
Chapter 7

Compact Groups

In this chapter we will show that every unitary representation of a compact group
is a direct sum of irreducibles, and that every irreducible unitary representation is
finite dimensional. We further prove the Peter-Weyl theorem, which gives an explicit
decomposition of the regular representation of the compact group K on L2(K).

The term compact group will always mean a compact topological group, which is a
Hausdorff space.

7.1 Finite Dimensional Representations

Let K be a compact group, and let (τ ,Vτ ) be a finite dimensional representation, i.e.,
the complex vector space Vτ is finite dimensional.

Lemma 7.1.1 On the space Vτ , there exists an inner product, such that τ becomes a
unitary representation. If τ is irreducible, this inner product is uniquely determined
up to multiplication by a positive constant.

Proof Let (·, ·) be any inner product on Vτ . We define a new inner product 〈v, w〉 for
v, w ∈ Vτ to be equal to

∫
K

(τ (k)v, τ (k)w) dk, where we have used the normalized
Haar measure that gives K the measure 1. We have to show that this constitutes an
inner product. Linearity in the first argument and anti-symmetry are clear. For the
positive definiteness let v ∈ Vτ with 〈v, v〉 = 0, i.e.,

0 = 〈v, v〉 =
∫
K

(τ (k)v, τ (k)v) dk.

The function k �→ (τ (k)v, τ (k)v) is continuous and positive, hence, by Corollary
1.3.6, the function vanishes identically, so in particular, (v, v) = 0, which implies
v = 0 and 〈·, ·〉 is an inner product. With respect to this inner product the
representation τ is unitary, as for x ∈ K one has
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〈τ (x)v, τ (x)w〉 =
∫
K

(τ (k)τ (x)v, τ (k)τ (x)w) dk

=
∫
K

(τ (kx)v, τ (kx)w) dk

=
∫
K

(τ (k)v, τ (k)w) dk = 〈v, w〉,

as K is unimodular.

Finally, assume that τ is irreducible, let 〈·, ·〉1 and 〈·, ·〉2 be two inner products that
make τ unitary. Let (τ1,V1) and (τ2,V2) denote the representation (τ ,Vτ ) when
equipped with the inner products 〈·, ·〉1 and 〈·, ·〉2, respectively. Since Vτ is finite
dimensional, the identity Id : V1 → V2 is a bounded non-zero intertwining operator
for τ1 and τ2. By Corollary 6.1.9 there exists a number c > 0 such that c · Id is
unitary. But this implies that c2〈v, w〉2 = 〈v, w〉1 for all v, w ∈ Vτ . �

Proposition 7.1.2 A finite dimensional representation of a compact group is a direct
sum of irreducible representations.

Proof Let (τ ,V ) be a finite dimensional representation of the compact group K .
We want to show that τ is a direct sum of irreducibles. We proceed by induction on
the dimension of V . If this dimension is zero or one, there is nothing to show. So
assume the claim proven for all spaces of dimension smaller than dimV . By the last
lemma, we can assume that τ is a unitary representation. If τ is irreducible itself, we
are done. Otherwise, there is an invariant subspace U ⊂ V with 0 
= U 
= V . Let
W = U⊥ be the orthogonal complement to U in V , so that V = U ⊕W . We claim
that W is invariant as well. For this let k ∈ K and w ∈ W . Then for every u ∈ U ,

〈τ (k)w, u〉 = 〈w, τ
(
k−1
)
u︸ ︷︷ ︸

∈U

〉 = 0.

This implies that τ (k)w ∈ U⊥ = W , so W is indeed invariant. We conclude that
τ is the direct sum of the subrepresentations on U and W . As both spaces have
dimensions smaller than the one of V , the induction hypothesis shows that both are
direct sums of irreducibles, and so is V . �

Definition Let (τ ,Vτ ) be a finite dimensional representation of a compact group K .
The dual space

V ∗
τ = Hom(Vτ , C)

of all linear functionals α : Vτ → C carries a natural representation of K , the dual
representation τ ∗ defined by

τ ∗(x)α(v) = α
(
τ (x−1)v

)
.
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Suppose that Vτ is a Hilbert space. By the Riesz Representation Theorem for every
α ∈ V ∗

τ there exists a unique vector vα such that

α(w) = 〈w, vα〉
holds for every w ∈ Vτ . One instals a Hilbert space structure on the dual V ∗

τ by
setting

〈α,β〉 = 〈vβ , vα

〉
.

Lemma 7.1.3 If the representation τ is irreducible, then so is the dual representation
τ ∗. The same holds for the property of being unitary. For x ∈ K and α ∈ V ∗

τ one
gets the intertwining relation

vτ∗(x)α = τ (x)vα ,

so the map α �→ vα is an anti-linear intertwining operator between V ∗
τ and Vτ .

Proof Suppose that W ∗ ⊂ V ∗
τ is a subrepresentation. Then the space (W ∗)⊥ of

all v ∈ Vτ with α(v) = 0 for every α ∈ W ∗ is a subrepresentation of Vτ . If τ is
irreducible the latter space is trivial and so then is W ∗.

For the remaining assertions, we first show the claimed intertwining relation. For
w ∈ Vτ we use unitarity of τ to get

〈
w, vτ∗(x)α

〉 = τ ∗(x)α(w) = α(τ (x−1)w)

= 〈τ (x−1)w, vα

〉 = 〈w, τ (x)vα〉.
Varying w, the relation follows. Now the unitarity of τ ∗ follows by transport of
structure,

〈
τ ∗(x)α, τ ∗(x)β

〉 = 〈vτ∗(x)β , vτ∗(x)α
〉 = 〈τ (x)vβ , τ (x)vα

〉
= 〈vβ , vα

〉 = 〈α,β〉
The Lemma is proven. �

7.2 The Peter-Weyl Theorem

Let K be a compact group, and let K̂ be the set of all equivalence classes of irre-
ducible unitary representations of K . Let K̂fin be the subset of all finite dimensional
irreducible representations. We want to show that K̂ = K̂fin.

A matrix coefficient for a unitary representation τ of K on Vτ is a function of the
form k �→ 〈τ (k)v, w〉 for some v, w ∈ Vτ . The matrix coefficients are continuous
functions, so they lie in the Hilbert space L2(K). We need to know that the set of
matrix coefficients, where τ runs through all finite dimensional representations is
closed under taking complex conjugates. To see this we use Lemma 7.1.3 for a finite
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dimensional unitary representation (τ ,Vτ ). So let v, v′ ∈ Vτ and let α,β ∈ V ∗
τ be

their Riesz duals, i.e., v = vα and v′ = vβ in the notation of the last section. Then

〈τ (x)v, v′〉 = 〈vβ , τ (x)vα

〉 = 〈vβ , vτ∗(x)α
〉 = 〈τ ∗(x)α,β

〉
shows that the complex conjugate of a matrix coefficient is indeed a matrix coefficient.

