Chapter 8
Direct Integrals

Direct integrals are a generalization of direct sums. For a compact group every
representation is a direct sum of irreducibles. This property fails in general for
non-compact groups. The best one can get for general groups is a direct inte-
gral decomposition into factor representations. The latter is a notion more general
than irreducibility. For nice groups these notions coincide, and then every unitary
representation is a direct integral of irreducible representations.

8.1 Von Neumann Algebras

Let H be a Hilbert space. For a subset M of the space of bounded operators B(H)
on H, define the commutant to be

M EAT e B(H): Tm = mT Ym € M).

So the commutant is the centralizer of M in B(H). If M ¢ N C B(H), then
N° C M°. We write M°° for the bi-commutant, i.e., the commutant of M°. For a
subset M of B(H) we define its adjoint set to be the set M* of all adjoints m™ where
m isin M. The set M is called a self-adjoint set it M = M*.

We define a von Neumann algebra to be a sub-*-algebra A of B(H) that satisfies
A°° = A. A von Neumann algebra is closed in the operator norm, and so every von
Neumann algebra is a C*-algebra. The converse does not hold (See Exercise 8.6).

For a subset M C B(H), one has M C M°° and hence M°°° C M°. Since, on the
other hand, also M° C (M°)°° = M°°°, it follows M° = M°°°, so M° is a von
Neumann algebra if M is a self-adjoint set. In particular, for a self-adjoint set M
the algebra M°° is the smallest von Neumann algebra containing M, called the von
Neumann algebra generated by M.

Let A C B(H) be a von Neumann algebra. Then Z(A) = AN A° is the center of A,
i.e., the set of elements a of A that commute with every other element of A. A von
Neumann algebra A is called a factor if the center is trivial, i.e., if Z(A) = CId.
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Examples 8.1.1

e A = B(H) is a factor, this is called a type-I factor.
+ A=CIdis afactor.

+ The algebra of diagonal matrices in My(C) = B(C?) is a von Neumann algebra,
which is not a factor.

e Let V, W be two Hilbert spaces. The algebra B(V) ® B(W) acts on the Hilbert
tensor product VW via A ® B(v ® w) = A(v) ® B(w). Then the von Neu-
mann algebra generated by the image of B(V) ® B(W) is the entire B(V&W)
(See Exercise 8.2).

8.2 Weak and Strong Topologies

Let H be a Hilbert space. On B(H) one has the topology induced by the operator
norm, called the norm topology. There are other topologies as well. For instance,
every v € H induces a seminorm on B(H) through T + || Tv|. The topology given
by this family of seminorms is called the strong topology on B(H). Likewise, any two
v,w € H induce a seminorm by 7 +> |(Tv,w)|. The topology thus induced is called
the weak topology. It is clear that norm convergence implies strong convergence and
that strong convergence implies weak convergence. Therefore, for a set A C B(H)
one has
AcA c A c A,

where A" denotes the closure of A in the norm topology, or norm closure, A the
strong closure, and A" the weak closure. In general, these closures will differ from
each other. It is easy to see that A’ A" c A% since multiplication in B(H) is easily
seen to be separately continuous with respect to the weak topology. Hence every von
Neumann algebra is strongly and weakly closed.

Theorem 8.2.1 (von Neumann’s Bicommutant Theorem). Let H be a Hilbert space,
and let A be a unital *-subalgebra of B(H). Then A =A" = A~

