
Chapter 8

Direct Integrals

Direct integrals are a generalization of direct sums. For a compact group every
representation is a direct sum of irreducibles. This property fails in general for
non-compact groups. The best one can get for general groups is a direct inte-
gral decomposition into factor representations. The latter is a notion more general
than irreducibility. For nice groups these notions coincide, and then every unitary
representation is a direct integral of irreducible representations.

8.1 Von Neumann Algebras

Let H be a Hilbert space. For a subset M of the space of bounded operators B(H )
on H , define the commutant to be

M◦ def= {T ∈ B(H ) : Tm = mT ∀m ∈ M}.
So the commutant is the centralizer of M in B(H ). If M ⊂ N ⊂ B(H ), then
N◦ ⊂ M◦. We write M◦◦ for the bi-commutant, i.e., the commutant of M◦. For a
subset M of B(H ) we define its adjoint set to be the set M∗ of all adjoints m∗ where
m is in M . The set M is called a self-adjoint set if M = M∗.

We define a von Neumann algebra to be a sub-*-algebra A of B(H ) that satisfies
A◦◦ = A. A von Neumann algebra is closed in the operator norm, and so every von
Neumann algebra is a C∗-algebra. The converse does not hold (See Exercise 8.6).

For a subset M ⊂ B(H ), one has M ⊂ M◦◦ and hence M◦◦◦ ⊂ M◦. Since, on the
other hand, also M◦ ⊂ (M◦)◦◦ = M◦◦◦, it follows M◦ = M◦◦◦, so M◦ is a von
Neumann algebra if M is a self-adjoint set. In particular, for a self-adjoint set M

the algebra M◦◦ is the smallest von Neumann algebra containing M , called the von
Neumann algebra generated by M .

Let A ⊂ B(H ) be a von Neumann algebra. Then Z(A) = A∩A◦ is the center of A,
i.e., the set of elements a of A that commute with every other element of A. A von
Neumann algebra A is called a factor if the center is trivial, i.e., if Z(A) = C Id.
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Examples 8.1.1

• A = B(H ) is a factor, this is called a type-I factor.

• A = C Id is a factor.

• The algebra of diagonal matrices in M2(C) ∼= B(C2) is a von Neumann algebra,
which is not a factor.

• Let V ,W be two Hilbert spaces. The algebra B(V ) ⊗ B(W ) acts on the Hilbert
tensor product V ⊗̂W via A ⊗ B(v ⊗ w) = A(v) ⊗ B(w). Then the von Neu-
mann algebra generated by the image of B(V ) ⊗ B(W ) is the entire B(V ⊗̂W )
(See Exercise 8.2).

8.2 Weak and Strong Topologies

Let H be a Hilbert space. On B(H ) one has the topology induced by the operator
norm, called the norm topology. There are other topologies as well. For instance,
every v ∈ H induces a seminorm on B(H ) through T �→ ‖T v‖. The topology given
by this family of seminorms is called the strong topology on B(H ). Likewise, any two
v, w ∈ H induce a seminorm by T �→ |〈T v, w〉|. The topology thus induced is called
the weak topology. It is clear that norm convergence implies strong convergence and
that strong convergence implies weak convergence. Therefore, for a set A ⊂ B(H )
one has

A ⊂ An ⊂ As ⊂ Aw
,

where An
denotes the closure of A in the norm topology, or norm closure, As

the
strong closure, and Aw

the weak closure. In general, these closures will differ from
each other. It is easy to see that As

, Aw ⊂ A◦◦ since multiplication in B(H ) is easily
seen to be separately continuous with respect to the weak topology. Hence every von
Neumann algebra is strongly and weakly closed.

Theorem 8.2.1 (von Neumann’s Bicommutant Theorem). Let H be a Hilbert space,
and let A be a unital *-subalgebra of B(H ). Then As = Aw = A◦◦.

