Chapter 6 Representations

In this chapter we introduce the basic concepts of representation theory of locally compact groups. Classically, a representation of a group *G* is an injective group homomorphism from *G* to some $GL_n(\mathbb{C})$, the idea being that the "abstract" group *G* is "represented" as a matrix group.

In order to understand a locally compact group, it is necessary to consider its actions on possibly infinite dimensional spaces like $L^2(G)$. For this reason, one considers infinite dimensional representations as well.

6.1 Schur's Lemma

For a Banach space *V*, let $GL_{cont}(V)$ be the set of bijective bounded linear operators *T* on *V* . It follows from the Open Mapping Theorem C.1.5 that the inverses of such operators are bounded as well, so that $GL_{cont}(V)$ is a group. Let *G* be a topological group. A *representation* of *G* on a Banach space *V* is a group homomorphism of *G* to the group $GL_{cont}(V)$, such that the resulting map $G \times V \rightarrow V$, given by $(g, v) \mapsto \pi(g)v$, is continuous.

Lemma 6.1.1 *Let* π *be a group homomorphism of the topological group G to* $GL_{cont}(V)$ *for a Banach space V. Then* π *is a representation if and only if*

(a) *the map* $g \mapsto \pi(g)v$ *is continuous at* $g = 1$ *for every* $v \in V$ *, and*

(b) *the map* $g \mapsto ||\pi(g)||_{op}$ *is bounded in a neighborhood of the unit in G.*

Proof Suppose π is a representation. Then (a) is obvious. For (b) note that for every neighborhood *Z* of zero in *V* there exists a neighborhood *Y* of zero in *V* and a neighborhood *U* of the unit in *G* such that $\pi(U)Y \subset Z$. This proves (b). For the converse direction write

$$
\begin{aligned} \|\pi(g)v - \pi(g_0)v_0\| &\le \|\pi(g_0)\|_{\text{op}} \|\pi(g_0^{-1}g)v - v_0\| \\ &\le \|\pi(g_0)\|_{\text{op}} \|\pi(g_0^{-1}g)(v - v_0)\| \\ &+ \|\pi(g_0)\|_{\text{op}} \|\pi(g_0^{-1}g)v_0 - v_0\| \\ &\le \|\pi(g_0)\|_{\text{op}} \|\pi(g_0^{-1}g)\|_{\text{op}} \|v - v_0\| \\ &+ \|\pi(g_0)\|_{\text{op}} \|\pi(g_0^{-1}g)v_0 - v_0\|. \end{aligned}
$$

Under the assumptions given, both terms on the right are small if g is close to g_0 , and *v* is close to v_0 .

Examples 6.1.2

- For a continuous group homomorphism $\chi : G \to \mathbb{C}^\times$ define a representation π_χ on $V = \mathbb{C}$ by $\pi_{\gamma}(g)v = \chi(g) \cdot v$.
- Let $G = SL_2(\mathbb{R})$ be the group of real 2×2 matrices of determinant one. This group has a natural representation on \mathbb{C}^2 given by matrix multiplication.

Definition Let *V* be a Hilbert space. A representation π on *V* is called a *unitary representation* if $\pi(g)$ is unitary for every $g \in G$. That means π is unitary if $\langle \pi(g)v, \pi(g)w \rangle = \langle v, w \rangle$ holds for every $g \in G$ and all $v, w \in V$.

Lemma 6.1.3 *A representation* $π$ *of the group G on a Hilbert space V is unitary if and only if* $\pi(g^{-1}) = \pi(g)^*$ *holds for every* $g \in G$.