Proof Tt suffices to show that A°° C A’ LetT € A°°. We want to show that T lies in
the strong closure of .A. A neighborhood base of zero in the strong topology is given
by the system of all sets of the form {S € B(H) : ||Sv;|| <&, j =1,...,n} where
vi,...,V, are arbitrary vectors in H and ¢ > 0. So it suffices to show that for given
Vi,...,vs € Hand e > O thereis a € Awith |Tv; —av;| <eforj=1,...n.
For this let B(H) act diagonally on H". The commutant of .4 in B(H") is the algebra
of all n x n matrices with entries in .A°, and the bicommutant of A in B(H") is
the algebra A°°I, where I = I, denotes the n x n unit matrix. Consider the vector
v = (v,...,v,)" in H". The closure of Av in H" is a closed, .A-stable subspace
of H". As A is a *-algebra, the orthogonal complement (Av)* is A-stable as well;
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therefore the orthogonal projection P onto the closure of Av is in the commutant of
Ain B(H"). It follows that T € A°°I commutes with P and leaves Ay stable. One
concludes Tv € Av, and so there is, to given ¢ > 0, an element a of 4 such that
ITv — av|| < &, which implies the desired ||Tv; —av;|| <sforj=1,...,n. O

The Bicommutant Theorem says that for a *-subalgebra A of B(H ) the von Neumann
algebra generated by .4 equals the weak or strong closure of A.

Lemma 8.2.2 A von Neumann algebra A is generated by its unitary elements.

Proof Let A be a von Neumann algebra in B(H). Let Ag be the real vector space
of self-adjoint elements, then A = Agr + iAg. Let T € Ag, and let f € S(R) be
such that f(x) = x for x in the (bounded) spectrum of T (see Exercise 8.1). By
Proposition 5.1.2,

T = f(T) = /R FOIETT dy.

The unitary elements e?™7

Neumann algebra A, and every operator that commutes with the e
with T, so T belongs to the von Neumann algebra generated by the unitaries e

€ B(H) are power series in 7', so belong to the von

27iyT will commute
2miyT

Let B; be the unit ball in B(H), i.e., the set of all T € B(H) with || T ||op < 1.
Lemma 8.2.3 B is weakly compact.

Proof Forr > 0and z € C let B,.(z) be the closed ball around z of radius r. For
T € Byandv,w € H, one has [(Tv,w)| < |[v|[|lw]|, so the map

v:B = [ Bm©
v,weH
with ¥(T),,, = (Tv,w) embeds B, into the Hausdorff space on the right, which
is compact by Tychonov’s Theorem A.7.1. The weak topology is induced by v, so
B, is weakly compact if we can show that the image of i is closed. We claim that
this image equals the set A of all elements x of the product such that (v, w) — x,,,,
is linear in v and conjugate linear in w. Since convergence in the product space is
component-wise, this set is closed. Givenx € Aandw € H,the map o, : w = X,
is a linear functional on H with ||, || < ||v|]| and hence there exists an element
Tv € H such that x,,, = (Tv,w) for all w € H. One then checks that v > Tv
defines an element in B; such that y(T) = x. O

8.3 Representations

A unitary representation (i, V) of a locally compact group G is called a factor
representation if the von Neumann algebra VN(ir) generated by 7 (G) C B(V;)isa
factor. So 7 is a factor representation if and only if 7 (G)° N 7 (G)*° = CId.
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Lemma 8.3.1 Every irreducible representation is a factor representation.

Proof 1t follows from the Lemma of Schur 6.1.7 that VN(r) = B(V,) for every
irreducible representation 7. m|

Definition Two unitary representations w1, w, of G are called quasi-equivalent if
there is an isomorphism of *-algebras

¢ : VN(;) — VN(m3)

satisfying ¢ (1 (x)) = mo(x) forevery x € G.

Example 8.3.2 A given unitary representation m is quasi-equivalent to the direct
sum representation 7 @ . This follows from the general fact that any von-Neumann

cB (H 2). (Compare with the proof

algebra A C B(H) is isomorphic to A (1 |

of von Neumann’s Bicommutant Theorem.)

Lemma 8.3.3 Two irreducible unitary representations of a locally compact group
are quasi-equivalent if and only if they are unitarily equivalent.