Proof It suffices to show that A◦◦ ⊂ As
. LetT ∈ A◦◦. We want to show thatT lies in

the strong closure of A. A neighborhood base of zero in the strong topology is given
by the system of all sets of the form {S ∈ B(H ) : ‖Svj‖ < ε, j = 1, . . . , n} where
v1, . . . , vn are arbitrary vectors in H and ε > 0. So it suffices to show that for given
v1, . . . , vn ∈ H and ε > 0 there is a ∈ A with ‖T vj − avj‖ < ε for j = 1, . . . n.
For this let B(H ) act diagonally on Hn. The commutant of A in B(Hn) is the algebra
of all n × n matrices with entries in A◦, and the bicommutant of A in B(Hn) is
the algebra A◦◦I , where I = In denotes the n× n unit matrix. Consider the vector
v = (v1, . . . , vn)t in Hn. The closure of Av in Hn is a closed, A-stable subspace
of Hn. As A is a *-algebra, the orthogonal complement (Av)⊥ is A-stable as well;
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therefore the orthogonal projection P onto the closure of Av is in the commutant of
A in B(Hn). It follows that T ∈ A◦◦I commutes with P and leaves Av stable. One
concludes T v ∈ Av, and so there is, to given ε > 0, an element a of A such that
‖T v − av‖ < ε, which implies the desired ‖T vj − avj‖ < ε for j = 1, . . . , n. �

The Bicommutant Theorem says that for a *-subalgebra A of B(H ) the von Neumann
algebra generated by A equals the weak or strong closure of A.

Lemma 8.2.2 A von Neumann algebra A is generated by its unitary elements.

Proof Let A be a von Neumann algebra in B(H ). Let AR be the real vector space
of self-adjoint elements, then A = AR + iAR. Let T ∈ AR, and let f ∈ S(R) be
such that f (x) = x for x in the (bounded) spectrum of T (see Exercise 8.1). By
Proposition 5.1.2,

T = f (T ) =
∫

R

f̂ (y)e2πiyT dy.

The unitary elements e2πiyT ∈ B(H ) are power series in T , so belong to the von
Neumann algebra A, and every operator that commutes with the e2πiyT will commute
with T , so T belongs to the von Neumann algebra generated by the unitaries e2πiyT .

Let B1 be the unit ball in B(H ), i.e., the set of all T ∈ B(H ) with ‖T ‖op ≤ 1.

Lemma 8.2.3 B1 is weakly compact.

Proof For r ≥ 0 and z ∈ C let B̄r (z) be the closed ball around z of radius r . For
T ∈ B1 and v, w ∈ H , one has |〈T v, w〉| ≤ ‖v‖‖w‖, so the map

ψ : B1 →
∏

v,w∈H
B̄‖v‖‖w‖(0)

with ψ(T )v,w = 〈T v, w〉 embeds B1 into the Hausdorff space on the right, which
is compact by Tychonov’s Theorem A.7.1. The weak topology is induced by ψ , so
B1 is weakly compact if we can show that the image of ψ is closed. We claim that
this image equals the set A of all elements x of the product such that (v, w) �→ xv,w

is linear in v and conjugate linear in w. Since convergence in the product space is
component-wise, this set is closed. Given x ∈ A and w ∈ H , the map αv : w �→ xv,w

is a linear functional on H with ‖αv‖ ≤ ‖v‖ and hence there exists an element
T v ∈ H such that xv,w = 〈T v, w〉 for all w ∈ H . One then checks that v �→ T v
defines an element in B1 such that ψ(T ) = x. �

8.3 Representations

A unitary representation (π ,Vπ ) of a locally compact group G is called a factor
representation if the von Neumann algebra VN(π ) generated by π (G) ⊂ B(Vπ ) is a
factor. So π is a factor representation if and only if π (G)◦ ∩ π (G)◦◦ = C Id.
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Lemma 8.3.1 Every irreducible representation is a factor representation.