Proof An operator *T* is unitary if and only if it is invertible and $T^* = T^{-1}$. For a representation *π* and *g* \in *G* the operator *π*(*g*) is invertible and satisfies π (*g*⁻¹) = $\pi(g)^{-1}$. So π is unitary if and only if for every $g \in G$ one has $\pi(g^{-1}) = \pi(g)^{-1} =$ $\pi(g)^*$. [∗]. ✷

Examples 6.1.4

- The representation π_{χ} defined by a continuous group homomorphism $\chi : G \rightarrow$ \mathbb{C}^{\times} is unitary if and only if χ maps into the compact torus \mathbb{T} .
- Let *G* be a locally compact group. On the Hilbert space $L^2(G)$ consider the *left regular representation* $x \mapsto L_x$ with

$$
L_x \phi(y) = \phi(x^{-1}y), \qquad \phi \in L^2(G).
$$

This representation is unitary, as by the left invariance of the Haar measure,

$$
\langle L_x \phi, L_x, \psi \rangle = \int_G L_x \phi(y) \overline{L_x \psi(y)} dy
$$

=
$$
\int_G \phi(x^{-1}y) \overline{\psi(x^{-1}y)} dy
$$

=
$$
\int_G \phi(y) \overline{\psi(y)} dy = \langle \phi, \psi \rangle.
$$

Definition Let (π_1, V_1) and (π_2, V_2) be two unitary representations. On the direct sum $V = V_1 \oplus V_2$ one has the *direct sum representation* $\pi = \pi_1 \oplus \pi_2$. More generally, if $\{\pi_i : i \in I\}$ is a family of unitary representations acting on the Hilbert spaces V_i , we write $\bigoplus_{i \in I} \pi_i$ for the direct sum of the representations π_i , $i \in I$ on the Hilbert space $\widehat{\bigoplus}_{i \in I} V_i$. See also Exercise 6.3 and appendix C.3.

Example 6.1.5 Let $G = \mathbb{R}/\mathbb{Z}$, and let $V = L^2(\mathbb{R}/\mathbb{Z})$. Let π be the left regular representation. By the Plancherel Theorem, the elements of the dual group \hat{G} = ${e_k : k \in \mathbb{Z}}$ with $e_k([x]) = e^{2\pi i kx}$ form an orthonormal basis of $L^2(\mathbb{R}/\mathbb{Z})$ so that π is a direct sum representation on $V = \widehat{\bigoplus}_{k \in \mathbb{Z}} \mathbb{C}e_k$, where $e_k(x) = e^{2\pi i kx}$ and G acts on Ce_k through the character \bar{e}_k .

Definition A representation (π, V_π) is called a *subrepresentation* of a representation (*η*, V_n) if V_π is a closed subspace of V_n and π equals η restricted to V_π . So every closed subspace $U \subset V_n$ that is stable under η , i.e., $\eta(G)U \subset U$, gives rise to a subrepresentation.

A representation is called *irreducible* if it does not possess any proper subrepresentation, i.e., if for every closed subspace $U \subset V_\pi$ that is stable under π , one has $U = 0$ or $U = V_\pi$.

Example 6.1.6. Let $U(n)$ denote the group of unitary $n \times n$ matrices, so the group of all $u \in M_n(\mathbb{C})$ such that $uu^* = I$ (unit matrix), where $u^* = \bar{u}^t$. The natural representation of $U(n)$ on \mathbb{C}^n is irreducible (See Exercise 6.5).

Definition Let (π, V_π) be a representation of *G*. A vector $v \in V_\pi$ is called a *cyclic vector* if the linear span of the set { $\pi(x)v : x \in G$ } is dense in V_π . In other words, *v* is cyclic if the only subrepresentation containing ν is the whole of π . It follows that a representation is irreducible if and only if every nonzero vector is cyclic.

Lemma 6.1.7 *(Schur)* Let (π, V_π) be a unitary representation of the topological *group G. Then the following are equivalent*

- (a) (π, V_{π}) *is irreducible.*
- (b) If T is a bounded operator on V_π such that $T\pi(g) = \pi(g)T$ for every $g \in G$, *then* $T \in \mathbb{C}$ Id.