Proof Let the unitary representations (i, V) and (», V;)) be unitarily equivalent,
i.e., there is a unitary intertwining operator 7 : V; — V,. Then T induces an
isomorphism VN(r) — VN(57) by mapping S to T ST ~'. This shows that 7 and
n are also quasi-equivalent. Conversely, let (r, V) and (n, V;)) be two irreducible
unitary representations of G, and let ¢ : VN(;r) — VN(n) be an isomorphism of C*-
algebras such that ¢(m(x)) = n(x) forallx € G. Foru,v e V; letT,, : V; — V;
be given by T,,,(x)=(x,u)v. Then T,,, Ty, = (z,u) Ty, and T, = Ty, Let (¢))es
be an orthonormal basis of V. Foreach j € I the map P; = T, ., is the orthogonal
projection onto the one dimensional space Ce; and T, ., is an isometry from Ce; to
Cey and is zero on Ce; for i # j. The P; are pairwise orthogonal projections that
add up to the identity in the strong topology. The same holds for the images ¢(P;).
Let V, ; = ¢(P;)V,. Then V, is the direct orthogonal sum of the V; ;. We claim
that A(Te; o) is an isometry from V; ; to V,,; and zero on V,; for i # j. For this let
x,y €V, ;, then

(T2, 0%, B (Te; 0)Y) = (S (Tepo; Tey )%, V)
= <¢(Tej,ej)x’ Y> = (X, }’)

Now fix some jo € I and choose f}, € V, j, of norm one. For j # jj set f; =
(e}, ;) fjo- Consider the isometry S : V, — V, given by S(¢;) = f;. It then
follows that ST, o, = (T, ¢,)S. The C*-algebra VN(r) = B(Vy) is generated by
the 7, ., so § is an intertwining operator onto a closed subspace of V,. As n is
irreducible, S must be surjective, i.e., unitary. O
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Definition A factor representation r is called a type-I representation if 7 is quasi-
equivalent to a representation r; whose von Neumann algebra VN(ir}) is a type-I
factor. Then m is of type I if and only if 7 is quasi-equivalent to an irreducible
representation.

Example 8.3.4 We here give an example of a factor representation, which is not of
type I. Let I' be a non-trivial group with the property that every conjugacy class in
I" is infinite or trivial. So the only finite conjugacy class in I" is {1}. An example of
this instance is the free group F, generated by two elements. Another example is the
group SL,(Z)/ £ 1.

Consider the regular right representation R of I' on the Hilbert space H = ¢*(I").
Let VN(R) be the von Neumann algebra generated by R(I") C B(AI)).

Proposition 8.3.5 VN(R) is a factor, which is not of type I.

Proof We show that the commutant VN(R)® is the von Neumann algebra generated
by the regular left representation L of I". For this consider the natural orthonormal
basis (8, ),er, which is defined by 8,,(tr) = 1 if y = t and zero otherwise. One
has R,d,, = §,,-1 and L,8,, = §,,. Let T € VN(R)°, so TR, = R, T for
every y € I'. Then T(6;) = Zy ¢, 8, for some coefficients ¢, € C satisfying
>, ley|* < oc. For yy € T arbitrary one gets

T(,) =T (Ryo-uS]) = R, T(5)

=R, ZCVSV = ch‘swu
v v

= Z ¢y Ly (8y,),
y

soT =) c,L,, where the sum converges in the strong topology. Hence T €
VN(L). As trivially VN(L) C VN(R)® we get VN(R)° = VN(L). This means
that VN(L) and VN(R) are each other’s commutants. In particular, it follows that
each element of VN(L) can be written as a point-wise convergent sum of the form
>, ¢yLy, and likewise each element of VN(R) can be written as a sum of the
form Zy d, R, . We show that VN(R) is a factor. For this we have to show that the
intersection of VN(R) and VN(L) is trivial. So let T € VN(L) N VN(R). Then we

have two representations
ey, =T =) dyR,.
¥ ¥

In particular, } ¢,8, = T(8;) = >_, dy8,-1, which implies d, = c,-1, so for
o € I', on the one hand,

T(@S,) = ZCVLVSO, = chsw = chlay
Y

14 14
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and on the other,
T@o) =Y cyRy18a =Y Cyday = I Cum1,8,.
Y y Y

This means that the function y + ¢, is constant on conjugacy classes. Since the
sums must converge, this function can only be supported on finite conjugacy classes.
As there is only one of them, it follows that ¢, = O exceptfory = 1,50 T € Cld.

