
Chapter 5

Operators on Hilbert Spaces

In this chapter, we will apply the results of Chap. 2 on C∗-algebras to operators on
Hilbert spaces. In particular, we will discuss the continuous functional calculus for
normal bounded operators on Hilbert space, which turns out to be a powerful tool.

The space B(H ) of all bounded linear operators on a Hilbert space H is a Banach
algebra with the operator norm (Example 2.1.1), and, as we have seen in Example
2.6.1, even a C∗-algebra. We will write

σ (T ) = σB(H )(T )

for the spectrum of T with respect to the C∗-algebra B(H ) and call it simply the
spectrum of the operator T .

5.1 Functional Calculus

Let H be a Hilbert space, and let T be a bounded normal operator on H , this means
that T commutes with its adjoint T ∗, i.e., T is normal as an element of the C∗-algebra
B(H ). We then can apply the results of Sect. 2.7, which for any continuous function
f on the spectrum σ (T ) give a unique element f (T ) of B(H ) that commutes with
T and satisfies

f̂ (T ) = f ◦ T̂ ,

where the hat means the Gelfand transform with respect to the unital C∗-algebra
generated by T . Recall that by Lemma 2.7.2 the spectrum of a normal operator T

does not depend on the C∗-algebra. The map from C(σ (T )) to B(H ) mapping f to
f (T ) is the continuous functional calculus. In the next proposition, we summarize
some important properties.

Proposition 5.1.1. Let T be a normal bounded operator on the Hilbert space H and
let A = C∗(T , 1) be the unital C∗-algebra generated by T.

(a) The map f �→ f (T ) is a unital isometric C∗-isomorphism from C(σ (T )) to A,
which sends the identity map Idσ (T ) to T.
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(b) Let V ⊂ H be a closed subspace stable under T and T ∗. Then V is stable under
A and f (T )|V = f (T |V ).

(c) Let V be the kernel of f (T ). Then V is stable under T and T ∗, and the spectrum
of f (T |V ) is contained in the zero-set of f.

(d) If f (z) = ∑∞
n=0 anzn is a power series that converges for z = ‖T ‖, then

f (T ) =∑∞
n=0 anT

n.

Proof The first assertion is a direct consequence of Theorem 2.7.3.

To show (b), note first that if V is stable under T and T ∗, then V is A-stable, since the
linear combinations of operators of the form T k(T ∗)l are dense in A. We therefore get
a well defined ∗-homomorphism � : A → B(V ) mapping S to S|V . The assertion
in (b) is then a consequence of Corollary 2.7.5.

In (c), the space V is stable under T and T ∗ as these operators commute with f (T ).
Further, using Corollary 2.7.5, one has

f (σ (T |V )) = σ (f (T |V )) = σ (f (T )|V ) = {0}.
Finally, part (d) is contained in Theorem 2.7.3, since convergence of the power series
at ‖T ‖ implies uniform convergence on σ (T ) ⊆ B‖T ‖(0). �

An important class of normal operators is formed by the self-adjoint operators, i.e.,
operators T with T = T ∗. It is shown in Corollary 2.7.5 that σ (T ) ⊆ R for every
self-adjoint T . Another class of interesting normal operators consists of the unitary
operators. These are operators U ∈ B(H ) satisfying UU ∗ = U ∗U = 1. Note that
a normal operator U ∈ B(H ) is unitary if and only if σ (U ) ⊆ T. This follows from
functional calculus, because if U is normal, then U∗U = 1 if and only if Īd · Id = 1
for Id = Idσ (U ), which is equivalent to σ (U ) ⊆ T.

Recall the Schwartz space S(R) consisting of all functions f : R → C such that for
any two integers m, n ≥ 0 the function xnf (m)(x) is bounded. So a Schwartz function
on R is a smooth function on R, which, together with all its derivatives, is rapidly
decreasing.

For f ∈ S(R) the Fourier inversion formula says that

f (x) =
∫

R

f̂ (y)e2πixy dy,

where f̂ (y) = ∫
R
f (x)e−2πixy dx is the Fourier transform (See Exercise 3.14 or

[Dei05] Sect. 3.4).

Proposition 5.1.2. Let T be a self-adjoint bounded operator on the Hilbert space
H. Then for every f ∈ S(R),

f (T ) =
∫

R

f̂ (y)e2πiyT dy,
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where the unitary operator e2πiyT is defined by the continuous functional calculus
and the integral is a vector-valued integral in the Banach space B(H ) as in Sect. B.6.