Proof Since $\pi(g^{-1}) = \pi(g)^*$, the set $\{\pi(g) : g \in G\}$ is a self-adjoint subset of $B(V_\pi)$. Thus the result follows from Theorem 5.1.6.

Let (π, V_π) , (η, V_η) be representations of *G*. A continuous linear operator $T: V_\pi \to$ *Vη* is called a *G-homomorphism* or *intertwining operator* if

$$
T\pi(g) = \eta(g)T
$$

holds for every $g \in G$. We write $\text{Hom}_G(V_\pi, V_\eta)$ for the set of all *G*-homomorphisms from V_π to V_η . A nice way to rephrase the Lemma of Schur is to say that a unitary representation (π, V_π) is irreducible if and only if $\text{Hom}_G(V_\pi, V_\pi) = \mathbb{C}$ Id.

Definition If π , η are unitary, they are called *unitarily equivalent* if there exists a unitary *G*-homomorphism $T: V_{\pi} \to V_n$.

Example 6.1.8. Let $G = \mathbb{R}$, and let $V_\pi = V_n = L^2(\mathbb{R})$. The representation π is given by $\pi(x)\phi(y) = \phi(x+y)$ and η is given by $\eta(x)\phi(y) = e^{2\pi ixy}\phi(y)$. By Theorem 3.3.1 in [Dei05] (see also Exercise 6.4), the Fourier transform $L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is an intertwining operator from *π* to *η*.

Corollary 6.1.9 *Let* (π, V_π) *and* (η, V_n) *be two irreducible unitary representations. Then a G-homomorphism T from* V_π to V_η *is either zero or invertible with continuous inverse. In the latter case there exists a scalar c >* 0 *such that cT is unitary. The space* $Hom_G(V_\pi, V_n)$ *is zero unless* π *and* η *are unitarily equivalent, in which case the space is of dimension* 1.

Proof Let $T: V_{\pi} \to V_{\eta}$ be a *G*-homomorphism. Its adjoint $T^*: V_{\eta} \to V_{\pi}$ is also a *G*-homomorphism as is seen by the following calculation for $v \in V_\pi$, $w \in V_n$, and $g \in G$,

$$
\langle v, T^*\eta(g)w\rangle = \langle Tv, \eta(g)w\rangle = \langle \eta(g^{-1})Tv, w\rangle
$$

$$
= \langle T\pi(g^{-1})v, w\rangle = \langle \pi(g^{-1})v, T^*w\rangle
$$

$$
= \langle v, \pi(g)T^*w\rangle.
$$

This implies that T^*T is a *G*-homomorphism on V_π , and therefore it is a multiple of the identity *λ* Id by the Lemma of Schur. If *T* is non-zero, *T* [∗]*T* is non-zero and or the identity λ ld by the Lemma of Schur. If T is non-zero, $T^T T$ is non-zero and positive semi-definite, so $\lambda > 0$. Let $c = \sqrt{\lambda^{-1}}$, then $(cT)^*(cT) = \text{Id}$. A similar argument shows that TT^* is bijective, which then implies that cT is bijective, hence unitary. The rest is clear. \Box

Definition For a locally compact group *G* we denote by \widehat{G} the set¹ of all equivalence classes of irreducible unitary representations of *^G*. We call *^G* the *unitary dual* of

 $¹$ There is a set-theoretic problem here, since it is not clear why the equivalence classes should form</sup> a set. It is, however, not difficult to show that there exists a cardinality α , depending on *G*, such that

G. It is quite common to make no notational difference between a given irreducible representation π and its unitary equivalence class [π], and we will often do so in this book.