Now, for every class in K̂fin choose a representative (τ ,Vτ ). Choose an orthonormal

basis e1, . . . , en of Vτ and write τij (k)
def= 〈τ (k)ei , ej

〉
for the corresponding matrix

coefficient. It is easy to see that for every v, w ∈ Vτ the function k �→ 〈τ (k)v, w〉 is
a linear combination of the τij , 1 ≤ i, j ≤ dimVτ . In what follows we shall write
dim(τ ) for dimVτ .

Theorem 7.2.1 (Peter-Weyl Theorem).

(a) For τ 
= γ in K̂fin one has

〈
τij , γrs

〉 =
∫
K

τij (k)γrs(k) dk = 0.

So the matrix coefficients of non-equivalent representations are orthogonal.

(b) For τ ∈ K̂fin one has
〈
τij , τrs

〉 = 0, except for the case when i = r and j = s.
In the latter case the products are

〈
τij , τij
〉 = 1

dim(τ ) . One can summarize this by
saying that the family (√

dim(τ ) τij )τ ,i,j

is an orthonormal system in L2(K).

(c) It even is complete, i.e., an orthonormal basis.

(d) The translation-representations (L,L2(K)) and (R,L2(K)) decompose into
direct sums of finite-dimensional irreducible representations.

Proof For (a) let τ 
= γ in K̂fin. Let T : Vτ → Vγ be linear and set S = ST =∫
K
γ (k−1)T τ (k) dk. Then one has Sτ (k) = γ (k)S, hence S = 0 by Corollary 6.1.9.

Let (ej ) and (fs) be orthonormal bases of Vτ and Vγ , respectively, and choose
Tjs : Vτ → Vγ given by Tjs(v) = 〈v, ej

〉
fs. Let Sjs = STjs

as above. One gets

0 = 〈Sjsei , fr

〉 =
∫
K

〈
γ (k−1)Tjsτ (k)ei , fr

〉
dk

=
∫
K

〈
γ (k−1)

〈
τ (k)ei , ej

〉
fs , fr

〉
dk

=
∫
K

〈
τ (k)ei , ej

〉 〈
γ (k−1)fs , fr

〉
︸ ︷︷ ︸

=〈fs ,γ (k)fr 〉=〈γ (k)fr ,fs 〉

dk

=
∫
K

τij (k)γrs(k) dk = 〈τij , γrs

〉
.
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To prove (b), we perform the same computation for γ = τ to get
〈
Sjsei , er

〉 = 〈τij , τrs
〉
.

In this case the matrix Sjs is a multiple of the identity Sjs = λId for some λ ∈ C, so
if i 
= r we infer

〈
Sjsei , er

〉 = 0, hence
〈
τij , τrs

〉 = 0. Assume j 
= s. We claim that
Sjs = 0, which implies the same conclusion, so in total we get the first assertion of
(b). To show Sjs = 0 recall that S = Sjs = λ Id, so the trace equals

λ dimVτ = tr (S) = tr

(∫
K

τ (k)−1T τ (k) dk

)

=
∫
K

tr
(
τ (k)−1T τ (k)

)
dk =
∫
K

tr (T ) dk = tr (T ),

but as j 
= s, the trace of T is zero, hence S is zero and so is 〈Sei , ei〉 =
〈
τij , τi,s

〉
.

Finally, we consider the case j = s and i = r . Then Sjj = λj Id for some λj ∈ C.
Our computation shows λj =

〈
τij , τij
〉
, independent of i. But τij (k) = τji(k−1) and

therefore, as K is unimodular we get

〈
τij , τij
〉 =
∫
K

τij (k)τij (k) dk =
∫
K

τji(k−1)τji(k
−1) dk

=
∫
K

τji(k)τji(k) dk = 〈τji , τji 〉.
We conclude λj = 〈τij , τij

〉 = 〈τji , τji 〉 = λi . We call this common value λ and
we have to show that λ = 1

dim(τ ) . Write n = dimVτ and note that Id = ∑n
j=1 Tjj .

Therefore (nλ)Id =∑n
j=1 Sjj =

∫
K
τ (k−1)Idτ (k) dk = Id and the claim follows.

Finally, to show (c), let τ ∈ K̂fin, and let Mτ be the subspace of L2(K) spanned by
all matrix coeficients of the representation τ . If h(k) = 〈τ (k)v, w〉, then one has

h∗(k) = h(k−1) = 〈τ (k)w, v〉 ∈ Mτ ,

Lk0h(k) = h(k−1
0 k) = 〈τ (k)v, τ (k0)w〉 ∈ Mτ ,

Rk0h(k) = h(kk0) = 〈τ (k)τ (k0)v, w〉 ∈ Mτ .

This means that the finite-dimensional space Mτ is closed under adjoints, and left
and right translations. Let M be the closure in L2(K) of the span of all Mτ , where
τ ∈ K̂fin. Then M decomposes into a direct sum of irreducible representations un-
der the left or the right translation. By the discussion preceding the theorem, M

is also closed under complex conjugation. We want to show that L2(K) = M , or,
equivalently, M⊥ = 0. So assume M⊥ is not trivial. Our first claim is that M⊥
contains a non-zero continuous function. Let H 
= 0 in M⊥. Let (φU )U be a Dirac
net. Then the net φU ∗H converges to H in the L2-norm. Since M⊥ is closed under
translation it follows that φU ∗ H ∈ M⊥ for every U . As there must exist some U
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with φU ∗ H 
= 0, the first claim follows. So let F1 ∈ M⊥ be continuous. After
applying a translation and a multiplication by a scalar, we can assume F1(e) > 0.
Set F2(x) = ∫

K
F1
(
y−1xy

)
dy. Then F2 ∈ M⊥ is invariant under conjugation and

F2(e) > 0. Finally put F (x) = F2(x)+F2
(
x−1
)
. Then the function F is continuous,

F ∈ M⊥, F (e) > 0, andF = F ∗. Consider the operator T (f ) = f ∗F = R(F )f for
f ∈ L2(K). Since R : L1(K) → B

(
L2(K)

)
is a ∗-representation, T is self-adjoint.