Proof To see that the operator e2πiyT is unitary, we compute

(
e2πiyT
)∗ = e−2πiyT ∗ = e−2πiyT = (e2πiyT

)−1
.

The Bochner integral exists by Lemma B.6.2 and Proposition B.6.3. Next, let � :
C(σ (T )) → C∗(T , 1), g �→ g(T ) denote the isometric ∗-homomorphism underlying
the Functional Calculus for T . The Fourier inversion formula implies that

f |σ (T ) =
∫

R

f̂ (y)e2πiyIdσ (T ) dy.

By continuity of � we therefore get

f (T ) = �(f |σ (T )) = �

(∫
R

f̂ (y)e2πiyIdσ (T ) dy

)

=
∫

R

f̂ (y)�
(
e2πiyIdσ (T )

)
dy =
∫

R

f̂ (y)e2πiyT dy,

where the last equation follows from Corollary 2.7.5, which implies �
(
e2πiyIdσ (T )

) =
e2πiy�(Idσ (T )) = e2πiT . �

Definition A self-adjoint operator T ∈ B(H ) is called positive if

〈T v, v〉 ≥ 0 ∀v ∈ H.

In what follows, we want to use the spectral theorem to compute a positive square
root for any positive operator T . For this we need to know that positive operators
have positive spectrum.

Theorem 5.1.3 Let T be a self-adjoint bounded operator on the Hilbert space H.
Then the following are equivalent:

(a) T is positive.

(b) The spectrum σ (T ) is contained in the interval [0,∞).

(c) There exists an operator R ∈ B(H ) with T = R∗R.

(d) There exists a unique positive operator S with T = S2. In this case we write
S = √

T .

Proof The implications (d) ⇒ (c) and (c) ⇒ (a) are trivial. So it is enough to show
that (a) ⇒ (b) and (b) ⇒ (d) hold.
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For (a)⇒ (b) assume without loss of generality that ‖T ‖ = 1. Then σ (T ) ⊆ [−1, 1]

since T is self-adjoint. We show that Tμ
def= T + μ1 is invertible for every μ > 0,

which will imply that there are no negative spectral values for T . By assumption we
have

‖Tμv‖‖v‖ ≥ 〈Tμv, v
〉 = 〈T v, v〉 + μ〈v, v〉 ≥ μ‖v‖2,

which implies that ‖Tμv‖ ≥ μ‖v‖ for every v ∈ H . It follows that Tμ is injective.
SinceTμ is self-adjoint we also get (Tμ(H ))⊥ = kerTμ = {0}, since if w ∈ (Tμ(H ))⊥,
then 0 = 〈Tμv, w

〉 = 〈v, Tμw
〉

for every v ∈ H , which implies that Tμw = 0. Thus
we get Tμ(H ) = H and for each w ∈ H we find a sequence vn in H with T vn → w.
Since ‖vn − vm‖ ≤ 1

μ
‖Tμvn − Tμvm‖ for all n,m ∈ N, it follows that (vn) is a

Cauchy-sequence and hence converges to some v ∈ H . Then Tμv = w, which shows
that Tμ is also surjective. The Open Mapping Theorem C.1.5 implies that T −1

μ is
continuous, so Tμ is invertible in B(H ).

Assume finally that (b) holds. Then t → √
t is a continuous function on σ (T ), and

by functional calculus we can build the operator S = √
T . Since

√· is real and
positive, it follows from Corollary 2.7.5 that S is self-adjoint, σ (S) ⊂ [0,∞), and
S2 = T . For uniqueness assume that S̃ is another such operator. Then T lies in the
commutative C∗-algebra C∗(S̃, 1). But then S ∈ C∗(T , 1) ⊆ C∗(S̃, 1) ∼= C(σ (S̃)),
and the result follows from the fact that a positive real function has a unique positive
square root. �

Definition Let T be a bounded operator on a Hilbert space H . Define the operator

|T | by |T | def=√
T ∗T , which exists and is well defined by the above theorem.

Proposition 5.1.4 Let T be a bounded operator on H. Then the norm of |T |v coin-
cides with ‖T v‖. There is an isometric operator U from the closure of Im(|T |) to the
closure of Im(T ) such that T = U |T |. This decomposition of T is called polar de-
composition. It is unique in the following sense. If T = U ′P , where P is self-adjoint
and positive, and U ′ : Im(P) → H is isometric, then U ′ = U and P = |T |.