Proof It follows from the Lemma of Schur 6.1.7 that VN(π ) = B(Vπ ) for every
irreducible representation π . �

Definition Two unitary representations π1,π2 of G are called quasi-equivalent if
there is an isomorphism of *-algebras

φ : VN(π1) → VN(π2)

satisfying φ(π1(x)) = π2(x) for every x ∈ G.

Example 8.3.2 A given unitary representation π is quasi-equivalent to the direct
sum representation π⊕π . This follows from the general fact that any von-Neumann

algebra A ⊂ B(H ) is isomorphic to A
(

1
1

)
⊆ B
(
H 2
)
. (Compare with the proof

of von Neumann’s Bicommutant Theorem.)

Lemma 8.3.3 Two irreducible unitary representations of a locally compact group
are quasi-equivalent if and only if they are unitarily equivalent.

Proof Let the unitary representations (π ,Vπ ) and (η,Vη) be unitarily equivalent,
i.e., there is a unitary intertwining operator T : Vπ → Vη. Then T induces an
isomorphism VN(π ) → VN(η) by mapping S to T ST −1. This shows that π and
η are also quasi-equivalent. Conversely, let (π ,Vπ ) and (η,Vη) be two irreducible
unitary representations of G, and let φ : VN(π ) → VN(η) be an isomorphism of C∗-
algebras such that φ(π (x)) = η(x) for all x ∈ G. For u, v ∈ Vπ let Tu,v : Vπ → Vπ

be given by Tu,v(x)
def=〈x, u〉v. Then Tu,vTw,z = 〈z, u〉Tw,v, and T ∗

u,v = Tv,u. Let (ej )j∈I
be an orthonormal basis of Vπ . For each j ∈ I the map Pj = Tej ,ej is the orthogonal
projection onto the one dimensional space Cej and Tej ,ek is an isometry from Cej to
Cek and is zero on Cei for i 
= j . The Pj are pairwise orthogonal projections that
add up to the identity in the strong topology. The same holds for the images φ(Pj ).
Let Vη,j = φ(Pj )Vη. Then Vη is the direct orthogonal sum of the Vη,j . We claim
that φ(Tej ,ek ) is an isometry from Vη,j to Vη,k and zero on Vη,i for i 
= j . For this let
x, y ∈ Vη,j , then

〈
φ(Tej ,ek )x,φ(Tej ,ek )y

〉 = 〈φ(Tek ,ej Tej ,ek )x, y
〉

= 〈φ(Tej ,ej )x, y
〉 = 〈x, y〉.

Now fix some j0 ∈ I and choose fj0 ∈ Vη,j0 of norm one. For j 
= j0 set fj =
φ(Tej0 ,ej )fj0 . Consider the isometry S : Vπ → Vη given by S(ej ) = fj . It then
follows that STej ,ek = φ(Tej ,ek )S. The C∗-algebra VN(π ) = B(Vπ ) is generated by
the Tej ,ek , so S is an intertwining operator onto a closed subspace of Vη. As η is
irreducible, S must be surjective, i.e., unitary. �
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Definition A factor representation π is called a type-I representation if π is quasi-
equivalent to a representation π1 whose von Neumann algebra VN(π1) is a type-I
factor. Then π is of type I if and only if π is quasi-equivalent to an irreducible
representation.

Example 8.3.4 We here give an example of a factor representation, which is not of
type I. Let � be a non-trivial group with the property that every conjugacy class in
� is infinite or trivial. So the only finite conjugacy class in � is {1}. An example of
this instance is the free group F2 generated by two elements. Another example is the
group SL2(Z)/± 1.

Consider the regular right representation R of � on the Hilbert space H = �2(�).
Let VN(R) be the von Neumann algebra generated by R(�) ⊂ B(�2(�)).

Proposition 8.3.5 VN(R) is a factor, which is not of type I.

