human fetal liver hematopoi-
esis (Chou et al. 2008). Co-expression of Gatals in Tcl mice (Alford et al. 2010) or
of a Gatal allele containing a point mutation in TsCje mice (Carmichael et al. 2009)
did not result in a TMD (or AML) phenotype. The same result was observed in
double transgenic mice expressing human ERG and murine Gatals (Birger et al.
2013), although this model reproduced the expansion of MEP and decrease of GMP
found in trisomic human fetal liver hematopoietic progenitors. Interestingly, Runx]
was not necessary for the hematopoietic phenotype of Ts65Dn mice (Kirsammer
et al. 2008).

In summary, the hematopoietic stem and progenitor compartments, at least at the
fetal stage of blood cell development, appear to be structured differently in human
DS, resulting in the expansion of progenitors with megakaryocytic and erythroid
differentiation potential. At the same time the number of committed B-lymphocytic
progenitors is decreased.

Hematopoiesis in DS, therefore, may result in a larger supply of target cells such
as MEP and HSC for transformation to preleukemic TL and further amplification by
GATAIs. The observed amplification of a progenitor population such as MEP,
however, does not rule out an impact of trisomy 21 on other, upstream multi-
potential progenitors or even HSC, which could explain the expression of a
combination of megakaryoblastic, erythroid, myeloid, and lymphoid markers on TL
blasts. While this model is plausible for TL and DS-ML, it is unclear whether ALL
in DS is derived from an abnormally expanded corresponding lymphoid progenitor
or HSC population. What is apparent is that the cellular targets of the process
resulting in AML and ALL are only available in individuals with DS during the first
4 years and 30 years of life, respectively (Hasle et al. 2000).

Cellular Pathways Favoring the Development of Leukemia in DS

The search for the causes of the increased risk for leukemia in children with Down
syndrome early on focused on cellular pathways that could enhance the cancer cell
phenotype. Cell-autonomous consequences of trisomy 21 that would stimulate cell
division and renewal, impair differentiation, and extend cell survival, therefore,
would provide suitable candidate pathways. Alternatively, leukemia could result
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from non-cell-autonomous effects of trisomy 21 that may increase support for
nascent cancer cells or decrease the effectiveness of anticancer surveillance.

A number of basic cellular responses have been analyzed in DS cells. Apoptosis
was found to be increased in fetal cortical neurons with trisomy 21 and associated
with greater accumulation of intracellular reactive oxygen species compared with
euploid controls (Busciglio and Yankner 1995). Serum levels of the angiogenesis
inhibitor endostatin, a cleavage product of collagen XVIII encoded on chromosome
21, were high in people with DS (Zorick et al. 2001). These observations, however,
are more useful to explain a protection against solid tumors than the increased risk
for leukemia in children with DS, although they may also hold clues as to why
secondary malignancies including leukemias are very rare in people with DS (Hasle
et al. 2000).

A number of cellular pathways have been investigated as risk factors for leukemia
in DS, and we focus here on a few conceptually intriguing ones.

Homocysteine, Folate, and One-Carbon Metabolism

The enzyme cystathionine f-synthase (CBS) is encoded on human chromosome 21,
shows approximately 50 % increased activity in individuals with DS (Pogribna
et al. 2001), and has an impact on all three metabolic branches. Increased CBS
transcripts were also documented in DS-AML blasts (Ge et al. 2003; Taub et al.
1999, 2000). Increased activity of CBS is expected to remove homocysteine from
the methionine cycle, thus depriving methionine synthase of its substrate and
establishing a methyl trap by promoting accumulation of 5-methyltetrahydrofolate
(Pogribna et al. 2001) (Fig. 5.2). At the same time reduced methionine synthase
activity decreases the conversion of 5-methyltetrahydrofolate to tetrahydrofolate,
the metabolically active form of folate, which is required for de novo nucleotide
synthesis, in effect generating a functional intracellular folate deficiency in DS even
in the presence of normal serum folate and vitamin B12 levels (Pogribna et al.
2001). Interestingly, despite the increased synthesis of cysteine, plasma levels of
glutathione are low in children with DS, consistent with the increased generation of
hydrogen peroxide mediated by increased expression of superoxide CuZn dismutase
(SOD), which like CBS is also encoded on chromosome 21. It is intriguing to
speculate that both generation and reduction of reactive oxygen species are enhanced
in cells with trisomy 21 and that the balance and net effect of both reactions may
vary in different tissues and developmental stages.

The concept of functional folate deficiency in DS matches well with several clin-
ical observations. Children with DS frequently show macrocytosis of their red blood
cells (Starc 1992), a feature also observed in folate-deficient individuals and inci-
dentally in all murine models of DS. Use of folate antagonists such as methotrexate
is complicated by a higher frequency and severity of adverse effects, for example,
breakdown of skin and mucosal membranes, in children with DS-ALL who are
treated with this agent (Bassal et al. 2005; Garre et al. 1987). This effect could be
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explained by the functional folate deficiency of DS described above or by increased
expression of the membrane-bound transport protein used by methotrexate (reduced
folate carrier, RFC), which is encoded on human chromosome 21. The absence of
increased sensitivity of blasts of DS-ALL to methotrexate (Zwaan et al. 2002), how-
ever, argues against the latter explanation. In principle, a state of functional folate
deficiency could exert a leukemia-inducing effect through increased risk of DNA
strand breaks or be mediated by abnormal methylation reactions that alter epigene-
tic regulation of gene expression. Hypomethylation of DNA was found to be pre-
dominant in hematopoietic fetal liver cells with trisomy 21 (Malinge et al. 2013). In
contrast, lymphocyte DNA of children with DS was found to be hypermethylated
compared with euploid sibling controls (Pogribna et al. 2001) despite the decreased
level of methyl donors such as S-adenosylmethionine in the plasma of children with
DS. Intriguing as they are, these observations caution against simplistic interpreta-
tion of abnormal folate and homocysteine metabolism as a cause of cancer with
specificity for hematopoietic cells in DS.

Nuclear Factor of Activated T Cells (NFAT) Signaling

The challenge for any candidate pathway in trying to explain the higher risk for
leukemia in DS is the need to accommodate a decreased risk for solid tumors at the
same time. Abnormal VEGF-calcineurin-NFAT signaling is a particularly intriguing
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concept in his regard. Specifically, two negative regulators of calcineurin signaling,
DSCR1 and DYRKI1A, are encoded within the Down syndrome critical region
(DSCR) on human chromosome 21. Increased expression of DYRK1A may favor
the abnormal proliferation of megakaryocytes consistent with the predominant
lineage phenotype of TL and DS-ML blasts, while increased DSCR1 activity
interferes with the progression of solid tumors by suppressing tumor angiogenesis.

Vascular endothelial growth factor (VEGF) is a critical factor in physiological
and tumor angiogenesis (Ryeom et al. 2008) that is capable of activating calcineurin-
NFAT signaling. Binding of VEGF to one of its receptors results in increased intra-
cellular calcium, which activates the serine-threonine phosphatase calcineurin.
Calcineurin dephosphorylates cytoplasmic NFAT proteins, thus allowing their
translocation into the nucleus, where they bind partner proteins to form NFAT tran-
scription complexes. The net result is the activation of NFAT target genes, which
include the proangiogenic genes COX2, E-selectin, and tissue factor (Ryeom et al.
2008; Arron et al. 2006). On the other hand, rephosphorylation of NFAT proteins
triggers their export from the nucleus and inactivation of the pathway, with
DYRKIA functioning as the priming kinase (for GSK3) (Arron et al. 2000).
DSCRI inhibits NFAT signaling by inhibition of calcineurin. Both DSCR1 and
DYRKIA act synergistically to block calcineurin-NFAT signaling (Arron et al.
2006). Accordingly, tumor angiogenesis is suppressed in experimental animals
with increased Dscrl expression (Baek et al. 2009), and VEGF-mediated prolifera-
tion of endothelial cell is inhibited by both Dscrl and even more potently by the
combination of Dscrl and DYRK1A (Baek et al. 2009). In addition to DSCR1 and
DYRKI1A, two other antiangiogenic proteins are encoded on chromosome 21, col-
lagen XVIII, the precursor to the angiogenesis inhibitor endostatin (Ryeom et al.
2009), and ADAMTSI, a matrix metalloproteinase that regulates the antiangio-
genic function of thrombospondin-1 (Ryeom et al. 2009). Suppression of tumor
angiogenesis and inhibition of tumor progression by impaired calcineurin-NFAT
signaling, therefore, is an attractive candidate mechanism underlying the lower
incidence of solid tumors in DS.

At the same time, however, increased levels of DYRK1A and DSCR1 due to cel-
lular trisomy 21 may also account for the increased incidence of leukemia in DS, at
least of those with a megakaryoblastic lineage phenotype. In a murine model that
combined trisomy for 33 orthologous genes in the human DSCR (Ts1Rhr),
expression of Gatals, and an activating mutation of the thrombopoietin receptor
gene MPL, an oligoclonal, non-transplantable form of acute megakaryoblastic
leukemia (AMKL) developed, reminiscent of AML in DS (Malinge et al. 2012).
Dyrkla was significantly overexpressed in megakaryoblasts in this model.
Suppressed expression or function of Dyrkla was associated with impaired
expansion of megakaryocytes in trisomic cells (with and without additional Garal
mutation), highlighting the role of DyrkIA in the excessive expansion of trisomic
megakaryoblasts. Finally, increased Dirkla was associated with an increased
proportion of phosphorylated (inactive) NFAT proteins in trisomic mice, consistent
with DYRK1A modulating megakaryoblastic expansion through inhibition of the
calcineurin-NFAT pathway (Malinge et al. 2012).
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Taken together, the dual function of DYRKI1A encoded on chromosome 21 as
oncogene for megakaryoblastic leukemia and tumor suppressor for solid tumors
(Birger and Izraeli 2012) may help us understand the paradoxical distribution of
malignancies in people with DS.

TGFp and WNT Signaling

An interesting functional study of microRNAs encoded on human chromosome 21
revealed the concerted activation of Wnt and inhibition of transforming growth
factor-p (TGFp) signaling pathways in trisomic hematopoietic cells.

MicroRNAs are short, non-coding RNAs that negatively regulate gene expres-
sion. By binding to complementary sequences in target transcripts, they repress
their translation or enhance their cleavage and degradation (Carthew and
Sontheimer 2009). MiR-125b, encoded on human chromosome 21, is highly
expressed in blasts of human DS-ML, TL, and to a lesser degree non-DS-AMKL
when compared with euploid CD34-positive hematopoietic stem and progenitor
cells (Klusmann et al. 2010b). It endows murine megakaryocytic progenitors in
the fetal liver with increased capacity for proliferation and self-renewal in vitro—
a property that was further enhanced by expression of GATAls, the mutation
found in TL—and expands fetal liver progenitors with both megakaryocytic and
erythroid lineage potential. Conversely, downregulation of miR125b decreased
proliferation of human TL blasts. Interestingly, the target genes suppressed by
miRNA 125b include DICERI, which encodes the RNAse III enzyme required for
the production of mature miRNAs (Emmrich et al. 2014). This suggested that
miRNA125b expressed at high levels in trisomic cells may result in global post-
transcriptional blockage of miRNA processing and thus promote the development
of leukemia in DS due to disordered hematopoietic cell differentiation (Klusmann
et al. 2010b).

Subsequently, miR125b was shown to be transcribed in a phylogenetically con-
served tricistron of miRNAs that also includes miR-99 and let-7c and is embedded
in the intron of long intervening non-coding RNA host gene LINC00478 on chro-
mosome 21 (Emmrich et al. 2014). The tricistron most efficiently stimulated the
growth of megakaryocytic cells and colonies derived from CD34-positive human
cord blood when compared with the single miRNA controls. In addition, competitive
repopulation experiments showed that expression of the miRNA tricistron expanded
long-term repopulating hematopoietic stem cells and megakaryocytic progenitors
in vivo (Emmrich et al. 2014). Analysis of miRNA target genes by expression
profiling revealed that positive effectors of the TGFP pathway were repressed at
multiple levels including expression of genes encoding receptors, transmitters, and
transcription factors. Since TGFf blocks megakaryopoiesis, the authors hypothe-
sized that expression of the chromosome 21-encoded tricistronic miR-99a, let-7¢
and miR-125b-2 may allow the megakaryoblasts of DS-ML to evade TGFf1-
induced apoptosis and cell-cycle arrest.
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At the same time tricistronic miR-99a, let-7c and miR-125b-2 activated canoni-
cal Wnt signaling, which induces self-renewal and proliferation of hematopoietic
stem cells (Luis et al. 2011).

Upon binding of Wnt ligands to membrane-bound receptor, -catenin accumulates
and translocates into the nucleus where it complexes with T-cell factor/lymphoid
enhancer factor to activate the transcription of target genes. In the absence of
pathway activation, pB-catenin is degraded after binding to and phosphorylation by
destruction complex (consisting of APC, GSK3p, and AXIN1) (Emmrich et al.
2014).

Accordingly, CD34-positive hematopoietic stem and progenitor cells transduced
to express the tricistron activated Wnt signaling as evidenced by increased
unphosphorylated (active) p-catenin and upregulation of Wnt downstream targets
such as cyclins and BCL-9. APC and its homolog APC2 were targets of the tricistron,
resulting in decreased levels of protein. In contrast to miR125b alone, hematopoietic
stem cells expressing the tricistron had the capacity for long-term reconstitution in
serial transplants without loss of self-renewal (Emmrich et al. 2014).

These intriguing observations of cellular pathways that are different in
hematopoietic cells with trisomy 21 are complemented by long-standing efforts to
identify genes on chromosome 21 that determine the phenotype of human DS.

Genetic Mechanisms Underlying the Increased Risk
of Leukemia in DS

Gene-Dosage Imbalance

The observation that trisomy of human chromosome 21 (HSA21) underlies DS
(Lejeune et al. 1959) leads to the model that dosage imbalance of genes encoded on
chromosome 21 (Hattori et al. 2000) accounts for the phenotypic features of
DS. This model quickly becomes more complex if the possibility is taken into
account that only a subset of HSA21 genes may be dosage-sensitive (i.e., result in
phenotypic effects if present in three copies) and that the effect of dosage-sensitive
genes may depend on the combination of alleles (i.e., be allele specific) and affect
the phenotype only if expression surpasses a threshold (Antonarakis et al. 2004).
Potential variability of expression of HSA21 genes not only across different tissues
but also during different developmental phases adds another level of complexity. In
the murine Ts65Dn model of DS, for example, only approximately one-third of
genes evaluated were expressed at the expected theoretical level of 1.5 that of
euploid control cells, and an effect of developmental stage on the expression level
was found (reviewed in Antonarakis et al. 2004). These considerations help explain
phenotypic variability in DS but leave open whether the phenotype of DS can be
accounted for by a shared pattern of gene activity associated with chromosome 21.
Specific inactivation of genes on chromosome 21 has become available as a new
experimental tool to address this question (Jiang et al. 2013).



122 JK. Hitzler
Down Syndrome Critical Region

The hypothesis of a DSCR (or DS consensus region) (Korbel et al. 2009) postulates
that expression of a defined set of genes encoded in the DSCR on HSA21, for
example, DYRKIA, DSCRI, and APP, is sufficient to cause the phenotype of
DS. Evidence gathered through mapping of organ-specific features of DS, for
example, congenital heart disease, cognitive impairment, gastrointestinal
malformations, and acute megakaryoblastic leukemia (and TL), to specific regions
of chromosome 21 in rare individuals with DS due to trisomy only of segments of
HSA21 (Korbel et al. 2009) does not support the existence of a single DSCR and
casts doubt on previously favored genes encoded in the DSCR such as DSCRI1,
DYRKI1A, and APP as functionally relevant contributors to phenotypic features of
DS. Murine experiments demonstrating that expression of 33 murine orthologs
of human genes encoded in the DSCR did not reproduce the craniofacial phenotype
of DS support this conclusion (Olson et al. 2004). If few genes in a single critical
region of HSA21 do not account for DS, it is possible that non-specific small effects
of many genes perturb genetic homeostasis (developmental instability hypothesis)
or that both concepts together apply in the generation of DS (Olson et al. 2004).
Thus the expression pattern of all HSA21 genes and its specific impact on expression
of non-HSA21 genes (Letourneau et al. 2014) need to be incorporated in the genetic
model of DS.

This conceptual complexity notwithstanding, a number of genes encoded on
HSAZ21 have been studied with a focus on the development of leukemia in DS.

Candidate Genes on Human Chromosome 21

Gene databases currently contain 794 entries encoded on human chromosome 21,
including protein coding and non-coding genes (LINC and 29 miRNAs) as well
as uncharacterized gene models (see http://www.ncbi.nlm.nih.gov/gene/?term=2
1[{CHR]+AND+human[ORGN] and ftp://mirbase.org/pub/mirbase/CURRENT/
genomes/hsa.gff3). Among these, ERG, ETS, and RUNXI have attracted particular
attention (see Table 1 in Mateos et al. 2015).

Expression of ERG, for ETS-related gene, expands megakaryocyte-erythroid
progenitor cells in fetal liver (Birger et al. 2013) and results in megakaryoblastic
leukemia in a murine transplant model (Salek-Ardakani et al. 2009). Co-expression
of ERG with Gatals was associated with liver fibrosis in ERG/Gatals double
transgenic mice, a phenotype reminiscent of transient leukemia of DS (Birger et al.
2013). A functional role for ERG in transient leukemia of DS is further suggested
by the observation that the myeloproliferative disorder on the Ts65Dn murine model
of DS is prevented by the specific experimental reduction of Erg trisomy to
functional disomy (Ng et al. 2010).
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RUNX]I is essential for the establishment of definitive hematopoiesis (Okuda
et al. 1996) and is the target of chromosomal translocations in both pediatric ALL
and AML (e.g., t(12;21) and t(8;21), respectively). The myeloproliferative disorder
observed in a murine model of DS (Ts65Dn), however, is not dependent on trisomy
of Runx] (Kirsammer et al. 2008). RUNX1 is not overexpressed in blasts of AMKL
of individuals with DS compared with those of non-DS AMKL (Bourquin et al.
2006). The evidence in favor of a central pathogenic role of RUNX1 in the leukemias
of DS, therefore, is not compelling at present. The intriguing potential implication
of HSA21 genes DYRKIA and DSCRI as well of miRNAs encoded on human
chromosome 21, such as miR-125b, are outlined above (see sections “Nuclear
Factor of Activated T Cells (NFAT) Signaling” and “TGFp1 and WNT Signaling”).
A more extensive gene list and characterization of functional phenotypes can be
found in Table 1 of Mateos et al. (2015).

It may be unlikely that a single gene or even a small group of genes alone account
for the phenotype of DS in general and the increased risk of leukemia in particular.
Similarly, increased genomic instability as a cause for the association of leukemia
with DS appears unlikely, given the lower incidence of nearly all solid tumors of
child and adulthood in DS. Observations regarding the epigenetic regulation of gene
expression in cells with trisomy 21, however, are beginning to provide unexpected
insights.

Epigenetic Gene Regulation in DS

A basic study of gene expression in the cellular context of trisomy 21 was recently
accomplished in fetal fibroblasts of monozygotic twin fetuses discordant for trisomy
21 (Letourneau et al. 2014). Differential gene expression was organized in domains
which were either up- or downregulated, conserved in a mouse model of DS, and
whose organization could be attributed to the extra chromosome 21. Histone mark
profiles (H3Kme3) were different in trisomic cells, confirming the role of chromatin
modifications in the gene expression changes due to trisomy 21 (Letourneau et al.
2014). Which gene or genes on human chromosome 21 can accomplish this
modification of the chromatin environment and the subsequent change of global
gene expression in trisomic cells is unknown.

Alterations of DNA methylation profiles, which may contribute to the develop-
ment of AML in DS, were studied at different stages of the process from fetal
liver mononuclear cell to blasts of TL and DS-ML (Malinge et al. 2013).
DNA methylation was found to be markedly decreased in trisomic fetal liver
mononuclear cells compared with euploid controls and was associated with gene
networks involved developmental disorders of the cardiovascular, nervous, and
endocrine systems (for a detailed list see Table 1 of Malinge et al. 2013). Genes
within the DSCR and neighboring regions on chromosome 21 were both hypo-
methylated and highly expressed in trisomic fetal liver mononuclear cells com-
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pared with non-trisomic controls. In contrast, blasts of TL showed gains of
methylation compared with trisomic fetal liver mononuclear cells, mostly in
regions that were not previously affected by differential DNA methylation. The
affected gene networks were associated with blood cell formation, cell cycle, sig-
naling, and cell death (for a detailed list see Table 2 of Malinge et al. 2013).
Interestingly, DNA methylation patterns were not significantly different between
TL and DS-ML. How trisomy 21 results in hypomethylation of DNA is unclear,
although the authors wondered about the impact of the increased activity of CBS
and the methyl trap in trisomy 21 cells (see section “Homocysteine, Folate, and
One-Carbon Metabolism™).

Finally, trisomy 21-related epigenetic regulation was recently shown to play a
role in the development of B-lineage ALL (Lane et al. 2014). Bone marrow cells
from a mouse model of DS (Ts1Rhr) generated B-cell colonies with increased self-
renewal in vitro and resulted in the development of B-lineage ALL with greater
penetrance and shorter latency compared with non-trisomic controls (the models
included collaboration with gain-of-function alleles of CRLF2 and JAK?2; loss-of-
function alleles of Pax5 and IKZFI; or, alternatively, with BCR-ABLI). Gene
expression analysis searching for pathways that were specifically perturbed by tri-
somic genes identified targets of the polycomb repressor complex 2 (PRC2) and
sites that contained the repressive mark (H3K27me3) added by PRC2. In DS-ALL
cells, PRC2 target genes were found to be overexpressed due to global reduction of
the repressive H3K27 marks. This effect was due to trisomy of the chromosomal
region 21q22 present in the trisomic Ts1Rhr mouse model and could be reproduced
in B precursors and ALL cells by overexpression of the HMGNI gene. HUGNI
maps to human chromosome 21 and encodes a nucleosome remodeling protein.
Thus, trisomy of a gene on chromosome 21 can promote B-lineage ALL by sup-
pressing inhibitory epigenetic marks and in effect upregulating genes required for
the development of B-lineage ALL (Lane et al. 2014).

Environmental Causes of the Increased Risk of Leukemia
in DS

The causes for the increased risk of leukemia in children with DS may not only be
explained by cell-autonomous mechanisms operative in hematopoietic cells with
trisomy 21. It would be interesting to investigate, for example, whether the increased
expression of CRLF2 (cytokine-related factor 2) as part of the receptor for thymic
stromal lymphopoietin on the blasts of 50 % of cases with DS-ALL (Buitenkamp
et al. 2014; Mullighan et al. 2009a) corresponds with a DS-specific bone marrow
niche that provides DS-ALL blasts with this ligand. Another non-cell-autonomous
(with regard to the leukemic cell population) or environmental mechanism at the
level of the organism that may contribute to the increased risk for leukemia is
provided by the abnormal immune system of children with DS.
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Abnormal Immune Function

During treatment for ALL, children with DS have a three- to tenfold increased
treatment-related mortality (Buitenkamp et al. 2014; O’Connor et al. 2014), mostly
due to fatal infections. Even in the absence of the immunosuppressive and
myelosuppressive effects of ALL therapy, children with DS who develop sepsis
have a 30 % increased risk of case fatality compared with other patients hospitalized
with a diagnosis of sepsis (Garrison et al. 2005). DS is associated with thymic hypo-
plasia (Kusters et al. 2009), and impaired neutrophil chemotaxis and phagocytosis
in children (Ugazio et al. 1990). Immunoglobulin subclass deficiency (Loh et al.
1990), hyper- and dysgammaglobulinemia, and absence of the developmental
expansion of both B and T cells become apparent during the first year of life (Kusters
et al. 2009; de Hingh et al. 2005; Verstegen et al. 2010). Whether inhibition of
NFAT signaling in T cells by the chromosome 21-encoded negative regulators
DSCRI and DYRKIA could exacerbate this immune dysfunction is an intriguing
speculation. Abnormalities of the innate and adaptive immune system in children
with DS, therefore, may not only contribute to increased risk for life-threatening
infection during leukemia therapy, but function as a non-cell-autonomous mecha-
nism that could contribute to a higher incidence of leukemia due to impaired
immune surveillance.

Environmental Carcinogens and Exposures

It is frequently assumed that people with DS have a decreased exposure to
environmental carcinogens such as tobacco and alcohol (Rabin and Whitlock 2009).
A case-control study of 27 children with DS and ALL and 58 children with DS
investigated a potential association between parental tobacco and alcohol use and
acute leukemia in children with DS (Mejia-Arangure et al. 2003). They found that
not only maternal age but also increased passive exposure of the probands to
cigarette smoke, paternal smoking, and paternal alcohol consumption prior to the
pregnancy were increased among cases with DS and ALL (Mejia-Arangure et al.
2003). Preconceptional acquisition of mutations, for example DNA adducts induced
by benzo-[a]-pyrene during spermatogenesis, was considered a mechanism of
paternal exposure. Using a similar design, exposure to magnetic fields, determined
by spot measurements as >6 mG, was more frequently found in children with DS
who developed acute leukemia (80 % of cases had ALL, the remainder AML) com-
pared to children with DS without leukemia (Mejia-Arangure et al. 2007).

The Children’s Oncology Group investigated a series on environmental expo-
sures in matched cases with DS and ALL (n=97) or DS and AML (n=61) and 173
children with DS in the control group. They did not find an association between
leukemia in children with DS and exposure to ionizing irradiation as part of
diagnostic tests (Linabery et al. 2006). Maternal exposure to professional pest
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exterminations, any pesticides, and any chemical was positively associated with
ALL but not AML in children with DS (Alderton et al. 2006). In addition, they
observed a significant negative association between acute leukemia or ALL and any
infection in the first 2 years of life in children with DS, suggesting that infections
early in life may exert a protective role against leukemia in children with DS
(Canfield et al. 2004). In contrast, no associations were found with maternal
reproductive history (Puumala et al. 2007) and a child’s regular use of multivitamins
(Blair et al. 2008).

Conclusions

The lymphoblastic and myeloid leukemias of children with DS pose distinct clinical
challenges. Specific disease mechanisms involving CRLF2/JAK2 and GATAI,
respectively, have been uncovered and may offer opportunities for target-specific
intervention (e.g., JAK2 inhibition). In a broader sense the leukemias of children
with DS have stimulated research into the mechanisms regarding how this form of
aneuploidy may both promote leukemia and inhibit most solid tumors. Initial sim-
plistic models of abnormal gene expression are being replaced by increasingly com-
plex ones that include epigenetic gene regulation. Finally, specific responses to
environmental stimuli may contribute to an increased risk of leukemia in DS.
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Chapter 6

Model for the Origin of Acute Leukemias
in Children: Interaction of Three
Factors—Susceptibility, Exposure,

and Window of Vulnerability

Juan Manuel Mejia-Aranguré

Abstract Various theoretical models concerning the origin of leukemias in children,
especially acute lymphoblastic leukemia (ALL), attempt to explain why leukemia
occurs and how it develops; the proposed model, being relatively simpler, attempts to
specify the moment when a child develops acute leukemia. The causes of childhood
leukemia have not yet been identified because the theoretical basis of the search has
been at fault. The risk factors for acute leukemia (AL) are distinct, depending on the
age at onset. It is probable that the older the child, the greater the necessity of risk fac-
tors to which the child must be exposed for the disease to develop and the less the sus-
ceptibility to AL with which the child was born. For this reason, I venture to say that the
age at onset of AL is a reflection of the degree of susceptibility to the disease and of the
number of factors of exposure to carcinogens that are necessary for the development of
the disease. This conjecture also depends on the window of vulnerability in which the
child is situated. This window of vulnerability is directly involved with the proliferation
of the child’s B or T cells, which cause the interaction between the degree of suscep-
tibility and the degree of exposure to carcinogens, thereby provoking the onset of AL.
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Childhood leukemias are a collection of illnesses. The etiology of each depends
on its morphology, its immunophenotype, and the molecular changes that
characterize it.

Theoretical models exist concerning the origin of leukemias in children, espe-
cially ALL and, more particularly, precursor B-cell leukemias. Some models
attempt to explain why leukemia occurs (Greaves 2000a), whereas others explain
how it develops (Taylor 1994; Greaves and Wiemels 2003; Greaves 2006a;
Schmiegelow et al. 2008; Richardson 2011). The proposed model, being relatively
simple, attempts to specify the moment when a child develops acute leukemia
(Mejia-Aranguré 2013). The major part of this model is centered on the moment
that ALL appears; however, acute myeloid leukemia (AML) serves as a point of
departure to demonstrate that this type of leukemias fits the proposed model.

ALL was first described by Velpeau in 1827. That work was cited 20 years later
by Virchov (Henderson 2002); since then, attempts have been made to explain the
causes of leukemias in children. Both in the past and the present, theories of
infectious agents have played an important role in attempts to determine the origin
of childhood leukemias; it is possible that, in the coming years, these theories will
continue to proffer great weight (Greaves 2006b; McNally and Eden 2004).

Despite many years of study, only two determining factors have been identified
in childhood leukemias: exposure to X-rays in utero and Down syndrome (DS)
(Maloney et al. 2015; Inaba et al. 2013). Although it is known that the genetic
rearrangements ETV6/RUNXI and MLL appear during the intrauterine stage and
that, thereafter, the children develop leukemia, it is not possible to say that these
rearrangements necessarily cause the disease, but rather that they appear to be
components of this infirmity.

That it has not been possible to identify the environmental causes of childhood
leukemias may lead to two suppositions, the first being that environmental causes
have not been identified because, perhaps, they do not exist (Greaves 2000a). Thus,
leukemia results from the high division of blood cells, during which an error in such
division generates a series of mutations that (together with a great deal of bad luck)
could determine the onset of leukemia. The other option, with which I am more in
accord, is that the causes of childhood leukemia have not yet been identified because
the theoretical basis of the search has been at fault.

If the appearance of childhood leukemias were only the result of the rate of
mutation of the pluripotential cells in the blood and to randomness, there would be
an expectation that the frequency of childhood leukemias worldwide would vary
little, the differences being ceded by the probability that a child would survive to
develop leukemia. However, the worldwide frequency of childhood leukemias is
highly variable. There is a higher frequency among populations having better
economic resources: the highest frequency of lymphoblastic leukemias is reported
among white populations and in Hispanics (Wartenberg et al. 2008; Mejia-Aranguré
et al. 2011a, b). This variability in the rates of incidence of leukemias leads one to
think that there may exist factors, external to the individual, that may be involved
and would generate the marked difference in the incidence of leukemias found
among different populations.
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As mentioned, the proposed model assumes that the reason that environmental
factors have not been identified as causes of leukemias relates to the fact that the
search has been at fault, and not that environmental factors do not exist. Among the
reasons for considering the search faulty is that the statistical power has been insuf-
ficient to identify an association between environmental factors and the develop-
ment of leukemia. Therefore, some groups, such as the Childhood Leukemia
International Consortium, have sought to perform analysis in collaboration; through
the use of databases of different countries, the aim is to efficiently achieve sufficient
power to identify the causes of childhood leukemias (Metayer et al. 2013). This
approach is based on the following two important points. First, childhood leuke-
mias are rare, affecting in general terms 1 in 2,000 children (Greaves 2006a). This
frequency is extraordinarily rare when compared with those of asthma, diarrheic
infections, or infections of the upper respiratory tract. Second, other exposures that
generate leukemia may be very rare, or the effect with which they are associated
and which produces leukemia may be very weak (this is measured by use of the
odds ratio).