Proof For v ∈ H the square of the norm ‖T v‖2 equals

〈T v, T v〉 = 〈T ∗T v, v
〉 = 〈|T |2v, v

〉 = 〈|T |v, |T |v〉,
and the latter is ‖|T |v‖2. For v ∈ H we define U (|T |v) = T v, then U is a well-
defined isometry from Im(|T |) to Im(T ), which extends to the closure, and satisfies
the claim. For the uniqueness let T = U |T | = U ′P . Extend U to a bounded operator
on H by setting U ≡ 0 on Im(|T |)⊥ and do likewise for U ′. Then U ∗U is the
orthogonal projection to Im(|T |) and (U ′)∗U ′ is the orthogonal projection to Im(P ),
so that (U ′)∗U ′P = P . Note |T | = √

T ∗T = √
(U ′P )∗U ′P = √

P ∗(U ′)∗U ′P =√
P ∗P = √

P 2 = P . This also implies U = U ′. �

An important application of the functional calculus for operators on Hilbert space is
Schur’s Lemma, which we shall use quite frequently in the remaining part of this
book. We first state
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Lemma 5.1.5 Let H be a Hilbert space, and let T be a bounded normal operator,
the spectrum of which consists of a single point {λ} ⊂ C. Then T = λId.

Proof If σ (T ) = {λ}, then Idσ (T ) = λ1σ (T ) and therefore T = Idσ (T )(T ) = λ ·
IdH . �

Theorem 5.1.6 (Schur’s Lemma) Suppose that A ⊆ B(H ) is a self-adjoint set of
bounded operators on the Hilbert space H (i.e., S ∈ A implies S∗ ∈ A). Then the
following are equivalent:

(a) A is topologically irreducible, i.e., if {0} 
= L ⊆ H is any A-invariant closed
subspace of H then L = H .

(b) If T ∈ B(H ) commutes with every S ∈ A, then T = μId for some μ ∈ C.

Proof Assume first that the second assertion holds. Then, if {0} 
= L ⊆ H is any
A-invariant closed subspace of H , the orthogonal complement L⊥ is A-invariant as
well, for with v ∈ L, u ∈ L⊥, and S ∈ A we have

〈v, Su〉 = 〈 S∗v︸︷︷︸
∈L

, u〉 = 0.

So the orthogonal projection PL : H → L commutes with A, so PL must be a
multiple of the identity. But this implies that PL = Id and L = H .

For the converse, assume that (a) holds, and let T ∈ B(H ) commute with A. Then
also T ∗ commutes with A since A is self-adjoint. Thus, writing T = 1

2 (T + T ∗) −
i 1

2 (iT − iT ∗) we may assume without loss of generality that T is self-adjoint and
T 
= 0. We want to show that the spectrum of T consists of a single point. Note
that an operator S, which commutes with T , also commutes with f (T ) for every
f ∈ C(σ (T )). Assume that there are x, y ∈ σ (T ) with x 
= y. Then there are two
functions f , g ∈ C(σ (T )) with f (x) 
= 0 
= g(y) and f · g = 0. Then f (T ) 
=
0 
= g(T ) and f (T )g(T ) = f · g(T ) = 0. Since g(T ) commutes with A, the space
L = g(T )H is a non-zero A-invariant subspace of H . By (a) we get L = H . But
then {0} 
= f (T )H = f (T )g(T )H ⊂ f (T )g(T )H = {0}, a contradiction. �

5.2 Compact Operators

An operator T on a Hilbert space H is called a compact operator if T maps bounded
sets to relatively compact ones. It is clear from the definition that if T is compact
and S a bounded operator on H , then ST and T S are compact. The definition can be
rephrased as follows. An operator T is compact if and only if for a given bounded
sequence vj ∈ H the sequence T vj has a convergent subsequence. If the vj lie in a
finite dimensional space, then this is true for every bounded operator. So one may
restrict to sequences vj that are linearly independent.
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Definition A bounded linear map F : H → H on a Hilbert space H is said to be a
finite rank operator if the image F (H ) is finite-dimensional.

Proposition 5.2.1 For a bounded operator T on a Hilbert space H the following are
equivalent.

(a) T is compact.

(b) For every orthonormal sequence ej the sequence T ej has a convergent
subsequence.

(c) There exists a sequence Fn of finite rank operators such that ‖T − Fn‖op tends
to zero, as n →∞.

