
Chapter 6

Representations

In this chapter we introduce the basic concepts of representation theory of locally
compact groups. Classically, a representation of a group G is an injective group
homomorphism from G to some GLn(C), the idea being that the “abstract” group G

is “represented” as a matrix group.

In order to understand a locally compact group, it is necessary to consider its actions
on possibly infinite dimensional spaces like L2(G). For this reason, one considers
infinite dimensional representations as well.

6.1 Schur’s Lemma

For a Banach space V , let GLcont(V ) be the set of bijective bounded linear operators
T on V . It follows from the Open Mapping Theorem C.1.5 that the inverses of such
operators are bounded as well, so that GLcont(V ) is a group. Let G be a topological
group. A representation of G on a Banach space V is a group homomorphism of
G to the group GLcont(V ), such that the resulting map G × V → V , given by
(g, v) �→ π (g)v, is continuous.

Lemma 6.1.1 Let π be a group homomorphism of the topological group G to
GLcont(V ) for a Banach space V. Then π is a representation if and only if

(a) the map g �→ π (g)v is continuous at g = 1 for every v ∈ V , and

(b) the map g �→ ‖π (g)‖op is bounded in a neighborhood of the unit in G.

Proof Suppose π is a representation. Then (a) is obvious. For (b) note that for
every neighborhood Z of zero in V there exists a neighborhood Y of zero in V and
a neighborhood U of the unit in G such that π (U )Y ⊂ Z. This proves (b). For the
converse direction write
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‖π (g)v − π (g0)v0‖ ≤ ‖π (g0)‖op‖π (g−1
0 g)v − v0‖

≤ ‖π (g0)‖op‖π (g−1
0 g)(v − v0)‖

+ ‖π (g0)‖op‖π (g−1
0 g)v0 − v0‖

≤ ‖π (g0)‖op‖π (g−1
0 g)‖op‖v − v0‖

+ ‖π (g0)‖op‖π (g−1
0 g)v0 − v0‖.

Under the assumptions given, both terms on the right are small if g is close to g0,
and v is close to v0. �

Examples 6.1.2

• For a continuous group homomorphism χ : G → C
× define a representation πχ

on V = C by πχ (g)v = χ (g) · v.

• Let G = SL2(R) be the group of real 2 × 2 matrices of determinant one. This
group has a natural representation on C

2 given by matrix multiplication.

Definition Let V be a Hilbert space. A representation π on V is called a uni-
tary representation if π (g) is unitary for every g ∈ G. That means π is unitary if
〈π (g)v,π (g)w〉 = 〈v, w〉 holds for every g ∈ G and all v, w ∈ V .

Lemma 6.1.3 A representation π of the group G on a Hilbert space V is unitary if
and only if π (g−1) = π (g)∗ holds for every g ∈ G.

Proof An operator T is unitary if and only if it is invertible and T ∗ = T −1. For a
representation π and g ∈ G the operator π (g) is invertible and satisfies π (g−1) =
π (g)−1. So π is unitary if and only if for every g ∈ G one has π (g−1) = π (g)−1 =
π (g)∗. �

Examples 6.1.4

• The representation πχ defined by a continuous group homomorphism χ : G →
C
× is unitary if and only if χ maps into the compact torus T.

• Let G be a locally compact group. On the Hilbert space L2(G) consider the left
regular representation x �→ Lx with

Lxφ(y) = φ(x−1y), φ ∈ L2(G).

This representation is unitary, as by the left invariance of the Haar measure,
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〈Lxφ,Lx ,ψ〉 =
∫
G

Lxφ(y)Lxψ(y) dy

=
∫
G

φ(x−1y)ψ(x−1y) dy

=
∫
G

φ(y)ψ(y) dy = 〈φ,ψ〉.

Definition Let (π1,V1) and (π2,V2) be two unitary representations. On the direct
sumV = V1⊕V2 one has the direct sum representationπ = π1⊕π2. More generally,
if {πi : i ∈ I } is a family of unitary representations acting on the Hilbert spaces Vi ,
we write

⊕
i∈I πi for the direct sum of the representations πi , i ∈ I on the Hilbert

space
⊕̂

i∈IVi . See also Exercise 6.3 and appendix C.3.