Proof We show that the commutant VN(R)◦ is the von Neumann algebra generated
by the regular left representation L of �. For this consider the natural orthonormal
basis (δγ )γ∈� , which is defined by δγ (τ ) = 1 if γ = τ and zero otherwise. One
has Rγ δγ0 = δγ0γ−1 and Lγ δγ0 = δγ γ0 . Let T ∈ VN(R)◦, so T Rγ = Rγ T for
every γ ∈ �. Then T (δ1) = ∑γ cγ δγ for some coefficients cγ ∈ C satisfying∑

γ |cγ |2 < ∞. For γ0 ∈ � arbitrary one gets

T (δγ0 ) = T
(
Rγ−1

0
δ1

)
= Rγ−1

0
T (δ1)

= Rγ−1
0

∑
γ

cγ δγ =
∑
γ

cγ δγ γ0

=
∑
γ

cγ Lγ (δγ0 ),

so T = ∑γ cγ Lγ , where the sum converges in the strong topology. Hence T ∈
VN(L). As trivially VN(L) ⊂ VN(R)◦ we get VN(R)◦ = VN(L). This means
that VN(L) and VN(R) are each other’s commutants. In particular, it follows that
each element of VN(L) can be written as a point-wise convergent sum of the form∑

γ cγ Lγ , and likewise each element of VN(R) can be written as a sum of the
form
∑

γ dγRγ . We show that VN(R) is a factor. For this we have to show that the
intersection of VN(R) and VN(L) is trivial. So let T ∈ VN(L) ∩ VN(R). Then we
have two representations ∑

γ

cγ Lγ = T =
∑
γ

dγRγ .

In particular,
∑

γ cγ δγ = T (δ1) = ∑γ dγ δγ−1 , which implies dγ = cγ−1 , so for
α ∈ �, on the one hand,

T (δα) =
∑
γ

cγ Lγ δα =
∑
γ

cγ δγα =
∑
γ

cγα−1δγ
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and on the other,

T (δα) =
∑
γ

cγ Rγ−1δα =
∑
γ

cγ δαγ =
∑
γ

cα−1γ δγ .

This means that the function γ �→ cγ is constant on conjugacy classes. Since the
sums must converge, this function can only be supported on finite conjugacy classes.
As there is only one of them, it follows that cγ = 0 except for γ = 1, so T ∈ C Id.

Finally we show that VN(R) is not of type I. For this consider the map σ : VN(R) →
C; T �→ 〈T δ1, δ1〉. This map is evidently continuous with respect to the strong and
weak topologies. We show σ (ST ) = σ (T S) for all S, T ∈ VN(R). By continuity it
suffices to show this for S = Rγ and T = Rτ , where γ , τ ∈ �. Then we have

σ (ST ) = σ (RγRτ ) = σ (Rγτ ) = 〈δγ τ , δ1
〉 =
{

1 if γ τ = 1,

0 otherwise.

The last condition is symmetric in γ and τ , since in the group � we have
γ τ = 1 ⇔ τγ = 1, so the same calculation gives σ (ST ) = σ (T S) as claimed.

We now show that for every selfadjoint projection P 
= 0 in VN(R) one has 0 <

σ (P ) ≤ 1. We first observe that for T =∑γ∈� cγRγ ∈ VN(R) one has σ (T ) = c1.

Next let P be a selfadjoint projection, which is the same as an orthogonal projection.
So it satisfies P ∗ = P = P 2. We write P =∑γ∈� cγRγ and we get

∑
γ

cγ Rγ = P = P 2 =
∑
γ

(∑
δ

cδcδ−1γ

)
Rγ .

So in particular c1 = ∑δ cδcδ−1 . The condition P = P ∗ = ∑γ cγ−1Rγ implies
cγ−1 = cγ and therefore σ (P ) = c1 = ∑γ |cγ |2. This implies c1 > 0 and c1 ≥ c2

1,
so 1 ≥ c1.