Finally we show that VN(R) is not of type I. For this consider the map o : VN(R) —
C; T +— (Té;,61). This map is evidently continuous with respect to the strong and
weak topologies. We show o (ST) = o(T'S) for all S, T € VN(R). By continuity it
suffices to show this for S = R, and T = R,, where y, 7 € I". Then we have

1 ifyr=1,
0(ST) = 0 (RyR) = 0(Rye) = (8,r.81) = | o Otgerwise

The last condition is symmetric in y and 7, since in the group I' we have
yT =1 <% 1ty =1, so the same calculation gives o (ST) = o (T S) as claimed.

We now show that for every selfadjoint projection P #% 0 in VN(R) one has 0 <
o (P) < 1. We first observe that for T = Zyel" ¢y R, € VN(R) one has o(T) = c;.
Next let P be a selfadjoint projection, which is the same as an orthogonal projection.
So it satisfies P* = P = P2. We write P = ) _.. ¢, R, and we get

yel

v y \s
So in particular ¢; = }_; cscs-1. The condition P = P* = 3 ¢ -R, implies
c¢,-1 = ¢, and therefore o(P) = ¢ = Zy |cy|2. This implies ¢; > 0 and ¢; > c%,

sol > c.

Now assume there is a *-isomorphism ¢ : B(H) — VN(R) for some Hilbert space
H. Since VN(R) is infinite-dimensional, the space H is infinite-dimensional. So let
(ej)jen be an orthogonal sequence in H. Let Q; be the orthogonal projection with
image Ce; and let P; = ¢(Q;). Then P; is a selfadjoint projection. Further Q; is
conjugate to Qy in B(H), since there are unitary operators interchanging e; and e;.
Then P; and P, are conjugate in VN(R) and therefore o(P;) = o (Fy) is a fixed
number ¢ > 0. Now Q; + --- + O, again is a selfadjoint projection, so the same
holds for P; + --- + P,. So we have

12 0P+ + P)=0(P)+ - +0(P) =nc,

Since this holds foe every n, we get ¢ = 0, a contradiction! Hence ¢ does not exist
and VN(R) is not of type L. O
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8.4 Hilbert Integrals

A family of vectors (§;);c; in a Hilbert space H is called a quasi-orthonormal basis
if the non-zero members of the family form an orthonormal basis of H.

Let X be a set and D a o -algebra of subsets of X. A Hilbert bundle over X is a family
of Hilbert spaces (H,),cx and a family of maps §; : X — Ux <x H. (disjoint union)
with &;(x) € H,, such that for each x € X the family (§;(x)) is a quasi-orthonormal
basis of H,, and for each i € I the set of all x € X with &;(x) = 0 is measurable.

A sectionisamaps : X — Uxex H, with s(x) € H, for every x € X. A section
is called measurable section if for every j € [ the function x — (s(x), & j(x)) is
measurable on X, and there exists a countable set I; C I, such that the function
x > (s(x), & (x)) vanishes identically for every i ¢ I;.

Let i be a measure on D. A measurable section s is called a nullsection if it vanishes
outside a set of measure zero. The direct Hilbert integral is the vector space of all
measurable sections s, which satisfy

]2 & f IsCOI? dpux) < oo
X

modulo the space of nullsections.

This space, written as H = f y Hxdu(x), is a Hilbert space with the inner product
(s,t) = fx (s(x),t(x)) du(x). To show the completeness, for i € I let X; be the
set of all x € X with &(x) # 0. We get amap P; : H — L*(X;) given by
Pi(s)(x) = (s(x), & (x)). These maps combine to give a unitary isomorphism,

H= | H.d ;/\sz,-.
/X uix) — EPLix)

iel

Example 8.4.1 Direct sums are special cases of direct integrals. Let H = jer Hj
be a direct sum of separable Hilbert spaces. This space equals the direct integral
fx H, du(x) with X = I and p the counting measure on X.