Proof The implication (a)⇒(b) is trivial. For (b)⇒(c) let T : H → H be compact
and let B ⊂ H denote the closed unit ball. Then T (B) is compact, hence has a vector
v1 of maximal norm. Next suppose the vectors v1, . . . vn are already constructed and
letVn be their span. Choose a vector vn+1 of maximal norm in T (B)∩V ⊥

n . The vectors
v1, v2, . . . are pairwise orthogonal and for their norms we have ‖v1‖ ≥ ‖v2‖ ≥ . . . .
We claim that the sequence vn tends to zero. Assume not, then there exists δ > 0 such
that ‖vn‖ ≥ δ for all n. For i 
= j if follows ‖vi − vj‖2 = ‖vi‖2+‖vj‖2 ≥ 2δ2, hence
the sequence has no convergent subsequence, in contradiction to the compactness of
T (B). So the sequence does tend to zero. Let Pn be the orthogonal projection onto
Vn. Then

‖T − PnT ‖ = sup
v∈T (B)

‖v − Pnv‖ ≤ ‖vn‖ → 0.

So with Fn = PnT the claim follows.

For (c)⇒(a) let vj be a bounded sequence, and letT be the norm-limit of a sequence of
finite rank operatorsFn. We can assume ‖vj‖, ‖T ‖ ≤ 1. Then vj has a subsequence v1

j

such that F1(v1
j ) converges. Next, v1

j has a subsequence v2
j such that F2(v2

j ) converges,

and so on. Let wj = vj

j . Then for every n ∈ N, the sequence (Fn(wj ))j∈N converges.
As T is the uniform limit of the Fn, the sequence T wj converges as well. �

Theorem 5.2.2 (Spectral Theorem). Let T be a compact normal operator on the
Hilbert space H. Then there exists a sequenceλn of non-zero complex numbers, which
is either finite or tends to zero, such that one has an orthogonal decomposition

H = ker(T ) ⊕
⊕
n

Eig(T , λn).

Each eigenspace Eig(T , λn) = {v ∈ H : T v = λnv} is finite dimensional, and the
eigenspaces are pairwise orthogonal.

Proof We first show that a given compact normal operator T 
= 0 has an eigenvalue
λ 
= 0. We show that it suffices to assume that T is self-adjoint. Note that T =
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1
2 (T + T ∗)− i

2 (iT + (iT )∗) = T1 + iT2 is a linear combination of two commuting
compact self-adjoint operators. If T2 = 0, then T is self-adjoint and we are done.
Otherwise, T2 has a non-zero eigenvalue ν ∈ R�{0}. The corresponding eigenspace
is left stable by T1, which therefore induces a self-adjoint compact operator on that
space, hence has an eigenvalue μ ∈ R. Then λ = μ + iν is a non-zero eigenvalue
of T .

We have to show that a compact self-adjoint operator T 
= 0 has an eigenvalue λ 
= 0.

Lemma 5.2.3 For a bounded self-adjoint operator T on a Hilbert space H we have
‖T ‖ = sup{|〈T v, v〉| : ‖v‖ = 1}.

Proof Let C be the right hand side. By the Cauchy-Schwarz inequality we have
C ≤ ‖T ‖. On the other hand, for v, w ∈ H with ‖v‖, ‖w‖ ≤ 1 one has

C ≥ 1

2
C
(‖v‖2 + ‖w‖2

) = 1

4
C
(‖v + w‖2 + ‖v − w‖2

)

≥ 1

4
|〈T (v + w), v + w〉 − 〈T (v − w), v − w〉|

= 1

2
|〈T v, w〉 + 〈T w, v〉| = 1

2
|〈T v, w〉 + 〈w, T v〉|

= |Re〈T v, w〉|.
Replacing v with θv for some θ ∈ C with |θ | = 1 we get C ≥ |〈T v, w〉| for all
‖v‖, ‖w‖ ≤ 1 and so ‖T ‖ ≤ C. �

We continue the proof that a compact self-adjoint operator T 
= 0 has an eigenvalue
λ 
= 0. Indeed, we prove that either ‖T ‖ or −‖T ‖ is an eigenvalue for T . By the
lemma there is a sequence vj ∈ H with ‖vj‖ = 1 and

〈
T vj , vj

〉→±‖T ‖. Replacing
T with −T if necessary, we assume

〈
T vj , vj

〉 → ‖T ‖. Since T is compact, there
exists a norm-convergent subsequence, i.e., we can assume that T vj → u in norm.
Then ‖u‖ ≤ ‖T ‖ and we get

0 ≤ ‖T vj − ‖T ‖vj‖2 = ‖T vj‖2 − 2‖T ‖〈T vj , vj

〉+ ‖T ‖2‖vj‖2

→ ‖u‖2 − ‖T ‖2 ≤ 0,

which implies that ‖T vj − ‖T ‖vj‖ → 0. Thus v := limj vj = 1
‖T ‖u exists and

T v = limj T vj = u = ‖T ‖v.