Example 6.1.5 Let G = R/Z, and let V = L2(R/Z). Let π be the left regular
representation. By the Plancherel Theorem, the elements of the dual group Ĝ =
{ek : k ∈ Z} with ek([x]) = e2πikx form an orthonormal basis of L2(R/Z) so that π
is a direct sum representation on V = ⊕̂k∈Z

Cek , where ek(x) = e2πikx and G acts
on Cek through the character ēk .

Definition A representation (π ,Vπ ) is called a subrepresentation of a representation
(η,Vη) if Vπ is a closed subspace of Vη and π equals η restricted to Vπ . So every
closed subspace U ⊂ Vη that is stable under η, i.e., η(G)U ⊂ U , gives rise to a
subrepresentation.

A representation is called irreducible if it does not possess any proper subrepresenta-
tion, i.e., if for every closed subspace U ⊂ Vπ that is stable under π , one has U = 0
or U = Vπ .

Example 6.1.6. Let U(n) denote the group of unitary n× n matrices, so the group
of all u ∈ Mn(C) such that uu∗ = I (unit matrix), where u∗ = ūt . The natural
representation of U(n) on C

n is irreducible (See Exercise 6.5).

Definition Let (π ,Vπ ) be a representation of G. A vector v ∈ Vπ is called a cyclic
vector if the linear span of the set {π (x)v : x ∈ G} is dense in Vπ . In other words, v
is cyclic if the only subrepresentation containing v is the whole of π . It follows that
a representation is irreducible if and only if every nonzero vector is cyclic.

Lemma 6.1.7 (Schur) Let (π ,Vπ ) be a unitary representation of the topological
group G. Then the following are equivalent

(a) (π ,Vπ ) is irreducible.

(b) If T is a bounded operator on Vπ such that T π (g) = π (g)T for every g ∈ G,
then T ∈ C Id.



126 6 Representations

Proof Since π (g−1) = π (g)∗, the set {π (g) : g ∈ G} is a self-adjoint subset of
B(Vπ ). Thus the result follows from Theorem 5.1.6. �

Let (π ,Vπ ), (η,Vη) be representations of G. A continuous linear operator T : Vπ →
Vη is called a G-homomorphism or intertwining operator if

T π (g) = η(g)T

holds for every g ∈ G. We write HomG(Vπ ,Vη) for the set of all G-homomorphisms
from Vπ to Vη. A nice way to rephrase the Lemma of Schur is to say that a unitary
representation (π ,Vπ ) is irreducible if and only if HomG(Vπ ,Vπ ) = C Id.

Definition If π , η are unitary, they are called unitarily equivalent if there exists a
unitary G-homomorphism T : Vπ → Vη.

Example 6.1.8. Let G = R, and let Vπ = Vη = L2(R). The representation π is
given by π (x)φ(y) = φ(x+y) and η is given by η(x)φ(y) = e2πixyφ(y). By Theorem
3.3.1 in [Dei05] (see also Exercise 6.4), the Fourier transform L2(R) → L2(R) is an
intertwining operator from π to η.

Corollary 6.1.9 Let (π ,Vπ ) and (η,Vη) be two irreducible unitary representations.
Then a G-homomorphism T from Vπ to Vη is either zero or invertible with continuous
inverse. In the latter case there exists a scalar c > 0 such that cT is unitary. The
space HomG(Vπ ,Vη) is zero unless π and η are unitarily equivalent, in which case
the space is of dimension 1.

Proof Let T : Vπ → Vη be a G-homomorphism. Its adjoint T ∗ : Vη → Vπ is also
a G-homomorphism as is seen by the following calculation for v ∈ Vπ , w ∈ Vη, and
g ∈ G, 〈

v, T ∗η(g)w
〉 = 〈T v, η(g)w〉 = 〈η(g−1)T v, w

〉
= 〈T π (g−1)v, w

〉 = 〈π (g−1)v, T ∗w
〉

= 〈v,π (g)T ∗w
〉
.

This implies that T ∗T is a G-homomorphism on Vπ , and therefore it is a multiple
of the identity λ Id by the Lemma of Schur. If T is non-zero, T ∗T is non-zero and
positive semi-definite, so λ > 0. Let c = √

λ−1, then (cT )∗(cT ) = Id. A similar
argument shows that T T ∗ is bijective, which then implies that cT is bijective, hence
unitary. The rest is clear. �

Definition For a locally compact group G we denote by Ĝ the set1 of all equivalence
classes of irreducible unitary representations of G. We call Ĝ the unitary dual of

1 There is a set-theoretic problem here, since it is not clear why the equivalence classes should form
a set. It is, however, not difficult to show that there exists a cardinality α, depending on G, such that
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G. It is quite common to make no notational difference between a given irreducible
representation π and its unitary equivalence class [π], and we will often do so in this
book.