Further, as Tf (x) = ∫
K
f (y)F

(
y−1x
)
dy, the operator T is an integral operator

with continuous kernel k(x, y) = F
(
y−1x
)
. By Proposition 5.3.3, T = T ∗ 
= 0

is a Hilbert-Schmidt operator, hence compact, and thus it follows that T has a real
eigenvalue λ 
= 0 with finite dimensional eigenspace Vλ. We claim that Vλ is stable
under left-translations. For this let f ∈ Vλ, so f ∗ F = λf . Then, for k ∈ K one
has (Lkf ) ∗ F = Lk(f ∗ F ) = λLkf. This implies that Vλ with the left translation
gives a finite dimensional unitary representation of K , hence it contains an irre-
ducible subrepresentation W ⊂ Vλ ⊂ M⊥. Let f , g ∈ W , and let h(k) = 〈Lkf , g〉
be the corresponding matrix coefficient. One has h(k) = ∫

K
f (k−1x)g(x) dx, so

h = g ∗ f ∗ ∈ M⊥. On the other hand, h ∈ M , and so 〈h,h〉 = 0, which is a
contradiction. It follows that the assumption is wrong, so M = L2(K).

Above, we showed in particular that L2(K) decomposes as the closure of the direct
sum
⊕

τ∈K̂fin
Mτ , where the the linear span Mτ of all matrix coefficients of τ has

dimension dim(τ )2. Since each Mτ is stable under left and right translations, this
implies that

(
L2(K),L

)
and
(
L2(K),R

)
decompose as direct sums of finite dimen-

sional representations. Hence (d) follows from Proposition 7.1.2 and the Peter-Weyl
Theorem is proven. �

Definition Let π be a finite dimensional representation of the compact group K .
The function χπ : K → C defined by χπ (k) = tr π (k) is called the character of the
representation π .

Corollary 7.2.2 Let π , η be two finite-dimensional irreducible unitary representa-
tions of the compact group K. For their characters we have

〈
χπ ,χη

〉 =
{

1 if π = η,

0 otherwise.

Here the inner product is the one of L2(K).

Proof The proof follows immediately from the Peter-Weyl Theorem. Note that it
is shown in Exercise 7.10 that {χπ : π ∈ K̂} even forms an orthonormal base of the
space L2(K/conj) of conjugacy invariant L2-functions on K . �

Let (π ,Vπ ) be a representation of a locally compact groupG. An irreducible subspace
is a closed subspace U ⊂ Vπ which is stable under π (G) such that the representation
(π ,U ), obtained by restricting each π (k) to U , is irreducible.
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Theorem 7.2.3

(a) Let K be a compact group. Then K̂ = K̂fin, so every irreducible unitary
representation of K is finite dimensional.

(b) Every unitary representation of the compact group K is an orthogonal sum of
irreducible representations.

Proof Let (π ,Vπ) be a unitary representation of K . We show that Vπ can be written
as a direct sum Vπ =⊕i∈I Vi , where each Vi is a finite dimensional irreducible sub-
space of Vπ . This proves (b) and if we apply this to a given irreducible representation
Vπ it also implies (a).

So let (π ,Vπ ) be a given unitary representation ofK . Consider the set S of all families
(Vi)i∈I , where each Vi is a finite dimensional irreducible subrepresentation of Vπ and
for i 
= j in I we insist that Vi and Vj are orthogonal. We introduce a partial order
on S given by (Vi)i∈I ≤ (Wα)α∈A if and only if I ⊂ A and for each i ∈ I we have
Vi = Wi . The Lemma of Zorn yields the existence of a maximal element (Vi)i∈I .
We claim that the orthogonal sum

⊕
i∈I Vi is dense in Vπ . This is equivalent to the

orthogonal space W = (⊕i∈I Vi

)⊥
being the zero space. Now assume that inside W

we find a finite-dimensional irreducible subspace U , then we can extend I by one
element i0 and we set Vi0 = U which contradicts the maximality of I . Therefore,
it suffices to show that any given non-zero unitary representation (η,Wη) contains
a finite-dimensional irreducible subspace. For this let v, w ∈ Wη, and let ψv,w(x) =
〈η(x)v, w〉 be the corresponding matrix coefficient. Then ψv,w ∈ C(K) ⊂ L2(K) and
ψη(y)v,w(x) = 〈η(xy)v, w〉 = ψv,w(xy) = Ryψv,w(x). In other words, for fixed w, the
map v �→ ψv,w is a K-homomorphism from Vη to (R,L2(K)). We assume 〈v, w〉 
= 0.
Then this map is non-zero. Since

(
R,L2(K)

)
is a direct sum of finite dimensional

irreducible representations, there exists an orthogonal projection P : L2(K) → F

to a finite dimensional irreducible subrepresentation, such that P
(
ψv,w
) 
= 0. So

there exists a non-zero K-homomorphism T : Vη → F , which is surjective, hence
induces an isomorphism from U = (ker(T ))⊥ ⊂ Vη to F . Therefore U is the desired
finite-dimensional irreducible subspace. �

We now give a reformulation of the Peter-Weyl Theorem. The group K acts on the
space L2(K) by left and right translations, and these two actions commute, that is
to say, we have a unitary representation η of the group K ×K on the Hilbert space
L2(K), given by

η (k1, k2) f (x) = f
(
k−1

1 xk2
)
.

On the other hand, for (τ ,Vτ ) ∈ K̂ the group K ×K acts on the finite dimensional
vector space End(Vτ )= HomK (Vτ ,Vτ ) by

ητ (k1, k2)(T ) = τ (k1)T τ
(
k−1

2

)
.
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On End (Vτ ) we have a natural inner product

〈S, T 〉 = dim(Vτ ) tr (ST ∗)

making the representation of K ×K unitary (Compare with Exercise 5.8).

Theorem 7.2.4 (Peter-Weyl Theorem, second version). There is a natural unitary
isomorphism

L2(K) ∼=
⊕̂
τ∈K̂

End(Vτ ),

which intertwines the conjugation representation η of K × K on L2(K) with⊕
τ∈K̂ ητ . This isomorphism maps a given f ∈ L2(K) ⊂ L1(K) onto

∑
τ∈K̂ τ (f ),

where

τ (f ) =
∫
K

f (x)τ (x) dx.

In particular, if for a given f ∈ L2(K) we define the map f̂ : K̂ → ⊕̂τ∈K̂End(Vτ )
by f̂ (τ ) = τ (f ), then we get

‖f ‖ = ‖f̂ ‖
for every f ∈ L2(K). In this way the Peter-Weyl Theorem presents itself as a
generalization of the Plancherel Formula.