Example 6.1.10 If *G* is a locally compact abelian group, then every irreducible representation is one-dimensional, and therefore the unitary dual \tilde{G} coincides with the Pontryagin dual of *G*. To see this, let (π, V_π) be any irreducible representation of *G*. Then $\pi(x)\pi(y) = \pi(xy) = \pi(yx) = \pi(y)\pi(x)$ for all $x, y \in G$, so it follows from Schur's Lemma that $\pi(x) = \lambda(x) \mathrm{Id}_{V_{\pi}}$ for some $\lambda(x) \in \mathbb{T}$. But this implies that every non-zero closed subspace of V_π is invariant, hence must be equal to V_π . This implies dim $V_\pi = 1$.

6.2 Representations of $L^1(G)$

A unitary representation (π, V_π) of *G* induces an algebra homomorphism from the convolution algebra $L^1(G)$ to the algebra $\mathcal{B}(V_\pi)$, as the following proposition shows.

Proposition 6.2.1 *Let* (π, V_π) *be a unitary representation of the locally compact group G. For every* $f \in L^1(G)$ *there exists a unique bounded operator* $\pi(f)$ on V_π *such that*

$$
\langle \pi(f)v, w \rangle = \int_G f(x) \langle \pi(x)v, w \rangle dx
$$

holds for any two vectors v, w $\in V_\pi$. *The induced map* $\pi : L^1(G) \to \mathcal{B}(V_\pi)$ *is a continuous homomorphism of Banach-*-algebras.*

Proof Taking complex conjugates one sees that the claimed equation is equivalent to the equality $\langle w, \pi(f)v \rangle = \int_G \overline{f(x)} \langle w, \pi(x)v \rangle dx$. The map $w \mapsto$ $\int_G \overline{f(x)} \langle w, \pi(x) \rangle dx$ is linear. It is also bounded, since

$$
\left| \int_G \overline{f(x)} \langle w, \pi(x)v \rangle dx \right| \le \int_G |f(x) \langle w, \pi(x)v \rangle| dx
$$

$$
\le \int_G |f(x)| ||w|| ||\pi(x)v|| dx
$$

$$
= ||f||_1 ||w||v||.
$$

every irreducible unitary representation (π , V_{π}) of *G* satisfies dim $V_{\pi} \leq \alpha$. This means that one can fix a Hilbert space *H* of dimension α and each irreducible unitary representation π can be realized on a subspace of *H*. Setting the representation equal to 1 on the orthogonal complement one gets a representation on *H*, i.e., a group homomorphism $G \rightarrow GL(H)$. Indeed, since every irreducible representation has a cyclic vector by Schur's lemma, one can choose *α* as the cardinality of *G*. Therefore, each equivalence class has a representative in the set of all maps from *G* to GL(*H*) and so *G*ˆ forms a set.

Therefore, by Proposition C.3.1, there exists a unique vector $\pi(f)v \in V_\pi$ such that the equality holds. It is easy to see that the map $v \mapsto \pi(f)v$ is linear. To see that it is bounded, note that the above shows $\|\pi(f)v\|^2 = \langle \pi(f)v, \pi(f)v \rangle \le$ $|| f ||_1 ||v|| ||\pi(f)v||$, and hence $||\pi(f)v|| \le ||f||_1 ||v||$. A straightforward computation finally shows $\pi(f * g) = \pi(f)\pi(g)$ and $\pi(f)^* = \pi(f^*)$ for $f, g \in L^1(G)$. \Box

Alternatively, one can define $\pi(f)$ as the Bochner integral $\pi(f) = \int_G f(x)\pi(x) dx$ in the Banach space $\mathcal{B}(V_\pi)$. By the uniqueness in the above proposition, these two definitions agree.

The above proposition has a converse, as we shall see in Proposition 6.2.3 below.