However, exposures that are less rare do exist; for example, passive exposure to
tobacco smoke (which contains a great number of carcinogenic substances) and, in
particular, exposure to substances such as benzenes and its derivatives, which have
a predilection for affecting blood cells to produce leukemia. Yet, although such
exposures are not rare, they cannot be identified as causes of leukemias because the
results have been inconsistent (Chang 2009; Pyatt and Hays 2010). Here, I will
summarize by saying that such inconsistency may be due to selection biases, the
best example of this being exposure to extremely low-frequency electromagnetic
fields. Kheifets et al. (2010) pointed out that one of the principal reasons why it has
not been possible to determine whether such exposure is a cause of ALL, or not, is
the presence of selection biases. In these studies, the controls often come from a
higher socioeconomic level than do the cases; the population that comes from a
lower socioeconomic level is often more exposed to high levels of magnetic fields.
It is assumed that fewer controls come from the lower socioeconomic category.
Thus, an artificial association between high levels of magnetic fields and ALL
would be generated: if controls recruited from lower socioeconomic levels were to
participate in the same proportion as that of the cases of ALL, the said association
would be diluted (Mejia-Aranguré et al. 2007).

On the other hand, the lack of identification of the causes of leukemias may be
due to errors in the manner whereby the variables are measured. In most of such
studies, exposures were measured retrospectively, under the assumption that the
sources of exposure would have remained intact or varied little over time or that
people would remember precisely to what they had been exposed to in prior years.
If a child developed leukemia when 1 year old, it is reasonable that the mother and
father would remember what occurred during the pregnancy or during the year prior
to the development of the disease with a greater degree of precision than would
parents whose child developed leukemia when 15 years old (Schiiz et al. 2003;
Rudant et al. 2010). It is difficult to imagine that parents would remember with
detail the exposures that occurred 15 years earlier during the pregnancy.
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Fortunately for epidemiology, details concerning the use of tobacco, such as the
age at which smoking was initiated and the times when the individual smoked more
or stopped smoking, are relatively easy to remember. From such information, a
reconstruction of the history of exposure can be attempted; if individuals do not
have knowledge concerning some particular factor that may be associated with the
development of leukemia, the assumption is made that the exposures in that
population will be equal to those in the control population (Mejfa-Aranguré et al.
2003). Thus, researchers expect that if a positive association between exposure and
leukemia is found, then that association may be even higher than the one observed,
because this is generally the way non-differential errors in measurement of exposure
behave. There are those who attempt to disparage the value of case-control studies,
pointing out that such studies are subject to recall bias, in that the cases often better
remember their exposures than do the controls. However, on evaluation no empirical
data have been found that support the presence, in particular, of recall bias in studies
of the causes of childhood leukemia (Schiiz et al. 2003).

On the other hand, biases originating in confounding are another reason why it is
not possible to establish whether the relation between a variable and leukemia is
real or is due to the presence of other factors, called confounders. It has been
proposed that a factor may be considered a confounder when it is a true risk factor
for leukemia, is associated with the independent variable or the risk factor being
studied, and, in addition, is not an intermediate in the causal chain. An example
would be determining whether the exposure of parents to tobacco smoke before
conception of a child who then develops leukemia was a true risk factor for the
development of the disease. A factor that may act as a confounder is the consumption
of alcohol by the parents before conception of the child. Both behaviors are factors
of risk for leukemia; both appear strongly correlated, as those who smoke also drink
alcoholic beverages with a higher frequency than those who do not smoke. Neither
of these behaviors acts as an intermediate in the causal chain; therefore, when
analyzing whether the exposure of parents to tobacco smoke is a risk factor for
leukemia, it is important to eliminate the possibility that the association is not due
to the effect of alcohol and not in fact to the effect of tobacco smoke (Fig. 6.1).

Here the problem is that, in practice, either associations are not encountered or
the associations that are found are very weak. To me, it appears that it is the manner
tobacco smoke and

A ————
Tobacco PrETTSSEN Leukemia
r
consumption of alcohol are

mentioned with respect to Consumption
the father before
conception

Fig. 6.1 In this example,
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in which we search for these risk factors that determines whether identification of
the cause of childhood leukemias can be achieved. In the present model, it is pro-
posed that environmental factors only provoke cancer depending on the degree of
susceptibility of the child for developing leukemia or on the ability to detoxify the
effect of the carcinogenic agent. Complicating this situation even more is the pos-
sibility that the quantity of other substances that accompany the primary substance
must also be taken into account. We used this approach in a study where we evalu-
ated the association between the degree of exposure to carcinogenic substances and
the development of childhood leukemias (Perez-Saldivar et al. 2008). In that study,
instead of searching for a relation between only one carcinogenic factor and the
development of leukemias, we investigated whether the addition of various carcino-
genic factors would permit us to identify the relationship with AL. Such an associa-
tion was found; AL was associated, not with one substance in particular, but with
the sum of carcinogenic substances to which the child had been exposed, indepen-
dent of the stage of life at which said exposure occurred.

There are substances, such as benzene, which are known to be carcinogenic and
which also have a great predilection for damaging blood cells and are thought to be
strongly associated with the development of leukemia, be it in adults or in children.
Yet despite such strong associations, the results of studies with these substances
have been contradictory or inconsistent. Although there are methodological
problems that may explain such inconsistency, if benzene is a risk factor for AL,
why are we not able to easily identify it as such?

I will start by considering two aspects; for this, it is necessary to begin with the
theory of multiple causation. We begin with the proposition that AL is the result of
one or many sufficient causes, “pies,” and not that there is a unique sufficient cause,
as is thought to be the case with mixed-lineage leukemia (MLL) rearrangements in
leukemias of children younger than 1 year (Greaves 1999). A sufficient cause is
understood as the set of component causes which, when taken together, form the
cause that brings about development of the disease (Rothman 1976). Because
benzene would be only a “piece of the pie,” it is not possible that, by study of this
substance alone, we would be able to determine whether this is what induces
leukemia in the population. That is, if the theory of multiple causation is true, then
using the present context, a complete pie, not just a part (here, benzene), is required
to induce leukemia. If all the possible pies that may exist for a child to develop
leukemia included benzene as a component, it would be easy to identify benzene as
a risk factor in leukemia. However, if this factor is the component of one, or very
few, of the many possible pies and, in addition, said pie is one of the least frequent
in the study population, then it would be very difficult to determine that benzene
induced AL in that population. If the pie was very frequent in one population, the
factor might be identified in that population, but very probably would not be in other
populations in which such a factor is less frequent. It is possible that this factor
would need to be accompanied by one or many factors to produce AL.

It is possible that this factor would produce AL only in children having a
determined susceptibility. It is also possible that all sufficient causes—each of the
pies—may be very rare, and that more depends on each population, in such manner
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Fig. 6.2 Exposure is not unique, nor does it occur in only one moment. There are factors that have
an effect only at one stage of life, as is the case of the consumption of alcohol by the father of the
child with leukemia: the critical period is that prior to conception. Some factors, such as the
consumption of alcohol by the mother, have an effect only prior to conception or during pregnancy.
However there are factors, such as tobacco smoking by the parents, which have an effect during all
stages of life. Such factors induce damage to the cells at different levels, thus favoring not only the
onset of leukemic cells, but also that these continue acquiring advantages over the cells in their
microenvironment, which can result in leukemia

that AL may not be a result of exposure to one risk factor, but rather to the sum of
many risk factors that may occur at different time periods (Fig. 6.2). Time is a
determining element in the causation of AL (and other cancers); for example, if a
cell is not dividing, there cannot be mutations that lead to cancer. Cells neither
divide all the time, nor with the same intensity. Just as an automobile that hits a
small obstacle in the road creates a large accident, it may be, as proposed by Greaves
(20064a), that it is in a moment of immunological stress, when a cell needs to divide
more, that AL develops. In contrast to Greaves, I consider this to be the moment
when a cell, previously damaged or not, may develop AL; that is, if there is a great
proliferation of cells that can be induced to develop AL, a pluripotential cell and an
intense exposure, independent of the degree of susceptibility of the individual,
could induce the development of AL (Fig. 6.3). Viruses may make cells enter into
states of intense proliferation such that, independent of whether the child is
susceptible to AL, if there is high exposure, then AL will develop. This is more
evident in the case of immunological stress in pre-B-cell ALL, but there is evidence
that, in the moment when there is an exaggerated increase of cell division in a tissue,
said tissue is more vulnerable to the development of cancer, as is true in the cases of
retinoblastoma, Wilms’ tumor, or osteosarcoma (Mejia-Aranguré et al. 2005).
However, it is probable that this increase leading to cancer may be associated to
something more that makes the tissue vulnerable to cancer; in other cancers,
undeveloped embryonic tissue predisposes to cancer (Greaves 2000b; Anderson
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Fig. 6.3 The gradient for exposure is given as 0-100 %, where, theoretically, 0 % implies that the
exposure is incapable of inducing leukemia and 100 % is the exposure level that will invariably
induce acute leukemia in an individual. The degree of susceptibility also ranges from 0 % to
100 %, where 0 % refers to the risk that a child has of developing acute leukemia and 100 % is the
risk of a child having the susceptibility necessary for developing leukemia. Hypothetically, an
example of the latter may be those children born with the MLL/AF4 rearrangement

et al. 2000; Marshall et al. 2014). In the case of osteosarcoma, the age peak with the
highest number of cases occurring at adolescence (10-14 years of age), it must be
taken into account that adolescence is not the stage of life at which the bones of the
child grow the most but rather in the intrauterine stage; nevertheless, osteosarcoma
is not encountered in the first years of life (Bassin et al. 2006; Kansara et al. 2014).
It is probable that some factors, such as viruses, may be capable of bringing cells to
developmental stages at which carcinogenic agents may induce mutations.

To find these three factors together (susceptibility, exposition, and vulnerable
time) is extraordinarily rare in childhood cancer, especially AL. Nevertheless, if we
know which factors are more commonly parts of the pies and if we know that these
factors are frequent in a specific population, this information may lead us to
strategies for the prevention of AL.

Various pies have to be tested in the same population, but the various factors
must be gathered together in striving to identify the causes of AL. I believe that the
search for unique factors has led to the failure to determine the causes of childhood
leukemias. For more than 100 years we have searched for the causes of leukemias
and, to date, have made little advancement. If we do not acknowledge that we have
committed an error in the manner of this search, I am discouraged as to where we
are going. I do not know how many more failures will be necessary before it is
recognized that the approach we have used to identify the risk factors for leukemia
has not led us anywhere.



140 J.M. Mejia-Aranguré

That exposure to X-rays is a risk factor for the development of leukemia is an
undeniable fact, but how many cases explain this? Practically none at present. The
same is true for exposure to radiation generated by the explosion of an atomic bomb
(Parkin and Darby 2011). These factors are a cause of leukemia; however, their
involvement in identified cases depends on the frequency and intensity of such
factors in the population (Rothman 1976).

Explanation of the causes of leukemias has become more complex, because it is
necessary not only to identify the factors that produce leukemias, but also to know
their frequency and intensity in the population under study. In one population a
specific factor could be very important, whereas that same factor may not be
prominent in other populations. These are very old concepts in epidemiology, which
support the idea of attributable risk and the theory of component causes/sufficient
causes (Rothman 1976).

One of the challenges is to identify not only which factors provoke leukemia, but
also how many are needed for leukemia to develop. If this is true, even factors that
potentially may not be so important because the association does not appear to be
strong or is not so prevalent in all populations may, in combination with other fac-
tors associated with the development of leukemia in a population, have an impact on
avoiding a large number of cases of disease within that community.

A potential factor that may fulfill this condition is infections by various viruses,
producing effects such as the reprogramming of somatic cells to induce pluripotent
stem cells (iPSCs) (Ramos-Mejia et al. 2010, 2012; Bueno et al. 2012; Muiioz et al.
2012). These not only could produce an excess proliferation of these cells but also
could induce a mature cell to regress to a prior state whereby the cell may proliferate,
thus permitting an external carcinogen to produce leukemia. If it were possible to
avoid the viral infection or to inhibit the effect of the virus to bring about regression
of the cells, this could prevent a great number of cases of leukemia.

Cells affected by a genetic rearrangement, such as ETV6/RUNXI, are
extraordinarily sensitive to the effect of steroids. If an immune response, such as
that provoked by an infection, can destroy these cells by increasing steroids and
consequently avoid the development of leukemias, it is reasonable to surmise that,
in the near future, a vaccine against leukemia could be produced (Schmiegelow
et al. 2008). Although this would not prevent all cases of leukemia, in populations
where this rearrangement is frequent there would be a great reduction in the number
of new cases of leukemias.

The exposure factors that we must study are those that may be capable of
producing a mutation in hematopoietic cells; those that promote the proliferation of
these cells; and those that induce the hematopoietic microenvironment to favor the
increase of malignant cells over that of benign cells (see chapter by Rosana Pelayo
et al.). There are factors, especially benzene and all its derivatives, which have been
proposed to damage hematopoietic cells. Just as in the case of tobacco smoke, this
factor (benzene) is at times associated with the development of leukemias,
particularly myeloid leukemias, the latter being considered to have the most
consistent association (Chang 2009; Pyatt and Hays 2010). Yet, with tobacco smoke,
there is a high percentage of children who develop leukemias, even though their
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parents report not having been exposed to tobacco smoke. Therefore, according to
the theory of component causes/sufficient causes, there must be at least one other
sufficient cause that does not have exposure to tobacco smoke as a component
(Fig. 6.4).

Exposure is variable: not everyone is exposed to a carcinogenic substance, and of
those exposed, not everyone is exposed to the same degree. It is possible that, in the
case of tobacco smoke, the smoke is capable not only of causing a cell to mutate, but
also of causing that cell to proliferate until the cell becomes cancerous. In leukemia,
something similar could happen. An intense exposure may make a child not only
susceptible to the disease but also more vulnerable to other exposures, which
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Fig. 6.4 Here, it is assumed that the components of tobacco smoke are capable of causing a child
to develop leukemia, through the child’s passive exposure to the smoke. Being capable of produc-
ing leukemia is part of a component cause (a). However, there are also children who developed
leukemia but whose parents did not smoke. This implies that there is at least one other sufficient
cause that does not include tobacco smoke (b). The inconsistency in the associations does not
mean that passive exposure to tobacco smoke would not be a cause of leukemia in children, but that
the frequency of this factor may be extraordinarily rare in the population, or that the factor provokes
other diseases or even death, such that the child never reaches an age at which leukemia could
develop (c)
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together then cause the leukemia (Fig. 6.5). Thus, there may be children who with
very little exposure to a particular factor may develop leukemias, because their prior
exposure to other factors made them highly susceptible.

I remember a case of a boy whose father, when interviewed, reported there was
no specific environmental factor that would have caused his son to develop leukemia.
However, the father did mention to me that several weeks before, he had fumigated
the house. Apparently attracted by the odor of the insecticide, the boy approached
the door of the room and took a deep breath, possibly trying to better sample the
smell. Upon seeing him, the father removed him from the area. In a few weeks, the
boy began to present symptoms of fever and petechia; he was later diagnosed with
leukemia. I am not saying that this exposure was enough to produce leukemia.
However, is it possible that the boy had had a very high susceptibility to the disease
and that an exposure, even as small as this one, brought about the development of
leukemia? We do not know. But perhaps in many cases it would be worth the effort
to investigate exposure to factors which occurred chronologically close to the onset
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Pregnancy Topoisomerase Il Topoisomerase I Breastfeeding
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Fig. 6.5 Hematopoietic stem cells are exposed to an environment that at times is capable of
generating mutations. In the drawing, the inhibitors of topoisomerase II are shown. When taken by
the mother during pregnancy, they have been associated with the risk that the child will develop
leukemia (Pendleton et al. 2014). However, it is more probable that not all children will develop
susceptibility in this manner, but rather that there exist factors that influence susceptibility in
children, in particular by affecting the ability to metabolize this type of substance, or in the way by
which this type of mutation is allowed to persist, finally resulting in the child’s becoming
susceptible to leukemia, with a rearrangement in the MLL gene being generated. If this same
exposure in maintained during the pregnancy (or perhaps it may be speculated that even if this
substance were present in the child’s diet), it could be that such exposure may cause the child to
develop leukemia. However, contributing factors, such as defects in DNA repair, differentiation, or
the cell cycle, would be necessary
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of the disease; such information may reveal cases of those who are most susceptible
to the disease. This seems similar to what happened in cases of children who,
because they had symptoms of uncontrollable fever, received pharmaceuticals, such
as diprone, and who were later diagnosed with leukemia. It is not that I think the
leukemia could not have already been present. Had it not been present, perhaps only
one factor could have unleashed the ultimate step that led to the development of
leukemia. In the model of the development of leukemia proposed by Marshall et al.
(2014), the assumption is made that there is a mutation from the earliest moment in
the formation of blood cells, when these cells are found in the fetal liver; that, in the
postnatal stage, other mutations occur that do not kill the cells; and, thereafter, still
other mutations permit the leukemia to manifest.

I now turn to the topic of chronic exposures. Some children may have very little
susceptibility to leukemia; therefore, a much longer time of exposure would be
required for such a child first to become susceptible; thereafter it would be necessary
for different mutations to accumulate in order for the leukemia to originate (Fig. 6.6).
In the case of the survivors of the atomic bombing of Hiroshima and Nagasaki in
1945 during World War 11, it took, on average, 2 years for the development of the
disease. Why such a long time? From the time when a leukemia cell is formed, how
much of a delay is there before the disease develops? There are animal models
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Fig. 6.6 Chronic exposure to a carcinogenic agent can very rapidly produce leukemia in a
susceptible child. Chronic exposure would not have as much effect in a child who is not susceptible
to leukemia. First, it is necessary that the child becomes susceptible; thereafter, the same exposure
will cause the child to develop leukemia



144 J.M. Mejia-Aranguré

showing that only 2 weeks is necessary from when the leukemia cell is formed to
when the cell enters the peripheral circulation.

Exposure provides a standard that leads one to think that leukemia may be pre-
vented by altering the duration or intensity of exposure, or both. It will be necessary
to test various models of causality; the resulting information may make it possible
to begin the search for measures to prevent this disease.

However, as mentioned earlier, environmental factors cannot be identified as
being associated with leukemia if they are investigated without taking into account
the susceptibility of the child to leukemia. For no matter how intense or how long
the exposure may be, this will not produce leukemia in a child who is not susceptible
to the disease (although, as mentioned before, if the cellular proliferation is intense,
there could be disease).

As shown in Fig. 6.7, the presence of children in panel B demonstrates that,
although the factor may be a true causal factor for leukemia, the child did not
develop the disease for one of three reasons: (1) the child is not susceptible to the

Acute Leukemia

Yes

Not

Fig. 6.7 Example of exposure to a risk factor. Passive exposure to tobacco smoke can cause a
child to develop leukemia, when all the other components of the sufficient cause of leukemia are
present together. Cell A shows that if the exposure is very intense and the cell is proliferating, as it
may be in pre-B-cell ALL positive for common acute lymphoblastic leukemia antigen (CALLAY)
when the child is 2 years old, it is possible that this would be sufficient for the development of the
disease. Cell B shows a group of children exposed to the factor, but because the other components
of the sufficient cause are not present, they do not develop leukemia. Cell C shows the children
who develop leukemia, but who were not exposed to the risk factor that is under study; that is, the
component causes of the sufficient cause that provokes leukemia were not present in the exposure
under study (here, passive exposure to tobacco smoke), but rather the sufficient causes have other
component causes that are not included in the factor under study. Cell D shows the children who
do not develop leukemia and who are not exposed to the factor under study
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disease; (2) in these children, the other factors necessary to complete sufficient
cause are missing; or (3) factors necessary to determine whether a leukemia cell can
implant and then proliferate are missing.

When speaking of susceptibility to leukemia, at least five conditions are perti-
nent (Fig. 6.8). The first is the susceptibility that may well be the start of leukemia,
as in the case of the child born with the ETV6/RUNXI, MLL7/AF4, or AF9 rear-
rangement (Inaba et al. 2013); second, the susceptibility caused by the child’s hav-
ing a condition, such as Down syndrome, Fanconi anemia, or Bloom syndrome,
which favors the development of leukemia (Seif 2011); third, the susceptibility
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Fig. 6.8 1t is not possible to speak of susceptibility, or predisposition to leukemia, as having only
one aspect or as being a phenomenon that is a permanent state of the child. There are factors that
appear at birth but that may be acquired at any moment of life. Examples are genetic rearrangements
or changes in the niche of the bone marrow, which even may be modified by infectious processes
(Prendergast and Essers 2014). Down syndrome is one of the aneuploidy syndromes associated
with leukemia, but there are others such as the Li-Fraumeni syndrome (Seif 2011; Bhojmani et al.
2015)
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generated by the immune system, the response of which very probably influences
the proliferation of leukemia (Reither et al. 2015), as it is known that children with
different immunological alterations have a greater disposition to leukemia; fourth,
the susceptibility generated by the niche of bone marrow (Greim et al. 2014), where
certain changes in the microenvironment increase susceptibility to the disease (see
chapter by Rosana Pelayo et al., which focuses on this point); and fifth, the
susceptibility generated by molecular mechanisms that do not permit adequate
metabolism of carcinogenic agents, such as occurs with the NQOA1 family which
influences the metabolism of hydrocarbons, similar to what happens with cytochrome
P450, among others (Bhojwani et al. 2015).

If measurement of the role of exposure in causality of ALs is extraordinarily
complex, the study of susceptibility is no simpler. Identification of the first genetic
rearrangements in AL appears to have given us a guide for outlining causality of
leukemias. Knowledge concerning rearrangements that occur at high frequency
and the proteins involved may lead one to think that the basis for the development
of AL in children is understood (Greaves 1999). However, as might be expected,
there is no one specific rearrangement for leukemia. Understanding the causes of
leukemia now appears to be more complex, in that the most frequent rearrange-
ment, hyperdiploidy, is encountered only in approximately 25 % of cases; even
with its high non-specificity, it appears to be the alteration most frequently associ-
ated with the development of ALs in children (Greaves 1999). Now we are also
confronted by different molecular subtypes of AL, and each appears to have a
different etiology. If it was difficult to know the causes of leukemia before, the
complexity now is greater.

At the very least it is thought that these genetic rearrangements may be a neces-
sary cause for the development of leukemia in which they are involved (Greaves and
Wiemels 2003). If we decide to rename the leukemias based on their genetic rear-
rangement, evidently the rearrangement will be a necessary part for the develop-
ment of said leukemia, just as occurs for infectious diseases. For example, it is not
enough to be infected with the Mycobacterium tuberculosis for the individual to
develop pulmonary tuberculosis; other factors are needed. However, without
M. tuberculosis it would be impossible to have pulmonary tuberculosis. The infec-
tious agent becomes part of the infirmity as well as being its cause. The same hap-
pens with genetic rearrangements: if we now decide to name the ALLs, for example,
ETV6/RUNX1 ALL, then the rearrangement ETV6/RUNXI1 becomes part of the
diagnosis of the infirmity and evidently is a necessary cause for this particular dis-
ease to develop.

For infectious diseases, there are individuals who have an infectious agent, but
who do not develop the corresponding disease; these are known as healthy carriers.
The same occurs for AL. For example, it is known that approximately 1 in 12,000
newborns, as determined by blood samples, are born with the ETV6/RUNXI
rearrangement, but only a small proportion of these individuals will develop ALL
(5 % of the neonates with this genetic rearrangement have a twin who develops
ALL). Thus, at least one other factor is needed for these children to develop
ALL. Greaves and Wiemels (2003) proposed that a cell, previously mutated by
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being presented with an intense demand to proliferate, could randomly undergo a
second mutation that results in ALL being induced. For Greaves, this process is
related to a later infection (Greaves 1999, Greaves and Wiemels 2003).

A rearrangement that appears very promising is the MLL rearrangement. This
rearrangement is one of a very broad family associated with MLL; at present, more
than 80 are known (Pendleton et al. 2014; Zhang et al. 2012). Henceforth in this
chapter, MLL-r will be used to refer to rearrangements associated with MLL. These
MLL-r appear to be very promising; in fact, they are considered as a sufficient cause
of AL in infants (children <12 months of age), because 85 % of infants with AL
have this genetic rearrangement. Evaluation of identical twins (monozygotic,
monochorionic) has determined that 100 % of these twins, who at birth showed this
rearrangement, developed AL (Greaves 1999). However, the optimism concerning
the identification of the origin of AL in infants has faded, because not in all series
of cases of infant leukemia is the frequency of MLL-r as high, and because articles
have been published showing that children who were born with MLL-r can lose this
rearrangement with the passage of time (Uckun et al. 1998; Uckun 1999). In
addition, there are sensible questions concerning the role of MLL-r as a sufficient
cause of ALs in infants (Greaves and Wiemels 2003): Why do carriers of this
rearrangement not develop AL in the same period of time? What determines whether
this rearrangement occurs? There is no doubt that children with this rearrangement
have an elevated risk of presenting AL, but what is additionally required such that a
carrier develops the disease? Is it possible that other factors are missing? Are these
factors so frequent in a population that there is no way to avoid coming into contact
with them at some moment and that, therefore, all children with this rearrangement
will develop AL? However, if we can identify those factors, would it be possible to
delay their presence in the child’s environment, such that the onset of the infirmity
would be delayed? Is it to be expected that children who have this rearrangement
will all inevitably develop the disease and, consequently, that there is no way to
prevent the infirmity?

If today we had a rapid, inexpensive, and easily scalable strategy that could be
rolled out on a grand scale and which could scrutinize and identify those children
with MLL-r, we would still have two major problems. On one hand, it cannot be
determined which of the children will develop AL; therefore, to give treatment to all
would generate an ethical problem, as treatments for cancer are very injurious—
treatment could occasion serious damage. On the other hand, we could withhold
treatment, as is done with the syndrome of transitory dysmyelopoiesis of the
newborn, which manifests in children with DS and which is known to go into
remission without the necessity of receiving specific treatment. It is known that
10-30 % of the children who present with this disorder will develop AL; it is
because not all will develop AL that preventive treatment is not given (Mejia-
Aranguré et al. 2011a, b; Maloney et al. 2015). Are we doing good by so doing?
Would we be doing good if we were to leave neonates positive for MLL-r without
treatment? Does the evidence that MLL-r behaves as a sufficient cause make it
worth initiating treatment for all children from the time that a diagnosis is made via
a screening test?
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It is not easy to answer these last points. I venture to state that, if we decide not
to treat all patients who are carriers of an MLL-r, it is because, at a basic level, it is
assumed there are other factors determining that some will develop AL and others
not. This, I believe, is where the value of prevention lies. If factors, other than
MLL- wwwr, necessary for the child to develop AL are lacking, then we can prevent
the development of the disease, because it would only be necessary to identify those
other factors that the determine whether the disease develops: not, by any means, an
easy task.

These susceptibility factors, such as ETV6/RUNX1 and MLL-r, could be taken
as crucial points at which interaction with environmental factors (such as infections)
could influence the development of AL (Greaves 2006a). Also, these susceptibility
factors open the door to thinking that these same susceptibility factors result from
the environmental factors. Especially with the MLL in adult secondary leukemias, it
is known that this genetic rearrangement is strongly associated with the use of
inhibitors of topoisomerase II (e.g., etoposide). For children the evidence is not so
strong, but it is assumed that exposure to naturally occurring topoisomerase II
inhibitors (flavonoids), through their consumption by the mother during pregnancy,
is what causes the child to present with MLL-r and, consequently, to develop AL
(Pendleton et al. 2014; Greaves and Wiemels 2003).

Thus, environmental exposure would not only be associated with the susceptibility
to development of AL with which the child is born, but also such susceptibility
would, in some cases, originate from the environmental exposure. The susceptibility
we identify most often as being strongly associated with the development of AL is
that related with genetic rearrangements; there is evidence that children can be born
with this susceptibility. The fact that intense exposure to an environmental factor,
such as an inhibitor of topoisomerase II, can provoke the post-uterine appearance of
MLL-r (just as secondary leukemias after chemotherapy treatment of adults)
suggests the possibility that this susceptibility not only is acquired during the
intrauterine stage, but also may be acquired at any postnatal stage. It appears to me
that the difference between a child developing AL at a very early age (the first
3 years of life) or at a later time, on one hand may be due to the child’s having been
born with the susceptibility to AL and the age at which the environmental exposure
occurred. On the other hand, the age of onset could reflect the difference between
the child who was born with the genetic susceptibility and the child who was born
without susceptibility and became susceptible, and who, as a consequence,
developed AL at a later time.

Susceptibility is related not only with genetic rearrangements associated directly
with the development of AL, but also with the manner in which a cell responds to
exposure to carcinogens. The cytochrome P450 family and those genes related to
NQOI are directly involved with the pathway in which benzene and its derivatives
are metabolized (Guha et al. 2008). Epidemiologists used to think that, solely
because a factor is carcinogenic, it would therefore cause the disease. However,
molecular epidemiology led us to think differently: that exposure alone is not
enough and that, between exposure and the development of the disease, there is a
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“black box,” i.e., the manner in which one responds to carcinogens (Perera 2000;
Vineis and Perera 2007). There are individuals who after low-dose exposure may
develop the infirmity, whereas others may develop the disease only with high
exposure to carcinogens; this difference, in great measure, has to do with the man-
ner in which these compounds are metabolized.

This shows that susceptibility, evidenced by the presence of ETV6/RUNXI1 or
MLL-r, is not sufficient for a child to develop AL; nor is the appearance of these
rearrangements sufficient to initiate the development of the disease. (This is
analogous to what occurs with infectious diseases, whereby exposure to an infectious
agent is not enough for an individual to develop the infection.) Exposure to an agent
that leads to cancer is required; however, this agent may or may not be carcinogenic.
It is possible that the presence of the ETV6/RUNX1 or MLL-r rearrangement does
not require a carcinogen for the child to develop AL, but only needs something to
trigger the mutated cells to proliferate and become dominant (Greaves and Wiemels
2003; Greaves 2006a). Environmental factors affect susceptibility, as in the case of
immunity. It is known that persons with an immunodeficiency have a greater risk of
developing AL. If a factor is capable of causing immunological vigilance to not
function properly, then a degree of immunodepression may exist which will be
sufficient to allow a cell with a genetic rearrangement linked to AL to proliferate
and dominate its microenvironment. This would then result in the child’s developing
AL. In some studies, environmental factors, such as insecticides, have been shown
to be associated with the development of AL. It is known that insecticides do not
have a carcinogenic effect, but rather act as immunosuppressors (Chang et al. 2009).
Based on the characteristics of such a factor, the evidence of its association with the
development of AL will be inconsistent because, as mentioned before, this depends
on the frequency of the exposure of the factor in the population. This factor would
be more important in populations more exposed to insecticides, but would have less
importance in populations where such exposure is almost nonexistent. For children
with a genetic rearrangement linked to the development of AL, exposure to
insecticides may permit the development of a propitious medium in which leukemic
cells may proliferate and dominate their microenvironment. Thus, insecticides
would participate in the development of AL in those children who have a genetic
rearrangement linked to the development of AL; however, the insecticides do not
have a carcinogenic effect, and much less are they capable, under laboratory
conditions, of causing a pluripotent blood cell to be converted into a leukemic cell.
Therefore, they do not have a carcinogenic effect, but are a cause in the development
of AL in a determined population, which in this hypothetical case is a specific group
of patients: children who have a genetic rearrangement linked to AL.