Proof Since τ �→ τ ∗ is a bijection from K̂ onto itself, the Peter-Weyl Theorem
yields the orthonormal basis

√
dim(τ )τ ∗kl , where the indices are taken with respect

to the dual basis of a given orthonormal basis {e1, . . . , edim(τ )} of Vτ . For f ∈ L2(K)
and indices i, j one has

〈
τ (f )ei , ej

〉 = ∫
K
f (x)τij (x) dx = 〈f , τij

〉
. If we apply this

formula to f = σ ∗
kl = σkl for some σ ∈ K̂ , we see that σ̂ ∗

kl(τ ) = τ (σkl) = 0 for
σ 
= τ and 〈

τ̂ ∗kl(τ )ei , ej
〉 =
{

dim(τ ) if k = i and l = j

0 otherwise.

Thus it follows that τ ∗kl is mapped to the operator 1
dim(τ )E

τ
kl ∈ End(Vτ ), where Eτ

kl

denotes the endomorphism which sends ek to el and all other basis elements to 0.
Hence, the basis element

√
dim(τ )τ ∗kl ∈ Mτ∗ is mapped to

√
dim(τ )Eτ

kl . It is trivial
to check that these elements form an orthonormal basis of End(Vτ ) with respect to
the given inner product. �

Definition Let (τ ,Vτ ) and (γ ,Vγ ) be finite dimensional representations of the com-
pact group K . There is a natural representation τ ⊗ γ of the group K × K on the
tensor product space Vτ ⊗ Vγ given by

(τ ⊗ γ ) (k1, k2) = τ (k1) ⊗ γ (k2).
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Lemma 7.2.5 For given τ ∈ K̂ , there is a natural unitary isomorphism

� : Vτ ⊗ Vτ∗ → End(Vτ ),

which intertwines τ ⊗ τ ∗ with ητ .

Show that the direct summand End(Vπ ) of L2(K) equipped with the conjugation
action η of K ×K as in the second version of the Peter-Weyl Theorem is equivalent
to the irreducible representation π∗ ⊗ π of K ×K . (Compare with Exercise 5.8.)

Proof The map ψ : Vτ ⊗ Vτ∗ → End(Vτ ) given by

ψ(v ⊗ α) = [w �→ α(w)v]

is linear and sends the simple tensors to the operators of rank one. Every operator of
rank one is in the image, so the map is surjective as End(Vτ ) is linearly generated by
the operators of rank one. As the dimensions of the spaces agree, the map is bijective.
It further is intertwining, as for k, l ∈ K one has

ψ
(
τ ⊗ τ ∗(k, l)(v ⊗ α)

)
(w) = ψ

(
τ (k)v ⊗ τ ∗(k)α

)
(w)

= α(τ (l−1)w)τ (k)v

= τ (k)ψ(w ⊗ α)τ (l−1)(w)

= [ητ (k, l)ψ(w ⊗ α)] (w).

By Corollary 6.1.9 it follows that, modulo a scalar, ψ is unitary. Plugging in test
vectors, one sees that � = √

dim(Vτ )−1ψ satisfies the lemma. �

Corollary 7.2.6 There is a natural unitary isomorphism

L2(K) ∼=
⊕̂
τ∈K̂

Vτ ⊗ Vτ∗ ,

where each finite dimensional space Vτ ⊗ Vτ∗ carries the tensor product Hilbert-
space structure. This isomorphism intertwines the K × K representation η with
the sum of the representations τ ⊗ τ ∗, where τ ∗ is the representation dual to τ. In
particular, we get direct sum decompositions

L ∼=
⊕̂
τ∈K̂

1Vτ
⊗ τ ∗ and R ∼=

⊕̂
τ∈K̂

τ ⊗ 1Vτ∗

for the left and right regular representations of K.

Proof The corollary is immediate from the theorem and the lemma. The assertion
about the left and right translation operations follows from restricting to one factor
of the group K ×K . �
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7.3 Isotypes

Let (π ,Vπ) be a unitary representation of the compact group K . For (τ ,Vτ ) ∈ K̂ we
define the isotype of τ or the isotypical component of τ in π as the subspace

Vπ (τ )
def=
∑
U⊂Vπ
U∼=Vτ

U.

This is the sum of all invariant subspaces U , which are K-isomorphic to Vτ . Another
description of the isotype is this: There is a canonical map

Tτ : HomK (Vτ ,Vπ ) ⊗ Vτ → Vπ

α ⊗ v �→ α(v).

This map intertwines the action Id⊗ τ on HomK (Vτ ,Vπ )⊗Vτ with π , from which it
follows that the image of Tτ lies in Vπ (τ ). Indeed, the image is all of Vπ (τ ), since if
U ⊂ Vπ is a closed subspace with π |U ∼= τ viaα : Vτ → U , then U = Tτ (α⊗Vτ ) by
construction of Tτ . Note that if (τ ,Vτ ) and (σ ,Vσ ) are two non-equivalent irreducible
representations, then Vπ (τ ) ⊥ Vπ (σ ), which follows from the fact that if U ,U ′ ⊆ Vπ

are subspaces with U ∼= Vτ ,U ′ ∼= Vσ , then the orthogonal projection P : Vπ → U ′
restricts to a K-homomorphism P |U : U → U ′, which therefore must be 0.

Lemma 7.3.1 On the vector space HomK (Vτ ,Vπ ) there is an inner product, making
it a Hilbert space, such that Tτ is an isometry.