Lemma 6.2.2 *Let* (π, V_π) *be a representation of G. Then for every* $v \in V_\pi$ *and every* $\varepsilon > 0$ *there exists a unit-neighborhood U such that for every Dirac function* ϕ_U *with support in U one has* $\|\pi(\phi_U)v - v\| < \varepsilon$. *In particular, for every Dirac net* $(\phi_U)_U$ *the net* $(\pi(\phi_U)v)$ *converges to v in the norm topology.*

Proof The norm $\|\pi(\phi_U)v - v\|$ equals $\|\int_G \phi_U(x)(\pi(x)v - v) dx\|$ and is therefore less than or equal to $\int_G \phi_U(x) ||\pi(x)v - v|| dx$. For given $\varepsilon > 0$ there exists a unitneighborhood U_0 in G such that for $x \in U_0$ one has $\|\pi(x)v - v\| < \varepsilon$. For $U \subset U_0$ it follows $\|\pi(\phi_U)v - v\| < \varepsilon$.

Definition We say that a $*$ -representation $\pi : L^1(G) \to \mathcal{B}(V)$ of $L^1(G)$ on a Hilbert space *V* is *non-degenerate* if the vector space

$$
\pi(L^1(G))V \stackrel{\text{def}}{=} \text{span}\{\pi(f)v : f \in L^1(G), v \in V\}
$$

is dense in *V*. It follows from the above lemma that every representation of $L^1(G)$ that comes from a representation (π, V_π) as in Proposition 6.2.1, is non-degenerate. The next proposition gives a converse to this.

Proposition 6.2.3 *Let* $\pi : L^1(G) \to \mathcal{B}(V)$ *be a non-degenerate* $*$ - *representation on a Hilbert space V. Then there exists a unique unitary representation* $(\tilde{\pi}, V)$ *of G* such that $\langle \pi(f)v, w \rangle = \int_G f(x) \langle \tilde{\pi}(x)v, w \rangle dx$ holds for all $f \in L^1(G)$ and all $v, w \in V$.

Proof Note first that π is continuous by Lemma 2.7.1. We want to define an operator $\tilde{\pi}(x)$ on the dense subspace $\pi(L^1(G))V$ of *V*. This space is made up of sums of the form $\sum_{i=1}^{n} \pi(f_i)v_i$ for $f_i \in L^1(G)$ and $v_i \in V$. We propose to define $\tilde{\pi}(x) \sum_{i=1}^{n} \pi(f_i) v_i \stackrel{\text{def}}{=} \sum_{i=1}^{n} \pi(L_x f_i) v_i$. We have to show well-definedness, which amounts to show that if $\sum_{i=1}^{n} \pi(f_i)v_i = 0$, then $\sum_{i=1}^{n} \pi(L_x f_i)v_i = 0$ for every $x \in G$. For $x \in G$ and $f, g \in L^1(G)$ a short computation shows that $g^* * (L_x f) = (L_{x^{-1}}g)^* * f$. Based on this, we compute for $v, w \in V$ and *f*₁*,..., f_n* ∈ *L*¹(*G*)*,*

6.2 Representations of $L^1(G)$ 129

$$
\left\langle \sum_{i=1}^{n} \pi(L_x f_i) v, \pi(g) w \right\rangle = \sum_{i=1}^{n} \left\langle \pi(g^* * (L_x f_i)) v, w \right\rangle
$$

$$
= \sum_{i=1}^{n} \left\langle \pi((L_{x^{-1}}g)^* * f_i) v, w \right\rangle = \left\langle \sum_{i=1}^{n} \pi(f_i) v, \pi(L_{x^{-1}}g) w \right\rangle.
$$

Now for the well-definedness of $\tilde{\pi}(x)$ assume $\sum_{i=1}^{n} \pi(f_i)v_i = 0$, then the above computation shows that the vector $\sum_{i=1}^{n} \pi(L_x f_i) v_i$ is orthogonal to all vectors of the form $\pi(g)w$, which span the dense subspace $\pi(L^1(G))V$, hence $\sum_{i=1}^n \pi(L_x f_i)v_i = 0$ follows. The computation also shows that this, now well-defined operator $\tilde{\pi}(x)$ is unitary on the space $\pi(L^1(G))V$ and since the latter is dense in *V*, the operator $\tilde{\pi}(x)$ extends to a unique unitary operator on *V* with inverse $\tilde{\pi}(x^{-1})$, and we clearly have $\tilde{\pi}(xy) = \tilde{\pi}(x)\tilde{\pi}(y)$ for all $x, y \in G$. Since for each $f \in L^1(G)$ the map $G \to L^1(G)$ sending *x* to $L_x f$ is continuous by Lemma 1.4.2, it follows that $x \mapsto \tilde{\pi}(x)v$ is continuous for every $v \in V$. Thus $(\tilde{\pi}, V)$ is a unitary representation of *G*.