We have proven that every compact normal operator T has an eigenvalue λ 
= 0. Let
U ⊂ V be the closure of the sum of all eigenspaces of T corresponding to non-zero
eigenvalues. By Lemma C.3.3 every eigenvector for T is also an eigenvector for T ∗,
so U is stable under T and T ∗ and hence the orthogonal complement U⊥ is stable
under T and T ∗ as well. The operator T induces a compact normal operator on U⊥;
as this operator cannot have a non-zero eigenvalue, it is zero and U⊥ is the kernel of
T . We have shown that H is a direct sum of eigenspaces of T .
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It remains to show that every eigenspace for a non-zero eigenvalue is finite dimen-
sional and that the eigenvalues do not accumulate away from zero. For this let f be
a continuous function on C whose zero set is the closed ε-neighborhood B̄ε(λ) of
a given λ ∈ C, where 0 < ε < |λ|. Let V be the kernel of f (T ). By Proposition
5.1.1, the space V is stable under T and T ∗, and σ (T |V ) ⊂ B̄ε(λ). It follows from
Functional Calculus that ‖T − λ‖V = ‖Idσ (T |V ) − λ1σ (T |V )‖σ (T |V ) ≤ ε, which im-
plies that for v ∈ V one has ‖T v‖ ≥ (|λ| − ε)‖v‖. We want to deduce that V is finite
dimensional. Assume the contrary, so there exists an orthonormal sequence (fj )j∈N

in V . Then ‖fi − fj‖ =
√

2 for i 
= j and so ‖Tfj − Tfi‖ ≥ (|λ| − ε)
√

2, which
means that no subsequence of (Tfj ) is a Cauchy sequence, hence (Tfj ) does not
contain a convergent subsequence, a contradiction to the compactness of T . So V

is finite dimensional, hence it is a direct orthogonal sum of T -eigenspaces. It now
follows that no spectral values of T can accumulate away from zero, and all spectral
values apart from zero are eigenvalues of finite multiplicity. Finally, the fact that the
eigenspaces are pairwise orthogonal is in Lemma C.3.3. The theorem is proven. �

Definition Let T be a compact operator on a Hilbert space H . Then T ∗T is a self-
adjoint compact operator with positive eigenvalues. The operator |T | = √

T ∗T also
is a compact operator. Let sj (T ) be the family of non-zero eigenvalues of |T | repeated
with multiplicities and such that sj+1(T ) ≤ sj (T ) for all j . These sj (T ) are called
the singular values of T .

Proposition 5.2.4 Let T be a compact operator.

(a) We have s1(T ) = ‖T ‖ and

sj+1(T ) = inf
v1,...,vj∈H

sup{‖T w‖ : w ⊥ v1, . . . , vj , ‖w‖ = 1},

where the vectors v1, . . . , vj are unit eigenvectors for the eigenvalues
s1(T ), . . . , sj (T ), respectively.

(b) For any bounded operator S on H one has sj (ST ) ≤ ‖S‖sj (T ).

Proof The formulas in (a) follow from the fact that the sj are the eigenvalues of
the self-adjoint operator |T | and ‖T ‖ = ‖|T |‖. Part (b) is a consequence of (a). We
leave the details as an exercise (See Exercise 5.4). �

5.3 Hilbert-Schmidt and Trace Class

Let T ∈ B(H ), and let (ej ) be an orthonormal basis of H . The Hilbert-Schmidt norm
‖T ‖HS of T is defined by

‖T ‖2
HS

def=
∑
j

〈
T ej , T ej

〉
.
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This number is≥ 0 but can be+∞. It does not depend on the choice of the orthonor-
mal basis, as we will prove now. Along the way we also show that ‖T ‖HS = ‖T ∗‖HS

holds for every bounded operator T . First recall that for any two vectors v, w ∈ H

and any orthonormal basis (ej ) one has

〈v, w〉 =
∑
j

〈
v, ej
〉〈
ej , w
〉
.

Let now (φα) be another orthonormal basis; then, not knowing the independence yet,
we write ‖T ‖2

HS(ei) and ‖T ‖2
HS(φα), respectively. We compute

‖T ‖2
HS(ej ) =

∑
j

∑
α

〈
T ej ,φα

〉〈
φα , T ej

〉 =∑
j

∑
α

〈
ej , T ∗φα

〉〈
T ∗φα , ej

〉

=
∑
α

∑
j

〈
ej , T ∗φα

〉〈
T ∗φα , ej

〉 = ‖T ∗‖2
HS(φα).