Example 6.1.10 If G is a locally compact abelian group, then every irreducible
representation is one-dimensional, and therefore the unitary dual Ĝ coincides with
the Pontryagin dual of G. To see this, let (π ,Vπ ) be any irreducible representation
of G. Then π (x)π (y) = π (xy) = π (yx) = π (y)π (x) for all x, y ∈ G, so it follows
from Schur’s Lemma that π (x) = λ(x)IdVπ

for some λ(x) ∈ T. But this implies that
every non-zero closed subspace of Vπ is invariant, hence must be equal to Vπ . This
implies dimVπ = 1.

6.2 Representations of L1(G)

A unitary representation (π ,Vπ ) of G induces an algebra homomorphism from the
convolution algebra L1(G) to the algebra B(Vπ ), as the following proposition shows.

Proposition 6.2.1 Let (π ,Vπ ) be a unitary representation of the locally compact
group G. For every f ∈ L1(G) there exists a unique bounded operator π (f ) on Vπ

such that

〈π (f )v, w〉 =
∫
G

f (x)〈π (x)v, w〉 dx
holds for any two vectors v, w ∈ Vπ . The induced map π : L1(G) → B(Vπ ) is a
continuous homomorphism of Banach-*-algebras.

Proof Taking complex conjugates one sees that the claimed equation is equiv-
alent to the equality 〈w,π (f )v〉 = ∫

G
f (x)〈w,π (x)v〉 dx. The map w �→∫

G
f (x)〈w,π (x)v〉 dx is linear. It is also bounded, since∣∣∣∣

∫
G

f (x)〈w,π (x)v〉 dx
∣∣∣∣ ≤
∫
G

|f (x)〈w,π (x)v〉| dx

≤
∫
G

|f (x)|‖w‖‖π (x)v‖ dx

= ‖f ‖1‖w‖v‖.

every irreducible unitary representation (π ,Vπ ) of G satisfies dimVπ ≤ α. This means that one can
fix a Hilbert space H of dimension α and each irreducible unitary representation π can be realized
on a subspace of H . Setting the representation equal to 1 on the orthogonal complement one gets
a representation on H , i.e., a group homomorphism G → GL(H ). Indeed, since every irreducible
representation has a cyclic vector by Schur’s lemma, one can choose α as the cardinality of G.
Therefore, each equivalence class has a representative in the set of all maps from G to GL(H ) and
so Ĝ forms a set.
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Therefore, by Proposition C.3.1, there exists a unique vector π (f )v ∈ Vπ such
that the equality holds. It is easy to see that the map v �→ π (f )v is linear. To
see that it is bounded, note that the above shows ‖π (f )v‖2 = 〈π (f )v,π (f )v〉 ≤
‖f ‖1‖v‖‖π (f )v‖, and hence ‖π (f )v‖ ≤ ‖f ‖1‖v‖. A straightforward computation
finally shows π (f ∗ g) = π (f )π (g) and π (f )∗ = π (f ∗) for f , g ∈ L1(G). �

Alternatively, one can define π (f ) as the Bochner integral π (f ) = ∫
G
f (x)π (x) dx

in the Banach space B(Vπ ). By the uniqueness in the above proposition, these two
definitions agree.

The above proposition has a converse, as we shall see in Proposition 6.2.3 below.

Lemma 6.2.2 Let (π ,Vπ ) be a representation of G. Then for every v ∈ Vπ and every
ε > 0 there exists a unit-neighborhood U such that for every Dirac function φU with
support in U one has ‖π (φU )v − v‖ < ε. In particular, for every Dirac net (φU )U
the net (π (φU )v) converges to v in the norm topology.

Proof The norm ‖π (φU )v − v‖ equals ‖∫
G
φU (x)(π (x)v − v) dx‖ and is therefore

less than or equal to
∫
G
φU (x)‖π (x)v − v‖ dx. For given ε > 0 there exists a unit-

neighborhood U0 in G such that for x ∈ U0 one has ‖π (x)v − v‖ < ε. For U ⊂ U0

it follows ‖π (φU )v − v‖ < ε. �

Definition We say that a ∗-representation π : L1(G) → B(V ) of L1(G) on a Hilbert
space V is non-degenerate if the vector space

π (L1(G))V
def= span{π (f )v : f ∈ L1(G), v ∈ V }

is dense in V . It follows from the above lemma that every representation of L1(G)
that comes from a representation (π ,Vπ ) as in Proposition 6.2.1, is non-degenerate.
The next proposition gives a converse to this.