Proof Let v0 ∈ Vτ be of norm one. For α,β ∈ H = HomK (Vτ ,Vπ ) set
〈α,β〉 def=〈α(v0),β(v0)〉. As by Corollary 6.1.9, any element of HomK (Vτ ,Vπ ) is
either zero or injective, it follows that 〈·, ·〉 is indeed an inner product on H . We
show that H is complete. For this let αn be a Cauchy-sequence in H . Then αn(v0)
is a Cauchy-sequence in Vπ , so there exists w0 ∈ Vπ such that αn(v0) converges
to w0. For k ∈ K the sequence αn(τ (k)v0) = π (k)αn(v0) converges to π (k)w0.
Likewise, for f ∈ L1(K) the sequence αn(τ (f )v0) = π (f )αn(v0) converges to
π (f )w0. Let I ⊂ L1(K) be the annihilator of v0, i.e., I is the set of all f ∈ L1(K)
with τ (f )v0 = 0. It follows that every f ∈ I also annihilates w0. Therefore the
map α : Vτ

∼= L1(K)/I → Vπ mapping τ (f )v0 to π (f )w0 is well-defined and
a K-homomorphism. It follows that α is the limit of the sequence αn, so H is
complete. We now show that T = Tτ is an isometry. For fixed α the inner prod-
uct on Vτ given by (v, w) = 〈α(v),α(w)〉 is K-invariant. Therefore, by Lemma
7.1.1, there is c(α) > 0 such that (v, w) = c(α)〈v, w〉 for all v, w ∈ Vτ . So we
get 〈T (α ⊗ v), T (α ⊗ v)〉 = (v, v) = c(α)〈v, v〉. Setting v = v0, we conclude that
c(α) = 〈α,α〉, which proves that Tτ is indeed an isometry. �

It follows from the above lemma that Vπ (τ ) is isometrically isomorphic to the Hilbert
space tensor product HomK (Vτ ,Vπ) ⊗̂Vτ and that π |Vπ (τ ) is unitarily equivalent to
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the representation Id ⊗ τ on this tensor product. If we choose an orthonormal base
{αi : i ∈ I } of HomK (Vτ ,Vπ), then we get a canonical isomorphism

HomK (Vτ ,Vπ) ⊗̂Vτ
∼=
⊕̂
i∈I

Vτ

given by sending an elementary tensor α ⊗ v to
∑

i∈I 〈α,αi〉v. Thus we see
that Vπ (τ ) is unitarily equivalent to a direct sum of Vτ ’s with multiplicity I =
dim HomK (Vτ ,Vπ ).

Theorem 7.3.2

(a) Vπ (τ ) is a closed invariant subspace of Vπ .

(b) Vπ (τ ) is K-isomorphic to a direct Hilbert sum of copies of Vτ .

(c) Vπ is the direct Hilbert sum of the isotypes Vπ (τ ) where τ ranges over K̂ .

Proof As Vπ (τ ) is an isometric image of a complete space, it is complete,
hence closed. The space Vπ (τ ) is a sum of invariant spaces, hence invariant, so
(a) follows. Now let Vπ = ⊕̂iVi be any decomposition into irreducibles. Set
Ṽπ (τ ) = ⊕̂i:Vi

∼=Vτ
Vi. Then it follows that Ṽπ (τ ) ⊂ Vπ (τ ) as the latter contains

the direct sum and is closed. Now clearly Vπ is the direct Hilbert sum of the spaces
Ṽπ (τ ), and hence it is also the direct Hilbert sum of the Vπ (τ ), as the latter are
pairwise orthogonal. This implies (c) and a fortiori Ṽπ (τ ) = Vπ (τ ) and thus (b). �

Proposition 7.3.3 Let (π ,Vπ ) be a unitary representation of the compact group K.
For τ ∈ K̂ the orthogonal projection P : Vπ → Vπ (τ ) is given by

P (v) = dim(τ )
∫
K

χτ (x)π (x)v dx.

Proof We have to show that for any two vectors v, w ∈ Vπ one has 〈P v, w〉 =
dim(τ )

∫
K
χτ (x)〈π (x)v, w〉 dx. Let (v, w) denote the right hand side of this identity.

Write v = v0 + v1, where v0 ∈ Vπ (τ ) and v1 ∈ Vπ (τ )⊥. Likewise decompose w as
w0 + w1. Then 〈P v, w〉 = 〈v0, w0〉. The Peter-Weyl theorem implies that (v0, w0) =
〈v0, w0〉. To see this, we decompose Vπ (τ ) into a direct sum of irreducibles, each
equivalent to Vτ . It then suffices to assume that v0, w0 lie in the same summand,
since otherwise we have 〈P v, w〉 = 0 = 〈v0, w0〉. The result then follows from
expressing v0, w0 in terms of an orthonormal basis of Vτ . The spaces Vπ (τ ) and its
orthocomplement are invariant under π , therefore (v0, w1) = 0 = (v1, w0). Finally,
as Vπ (τ )⊥ is a direct sum of isotypes different from τ , the Peter-Weyl theorem also
implies that (v1, w1) = 0. As the map (·, ·) is additive in both components, we get

(v, w) = (v0, w0) + (v0, w1) + (v1, w0) + (v1 + w1)

= (v0, w0) = 〈v0, w0〉 = 〈P v, w〉,
as claimed. �
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Example 7.3.4 It follows from the Peter-Weyl Theorem that the isotype L2(K)R(τ )
of the right regular representation (R,L2(K)) for the irreducible representation τ

of the compact group K is the linear span of the functions τij (x) = 〈τ (x)ei , ej
〉
. In

particular, it follows that all functions in L2(K)R(τ ) are continuous. Similarly, the
isotype L2(K)L(τ ) of the left regular representation (L,L2(K)) is given by the linear
span of the functions τ ij , the complex conjugates of the τij .

7.4 Induced Representations

Let K be a compact group, and let M ⊂ K be a closed subgroup. Let (σ ,Vσ )
be a finite dimensional unitary representation of M . We now define the induced
representation πσ = IndK

M (σ ) as follows. First define the Hilbert-space L2(K ,Vσ )
of all measurable functions f : K → Vσ satisfying

∫
K
‖f (x)‖2

σ dk < ∞ modulo
nullfunctions, where ‖·‖σ is the norm in the space Vσ . This is a Hilbert-space with
inner product 〈f , g〉 = ∫

K
〈f (k), g(k)〉σ dk. Choosing an orthonormal basis of Vσ

gives an isomorphism L2(K ,Vσ ) ∼= L2(K)dim(Vσ ), which shows completeness of
L2(K ,Vσ ).

The space of the representation πσ is the space IndK
M (Vσ ) of all f ∈ L2(K ,Vσ ) such

that for every m ∈ M the identity f (mk) = σ (m)f (k) holds almost everywhere in
k ∈ K . This is a closed subspace of L2(K ,Vσ ) as we have

IndK
M (Vσ ) =

⋂
m∈M

kerTm,

where for given m ∈ M the continuous operator f �→ Lm−1f − σ (m)f is denoted
by Tm. The representation πσ is now defined by

πσ (y)f (x) = f (xy).

The representation πσ is clearly unitary.

It suffices to consider finite dimensional, indeed irreducible representations σ here,
since an arbitrary representation σ of M decomposes as a direct sum σ =⊕i∈I σi

of irreducibles and there is a canonical isomorphism

IndK
M

(⊕
i∈I

σi

)
∼=
⊕
i∈I

IndK
M (σi).