The interchange of summation order is justified by the fact that all summands are
positive. Applying this to (ej ) = (φα) first and then to T ∗ instead of T we get
‖T ‖2

HS(ej ) = ‖T ∗‖2
HS(ej ) = ‖T ‖2

HS(φα), as claimed.

We say that the operator T is a Hilbert-Schmidt operator if the Hilbert-Schmidt norm
‖T ‖HS is finite.

Lemma 5.3.1 For any two bounded operators S,T on H one has ‖ST ‖HS ≤
‖S‖op‖T ‖HS , and ‖ST ‖HS ≤ ‖S‖HS‖T ‖op, as well as ‖T ‖op ≤ ‖T ‖HS. For every
unitary operator U we have ‖UT ‖HS = ‖T U‖HS = ‖T ‖HS .

Proof Let (ej ) be an orthonormal basis. We have ‖ST ‖2
HS = ∑j ‖ST ej‖2 ≤

‖S‖2
op

∑
j ‖T ej‖2, which implies the first estimate. The second follows by using

‖T ‖HS = ‖T ∗‖HS and the same assertion for the operator norm.

Let v ∈ H with ‖v‖ = 1. Then there is an orthonormal basis (ej ) with e1 = v. We get
‖T v‖2 = ‖T e1‖2 ≤ ∑j ‖T ej‖2 = ‖T ‖2

HS. The invariance under multiplication by
unitary operators is clear, since (Uej ) is an orthonormal basis when (ej ) is. �

Example 5.3.2 The main example we are interested in is the following. For a mea-
sure space (X, A,μ) consider the Hilbert space L2(X). Assume that μ is either
σ -finite or that X is locally compact and μ is an outer Radon measure, so that
Fubini’s Theorem holds with respect to the product measure μ⊗ μ on L2(X ×X).
Let k be a function in L2(X ×X). Then we call k an L2-kernel.

Proposition 5.3.3 Suppose k(x, y) is an L2-kernel on X. For φ ∈ L2(X) define

Kφ(x)
def=
∫
X

k(x, y)φ(y) dμ(y).
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Then this integral exists almost everywhere in x. The function Kφ lies in L2(X), and
K extends to a Hilbert-Schmidt operator K : L2(X) → L2(X) with

‖K‖2
HS =
∫
X

∫
X

|k(x, y)|2 dμ(x) dμ(y).

Proof To see that the integral exists for almost all x ∈ X let ψ be any element
in L2(X). Then (x, y) �→ ψ(x)φ(y) lies in L2(X × X), and therefore the function
(x, y) → k(x, y)φ(y)ψ(x) is integrable over X ×X. By Fubini, it follows that

∫
X

ψ(x)k(x, y)φ(y) dy = ψ(x)
∫
X

k(x, y)φ(y) dy

exists for almost all x ∈ X. Since k(x, y) vanishes for every x outside some σ -
finite subset A of X, we may let ψ run through the characteristic functions of an
increasing sequence of finite measurable sets that exhaust A, to conclude that the
integral

∫
X
k(x, y)φ(y) dy exists for almost all x ∈ X.

We use the Cauchy-Schwarz inequality to estimate

‖Kφ‖2 =
∫
X

|Kφ(x)|2 dx

=
∫
X

∣∣∣∣
∫
X

k(x, y)φ(y) dy

∣∣∣∣
2

dx

≤
∫
X

∫
X

|k(x, y)|2 dx dy

∫
X

|φ(y)|2 dy

=
∫
X

∫
X

|k(x, y)|2 dx dy ‖φ‖2.

So K extends to a bounded operator on L2(X). Let (ej ) be an orthonormal basis of
L2(X). Then

‖K‖2
HS =
∑
j

〈
Kej ,Kej

〉 =∑
j

∫
X

Kej (x)Kej (x) dx

=
∑
j

∫
X

∫
X

k(x, y)ej (y) dy
∫
X

k(x, y)ej (y) dy dx

=
∑
j

∫
X

〈
k(x, .), ej

〉〈
ej , k(x, .)

〉
dx

=
∫
X

∑
j

〈
k(x, .), ej

〉〈
ej , k(x, .)

