
Chapter 3

Duality for Abelian Groups

In this chapter we are mainly interested in the study of abelian locally compact groups
A, their dual groups Â together with various associated group algebras. Using the
Gelfand-Naimark Theorem as a tool, we shall then give a proof of the Plancherel
Theorem, which asserts that the Fourier transform extends to a unitary equivalence of
the Hilbert spaces L2(A) and L2(Â). We also prove the Pontryagin Duality Theorem

that gives a canonical isomorphism between A and its bidual ̂̂A.

3.1 The Dual Group

A locally compact abelian group will be called an LCA-group for short. A character
of an LCA-group A is a continuous group homomorphism

χ : A → T,

where T is the circle group, i.e., the multiplicative group of all complex numbers of
absolute value one. The set Â of all characters on A forms a group under point-wise
multiplication

(χ · μ)(x) = χ (x) · μ(x), x ∈ A.

The inverse element to a given χ ∈ Â is given by χ−1(x) = 1
χ (x) = χ (x). The group

Â is called the dual group of A.

Examples 3.1.1

• As explained in Example 1.7.1, the dual group of Z is R/Z and vice versa.

• The characters of the additive group R are the maps χt : x �→ e2πixt , where t
varies in R. We then get an isomorphism of groups R ∼= R̂ mapping t to χt .

Definition In what follows next we want to show that Â carries a natural topology
that makes it a topological group. For a given topological space X let C(X) be the
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complex vector space of all continuous maps from X to C. For a compact set K ⊂ X

and an open set U ⊂ C define the set

L(K ,U )
def= {f ∈ C(X) : f (K) ⊂ U}.

This is the set of all f that map a given compact set into a given open set. The topology
generated by the sets L(K ,U ) as K and U vary, is called the compact-open topology.

Lemma 3.1.2 (a) Let X be a topological space. With the compact-open topology,
C(X) is a Hausdorff space.

(b) A net (fi) in C(X) converges in the compact-open topology if and only if it
converges uniformly on every compact subset of X.

(c) If X is locally compact, then a net (fi) converges in the compact-open topology
if and only if it converges locally uniformly.

(d) If X is compact, the compact-open topology on C(X) coincides with the topology
given by the sup-norm.

(e) If C(X) is endowed with the compact-open topology, then each point evaluation
map δx : C(X) → C; f �→ f (x) is continuous.

Proof (a) Let f 
= g in C(X). Choose x ∈ X such that f (x) 
= g(x), and choose
disjoint open neighborhoods S, T in C of f (x) and g(x). Then the sets L({x}, S) and
L({x}, T ) are disjoint open neighborhoods of f and g, so C(X) is a Hausdorff space.

(b) Fix ε > 0, let fi → f be a net converging in the compact-open topology and let
K ⊂ X be a compact subset. For z ∈ C and r > 0 let Br (z) be the open ball of radius
r around z and let B̄r (z) be its closure. For x ∈ X let Ux be the inverse image under
f of the open ball Bε/3(f (x)). Then Ux is an open neighborhood of x and f maps its
closure Ūx into the closed ball Bε/3(f (x)). As K is compact, there are x1, . . . xn ∈ K

such that K is a subset of the union Ux1 ∪ · · · ∪Uxn . Since closed subsets of compact
sets are compact, the set Ūxi ∩ K is compact. Let L be the intersection of the sets
L(Ūxi ∩K ,B2ε/3(f (xi))). Then L is an open neighborhood of f in the compact-open
topology. Therefore, there exists an index j0 such that for j ≥ j0 each fj lies in L.
Let j ≥ j0 and x ∈ K . Then there exists i such that x ∈ Uxi . Therefore,

|fj (x) − f (x)| ≤ |fj (x) − f (xi)| + |f (xi) − f (x)|

<
2ε

3
+ ε

3
= ε.

It follows that the net converges uniformly on K . The converse direction is trivial.

(c) Let X be a locally compact space and let (fj ) be a net in C(X) which converges
to f ∈ C(X) in the compact-open topology, i.e., it converges uniformly on compact
sets. As every x ∈ X has a compact neighborhood, (fj ) converges uniformly on
a neighborhood of a given x, hence it converges locally uniformly. Conversely,
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assume that (fj ) converges locally uniformly and let K ⊂ X be compact. For each
x ∈ K there exists an open neighborhood Ux on which the net (fj ) converges
uniformly. These Ux form an open covering of K , hence finitely many suffice, i.e.,
K ⊂ Ux1 ∪ · · · ∪Uxn for some x1, . . . , xn ∈ K . As (fj ) converges uniformly on each
Uxi , in converges uniformly on K .

(d) If X is compact, the compact-open topology and the sup-norm topology generate
the same set of convergent nets. Therefore they have the same closed sets, so they
are equal. For the last point, (e), let (fi) be a net in C(X) convergent to f. Then
δx(fi) = fi(x) converges to f (x) = δx(f ), so the evaluation map is continuous. �

By definition, the dual group Â is a subset of the setC(A) of all continuous maps from
A to C. It is a consequence of Lemma 3.1.2 (e) that Â is closed in the compact-open
topology of C(A).