So suppose that σ is irreducible. As K is compact, πσ decomposes as a direct
sum of irreducible representations τ ∈ K̂ , each occurring with some multiplicity

[πσ : τ ]
def= dim HomK

(
Vτ ,Vπσ

)
.
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Theorem 7.4.1 (Frobenius reciprocity). Ifσ is irreducible, the multiplicities [πσ : τ ]
are all finite and can be given as

[πσ : τ ] = [τ |M : σ ].

More precisely, for every irreducible representation (τ ,U ) there is a canonical
isomorphism HomK

(
U , IndK

M (Vσ )
) → HomM (U |M ,Vσ ).

Proof Let V c be the subspace of Vπσ
consisting of all continuous functions f :

K → Vσ with f (mk) = σ (m)f (k). The space V c is stable under the K-action
and dense in the Hilbert space Vπσ

, which can be seen by approximating any f

in Vπσ
by πσ (φ)f with Dirac functions φ in C(K) of arbitrary small support. Let

α ∈ HomK

(
U , IndK

M (Vσ )
)
. We show that the image ofα lies inV c. For this recall that

by the Peter-Weyl Theorem the spaceL2(K) decomposes into a direct sum of isotypes
L2(K)(γ ) for γ ∈ K̂ . Here we consider the K-action by right translations only. Each
isotype L2(K)(γ ) is finite dimensional and consists of continuous functions. We have
isometric K-homomorphisms,

α : U → IndK
M (Vσ ) ↪→ L2(K ,Vσ )

∼=−→ L2(K) ⊗ Vσ ,

where K acts trivially on Vσ . This implies that α(U ) ⊂ L2(K)(τ ) ⊗ Vσ consists
of continuous functions. Let δ : V c → Vσ be given by δ(f ) = f (1), and define
ψ : HomK (U , IndK

M (Vσ )) → HomM (U |M ,Vσ ) by ψ(α)(u) = δ(α(u)) = α(u)(1).
We claim the ψ is a bijection. For injectivity assume that ψ(α) = 0. Then for every
u ∈ U and k ∈ K one has α(u)(k) = πσ (k)α(u)(1) = α(τ (k)u)(1) = ψ(α)(τ (k)u) =
0, which means α = 0.

For surjectivity let β ∈ HomM (U ,Vσ ) and define an element α ∈
HomC

(
U , IndK

M (Vσ )
)

by α(u)(k) = β
(
τ (k−1)u

)
. By definition, α is a K-

homomorphism and β = ψ(α). The theorem is proven. �

Example 7.4.2 Let M be a closed subgroup of the compact group K . Then K/M

carries a unique Radon measure μ that is invariant under the left translation action
of the group K and is normalized by μ(K/M) = 1. The group K acts on the Hilbert
space L2(K/M ,μ) by left translations and this constitutes a unitary representation.
This representation is isomorphic to the induced representation IndK

M (C) induced
from the trivial representation. An isomorphism between these representations is
given by the map � : L2(K/M) → IndK

M (C), which maps ψ ∈ L2(K/M) to the
function �(ψ) : K → C defined by

�(ψ)(k)
def=ψ
(
k−1M
)
.

Now, for any τ ∈ K̂ the multiplicity [τ |M : 1] equals dimVM
τ , where VM

τ denotes
the space of M-invariant vectors in Vτ . Thus by Frobenius we get

L2(K/M) ∼=
⊕̂

τ∈K̂dim
(
VM

τ

)
Vτ

where dim
(
VM

τ

)
Vτ denotes the dim

(
VM

τ

)
-fold direct sum of the Vτ ’s.
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7.5 Representations of SU(2)

In this section we consider the irreducible representations of the compact group
SU(2). We use the description of these representations to construct decompositions of
the Hilbert spaces L2(S3) and L2(S2), thus giving a glance into the harmonic analysis
of the spheres. For this recall the n-dimensional sphere, Sn = {x ∈ R

n+1 : ‖x‖ = 1},
where ‖x‖ =

√
x2

1 + · · · + x2
n+1 is the euclidean norm on R

n+1. The set Sn inherits a

topology from R
n+1. For a subset A ⊂ Sn let IA be the set of all ta, where a ∈ A and

0 ≤ t ≤ 1. The set IA ⊂ R
n is Borel measurable if and only if A ⊂ Sn is, (Exercise

7.13). For a measurable set A ⊂ Sn, define the normalized Lebesgue measure as

μ(A)
def= λ(IA)

λ(ISn) , where λ denotes the Lebesgue measure on R
n+1. As a consequence

of the transformation formula on R
n+1, the Lebesgue measure λ is invariant under

the action of the orthogonal group

O(n+ 1)
def= {g ∈ Mn+1(R) : gtg = 1

}
.

The group O(n+ 1) can also be described as the group of all g ∈ Mn+1(R) such that
‖gv‖ = ‖v‖ holds for every v ∈ R

n+1. It follows from this description, that O(n+1)
leaves stable the sphere Sn and that the measure μ is invariant under O(n + 1). We
denote by SO(n+1) the special orthogonal group, i.e., the group of all g ∈ O(n+1)
of determinant one. For the next lemma, we consider O(n) as a subgroup of O(n+1)
via the embedding g �→ ( 1 0

0 g

)
.

Lemma 7.5.1 Let n ∈ N, and let e1 = (1, 0, . . . , 0)t be the first standard basis
vector of R

n+1. The matrix multiplication g �→ ge1 gives an identification

Sn ∼= O(n+ 1)/O(n) ∼= SO(n+ 1)/SO(n).

This map is invariant under left translations and the normalized Lebesgue measure
on Sn is the unique normalized invariant measure on this quotient space.

Proof The group O(n) is the subgroup of O(n+1) of all elements with first column
equal to e1, so it is the stabilizer of e1 and one indeed gets a map O(n+1)/O(n) → Sn.
As the invariance of the measure is established by the transformation formula, we
only need to show surjectivity. Now let v ∈ Sn. Then there always exists a rotation
in SO(n + 1) that transforms e1 into v. One simply chooses a rotation around an
axis that is orthogonal to both e1 and v. This proves surjectivity. The assertion on the
measure is due to the uniqueness of invariant measures. �

Recall that SU(2) is the group of all matrices g ∈ M2(C) that are unitary: g∗g =
gg∗ = 1 and satisfy det(g) = 1. These conditions imply

SU(2) =
{(

a −b̄

b ā

)
:

(
a

b

)
∈ S3

}
,
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where we realize the three sphere S3 as the set of all z ∈ C
2 with |z1|2 + |z2|2 = 1.