It remains to show that $\pi(f)$ equals $\tilde{\pi}(f)$ for every $f \in L^1(G)$. By continuity it is enough to show that $\langle \pi(f)\pi(g)v, w \rangle = \langle \pi(f)\pi(g)v, w \rangle$ for all $f, g \in C_c(G)$ and $v, w \in V$. Since $g \mapsto \langle \pi(g)v, w \rangle$ is a continuous linear functional on $L^1(G)$ we can use Lemma B.6.5 to get

$$
\langle \tilde{\pi}(f)\pi(g)v, w \rangle = \int_G f(x) \langle \tilde{\pi}(x)(\pi(g)v), w \rangle dx
$$

=
$$
\int_G \langle \pi(f(x)L_x g)v, w \rangle dx
$$

=
$$
\langle \pi \left(\int_G f(x)L_x g dx \right) v, w \rangle
$$

=
$$
\langle \pi(f * g)v, w \rangle = \langle \pi(f)\pi(g)v, w \rangle,
$$

which completes the proof. \Box

Remark 6.2.4 If we define unitary equivalence and irreducibility for representations of $L^1(G)$ in the same way as we did for unitary representations of G, then it is easy to see that the one-to-one correspondence between unitary representations of *G* and non-degenerate $*$ -representations of $L^1(G)$ preserves unitary equivalence and irreducibility in both directions. Note that an irreducible representation π of $L^1(G)$ is automatically non-degenerate, since the closure of $\pi(L^1(G))V_\pi$ is an invariant subspace of V_π . Thus, we obtain a bijection between the space \widehat{G} of equivalence classes of irreducible representations of *G* and the set $L^1(G)$ of irreducible $*$ -representations of $L^1(G)$.

Example 6.2.5 Consider the left regular representation on *G*. Then the corresponding representation $L : L^1(G) \to \mathcal{B}(L^2(G))$ is given by the convolution operators $L(f)\phi = f * \phi$ whenever the convolution $f * \phi$ makes sense.

6.3 Exercises

Exercise 6.1 Let *G* be a topological group and let *V* be a Banach space. We equip the group $GL_{cont}(V)$ with the topology induced by the operator norm. Show that any continuous group homomorphism $G \to GL_{cont}(V)$ is a representation but that not every representation is of this form.

Exercise 6.2 If π is a unitary representation of the locally compact group *G*, then $\|\pi(g)\| = 1$. Give an example of a representation π , for which the map $g \mapsto \|\pi(g)\|$ is not bounded on *G*.

Exercise 6.3 Let *I* be an index set, and for $i \in I$ let (π_i, V_i) be a unitary representation of the locally compact group *G*. Let $V = \bigoplus_{i \in I} V_i$ be the Hilbert direct sum (See Appendix C.3). Define the map $\pi : G \to \mathcal{B}(V)$ by

$$
\pi(g)\sum_{i}v_i=\sum_{i}\pi_i(g)v_i.
$$

Show that this is a unitary representation of the group *G*. It is called the *direct sum representation*.

Exercise 6.4 Show that the Fourier transform on $\mathbb R$ induces a unitary equivalence between the the unitary representations π and η of $\mathbb R$ on $L^2(\mathbb R)$ given by $\pi(x)\phi(y) =$ $\phi(x + y)$ and $\eta(x)\phi(y) = e^{2\pi i xy}\phi(y)$.