The basic sciences, too, have failed in the search for substances that produce AL,
because such substances do not necessarily “produce” the disease. However,
environmental factors that could have an important influence in the development of
AL are those that generate a propitious microenvironment in which cells having a
genetic rearrangement linked to AL can proliferate and dominate their
microenvironment.
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Some viruses could fall into the same category; with the exception of human
T-cell lymphotropic virus (HTLV-1) (chapter by Arellano-Galindo et al., is
specifically dedicated to this topic), no other viruses have been identified as a direct
cause of AL (Greaves 2006a; Morales-Sanchez and Fuentes-Panana 2013;
Mackenzie et al. 2006). Although viruses may not be a direct mechanism for causing
AL in children, it is known that they can affect the immune system, the repair system
in DNA, etc. Such effects have been shown to be associated with the development
of AL in two ways. First, there are viruses, such as adenovirus, that share sequences
similar to some specific sequences of genes in the major histocompatibility complex.
Thus, if these viruses infect a cell having a genetic rearrangement linked to AL, they
can cause said cell to no longer be recognized by the immune system; as a
consequence, the cell escapes the mechanisms of internal regulation, which inhibit
the growth of cancerous cells (Dorak et al. 1999). In such a case, the child would
have to be a carrier of a rearrangement linked to the development of AL, be infected
with the virus (e.g., adenovirus), and in addition be a carrier of the specific HLA
alleles (in the case of adenovirus, DR-53 is required). If, and only if, all of these
conditions are met, would a propitious environment be generated for the leukemic
cell to proliferate and dominate its microenvironment?

A second way in which viruses may participate is by affecting the DNA repair
mechanisms of a cell (Zur Hausen and de Villiers 2005). Viruses do not necessarily
want to kill the host; it is by means of the host that they obtain nutrients and
reproduce. To subsist in the host, viruses can alter the DNA repair mechanisms, so
that a cell with a genetic rearrangement linked to the development of AL may be
exposed to factors that could provoke mutations which cause cells with such a
rearrangement to proliferate and dominate their microenvironment.

We have worked with a natural model, children with DS (Mejia-Aranguré et al.
2011a, b). Children with DS have various characteristics that make them susceptible
to developing AL: these children have increased chromosome fragility; their DNA
repair mechanisms are affected; they are more vulnerable to the toxic effects of
various mutagenic substances; and they become more vulnerable to the collateral
effects of chemotherapy if they do develop AL (Hitzler 2010; Maloney et al. 2015).
The child with DS has different molecular factors determining that he/she will
develop AL (Chaps. 4 and 5 deal with this theme); yet, only 2 % of children with DS
will have developed AL within the first 15 years of life. What determines that some
children with DS develop AL and others do not? In my opinion, the child with DS
is subject to the same mechanisms described above, although it is possible that the
child with DS requires fewer mutations to develop AL in comparison with a healthy
child (Valladares et al. 2005). As a consequence, it is not enough that the child with
DS be exposed to an environmental factor; the exposure must occur during a window
of vulnerability and be linked with the mechanisms of susceptibility, thus creating
conditions propitious for a leukemic cell to proliferate and dominate its
microenvironment.

The advantage of studying children with DS as a model to identify the
environmental risk factors associated with the development of AL in other children
is based on having so many pertinent mechanisms of susceptibility exhibited by
only one group. With these children, it is not necessary to study many environmental
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factors to identify which of these factors are more important in influencing the
development of AL. In addition, as has been demonstrated by various studies
concerning this topic, the sample size does not need to be large. In these studies,
even without alarge sample size, it was possible to determine that some environmental
factors, such as smoking and alcohol consumption by the father, are strongly
involved in the development of AL (Mejia-Aranguré et al. 2007). We have called
this a paired case-control study for susceptibility (Mejia-Aranguré and Fajardo-
Gutiérrez 2006). We have preferred to study children with DS rather than those with
Fanconi anemia or ataxia telangiectasia, both of which are associated with a higher
risk for developing AL than is DS, because of the frequency of these ailments and,
therefore, the difficulty of identifying the risk factors associated with the development
of AL in these children, as the sample size will be very small (Seif 2011). Just as
with DS, not all children with these infirmities develop AL; therefore, the
participation of other factors, distinct from those intrinsic to the disease, must be
involved for some to develop AL, and others not.

How Should the Causality of AL Be Studied?

In recent years, important goals have been reached concerning the causal mecha-
nisms of AL in children, such as the identification of the genetic rearrangements
associated with AL and the understanding that not all factors are sufficient for the
development of the disease. To further elucidate the causality of AL, time periods
critical to the evolution of the disease must be studied. I make the following clari-
fication. First, the factors to which the parents were exposed prior to the concep-
tion of the child or during pregnancy, but which could influence the development
of AL in the child, must be identified and studied while not losing sight of the fact
that such factors are not unique (see schematic in chapter by Pérez-Saldivar et al.,
which concerns these periods of study). The combination of factors necessary for
a child to be born with a high susceptibility to AL should be studied. There are
perhaps two great questions that should be answered concerning the period before
the child with AL is born: first, which factors are conducive to a child being born
with a high susceptibility to AL? And, second (perhaps the more important of the
two), to how many factors must the mother and father, or both, be exposed prior
to conception or during the pregnancy for a child to be born with a high suscepti-
bility to AL?

After birth, the time between early-onset leukemia and the appearance of leuke-
mias at later stages of extrauterine life can be divided into three stages:

* AL in the infant (during the first 12 months of life) is a special topic. Based on
current knowledge, some consider this leukemia to be distinct to those that
appear at later stages of the childhood (Yeoh et al. 2002)

* AL, especially early pre-B ALL, predominates during a peak age range (2-5 years
old)

* ALs that appear after this peak age range



152 J.M. Mejia-Aranguré

The ALs that appear during the first year of life are thought to have a genetic
component; that is, there is a high susceptibility for the development of the disease,
and very few factors and very little time are needed for the leukemia to develop
(Greaves 1999; Greaves and Wiemels 2003; Wiemels 2012).

Among leukemias, ALL appears more frequently during the peak age range
(2-5 years of age). This range coincides with the period of development and greatest
proliferation of B cells. This finding is consistent with the concept that ALL must
occur at a time biologically determined; the period when B cells are proliferating is
found to be associated with the highest risk of developing ALL (Greaves 1999,
2006a; Greaves and Wiemels 2003; Wiemels 2012). As mentioned earlier, this may
also occur with other cancers; the peak age at which the onset of a particular cancer
is more frequent correlates with the period of higher proliferation of cells in the
corresponding tissue (Mejia-Aranguré et al. 2005).

The ALs that appear after the peak age range in which ALLs predominate is
another group worth studying. As has been shown in some studies (Nuiiez-Enriquez
et al. 2013; Flores-Lujano et al. 2009), the risk factors for AL are distinct, depending
on the age of onset. It is very probable that the older the child, the greater will be the
necessity of risk factors to which the child must be exposed for the disease to
develop and the lesser will be the susceptibility to AL with which the child was
born. For this reason, I venture to say that the age at onset of AL is a reflection of
the degree of susceptibility to the disease and of the number of factors in exposure
to carcinogens that are necessary for the development of the disease. All this also
depends on the window of vulnerability in which the child finds himself or herself.
This window of vulnerability is directly involved with the proliferation of the child’s
B or T cells, which will cause the interaction between the degree of susceptibility
and the degree of exposure to carcinogens, thereby provoking the onset of AL.

Acknowledgment The author thanks Veronica Yakoleff for the English translation of the manu-
script and for helpful comments.
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Chapter 7
Molecular Origin of Childhood Acute
Lymphoblastic Leukemia

Esmé Waanders, Marjolijn C.J. Jongmans, and Charles G. Mullighan

Abstract Our understanding of the genetic etiology of pediatric acute lymphoblas-
tic leukemia (ALL) has advanced greatly in the past few decades. Due to the advent
of genome-wide profiling techniques for copy number alterations (CNAs) as well as
sequence mutations, we have thoroughly characterized many different genetic sub-
types of ALL. Each subtype harbors alterations activating leukemogenic pathways
and differs in prevalence, prognosis, cell type, and treatment response. The interplay
of founding leukemogenic aberrations, acquired mutations, and germline composi-
tion of the patient is important for the development and progression of the disease.
Moreover, genomic profiling has identified genetic alterations that have been inte-
grated into diagnostic testing algorithms and are being evaluated as targets for ther-
apy. Despite these advances, the genetic basis of a minority of ALL cases remains
unknown, and the frequency of these enigmatic cases rises with patient age. Much
work remains in studying these last uncharacterized groups to fully understand leu-
kemia development and improve outcomes.

Keywords Acute lymphoblastic leukemia ¢ Genetic profiling ¢ Mutations
Oncogenic pathways * Germline susceptibility

Introduction

Genomic profiling techniques have driven a revolution in cancer research. We
are now able to quickly and accurately characterize inherited and somatic
genetic alterations, tailor treatment strategies, and predict treatment outcome in
leukemia. Historically, ALL is categorized based on cell lineage (B-progenitor
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or T cell), corresponding expression of cell surface markers, and structural and
numerical chromosomal alterations. Leukemias of lymphoid origin can be sub-
divided into pro/pre/common B-lineage (BCP-ALL: CD19+, CD10+), T-lineage
(T-ALL: cytoplasmic CD3+), and mixed lineage or biphenotypic ALL (MPAL:
a single tumor population or multiple populations that express markers that ful-
fill classification for multiple lineages, most commonly myeloid and T-cell).
Acute myeloid leukemia (AML) is diagnosed when the leukemia expresses
myeloid markers.

Cytogenetic approaches, including karyotyping and fluorescence in situ
hybridization (FISH), can identify chromosomal alterations including aneu-
ploidy and translocations, which are hallmarks of many subtypes of acute leu-
kemia. Recurrent chromosomal changes in B-cell precursor acute lymphoblastic
leukemia (BCP-ALL) are the loss or gain of complete chromosomes (hypodip-
loidy with less than 44 chromosomes and high-hyperdiploidy with greater than
50 chromosomes, respectively) and translocations including ETV6-RUNXI
(TEL-AMLI), BCR-ABLI encoded by the Philadelphia (Ph) chromosome,
TCF3-PBX1 (E2A-PBX1), and MLL (Mullighan 2012) (Table 7.1, Fig. 7.1).
T-lineage ALL is characterized by rearrangements of transcription factors TLX]
(HOX11), TLX3 (HOX11L2), LYLI, TALI, LMO1, LMO2, and MLL (Aifantis
et al. 2008) (Table 7.2, Fig. 7.1). The prevalence of the leukemia subtypes varies
significantly with age (Fig. 7.2). MLL-rearranged leukemia is most common in
very young children (<1 year of age), and high-hyperdiploid and ETV6-RUNX1
are frequent in young children (aged 2—8 ), whereas the frequency of BCR-ABLI
and BCR-ABLI-like ALL increases in older children, adolescents, and adults
(Roberts et al. 2014).

Genomic copy number profiling, gene expression profiling, and next-generation
sequencing including whole-exome, whole-genome, and transcriptome sequencing
have now added another level of detail to the molecular classification of ALL. These
approaches have identified recurrent genetic alterations not previously apparent on
karyotyping and have demonstrated that each subtype is characterized by constella-
tions of sequence and structural genetic alterations that perturb multiple cellular
pathways (Mullighan 2013). Pediatric leukemia harbors relatively few sequence
mutations and structural alterations compared to other malignancies. Chromosomal
instability is uncommon, and CNAs are mostly focal deletions targeting one gene.
The aberrations, though few in number, commonly target key pathways across mul-
tiple ALL subtypes, resulting in a block in lymphoid differentiation, perturbation of
cell cycle regulation, and increased proliferation. The genes targeted, the type of
alteration (e.g., chromosomal rearrangement, deletion/amplification, or sequence
mutation), and the cell stage in which the lesions occurred (e.g., progenitor or lin-
eage committed cell) and hence the molecular origin of the leukemia vary between
subtypes. The founding chromosomal rearrangements or CNAs by which the diverse
subtypes are characterized occur in a preleukemic (stem) cell which subsequently
acquires additional driver mutations that cooperate with the initiating lesion, often a
chromosomal translocation, to confer a growth or survival advantage for the leuke-
mic clone (Fig. 7.3).
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Table 7.1 Cytogenetic subtypes in BCP-ALL

Subtype
B-lineage ALL
Near-haploid

Low-
hypodiploid
Dicentric

Hyperdiploid

ETV6-RUNX1
(TEL-AMLI)

TCF3-PBX1
(E2A-PBX1)

Ph+
(BCR-ABLI)
Ph-like
(BCR-ABLI-
like)

MLL-
rearranged

ERG deletion

iAMP21

Cytogenetics

24-31
chromosomes
32-39
chromosomes
Commonly from
dic(7;9), dic(9;12),
and dic(9;20)

>50 chromosomes

t(12:21)(p13:922)

t(1;19)(q23;p13)

t(9;22)(q34;q11.2)

Multiple
rearrangements
encoding chimeric
proteins fusing 5’
partners with 3’
kinase domains
(ABLI, PDGFRB,
JAK?2).

MLL-AF4 t(4;11)
(921;q23); t(11;v)

Frequency (%)
1-2
1-2

~2

20-30

15-25

2-4

2-5

*Common in infant ALL (especially <6 months of age)

Prognosis

Poor
Poor

Unknown

Excellent
Excellent

Excellent,
association
with CNS
relapse
Poor

Poor

Poor
Good

Poor
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Genes/pathways targeted

Ras, receptor tyrosine
kinase signaling, IKZF3

TP53, IKZF2, RB1, Ras

PAX5

Activated kinase and Ras
pathways

Expression of myeloid
antigens

PAXS5, CDKN2A/CDKN2B

IKZF1, PAXS, EBF1,
CDKN2A/CDKN2B
IKZF1, distinct gene
expression profile

Few cooperating lesions

Distinct gene expression
profile

P2RYS8-CRLF?2 fusion,
EBF1, ETV6, RBI,
RUNX1

In this chapter, we illustrate the various B-lineage and T-lineage pediatric
ALL subtypes with a focus on the pattern of co-occurring lesions and oncogenic
pathways involved in the development of these leukemias. Also, we describe
common mechanisms of genetic alteration and the concept of tumor heterogene-
ity. It is now recognized that there is an important interplay of common and rare
inherited variants and subsequent somatic genetic alterations that disrupt key
pathways. Therefore, we end this chapter with a paragraph on germline variation

and ALL risk.
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Fig. 7.1 Frequency of genetic subtypes of pediatric ALL. The pie chart includes all major B- and
T-lineage subtypes of ALL, to illustrate the relative frequency of each (Data are derived from St
Jude Children’s Research Hospital Total Therapy studies. Reprinted from Mullighan 2013, with
permission from Elsevier)

B-Lineage ALL
Hyperdiploid ALL

Hyperdiploid ALL comprises 25-30 % of BCP-ALL cases and is rare in T-cell
acute lymphoblastic leukemia (T-ALL). The peak incidence is in children
2-4 years of age. Hyperdiploid ALL is characterized by recurring, nonrandom
gains of at least five chromosomes, most commonly chromosomes 4, 6, 8, 10, 14,
17, 18, and X. Half of the cases include partial aneuploidies like a gain 1q, del 6q
and isochromosomes 7q or 17q. The subtype rarely contains balanced transloca-
tions. Most genes on the gained chromosome show increased expression; how-
ever, some show absent or decreased expression, suggesting epigenetic regulation
by methylation induced silencing (Andersson et al. 2005; Ross et al. 2003;
Figueroa et al. 2013). Cooperating mutations are activated kinase and Ras path-
ways (mutually exclusive mutations of FLT3 in 10-25 %, KRAS/NRAS in
15-30 %, and PTPNI11 in 10-15 %) (Paulsson et al. 2008).
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Table 7.2 Cytogenetic subtypes in T-ALL

Subtype Cytogenetics Frequency (%) | Prognosis Affected pathways
T-lineage ALL
TALI deregulated | t(1;7)(p32;935), | 15-18 Good Transcription
t(1;14)(p32;ql1) regulation by
and interstitial enhancers
1p32 deletion
LMOI1/LMO2 t(11;14) 10 Good Self-renewal
deregulated (p15:ql1) and 5’
LMO?2 deletion
TLX1 (HOX11) t(10;14) 7 Good Chromosomal
deregulated (q24;q11) and missegregation and
t(7;10)(q35;q24) aneuploidy
TLX3 (HOX11L2) |t(5;14)(q35;932) |20 Poor del(5)(q35)
deregulated
LEF] inactivated 18 NOTCHI,
CDKN2A/CDKN?2B,
PTEN, PI3K/AKT,
MYC
PICALM-MLLTI0 | t(10;11) 10 Poor MEIS1 and HOX
(CALM-AF10) (p13;q14) upregulation
MLL-MLLTI t(11;19) 2-3 Superior Distinct gene
(MLL-ENL) (q23;p13) prognosis to expression profile
other
MLL-
rearranged
leukemias
Kinase NUP214-ABLI1, |6 Activated kinase
rearrangements EMLI-ABLI, signaling
ETV6-JAK2,
ETV6-ABLI
NOTCHI t(7;9)(q34;q34) | <l
rearranged
Early T-cell Heterogeneous 12 Poor, although | Immature
precursor (ETP translocations, improved in immunophenotype,
ALL) deletions, recent studies | expression of myeloid
mutations with and/or stem cell
involving risk-adapted markers, MEF2C
multiple cellular therapy dysregulation
pathways

Mechanisms leading to aneuploidies both in hypo- and hyperdiploid ALL are
unknown. The specific patterns of gained chromosomes and copy-neutral loss of
heterozygosity suggest an early catastrophic event with or without reduplication in
contrast to sequential loss of single chromosomes which would lead to a more ran-
dom pattern of losses and gains. One hypothesis presumes that all gains occur in one
single aberrant cell division, but another suggests that the cells become tetraploid
and subsequently lose certain chromosomes (Paulsson and Johansson 2009).
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Fig. 7.2 Age distribution of B-ALL genetic subtypes. Ages 1-9: National Cancer Institute-
classified standard-risk precursor B-cell ALL (age range of 1-9 years and peripheral blood leuko-
cyte count at diagnosis <50,000/pL); ages 10-15: National Cancer Institute-classified high-risk
precursor B-cell ALL (age range of 10-15 years or leukocyte count >50,000/pL); adolescent: age
range of 16-20; young adult: age range of 21-39 (From Roberts et al. 2014. Copyright © 2014
Massachusetts Medical Society. Reprinted with permission)

Hypodiploid ALL

Hypodiploid ALL is found in up to 5 % of BCP-ALL cases and is characterized by
the loss of two or more chromosomes. It can be subdivided into three subgroups,
each with a characteristic mutational profile (Holmfeldt et al. 2013; Harrison et al.
2004; Heerema et al. 1999; Nachman et al. 2007). Near-haploid ALL cells have
24-31 chromosomes and harbor alterations targeting receptor tyrosine kinase sig-
naling and activating Ras signaling (NFI, NRAS, KRAS, PTPNI1) and a loss-of-
function of the lymphoid transcription factor gene IKZF3 (AIOLOS).
Low-hypodiploid ALL contains 32-39 chromosomes and harbors loss-of-function
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Fig. 7.3 Acquisition of genetic alterations in the pathogenesis of BCP-ALL. Chromosomal rear-
rangements and founding lesions initiate leukemogenesis by increasing self-renewal and deregula-
tion of transcription and epigenetic signatures. Additional lesions subsequently disrupt lymphoid
development and block differentiation, which confers susceptibility to additional genetic lesions
targeting cellular pathways like cell cycle regulation, tumor suppression, cytokine receptor and
kinase signaling, and chromatin modification. Diagnosis ALL samples are commonly clonally
heterogeneous, and genetic alterations in minor clones may survive therapy and promote relapse.
A similar diagram can be proposed for T-ALL, where lesions targeting lymphoid development,
self-renewal, and kinase signaling are also observed (This figure was originally published in
Blood; Mullighan 2014)

alterations in TP53, IKZF2 (HELIOS), and RBI. The patterns of aneuploidy are
stereotyped and most commonly involve chromosomes 1-7, 9, 11-13, 15-17,
19-20, and 22 in near-haploid ALL and chromosomes 2—4, 7, 9, 12-13, 15-17, and
20 in low-hypodiploid ALL (Holmfeldt et al. 2013). Notably, both copies of chro-
mosome 21 are always retained. Both near-haploid and low-hypodiploid cells can
undergo genome duplication leading to a hyperdiploid chromosome number
(“masked” hypodiploid ALL), requiring careful examination of the patterns of
aneuploidy and/or genomic analysis to distinguish from high-hyperdiploid
ALL. Cytogenetic findings may be suggestive of masked hypodiploid ALL rather
than high-hyperdiploid ALL. Masked hypodiploid cases typically exhibit disomy
and tetrasomy, whereas high-hyperdiploid cases have trisomy of distinct chromo-
somes, most commonly 4, 10, 14, 17, 18, and 21. Deoxyribonucleic acid (DNA)
index analysis may also reveal evidence of a nonmasked clone in hypodiploid cases.
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Patients with low-hypodiploid ALL tend to be older (median age of 15 years) than
patients with near-haploid ALL (median age of 7 years) (Holmfeldt et al. 2013).

The third subgroup is high-hypodiploid ALL in which cells contain 40—45 chro-
mosomes which is less common, and it does not share the poor outcome of near-
haploid and low-hypodiploid ALL. Common alterations are the loss of a sex
chromosome and the presence of dicentric or isochromosomes involving chromo-
somes 7, 9, 12, and 20 (Harrison et al. 2004; Nachman et al. 2007).

The distinct roles of the loss-of-function alterations of Ikaros family members in
low-hypodiploid and near-haploid ALL are unknown. In cell lines, loss of expres-
sion of Tkzf2 and Ikzf3 augments Ras signaling, suggesting a role other than only
perturbation of B-lymphoid development. Overall, hypodiploid ALL is character-
ized by activated PI3K/mTOR and MEK/ERK signaling that represents potential
avenues for therapeutic intervention in this high-risk form of leukemia.

ETV6-RUNXI ALL

ETV6-RUNXI1 ALL is characterized by the translocation t(12;21)(p13;q22) and
occurs in 25-30 % of pediatric ALL cases; however, it is uncommon in adult ALL
(1-4 %) (Aguiar et al. 1996; Al-Obaidi et al. 2002, Burmeister et al. 2010; Golub
et al. 1995; Raynaud et al. 1996b; Romana et al. 1995b; Shurtleff et al. 1995). The
t(12;21)(p13;q22) translocation, which is often cryptic on karyotyping, results in
the fusion of the N-terminal helix-loop-helix domain of ETV6 (encoding ETS vari-
ant 6, also known as TEL) to almost the entire RUNXI protein (runt-related tran-
scription factor 1, also called AMLI) (Golub et al. 1995; Romana et al. 1995a). The
fusion protein recruits the nuclear corepressor complex (N-CoR), which confers
histone deacetylase activity and contains the transcriptional repressor mSin3A
(Fenrick et al. 1999; Guidez et al. 2000). A likely effect of the fusion protein is a
transcriptional repression of RUNX] target genes. Both ETV6 and RUNXI are mas-
ter regulators in hematopoiesis, and alterations of these genes play a central role in
leukemogenesis. ETV6 is rearranged to over 20 translocation partners in a range of
malignancies, but loss-of-function or expression by deletions or mutations occur in
different types of leukemia (Bohlander 2005). RUNX] is part of the core binding
factor transcription complex and contains a DNA binding domain. In addition to a
role in ETV6-RUNXI ALL, RUNX]I is rearranged in AML (RUNXI-RUNXITI or
AML-ETO), and amplification of RUNXI is found in iAMP21 intrachromosomal
amplifications (Harewood et al. 2003; Robinson et al. 2003, 2005; Strefford et al.
2005a, b).

The ETV6-RUNX]I rearrangement often arises in utero (Ford et al. 1998; Wiemels
et al. 1999a, b). It has been reported to be present in cord blood samples in a 100-
fold higher frequency than the risk of developing leukemia (Lausten-Thomsen et al.
2011; Mori et al. 2002), suggesting that some individuals acquire secondary genetic
alterations required for the establishment of leukemia. Overexpression of ETV6-
RUNX]I in fetal hematopoietic cells inhibits B-cell differentiation and increases
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self-renewal of B-cell progenitors (Andreasson et al. 2001; Morrow et al. 2004;
Tsuzuki et al. 2004), but does not directly lead to leukemia development. Additional
alterations, such as a deletion of the CDKN2A/CDKN2B genes (which encode the
INK4/ARF tumor suppressors), are necessary (Bernardin et al. 2002; Wiemels et al.
1999b). Acquired somatic deletions are frequent in ETV6-RUNXI ALL. The most
frequent co-occurring lesions identified in ETV6-RUNXI ALL are deletions of
PAXS5, CDKN2A/CDKN2B, CD200, BTLA, BTG1, EBF1, FHIT, TBLIXR1, NR3C1,
and the other allele of ETV6 (Al-Shehhi et al. 2013; Lilljebjorn et al. 2007, 2010;
Mullighan et al. 2007a; Parker et al. 2008; Raynaud et al. 1996a; SennanaSendi
et al. 1996; Waanders et al. 2012). A whole-genome sequencing study identified
recombinase-activating gene (RAG)-mediated recombination as the main mecha-
nism of deletion development (Papaemmanuil et al. 2014), which is discussed in
more detail below.

TCF3-PBX1 ALL

TCF3-PBX1 ALL comprises 5 % of pediatric and 3-6 % of adult ALL, with a
higher incidence in young adults and African Americans (Moorman et al. 2010;
Privitera et al. 1992; Raimondi et al. 1990). This ALL subtype results most com-
monly from a t(1;19)(p13;q22) translocation which fuses the genes TCF3 (E2A) and
PBXI. TCF3 is a basic helix-loop-helix (bHLH) transcription factor with two pro-
tein products, E12 and E47, both of which are required for B- and T-cell develop-
ment. Knockout of TCF3 in mice results in a differentiation block at the pro-B-cell
stage (Bain et al. 1994). PBX1I is required for hematopoiesis maintenance but is
normally not expressed in lymphoid cells (DiMartino et al. 2001). PBX/ contains a
homeobox and binds HOX genes and MEIS] which in turn interacts with the HOX
genes (Shanmugam et al. 1999). The fusion retains the transactivation domain of
TCF3 and pairs this to the homeobox domain of PBX/. The fusion protein can still
bind HOX genes, but it can no longer bind MEIS! (Lu and Kamps 1997; Sykes and
Kamps 2004), leading to deregulation of target genes. Co-occurring aberrations are
mostly deletions of PAX5 and CDKN2A/CDKN?2B, deletion of chromosome 19p
(including TCF3), and a gain of chromosome 1q (including PBX1).

BCR-ABL1ALL

Between 3 % and 5 % of pediatric ALL cases harbor the t(9;22)(q34;q11.1) or vari-
ant translocations. The derivative chromosome 22 is known as the Ph chromosome,
named after the city in which this translocation was first described in 1960 (Nowell
and Hungerford 1960; Rowley 1973). The presence of BCR-ABLI is associated
with a high incidence of central nervous system (CNS) involvement at diagnosis, a
high peripheral blood leukocyte count, resistance to therapy, and poor outcome
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(Arico et al. 2010). In addition, the BCR-ABLI translocation is associated with older
age. The median age in pediatric cases is about 8 years, but BCR-ABLI leukemia
frequency increases to 25 % in adults (Crist et al. 1990; Ribeiro et al. 1987,
Seckerwalker et al. 1991). The translocation fuses the genes BCR and ABLI, result-
ing in expression of isoforms of variable size depending on the sites of translocation
in BCR and ABLI, with the 190 kDa protein (p190) most commonly observed in
ALL. A similar fusion, though with different breakpoints leading to the p210 and
p230 isoforms, is found in chronic myeloid leukemia (CML) and AML (Melo 1996;
Ben-Neriah et al. 1986; Grosveld et al. 1986; Heisterkamp et al. 1985; Mes-Masson
et al. 1986; Shtivelman et al. 1985). The various fusions can be detected for diag-
nostics by cytogenetics and FISH but more accurately by polymerase chain reaction
(PCR)(Radich et al. 1994; Vanrhee et al. 1995). BCR (breakpoint cluster region) is
a gene with unknown function containing a serine/threonine kinase domain, and
ABLI (ABL proto-oncogene 1) encodes a nonreceptor protein tyrosine kinase that
is involved in cell division, adhesion, differentiation, and stress response. The
fusions lead to overactivation of the ABLI kinase domain and deregulation of the
ABL] targets.

Co-occurring lesions in BCR-ABLI leukemia include loss-of-function or
dominant-negative alterations of IKZFI (encoding the lymphoid transcription factor
IKAROS) in approximately 70 % of cases (Iacobucci et al. 2009; Mullighan et al.
2008a), gain of a second BCR-ABLI chromosome, hyperdiploid karyotype in a sub-
set of cases, and monosomy 7 or 7q (Heerema et al. 2004). Additional genetic alter-
ations in BCR-ABLI-positive ALL include deletions in lymphoid transcription
factors PAX5 and EBF1 and deletions in CDKN2A/CDKN2B tumor suppressors in
50 % of samples. These lesions are also observed at the progression of CML to
lymphoid blast crisis (acute leukemia). Accordingly, in mouse models of BCR-
ABLI-positive leukemia, expression of BCR-ABLI1 on its own induces CML, but
together with loss of Arf (encoded by Cdkn2a) and/or Ikzfl induces B-ALL
(Churchman et al. 2015; Daley et al. 1990; Williams et al. 2006, 2007). Affected
pathways include the RAS/MAPK, STAT, PI3 kinase, INK/SAPK, and NF-kB path-
ways (Sattler and Griffin 2003).

Ph-Like ALL

Gene expression profiling studies identified a subgroup of B-lineage ALL with a
similar gene expression profile to BCR-ABLI ALL, but without the t(9;22) translo-
cation or expression of BCR-ABLI (Den Boer et al. 2009; Mullighan et al. 2009b).
The frequency of BCR-ABLI-like or Ph-like ALL increases from 10 % in children
with ALL to 27 % in young adults (Roberts et al. 2012, 2014). Recently, a large
sequencing effort identified a diverse range of genetic alterations, most commonly
chromosomal rearrangements, that activate cytokine receptor and kinase signaling
in 91 % of Ph-like ALL cases (Roberts et al. 2012, 2014). These rearrangements
commonly lead to a fusion of an N-terminal gene (e.g., ETV6, MYB, EBF1I) to part
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of a cytokine receptor or tyrosine kinase gene (e.g., ABLI,ABL2, CRLF2, PDGFRB,
or JAK?2), resulting in overexpression and constitutive activation of kinase signaling
in leukemic cells. Additional cases harbor rearrangements of the cytokine receptor
genes CRLF2 or EPOR into immunoglobulin loci (IGH, IGK) that deregulate
expression of the receptor by juxtaposition to the immunoglobulin enhancer regions.
Alternatively, Ph-like leukemia may harbor mutations or deletions that activate
kinase signaling, including mutations in kinases JAKI, JAK2, FLT3, and IL7R, and
focal deletions of SH2B3 (LNK), which is an inhibitor of JAK signaling (Bersenev
et al. 2010). Other accompanying lesions are frequent deletions or mutations in
IKZF1 (Den Boer et al. 2009; Mullighan et al. 2009b). The diverse range of altera-
tions converge on a limited number of tyrosine kinase signaling pathways, particu-
larly ABL1/2, PDFGRB, CSFIR, and JAK-STAT signaling, and therapeutic
targeting of these pathways is being explored in prospective clinical trials.