Now assume there is a *-isomorphism φ : B(H ) → VN(R) for some Hilbert space
H . Since VN(R) is infinite-dimensional, the space H is infinite-dimensional. So let
(ej )j∈N be an orthogonal sequence in H . Let Qj be the orthogonal projection with
image Cej and let Pj = φ(Qj ). Then Pj is a selfadjoint projection. Further Qj is
conjugate to Qk in B(H ), since there are unitary operators interchanging ej and ek .
Then Pj and Pk are conjugate in VN(R) and therefore σ (Pj ) = σ (Pk) is a fixed
number c > 0. Now Q1 + · · · + Qn again is a selfadjoint projection, so the same
holds for P1 + · · · + Pn. So we have

1 ≥ σ (P1 + · · · + Pn) = σ (P1) + · · · + σ (Pn) = nc,

Since this holds foe every n, we get c = 0, a contradiction! Hence φ does not exist
and VN(R) is not of type I. �
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8.4 Hilbert Integrals

A family of vectors (ξi)i∈I in a Hilbert space H is called a quasi-orthonormal basis
if the non-zero members of the family form an orthonormal basis of H .

Let X be a set and D a σ -algebra of subsets of X. A Hilbert bundle over X is a family
of Hilbert spaces (Hx)x∈X and a family of maps ξi : X →⋃x∈X Hx (disjoint union)
with ξi(x) ∈ Hx , such that for each x ∈ X the family (ξi(x)) is a quasi-orthonormal
basis of Hx , and for each i ∈ I the set of all x ∈ X with ξi(x) = 0 is measurable.

A section is a map s : X → ⋃x∈X Hx with s(x) ∈ Hx for every x ∈ X. A section
is called measurable section if for every j ∈ I the function x �→ 〈s(x), ξj (x)

〉
is

measurable on X, and there exists a countable set Is ⊂ I , such that the function
x �→ 〈s(x), ξi(x)〉 vanishes identically for every i /∈ Is .

Let μ be a measure on D. A measurable section s is called a nullsection if it vanishes
outside a set of measure zero. The direct Hilbert integral is the vector space of all
measurable sections s, which satisfy

‖s‖2 def=
∫
X

‖s(x)‖2 dμ(x) < ∞

modulo the space of nullsections.

This space, written as H = ∫
X
Hx dμ(x), is a Hilbert space with the inner product

〈s, t〉 = ∫
X
〈s(x), t(x)〉 dμ(x). To show the completeness, for i ∈ I let Xi be the

set of all x ∈ X with ξi(x) 
= 0. We get a map Pi : H → L2(Xi) given by
Pi(s)(x) = 〈s(x), ξi(x)〉. These maps combine to give a unitary isomorphism,

H =
∫
X

Hx dμ(x)
∼=−→
⊕̂
i∈I

L2(Xi).

Example 8.4.1 Direct sums are special cases of direct integrals. Let H =⊕j∈I Hj

be a direct sum of separable Hilbert spaces. This space equals the direct integral∫
X
Hx dμ(x) with X = I and μ the counting measure on X.

Let (Hx , ξj ) be a Hilbert bundle and μ a measure on X. Let G be a locally compact
group, and for every x ∈ X let ηx be a unitary representation of G on Hx , such that
for every g ∈ G and all i, j ∈ I the map x �→ 〈ηx(g)ξi(x), ξj (x)

〉
is measurable. Then

(η(g)s)(x)
def= ηx(g)s(x) defines a unitary representation of G on H = ∫

X
Hx dμ(x).

Example 8.4.2 LetAbe a locally compact abelian group with dual group Â equipped
with the Plancherel measure. Each character χ : A → T = U (C) determines a
one-dimensional representation of A on Hχ = C. Consider the constant section
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ξ1(χ ) = 1 ∈ C = Hχ . Let ηχ (y) = χ (y). Then the direct integral satisfies∫
Â

Hχ dχ ∼= L2(Â)

with (η(y)ξ)(χ ) = χ (y)ξ (χ ). It follows then from the Plancherel Theorem 3.4.8 that
(η,L2(Â)) is unitarily equivalent to the left regular representation (L,L2(A)) of A

via the Fourier transform.