From this description and the fact that the Lebesgue measure on S3 is invariant under
O(4) as well as the uniqueness of invariant measures we get the following lemma.

Lemma 7.5.2 The map SU(2) → S3, mapping the matrix g ∈ SU(2) to its first
column, is a homeomorphism. Via this homeomorphism, the normalized Lebesgue
measure on S3 coincides with the normalized Haar measure on SU(2).

We want to obtain a convenient formula for computations with the Haar integral
on SU(2) ∼= S3. Recall from Calculus that the gamma function � : (0,∞) → R

is defined by the integral �(x) = ∫∞0 tx−1e−t dt. Note that �(1) = 1 and that
�(x + 1) = x�(x) for every x > 0, which implies that �(n) = (n − 1)! for
every n ∈ N. Moreover, via the substitution t = r2 we get the alternative formula
�(x) = 2

∫∞
0 r2x−1e−r2

dr , which we shall use below.

Lemma 7.5.3 Let f : S3 → C be any integrable function, and for each m ∈ N0 let
Fm : C

2 → C be defined by Fm (rx) = rmf (x) for every x ∈ S3 and r > 0. Further

let cm
def=π−2�

(
m
2 + 2
)−1

. Then

∫
S3

f (x) dμ(x) = cm

∫
C

2
Fm(z)e−(‖z‖2)dλ(z),

where λ stands for the Lebesgue measure on C
2 ∼= R

4, and ‖z‖2 = |z1|2 + |z2|2.

Proof Integration in polar coordinates on C
2 implies

∫
C

2
Fm(z)e−(‖z‖2) dλ(z) = c

∫ ∞

0
r3
∫
S3

Fm(rx)e−r2
dμ(x) dr

= c

(∫ ∞

0
r3+me−r2

dr

)∫
S3

f (x) dμ(x)

= c

2
�
(m

2
+ 2
) ∫

S3
f (x) dμ(x).

where c is some positive constant (the non-normalized volume of S3). To compute
the constant c let f ≡ 1 and m = 0. Since �(2) = 1 one gets

c = 2
∫

C
2
e−(‖z‖2)dλ(z) = 2

(∫
C

e−|z1|2dz1

)(∫
C

e−|z2|2dz2

)
= 2π2.

The lemma follows. �

For m ∈ N0 let Pm denote the set of homogeneous polynomials on C
2 of degree m.

In other words, Pm is the space of all polynomial functions p : C
2 → C that satisfy

p(tz) = tmp(z) for every z ∈ C
2 and every t ∈ C. Every p ∈ Pm can uniquely be

written as p(z) =∑m
k=0 ck zk1zm−k

2 . For p, η ∈ Pm define
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〈p, η〉m def=〈p|S3 , η|S3〉L2(S3) =
∫
S3

p(x)η(x) dμ(x).

It then follows from Lemma 7.5.3 that

〈p, η〉m = c2m

∫
C

2
p(z)η(z)e−‖z‖2

dλ(z).

We define a representation πm of SU(2) on Pm by

(πm(g)p)(z)
def=p
(
g−1(z)

)
.

Theorem 7.5.4 For every m ≥ 0, the representation (πm, Pm) is irreducible. Every
irreducible unitary representation of SU(2) is unitarily equivalent to one of the
representations (Pm,πm). Thus

ŜU(2) = {[(Pm,πm)] : m ∈ N0},
where [(Pm,πm)] denotes the equivalence class of (Pm,πm).

Proof This is Theorem 10.2.2 in [Dei05]. �

The next corollary follows from the Peter-Weyl Theorem.

Corollary 7.5.5 The SU(2) representation onL2(S3) is isomorphic to the orthogonal
sum
⊕

m≥0 (m+1)Pm, where Pm is the space of homogeneous polynomials of degree
m and each Pm occurs with multiplicity m+ 1.

We want to close this section with a study of the two-sphere S2. For each λ ∈ T

consider the matrix gλ
def= diag(λ, λ̄). Then we may regard T ∼= {gλ : λ ∈ T} as

a closed subgroup of SU(2). Recall that we can identify SU(2) ∼= S3. The map
p : S3 → S2 of the following lemma is known as the Hopf fibration of S3.

Lemma 7.5.6 Let us realize the two-sphere as

S2 = {(v, x) : v ∈ C, x ∈ R and |v|2 + x2 = 1
}
.

Then the map η : S3 → S2 defined by η(a, b) = (2ab̄, |a|2 − |b|2) factors through
a homeomorphism SU(2)/T ∼= S2, which maps the normalized SU(2)-invariant
measure on SU(2)/T to the normalized Lebesgue measure on S2.

Proof For (a, b) ∈ S3 we compute |2ab̄|2+(|a|2−|b|2)2 = 4|ab|2+|a|4−2|ab|2+
|b|4 = (|a|2 + |b|2)2 = 1, which shows that the image of η lies in S2. To see that
the map is surjective let (v, x) ∈ S2 be given. Choose a, b ∈ C with |a|2 + |b|2 = 1
and |a|2 − |b|2 = x, which is possible since |x| ≤ 1. Then |v| = 2|ab|, and there
exists a complex number z of modulus one such that v = 2zab̄. It then follows that
η(za, b) = (v, x).
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We now claim that η(a, b) = η(a′, b′) if and only if there exists λ ∈ T with (a, b) =
λ(a′, b′). The if direction is easy to check, so assume now that (2ab̄, |a|2 − |b|2) =
(2a′b̄′, |a′|2 − |b′|2). Since |a|2 + |b|2 = 1 = |a′|2 + |b′|2 we get 1 − 2|b|2 =
|a|2 − |b|2 = |a′|2 − |b′|2 = 1− 2|b′|2, from which it follows that |b| = |b′|. Hence
λ = b′/b ∈ T with b = λb′. Since ab̄ = a′b̄′ it also follows that a = λa′.

Finally, since (
a −b̄

b ā

)(
λ 0
0 λ̄

)
=
(
λa −λb

λb λa

)

it is then clear that η factorizes through a bijection SU(2)/T ∼= S2. Since η is
continuous and all spaces are compact, this bijection is also a homeomorphism.