MLL-Rearranged ALL

Rearrangements of the myeloid/lymphoid or mixed-lineage leukemia (MLL) gene
are present in 1-3 % of pediatric ALL samples (Forestier et al. 2000a, b; Harrison
2001). In infants younger than 1 year of age, this subtype is most frequent; 70 % of
infant ALL samples harbor an MLL rearrangement (Pui et al. 1994, 1995; Rubnitz
et al. 1994). MLL rearrangements are also found in pediatric AML (15-20 %)
(Balgobind et al. 2011; Forestier et al. 2003; Harrison et al. 2010) and in adult leu-
kemia (4-9 %) (Group Francais de Cytogenetique Hematologique 1996; Mancini
et al. 2005; Moorman et al. 2007a; Secker-Walker et al. 1997). Furthermore, MLL
rearrangements are associated with secondary AML after treatment with topoisom-
erase inhibitors (Domer et al. 1995; Felix et al. 1995; Pui et al. 1991).
Translocations are the most frequent type of rearrangement (61 %), and over 120
fusion partners have been identified (Meyer et al. 2006, 2009). Eighty percent of the
samples contain translocations t(1;11)(p32;q23) (MLL-EPS15), t(4;11)(q21;q23)
(MLL-AFF1/AF4), t(6;11)(q27;923) (MLL-MLLT4/AF6), t(9;11)(p22;q23) (MLL-
MLLT3/AF9), t(10;11)(p12;q23) (MLL-MLLTI0/AF10), or t(11;19)(q23;p13.3)
(MLL-MLLTI/ENL). The translocations with partner genes AF4 and EPSI5 are
exclusively associated with ALL; the other partner genes are predominantly found
in AML (Marschalek 2011). MLL is also affected by 11q23-qter deletions (6 %),
11q inversions (11 %), and focal duplications, amplifications, or partial tandem
duplications (PTD) (Bernard et al. 1995; Caligiuri et al. 1994; Patel et al. 2012;
Schichman et al. 1994; Meyer et al. 2006). Most rearrangements lead to expression
of chimeric fusion proteins, but head-to-head orientation and out-of-frame fusions
resulting in a loss-of-function have also been described (Meyer et al. 2009). The
reciprocal fusion proteins may also play an important role in leukemogenesis. Cells
expressing AFF1-MLL show increased cell cycling, as well as increased sensitivity
to apoptosis. Co-expression of the reciprocal MLL-AFF 1 fusion results in a block of
apoptosis (Gaussmann et al. 2007). In animal models, expression of MLL fusion
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genes can induce leukemia, and different fusions can induce different phenotypes of
leukemia. MLL-MLLT3/AF9 induces AML in mice, but in human cord blood, MLL-
MLLT3/AF9 induces both AML and ALL, depending on the microenvironment
(Corral et al. 1996; Barabe et al. 2007; Wei et al. 2008). In mice, MLL-MLLTI1/ENL
induces biphenotypic leukemia and AML, and MLL-AFF1/AF4 induces mature
B-lineage tumors (Forster et al. 2003; Metzler et al. 2006; Zeisig et al. 2003).

Perturbation of epigenetic regulation is a key mechanism of leukemogenesis in
MLL-rearranged leukemia. MLL encodes two large proteins of 3969 and 4005
amino acids that contain multiple domains. The N-terminal MLL fragment harbors
transcriptional activating functions, while the C-terminal region has repressor prop-
erties. The leukemic translocation breakpoints cluster in exons 8—14 (8.3 kb region)
of the MLL gene which result in loss of the C-terminal SET domain and retention of
the N-terminal activating domains. MLL is part of a large multi-protein complex
which also includes known leukemia drivers CREBBP, E2F, and MYB (Fig. 7.4;
reviewed in Marschalek 2011). The complex activates and maintains transcription
by methylation of histone H3 lysine-4 (H3K4), acetylation of histone core particles,
and mono-ubiquitination of histone H2A lysine-119 (H2AK119). At the activated
promoter region, RNA polymerase II (RNA Pol II) assembles and associates with
the AFF1/AFF4 protein complex containing p-TEFb, DOT1L, BRD4, and MLL
translocation partners AFF1, MLLT1, and MLLT10. This AFF1/AFF4 complex
facilitates chromatin remodeling to allow the transition of RNA Pol II from the
promoter-proximal arrested state into the elongation state and thus efficient tran-
scription (Marschalek 2011; Luo et al. 2012). P-TEFb phosphorylates the RNA Pol
II complex and activates mono-ubiquitination of histone H2B by UBE2A. Next,
histone methyltransferases DOT1L, NSD1, and CARM1 modify the chromatin at
lysines K79 and K36 and at arginines R2, R17, R26, respectively, which enables
additional elongation factors to associate with RNA Pol II.

»
>

Fig. 7.4 Signaling pathways involved in leukemia. (a) JAK-STAT, Ras, and PI3K/mTOR path-
ways. Binding of cytokines activates receptor tyrosine kinases and subsequent pathway-specific
adapter molecules. Guanosine nucleotide exchange factors such as SOS1 convert RAS proteins into
their active GTP-bound state. GTPase-activating proteins such as NF1 deactivate RAS proteins.
Active RAS signals to several effector pathways: RAF-MEK-ERK and PI3K-mTOR-NFxB. JAK
proteins autophosphorylate upon activation of the receptor tyrosine kinase and subsequently phos-
phorylate STAT proteins. Activated STATs dimerize and translocate to the nucleus where they pro-
mote transcription of STAT target genes. GTP guanosine triphosphate, GDP guanosine diphosphate.
JAK indicates JAKI, JAK2, JAK3, or TYK2 proteins, STAT indicates STAT1, STAT2, STATS3,
STAT4, or STATS proteins, RAS indicates NRAS, KRAS, or HRAS proteins, and RAF indicates
ARAF, BRAF, or RAF-1 proteins (Adapted from Flotho et al. 2007; Knight and Irving 2014). (b)
Mechanisms of the MLL and AFF1/AFF4 complexes. The MLL complex modifies the promoter
regions of active genes by methylation, acetylation, and ubiquitination. P-TEFb associated with the
AFF1/AFF4 complex activates UBE2A and phosphorylates the promoter-proximal-arrested RNA
Pol II and associated factors. Subsequently, DOT1L, NSD1, and CARM1 modify the chromatin,
which enables additional elongation factors to associate with RNA Pol II, converting it to the elon-
gation form and inducing transcription (Adapted from Marschalek 2011)
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Rearrangements of MLL deregulate the tightly controlled interaction of these
complexes and promote atypical acetylation and active transcription of HOXA clus-
ter genes by aberrantly targeting methyltransferase activity to their promoters
(Benedikt et al. 2011; Lin et al. 2010; Luo et al. 2012; Marschalek 2011). In particu-
lar, HOXA9, MEISI, and microRNAs miR-17-93 and miR-196b are upregulated
(Armstrong et al. 2002; Faber et al. 2009; Li et al. 2012; Mi et al. 2010; Popovic
et al. 2009). The microRNA miR-150 is downregulated which in turn upregulates
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FLT3 (Armstrong et al. 2002). About half of t(4;11) cases do not show increased
HOXA expression. These cases have a higher risk of relapse (Trentin et al. 2009;
Stam et al. 2010). Therapeutic targeting of members of these deregulated complexes
(e.g., DOTIL, BRD4, SET domain proteins, MENIN, p-TEFb) is currently a main
focus of research.

Most MLL rearrangements occur in utero (Ford et al. 1993). MLL-rearranged
leukemias have both lymphoid and myeloid features (reviewed by Greaves 2005),
and they harbor very few CNAs or mutations. Ras mutations are the few mutations
that do occur (NRAS/KRAS, BRAF, NFI) (Liang et al. 2006; Balgobind et al. 2008;
Chandra et al. 2010; Bardini et al. 2010; Dobbins et al. 2013; Mullighan et al. 2007a;
Andersson et al. 2015). Duplications and amplifications of MLL are associated with
a complex karyotype and 7P53 mutations. The most frequent co-occurring lesion
with MLL PTD is trisomy 11.

ERG-ALL

A new subgroup lacking any other known chromosomal rearrangements and with
a distinct gene expression profile is ERG-altered ALL (Mullighan et al. 2007b).
This group comprises 5-10 % of BCP-ALL cases. ERG is an ETS (erythroblast
transformation-specific) transcription factor and plays a key role in embryonic
development, hematopoiesis, angiogenesis, inflammation, as well as cell prolifera-
tion, differentiation, and apoptosis (Loughran et al. 2008; Iwamoto et al. 2001;
McLaughlin et al. 2001). The gene has numerous isoforms resulting from splice
variants and the use of alternative promoters and transcriptional start sites
(Owczarek et al. 2004). A total of 75 % of ERG-ALL samples show a focal dele-
tion of part of the ERG gene (Mullighan et al. 2007b). The deletions lead to the loss
of an inhibitory domain and expression of an aberrant C-terminal ERG fragment
(from alternative start site) that retains the ETS and transactivation domains. The
oncogenetic mechanism of ERG rearrangements in leukemia is unknown.
Interestingly, ERG translocations are also found in prostate cancer and Ewing’s
sarcoma, and ERG is overexpressed in AML and adult T-ALL (Tomlins et al. 2005;
Delattre et al. 1994; Sorensen et al. 1994; Ichikawa et al. 1994; Baldus et al. 2004,
20006). IKZF 1 alterations co-occur in this subtype, but in contrast to other leukemia
subtypes, these do not confer a poor prognosis (Clappier et al. 2014; Harvey et al.
2010b; Zaliova et al. 2014).

ALL with Intrachromosomal Amplification of Chromosome 21

Leukemia of the intrachromosomal amplification of chromosome 21 (iAMP21)
subtype is characterized by complex rearrangements of chromosome 21 involving
regions of gain, amplification, inversion, and deletion, all resulting in a gain of at
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least three extra copies of an approximately 5.1-Mb region containing the genes
RUNXI, DYRKIA, and ETS2 (Li et al. 2014; Moorman et al. 2007b; Robinson et al.
2007; Strefford et al. 2006). ALL with iAMP21 is generally considered a distinct
subtype, but iAMP21 is also occasionally observed in subtypes with recurring aneu-
ploidy or founding translocations (hyperdiploidy, ETV6-RUNXI, BCR-ABLI, or
Ph-like ALL) (Harrison et al. 2014; Haltrich et al. 2013; Ma et al. 2001). The sub-
type is found in 2 % of pediatric BCP-ALL and is associated with an older age at
diagnosis in pediatric cases (median age of 9 years), but has not been described in
adults (Harrison et al. 2014).

The iAMP21 rearrangement arises through a bridge-fusion-bridge mechanism
creating a dicentric chromosome 21 (Robinson et al. 2007; Li et al. 2014). The two
centromeres in these dicentric chromosomes are pulled to opposite poles during
mitosis and form anaphase bridges (Crastaetal. 2012; Hatch et al. 2013; Kuchinskaya
et al. 2007). It is hypothesized that these chromosomes are processed separately in
the micronuclei, where they are pulverized or undergo chromothripsis. After the
chromothripsis event, the derivate chromosome 21 is reassembled and duplicated as
a full chromosome or by isochromosome or ring chromosome formation. In this
scenario, the chromothripsis event in contrast to other tumors is nonrandom, but
occurs in a coordinated sequence of events. Co-occurring lesions include gains of
chromosomes X (21 %), 10 (4 %), or 14 (4 %), monosomy 7 (5 %), or deletion of
chromosome arms like 1q (11 %), 6q (4 %), 7q (11 %), 9p (10 %), 11q (including
ATM and MLL; 12 %), 12p (11 %), 13q (6 %), and 16q (6 %). Focal aberrations in
this leukemia subtype include the P2RYS8-CRLF?2 fusion (18 %) and deletions in the
genes EBF1 (8 %), ETV6 (37 %), and RBI (41 %) (Harrison et al. 2014; Rand et al.
2011; Schwab et al. 2013).

T-Lineage ALL

T-ALL develops from T-lineage progenitor cells and is characterized by older age
of onset and a male gender predominance as compared to BCP-ALL (Aifantis et al.
2008). Up to 70 % of T-ALLs contain chromosomal rearrangements, most of which
involve the T-cell receptor loci TRA and TRC at chromosome 14ql1, TRB (7q34),
and TRG (7pl4). The translocations involve and deregulate expression of transcrip-
tion factor genes like the bHLH family (MYC, TALI, TAL2, LYLI, and BHLHBI),
genes encoding the LIM-domain-only proteins (LMOI and LMO2), and homeodo-
main genes (HOXI1I and HOXI1IL2) (Bernard et al. 2001; Boehm et al. 1991;
Cauwelier et al. 2006; Chen et al. 1990; Finger et al. 1986; Hatano et al. 1991;
Kennedy et al. 1991; McGuire et al. 1989; McKeithan et al. 1986; Mellentin et al.
1989; Royer-Pokora et al. 1991; Shima et al. 1986; Wang et al. 2000; Xia et al.
1991). The translocations are mutually exclusive, are associated with generally dis-
tinct gene expression profiles, and are thus considered to define different distinct
T-ALL subtypes (Ferrando et al. 2002; Soulier et al. 2005; Van Vlierberghe et al.
2008b; Homminga et al. 2011).
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Co-occurring lesions in T-ALL frequently involve sequence mutations of
NOTCHI (>50 %), amplification of MYB (8—15 %), and deletions or mutations in
CDKN2A/CDKN2B (>70 %), PTEN (35 %), FBXW7 (9-16 %), WT1 (13 %), and
BCLIIB (9 %) (Clappier et al. 2007; Gutierrez et al. 2011, 2009; Lahortiga et al.
2007; O’Neil et al. 2007; Thompson et al. 2007; Tosello et al. 2009; Weng et al.
2004; Zuurbier et al. 2012). Ribosomal proteins RPL5 and RPLI0 are mutated in
10 % of pediatric T-ALL but not in adult T-ALL (De Keersmaecker et al. 2013). In
contrast, CNOT3 encoding part of a transcriptional regulatory complex is mutated
in 8 % of adult T-ALL, but less commonly in pediatric T-ALL (De Keersmaecker
et al. 2013). Loss-of-function of PHF6 through mutations or deletions is found in
16 % of pediatric ALL cases and 38 % of adult T-ALL and is associated with TLX],
TLX3, and TALI ALL (Van Vlierberghe et al. 2010). Finally, mutations and chime-
ric fusions including kinases like ABLI, PTK2B (FAK) and JAK2 occur in T-ALL
(Atak et al. 2013; Graux et al. 2004).

TAL1 ALL

TALI and family members TAL2 and LYLI are deregulated most often in pediatric
T-ALL. TALI, TAL2, and LYL2 belong to the bHLH family of proteins. This gene family
also encompasses E47 and E12 encoded by the E2A gene involved in TCF3-PBX1
ALL. HLH proteins form heterodimers and bind the E-box motif of transcriptional
enhancers, thereby regulating transcription. A cryptic interstitial deletion at chromo-
some 1p32 leads to a fusion of the genes SIL (STIL) and TALI and is present in 15-25 %
of cases (Xia et al. 1991; Brown et al. 1990; Jonsson et al. 1991). The t(1;14)(p32;q11)
translocation (3 % of cases) juxtaposes TALI to the TRA/TRD locus. The translocation
t(7;9)(q34;932) juxtaposes TAL2 to the TRB locus and the t(7;19)(q34;p13) juxtaposes
LYL] to the TRB locus (Cleary et al. 1988). Recently, another mechanism resulting in
overexpression of TALI was identified. Insertions and deletions of 2—18 base pairs intro-
ducing MYB binding motifs in a noncoding region 7.5 kb upstream of TALI occur in
about 6 % of T-ALL cases (Mansour et al. 2014). These extra MYB binding sites create
a region of dense histone 3 lysine 27 (H3K27) acetylation commonly referred to as a
superenhancer, which recruits transcription factors CREBBP, RUNXI, GATA3, and
TALI, resulting a positive feedback loop and overexpression of TALI. Other mutations
creating superenhancers might be involved in samples with unexplained overexpression
of oncogenic driver genes (Groschel et al. 2014; Herranz et al. 2014).

LMO1TLMO2 ALL

A second subtype of T-ALL has a similar gene expression profile to TAL! ALL and
is characterized by rearrangements of the LIM-domain-only genes LMOI and
LMO?2 by t(11;14)(p15;q11) and t(11;14)(p13;q11) or t(7;11)(q35;p13), placing
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these genes under control of the TRA and TRD loci, respectively (McGuire et al.
1989; Boehm et al. 1991; Royer-Pokora et al. 1991; Homminga et al. 2011). An
additional mechanism is a focal deletion del(11)(p12p13) of a regulatory region
upstream of LMO?2 that results in increased expression of LMO2 (Mullighan et al.
2007a; Van Vlierberghe et al. 2006). This deletion was also found in the germline of
a patient who developed two primary T-ALL occurrences, indicating that this lesion
may confer susceptibility to leukemia development (Szczepanski et al. 2011).

LMOI and LMO2 encode transcription factors that contain a cysteine-rich
domain. They function as scaffolds in protein-protein interactions and form cell
type-specific transcriptional complexes with LDB1, ETO2, GATAI, GATA2, GATA3,
TALI, LYLI, RUNX, and ETS proteins, which regulate expression of thousands of
target genes and are essential for hematopoiesis (Wilson et al. 2010; Palii et al.
2011; Sanda et al. 2012; Soler et al. 2010; Tripic et al. 2009). Overexpression of
LMOI or LMO?2 induces leukemia and lymphoma with long latency in mice, though
co-occurrence with lesions in TALI, NOTCH1, and CDKN2A/CDKN?2B (Arf) vastly
accelerates the process (Aplan et al. 1997; Chervinsky et al. 1999; Larson et al.
1996; McGuire et al. 1992; Neale et al. 1995; Wadman et al. 1994). Aberrant expres-
sion of LMOI or LMO?2 in mouse thymocytes induces self-renewal and stem cell
characteristics, which sensitizes these cells for additional mutation occurrence
(McCormack et al. 2010; Treanor et al. 2011; Gerby et al. 2014).

HOX Gene-Deregulated ALL

Two HOX genes are involved in T-ALL development and comprise a subgroup of
T-ALL: HOX11 (TLXI) and HOX11L2 (TLX3). The HOX genes are essential in ante-
rior/posterior patterning, differentiation, and regulation of hematopoiesis and leuke-
mogenesis (Argiropoulos and Humphries 2007). Overexpression of TLXI occurs in
7 % of cases and arises from t(10;14)(q24;q11) or t(7;10)(q35;q24) translocations
juxtaposing TLX1 to the TRA or TRB loci, respectively (Dube et al. 1991; Hatano et al.
1991; Kennedy et al. 1991; Lu et al. 1991). Expression of TLX/ in animal models
immortalizes hematopoietic progenitors but induces T-ALL only after prolonged
latency, indicating that additional lesions are needed (Hawley et al. 1997, 2008; Keller
etal. 1998). TLX1 downregulates mitotic checkpoint genes like CHEK 1, which results
in chromosomal missegregation and aneuploidy (De Keersmaecker et al. 2010).
Overexpression of TLX3 occurs in approximately 20 % of pediatric T-ALL and results
from a cryptic t(5;14)(q35;q32) fusing 7LX3 with BCLI/IB (Ballerini et al. 2002;
Berger et al. 2003; Bernard et al. 2001; Cave et al. 2004). BCLI 1B is expressed during
T-cell development and is somatically affected by deletions and sequence mutations
in T-ALL development (De Keersmaecker et al. 2010). Other translocations involving
BCLI11B-NKX2-5 and CDK6-TLX3 result in a similar type of leukemia (Nagel et al.
2003, 2007; Su et al. 2004). A frequent co-occurring lesion specific for TLX3 overex-
pressing T-ALL is a cryptic deletion on chromosome 5, del(5)(q35), containing 30
genes just downstream of the translocation breakpoint (Van Vlierberghe et al. 2008a).



174 E. Waanders et al.
LEF1-Inactivated ALL

The transcription factor lymphoid enhancer-binding factor 1 (LEFI) is inactivated by
monoallelic deletions, biallelic deletions, or truncating mutations in approximately 18 %
of pediatric T-ALL cases (Gutierrez et al. 2010). LEF1] is essential for hematopoietic
stem cell and progenitor maintenance and function (Edmaier et al. 2014). It binds the
T-cell receptor alpha enhancer and interacts with Wnt/B-catenin signaling, which controls
self-renewal, proliferation, and differentiation of many types of stem cells, and transform-
ing growth factor beta (TGF-B)/SMAD4 signaling, which is involved in cell growth, dif-
ferentiation, apoptosis, and cellular homeostasis (Nishita et al. 2000). Deregulated LEF]
expression (either up or down) has been associated with B-ALL, AML, chronic lympho-
cytic leukemia, and myelodysplastic syndromes (Edmaier et al. 2014; Erdfelder et al.
2010; Kuhnl et al. 2011; Metzeler et al. 2012; Pellagatti et al. 2009; Gutierrez et al. 2010;
Petropoulos et al. 2008). LEF I-inactivated ALL shows a differentiation arrest at an early
cortical stage with expression of cell surface markers CD1b, CD1e, and CD8, but absence
of CD34. The subtype distinguishes from the other T-ALL subtypes in that it shows no
overexpression of TALI, HOX11, HOX11L2, or HOXA/MEISI (Gutierrez et al. 2010).
Co-occurring lesions are activating NOTCHI mutations, biallelic CDKN2A/CDKN2B
deletions, and PTEN loss-of-function, activating mutations in the PI3K/AKT pathway,
and overexpression of MYC and its target genes (Gutierrez et al. 2010). Patients present
generally at a younger age (Gutierrez et al. 2010).

MLL-Rearranged T-ALL

MLL-rearranged T-ALL most often involves t(11;19)(q23;p13.3) (MLL-
MLLTI/ENL; 4-8 % of cases), but other fusions also occur (Hayette et al. 2002).
This subtype is mostly found in adolescents (Rubnitz et al. 1999). The transcrip-
tional profile of MLL-rearranged T-ALL differs significantly from MLL-rearranged
BCP-ALL (Ferrando et al. 2002, 2003). In 8 % of pediatric and 10 % of adult
T-ALL cases (Asnafi et al. 2003; Dreyling et al. 1996; Atak et al. 2013) and occa-
sionally in AML (Bohlander et al. 2000; Dreyling et al. 1998), the translocation
t(10;11)(p13;q14) is found which fuses PICALM and MLLI10 (CALM-AF10). This
translocation does not involve MLL itself, but interestingly, both PICALM and
MLLIO0 are described as fusion partners for MLL, and PICALM-MLLI0 results in
the characteristic upregulation of MEIS] and HOX genes.

Early T-Cell Precursor ALL

Early T-cell precursor (ETP) ALL is characterized by an immature immunopheno-
type with expression of the T-lineage marker cytoplasmic CD3; a lack of expression
of other T-cell markers such as CD1a, CD8, and CDS5; and an aberrant expression of
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myeloid or stem cell markers (Coustan-Smith et al. 2009). ETP ALL likely repre-
sents one of a spectrum of primitive neoplasms of progenitor cells that retain their
multi-lineage potential that may also include biphenotypic and bilineal ALL.

ETP ALL cells harbor recurring alterations of multiple pathways in the majority
of cases. These include loss-of-function aberrations — mutations, deletions, or
translocations — in hematopoietic development genes (RUNXI, IKZF1, ETV6, and
GATA3); activating mutations in Ras or cytokine signaling (NRAS, KRAS, NF1,
PTPNI1, FLT3, JAKI, JAK3, IL7R, and SH2B3); and mutations in chromatin-
modifying genes, particularly PRC2 complex genes (EZH2, SUZI2, and EED)
which confer H3K?27 trimethylation, SETD2 and EP300 (Della Gatta et al. 2012;
Ntziachristos et al. 2012; Zhang et al. 2012; Shochat et al. 2011; Zenatti et al. 2011).
Mutations in IL7R, the alpha chain of interleukin-7 receptor (IL7R), involve in-
frame insertions that introduce a cysteine in the transmembrane domain of IL7R,
which dimerizes the receptor and results in constitutive activation, which in turn
activates JAK-STAT signaling in the absence of ligand. Activated JAK-STAT sig-
naling measured by phosphoflow cytometry or gene profiling studies is present in
the majority of ETP ALL (Zhang et al. 2012) even without IL7R mutations. In Arf~~
mice, IL7R mutations were shown to be potent driver mutations and initiators of
ETP ALL (Treanor et al. 2014). EZH?2 encodes the catalytic component of PRC2
and contains MLL-like SET domain that mediates histone methylation. The PRC2
complex interacts with DNMT3A, which is mutated in adult AML and adult ETP
ALL, but not pediatric ETP ALL (Ley et al. 2010). In ETP ALL, EZH? is targeted
by loss-of-function mutations in the SET domain and elsewhere. In mice, loss-of-
function EZH?2 mutations result in T-ALL development (Simon et al. 2012; Neumann
et al. 2013). In contrast, gain-of-function mutation p.Tyr641 in the SET domain
which enhances di- and trimethylation is not found in ETP ALL, but is characteristic
of lymphoma (Morin et al. 2010; Sneeringer et al. 2010; Yap et al. 2011). ETP ALL
is also characterized by overexpression of MEF2C, a member of MADS-box tran-
scription factor family, which causes overexpression of MEF2C target genes LYLI,
LMO?2, and HHEX (Homminga et al. 2011; Smith et al. 2014).

Tumor Heterogeneity, Disease Progression, and Relapse

Leukemic tumors are not composed of a single clone of cells all containing the same
aberrations, but are commonly multiclonal. Clonal architecture and composition are
dynamic and evolve during leukemogenesis and therapy. This evolution does not
proceed in a sequential linear fashion, but it develops in a complex branching pat-
tern. Mutations and CNAs continue to occur independently and repeatedly through
external or intrinsic factors in some but not all cells without a preferential order
(Anderson et al. 2011; Notta et al. 2011). A new clone will grow out when the cells
overcome diverse evolutionary bottlenecks by advantages in competitive regenera-
tive capacity, treatment resistance, proliferation in particular stroma or environ-
ments, or the capability to undergo senescence. This dynamic is most elaborately



176 E. Waanders et al.

shown when comparing matched diagnosis and relapse samples. Founding chromo-
somal translocations are almost always conserved from diagnosis to relapse, along
with a proportion of CNAs and point mutations, but most cases exhibit substantial
genomic changes during disease progression, with acquisition of new deletions and
mutations and loss of diagnosis-specific lesions (Mullighan et al. 2008b; Yang et al.
2008; Kawamata et al. 2009). Many relapse-acquired lesions, especially those influ-
encing drug resistance, appear to be present at low levels at time of diagnosis and
may be detected with current highly sensitive sequencing techniques (Ma et al.
2015). This is important for the molecular monitoring of minimal residual disease
and early detection of relapse development in leukemia patients (Faham et al. 2012).
One such example are mutations in 7P53 which are uncommon in major clones at
diagnosis but frequent in relapsed ALL and are associated with treatment failure
(Blau et al. 1997; Diccianni et al. 1994; Gump et al. 2001; Hof et al. 2011; Hsiao
et al. 1994). In addition, Ras pathway mutations and mutations in CREBBP are
enriched in relapsed ALL. CREBBP is part of the MLL complex and mediates tran-
scriptional response to glucocorticoids (Inthal et al. 2012; Kino et al. 1999; Lambert
and Nordeen 2003; Mullighan et al. 2011). Finally, relapse-associated genes NT5C2
and PRPS]I play a role in purine analogue resistance (Meyer et al. 2013; Tzoneva
etal. 2013; Ma et al. 2015; Li et al. 2015).

Deregulation of Multiple Pathways in ALL

At least four pathways are frequently mutated in the majority of cases of ALL:
hematopoietic and lymphoid maturation; cell cycle regulation; cytokine receptor,
kinase, and Ras signaling; and epigenetic modification. The block in differentiation
arises from focal deletions, translocations, and loss-of-function or dominant nega-
tive mutations in hematopoietic and lymphoid transcription factors such as PAXS5,
IKZF1, and EBFI. Similarly, cell cycle regulation and tumor suppression genes
CDKN2A/CDKN2B, PTEN, RBI, and TP53 are targeted by both mutations and
deletions as well as promoter methylation. In contrast, gain-of-function mutations
are found in various pathways inducing proliferation like sequence mutations in Ras
pathway genes (NRAS, KRAS, and NFI) and mutations and translocations resulting
in increased expression or activity of cytokine receptor IL7R, cytokine-like receptor
CRLF2, and JAK kinases (JAKI, JAK2, JAK3, and TYK?).

Illegitimate VDJ Recombination

Focal deletions in ALL frequently result from illegitimate VDJ recombination. In
early stages of lymphocyte development, tightly regulated VDJ recombination
mediated by recombination-activating genes 1 and 2 (RAGI and RAG?2) creates the
diversity in the antigen receptor repertoire. The developmental arrest of a (pre-)
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leukemic cell in a stage where the RAG/ and RAG2 genes are highly expressed
may increase the risk of off-target recombinational events in transcriptionally
active and thus accessible genes. As these genes are mostly involved in cell dif-
ferentiation and proliferation at these stages, the recombinational events can easily
cause the cell to spiral out of control and evolve into a full-blown leukemia.
Illegitimate, off-target activity of the RAG recombinases causes aberrations with
one or more of the following characteristics: (1) breakpoints located in active pro-
moter and enhancer regions, (2) recombination signal sequences (RSS) or RSS-
like motif directly adjacent to the breakpoints, (3) tightly clustered breakpoints,
and (4) nontemplated nucleotides between the breakpoints resulting from terminal
deoxynucleotidyl transferase (TdT) activity. Aberrations with this fingerprint can
be recognized in multiple ALL subtypes like ETV6-RUNXI-positive ALL (B-cell
differentiation genes), Ph+ and Ph-like ALL (intragenic /IKZF1 deletions), and
T-ALL (TALI translocations, LMO?2 deletions, and CDKN2A and CDKN2B dele-
tions) (Mullighan et al. 2008a, b; Iacobucci et al. 2009; Marculescu et al. 2002;
Papaemmanuil et al. 2014; Waanders et al. 2012; Holmfeldt et al. 2013). RAG-
mediated recombination is an important mutational process in ALL, and targeted
single-cell sequencing indicated that it occurs continuously throughout leukemia
evolution (Papaemmanuil et al. 2014).

Ras Pathway and Receptor Tyrosine Kinase Mutations

The Ras pathway plays a role in differentiation, apoptosis, and proliferation
(reviewed in Pylayeva-Gupta et al. 2011). The signaling cascade includes Ras, Raf,
MEK (MAPKK), and ERK (MAPK), which transfers and integrates the extracel-
lular signal to various nuclear and cytosolic targets (Fig. 7.4). The pathway is acti-
vated by ligand binding to the cell surface receptor tyrosine kinase (FLT3), which
autophosphorylates its intracellular SH2 domain and recruits Grb2 and guanine
nucleotide exchange factors (GEFs). The GEFs activate membrane-associated
GTPases NRAS, KRAS, and HRAS by converting the inactive GDP-bound state to
the active GTP-bound state. Active Ras phosphorylates Raf at specific serine resi-
dues resulting in homo- or heterodimers of Raf isoforms. Raf then activates MEK1/2
which in turn activates ERK1/2. Activated ERK translocates to the nucleus where it
phosphorylates transcription factors such as ELK1, which in turn regulate gene
transcription.

The Ras pathway genes most commonly affected in leukemia include NRAS,
KRAS, NF1, PTPNI11, and FLT3. The most common alterations in leukemia are
activating sequence mutations at codons 12—13 and 59—63 of NRAS and KRAS,
which inhibit the effect of GTPase-activating proteins (GAPs) such as NF1. NF1
hydrolyzes GTP and converts the active GTP-bound NRAS/KRAS to the inactive
GDP-bound state. In leukemia, NF/ is mostly targeted by focal deletions, which
inactivate the protein (Balgobind et al. 2008; Mullighan et al. 2007a; Holmfeldt
et al. 2013). All these aberrations result in a constitutively active GTP-bound
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NRAS/KRAS and thus activation of the signaling pathway. The receptor tyrosine
kinase FLT3 is mutated in 2-9 % of ALL cases and in 30 % of AML cases (Case
et al. 2008; Paulsson et al. 2008; Small 2006). Activating mutations in the tyrosine
kinase domain or mutations abolishing the autoinhibitory function of the juxta-
membrane region cause ligand-independent constitutive activation and hypersig-
naling of the Ras pathway. In MLL-rearranged ALL, FLT3 is overexpressed rather
than mutated (Armstrong et al. 2003; Stam et al. 2005). Recently, another receptor
tyrosine kinase, MERTK, was found to be overexpressed in B-ALL and TCF3-
PBX1 ALL in particular (Linger et al. 2013). PTPN11 encodes the protein Shp2,
which is a phosphatase and regulator of the Ras and JAK-STAT pathways. PTPN1 1
is thought to dephosphorylate the GAP binding sites on the receptor tyrosine
kinases, thereby switching off the signaling. Mutations in this gene (2-10 % of
ALL cases) eliminate the negative regulation and thus activate the various path-
ways (Case et al. 2008; Molteni et al. 2010; Tartaglia et al. 2004; Yamamoto et al.
2006; Paulsson et al. 2008).