Let (H,,&;) be a Hilbert bundle and u a measure on X. Let G be a locally compact
group, and for every x € X let n, be a unitary representation of G on H,, such that
forevery g € Gandalli, j € I themapx — <77x(g)§,-(x), Sj(x)> is measurable. Then

(n(g)s)(x) o nx(g)s(x) defines a unitary representation of G on H = fx H, du(x).

Example 8.4.2 Let A be alocally compact abelian group with dual group A equipped
with the Plancherel measure. Each character ¥ : A — T = U(C) determines a
one-dimensional representation of A on H, = C. Consider the constant section
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&1(x) =1eC=H,.Letn,(y) = x(y). Then the direct integral satisfies

/AHX dy = L*(A)
A

with (n(»)§)(x) = x () (x). It follows then from the Plancherel Theorem 3.4.8 that
(n, L>(A)) is unitarily equivalent to the left regular representation (L, L>(A)) of A
via the Fourier transform.

8.5 The Plancherel Theorem

A locally compact group G is called a type-I group if every factor representation of
G is of type [, i.e., is quasi-equivalent to an irreducible one.

Examples 8.5.1

¢ Abelian groups are of type . For an abelian group A and a unitary representation
m of A, the von Neumann algebra VN(rr) is commutative. So, if VN(rr) is a
factor, it must be isomorphic to C, which means that 7 is quasi-equivalent to a
one-dimensional representation.

» Compact groups are of type I. For a compact group any unitary representation is
a direct sum of irreducible representations.

* Nilpotent Lie groups are of type 1. See [BCD+72] Chapter VI.
¢ Semisimple Lie groups are of type I. See [HC76].

* A discrete group is of type I if and only if it contains a normal abelian subgroup
of finite index. See [Tho68].

Let G and H be locally compact groups, and let (7, V), (o, V) be unitary rep-
resentations of G and H, respectively. On the Hilbert tensor product V, &V,
(see Appendix C.3) we define a representation 7 ® o of the product group G x H
by linear extension of

VAW > m(x)v o (y)w

for (x,y) e G x H,ve V,,andw € V.

Recall that the unitary dual G consists of all equivalence classes of irreducible unitary
representations of G. On G we will install a natural o -algebra in the case that G has
a countable dense subset.

Lemma 8.5.2 Assume that G has a countable dense subset. Then every irreducible
unitary representation (i, V;) has countable dimension, i.e., the Hilbert space V,
has a countable orthonormal system.

Proof Let (i, V;)be an irreducible unitary representation of G. A subset 7 C V is
called rotal, if the linear span of 7T is dense in V. By the orthonormalization scheme
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it suffices to show that there is a countable total set in V;. Let 0 %= v € V. Then
the set 7(G)v is total in V,,, as V,; is irreducible. Let D C G be a countable dense
subset. Then the set 7(D)v is dense in 7 (G)v, hence also total in V.

Assume that G has a dense countable subset. For a countable cardinal n = 1/,\2, ... R,
let H, denote a fixed Hilbert space of dimension n. For each class C in G we fix a
representative w € C with representation space H,,, which exists by Lemma 8.5.2.
The cardinal n is uniquely determined by C = [r] and is called the dimension of the
representatlon Let Gn be the subset of G consisting of all classes [r] of dimension
n. On G we install the smallest o-algebra making all maps [7] — (7(g)v,w)
measurable, where g ranges in G and v, w range over H,. On G = | J, G, we install
the union o -algebra.

The prescription n(x, y) = L, R, defines a unitary representation of G x G on the
Hilbert space L?(G). Note that if G is second countable, then it contains a dense
countable subset, i.e., is separable.

Theorem 8.5.3 Let G be a second countable, unimodular, locally compact group of
type I. There is a unique measure i1 on G such that for f € L'(G) N L*(G) one has

I£1I3 = fé 7w (s d ().