Proposition 6.2.3 Let π : L1(G) → B(V ) be a non-degenerate ∗- representation
on a Hilbert space V. Then there exists a unique unitary representation (π̃ ,V ) of
G such that 〈π (f )v, w〉 = ∫

G
f (x)〈π̃ (x)v, w〉 dx holds for all f ∈ L1(G) and all

v, w ∈ V .

Proof Note first that π is continuous by Lemma 2.7.1. We want to define an
operator π̃ (x) on the dense subspace π (L1(G))V of V . This space is made up
of sums of the form

∑n
i=1 π (fi)vi for fi ∈ L1(G) and vi ∈ V . We propose to

define π̃ (x)
∑n

i=1 π (fi)vi
def=∑n

i=1 π (Lxfi)vi . We have to show well-definedness,
which amounts to show that if

∑n
i=1 π (fi)vi = 0, then

∑n
i=1 π (Lxfi)vi = 0

for every x ∈ G. For x ∈ G and f, g ∈ L1(G) a short computation shows
that g∗ ∗ (Lxf ) = (Lx−1g)∗ ∗ f . Based on this, we compute for v, w ∈ V and
f1, . . . , fn ∈ L1(G),
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〈
n∑

i=1

π (Lxfi)v,π (g)w

〉
=

n∑
i=1

〈
π(g∗ ∗ (Lxfi))v, w

〉

=
n∑

i=1

〈
π ((Lx−1g)∗ ∗ fi)v, w

〉 =
〈

n∑
i=1

π (fi)v,π (Lx−1g)w

〉
.

Now for the well-definedness of π̃ (x) assume
∑n

i=1 π (fi)vi = 0, then the above
computation shows that the vector

∑n
i=1 π (Lxfi)vi is orthogonal to all vectors of the

formπ (g)w, which span the dense subspaceπ (L1(G))V , hence
∑n

i=1 π (Lxfi)vi = 0
follows. The computation also shows that this, now well-defined operator π̃ (x) is
unitary on the space π (L1(G))V and since the latter is dense in V , the operator π̃ (x)
extends to a unique unitary operator on V with inverse π̃ (x−1), and we clearly have
π̃ (xy) = π̃ (x)π̃ (y) for all x, y ∈ G. Since for each f ∈ L1(G) the map G → L1(G)
sending x to Lxf is continuous by Lemma 1.4.2, it follows that x �→ π̃ (x)v is
continuous for every v ∈ V . Thus (π̃ ,V ) is a unitary representation of G.

It remains to show that π (f ) equals π̃ (f ) for every f ∈ L1(G). By continuity it
is enough to show that 〈π̃ (f )π (g)v, w〉 = 〈π (f )π (g)v, w〉 for all f, g ∈ Cc(G) and
v, w ∈ V . Since g �→ 〈π (g)v, w〉 is a continuous linear functional on L1(G) we can
use Lemma B.6.5 to get

〈π̃ (f )π (g)v, w〉 =
∫
G

f (x)〈π̃ (x)(π (g)v), w〉 dx

=
∫
G

〈π (f (x)Lxg)v, w〉 dx

=
〈
π

(∫
G

f (x)Lxg dx

)
v, w

〉

= 〈π (f ∗ g)v, w〉 = 〈π (f )π (g)v, w〉,
which completes the proof. �

Remark 6.2.4 If we define unitary equivalence and irreducibility for representa-
tions of L1(G) in the same way as we did for unitary representations of G, then it
is easy to see that the one-to-one correspondence between unitary representations of
G and non-degenerate ∗-representations of L1(G) preserves unitary equivalence and
irreducibility in both directions. Note that an irreducible representation π of L1(G) is
automatically non-degenerate, since the closure of π (L1(G))Vπ is an invariant sub-
space of Vπ . Thus, we obtain a bijection between the space Ĝ of equivalence classes
of irreducible representations ofG and the setL1(G)̂ of irreducible ∗-representations
of L1(G).