8.5 The Plancherel Theorem

A locally compact group G is called a type-I group if every factor representation of
G is of type I, i.e., is quasi-equivalent to an irreducible one.

Examples 8.5.1

• Abelian groups are of type I. For an abelian group A and a unitary representation
π of A, the von Neumann algebra VN(π ) is commutative. So, if VN(π ) is a
factor, it must be isomorphic to C, which means that π is quasi-equivalent to a
one-dimensional representation.

• Compact groups are of type I. For a compact group any unitary representation is
a direct sum of irreducible representations.

• Nilpotent Lie groups are of type I. See [BCD+72] Chapter VI.

• Semisimple Lie groups are of type I. See [HC76].

• A discrete group is of type I if and only if it contains a normal abelian subgroup
of finite index. See [Tho68].

Let G and H be locally compact groups, and let (π ,Vπ ), (σ ,Vσ ) be unitary rep-
resentations of G and H , respectively. On the Hilbert tensor product Vπ⊗̂Vσ

(see Appendix C.3) we define a representation π ⊗ σ of the product group G × H

by linear extension of
v ⊗ w �→ π (x)v ⊗ σ (y)w

for (x, y) ∈ G×H , v ∈ Vπ , and w ∈ Vσ .

Recall that the unitary dual Ĝ consists of all equivalence classes of irreducible unitary
representations of G. On Ĝ we will install a natural σ -algebra in the case that G has
a countable dense subset.

Lemma 8.5.2 Assume that G has a countable dense subset. Then every irreducible
unitary representation (π ,Vπ ) has countable dimension, i.e., the Hilbert space Vπ

has a countable orthonormal system.

Proof Let (π ,Vπ ) be an irreducible unitary representation of G. A subset T ⊂ Vπ is
called total, if the linear span of T is dense in Vπ . By the orthonormalization scheme
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it suffices to show that there is a countable total set in Vπ . Let 0 
= v ∈ Vπ . Then
the set π (G)v is total in Vπ , as Vπ is irreducible. Let D ⊂ G be a countable dense
subset. Then the set π (D)v is dense in π (G)v, hence also total in Vπ .

Assume thatG has a dense countable subset. For a countable cardinaln = 1, 2, . . .ℵ0,
let Hn denote a fixed Hilbert space of dimension n. For each class C in Ĝ we fix a
representative π ∈ C with representation space Hn, which exists by Lemma 8.5.2.
The cardinal n is uniquely determined by C = [π ] and is called the dimension of the
representation. Let Ĝn be the subset of Ĝ consisting of all classes [π] of dimension
n. On Ĝn we install the smallest σ -algebra making all maps [π ] �→ 〈π (g)v, w〉
measurable, where g ranges in G and v, w range over Hn. On Ĝ =⋃n Ĝn we install
the union σ -algebra.

The prescription η(x, y) = LxRy defines a unitary representation of G × G on the
Hilbert space L2(G). Note that if G is second countable, then it contains a dense
countable subset, i.e., is separable.

Theorem 8.5.3 Let G be a second countable, unimodular, locally compact group of
type I. There is a unique measure μ on Ĝ such that for f ∈ L1(G)∩L2(G) one has

‖f ‖2
2 =
∫
Ĝ

‖π (f )‖2
HS dμ(π ).

The map f �→ (π (f ))π extends to a unitary G×G equivariant map

L2(G) ∼=
∫
Ĝ

HS(Vπ ) dμ(π ),

where the representation of ηπ of G×G on the space of Hilbert-Schmidt operators
HS(Vπ ) is given by ηπ (x, y)(T ) = π (x)T π (y−1) for each π ∈ Ĝ and x, y ∈ G.

The proof is in [Dix96], 18.8.1.