Examples 3.1.3.

• The compact-open topology on the dual Ẑ ∼= T of Z is the natural topology of
the circle group T.

• The compact-open topology on the dual T̂ ∼= Z of T is the discrete topology.

• The compact-open topology on the dual R̂ ∼= R of R is the usual topology of R.

Proposition 3.1.4 With the compact-open topology, Â is a topological group that is
Hausdorff.

Later we will see that Â is also locally compact, i.e., an LCA-group.

Proof We have to show that the map α : Â × Â → Â, that sends a pair (χ , η) to
χη−1, is continuous. For two pairs (χ , η), (χ ′η′) and x ∈ A we have

|χ (x)η−1(x) − χ ′(x)η′−1(x)| ≤ |χ (x)η−1(x) − χ (x)η′−1(x)|
+ |χ (x)η′−1(x) − χ ′(x)η′−1(x)|

= |η−1(x) − η′−1(x)| + |χ (x) − χ ′(x)|,
Let K ⊂ A be compact and let ε > 0. Then

BK ,ε(χη−1) = {γ ∈ Â : ‖γ − χη−1‖K < ε
}

is an open neighborhood of χη−1 and sets of this form are a neighborhood base. The
estimate above shows that the open neighborhood BK ,ε/2(χ )×BK ,ε/2(η) of (χ , η) is
mapped to BK ,ε(χη−1), so α is continuous. �

The observation, that the dual group of the compact group T is the discrete group Z

and vice versa, is an example of the following general principle:
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Proposition 3.1.5

(a) If A is compact, then Â is discrete.

(b) If A is discrete, then Â is compact.

Proof Let A be compact, and let L be the set of all η ∈ Â such that η(A) lies in the
open set {Re( ·) > 0}. As A is compact, L is an open unit-neighborhood in Â. For
every η ∈ Â, the image η(A) is a subgroup of T. The only subgroup of T, however,
that is contained in {Re( · ) > 0}, is the trivial group. Therefore L = {1}, and so Â

is discrete.

For the second part, assume that A is discrete. Then Â = Hom(A, T) is a subset of
the set Map(A, T) of all maps from A to T. The set Map(A, T) can be identified
with the product

∏
a∈A T. By Tychonov’s Theorem, the latter is a compact

Hausdorff space in the product topology and Â forms a closed subspace. As A
is discrete, the inclusion Â ↪→ ∏

a∈A T induces a homeomorphism of Â

onto its image in the product space. Hence Â is compact. �

3.2 The Fourier Transform

Let A be an LCA-group and consider its convolution algebra L1(A). In this section
we want to show that the topological space Â is canonically homeomorphic to the
structure space	L1(A) of the commutative Banach algebraL1(A). Since this structure
space is locally compact, this will show that the dual group Â is an LCA-group. Recall
that the Fourier transform f̂ : Â → C of a function f ∈ L1(A) is defined as

f̂ (χ ) =
∫
A

f (x)χ (x) dx.

Theorem 3.2.1 The map χ �→ dχ from the dual group Â to the structure space
	L1(A) defined by

dχ (f ) = f̂ (χ )

is a homeomorphism. In particular, Â is a locally compact Hausdorff space, so Â is
an LCA-group.

It follows that for every f ∈ L1(A) the Fourier transform f̂ is a continuous function
on the dual group Â, which vanishes at infinity.

Proof By Lemma 1.7.2 it follows that dχ indeed lies in the structure space of the
Banach algebra L1(A).
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Injectivity Assume dχ = dχ ′ , then
∫
A
f (x)(χ (x) − χ ′(x)) dx = 0 for every f ∈

Cc(A). This implies that the continuous functions χ and χ ′ coincide.

Surjectivity Let m ∈ 	L1(A). As Cc(A) is dense in L1(A), there exists an element
g ∈ Cc(A) with m(g) 
= 0. For x ∈ A define χ (x) = m(Lxg)/m(g). The continuity
of m and Lemma 1.4.2 implies that χ is a continuous function on A. One computes,

m(Lxg)m(Lyg) = m(Lxg ∗ Lyg) = m(Lxyg ∗ g) = m(Lxyg)m(g).

Dividing by m(g)2 and taking complex conjugates, one gets the identity χ (x)χ (y) =
χ (xy), so χ is a multiplicative map from A to C

×. Let f ∈ Cc(A). Then one can
write the convolution f ∗ g as

∫
A
f (x)Lxg dx, and this integral may be viewed as a

vector-valued integral with values in the Banach space L1(A) as in Sect. B.6. One
uses the continuity of the linear functional m and Lemma B.6.5 to get

∫
A

f (x)χ (x) dx = 1

m(g)

∫
A

f (x)m(Lxg) dx = 1

m(g)
m

(∫
A

f (x)Lxg dx

)

= 1

m(g)
m(f ∗ g) = m(f )m(g)

m(g)
= m(f ).