Exercise 6.5 Show that the natural representation of $U(n)$ on \mathbb{C}^n is irreducible.

Exercise 6.6 (a) For $t \in \mathbb{R}$ let $A(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. Show that $A(t)$ is not conjugate to a unitary matrix for $t \neq 0$.

(b) Let *P* be the group of upper triangular matrices in $SL_2(\mathbb{R})$. The injection η : $P \hookrightarrow GL_2(\mathbb{C})$ can be viewed as a representation on $V = \mathbb{C}^2$. Show that *η* is not the sum of irreducible representations. Determine all irreducible subrepresentations.

Exercise 6.7 Let *G* be a locally compact group and *H* a closed subgroup. Let (π, V_π) be an irreducible unitary representation of *G*, and let

$$
V_{\pi}^{H} = \{ v \in V_{\pi} : \pi(h)v = v \,\forall h \in H \}
$$

be the space of *H*-fixed vectors. Show: If *H* is normal in *G*, then V^H_π is either zero or the whole space V_π .

Exercise 6.8 Show that $G = SL_2(\mathbb{R})$ has no finite dimensional unitary representations except the trivial one.

6.3 Exercises 131

Instructions:

• For $m \in \mathbb{N}$ show

$$
\left(\begin{array}{cc} m & \\ & m^{-1} \end{array}\right) A(t) \left(\begin{array}{cc} m & \\ & m^{-1} \end{array}\right)^{-1} = A(m^2 t) = A(t)^{m^2}.
$$

Let ϕ : $G \to U(n)$ be a representation. Show that the eigenvalues of $\phi(A(t))$ are a permutation of their *m*-th powers for every $m \in \mathbb{N}$. Conclude that they all must be equal to 1.

• Show that the normal subgroup of *G* generated by $\{A(t): t \in \mathbb{R}\}$ is the whole group.

Exercise 6.9 Let (π, V_π) be a unitary representation of the locally compact group *G*. Let *f* ∈ $L^1(G)$. Show that the Bochner integral

$$
\int_G f(x)\pi(x) \, dx \in \mathcal{B}(V_\pi)
$$

exists and that the so defined operator coincides with $\pi(f)$ as defined in Proposition 6.2.1.

(Hint: Use Corollary 1.3.6 (d) and Lemma B.6.2 as well as Proposition B.6.3.)

Exercise 6.10 In Lemma 6.2.2 we have shown that for a representation π and Dirac functions ϕ_U the numbers $\|\pi(\phi_U)v - v\|$ become arbitrarily small for fixed $v \in V_\pi$. Give an example, in which $\|\pi(\phi_U) - \text{Id}\|_{\text{op}}$ does not become small as the support of the Dirac function ϕ_U shrinks.

Exercise 6.11 Give an example of a representation that possesses cyclic vectors without being irreducible.

Notes

As for abelian groups, one can associate to each locally compact group *G* the group C^* -algebra $C^*(G)$. It is defined as the completion of $L^1(G)$ with respect to the norm

 $|| f ||_{C^*} \stackrel{\text{def}}{=} \sup \{ || \pi(f) || : \pi \text{ a unitary representation of } G \},$

which is finite since $\|\pi(f)\| \le \|f\|_1$ for every unitary representation π of *G*. By definition of the norm, every unitary representation π of *G* extends to a $*$ -representation of $C^*(G)$, and, as for $L^1(G)$, this extension provides a one-to-one correspondence between the unitary representation of *G* to the non-degenerate ∗-representations of *C*[∗](*G*). Therefore, the rich representation theory of general*C*[∗]-algebras, as explained beautifully in Dixmier's classic book [Dix96] can be used for the study of unitary representations of *G*. For a more recent treatment of *C*[∗]-algebras related to locally compact groups we also refer to Dana William's book [Wil07].