Activation of the Ras pathway is a hallmark of many tumor types (Pylayeva-
Gupta et al. 2011) but is present only in certain ALL subtypes. At diagnosis, Ras
mutations are found in hyperdiploid, hypodiploid, and MLL-rearranged ALL, ERG
ALL, Ph+ ALL, Ph-like ALL, and ETP ALL (Paulsson et al. 2008; Holmfeldt et al.
2013; Andersson et al. 2015; Roberts et al. 2014; Zhang et al. 2011, 2012), though
at relapse Ras activation is found to be acquired in many subtypes. The activation
of the Ras pathway signifies many new and important therapeutic targets (Knight
and Irving 2014). Importantly, it has been shown that the Ras pathway cross talks
with the PI3K/Akt/mTOR and the RalGEF/RAL pathways (Castellano and
Downward 2011; Cooper et al. 2013; Mendoza et al. 2011), and leukemic cells
with Ras pathway alterations commonly exhibit activation of PI3K signaling
(Holmfeldt et al. 2013).

CRLF2 and IL7R Alterations

CRLF?2 (cytokine receptor-like factor 2) is located at the pseudoautosomal region 1
at Xq21.3/Yp11.2. With the alpha chain of IL7R, it forms a heterodimeric type I
cytokine receptor for thymic stromal lymphopoietin (TSLP). Ligand engagement
activates JAK-STAT signaling, and physiologic signaling through the receptor is
important for T-cell and dendritic cell development. Several genomic aberrations
result in lineage-inappropriate and autonomous JAK-STAT, PI3K/mTOR, and
BCL-2 signaling in B-ALL. CRLF2 expression can be deregulated through translo-
cation with the immunoglobulin heavy chain (IGH) gene locus at chromosome
14932 (IGH-CRLF2, t(X;14)(p22;q32), or t(Y;14)(p11;q32)) or by a deletion
(del(X)(p22.33p22.33) or del(Y)(p11.32p11.32)) which juxtaposes CRLF2 to the
active promoter of P2Y purinergic receptor 8 gene (P2RY8) (Mullighan et al. 2009a;
Russell et al. 2009). The p.Phe232Cys also found in ALL results in receptor dimer-
ization and thus constitutive active CRLF2 (Chapiro et al. 2010). CRLF2
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rearrangements are common in Ph-like ALL (50 % of cases) and Down syndrome-
associated ALL (55-60 % of cases), but they are also found in other leukemia sub-
types including iAMP21 ALL (Russell et al. 2009). Mutations in IL7R are found
both in B- (Ph-like) and T-lineage ALL (Zenatti et al. 2011; Zhang et al. 2012;
Shochat et al. 2011; Roberts et al. 2014). In-frame insertions that introduce a cyste-
ine in the transmembrane domain of IL7R result in dimerization and constitutive
activation of the receptor. This in turn activates JAK-STAT signaling in the absence
of ligand. JAK or JAK2 are co-mutated in 50 % of CRLF2-affected cases.

JAK-STAT Signaling Alterations in ALL

Activation of JAK-STAT signaling may also arise from gain-of-function mutations
or translocations of the Janus kinase family members. The Janus kinase family con-
sists of JAKI, JAK2, JAK3, and TYK2. Mutations can occur in the kinase domain,
but more frequently they affect the pseudokinase domain. The pseudokinase domain
inhibits the kinase domain function, and mutations are thought to remodel the com-
plex which leads to activation of the kinase (Bandaranayake et al. 2012; Lupardus
et al. 2014; Toms et al. 2013). Mutations in the JAK family differ between leukemia
subtypes. JAK2 p.Val617Phe is very frequent in myeloproliferative diseases but is
rare in ALL (Levine and Gilliland 2008). In BCP-ALL, JAK?2 is most frequently
affected by p.Arg683Gly/Ser especially in CRLF2-rearranged Ph-like ALL (Harvey
et al. 2010a; Mullighan et al. 2009c; Zhang et al. 2011). In T-ALL, JAKI and JAK3
are more commonly mutated (Bellanger et al. 2014; Zhang et al. 2012). A subset of
Ph-like ALL cases have rearrangements leading to fusion and constitutive activation
of JAK?2 and rearrangement of the erythropoietin receptor gene to immunoglobulin
loci, which also activates JAK-STAT signaling (Roberts et al. 2014).

NOTCH Signaling

The main pathway affected in T-ALL is the NOTCH pathway represented by muta-
tions in NOTCH1 (>50 % of cases), FBXW7 (9—16 %), and PTEN (35 %) (Gutierrez
et al. 2009; O’Neil et al. 2007; Thompson et al. 2007; Weng et al. 2004). NOTCH1
is a member of the transmembrane receptor family consisting of another three mem-
bers (NOTCH2, NOTCH3, and NOTCH4) (reviewed in Suresh and Irvine 2015).
NOTCH proteins mediate cell-cell interaction and transduce extracellular signals
resulting in the regulation of self-renewal, differentiation, proliferation, and apopto-
sis. Epidermal growth factor-like repeats in the extracellular domain bind ligands
Delta-like 1, Delta-like 3, Delta-like 4, Jagged 1, and Jagged 2 on neighboring cells.
Each NOTCH protein has its own ligand specificity, which is also dependent on the
cell type it expresses. Binding of ligand results in cleavage by metalloproteases and
y-secretases and internalization and localization to the nucleus of the intracellular
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domain of NOTCH (ICN). In the nucleus, ICN forms a transcription complex with
transcription factors which binds to promoter regions of target genes and recruits
the chromatin remodeling proteins histone acetyltransferases (HATS) to initiate
transcription. NOTCHI has many target genes including HESI, HEY, c-MYC,
GATA-3, CCNDI (Cyclin D1), CDKNIA (p21), IL7R, and the homeobox genes
HOXAS5, HOXA9, and HOXA10 (Cohen et al. 2010; Guo et al. 2009; Hozumi et al.
2008; Monastirioti et al. 2010; Wang et al. 2014; Weerkamp et al. 2006; Weng et al.
2006). The intracellular domain of NOTCHI consists of an RBP-J k-associated
domain (RAM), seven Ankyrin repeats, two nuclear localization signals, a transac-
tivation domain, and a proline-glutamate-serine-threonine (PEST)-rich domain. The
RAM and ankyrin domains infer signal transduction, and the RAM domain binds
transcription factors. The PEST domain contains phosphorylation sites to regulate
the stability and ubiquitination of the intracellular domain. Mutations in NOTCH1
are mostly localized in the heterodimerization domain, the transactivation domain,
and the PEST domain, all of which result in constitutional activation or an increased
stability of ICN (Weng et al. 2004; Ferrando 2009). FBXW7 is an E3 ubiquitin pro-
tein ligase, and a loss-of-function mutation deregulates NOTCHI degradation
(Thompson et al. 2007; O’Neil et al. 2007). PTEN negatively regulates the PI3K-
AKT pathway and is inhibited by the NOTCH pathway. An overactivated NOTCH
thus strongly inhibits PI3K-AKT. Loss-of-function mutations in PTEN uncouple
NOTCHI1 signaling from the PI3K-AKT pathway and activate the AKT pathway,
giving the cells an additional stimulus for growth and survival (Palomero et al.
2007, 2008).

Chromatin Remodeling

Mutations in genes that mediate chromatin remodeling and histone modification
are common in many ALL subtypes and in relapsed ALL. In MLL-rearranged
ALL, epigenetic remodeling is the main pathway affected, and very few co-
occurring lesions are present. Translocations involving MLL and genes from the
AFF1/AFF4 complex deregulate the control of methylation, acetylation, and
ubiquitination of promoter regions by the MLL complex and the activation of
RNA Pol II by the AFF1/AFF4 complex, resulting in aberrant expression of
HOXA9 and MEISI (Luo et al. 2012; Marschalek 2011). Further, ETP ALL har-
bors mutations in polycomb repressor complex 2 (PRC2) components EZH?2,
SUZI12, and EED, which influences repressive H3K27 trimethylation (Zhang
et al. 2012). ETV6-RUNX1 ALL harbors mutations in methyltransferase WHSC1
(NSD2) (Jaffe et al. 2013), and hypodiploid and relapsed ALL often show muta-
tions in the H3K18 and H3K27 acetylase CREBBP (CREB-binding protein)
(Mullighan et al. 2011; Holmfeldt et al. 2013). Relapsed ALL further contains
mutations in SETD2 (H3K36 trimethylase), KDM6A (lysine-specific demethyl-
ase of histone H3), and MLL2/KMT2D (H3K4 methyltransferase) (Mar et al.
2014; Ma et al. 2015).
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Germline Genetic Variation and ALL Risk

Like in many cancers, the onset of a proportion of childhood leukemia is signifi-
cantly influenced by genetic predisposing factors. The Swedish family cancer data-
base revealed evidence for inherited predisposition to childhood ALL, independent
of the concordance in monozygotic twins (Kharazmi et al. 2012). The excess risk in
monozygotic twins may be due more to intraplacental transmission rather than
highly penetrant risk alleles (Greaves et al. 2003; Kharazmi et al. 2012). Inherited
predisposition may be composed of common inherited polymorphisms with modest
effect sizes and rare germline variants that induce a high risk of leukemia. The
detection of multiple variants in both categories in the last decade can be attributed
to impressive developments in the field of whole-genome analyses.

Common Genetic Variants Predisposing to Childhood ALL

Initially, many association studies of ALL have been based on the candidate gene
approach and have evaluated a restricted number of polymorphisms, primarily in
genes implicated in the metabolism of carcinogens, folate metabolism, DNA repair,
and cell cycle regulation (Vijayakrishnan and Houlston 2010). Reports from most
candidate gene studies have been disappointing, with many positive associations
initially being reported which subsequent studies failed to replicate. Hence, few if
any definitive susceptibility alleles for ALL have been identified through candidate
gene association studies (Vijayakrishnan and Houlston 2010).

Genome-wide association studies (GWAS) have identified multiple reproduc-
ible associations between common inherited variants and the risk of ALL. Notably,
these studies have also identified associations with specific ALL subtypes, ALL in
specific ethnic populations, and outcomes. GWAS studies compare the DNA of two
groups of participants: people with the disease (cases) and people without the dis-
ease (controls). From each individual, millions of genetic variants (single nucleotide
polymorphisms (SNPs)) are genotyped using microarrays. If one type of the variant
is statistically significantly more frequent in people with the disease as compared
to healthy controls, the SNP is said to be “associated” with the disease. Variants
associated with ALL include SNPs in IKZF1 (7p12.2), CDKN2A/CDKN2B (9p21),
ARID5B (10q21.2), CEBPE (14q11.2), PIP4K2A (10p12.2), and GATA3 (10p14)
(Migliorini et al. 2013; Papaemmanuil et al. 2009; Perez-Andreu et al. 2013, 2015;
Sherborne et al. 2010; Trevino et al. 2009). The risk of ALL associated with each
of the variants individually is modest, but they still make a significant contribu-
tion to disease burden because of their high frequencies in the population. Some of
these variants are typically associated with a specific ALL subtype. Examples are
the relationship between ARID5B and PIP4K2A genotype and hyperdiploid ALL,
whereas the risk allele in GATA3 has been associated with Ph-like ALL (Migliorini
et al. 2013; Perez-Andreu et al. 2013). It is unknown how these variants infer their
risk. For some, it was shown that the variants influence gene expression.
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Inherited genetic factors may play a role in determining the natural course of the
disease and its response to therapies. GATA3J variants are associated with Ph-like
ALL and poor ALL outcome (Migliorini et al. 2013; Perez-Andreu et al. 2013).
Different outcomes of treatment regimens between ethnic groups may also in part
be explained by genetic variation. Hispanic children have a greater incidence of
ALL (Yamamoto and Goodman 2008) and increased relapse relative to Europeans
(Yang et al. 2011). It was shown that GATAS3 risk alleles contribute to this increased
ALL incidence and may underlie their poorer outcomes (Walsh et al. 2013). Racial
disparities in the incidence and treatment outcome of childhood ALL have also been
linked to ARIDS5B genetic polymorphisms (Xu et al. 2012).

The detection of risk alleles that contribute significantly to the development of
childhood ALL is meaningful in understanding the etiology of this disease. The
application of GWAS on large sample sizes of more narrowly defined subtypes of
childhood ALL and the implementation of complete genome sequencing as an alter-
native to genotyping array-based GWAS studies contribute in achieving this goal.

Rare Genetic Variants Predisposing to Childhood ALL

Families with multiple relatives affected by ALL are of value to identify rare genetic
variants that confer a much higher risk of developing leukemia compared to variants
identified by GWAS studies. A recent example is the identification of a novel PAX5
sequence mutation, p.Gly183Ser, in three unrelated kindreds with autosomal dominant
ALL (Shah et al. 2013; Auer et al. 2014). Somatic PAX5 sequence mutations are com-
mon in BCP-ALL and typically involve the DNA binding paired domain or the
C-terminal transactivating domain. The Ser183 mutation results in partial loss of tran-
scriptional activation and may act by impeding interaction between PAXS5 and cofactors
that enhance PAXS activity. All patients with this mutation exhibited loss of the PAX5
wild-type gene by deletion of chromosome 9p, indicating that transmission of this muta-
tion is tolerable in the heterozygous state, but severe attenuation of PAX5 activity is
required for leukemogenesis. This mutation was not detected in over 30 additional ALL
kindreds; thus, additional mutations are likely to contribute to leukemogenesis in famil-
ial ALL. Germline mutations in ETV6 were identified in association with familial
thrombocytopenia and hematologic malignancies (Zhang et al. 2015; Noetzli et al.
2015). The mutations identified correspond to hotspots for recurrent somatic mutation
in malignancies and affect DNA binding efficiency and altered the intracellular localiza-
tion of the protein. Moreover, they had a dominant negative effect on the transcriptional
repressor function of wild-type ETV6. This novel cancer-predisposing syndrome is
characterized by diverse hematologic malignancies, including MDS, pre-B-cell ALL,
and multiple myeloma, and affects both children and adults. No deletion or mutation of
the remaining wild-type ETV6 allele was observed in any of the neoplasms.

It is likely that not all patients who have developed ALL as a result of carrying a
high-risk germline mutation will be recognized by their family history. For example,
de novo mutations and mutations that follow incomplete penetrance may be found in
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sporadic patients. Recently, it was shown that the TP53 alterations observed in
91.2 % of childhood cases of low-hypodiploid ALL are also present in nontumor
cells in 43.3 % of the mutation-carrying cases (Holmfeldt et al. 2013; Powell et al.
2013). Hence, low-hypodiploid ALL represents a manifestation of Li-Fraumeni syn-
drome (LFS), a hereditary cancer predisposition syndrome that affects children, ado-
lescents, and adults and predisposes them to a wide spectrum of malignancies. This
syndrome has a high de novo mutation rate (estimated between 7 % and 20 %)
(Gonzalez et al. 2009), and therefore several of these patients with low-hypodiploid
ALL will have represented the first presentation of a cancer syndrome in the family.

The association between germline 7P53 mutations and low-hypodiploid ALL
was identified by a detailed description of the mutational landscape of one particular
subtype of ALL (Holmfeldt et al. 2013). In this study, germline variants were also
identified in NRAS and PTPNI1]I in near-haploid ALL, suggesting association with
other susceptibility syndromes. Likewise, it was shown in a thorough study of
i1AMP21 ALL that individuals born with the rare constitutional Robertsonian trans-
location rob(15;21)(q10;q10)c have an approximately 2700-fold increased risk of
developing iAMP21 ALL compared to the general population (Li et al. 2014). The
translocation results in a dicentric chromosome which is susceptible to chromothrip-
sis and iAMP21 formation. Additional novel cancer-predisposing mechanisms may
emerge from ongoing studies describing the mutation spectrum of subtypes of ALL.

A direct approach to detect high-risk childhood ALL predisposing mutations in
sporadic patients is by studying patients who develop two primary events of
ALL. Szczepanski and colleagues studied a cohort of patients with a late relapse (at
least 2.5 years from diagnosis) of T-ALL (Szczepanski et al. 2011). In 36 % (n=28)
of the patients, NOTCH I mutation patterns and T cell receptor gene rearrangement
sequences had completely changed between diagnosis and relapse, and gene copy
number analysis showed markedly different patterns of genomic aberrations, sug-
gesting a second T-ALL rather than a resurgence of the original clone. In one patient,
SNP analysis revealed a germline del(11)(p12;p13), a known recurrent aberration in
T-ALL. Further studies will likely reveal additional germline-predisposing muta-
tions in these patients.

Rare Genetic Variants Predisposing to Childhood ALL:
“Syndromic” ALL

A more easily recognizable group of patients with ALL predisposition are the
patients with a germline mutation that results in a syndrome characterized by con-
genital anomalies, intellectual disability, dysmorphisms, or a combination of these.
Probably the most well-known example is a markedly elevated risk of both ALL and
AML in Down syndrome (Hasle et al. 2000). The actual risk of developing ALL
varies among these “multisystem syndromes” from very low in patients with
Noonan syndrome caused by activating mutations in genes involved in the RAS-
MAPK pathway (Jongmans et al. 2011) to high in several DNA repair disorders like
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ataxia telangiectasia (Olsen et al. 2001). The fact that many of these syndromes are
extremely rare can hamper the judgment of whether a condition indeed is an ALL-
predisposing syndrome, since proper epidemiological studies are impossible due to
small sample sizes. To secure an increase of knowledge regarding associations
between rare syndromes and cancer predisposition, publications of case reports are
important.

Children with ALL have a 5-year survival rate of more than 90 % (Bienemann
et al. 2011). It may well be that a proportion of the 10 % of children who do not
survive are enriched for children with cancer-predisposing conditions that make
them prone for comorbidity, second primary malignancies, and more severe toxic
side effects of treatment. In patients with ataxia telangiectasia, for instance, the
treatment of malignancies is hampered by therapy-associated toxicity and infec-
tious complications, and these patients benefit from significantly reduced-intensity
chemotherapy (Hunger et al. 2012). In order to achieve a cure rate significantly
above 90 % for childhood ALL, studies of treatment outcome and side effects
experienced in patients with rare syndromes are extremely valuable for the adjust-
ment of treatment protocols in future patients.
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Chapter 8

Environmental Factors and Exposure Time
Windows Related to the Etiology of Acute
Lymphoblastic Leukemia in Children

Maria Luisa Pérez-Saldivar, A. Rangel-Lopez, A. Fajardo-Gutiérrez,
and Juan Manuel Mejia-Aranguré

Abstract Our objective in this chapter is to highlight recent advances and provide a
perspective on the current understanding of the environmental factors related to the
etiology of acute leukemia (AL) in children. Cancer is a major cause of infant mor-
tality and is one of the main public health problems at a global level. AL is the most
frequent type of cancer among children younger than 15 years of age. The causes of
most forms of leukemia are unknown; only a few types of exposure have been estab-
lished as risk factors. Nowadays, AL in children is considered to be the result of the
interaction of different environmental factors with a genetic susceptibility to the
disease. Environmental risk factors may play an important role in the development
of childhood acute lymphoblastic leukemia (ALL). A “multi-stage” model for this
disease has been proposed when the first “hit” occurs, possibly before conception or
in the prenatal stage, and the second hit, called genetic susceptibility, occurs in the
postnatal window through environmental exposure to a particular agent. We review
the published studies of risk factors associated with the development of childhood
ALL in recent years and identified these “windows of exposure” — preconception,
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prenatal, and postnatal — that may be critical to the development of the disease. The
results are summarized in tables and discussed. Additionally, we discuss the use of
ALL-associated fusion genes and genetic polymorphisms, together or separately, as
indicators of ALL susceptibility and increased risk.

Keywords Childhood acute lymphoblastic leukemia ¢ Risk factors ¢ Epidemiology
and review

Introduction

The people have benefited in many respects from industrialization and moderniza-
tion, but this has also led to drastic changes in lifestyle and environment that have
had a significant impact on the pattern of disease in the population (Suk et al. 2003).
Such is the case of childhood cancer, which is one of the leading causes of death
worldwide; in the US population aged between 1 and 19 years, cancer is the second
most frequent cause of death, surpassed only by accidents. In Mexico, cancer in
children moved from the 13th position in 1971 to the second place in 2000 among
the population aged 1-14 years (Woodruff et al. 2004; Judrez-Ocana et al. 2003).

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and
has been reported to be the result of environmental exposures and genetic susceptibility.
So far the cause of ALL is unknown only exposure to radiation in utero and Down
Syndrome have been recognized as risk factors associated with the disease (Eden
2010); yet, these account for a very small fraction of cases. Identifying the relevant
risk factors and genetic conditions that make children more susceptible to developing
the disease is considered a major challenge, which has prompted the exploration of
different risk factors associated with the development of ALL through epidemiologi-
cal (mostly case—control) studies. Some factors have been studied more extensively
than others, and some have implications for public interest, but the search for risk
factors has yielded controversial results because they are not reproducible or they lack
biological plausibility, which may have led to an absence of further etiological clarifi-
cation. This review is aimed at identifying risk factors associated with childhood ALL
that have been studied throughout the world during the past decade and any findings,
in addition to new proposals that might reveal the causation of childhood ALL.

Epidemiology

Acute leukemias (ALs) are a heterogeneous group of conditions characterized by
the disordered proliferation of a clone of hematopoietic cells (Ruiz Argiielles 2009).
ALs are classified by morphology, immunophenotype, and cytogenetics;
morphologically, ALL is the most common type of leukemia (~80 %), followed by
acute myelogenous leukemia (AML) with ~20 % (Pui and Evans 2013).
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Table 8.1 Childhood acute lymphoblastic leukemia (ALL) incidence in different countries

Incidence

rate x 10° Age group | Period Country (reference)

Americas

43.1 0-14 years | 1981-1996 | Costa Rica (Monge et al. 2002)

43.4 0-14 years | 1996-2006 | Mexico City (Bernaldez-Rios et al. 2008)
449 0-14 years | 19962000 | Mexico City (Mejia-Aranguré et al. 2005)
34.2 0-11 years | 19962000 | San Salvador (Mejia-Aranguré et al. 2005)
49.5 0-14 years | 2006-2007 | Mexico City (Pérez-Saldivar et al. 2011)
40.9 0-19 years | 1992-2004 | SEER/Spanish/Hispanic (Linabery and Ross 2008)
35.5 0-14 years | 1992-1994 | Uruguay (Castillo et al. 2001)

44.0 0-14 years | 1988-1994 | USA (Hispanic children) (Glazer et al. 1999)
Europe

44.0 0-14 years | 19912004 | Eastern Germany (Spix et al. 2008)

40.3 0-14 years | 19962006 | Greece (Petridou et al. 2008)

35.7 0-14 years | 1994-2000 | Ireland (Stack et al. 2007)

359 0-14 years | 1998-2001 | Nordic countries (Hjalgrim et al. 2003a)
28.2 0-14 years | 1954-1998 | Northwest England (McNally et al. 2001)
48.3 0-14 years | 1995-1998 | Northwest Italy (Magnani et al. 2003)
25.0 0-14 years | 1995-1997 | Yorkshire, UK (Feltbower et al. 2001)
Oceania

40.8 0-14 years | 1997-2006 | Australia (Baade et al. 2010)

ALs constitute the main type of childhood cancer worldwide, representing
30-35 % of all cancers among children aged <15 years (Fajardo-Gutiérrez et al.
1999). The incidence varies in different parts of the world; for example, high inci-
dence rates have been reported in developed countries such as the USA, UK, Canada,
Hong Kong, and Japan, whereas low incidence rates have been reported for coun-
tries in Africa (Parkin et al. 1988; Stiller 2004). This has led to the belief that the
economic development of countries could be causing a high incidence of the dis-
ease; however, these differences may lie in the lack of population-based cancer reg-
istries and a lack of medical and technological resources for diagnosis in developing
countries. Thus the true incidence is not known. However, studies published by
developing countries report very high incidences of childhood ALL, as in the case
of Mexico City and Costa Rica, in addition to the Hispanic populations of California,
Texas, and Florida, where the highest incidence rates of childhood ALL have been
found (Mejia-Aranguré et al. 2005; Glazer et al. 1999; Monge et al. 2002; Wilkinson
et al. 2001). In general, there is a worldwide variation in childhood ALL. Table 8.1
shows the incidence rates of childhood ALL reported by different countries. It has
been identified that whites are at a higher risk of developing the disease because
there is a higher rate of childhood ALL compared with blacks, in whom a signifi-
cantly lower incidence of this disease has been reported. There is also a slight male
predominance in developed countries. These inherent ethnic and gender variables
are thus causing differences in the worldwide incidence rates (Eden 2010).
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A peak incidence in the development of childhood ALL has been found at
between 2 and 5 years of age for most common types of leukemia, childhood ALL
or precursor B-cell leukemia, in developed countries (Ramot and Magrath 1982;
Pratt et al. 1988). Although an age peak has not been reported in developing coun-
tries (Greaves et al. 1993), one study of childhood ALs in Mexico City found two
incidence peaks in childhood ALL: one was observed at 1-6 years of age and the
other at 9—10 years, similar to those reported for US Hispanics (Pérez-Saldivar et al.
2011; de Souza Reis et al. 2011).

The seasonal variation in the birth and diagnosis of children with ALL may pro-
vide some evidence of an infectious etiology for childhood ALL, as seasonal climatic
changes lead to respiratory infections or gastrointestinal infections in winter, spring,
and summer. It may also indicate the presence of environmental factors such as pesti-
cides, which are applied consistently in rural areas. Also, spatiotemporal clusters
occur when an excess of childhood ALL cases is observed in a small geographical
area at certain points in time compared with other areas and other times. Tables 8.3a,
8.3b and 8.3c presents studies published on this topic. In a study of ALL cases close
in date and place of birth in the 4- to 14-year age group, the proportions of expected
and observed cases were 14.9 and 25, respectively (p=0.01), finding a spatiotemporal
clustering (Gustafsson and Carstensen 2000). In the UK, a spatiotemporal grouping
was also found with the nearest neighbor threshold (NNT) and geographic distance
(I=29.76); NNT was 23.6 expected cases and 35 observed cases in the group aged
18-54 months, and precursor B cell ALL (p=0.016) (McNally et al. 2002). In
Hungary, a correlation was also observed in the spatial incidence of ALL in the group
aged 0—4 years for the period 1981-2000 (I=0.18; p=0.0012) for both sexes, and for
the period when the Chernobyl accident occurred (1986—-1990; I=0.1334; p=0.005)
(Nyari et al. 2013). Regarding seasonality, the results obtained in Denmark show a
seasonal variation in the month of birth and the diagnosis of childhood ALL. The ratio
of cases born with a higher peak in the month compared with other months was
R=1.4 (1.0-2.0), with a peak in April, and the ratio of cases per month of diagnosis
with a higher peak in the month compared with other months was R=1.6 (1.2-2.0),
with a peak in October (Sgrensen et al. 2001). Another study from the UK showed
two peaks of births of patients diagnosed with ALL, in the months February to August,
and the other in May and November (p=0.027) (Nyari et al. 2006). Gao et al., in an
analysis of 24 studies in different countries, found a peak for the diagnosis of ALL in
the UK in the 0—14 age group between May and October, and for the USA in the age
group 0-19 years, there was a peak in the summer between April and August (Gao
et al. 2007). Seasonal peaks with regard to date of birth reported for Hungary took
place in February and August, peak by the date of diagnosis was not found, and by
gender, February and August for boys and November and May for girls (Nydri et al.
2008). In France, three peaks in the date of diagnosis were reported in April, August,
and December; the standardized incidence ratio (ISR) in the group aged 1-6 years in
children with B-cell precursor was 1.11 (1.04-1.18) (Goujon-Bellec et al. 2013).
Finally, India also showed three peaks in the time of diagnosis of childhood ALL:
April to July, August to November, and December to March, presenting more cases
between August and November (n=181, p=0.046) (Kulkarni and Marwaha 2013).
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“Multi-step”” Model and Windows of Exposition

The proposal that the onset of childhood ALL occurs in utero is supported by
studies conducted in monozygotic twins in the UK, as it was observed that both
children developed the disease. These studies analyzed fusion gene breakpoints
and sequences in more than ten sets of twins and found that each pair shares the
same breakpoint in fusion genes, resulting in a chromosomal translocation associ-
ated with a non-inherited gene, called TEL-AMLI, also known as ETV6-RUNXI
(Greaves et al. 2003; Greaves 2003; Zelent et al. 2004). Taking into account that
the breaking points of the same gene fusion observed among patients with ALL
are highly variable, the detection of the same breakpoint diagnosis in twin pairs
studied elucidated the prenatal origin of leukemia, i.e., starting in a single cell
cloned in utero in the fetus of one twin followed by transfer of the clonal progeny
to other twin via intraplacental anastomosis (Greaves 2003; Greaves et al. 2003).
These breakpoints of TEL-AMLI were detected in both twins at birth and at diag-
nosis in one of the twins, thanks to the neonatal blood sample that was taken and
stored for each patient. Likewise, in another study of twins, it was found that a
pair of twins who had the same fusion gene, TEL-AMLI, generated prenatally,
had different deletions in TEL; thus, it was thought that these deletions occurred
independently, as the second event was required for the development of the dis-
ease in the other twin. In addition, deletions occurring in TEL were detected in
over 50 % of cases of TEL-AML]I-positive childhood ALL, which supports the
proposal that these deletions occur after the TEL-AMLI fusion. These findings
allowed Greaves et al. to propose the hypothesis that postnatal ALL in twins
might require a second event for the disease to develop and manifest frankly
(Greaves 2003; Greaves et al. 2003). In addition, deletions occurring in TEL were
detected in over 50 % of cases of TEL-AMLI-positive childhood ALL, which sup-
ports the proposal that these deletions might occur after the TEL-AML] fusion. As
noted, the age peak in which there has been an increased incidence of childhood
ALL is in 2-5 years, although it is diagnosed at later, before the 14 years old, so
it would considering a longer response time. This was also observed in another
study on twins who had the same genetic fusion, TEL-AMLI, but with different
deletions of TEL and a difference in diagnosis of ALL of 9 years between one
twin and the other. This range clearly reflects the difference in the times at which
postnatal secondary events can occur (Wiemels et al. 1999). The contribution of
these twin studies has been invaluable and indicates that the multi-stage model
proposed by Greaves, with a primary event initiated prenatally, applies to most, if
not all, cases of childhood ALL. An event occurring prenatally and a second post-
natal event or events are necessary for ALL manifestation. Added to this, experi-
ments have been conducted with transgenic mice fitted with a transgene containing
TEL-AMLI, the fusion of which is not alone sufficient to induce leukemia, because
in the absence of any additional environmental exposure, no blood disease devel-
ops (Andreasson et al. 2001). This observation also supports the multistage model
of Greaves.
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Fig. 8.1 Illustration of a multistage model of childhood acute lymphoblastic leukemia (ALL)

The proposal of this “multi-stage” model involves a primary event during the
prenatal stage (preconceptional/prenatal) and a second event during the postnatal
stage, providing us with the establishment of three possible exposure windows: pre-
conception, pregnancy, and postnatally; this is of great importance in the develop-
ment of childhood leukemia because critical exposure to environmental agents may
be giving them the “hits” required for the development of leukemia, which accord-
ing to the model starts with a first “hit” during one of the two “windows” or both to
carry out the fusion of genes (genetic susceptibility) and the second “hit” occurring
after birth through exposure of the child to an environmental factor or several fac-
tors that trigger leukemogenesis.