This Plancherel Theorem generalizes the Plancherel Theorem in the abelian case,
Theorem 3.4.8, as well as the Peter-Weyl Theorem in the compact case, Theorems
7.2.1 and 7.2.4. Concrete examples for groups, which are neither abelian nor compact
will be given in Theorem 10.3.1 and Theorem 11.3.1.

8.6 Exercises

Exercise 8.1 For S > 0 show that there exists a function f : R → R which is
infinitely differentiable, of compact support and satisfies f (x) = x for |x| ≤ S.

(Hint: Let g(x) = 1 for |x| ≤ S+ 1 and g(x) = 0 otherwise. Let h = φ ∗ g for some
smooth Dirac function with support in [−1, 1]. Set f (x) = xh(x).)
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Exercise 8.2 Let V ,W be Hilbert spaces.

(a) For A ∈ B(V ) set α(A)(v ⊗ w) = A(v) ⊗ w. Show that α is a norm-preserving
*-homomorphism from B(V ) to B(V ⊗̂W ).

(b) Let β be the analogous map on the second factor. Show that α ⊗ β defines a
*-homomorphism from B(V ) ⊗ B(W ) to B(V ⊗̂W ).

(c) Show that the von Neumann algebra generated by the image of α⊗β equals the
entire B(V ⊗̂W ).

Exercise 8.3 Give an example of a set of bounded operators on a Hilbert space, for
which the norm-closure differs from the strong closure. Also give an example, for
which the strong and weak closures differ.

Exercise 8.4 Let H be a Hilbert space, and let P be the set of all orthogonal pro-
jections on H . Let Ts and Tw be the restrictions of the strong and weak topologies to
the set P . Show that Ts = Tw.

Exercise 8.5 Let H be a Hilbert space, and let U be the set of all unitary operators
on H . Let T ′

s and T ′
w be the restrictions of the strong and weak topologies to the set

U . Show that T ′
s = T ′

w.

Exercise 8.6 Show that not every unital C∗-algebra is isomorphic to a von Neumann
algebra.

(Hint: Consider an infinite dimensional Hilbert space H and the space K of compact
operators. The algebra A = K + CId is a C∗-algebra.)

Exercise 8.7 Let H be a Hilbert space, and let M ⊂ B(H ) be self-adjoint and
commutative, i.e., for S, T ∈ M one has S∗, T ∗ ∈ M and ST = T S. Show that the
bicommutant M◦◦ is commutative.

Exercise 8.8 For a von Neumann algebra A ⊂ B(H ) let A+ be the set of all finite
sums of elements of the form aa∗ for some a ∈ A. Show:

(a) A+ is a proper cone, i.e.:

A+ +A+ ⊂ A+, R
+A+ ⊂ A+, A+ ∩ (−A+) = 0.

(b) For a ∈ A one has

a ∈ A+ ⇔ ∃b ∈ A : a = bb∗, ⇔ a ≥ 0.

Exercise 8.9 Let A ⊂ B(H ) be a von Neumann algebra. A finite trace is a linear
map τ : A → C with τ (A+) ⊂ R

+ and τ (ab) = τ (ba) for all a, b ∈ A. Show:
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(a) Let τ be a finite trace on A = Mn(C). Then τ (a) = c tr (a) for some c ≥ 0.

(b) Let A = B(H ), where H is an infinite-dimensional Hilbert space. Then there is
no finite trace on A.

(c) Let � be a discrete group, and let A = VN(R). Then τ
(∑

γ∈� cγRγ

)
= c1 is a

finite trace on A.

Exercise 8.10 Show that a von Neumann algebra A is generated by all orthogonal
projections it contains.

Exercise 8.11 LetG be a locally compact group. For a unitary representation (π ,Vπ )
let its matrix coefficients be all continuous functions on G of the form

g �→ ψv,w(g)
def=〈π (g)v, w〉, v, w ∈ Vπ .

LetG be of type I. Letπ be a unitary representation such that all its matrix coefficients
are in L2(G). Show that π is a direct sum of irreducible representations.
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