The map f +— (w(f))r extends to a unitary G x G equivariant map
14G) = [ HS)dun)
G
where the representation of 1y of G x G on the space of Hilbert-Schmidt operators
HS (V) is given by n, (x, y)(T) = n(x)TJT(y’l)for each 7w € G and x ,y€G.

The proof is in [Dix96], 18.8.1.

This Plancherel Theorem generalizes the Plancherel Theorem in the abelian case,
Theorem 3.4.8, as well as the Peter-Weyl Theorem in the compact case, Theorems
7.2.1 and 7.2.4. Concrete examples for groups, which are neither abelian nor compact
will be given in Theorem 10.3.1 and Theorem 11.3.1.

8.6 Exercises

Exercise 8.1 For § > 0 show that there exists a function f : R — R which is
infinitely differentiable, of compact support and satisfies f(x) = x for |x| < S.

(Hint: Let g(x) = 1 for |[x| < S+ 1 and g(x) = 0 otherwise. Let h = ¢ * g for some
smooth Dirac function with support in [—1, 1]. Set f(x) = xh(x).)



162 8 Direct Integrals

Exercise 8.2 Let V, W be Hilbert spaces.

(a) For A € B(V) set a(A)(v ® w) = A(v) ® w. Show that « is a norm-preserving
*-homomorphism from B(V) to B(V&W).

(b) Let B be the analogous map on the second factor. Show that « ® g defines a
*-homomorphism from B(V) ® B(W) to B(VRW).

(c) Show that the von Neumann algebra generated by the image of @ ® 8 equals the
entire B(VRW).

Exercise 8.3 Give an example of a set of bounded operators on a Hilbert space, for
which the norm-closure differs from the strong closure. Also give an example, for
which the strong and weak closures differ.

Exercise 8.4 Let H be a Hilbert space, and let P be the set of all orthogonal pro-
jections on H. Let 7; and 7, be the restrictions of the strong and weak topologies to
the set P. Show that 7, = 7,,.

Exercise 8.5 Let H be a Hilbert space, and let U/ be the set of all unitary operators
on H.Let 7, and 7, be the restrictions of the strong and weak topologies to the set
U. Show that 7] =T},

Exercise 8.6 Show that not every unital C*-algebra is isomorphic to a von Neumann
algebra.

(Hint: Consider an infinite dimensional Hilbert space H and the space K of compact
operators. The algebra A = K 4 CId is a C*-algebra.)

Exercise 8.7 Let H be a Hilbert space, and let M C B(H) be self-adjoint and
commutative, i.e., for S,7 € M one has S*,T* € M and ST = T S. Show that the
bicommutant M°° is commutative.

Exercise 8.8 For a von Neumann algebra A C B(H) let A* be the set of all finite
sums of elements of the form aa* for some a € A. Show:

(a) AT is a proper cone, i.e.:
AV + AT C AT, RYAT C AT, ATn(-AhH=0.
(b) Fora € A one has

ac At & 3IbeA:a=bb*, & a=>0.

Exercise 8.9 Let A C B(H) be a von Neumann algebra. A finite trace is a linear
map 7 : A — C with t(A") C R" and t(ab) = t(ba) for all a,b € A. Show:
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(a) Let 1 be a finite trace on A = M,,(C). Then (a) = ctr (a) for some ¢ > 0.

(b) Let A = B(H), where H is an infinite-dimensional Hilbert space. Then there is
no finite trace on A.

(¢) Let T be a discrete group, and let A = VN(R). Then t (Zyer‘ cy Ry> =cisa
finite trace on A.

Exercise 8.10 Show that a von Neumann algebra A is generated by all orthogonal
projections it contains.

Exercise 8.11 Let G be alocally compact group. For a unitary representation (i, V;;)
let its matrix coefficients be all continuous functions on G of the form

g = Y@ Sw(@v,w),  vwe Vy.

Let G be of type L. Let w be a unitary representation such that all its matrix coefficients
are in L?(G). Show that 7 is a direct sum of irreducible representations.
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