〉
dx

=
∫
X

〈k(x, .), k(x, .)〉 dx =
∫
X

∫
X

|k(x, y)|2 dx dy. �
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Proposition 5.3.4 The operator T is Hilbert-Schmidt if and only if it is compact
and its singular values satisfy

∑
j sj (T )2 < ∞. Indeed, then one has

∑
j sj (T )2 =

‖T ‖2
HS.

Proof We show that a bounded operator T is Hilbert-Schmidt if and only if |T | =√
T ∗T is. This follows from

∑
j

〈
T ej , T ej

〉 =∑
j

〈
T ∗T ej , ej

〉 =∑
j

〈|T |2ej , ej
〉

=
∑
j

〈|T |ej , |T |ej
〉
.

Let T be Hilbert-Schmidt. To see that T is compact, it suffices to show that if ej is an
orthonormal sequence, then T ej has a convergent subsequence. But indeed, extend
ej to an orthonormal basis, then the Hilbert-Schmidt criterion shows that T ej tends to
zero. So T is compact. The operator |T | is Hilbert-Schmidt if and only if

∑
j sj (T )2

converges, as one sees by applying the Hilbert-Schmidt criterion to an orthonormal
basis consisting of eigenvectors of |T |. Finally, it is clear that

∑
j sj (T )2 = ‖|T |‖2

HS,
but by the above computation the latter equals ‖T ‖2

HS. �

A compact operator T is called a trace class operator if the trace norm,

‖T ‖ tr
def=
∑
j

sj (T ),

is finite. It follows that every trace class operator is also Hilbert-Schmidt.

Lemma 5.3.5 Let T be a trace class operator and S a bounded operator.

(a) The norms ‖ST ‖ tr , ‖T S‖ tr are both ≤ ‖S‖‖T ‖ tr .

(b) Let T be a compact operator on H. One has

‖T ‖ tr = sup
(ei ),(hi )

∑
i

|〈T ei ,hi〉|,

where the supremum runs over all orthonormal bases (ei) and (hi).

Proof The inequality ‖ST ‖ tr ≤ ‖S‖‖T ‖ tr is a consequence of Proposition 5.2.4
(b). The other follows from ‖T ‖ = ‖T ∗‖ and the same for the trace norm.

For the second part we use the Spectral Theorem for compact operators to find an
orthonormal sequence (fj ) such that

|T |v =
∑
j

sj
〈
v, fj

〉
fj .
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We then write T = U |T |, where U is an isometric operator on the image of |T | to
get

T v = U
∑
j

sj
〈
v, fj

〉
fj =
∑
j

sj
〈
v, fj

〉
gj ,

where (gj ) is the orthonormal sequencegj = Ufj . Therefore, we can use the Cauchy-
Schwarz inequality to get for any two orthonormal bases e,h,

∑
i

|〈T ei ,hi〉| =
∑
i

∣∣∣∣∣∣
∑
j

sj
〈
ei , fj

〉〈
gj ,hi

〉
∣∣∣∣∣∣

≤
∑
j

sj
∑
i

∣∣〈ei , fj

〉〈
gj ,hi

〉∣∣

≤
∑
j

sj

(∑
i

∣∣〈ei , fj

〉∣∣2
) 1

2
(∑

i

∣∣〈gj ,hi

〉∣∣2
) 1

2

=
∑
j

sj‖fj‖‖gj‖ =
∑
j

sj .

This implies the ≥ part of the claim. The other part is obtained by taking e

to be any orthonormal basis that prolongs the orthonormal sequence f and h

any orthonormal basis that prolongs the orthonormal sequence g, because then∑
i |〈T ei ,hi〉| =∑j sj . �

Theorem 5.3.6 For a trace class operator T the trace

tr (T )
def=
∑
j

〈
T ej , ej

〉

does not depend on the choice of an orthonormal base (ej ). If T is trace class
and normal, we have tr (T ) = ∑n λndim Eig(T , λn), where the sum runs over the
sequence of non-zero eigenvalues (λn) of T. The sum converges absolutely.

Proof Let T = U |T | be the polar decomposition of T . It follows from the Spectral
Theorem that the image of the operator S2 = √|T | equals the image of |T | and
therefore we can define the operator S1 = U

√|T |. The operators S1, S2 and S∗1 are
Hilbert-Schmidt operators, andT = S1S2. Therefore

∑
i 〈T ei , ei〉 =∑i

〈
S2ei , S∗1ei

〉
,

and the latter does not depend on the choice of the orthonormal basis as can be seen
in a similar way as in the beginning of this section. Choose a basis of eigenvectors
to prove the second statement. �

Theorem 5.3.7 Let H be a Hilbert space, F the space of bounded operators T of
finite rank (i.e., finite dimensional image), T the set of trace class operators, HS
the set of Hilbert-Schmidt operators, and K the set of compact operators. Further,
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we write HS2 for the linear span of all opertors of the form ST , where S and T are
both in HS.