We next need to show that the induced action of g ∈ SU(2) on S2 ∼= SU(2)/T comes
from some linear transformation. Since it maps S2 to S2 it is then automatically

orthogonal. But if g =
(
a −b̄

b ā

)
and

(
v
x

)
= p

(
z
w

)
∈ S2 then a short computation

shows that

g ·
(

v
x

)
= p

(
az − b̄w
bz + āw

)
=
(

2(az − b̄w)(b̄z̄ + aw̄)
|az − b̄w|2 − |bz + āw|2

)

=
(

2ab̄x − a2v − b̄2v̄
(|a|2 − |b|2)x − abv − abv̄

)
.

This expression is obviously R-linear in v and x. This implies that SU(2) acts on S2

through orthogonal transformations. As the normalized Lebesgue measure on S2 is
invariant under such transformations, it is invariant under the action of SU(2), so it
coincides with the unique invariant measure on SU(2)/T. �

The left translation on SU(2)/T induces a unitary representation π of SU(2) on
L2(S2) ∼= L2(SU(2)/T). We will now make use of the Frobenius reciprocity to give
an explicit decomposition of this representation.

Proposition 7.5.7 The representation π of SU(2) on L2(S2) is isomorphic to the
direct sum

⊕
m≥0 π2m.

Proof As SU(2) is a compact group, Theorem 7.2.3 implies that π is a direct sum
of irreducibles. By Theorem 7.5.4, it is a direct sum of copies of the πm. It remains
to show that for m ≥ 0 the irreducible representation πm has multiplicity 1 in π if
m is even and 0 otherwise. Example 7.4.2 shows that π is equivalent to the induced
representation IndSU(2)

T
(1), hence the Frobenius reciprocity applies. So by Theorem

7.4.1 we can compute the multiplicity as [π : πm] = [πm|T : 1]. Using the basis
zm1 , zm−1

1 z2, . . . , zm2 one sees that

[πm|T : 1] =
{

1 m even,

0 otherwise.

The proposition is proven. �
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7.6 Exercises

Exercise 7.1 Let A be an abelian subgroup of U(n). Show that there is S ∈ GL2(C)
such that SAS−1 consists of diagonal matrices only.

Exercise 7.2 Let G be a finite group.

(a) Show that the number of elements of G equals
∑

τ∈Ĝ dim(Vτ )2.

(b) Show that the space of conjugation-invariant functions has a basis (χτ )τ∈Ĝ. Con-
clude that the number of irreducible representations of G equals the number of
conjugacy classes.

Exercise 7.3 Let (π ,Vπ ) and (η,Vη) be two unitary representations of the compact
group K . Suppose there exists a bijective bounded linear operator T : Vπ → Vη that
intertwines π and η, i.e., T π (k) = η(k)T holds for every k ∈ K . Show that there
already exists a unitary intertwining operator S : Vπ → Vη.

Exercise 7.4 For a compact group K write L2(K̂) := ⊕̂τ∈K̂End(Vτ ) equipped with
the inner product as in the second version of the Peter-Weyl Theorem and let

F : L2(K) → L2(K̂), F(f ) = f̂

be the Plancherell-isomorphism as given in that theorem. Show that the inverse of
this isomorphism is given by the inverse Fourier transform

F̂ : L2(K̂) → L2(K); F̂(g)(x) =
∑
τ∈K̂

dim(τ ) tr
(
g(τ )τ (x−1)

)
,

for (τ �→ g(τ )) ∈ L2(K̂).

Exercise 7.5 Let K and L be compact groups, and let τ ∈ K̂ and η ∈ L̂. Show that
τ⊗η(k, l) = τ (k)⊗τ (l) defines an element of K̂ × L and that the map (τ , η) �→ τ⊗η

is a bijection from K̂ × L̂ to K̂ × L.

Exercise 7.6 Let K be a compact group, let (π ,Vπ ) ∈ K̂ , and let χπ be its character.
Show that for x ∈ K ,

∫
K
π (kxk−1) dk = χπ (x)

dimVπ
Id. Conclude that χπ (x)χπ (y) =

dim(Vπ )
∫
K
χπ

(
kxk−1y

)
dk holds for all x, y ∈ K .

Exercise 7.7 Let (π ,Vπ ) be a finite dimensional representation of the compact group
K with character χπ . Let π∗ be the dual representation on Vπ∗ = V ∗

π . Show that
χπ∗ = χπ .

Exercise 7.8 Keep the notation of the last exercise. The representation π is called a
self-dual representation if π ∼= π∗. Show that the following are equivalent.
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(a) π is self-dual,

(b) there exists an antilinear bijective K-homomorphism C : Vπ → Vπ ,

(c) there exists a real sub vector space VR of Vπ such that Vπ is the orthogonal sum
of VR and iVR, and π (K)VR = VR.

(d) χπ takes only real values,

Exercise 7.9 Show that every unitary representation of SU(2) is self dual. (Hint:
Use Theorem 7.2.3.)

Exercise 7.10 Let the compact group K act on L2(K) by conjugation, i.e.,
k.f (x) = f (k−1xk). Show that the space of K-invariants L2(K/conj) is closed
and that (χπ )π∈K̂ is an orthonormal basis of the Hilbert space L2(K/conj).

Exercise 7.11 Let (π ,Vπ ) be a representation of a compact group K on a Banach
space Vπ . Show that Vπ =⊕i∈I Vi , where each Vi is a finite-dimensional irreducible
subspace.

(Hint: Use matrix coefficients as in the proof of Theorem 7.2.3 to get a map T :
Vπ → W , where W is a finite-dimensional irreducible representation. Then fix
a complementary space of ker(T ) inside Vπ and apply a projection operator as in
Proposition 7.3.3.)

Exercise 7.12 Let K be a compact group. Show that the following are equivalent.

• Every character χπ for π ∈ K̂ is real valued.

• For every k ∈ K there exists l ∈ K such that lkl−1 = k−1.

Exercise 7.13 For a subset A ⊂ Sn let IA be defined as in the beginning of Sect. 7.5.
Show that A is Borel measurable as a subset of Sn if and only if IA is measurable
as a subset of R

n.

Exercise 7.14 Consider the map φ : SU(2) × T → U(2) that sends a pair (g, z) to
the matrix zg. Show that φ is a surjective homomorphism. Compute kerφ and Û(2).

Exercise 7.15 Via Lemma 7.5.6, the group SU(2) acts on S2 ∼= SU(2)/T. Show that
this action determines a surjective homomorphism ψ : SU(2) → SO(3) such that
ker ψ = {±I }. In particular, this gives an isomorphism SO(3) ∼= SU(2)/{±I }. Use
this to compute ŜO(3).
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