It is very important to identify which window or windows of exposure are critical
and which environmental factors play an important role in the development of this
disease (Fig. 8.1).

Preconceptional Window

The intended effect occurs in the preconception stage and possibly generates fusion
genes, which would be the first event, the “first hit” or initiating event that cannot be
discounted in the development of childhood ALL. The probable mechanism by
which cancer development occurs via parents to their offspring is by carcinogenic
or mutagenic damage to the germ cells (ovum and/or sperm) by exposure to car-
cinogens (Fabia and Thuy 1974). A review was performed in PubMed of published
articles focusing on the study of risk factors during the preconception window and
its specific association with childhood ALL in the past 14 years. These studies are
presented in Tables 8.2a and 8.3a. The risk factors studied are: medications, X-rays,
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alcohol, smoke, occupational and household exposure to petroleum, and the repro-
ductive history of the mother.

In summary, the factors positively associated with the development of acute leu-
kemia in children in the preconception window are medications used by the mother
as antihistamines or allergy remedies, with an odds ratio (OR) of 1.3 (95 % confi-
dence intervals [95 % CI] 1.0-1.8), and mind-altering drugs with an OR of 1.5 (95 %
CI 1.0-2.1) and the father’s use of amphetamines or diet pills and mind-altering
drugs, with an OR of 2.8 (95 % CI 0.5-15.6) and 1.8 (95 % CI 1.1-3.0) respectively
(Wen et al. 2002). Shu et al. found no risks from exposure to X-rays and ultrasound
by parents in this preconception window (Shu et al. 2002), and the Australian group
(Bailey et al. 2010) did not find any risk from the same factor in their study in 2010
either, with the exception of intravenous pyelography being performed in the father,
with an OR of 3.56 (95 % CI 1.59-7.98). Regarding the reproductive history of the
mother, contraceptive use, OR 1.2 (95 % CI 1.0-1.3), and abortions before the index
pregnancy showed a slight association with ALL, OR 1.1 (95 % CI 1.0-1.3), and a
slightly stronger association with T-cell, OR 1.8 (95 % CI 1.0-3.3) (Ou et al. 2002).
Findings from the Canadian group on alcohol consumption by the mother before
pregnancy show a slightly protective effect for the risk of ALL, OR 0.8 (95 % CI
0.6—1.1), as does alcohol consumption by the father, OR 1.4 (95 % CI 1.0-2.0),
which increased when drinking by the father is multiplied by more than three times
a week, OR 1.7 (95 % CI 1.1-2.7) (Infante-Rivard et al. 2002). Milne et al. also
found alcohol to be a protective factor for ALL, OR 0.50 (95 % CI 0.38-0.66), and
specifically when wine was consumed by the mother, OR 0.64 (95 % CI 0.49-0.84),
and the father, OR 0.69 (95 % CI 0.52-0.94) during the preconception window
(Milne et al. 2013). The findings on occupational exposure in an Israeli study showed
a very high risk, OR 5.05 (95 % CI 1.52-16.73). This occupational exposure indi-
cated the use of solvents and pesticides (Abadi-Korek et al. 2006) and is in agree-
ment with the findings of a Colombian group that found a very high risk for maternal
occupational exposure to hydrocarbons, such as petroleum, OR 2.18 (95 % CI 1.07—
4.45), benzene, OR 3.50 (95 % CI 1.41-8.67), diesel engine exhaust, OR 3.66 (95 %
CI 1.48-90.4), and others. Paternal occupational exposure was also associated with
ALL and mineral oils, OR 2.15 (95 % CI 1.12-4.16) and trichloroethylene, OR 2.15
95 % CI 1.12-4.16), at this stage (Castro-Jiménez and Orozco-Vargas 2011).
Another group of Australian researchers also studied occupational exposure to pes-
ticides by the parents, finding no increased risk for ALL in their offspring (Glass
et al. 2012). Occupational exposure to magnetic fields of extremely low frequency
(ELF-MFs) was also sought in this window, finding small and non-significant risks
to the mother, OR 1.13 (95 % CI 0.87-1.48), and to the father, OR 1.33 (95 % CI
0.88-1.99) (Reid et al. 2011). The same Australian group also explored the maternal
use of vitamins, iron, and folate from preconception, finding that folate was slightly
inversely associated with the development of ALL, OR 0.88 (95 % CI 0.66-1.16)
(Milne et al. 2010). With regard to smoking a meta-analysis of paternal smoking in
the preconception window was conducted. Eighteen studies were assessed and OR
of 1.13 was found (95 % CI 0.98-1.29) when the father smoked for 1-3 months
before the pregnancy and with the highest exposure, OR 1.37 (95 % CI 1.13, 1.66)
(Liu et al. 2011). Meanwhile, Milne et al. found no risk from maternal smoking with



8 Environmental Factors and Exposure Time Windows Related to the ALL Etiology 227

regard to ALL, OR 1.07 (95 % CI 0.81-1.42), but they did find that a risk from
paternal smoking before pregnancy was associated with the development of ALL in
the age group 0—1, OR 5.73 (95 % CI 1.49-22.09), when the father smoked more
than 15 cigarettes a day; in their small meta-analysis of similar studies performed,
OR of 1.44 (95 % CI 1.24-1.68) was found, coinciding with the results of the 2011
meta-analysis conducted by Liu et al. (Milne et al. 2012).

Other environmental factors inside and around the home have also been studied
in this preconception window, such as exposure to pesticides around the home, but
only a modest risk has been found, OR 1.19 (95 % CI 0.83-1.69), which increases
with the presence of the rearrangement of ETV6-RUNXI t(12;21), OR 2.18 (95 %
CI 1.03-4.60) (Bailey et al. 2011). The use of paint in the home was also studied,
finding a significant risk when person other than the parents painted the interior of
the house, OR 2.37 (95 % CI 1.30-4.30), and when oil-based paint was used, OR
3.50 (95 % CI 1.35-9.03), exterior painting OR 2.97 (95 % CI 1.06-8.33) (Bailey
etal. 2011). When exposure of parents in the home to vehicle fuel and burning wood
was studied, the only risk was found in burning wood to heat the home, OR 1.23
(95 % C10.94-1.62) (Bailey et al. 2011).

Additionally, the authors have been studying some of the biological characteris-
tics of the parents, such as age at pregnancy and a family history of cancer associ-
ated with leukemia. The results of a cohort study in Germany found that the
standardized incidence ratio (SIR) for a family history of neoplasms in first-degree
relatives was 3.80 (95 % CI 2.08-6.38), and for testicular cancer and teratoma in
parents, the SIR was 3.12 (95 % CI 1.50-5.75) and 4.10 (95 % CI 1.29-9.64),
respectively (Couto et al. 2005). Zierhut et al. did not find any association between
ALL and a family history of cancer reported in the medical records, but found an
inverse association with a family history of allergies, rheumatoid arthritis, and aller-
gies in the mother, OR 0.83 (95 % CI1 0.73-0.95), OR 0.79 (95 % CI 0.65-0.96), and
OR 0.86 (95 % CI 0.76-0.98) respectively (Zierhut et al. 2012). The age of the
parents was also studied in Italy, finding a risk of ALL with a maternal age of
30-34 years, OR 1.46 (95 % CI 1.07-1.99), and an increase every 5 years after the
age of 40 years, OR 1.30 (95 % CI 1.15-1.47). Regarding the father’s age, the risk
of ALL in the group aged 35-39 years was OR 1.67 (95 % CI 1.15-2.43), and OR
1.15 (95 % CI 1.03—-1.27) with an increase every 5 years after age of 40 years (Maule
et al. 2007). These results agree with those from Feller et al. for maternal age
30-34 years, OR 1.38 (95 % CI 1.02-1.89), and OR 1.58 (95 % CI 1.10-2.29) for
maternal age over 35 years. For the father no increased risk was observed for age
and ALL in the offspring (Feller et al. 2010).

Pregnancy Window

Exposures taking place during this window may play a major role in generating the
first blow to the development of ALL. During this window, it is proposed that trans-
locations, gene fusion, and genetic polymorphisms might occur as a result of an
error in the repair of breaking the strands of DNA may be occurring replication
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errors. One possible mechanism for this “second hit” is by transplacental transmis-
sion to the fetus of any mutagenic damage incurred during development due to
exposure to a carcinogenic agent (Autrup 1993). The most important childhood
ALL translocations involve genes encoding transcription factors. These transloca-
tions produce pairs of deregulated genes or chimeric fusion protein with altered
transcriptional regulation or altered constitutive kinase (Look 1997; Greaves and
Wiemels 2003), generating a loss of control of the cell cycle and cell proliferation
without differentiation. Translocations, fusion genes, and polymorphisms may be
responsible for an increased susceptibility gene in these children, which requires the
second event, or “second hit” for the development of the disease.

Tables 8.3a, 8.3b and 8.3c shows the risk factors studied in this window: occupa-
tional exposure and exposure in the home of the parents to paints, solvents, petro-
leum, and pesticides; alcohol, smoking actively and passively, supplements taken by
the mother such as vitamins, iron, and folate; diet during pregnancy, X-ray, ultra-
sound, and viruses. Occupational exposure of the parents to ELF-MFs, birth weight,
gestational age, birth order, and parental age at pregnancy have also been explored,
in addition to other variables such as socioeconomic status, seasonality, and clusters
of childhood ALL with the dates of birth and diagnosis, population-mixing, among
others. Risk factors positively associated with childhood ALL during this window
for the past 14 years include the use of paints at home when more than four rooms
were painted, OR 1.7 (95 % CI 1.1-2.7) (Freedman et al. 2001). Bailey et al. found
a high risk when the mother painted using oil paints, OR 4.05 (95 % CI1 0.91-17.92)
during pregnancy, and a reduced risk in the case of paternal exposure, OR 1.26(95 %
CI 0.78-2.03) (Bailey et al. 2011). Also, the use of pesticides by professionals
around the house during pregnancy produced a modest increase in the development
of ALL, OR 1.30 (95 % CI 0.86—-1.97), and the risk increased with the presence of
the rearrangement ETV6-RUNXI t(12;21), OR 2.73 (95 % CI 1.21-6.15) (Bailey
et al. 2011). On the other hand, in a meta-analysis that included 28 case—control
studies and one cohort study analyzing the maternal association between exposure
to benzene during pregnancy and the risk of ALL in descendants found for the use
of solvents an OR of 1.25 (95 % CI 1.09-1.45), petroleum 1.42 (95 % CI 1.10—
1.84), and paint 1.23 (95 % CI 1.02—-1.47) (Zhou et al. 2014). In addition, it is found
that the use or storage of some chemicals increased the risk of childhood ALL, OR
2.20 (95 % CI 1.04-4.64) (Castro-Jiménez and Orozco-Vargas 2011).

The maternal exposure to X-rays and ultrasound during pregnancy was studied
and was not linked to the development of ALL in offspring, OR 0.9 (95 % CI 0.8-1.1)
(Shu et al. 2002). These results agree with those found by the Australian group
regarding the connection between exposure to X-rays during pregnancy and ALL,
OR 0.46 (95 % C1 0.15-1.57) (Bailey et al. 2010). Some medications, such as anti-
histamines or allergy remedies and mind-altering drugs taken by the mother, have
been studied, showing an OR of 1.3 (95 % CI 1.0-1.8) and an OR of 1.5 (95 % CI
1.0-2.1) when used during pregnancy (Wen et al. 2002). Interestingly, the Australian
group evaluated the use of supplements, such as iron and folate taken by the mother
during this stage. Initially, they found an inverse relationship with childhood ALL,
OR 0.37 (95 % C1 0.21-0.65), for iron/folate, and OR 0.40 (95 % C1 0.21-0.73), for
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folate with or without iron (Thompson et al. 2001). In New Zealand it was subse-
quently attempted to evaluate the use of these supplements and their association
with ALL. The authors found no association between folic acid, OR 1.1 (95 % CI
0.5-2.7), or iron, OR 1.2 (95 % CI 0.7-2.1), and ALL (Dockerty et al. 2007). After
the same Australian group tried to replicate their study with a larger sized case—con-
trol sample, however, they found no risk related to folate intake, OR 0.95 (95 % CI
0.72-1.26); iron, OR 0.95 (95 % CI 0.68-1.34); or vitamins, OR 0.99 (95 % CI
0.75-1.31), taken alone or in combination during the first and second semesters of
pregnancy (Milne et al. 2010). In 2012, the authors returned to conduct a study with
fewer cases and controls, but they found a modest protective effect for folate in
doses of 524-624 mcg, OR 0.44 (95 % CI 0.27-0.71), vitamins B12 in doses
>5.34 pg, OR 0.49 (95 % CI 0.31-0.77), but the risk for the consumption of vitamin
B6 greater than (>) 1.85 mcg with regard to the development of childhood ALL with
OR 1.60 (95 % CI 1.02-2.51) (Bailey et al. 2012). Active and passive smoking dur-
ing pregnancy is one of the more consistent risk factors associated with leukemia. A
meta-analysis conducted by Liu et al. including 18 case—control studies on ALL
associated with paternal exposure to smoke during the pregnancy showed an OR of
1.19 (95 % CI 1.07, 1.32) (Liu et al. 2011); maternal passive smoking in Colombia
showed a significant risk with an OR of 2.00 (95 % CI 1.07-3.71) (Castro-Jiménez
and Orozco-Vargas 2011). Australians found no risk for the active exposure of the
mother to smoking, OR 1.02 (95 % CI 0.76—1.37), but a positive risk for the father,
OR 1.28 (95 % C10.97-1.70), coinciding with the results of Metayer et al. on mater-
nal smoking, OR 0.83 (95 % CI 0.56-1.24), and on paternal smoking, OR 1.17
(95 % C10.91-1.50) (Metayer et al. 2013). The Italians found only maternal passive
smoking to be associated with ALL, OR 1.81 (95 % CI 1.20-2.73), but not active
smoking, OR 1.06 (95 % CI 0.71-1.59) or paternal smoking, OR 0.81 (95 % CI
0.56-1.19), during the pregnancy (Farioli et al. 2014). Alcohol consumption by the
mother during pregnancy has been evaluated and an inverse association was found,
OR 0.7 (95 % CI 0.5-0.9); however, when some genotypes were studied, such as
GSTMI null and CYP2E1*5, only an association with GSTMI1 null and alcohol
consumption in the second and third trimesters was found, OR 2.3 (95 % CI 1.0-
5.1)and OR 2.4 (95 % CI 1.1-5.4), respectively (Infante-Rivard et al. 2002). Another
study supports the notion that earlier alcohol consumption and specifically wine
drinking by the mother during pregnancy resulted in protection from ALL, OR 0.62
(95 % C10.48-0.81) and OR 0.62 (95 % CI 0.48-0.81), respectively; however, these
inverse associations are probably explained by confounders (Milne et al. 2013).
Moreover, maternal exposure to certain viruses by the mother during pregnancy
and its association with ALL has been carried out in two studies, with varying
results. IgM and Epstein—Barr virus (EBV), OR 2.9 (95 % CI 1.5-5.8), have been
associated with childhood ALL (Lehtinen et al. 2003), while Morales-Sanchez et al.
did not find involvement of these viruses in the development of ALL, OR 0.43
95 % CI 0.12-1.57), after the pregnancy (Morales-Sanchez et al. 2014).
Occupational exposure from parents during pregnancy has also attracted significant
attention, such as the Israeli study that found a strong association in occupations
involving the use of solvents and pesticides, OR 4.90 (95 % CI 0.94-25.53). Another
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study looking occupational exposure to pesticides found no risk, OR 0.66 (95 % CI
0.07-6.38), with regard to childhood ALL (Glass et al. 2012). The occupational
ELF-MFs in parents were also evaluated during this stage; however, slight non-
significant risks were found, OR 1.11 (95 % CI 0.86—1.44) with maternal exposure
and OR 1.33 (95 % CI 0.88-1.99) with paternal exposure (Reid et al. 2011). Coffee
and tea consumption by the mother during pregnancy has also been evaluated, with
no increased risk of childhood ALL caused by drinking coffee, OR 0.89 (95 % CI
0.61-1.30), and tea, OR 0.82 (95 % CI 0.56-1.18) (Milne et al. 2011). Finally, the
study of maternal diet during pregnancy has provided encouraging results, with the
use of rich vegetables, fruits, and proteins studied by one of the US groups, who
found the following results: OR 0.53 (95 % CI 0.33-0.85) for vegetables, OR 0.40
(95 % C10.18-0.90) for fruits, and OR 0.71 (95 % CI 0.49—1.04) for proteins related
to childhood ALL (Jensen et al. 2004). These results were also found by the Greeks,
with a protective effect caused by eating seafood, OR 0.72 (95 % CI 0.59-0.89),
fruits, OR 0.72 (95 % CI1 0.57-0.91), vegetables, OR 0.76 (95 % CI 0.60-0.95), but
there is a risk with meat consumption, OR 1.25 (95 % CI 1.00-1.57), and sugars and
syrups, OR 1.32 (95 % CI 1.05-1.67) (Petridou et al. 2005). The same US group
conducted a second phase on maternal diet in pregnancy with a larger sample size
and again confirmed the protective effect of vegetable consumption, OR 0.65 (95 %
CI 0.50-0.84), proteins, OR 0.55 (95 % CI 0.32-0.96), fruits, OR 0.81 (95 % CI
0.65-1.00), and legumes, OR 0.75 (95 % CI 0.59-0.95) (Kwan et al. 2009).

The factors as age of parents during pregnancy, birth order, previous abortions,
birth weight, and gestational age have been studied extensively. One of the studies
associated maternal age <20 years with the risk of development of childhood ALL,
OR 1.4 (95 % CI 1.1-1.9), for paternal age <25 and >40 years, OR 1.2 (95 % CI
1.0-1.4) and OR 1.4 (95 % CI 1.0-1.9) respectively. When analyzed according to
immunophenotyping, it was found that maternal age <20 years and >35 years were
positively associated with pre-B cell, OR 3.4 (95 % CI 1.4-8.4) and OR 2.6 (95 %
CI 1.1-5.9), respectively (Ou et al. 2002). In a historical cohort study, authors from
the UK also found that paternal age >35 years posed a significant risk to ALL,OR
1.49 (95 % CI 0.96-2.31) (Murray et al. 2002). On the other hand, Ou et al. found
an increased risk for the birth order of the index child, OR 2.0 (95 % CI 1.3-3.0), to
the highest order; the same was observed in early pre-B cell ALL, OR 2.0 (95 % CI
1.1-3.6); birth weight >4000 g, OR 1.4 (95 % CI 1.1-1.8); and T-cell ALL, OR 2.4
(95 % CI 1.1-5.5) (Ou et al. 2002). Regarding a gestational age of >40 weeks,
Murray et al. found an OR of 0.67 (95 % CI 0.48-0.94), and the risk of birth weight
>3500 g had an OR of 1.66 (95 % CI 1.18-2.33) with regard to childhood ALL
(Murray et al. 2002). In Denmark, a meta-analysis of 18 case—control studies was
performed to evaluate the association between high birth weight (>4000 g) and the
development of ALL; the risk reported had an OR of 1.26 (95 % CI 1.17-1.37)
(Hjalgrim et al. 2003). An Australian group found a risk of OR of 1.18 (95 % CI
1.04-1.35), by a one standard deviation increase in the proportion of optimal weight
(POB) (Milne et al. 2009). Pooled data from birth weight >4500 g reported in stud-
ies from the USA, the UK, and Germany found an OR of 1.2 (95 % CI 1.1-13)
(Roman et al. 2013). The Childhood Leukemia International Consortium (CLIC)



8 Environmental Factors and Exposure Time Windows Related to the ALL Etiology 253

pooled data and carried out a meta-analysis considering fetal growth weight for
gestational age and the proportion of optimal birth weight (POBW), finding that for
advanced gestational age OR was 1.24 (95 % CI 1.13-1.36), and for a one standard
deviation increase in (POB), the OR was 1.16 (95 % CI 1.09-1.24). When reported,
small-for-gestational-age had an OR of 0.86 (95 % CI 0.78-0.96) (Milne et al.
2013). Only a cross-sectional study in which the presence of a pre-leukemic clone
on Guthrie cards and birth weight recorded in the medical records showed a rela-
tionship with low birth weight, p=0.01 (Gruhn et al. 2008). Another group wanted
to know the height of children diagnosed with ALL and they were found to be taller
than controls: boys 0.67 cm (95 % CI 0.21-1.54) and girls 0.30 cm (95 % CI 0.68—
1.28) (Davis et al. 2011). Also, the relationship of some genes involved insulin-like
growth factors (IGF) in fetal growth and for body size a statistically significant
association was found in the presence of IGF2 and IGF2R in Hispanic and non-
Hispanics (Chokkalingam et al. 2012).

Postnatal Window

At this stage it is assumed that the second postnatal event, or “second hit,” in the
development of childhood ALL occurs, according to the model proposed by
Greaves. At this stage, we consider the exposures of children from an early stage of
life up to the diagnosis of the disease. Greaves describes ALL starting in utero with
the “first hit,” which generates a long-latency pre-leukemic clone, until the “second
hit” occurs with a second mutation at 2—4 years, which precipitates the onset of
leukemia. Greaves’ proposal that one or several environmental exposures may
mount a challenge to the immune system, leading to an abnormal response of the
immune system, which increases the number of pre-leukemic cells, in turn leading
to leukemia. The environmental factors that Greaves proposed might be able to
produce an immune response of this nature are childhood infections. However, there
are other environmental factors that have been studied in the postnatal window that
have been proposed to generate the “second hit” necessary for leukemia.

Tables 8.4a and 8.4b shows that in the last 14 years, different environmental fac-
tors explored in the postnatal window include residential exposure to ELF-MFs, the
use of solvents and paints at home, the passive exposure of children to smoke, sup-
plements taken by the child such as vitamins and iron, infections, X-rays, occupa-
tional exposures in parents, and smoking, which could be exposing the child
indirectly. Factors positively associated with the development of childhood ALL
include exposure to solvents in the home when artwork is carried out, with an OR
of 4.1 (95 % CI 1.1-15.1) (Freedman et al. 2001). Also, when some painting work
indoors was carried out by a person other than the parents, the OR was 1.64 (95 %
CI 1.08-2.49), and when the paint used was oil-based, the OR was 2.07 (95 % CI
1.11-3.83) (Bailey et al. 2011).

The diagnostic X-ray carrying the child study to determine whether there was
any association with the risk of developing ALL; however, a risk of ALL was
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observed with an OR of 1.1 (95 % CI 0.9-1.2), but this risk increased when analyz-
ing the pre-B cell immunophenotype, OR 1.7 (95 % CI 1.1-2.7); thus, it is possible
that some other factor might be confounding the association (Shu et al. 2002). This
prompted the Australian group to conduct a study analyzing X-ray exposure in chil-
dren 6 months before the date of diagnosis, but they found no significant risk, OR
1.21 (95 % CI 0.93—-1.57), and when the arm was exposed to X-rays the OR was
1.49 (95 % CI 1.00-2.22) (Bailey et al. 2010). Another way to expose children to
carcinogens is through occupational exposure of fathers, which indirectly expose
their children through breast milk, work clothes or breath (Lowengart et al. 1987).
An Israeli group conducted a study on occupational exposure and the risk of ALL
and found very high risks associated with the use of solvents and pesticides in occu-
pations, OR 4.48 (95 % CI 1.78-11.26), when the father was exposed, OR 8.18
(95 % CI 1.48-45.21), when the mother was exposed, OR 3.66 (95 % CI 1.28—
10.47), and when both were exposed, OR 7.93 (95 % CI 2.06-30.56). Also, when
organic solvents were used, the OR was 2.11 (95 % CI 1.10-4.20); when pesticides
were used, the OR was 2.35 (95 % CI 1.10-5.0); and when hazardous substances
were used, the OR was 1.70 (95 % CI 1.14-2.44) (Abadi-Korek et al. 2006). In
Colombia, occupational exposure to hydrocarbons and their association with child-
hood ALL were also studied, and they found that when the father used mineral oil,
the OR was 2.92 (95 % CI 1.16-7.36), when he used 1,3-butadieno the OR was 4.18
(95 % CI 1.47-11.88), and with the use of trichloroethylene the OR was 2.76 (95 %
CI 1.09-7.06). In addition, the risks were very high with maternal occupational
exposure, OR 6.68 (95 % CI 1.59-28.08), OR 11.67 (95 % CI 1.74-78.05), and OR
7.41 (95 % CI 1.66-33.07), respectively. Similar results were observed when both
parents were exposed to mineral oils, OR 13.68 (95 % CI 3.58-52.22), and trichlo-
roethylene, OR 17.56 (95 % CI 4.12-74.81) (Castro-Jiménez and Orozco-Vargas
2011). Another factor of occupational exposure that caught the attention of research-
ers was ELF-MF to which the mother was exposed at work, but there was a non-
significant risk of her baby developing childhood ALL, with an OR of 1.34 (95 %
CI10.94-1.91) (Reid et al. 2011).

The intake of vitamins, iron, and folic acid by the child was also evaluated to
discover if it acted as a protective factor for ALL and finding no effect on the results
(Dockerty et al. 2007). Another factor studied was the exposure to insecticides and
pesticides used in the home and its association with the development of ALL mea-
sured directly in urine. A higher concentration was found in cases than in controls
(33 % vs. 14 %; p<0.02) (Soldin et al. 2009). Meanwhile the Chinese also evalu-
ated pyrethroid pesticides in the urine of patients with high-risk ALL and found the
presence of total metabolites in urine and pyrethroids, OR 2.75 (95 % CI 1.43-5.29)
(Ding et al. 2012). Furthermore, Rull et al. evaluated the use of agricultural pesti-
cides professionally near the child’s home, finding a modest risk of ALL in the
moderate category, but not for high exposure, OR 1.7 (95 % CI 1.0-3.1) and OR 0.8
(95 % CI 0.4-1.4) (Rull et al. 2009). These results agree with those from the
Australian group, who found that the application of professional pesticides near the
child’s home had an OR of 1.24 (95 % CI 0.93-1.65). When cases with a genetic
feature, chromosomal deletions, and rearrangements of ETV6-RUNX1 t(12;21)
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were analyzed, the OR were 1.46 (95 % CI 1.05-2.04), 1.83 (95 % CI 1.00-3.35),
and 2.39 (95 % CI 1.25-4.55), respectively (Bailey et al. 2011).

Residential exposure to ELF-MFs has been one of the most frequently studied
factors in childhood leukemia. It has been evaluated with different measurement
variables, from coding wiring distance energy distributors and pylons, with spot
measurements and meters for 24 h in children’s rooms. There have been three stud-
ies on ELF-MF exposure specifically associated with ALL over 14 years and a sys-
tematic review by a Brazilian group. Only one study found significant risks
associated with the development of ALL when the child’s residence was at a dis-
tance <600 m from power lines, OR 2.61 (95 % CI 1.73-3.94), and these risks
increase with a voltage of 123 kV, OR 9.93 (95 % CI 3.47-28.5), of 230 kV, OR
10.78 (95 % CI 3.75-31), and of 400 kV, OR 2.98 (95 % CI 0.93-9.54) (Sohrabi
et al. 2010). Regarding the systematic review conducted by a Brazilian group of ten
case—control studies with different methods of measuring exposure, one study
reported a risk of childhood ALL with an OR of 3.32 (95 % CI 1.27-8.68) when the
exposure was >0.15 pT and a risk with an OR of 4.67 (95 % CI 1.15-19.00) when
exposure was >0.4 uT. In another study that measured the distance of residence of
the child from the power source found an OR of 3.06 (95 % CI 1.31-7.13) with a
distance of <50 m (Pelissari et al. 2009). The other studies found no association
with childhood ALL (Kleinerman et al. 2000; Wiinsch-Filho et al. 2011).

Smoking has also been a factor associated with childhood ALL development as
children are exposed to smoking passively. The meta-analysis conducted by Liu
et al. found that paternal smoking after the child’s birth was associated positively,
OR 1.20 (95 % CI 0.97, 1.49), with the highest exposure having an OR of 1.35
(95 % CI 1.06, 1.72) (Liu et al. 2011). The North American group also assessed the
child’s passive smoking and found a very slight risk, OR 1.20 (95 % CI 0.84-1.72),
associated with the development of ALL, and when the effect of the mother having
smoked since before conception was combined, the OR was 1.11 (95 % CI 0.75—
1.65) (Metayer et al. 2013), while the Italians found no association of passive expo-
sure to smoke by the child, OR 0.94 (95 % CI 0.61-1.45) (Farioli et al. 2014).
Another proposal to study exposure to carcinogens in children is by the chemical
analysis of dust in the carpets of the house where the children resided, with special
sampling pumps. When herbicides were sought, no significant risks were found, OR
1.57 (95 % CI 0.90-2.73) in the third tertile (Metayer et al. 2013). When the authors
sought polycyclic aromatic hydrocarbons (PAH) in these samples of dust that they
continued to obtain from the child’s homes, they found no association, but when the
vacuum bags were obtained, they found an OR of 1.98 (95 % CI 1.11-3.55) for
dibenzo[a,h]anthracene and an OR of 1.81 (95 % CI 1.04-3.16) for indeno[1,2,3-
cd]pyrene. Toxic equivalence to PAH was associated with the development of child-
hood ALL, OR 2.35 (95 % CI 1.18-4.69); however, the results should be viewed
with caution (Deziel et al. 2014). In addition, the authors also sought polybromi-
nated diphenyl ethers (PBDESs) in dust samples and found no association, but when
they sought specific PBDEs such as BDE-196, -203, -206, and -207, the OR were
2.1(95% CI1.1-3.8),2.0 (95 % CI 1.1-3.6), 2.1 (95 % CI 1.1-3.9), and 2.0 (95 %
CI 1.03-3.8), respectively (Ward et al. 2014).
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Another hypothesis regarding the development of childhood leukemia was
proposed by Kinlen (1988), who states that an excess of childhood leukemia could
be seen in places that had an unusual mixture of populations. The agent has not
recognized that predisposition should be mild, as infections could lead to a rare
response to the infectious agent, causing leukemia in relatively isolated communi-
ties with a sudden high population density exposed to unknown infectious agents.
The rapid influx of new arrivals to a previously isolated community begins to cause
increased contact between newcomers and original residents who are susceptible to
infection. The risk of leukemia is thus increased in both long-term residents and
newcomers (Kinlen 1995). This phenomenon occurs in wartime population growth
with newcomers arriving at the community centers in search of work, community
medical services, and tourism (McNally and Eden 2004). Studies investigating
mixed populations may be ecological and seek an association between socioeco-
nomic status and deprivation, to discover the exposure to some of the infectious
agents proposed by Greaves and Kinlen. In the review, a study on the Czech Republic
evaluated the incidence of ALL in the age group 1-4 years during the period in
which the political and socio-economic transition occurred in the communist coun-
tries of Central Europe, finding a higher incidence of ALL of 1.5-fold in the period
1980-1998 (p=0.01) and an annual average increase 0.11 cases per 100 mil people
(Hrusédk et al. 2002). In Hungary, the population mix in some communities was
assessed, and it was found that the rate ratio (RR) for all incoming children was 2.13
(95 % CI 1.02-4.44); for children aged <5 years it was 2.07 (95 % CI 0.91-4.75).
When analyzed according to sex, in incoming boys the RR was 3.10 (95 % CI 1.13-
8.51), and in incoming boys aged <5 years old the RR was 2.24 (95 % CI1 0.71-7.09)
(Nyari et al. 2006). Subsequently, the population mixing was analyzed in England
and Wales for the group aged 14 years and the incidence rate ratio (IRR) found in
the rural area was 1.26 (p=0.05); in urban/rural areas the IRR was 1.07 (p=0.05)
(Stiller et al. 2008). Ribeiro et al. wanted to find out the relationship between socio-
economic status in some of the communities in Brazil and the development of ALL,
obtaining data from the Social Exclusion Index to compare the group of rich and
poor, obtaining an RR of 0.34 (95 % CI 0.28-0.44). When comparing the number of
people in household with seven or more persons the RR was 0.32 (95 % CI 0.25—
0.43) (Ribeiro et al. 2008).