(a) The spaces F , T , HS and K are ideals in the algebra B(H ), which are stable
under ∗.

(b) The space K is the norm closure of F .

(c) One has

F ⊂ T = HS2 ⊂ HS ⊂ K,

where the inclusions are strict if dim(H ) = ∞.

Proof (a) The *-ideal property is clear for F and K. The space T is an ideal
by Lemma 5.3.5 and HS by Lemma 5.3.1. Part (b) of the theorem is contained in
Proposition 5.2.1. The first inclusion of (c) is clear. LetT be in T and writeT = U |T |
as in Proposition 5.1.4. With S = √|T | one has T = (US)S and by Proposition
5.3.4, the operators S and US are in HS, so T ∈ HS2. If S ∈ HS, then by definition
S∗S ∈ T and by polarization we find HS2 ⊂ T . The remaining inclusions are clear
and we leave the strictness as an exercise. �

5.4 Exercises

Exercise 5.1 Let A and B be bounded operators on a Hilbert space H . Show that
AB − BA 
= Id, where Id is the identity operator.

(Hint: Assume the contrary and show that ABn − BnA = nBn−1 holds for every
n ∈ N. Then take norms.)

Exercise 5.2 Let H be a Hilbert space, and let T ∈ B(H ) be a normal operator.
Show that the map ψ : t �→ exp (tT ) satisfies ψ(t + s) = ψ(t)ψ(s), that it is
differentiable as a map from R to the Banach space B(H ), which satisfies ψ(0) = Id
and ψ ′(t) = T ψ(t).

Exercise 5.3 Show that for a bounded operator T on a Hilbert space H the following
are equivalent:

• T is compact,

• T ∗T is compact,

• T ∗ is compact.

Exercise 5.4 Check the details of the proof of Proposition 5.2.4.
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Exercise 5.5 Show that a continuous invertible operator T on a Hilbert space H can
only be compact if H is finite dimensional.

Exercise 5.6 Show that T ∈ B(H ) for a Hilbert space H is compact if and only if
the image of the closed unit ball is compact (as opposed to relatively compact).

Exercise 5.7 Let H be a Hilbert space.

(a) Show that for a trace class operator T on H one has tr (T ∗) = tr (T ).

(b) Show that for two Hilbert-Schmidt operators S, T on H one has

tr (ST ) = tr (T S).

Exercise 5.8 Let H be the real Hilbert space �2(N, R) and let (ej )j∈N be the standard
orthonormal basis. Define a linear operator T on H by

T (ej ) = ( − 1)j+1

j
ej+(−1)j+1 .

Show that for every orthonormal basis (fn) of H one has

∑
n

|〈Tfn, fn〉| ≤
∞∑
j=1

1

2j (2j − 1)
.

Exercise 5.9 Show that the set HS(V ) of Hilbert-Schmidt operators on a given
Hilbert space V becomes a Hilbert space with the inner product 〈S, T 〉 = tr (ST ∗).
Show that the map ψ : V ⊗̂V ′ → HS(V ) given by ψ(v ⊗ α)(w) = α(w)v defines a
Hilbert space isomorphism (Compare Appendix C.3 for the notation).

Exercise 5.10 Let H be a Hilbert space. For p > 0 let Sp(H ) be the set of all
compact operators T on H such that

‖T ‖p def=
⎛
⎝∑

j

sj (T )p

⎞
⎠

1
p

< ∞.

Show that Sp(H ) is a vector space. It is called the p-th Schatten class.

Exercise 5.11 Let H be a Hilbert space. An operator T ∈ B(H ) is called nilpotent
if T k = 0 for some k ∈ N. Show that if T is nilpotent, then σ (T ) = {0}. Show also
that the converse is not generally true.

Exercise 5.12 Let H be a Hilbert space. Show that an operator T is invertible in
B(H ) if and only if |T | is invertible.
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Exercise 5.13 Let H be a Hilbert space, T ∈ B(H ) invertible. Let T = U |T | be
the polar decomposition. Show that T is normal if and only if U |T | = |T |U .

Exercise 5.14 Let G = SLn(R), and let H be the subgroup of upper triangular
matrices in G. Let K = SO(n). Show that G = HK .

(Hint: For g ∈ G apply the spectral theorem to the positive definite matrix gtg.)
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