Example 6.2.5 Consider the left regular representation on G. Then the correspond-
ing representation L : L1(G) → B(L2(G)) is given by the convolution operators
L(f )φ = f ∗ φ whenever the convolution f ∗ φ makes sense.
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6.3 Exercises

Exercise 6.1 Let G be a topological group and let V be a Banach space. We equip
the group GLcont(V ) with the topology induced by the operator norm. Show that any
continuous group homomorphism G → GLcont(V ) is a representation but that not
every representation is of this form.

Exercise 6.2 If π is a unitary representation of the locally compact group G, then
‖π (g)‖ = 1. Give an example of a representation π , for which the map g �→ ‖π (g)‖
is not bounded on G.

Exercise 6.3 Let I be an index set, and for i ∈ I let (πi ,Vi) be a unitary represen-
tation of the locally compact group G. Let V =⊕i∈I Vi be the Hilbert direct sum
(See Appendix C.3). Define the map π : G → B(V ) by

π (g)
∑
i

vi =
∑
i

πi(g)vi .

Show that this is a unitary representation of the group G. It is called the direct sum
representation.

Exercise 6.4 Show that the Fourier transform on R induces a unitary equivalence
between the the unitary representations π and η of R on L2(R) given by π (x)φ(y) =
φ(x + y) and η(x)φ(y) = e2πixyφ(y).

Exercise 6.5 Show that the natural representation of U(n) on C
n is irreducible.

Exercise 6.6 (a) For t ∈ R let A(t) = ( 1 t
0 1

)
. Show that A(t) is not conjugate to a

unitary matrix for t 
= 0.

(b) Let P be the group of upper triangular matrices in SL2(R). The injection η :
P ↪→ GL2(C) can be viewed as a representation on V = C

2. Show that η is not the
sum of irreducible representations. Determine all irreducible subrepresentations.

Exercise 6.7 LetG be a locally compact group andH a closed subgroup. Let (π ,Vπ )
be an irreducible unitary representation of G, and let

V H
π = {v ∈ Vπ : π (h)v = v ∀h ∈ H }

be the space of H -fixed vectors. Show: If H is normal in G, then V H
π is either zero

or the whole space Vπ .

Exercise 6.8 Show that G = SL2(R) has no finite dimensional unitary representa-
tions except the trivial one.
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Instructions:

• For m ∈ N show(
m

m−1

)
A(t)

(
m

m−1

)−1

= A(m2t) = A(t)m
2
.

Let φ : G → U(n) be a representation. Show that the eigenvalues of φ(A(t))
are a permutation of their m-th powers for every m ∈ N. Conclude that they
all must be equal to 1.

• Show that the normal subgroup of G generated by {A(t) : t ∈ R} is the whole
group.

Exercise 6.9 Let (π ,Vπ ) be a unitary representation of the locally compact group
G. Let f ∈ L1(G). Show that the Bochner integral∫

G

f (x)π (x) dx ∈ B(Vπ )

exists and that the so defined operator coincides with π (f ) as defined in Proposition
6.2.1.

(Hint: Use Corollary 1.3.6 (d) and Lemma B.6.2 as well as Proposition B.6.3.)

Exercise 6.10 In Lemma 6.2.2 we have shown that for a representation π and Dirac
functions φU the numbers ‖π (φU )v − v‖ become arbitrarily small for fixed v ∈ Vπ .
Give an example, in which ‖π (φU ) − Id‖op does not become small as the support of
the Dirac function φU shrinks.

Exercise 6.11 Give an example of a representation that possesses cyclic vectors
without being irreducible.

Notes

As for abelian groups, one can associate to each locally compact group G the group
C∗-algebra C∗(G). It is defined as the completion of L1(G) with respect to the norm

‖f ‖C∗
def= sup{‖π (f )‖ : π a unitary representation of G},

which is finite since ‖π (f )‖ ≤ ‖f ‖1 for every unitary representation π of G. By def-
inition of the norm, every unitary representation π of G extends to a ∗-representation
of C∗(G), and, as for L1(G), this extension provides a one-to-one correspondence
between the unitary representation of G to the non-degenerate ∗-representations of
C∗(G). Therefore, the rich representation theory of generalC∗-algebras, as explained
beautifully in Dixmier’s classic book [Dix96] can be used for the study of unitary
representations of G. For a more recent treatment of C∗-algebras related to locally
compact groups we also refer to Dana William’s book [Wil07].
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