Finally, Greaves described “late infection” and its association with the develop-
ment of childhood AL, particularly for ALL (highest peak incidence in B cell pre-
cursors), postulating that infections may promote the “second hit” because of a
belated abnormal immune response in children exposed to these infections (Greaves
1988), which has led to numerous studies on postnatal infections in children and
their association with the development of childhood ALL, providing evidence to
support or not support Greaves’ hypothesis. Researchers have sought different mea-
sures of exposure to infections according to proxy variables such as immunizations,
breastfeeding, day-care attendance by children, hospitalization for infections, social
contact, etc. The results found in this review of studies published in the past 14 years
found an inverse relationship between day-care attendance and ALL development,
with a decreased risk with an OR of 0.49 (95 % CI 0.31-0.77), in the age group
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<4 years (Infante-Rivard et al. 2000). Another study conducted by a group of US
researchers found that going to preschool for more than 50,000 h the child was
protected against the development of ALL, OR 0.64 (95 % CI 0.45-0.95) (Ma et al.
2002). In 2005, the authors confirmed these findings with a sample size that included
Hispanic children, for whom no association was found, but if one non-Hispanic
white children, OR 0.42 (95 % CI 0.18-0.99), >5000 h compared with children
who did not attend day care (Ma et al. 2005). In England, similar results were also
found on children attending formal or informal childcare, OR 0.48 (95 % CI 0.37—
0.62) and OR 0.62 (95 % CI 0.51-0.75), respectively (Gilham et al. 2005). The
results are also consistent with a study from Denmark in which it was found that
day-care attendance protects against the development of leukemia, OR 0.68 (95 %
CI 0.48-0.95) (Kamper-Jgrgensen et al. 2008). Urayama et al. decided to perform
a meta-analysis to add further evidence to support this inverse relationship to the
development of ALL with a review of 14 studies of cases and controls and found
that when the child went to kindergarten and if he/she went in the first 2 years of
life, the OR was 0.76 (95 % CI 0.67-0.87) (Urayama et al. 2010). Subsequently,
Urayama et al. conducted a study in the USA including Hispanics and non-His-
panic whites to find out the association among day-care attendance, birth order, and
common childhood infections in these two ethnic groups. When the three variables
were assessed separately, for preschool attendance at the age of 6 months per 1000 h
the OR was 0.90 (95 % CI 0.82-1.00) and for those with an older sibling the OR
was 0.68 (95 % CI 0.50-0.92) in non-Hispanic whites, while having had an ear
infection before 6 months of age was protective in both ethnic groups. When vari-
ables were analyzed simultaneously, it proved that for attending preschool the OR
was 0.83 (95 % CI 0.73-0.94) and for having an older sibling the OR was 0.59
(95 % CI 0.43-0.83) in Non-Hispanic whites. Regarding Hispanic children, a sig-
nificant reduction in the risk of developing ALL was found when they had an ear
infection, OR 0.45 (95 % CI 0.25-0.79) (Urayama et al. 2011). Another study, in
which the history of infection was analyzed in children, discovered that when rose-
ola or fever and rash were reported, there was an inverse relationship, OR 0.33
(95 % CI 0.16-0.68), but there was risk when tonsillitis was reported, OR 2.56
(95 % CI 1.22-5.38) (Chan et al. 2002). Other studies showed that infections were
reported to incur risks of developing ALL. One study conducted in the UK with a
very large sample size evaluated infections in the first year of life with regard to
childhood cancer in general, but stratified ALL in the group aged 2—5 years, OR 1.4
(95 % CI 1.1-1.9) (Roman et al. 2007). The findings of Chang et al. are consistent
with these results, with an OR of 3.2 (95 % CI 2.2-4.7) when an infection was
reported in the first year of life, and when asked if there had been any infection
1 year before diagnosis, OR was 3.9 (95 % CI 2.6-5.8) (Chang et al. 2012). A more
modest risk was found by UK authors when infectious disease was reported, OR
1.04 (95 % CI 1.01-1.07), and when the child was not being breastfed, OR 1.17
(95 % CI 0.94-1.44) (Crouch et al. 2012). In Canada, it was found that breastfeed-
ing was protective against ALL, with an OR of 0.68 (95 % CI 0.49-0.95); contrary
to this result, one of the US groups found no significant risk when the child was
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breastfed, OR 1.49 (95 % CI 0.83-2.65) (Kwan et al. 2005). Social contact has also
been evaluated; for example, changing their place of residence in the first year of
life was shown to be a protective factor for ALL, OR 0.47 (95 % CI 0.23-0.98)
(Chan et al. 2002). Chang et al. then evaluated the level of social contact of the resi-
dent US population according to occupation and observed no statistical association
when the parent had a high level of social contact; when the father or mother had a
high level of contact, OR was 0.92 (95 % CI 0.61-1.39) and 1.14 (95 % CI 0.81-
1.59), respectively (Chang et al. 2007).

Allergic diseases were also studied to understand their association with child-
hood ALL. For asthma, hay fever, food allergy, and eczema an inverse relationship
was reported: OR 0.8 (95 % CI 0.6—-1.0) for asthma, OR 0.6 (95 % CI 0.5-0.8) for
hay fever, OR 0.7 (95 % CI 0.6-0.8) for food allergy, and OR 0.7 (95 % CI 0.5-0.9)
for eczema (Wen et al. 2000). These results are also confirmed by another study in
the USA: allergies were reported to protect against the development of childhood
ALL, OR 0.58 (95 % CI 0.38-0.88) (Rosenbaum et al. 2005). In Greece, a
decreased risk was found, OR 0.49 (95 % CI 0.34-0.72), when an allergic disease
was reported, but biological samples of patients’ blood were also obtained to mea-
sure levels of allergen-specific (IgE) antibodies and confirm allergies in patients.
The risk for laboratory-confirmed allergy had an OR of 0.43 (95 % CI 0.22-0.84)
and that of food allergies had an OR of 0.39 (0.18-0.83) (Lariou et al. 2013), the
authors agreeing that having allergies is a protective factor against ALL. However,
for the Taiwanese, allergies did constitute a risk for childhood ALL when the
allergy was reported before 1 year of age and when the allergy occurred after
1 year of age, OR 1.7 (95 % CI 1.5-2.0) and OR 1.3 (95 % CI 1.1-1.5) respectively
(Chang et al. 2012).

Epidemiological studies focusing on the etiology of childhood ALL over 14 years
of study help to identify the different environmental factors that have been associ-
ated with the development of childhood lymphoblastic leukemia, and the impor-
tance of identifying these within three critical windows, not only supporting the
model proposed by Greaves, but the effects on every window. This model indicates
that leukemia may be explained by environmental exposure, which causes the “first
hit,” called genetic susceptibility, and re-exposure to some of the environmental fac-
tors gives the “second hit” provoking overt leukemia. Although this model does not
account for 100 % of patients with childhood ALL, it is assumed in most cases of
childhood ALL that it is important to recognize these exposure windows, which
may be critical in identifying the effects associated with exposure to the environ-
mental factor(s) that can cause these “two hits”.

Figure 8.2 summarize the risk factors studied in each window of exposure for
ALL development. Apart from infection being the most consistent risk factor in the
postnatal window, no other environmental risk factor that occurs during only one
window of exposure, such as smoking, occupational exposure to hydrocarbons, pes-
ticides, X-rays, etc., has been associated with an increased risk of childhood ALL
during the three windows of exposure (Tables 8.2a, 8.2b, 8.3a, 8.3b, 8.3c, 8.4a, 8.4b
and 8.5).
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Fig. 8.2 Risk factors for childhood ALL and windows of exposure. There are three periods that are
involved in the development of ALL. If in one window there are many components to the causes
of ALL, in the other windows fewer components are necessary for that child to develop ALL

Susceptibility and Genetic Polymorphisms

Although the role of environmental exposure is still currently undefined, it is likely
that carcinogenesis due to environmental exposure is influenced by the co-inheri-
tance of multiple low-risk variants, such as single nucleotide polymorphisms (SNPs)
in susceptible genes (Mehta et al. 2006).

These variants can be identified by comparing the frequency of polymorphic gen-
otypes in cases and controls. In most childhood leukemia cases, characteristic genetic
alterations are observed, including numerical and structural chromosomal changes
such as hyperdiploidy (>46 chromosomes) or translocations, in addition to the more
subtle changes in the form of point mutations and gene deletions (Wiemels 2012).

Somatically acquired genetic aberrations in ALL lymphoblasts are prognostic
and can guide risk-directed therapy. The extent to which germline variation contrib-
utes to ALL susceptibility, however, is less clear and is the subject of current
research.
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Direct evidence for a genetic predisposition to ALL is provided by the high risk
associated with Bloom syndrome, neurofibromatosis, ataxia telangiectasia, and
Down’s syndrome. The heritable basis of susceptibility to ALL is further supported
by a recent candidate gene (CGAS), the advent of high-resolution genome-wide
analyses (GWAS) of gene expression, DNA copy number alterations, epigenetic
changes, and more recently, next-generation whole genome and transcriptome
sequencing have provided new insights into leukemogenesis, drug resistance, and
host pharmacogenomics, suggesting that the co-inheritance of multiple germline
variants might contribute to disease risk (Pui et al. 2011; Downing et al. 2012).

Five GWAS have been performed so far, with populations between 50/50 and
3275/4817 ALL cases/healthy controls (Papaemmanuil et al. 2009; Trevifio et al.
2009; Han et al. 2010; Sherborne et al. 2010; Ellinghaus et al. 2012). These studies
identified several risk loci with allelic odds ratios (OR) of the disease-related allele
between 1.34 and 9.99. Enciso-Mora et al. (2012) calculated that 25 % of the total
variation in B-ALL risk is accounted for by common genetic variation. On the other
hand, previous GWAS-identified loci (IKZF1, CDKN2A, ARID5B, and CEBPE)
explain only 8 % of this total. The data provide the rationale for the continued inves-
tigation of additional susceptibility loci that were likely missed by previous
GWAS. Although GWAS represent a powerful approach to the identification of dis-
ease loci, the p value requirement for defining a significant association may in turn
increase the probability of missing a true association (Wesolowska et al. 2011).

The assertion that ALL may have a genetic basis has long been pursued through
association studies based on candidates for childhood ALL susceptibility genes,
which have been categorized into those coding for carcinogen metabolism enzymes
involved in xenobiotic metabolism (Krajinovic et al. 1999), oxidative stress response
(Krajinovic et al. 2002), DNA repair proteins (Batar et al. 2009), folate metabolism
enzymes (Petra et al. 2007), and cell-cycle regulation (Healy et al. 2007) and others
have been associated with ALL (Vijayakrishnan and Houlston 2010).

One of the most important initiating events is thought to result from the misrepair
of double-strand DNA breaks (DSBs) during nonhomologous end-joining (NHEJ)
(Kim et al. 2006; Hassanzadeh et al. 2011; Emerenciano et al. 2007). The DNA
repair system plays an important role in maintaining genome integrity and stability
through the reversal of DNA damage. If accumulated mutations occur in corre-
sponding DNA repair genes, their reversal capacity could be damaged, substantially
increasing the risk of cancer. SNPs in common DNA repair genes have been identi-
fied and demonstrated to be linked to sporadic carcinogenesis (Roberts et al. 2011;
Shiraishi et al. 2010).

Considering roles in DSB repair, the X-ray repair cross-complementing group 1
(XRCC1) gene is one of the most important DNA repair genes (Caldecott 2003; Lee
et al. 2009). X-ray repair cross-complementing group 1 (XRCC1), located on chro-
mosome 19q13.2—13.3, at 33 kb in length, is one of the most important proteins in
base excision repair (BER) (Chou et al. 2008). BER is also the predominant DNA
damage repair pathway for the processing of small base lesions derived from oxida-
tion and alkylation damage (Lan et al. 2004).

XRCC] also participates in the single-strand DNA break (SSB) repair pathway
for the repair of DNA destruction, which occurs very frequently in mammals, and
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the BER pathway, which operates on small lesions usually caused by endogenous
substances or xenobiotics. Moreover, it is reported that the DNA repair function
may be modified by genetic polymorphisms. Genetic instability and even
carcinogenesis may be caused if the capacity for DNA repair is deficient (Goode
et al. 2002; Jiang et al. 2009). Also reported by relevant studies is the disruption of
XRCC1 in mice, which results in early embryonic lethality in the BER pathway
(Tebbs et al. 1999; Horton et al. 2008), and an excess of deletions found among
induced mutations in EM-C11 (one cell line identified as defective in XRCC1
function), perhaps resulting from the reduced ligation efficiency of SSB (Op het
Veld et al. 1998). Therefore, the size of the DNA repair capacity modified by XRCCI
gene polymorphisms gives different hereditary susceptibility to ALL to different
populations. In other words, XRCCI gene polymorphisms may be associated with
childhood ALL. More than 300 validated SNPs in the XRCCI gene have been
reported in the dbSNP database (http://www.ncbi.nlm.nih.gov/SNP). Nevertheless,
only three common SNP sites in the XRCCI gene encoding region have been
extensively studied: codon 399 (extron 10, G — A, Arg — Gln), codon 194 (extron
6, C — T, Arg — Trp), and codon 280 (extron 9, G — A, Arg — His). Molecular
epidemiological studies on the association between the genetic predisposition of
children to ALL and XRCC1 polymorphisms have presented some contradictory
results (Joseph et al. 2005; Pakakasama et al. 2007; Batar et al. 2009; Meza-Espinoza
et al. 2009; Tumer et al. 2010; Canalle et al. 2011; Stanczyk et al. 2011). However,
these inconsistent results fail to clarify this complicated genetic relationship because
of the small sample size and low statistical power. More research is needed to
investigate the relationship between polymorphisms in DNA repair genes and
childhood ALL.

Conclusions

Epidemiological studies evaluating risk factors associated with childhood ALL
during the three windows suggest that various factors might interact in combination
to develop the disease. So far, Greaves’ hypothesis that childhood ALL might be an
abnormal immune system response to infections in children born with a pre-
leukemic clone is the most plausible. Whether or not other environmental factors
play an important role in the development of childhood ALL is still unknown; how-
ever, the published epidemiological studies provide the possibility to make some
recommendations, such as that regarding paternal smoking (it is best to stop smok-
ing or at least avoid to smoke during the preconception stage, pregnancy, and the
early years of their children’s lives to prevent children from being exposed pas-
sively) and paternal consumption of alcohol during the preconception stage.
Regarding occupational exposure involving petroleum products, parents should use
personal protective equipment and be very careful when handling these substances,
avoiding bringing them home on the clothes or skin. The handling of chemicals at
home such as oil paints and pesticides should be avoided, so that their children are
not exposed. For the mother, a diet rich in vegetables, proteins, fruits, and sea food
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is recommended. More studies contributing to the etiology of childhood ALL are
definitely needed to identify factors that may participate in each window, but we
need to think about the theoretical and epidemiological aspects of childhood ALL
to develop explanatory theories about the disease to protect children against these
agents that cause this distressing disease.
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Chapter 9

Early Hematopoietic Differentiation

in Acute Lymphoblastic Leukemia:

The Interplay Between Leukemia-Initiating
Cells and Abnormal Bone Marrow
Microenvironment

Armando Vilchis-Ordoiiez, Elisa Dorantes-Acosta, Eduardo Vadillo,
Briceida Lopez-Martinez, and Rosana Pelayo

Abstract By virtue of their self-renewal and tightly regulated multi-lineage differ-
entiation properties, hematopoietic stem cells (HSCs) generate the whole blood sys-
tem throughout postnatal life. During malignant hematological disorders, including
acute leukemias, a number of intrinsic and extrinsic cues influence the hematopoi-
etic differentiation pathway and cooperate to make aberrant cell fate decisions con-
comitant with cell transformation. The cellular origin of these disorders is a
fundamental matter in question. In keeping with the hierarchical model of tumor
evolution, a conspicuous and unique leukemic stem cell (LSC) population is most
likely the foundation of acute and chronic myeloid leukemias. In contrast, all B-cell
differentiation stages in acute lymphoblastic leukemia (ALL) function as leukemia-
initiating cells (LICs), are endowed with primitive stem cell properties and are
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apparently responsible for the long-term maintenance of tumor growth within the
bone marrow (BM) and for relapse of the disease following remission. Furthermore,
LICs reveal the ability to create irregular BM microenvironments that may result in
proinflammatory scenarios with a permissive role by allowing leukemic cell devel-
opment at the expense of normal hematopoiesis. This chapter outlines the recent
findings contributing to the understanding of malignant hematopoiesis through the
biology of early stem and progenitor cells in the context of abnormal microenviron-
ments within leukemic BM. By unraveling the role of leukemic precursor cells in
the initiation of local inflammatory processes leading to hematopoietic instability,
we may learn about additional mechanisms co-participating in the etiology and
maintenance of this pathological condition.

Keywords Leukemia-initiating cells ¢ Acute lymphoblastic leukemia ¢ Early
hematopoiesis ® Bone marrow ¢ Proinflammatory microenvironment

Introduction

Cancer is the leading cause of nonaccidental death among children in high-income
countries and in a growing number of middle-income countries and is therefore
being considered a global child health priority (Magrath et al. 2013; Gupta et al.
2014). Decreasing overall childhood cancer mortality requires a comprehensive
understanding of the origins and pathobiology of the disease, along with more
accurate diagnoses and the identification of high-risk groups in order to apply effec-
tive treatments. Strikingly, acute leukemias (ALs) are the most frequent childhood
malignancies worldwide and remain a leading cause of morbidity and mortality
among relapsed patients. Even though more efficient therapeutic agents have been
developed over the past 10 years that have increased overall survival rates, leukemic
cell infiltration, relapse, and treatment failure change the prognosis and significantly
worsen the outcome of the disease, underlining the need for new strategies to better
identify the cell root and to predict its dynamics according to the microenvironmen-
tal and clinical context.

The hierarchical theory of cancer development sustains the notion that cancer
stem cells (CSCs) support the initiation and maintenance of tumors and may also
constitute the subpopulation of tumor cells responsible for the invasion and devel-
opment of metastatic tumors (Kakarala and Wicha 2008; Rajendran and Dalerba
2014). Of note, current information indicates that while in both acute and chronic
myeloid leukemias a rare LSC population is responsible for their development and
recurrence (Chung and Park 2014; Chavez-Gonzalez et al. 2013), a unique con-
tribution of these primitive cells in ALL is not apparent (Raff and Bruggermann
2014). Furthermore, recent advances suggest that some changes in hematopoietic
microenvironment might account for aberrant cell differentiation pathways in this
pathological condition.
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Biology of ALL

The uncontrolled production of hematopoietic precursor cells of the myeloid or
lymphoid series within the BM is the prominent feature of ALs (Dorantes-Acosta
and Pelayo 2012). Among them, ALL is the most common cause of childhood can-
cer worldwide and accounts for 23 % of malignancies and for 85 % of the leukemia
cases, whereas acute myeloid leukemia (AML) constitutes 15 % of acute leukemia
cases (Xie et al. 2003; Perez-Saldivar et al. 2011). Of note, although important
breakthroughs in treatment strategies have influenced the outcome of these disor-
ders, leading to increases in overall survival rates of up to 80 %, the last 25 years
have recorded a slight but gradual increase in the incidence of ALL that appears to
be highest in Latin America (McNeil et al. 2002; Perez-Saldivar et al. 2011; Xu
et al. 2013), where superior rates of high-risk patients are also apparent.

According to international classifications of lineage and maturation stages based
on the number and specificity degree of lineage markers that are expressed by leuke-
mic cells (Dorantes-Acosta and Pelayo 2012), 80-85 % of ALL cases have a B-cell
immunophenotype, while nearly 15 % show a T-cell immunophenotype. Congenital
leukemia, a rare entity distinct from typical ALL, represents only 3 % of ALs,
whereas mixed-lineage leukemias (MLLs), endowed with properties of both lym-
phoid and myeloid lineage cells, constitute about 2 % of ALs. Proper disease man-
agement based on the stratification of patients by risk groups and the identification of
relapse factors contributes greatly to disease-free survival (Izraeli 2010; Juarez-
Velazquez et al. 2014). Currently, the most useful prognostic indicators are age,
white blood cell count, immunophenotype, minimal residual disease detection, and
therapy responses. The phenotype of leukemic cells is one of the factors that set the
risk of relapse, which is suffered by 20-30 % of patients whose response to therapies
is frequently of poorer quality and shorter duration. Hence, T-cell lineage and biphe-
notypic leukemias are associated with unfavorable prognosis (Pui et al. 1998; Rubnitz
et al. 2009; Meijerink et al. 2009). Moreover, a lineage conversion/switch is occa-
sionally recorded upon relapse, a phenomenon that has been considered to be an
uncommon type of MLL, representing either a relapse of the original clone with
plasticity attributes or the emergence of new leukemic clones.

The molecular mechanisms driving relapse in any of the leukemia entities are
still poorly understood. In addition, cell infiltration remains an obstacle to curing
ALL patients. The central nervous system (CNS) is the most frequently affected
extramedullary site (30—40 %), and a number of apparent risk factors related to CNS
relapse include T-cell immunophenotype, high-risk cytogenetic abnormalities,
hyperleukocytosis, and leukemic cells present in the CNS or in traumatic lumbar
puncture at diagnosis (Pui and Evans 2013). Most parameters universally considered
remain insufficient for establishing an early stratification, highlighting the
complexity of the disease and the need for new biomarkers associated with cell
origins to better predict outcomes. Of note, the combination of genomics and clonal
studies with xenotransplant approaches has revealed unsuspected genetic diversity
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within the various ALL-initiating cells, supporting the multiclonal — possibly sto-
chastic — evolution of leukemogenesis (Notta et al. 201 1b; Purizaca et al. 2012).

Recurring chromosome abnormalities are detected in approximately 80 % of ALL
patients. Aneuploidy, translocations, inversions, or deletions are some of the numeri-
cal and structural changes that are often associated with risk of relapse (Pui et al.
2008). Among them, chromosome translocations are the most frequent and may con-
stitute early or initiating events in leukemogenesis (Greaves and Wiemels 2003).
They result in fusion proteins with altered functions and oncogenic properties.
ETV6/RUNXI and BCR/ABLI fusions are universally related to good and bad prog-
nosis, respectively. ETV6/RUNXI (TEL/AMLI) resulting from the t(12;21)(p12;q21)
translocation has been considered to be a putative prenatal first lesion which is
acquired in utero, but requires additional somatic mutations for overt leukemia
(Lilljebjorn et al. 2012; Zuna et al. 2011), whereas the translocation t(9;22)(q34;q11)
(Ph chromosome) leads to expression of the BCR/ABLI product, found in 5 % of
childhood ALL cases and resulting in a constitutive tyrosine kinase activity with
alterations in IKZFI. Interestingly, a BCR/ABLI1-like ALL has been identified,
where IKZF 1, CRLF2, and JAK mutations show gene expression profiles similar to
Ph+ B-cell ALL (B-ALL), but lack the BCR/ABLI rearrangement (Mullighan and
Willman 2011; Woo et al. 2014). The MLL gene is involved in more than 50 fusions
mostly connected to cell transformation and adverse outcome, largely due to cellular
drug resistance (Meijerink et al. 2009). Translocation t(4;11)(q21;923) producing the
fusion of the MLL and AF4 genes has been documented in nearly 80 % of infant
ALL. On the other hand, aneuploidy (hyperdiploidy and hypodiploidy) occurs in
high frequency of ALL cases (Mullighan 2012). Hyperdiploidy is characterized by a
nonrandom gain of chromosomes X, 4, 6, 10, 14, 17, 18, and 21 and clinically by a
favorable prognosis. In contrast, the majority of the hypodiploidy cases show 45
chromosomes and adverse evolution of the disease.

Novel high-resolution genomic technologies and next-generation sequencing
have been decisive in the identification of a growing list of DNA lesions affecting
genes involved in key cellular pathways, including normal hematopoiesis, tumor
suppression, apoptosis, and cell cycle regulation (Mantovani et al. 2008; Meijerink
et al. 2009), targeting new genes of potential interest, including CDKN2A, COL6A2,
PTPRO, CSMDI1, HMGAI, CASPSAP2, and H2AFZ. Additionally, a possible con-
vergence of the WNT, JAK, and MAP kinase pathways has been related to leukemo-
genesis (Hogan et al. 2011; Bhatla et al. 2014; Juarez-Velazquez et al. 2014).

As will be further discussed, hematopoiesis is driven to a large extent by lineage-
specific transcription factors. Remarkably, genetic alterations of master regulators
of the early hematopoietic differentiation, including Ikaros (IKZFI), and the
downstream lymphoid development pathway PAX5, EBF1, E2A, CRLF2, and LEF]
are hallmarks of ALL (Fig. 9.1) (Mullighan and Willman 2011). Of special interest,
by disrupting the transcriptional program of normal B-cell differentiation, the
contribution of these factors to neoplastic growth regulation has been demonstrated
(McManus et al. 2011; Kawamata et al. 2012). Moreover, crucial growth factor
receptors which are primarily expressed in stem cells and early multipotent (myeloid
and lymphoid) progenitors, playing important roles in their proliferation and
differentiation, are compromised in ALL. The best example is the FMS-like tyrosine
kinase-3 (FLT3), a group of class III receptor tyrosine kinases that also includes
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Fig. 9.1 Genetic abnormalities in B-ALL development. B-cell development starts within the BM
from a primitive hematopoietic stem cell endowed with self-renewal and multipotent differentiation
properties. HSC gives rise to multipotent progenitors that have the ability to differentiate into
MPPs, where commitment to the early lymphoid lineage program starts and ends with the
formation of immature B-cells. Numerous recurrent abnormalities have been identified along the
B-cell pathway in leukemogenesis, including aneuploidy, translocations, and gene mutations that
may be associated with the earliest steps of malignant hematopoiesis, as well as aberrant receptors,
signaling proteins, and transcription factors involved in commitment and regulation of pro- and
pre-B-cell precursors. B-ALL B-cell acute lymphoblastic leukemia, HSC hematopoietic stem cell,
MPP multipotent progenitor, CMP common myeloid progenitor, MEP megakaryocyte and
erythrocyte progenitor, GMP granulocyte and monocyte progenitor, MLP multi-lymphoid
progenitor, B/NK progenitor for B and natural killer cells, iB immature B-cell

C-KIT, C-FMS, and platelet-derived growth factor receptor (Takahashi 2011; Gu
et al. 2011). The FLT3 internal tandem duplications (FIt3-ITDs) occurring in
25-30 % of B-ALL patients suggest that a constitutive activation of FLT3 is apparent
from the earliest stages of the hematopoietic differentiation program, underlining

the relevance of lineage commitment and primitive cell differentiation in the patho-
biology of ALL.
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Normal vs Malignant Hematopoiesis: The Beginning
of Leukemic Processes

Development and Function of Normal Hematopoietic Cells

Stem cells are the origin of all cell types within the organism. The characterization
and definition of their transcriptional activity patterns controlling lineage fate
decisions have allowed the construction of cell differentiation maps that are, today,
the best models for understanding normal and aberrant core processes. The term
stem cell describes a functional primitive cell capable of producing multiple cell
types by differentiation and self-renewal activity. According to their differentiation
potentials, these rare cells can be categorized into totipotent stem cells, pluripotent
stem cells, and multipotent stem cells. The latter are the source of various specialized
tissues, including the hematopoietic, which is hierarchically organized and maintains
homeostasis via a complex and continuous biological process called hematopoiesis
(Purizaca et al. 2012; Pelayo et al. 2012; Vadillo et al. 2013).

The hematopoietic system supplies and replenishes erythrocytes, thrombocytes,
and all cell categories of the immune system throughout life. The tightly regulated
developmental steps take place within BM starting from a unique population of
HSCs that reside in endosteal, perivascular, or reticular niches (Vadillo et al. 2013).
While intrinsic early differentiation programs — including genetic and epigenetic
networks — strictly control the self-renewing and most multi-lineage potential
properties in this infrequent population, specialized BM niches and a number of
crucial microenvironmental cues function by promoting maintenance of the HSC
pool and contributing lymphoid or myeloid cell fate decisions along the pathway
(Purizaca et al. 2012; Vadillo et al. 2013).

The current understanding of the biology of HSC and hematopoietic system
development is largely the result of research in genetically modified mouse models
that offer the possibility of carrying out in vivo experiments to demonstrate precursor
cell activity. Additionally, powerful technologies as flow cytometry and
xenotransplantation approaches have enabled the identification of five cell
compartments within BM: stem cells, multipotent progenitors (MPPs), oligopotent
progenitors, precursor cells, and mature cells. Maintenance of the hematopoietic
hierarchy and the precise balance between proliferation and differentiation of the
various cell fractions are critical to the proper operation of the system.

Murine HSCs were first isolated as Lin~ Sca-1* Thy-1'° and were shown to consti-
tute about 0.05 % of BM cells (Spangrude et al. 1988). Further characterization based
on the expression of signaling lymphocyte activation molecule (SLAM) family mem-
bers has distinguished CD150*CD244-CD48~ HSC from CD150"CD244*CD48*
multipotent and committed progenitors concomitant with gradual reconstitution capa-
bility loss (Kiel et al. 2005). Of interest, it has been recently proposed that HSCs have
“intrinsic tendencies” to produce lymphoid, myeloid, or a mixture of both lineages
that are sensitive to microenviromental factors promoting lineage-specific blood cell
production (Benz et al. 2012). Together with SLAM family markers, CD229 allows
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the phenotypic distinction of a lymphoid-biased from a myeloid-biased HSC (Oguro
et al. 2013). Moreover, HSCs are thought to possess exquisite affinity for specialized
niches within BM, providing a putative advantage for the production of lineages to
which these cells are committed (Benz et al. 2012).

On the other hand, human Lin"CD34*CD38-CD45RA-CD49f*CD90* HSC repre-
sent less than 0.04 % of BM mononuclear cells and are capable of long-term reconsti-
tution when testing in xenotransplantation models. Additional useful detection
markers are Flt3 and null CD7 or CD10 expression (Doulatov et al. 2010; Notta et al.
2011a). HSCs give rise to MPPs, which no longer possess self-renewal potential and
have therefore lost long-term reconstitution capabilities (Dorantes-Acosta and Pelayo
2012). MPPs embed lymphoid-primed multipotent progenitors (LMPPs), a heteroge-
neous population where L-selectin® progenitors (LSPs), early lymphoid progenitors
(ELPs), and dendritic cell (DC)-biased LMPPs (DC-LMPPs) (Iwasaki and Akashi
2007; Naik et al. 2013) are contained, each generating specific cell lineages. LSPs are
the origin of interferon killer dendritic cells, while ELPs produce plasmacytoid den-
dritic cells. Human L-selectin* progenitors have also been described (Kohn et al.
2012) that may precede the earliest steps of the lymphoid program concomitant with
multi-lymphoid progenitor (MLP) differentiation. Both LSPs and MLPs are efficient
in producing all lymphoid lineage cells, monocytes, and DCs but lack granulocyte
potential (Doulatov et al. 2010). Whereas in mice Lin-ckit°Scal*IL-7Ra*CD27* com-
mon lymphoid progenitors (CLPs) arising from LMPPs/ELPs constitute 0.02 % of
total BM cells and the main B and natural killer (NK) cell producer (Pelayo et al.
2006; Kondo et al. 1997; Dorantes-Acosta and Pelayo 2012), its human counterpart
endowed with B/NK lymphoid potential is characterized as Lin"CD34*CD38*CD90~
CD45RA*FIt3*CD10* (Vadillo and Pelayo 2011). Downstream the pathway, sequen-
tial differentiation of fully committed progenitors gives rise to CD34*CD10"CD19*
pro-B-cells, CD34-CD10*CD19* Pre-B-cells, and CD34-CD10"CD19* immature
B-cells that are eventually exported to the periphery (Fig. 9.1). Early B-cell develop-
ment stages are crucially mediated by interleukin 7 (IL-7) signals that activate the
major signaling pathway, JAK-STATS (Pelayo et al. 2012).

T-cell production depends on the thymic colonization by BM-exported early pro-
genitors expressing chemokine receptors like CCR7, CCR9, CXCR4, and PSLGI
(Sultana et al. 2012; Bell and Bhandoola 2008; Zlotoff et al. 2010; Shah and Zuniga-
Pflucker 2014). The thymic microenvironment induces the loss of multipotency as cell
progenitors advance on their developmental program. Thymocyte specification starts in
a CD4-CD8 double negative population and progresses to double-positive (DP)
CD4*CD8* stages concomitant with their migration from the cortex to the subcapsular
regions of the thymus. Then, T-cell production is fully achieved upon positive selection
of DP clones (Bhandoola and Sambandam 2006). At the time of lymphopoiesis, com-
mon myeloid progenitors (CMPs) are constantly formed by MPPs and in turn give rise
to granulocyte—-monocyte progenitors (GMPs) and megakaryocytic—erythroid progeni-
tors (Fig. 9.1) (Manz et al. 2002; Dorantes-Acosta and Pelayo 2012).

In the aforementioned, normal hematopoiesis is largely governed by a growing
number of cell-cell interactions and growth/differentiation factors that control the
expression of lineage-specific transcription factors (TFs) (Vadillo et al. 2013).
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Accordingly, the B-cell differentiation pathway depends on the expression of
PU.1, E2A, EBF, and Pax5, while the T-cell program is controlled by GATA3 and
Notchl. Strikingly, deficiency in E2A and EBF1 blocks B-cell differentiation and
the loss of Pax5 redirects B-cells into other lineages. Pax5 acting together with
EBF conducts the display of key molecules such as FOXO1, LEF1, CD19, RAG,
and CD79a. This master regulator, Pax5, also functions as a repressor of M-CSFR,
NOTCHI, and FLT3, inhibiting the possibility of commitment to myeloid, T-cell,
or DC lineages respectively, and therefore promoting B-cell specification for fur-
ther differentiation (Pelayo et al. 2012). On the other hand, lymphoid-derived DC
formation requires the activity of TFs like FLT3, STAT3, E2.2, IRFS, and Spi-B
(Shortman et al. 2013). Interestingly, recent research on lymphoid development
has generated a new classification, where innate lymphoid cells (ILCs) are now
integrated (Vosshenrich and Di Santo 2013; Spits and Cupedo 2012). Innate lym-
phoid cells emerge from Id2* CLPs (Boos et al. 2007) and include NK cells and
other immune-dedicated populations (Spits and Cupedo 2012). Though the whole
path is still poorly understood, the transcriptional control of NK cell production is
known to be governed by Ikaros, Aiolos, and PU.1 in the very primitive stages and
become dependent on E4bp4 for the induction of Id2 and Eomes expression that
culminates in NK cell commitment in dependency on IL15 (Blom and Spits 2006;
Male et al. 2014). Factors like Notch, RORa, RORYt, and GATA3 are essential for
other subsets of ILC (Wong et al. 2012; Mjosberg et al. 2012; Serafini et al. 2014;
Vosshenrich and Di Santo 2013). Within the myeloid differentiation pathway, TFs
such as PU.1, RUNXI, SCL, Ikaros, and Gfil play a substantial role in the early
commitment of CMP (Dorantes-Acosta and Pelayo 2012), whereas GATAI is
required for megakaryocytic—erythroid development, and downstream the path c/
EBPa is involved in the acquisition of myeloid function (Iwasaki and Akashi
2007). Of note, any deregulation of this transcriptional balance may lead to a new
pathological lineage.

A number of hematopoietic cells and molecules that compose the innate or adap-
tive immune systems function as key components of defense against cancer, where
their ability to unequivocally identify and destroy tumor cells contributes to a
dynamic process termed cancer immunosurveillance (Vesely et al. 2011), highlight-
ing the relevance of a continuous homeostatic control of hematopoietic cell prolif-
eration and differentiation to produce functional extrinsic tumor suppressor
elements. However, a recent investigation has suggested that in addition to playing
an effective protection role against tumorigenesis, the immune system can further
participate in the promotion of the outgrowth of malignant cells by editing of tumor
immunogenicity. Such cancer immunoediting process includes three distinct phases:
elimination, equilibrium, and escape (Vesely et al. 2011). During the elimination
phase, normal hematopoietic cells and molecules terminate potential cancer cells.
Entering the equilibrium phase due to tumor dormancy is an unsafe situation
because some components of the immune system are exposed to loss of function
and ultimately permit the adaptation of transformed cells (escape phase). The cancer
immunoediting mechanisms that may operate once transformed leukemic cells are
differentiating are still unclear.
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Because hematopoiesis — particularly lymphopoiesis — can undergo adjustments in
cell fate decisions under inflammatory conditions and during malignant development,
the presumptive implication of a “permissive or inductive normal hematopoiesis” in the
etiology of ALL should be supported by future investigations using discrimination
approaches to follow normal vs malignant hematopoiesis within leukemic BM. In fact,
hematopoiesis in both childhood ALL and AML is crucially defective when tested in
controlled culture systems (Purizaca et al. 2013; Dorantes-Acosta et al. 2008).
Surprisingly, the content and ability of early lymphoid and myeloid progenitors to
proliferate and undergo multi-lineage differentiation are reduced, revealing major defi-
ciencies in the presumed normal hematopoietic compartment of leukemia BM.

Cancer Stem Cells and Leukemia-Initiating Cells in Malignant
Hematopoietic Development

Despite the important advances in unraveling genetic, molecular, and cell abnor-
malities associated with leukemic hematopoiesis, a complete understanding of the
mechanisms damaging the earliest developmental program and controlling the
emergence of leukemia-initiating cells that drive lineage instability is still lacking.
Moreover, a discrepancy in the cellular origins of myeloid and lymphoid leukemias
has increased the complexity of these neoplastic entities. As discussed below, very
primitive CSCs in myeloid acute and chronic leukemias are apparently responsible
for tumor initiation and maintenance. However, the identification of a unique popu-
lation of MSCs sustaining ALL has not been confirmed. Besides, there is tremen-
dous intersubject heterogeneity that makes it impossible to firmly apply the CSC
model to lymphoblastic leukemias. Instead, various precursor differentiation stages
may function as LICs (Fig. 9.2).

Cancer cell of origin constitutes the normal clonal population target of the first
oncogenic hit and in which the earliest tumoral process takes place (Abollo-Jiménez
et al. 2011; Abraham et al. 2014). This premalignant clone would lead to increased
survival and may function as a precursor of CSCs, which are defined as a rare “repro-
grammed” population capable of indefinitely generating tumors as well as all cellular
types that compose the malignant mass. CSCs control the maintenance, propagation,
metastasis, and relapse of transformed cells (Ailles and Weissman 2007). In contrast,
cancer-initiating cells can be either progenitor or differentiating cells where the normal
developmental program is damaged in such a way that they display some stemness and
plasticity properties. Leukemia-initiating cells are believed to be part of this group.

Clonal phenotyping and genotyping have allowed the functional evaluation of
CSCs; thus, their biological behavior could be classified within the hierarchical or
the stochastic model. According to the hierarchical model, tumors are “pathological
organs” where CSCs are located at the top of a cellular hierarchy, implying that they
self-renew and consequently produce more differentiated clones with limited or no
self-renewal potential that are not capable of giving rise to primitive CSCs
(Rajendran and Dalerba 2014). Additionally, CSCs must be responsive to
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Fig. 9.2 Cancer stem cells and leukemia-initiating cells in the etiology of acute leukemias.
Normal hematopoietic process (central panel) implicates the differentiation of HSC toward
myeloid and lymphoid progenitors producing committed precursor and mature cells of
physiological proportions. According to the hierarchical model of cancer evolution, HSC
transformation upon multiple genetic or epigenetic hits (yellow stars) give rise to self-renewing
leukemia stem cells (LSCs) which are capable of generating acute myeloid leukemia (AML; left
panel, purple cells). In contrast, acute lymphoblastic leukemia (ALL) fits the stochastic model as it
can be initiated from all B-cell differentiation stages susceptible to leukemic transformation and
endowed with self-renewal ability (upper panel). In both hematological malignancies, residual
normal hematopoiesis is carried out but at very low extent as leukemic blasts are preferentially
produced. Black arrows indicate diminished normal hematopoietic differentiation

environmental cues and show interdependence on specialized niches where they can
exert their aberrant function. In contrast, the random or stochastic model suggests
that the cellular heterogeneity within a tumor is the result of progressive and
divergent formation of genetic subclones. In this model, all tumor cells possess CSC
potential (Fig. 9.2), and environmental factors may not definitively influence
tumoral growth (Nguyen et al. 2012).

Thus, the natural attribute of normal stem cells to self-renew and reconstitute in
the long term has suggested that in the earliest stage of neoplastic transformation, a
number of genetic aberrations accumulate in this precise compartment that in turn
become reprogrammed (Rajendran and Dalerba 2014; Abollo-Jiménez et al. 2011).
This scenario does not exclude any of the proposals explaining leukemogenesis,
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that is, the “population mixing” hypothesis or the “multiple hits” hypothesis (Pelayo
et al. 2012; Kinlen 1995).

In recent years, our understanding of leukemogenesis has deepened due to the com-
bination of xenotransplantation models, genome-wide methods, and bioinformatic
analysis of transcriptional programs applied to CSC research (Eppert et al. 2011).

Primitive CSCs were first documented in AML, where only a minor fraction of
leukemic cells were capable of in vitro proliferation and differentiation and could
recapitulate leukemia in transplanted mice, suggesting that leukemogenic activity
might reside in a cell fraction (Krause and Van Etten 2007) endowed with some stem
cell properties and indicating a hierarchical organization of the disease (Fig. 9.2).
Based on their slow-cycling, self-renewal, differentiation potential, gene expression
program, and surface phenotype, LSCs in AML have shown remarkable similarities
to normal HSCs (Deng and Zhang 2010; Eppert et al. 2011; Greve et al. 2012). They
can reversibly enter quiescence, alternating this cell cycle status with active prolifera-
tive stages. The resulting low cycling rates, together with ATP-binding cassette multi-
drug transporter pumps, antiapoptotic proteins, and disrupted DNA repair mechanisms,
confer LSCs in AML resistance to conventional chemotherapy (Baccelli and Trumpp
2012). By using multiparametric flow cytometry, LSCs were identified as
Lin"CD34+*CD38", whereas CD34*CD38* and CD34" fractions were shown to lack
functional features of LICs (Tan et al. 2006; Lapidot et al. 1994; Bonnet and Dick
1997) (Table 9.1). However, in contrast to what is observed in normal HSCs, they lack
expression of CD90 and CD117 and “aberrantly” display CD123 (Jordan et al. 2000;
Chavez-Gonzalez et al. 2014). Furthermore, LSC frequencies within the stem cell
compartment in AML BM presumably have a strong prognostic impact and empha-
size the need for discrimination between LSCs and normal HSCs (Terwijn et al.
2014). Of high relevance, a conspicuous population of pre-L.SCs has been identified
in AML patients harboring DNMT3A and IDH2 mutations (Shlush et al. 2014). These
peculiar cells survive induction chemotherapy and can persist at remission (Table 9.1).

LSCs also constitute the cellular root in chronic myeloid leukemia (CML), a
clonal hematological disease of adult individuals, characterized by a t(9;22)
(q34;q11) reciprocal translocation rendering the Philadelphia (Ph) chromosome and
the fusion protein Ber-Abl (Holyoake et al. 1999; Chavez-Gonzalez et al. 2013;
Chung and Park 2014). As in AML, CML LSCs have a similar phenotype to normal
HSCs but show strong activation of signaling pathways that depend on the
constitutively active tyrosine kinase Bcr-Abl. Only recently, Lemoli and colleagues
discovered a CD34" population among CML patients corresponding to treatment-
resistant LSCs (Table 9.1) (Lemoli et al. 2009).

In contrast, the cellular origin of ALL is less clear. Both LICs with immature
phenotypes and the various B-cell differentiation stages are able to recapitulate the
disease, challenging the hierarchical stem cell model and suggesting that the self-
renewal property is maintained in B-committed cells (Fig. 9.2) (Purizaca et al.
2012). Moreover, the unsuspected genetic diversity within LICs and an increasingly
complex pattern of acquisition of mutations in B precursor cells support the
multiclonal evolution of leukemogenesis (Dick 2008). In concordance, at diagnosis,
several leukemic clones bear common mutations, but an apparent predominant
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clone shows additional genetic lesions that may confer them selective advantages
over the common ones. During treatment, if the prominent clones are successfully
abated, additional clones which may have acquired resistance to chemotherapy can
emerge and lead to the relapse of patients (Raff and Bruggermann 2014).

The participation of primitive cells in the etiology of ALL has been suggested by
three lines of evidence: first, the identification of leukemic clones harboring
unrelated DJ sequences and cytogenetic abnormalities in lineage-negative cells;
second, the engraftment capability and leukemia reconstitution in immunodeficient
xenotransplantation mouse models driven by a primitive CD34* CD10~ CD19-
fraction within ALL BM; and third, the resistance of CD133* cells and CD34*
CD19™ cells to treatment with conventional or small-molecule chemotherapy,
respectively (Diamanti et al. 2013; Cox et al. 2004, 2009). Similar results were
shown when T-cell ALL was evaluated and only primitive fractions (CD34* CD4~
and CD34* CD7-) were capable of engrafting NOD/SCID mice and reconstituting
the disease (Table 9.1) (Cox et al. 2007). On the other hand, this is still under debate
as the work by Vormoor et al. strongly suggests not a hierarchical, but a stochastic,
origin of ALL. The leukemic phenotype can be completely reestablished in vivo by
early progenitors or by any of the B-cell precursor subsets (Fig. 9.2) (Rehe et al.
2013; le Viseur et al. 2008). Interestingly, by transplanting irradiated newborn
NOD/SCID/IL2ry™" mice, Ishikawa and colleagues found that committed B-cell
precursors (CD34* CD38* CD19") are the origin of ALL and have the potential to
infiltrate extramedullary tissues including the liver, spleen, and kidney. In contrast,
more primitive progenitors (CD34* CD38~ CD10~ CD19") apparently direct normal
hematopoietic reconstitution (Kong et al. 2008).

A Role of Leukemic Stem-Initiating Cells in Tumor Infiltration?

The proposal that metastases originate from a conspicuous population of primitive
surviving cells has been experimentally proven in a number of cancer models.
Liquid tumors, including leukemias, also display site-specific homing to
microdomains within BM and infiltration/metastasis into extramedullary
compartments that may result in residual disease and consequent relapse episodes.

Under homeostatic conditions, HSCs are constantly migrating within BM and
between BM and peripheral tissues via blood-lymph-thoracic duct-blood (Massberg
et al. 2007; Mazo et al. 2011; Merchand-Reyes et al. 2014). HSC mobilization out of
the marrow implies the active participation of proteolytic enzymes, chemokines, and
adhesion molecules. It is uncertain whether primitive cells govern the clinical infiltra-
tion setting in ALs. A better understanding of the molecular mechanisms that control
the trafficking of LSCs/LICs and mediate their recruitment is crucial.

When leukemic cells acquire the capacity to invade extramedullary tissues, they
form tumor masses referred to as chloromas (Dias et al. 2000). Interestingly, some
myeloid leukemias are capable of disseminating into many organs, but they do not
infiltrate the CNS, whereas ALL often infiltrates the CNS and testis. Organ
infiltration is always prognostic for poor outcomes, and increased frequencies of
LSCs in AML have been suggested to correlate with relapse after treatment.
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While leukemic cells create abnormal inhibitory niches for normal hematopoietic
cells in BM (Colmone et al. 2008; Raaijmakers et al. 2010), LSC maintenance and
trafficking may depend on microenvironmental cues that usually support self-renewal
and development of healthy HSCs (Sipkins et al. 2005; Purizaca et al. 2012). Moreover,
their migration into the BM seems to be promoted by CXCL12 and CXCR4 or spe-
cific integrins (Sipkins et al. 2005), supporting the postulate that metastasis of LSCs
and the trafficking of normal HSCs may involve similar mechanisms (Kucia et al.
2005). Clearly, the importance of the SDF/CXCR4 axis in the motility regulation of
LSCs in AML has been defined (Tavor et al. 2004), leading to speculate that a close
connection between CXCR4, LSCs, and infiltration is likely. Furthermore, to investi-
gate the dynamics of liver invasion by CD45* leukemic cells, a model of myeloprolif-
erative disease-like myeloid leukemia was recently used by Drize and colleagues. In
this model, CCR1, CCR2, and CCRS5 were shown to be highly expressed by the liver
cells of leukemic animals, suggesting that they might play an important role in the
retention of leukemic cells in the liver (Bigildeev et al. 2011). At least 4 % of the cells
that invaded the liver were LSCs that have activated the NFkB pathway. Of particular
interest, IL.1a, which is one of the most potent activators of NFkB, and a number of
genes targeted by NFkB, such as Vcam1, Icam1, CyclinD1, and Myc, were all upreg-
ulated (Guzman et al. 2001; Bigildeev et al. 2011).

How leukemic cells break down the blood—brain barrier (BBB) and enter the CNS
is less understood. Transmembrane molecules like claudin-5 and occludin have been
identified as key components of BBB integrity through the formation of tight junc-
tions between adjacent brain microvascular endothelial cells. Their disruption can
lead to the loss of BBB integrity. Using an in vitro model of BBB and a powerful
in vivo model of CNS AML, Feng and colleagues reported MMP-2- and MMP-9-
dependent invasion mediated by the disruption of claudin-5, occludin, and accessory
molecules (Feng et al. 2011). Whether the same mechanism is used by conspicuous
populations of LSC/LIC to increase the permeability of the BBB during clinical set-
tings of infiltration is yet to be determined (Merchand-Reyes et al. 2014).

Phenotype Plasticity in Acute Leukemias

Physiological plasticity is an essential feature of developing tissues and refers to the
capacity of fate-changing processes, where a well-defined cell adopts the biological
properties of other cell types (Abollo-Jiménez et al. 2011). In this phenomenon, the
original plastic cells might be endowed with primitive or differentiated phenotypes, and
the output cells may belong to the same or different lineages. Extrinsic environmental
cues and epigenetic modifications might cooperate with intrinsic programs to regulate
cell fate conversion (Dorantes-Acosta and Pelayo 2012). Multi-lineage potential, bio-
logical dedifferentiation, transdifferentiation, and reprogramming are all manifestations
of plasticity, and their study is currently of great interest, because of its implications in
regenerative medicine and for understanding neoplastic processes, which are considered
to be a result of erroneous reprogramming (Abollo-Jiménez et al. 2011).

Cell reprogramming can be caused in experimental conditions when inducing
pluripotency or programmed dedifferentiation, verifying the participation of key
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Fig. 9.3 Plasticity of the leukemia phenotype. Leukemia cells display phenotype plasticity. In ALL,
pro-B, pre-B, and B-cells are able to upregulate and downregulate key lineage markers and gain the
capacity for self-renewal at all differentiation stages, leading to dedifferentiation. ALL precursors are
marked in light blue, and red arrows represent phenotype plasticity. Although AML origin has been
demonstrated to take place in the most primitive progenitor compartment, it has also been suggested
that cells with GMP and MPP phenotypes can function as LSC. In CML, an LSC with a GMP-like
phenotype has been proposed. Orange and purple cells represent CML and AML cells, respectively.
Dark blue cells and green arrows represent normal differentiation pathways

transcription factors in lineage decisions. The absence of EBF allows early lym-
phoid progenitors to differentiate into myeloid lineage, and downstream the path,
the conditional deletion of PAXS in mature B-cells can induce conversion to differ-
ent fates, including macrophages and T-cells (Nutt et al. 1999; Dorantes-Acosta and
Pelayo 2012). Of note, the forced expression of ¢/EBP in committed B-cell precur-
sors leads to expedited reprogramming to macrophages (Xie et al. 2003; Orkin and
Pera 2007). Similar mechanisms might be used by leukemic cells, such as during
lineage switching; conversions from lymphoblastic leukemia to myeloid leukemia,
or vice versa, are recorded (Dorantes-Acosta and Pelayo 2012). Recent studies sug-
gest that the lineage commitment of plastic leukemic progenitors may be reversible
upon specific signals provided by environmental inducers that include microbial
components (Dorantes-Acosta et al. 2013). This may also occur under “instruction”
from oncogenic lesions, as lessons from the clinic suggest that committed B-cells
might be targets of dedifferentiation to earlier progenitor stages. In addition, the
phenomenon can work in reverse, with progenitor cells differentiating to stages of
B-cell commitment (Fig. 9.3) (le Viseur et al. 2008; Campos-Sanchez et al. 2011).
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Recent findings of phenotype heterogeneity within the LSC compartment in
AML have questioned the unidirectional feature of the hierarchical AML structure
(Chung and Park 2014). Nearly 80 % of AML patients develop leukemia with
apparent correlation with cell populations that resemble GMPs and LMPPs,
supporting the provocative hypothesis that more differentiated LSCs might acquire
abnormal self-renewal potential and produce transplantable AML (Goardon et al.
2011). The same is true for CML (Fig. 9.3).

Bone Marrow Microenvironment in the Regulation
of Normal and Malignant Hematopoiesis

It has become clear that the ordered series of lineage fate decisions result from the
continuing dialogue between developing stem/progenitor cells and the surrounding
hematopoietic microenvironment (Dick 2008; Purizaca et al. 2012; Dorantes-
Acosta and Pelayo 2012). Such a specialized microenvironment comprises a com-
plex network of mesenchymal cells, osteoblasts, endothelial cells, fibroblasts,
adipocytes, innate and adaptive immune cells, and their products, including extra-
cellular matrix, cytokines, chemokines, and growth factors. At least three hemato-
poietic niches within the BM architecture are dedicated to supporting HSC
differentiation throughout life: the endosteal niche, mainly composed of osteoblasts
lining the bone surface, the vascular niche, formed of endothelial cells, and the
reticular niche, where the chemokine/chemokine receptor CXCL12/CXCR4 axis
plays a pivotal role in the regulation of early lymphopoiesis (Fig. 9.4) (Purizaca
et al. 2012). A comprehensive model for stem/progenitor cell population dynamics
in the context of a regulating (inductive, repressive or permissive) microenvironment
is not yet available, but recent advances have suggested that changes in the
composition and function of the hematopoietic microenvironment — including
soluble and cellular components — might cooperate with the initiation or maintenance
of aberrant processes and lead to disease. Of significance, the development of
tridimensional culture systems as a novel tool for advancing normal and LSC
research, including the identification of therapeutic targets and drug candidates by
high-throughput screening applications, is highly encouraged. Moreover, systems
biology approaches provide useful complementary instruments for integration of
the available information and further prediction of clinical scenarios.

Based on experimental data, the following mechanisms have been proposed to
function as “cooperating” microenvironment-related factors in leukemogenesis: a
competition of tumor cells for normal HSC niches, the manipulation of normal
environments led by tumor cells, and disruption of HSC-niche communication. Any
of these scenarios would favor tumor progression at the expense of homeostatic,
hematopoietic differentiation (Raaijmakers 2011). Increasing evidence indicates the
prevalence of functional defects in both soluble and cellular microenvironmental
elements that may accompany oncogenesis. In support of this hypothesis, osteoblas-
tic differentiation impairment by deletion of Dicerl gene induces the development



308 A. Vilchis-Ordofiez et al.

of myeloid leukemia upon myelodysplasia (Corre et al. 2007). Additional strong
signals, including that provided by the activated Wnt- 3 catenin pathway, allows the
initiation or maintenance of leukemia (Lane et al. 2011). However, it is still unclear
whether ALL microenvironmental abnormalities appear as a consequence of leuke-
mic activity or whether they constitute intrinsic pre-leukemic lesions. In ALL, semi-
nal work by Sipkins Lab using a mouse xenograft model of pre-B-cell ALL, has
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demonstrated that tumor cells create inhibitory microenvironments for normal
HSCs by overproducing CXCL12 and disrupting their niches (Colmone et al. 2008).
Recently, the findings of a significant decrease in some biological properties (i.e.,
the proliferation and hematopoietic support) of mesenchymal stromal cells with no
association with genetic abnormalities of ALL underline the active role of leukemic
cells and their products in the modulation of the BM microenvironment (Conforti
et al. 2013; Vicente Lopez et al. 2014).

Inflammatory Cues Influencing Cell Fate Decisions
in All Bone Marrow

Although stability of the hematopoietic system is indubitable, the plasticity of stem
and progenitor cells leads the process to undergo adjustments when interacting with
extrinsic factors provided by inflammatory conditions (Vadillo et al. 2013).
Interestingly, these primitive cells proliferate in response to stress mediated by
proinflammatory factors. Furthermore, they are capable of recognizing microbial
components via toll-like receptors (TLRs), redirecting cell fate decisions and
facilitating their differentiation toward innate immune cells (Welner et al. 2008;
Vadillo et al. 2014; Vadillo and Pelayo 2012). While mouse models have been
useful in mapping the selective cell production of myeloid and DCs at the expense
of B-lymphoid production, controlled culture systems and xenotransplantation
approaches have suggested that human multi-lymphoid progenitors over-produce
diverse categories of DCs and NK cells — both functionally involved in cancer
surveillance — when viral components trigger the TLR signaling pathway. Similar
stimulation of more primitive cells promotes myeloid differentiation. The released

<
<

Fig. 9.4 The proinflammatory microenvironment of ALL bone marrow. Normal B-cell
development (upper panel) starts from rare HSCs that reside near osteoblasts or CXCL12* stromal
cells (light yellow and red cells, respectively). Upon a sequential and tightly regulated process,
pro-B-cells are formed and stay in close interaction with IL-7* stromal cells (orange cells). As
these cells advance in their differentiation, they produce pre-B-cells that no longer need interaction
with IL-7. Immature B-cells (iB) are ultimately produced, which interact with CXCL12* stromal
cells prior to peripheral blood release and further maturation in secondary lymphoid organs. In
ALL (lower panel), leukemic precursors (pro-B and pre-B) can be exported to peripheral circula-
tion (normal progenitors are shown in green while leukemic clones are in red). Patients bearing
lineage infidelity (CD13* leukemic B-cell precursors) may induce a proinflammatory microenvi-
ronment, characterized by abnormally increased production of proinflammatory cytokines that in
turn activates the proliferation and differentiation of normal hematopoietic clones. Scenarios like
nonmalignant hematopoietic exhaustion and mobilization may favor disease progression. Yellow
arrows depict proinflammatory cytokine production. The central structure represents a sinusoid
within BM whereas the upper and lower yellow structures the endosteum. The model is based on
in vitro experimental findings
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cytokines, including IL-1p, TNFa, and IL-6, drive the activation and mobilization
of primitive cells to the blood circulatory system (Vadillo et al. 2013).

Compared with hematologically normal individuals, B-ALL patients have shown
detrimental potential in stromal cell development, which is remarkably related to
levels of IL-6 and TNFa, suggesting that an inflammatory setting might prevail as a
pathobiology factor (Espinoza-Hernandez et al. 2001). The implication of these
signals in the hematopoietic niches and on normal and malignant hematopoiesis
remains to be learned. Along with the abnormalities discussed above, a
proinflammatory tumor microenvironment may induce leukemic progenitors to
redirect original fates. Accordingly, TLR stimulation of cell precursors in childhood
leukemias does not play an apparent critical role in disease progression, but strength-
ens the production of innate cells (Dorantes-Acosta et al. 2013).

Chronic inflammation and carcinogenesis have lately been closely connected
through two potential pathways: the extrinsic pathway, which results from external
factors promoting latent inflammatory responses, and the intrinsic pathway,
conducted by oncogenes that activate the expression of inflammation-related
programs. Crucial molecular regulators include cytokines, chemokines, and
components of signaling pathways, such as MyD88, NFkB, and STAT3 (Mantovani
et al. 2008; Krawczyc et al. 2014; Lippitz 2013. In addition, innate immune cells,
including tumor-associated macrophages, make significant contributions to the reg-
ulation of LSCs.

Our recent investigation of possible BM inflammatory scenarios in ALL suggests
the modification of the microenvironment by a special type of leukemic cells that
may interfere with regular hematopoietic differentiation (Vilchis et al. 2015).
Apparently distinct B-ALL cells co-expressing the myeloid-related markers CD13
and CD33, have the capability to produce Th1-type cytokines such as TNFa, IL-1,
IL-12, and GM-CSF, among others, that drive normal stem and progenitor cells into
the cell cycle and differentiation (Fig. 9.4). We need to discern whether the entailed
NFkB and STAT3 signaling disturbs effective long-term blood cell formation or
exposes the activated cells to oncogenic hits and further correlate the resulted infor-
mation to evidence from the clinics.

Concluding Remarks

Hematopoiesis is a fundamental homeostatic process responsible for the lifelong
replenishment of blood cell lineages. Its proper genetic, epigenetic, and
microenvironmental regulation is critical to maintain the functional and homeostatic
activity of the very primitive stem and differentiating cells. Outstanding work has
recently been conducted regarding the role of these seminal cells in the etiology and
recurrence of aberrant malignant processes, including childhood myeloid and
lymphoid leukemias. It is now clear that a conspicuous and unique LSC population
is most likely the origin of AML and CML. The molecular pathways involved in the
induction of pre-leukemic lesions within the normal, primitive HSC pool are under
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intense investigation. In contrast, the contribution of LSCs in ALL is not that
obvious. Moreover, clonal diversity and the tumor-initiating abilities of all lymphoid
differentiation stages retaining some stemness and plasticity property highlight the
complexity of this childhood disease and increase the uncertainty of its cell origins.
Furthermore, changes in the composition and function of the hematopoietic
microenvironment — including soluble and mesenchymal stromal cell components —
might govern tumor progression and infiltration. Accordingly, constitutively acti-
vated inflammation pathways within LIC populations may function as a cooperating
element — rather than as a driving factor — which creates abnormal proinflammatory
niches, exposing cells in prolonged proliferation to oncogenic mutations and accel-
erating the multistep process of leukemogenesis.

By unraveling fundamental biological differences between normal and leukemic
primitive cells and developing novel strategies to purify them, a better understanding
of the hematopoietic-microenvironment interplay that controls the malignant
setting is prompted.
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Glossary

Cancer stem cell A primitive cell capable of generating tumor indefinitely and all
the cellular subsets that constitute the malignant mass. Cancer stem cells may
have the ability to control the maintenance, propagation, metastasis, and relapse
of transformed cells.

Hematopoiesis A highly ordered, multi-step differentiation process that starts in a
unique population of self-renewing HSCs, which gradually commit to lymphoid
or myeloid lineage fates until the formation of mature blood cells.

Hematopoietic microenviroment A specialized structure consisting of a complex
network of mesenchymal cells, osteoblasts, endothelial cells, fibroblasts, adi-
pocytes, innate and adaptive immune cells, and their products, including extra-
cellular matrix, cytokines, chemokines, and growth factors. It is essential for
supporting HSC differentiation throughout life.

Leukemia-initiating cell Cancer-initiating cells with either progenitor or differ-
entiating cell phenotypes, capable of recapitulating leukemia in serial trans-
plantation mouse models. LICs are endowed with some stemness and plasticity
properties.

Plasticity An essential feature of developing tissues that refers to the capacity of
cells to adopt biological properties of other cell types. Multi-lineage potential,
dedifferentiation, transdifferentiation, and reprogramming are all manifestations
of plasticity.
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