Let (φU ) be a Dirac net in Cc(A). Then φU ∗ χ converges point-wise to χ and so for
x ∈ A and ε > 0 there exists a unit-neighborhood U , such that

|χ (x)| ≤
∣∣∣φU ∗ χ (x)

∣∣∣+ ε =
∣∣∣∣
∫
A

LxφU (y)χ (y) dy

∣∣∣∣+ ε

=
∣∣∣m(LxφU )

∣∣∣ ≤ lim
U
‖LxφU‖1 + ε = 1 + ε.

As ε is arbitrary, we get |χ (x)| ≤ 1 for every x ∈ A. By χ (x−1) = χ (x)−1 we infer
|χ (x)| = 1 for every x ∈ A. So the map χ lies in Â, and the map d is surjective.

Continuity Let χj → χ be a net in Â which converges locally uniformly on A.
Let f ∈ L1(A) and choose ε > 0. We have to show that there exists j0 such that
for j ≥ j0 one has |f̂ (χj ) − f̂ (χ )| < ε. Let g ∈ Cc(A) with ‖f − g‖1 < ε/3.
Since χj → χ uniformly on supp(g), there exists j0 such that for j ≥ j0 it holds
|ĝ(χj ) − ĝ(χ )| < ε/3. For j ≥ j0 one has

|f̂ (χj ) − f̂ (χ )| ≤ |f̂ (χj − ĝ(χj )| + |ĝ(χj ) − ĝ(χ )| + |ĝ(χ ) − f̂ (χ )|
<

ε

3
+ ε

3
+ ε

3
= ε.

The continuity of the inverse map d−1 is a direct consequence of the following lemma.
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Lemma 3.2.2 Let χ0 ∈ Â. Let K be a compact subset of A, and let ε > 0. Then there
exist l ∈ N, functions f0, f1, . . . , fl ∈ L1(A), and δ > 0 such that for χ ∈ Â the
condition |f̂j (χ )− f̂j (χ0)| < δ for every j = 0, . . . , l implies |χ (x)− χ0(x)| < ε

for every x ∈ K .

Proof For f ∈ L1(A) we have

f̂ (χ ) − f̂ (χ0) =
∫
A

f (x)(χ (x) − χ0(x)) dx

=
∫
A

f (x)χ0(x) (χ (x)χ0(x) − 1) dx

= f̂ χ̄0(χχ̄0) − f̂ χ̄0(1).

So without loss of generality we can assume χ0 = 1.

Let f ∈ L1(A) with f̂ (1) = ∫
A
f (x) dx = 1. Then there is a unit-neighborhood U

in A with ‖Luf − f ‖1 < ε/3 for every u ∈ U . As K is compact, there are finitely
many x1, . . . , xl ∈ A such that K is a subset of x1U ∪ · · · ∪ xlU . Set fj = Lxj f

as well as f0 = f and let δ = ε/3. Let χ ∈ Â with |f̂j (χ ) − 1| < ε/3 for every
j = 0, . . . , l. Now let x ∈ K . Then there exists 1 ≤ j ≤ l and u ∈ U such that
x = xju ∈ xjU . One gets

|χ (x) − 1| =|χ (x) − 1|
≤ |χ (x) − χ (x)f̂ (χ )| + |f̂ (χ )χ (x) − f̂j (χ )| + |f̂j (χ ) − 1|

=|1 − f̂ (χ )| + |L̂xf (χ ) − L̂xj f (χ )| + |f̂j (χ ) − 1|
<

ε

3
+ ε

3
+ ε

3
= ε,

where the last inequality uses

|L̂xf (χ ) − L̂xj f (χ )| ≤ ‖Lxf − Lxj f ‖1 = ‖Lxj (Luf − f )‖1

= ‖Luf − f ‖1 < ε/3.

The lemma and the theorem are proven. �

3.3 The C∗-Algebra of an LCA-Group

In this section we introduce the C∗-algebra C∗(A) of the LCA-group A as a certain
completion of the convolution algebra L1(A). We show that restriction of multiplica-
tive functionals fromC∗(A) to the dense subalgebraL1(A) defines a homeomorphism
between 	C∗(A) and 	L1(A). Hence by the results of the previous section, 	C∗(A) is
canonically homeomorphic to the dual group Â. The Gelfand-Naimark Theorem then
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implies that the Fourier transform on L1(A) extends to an isometric *-isomorphism
between C∗(A) and C0(Â). These results will play an important role in the proof of
the Plancherel Theorem in the following section.

Let f ∈ L1(A) and φ,ψ ∈ L2(A). For every y ∈ A one has

|〈Lyφ,ψ
〉| ≤ ‖Lyφ‖2‖ψ‖2 = ‖φ‖2‖ψ‖2.

This implies that the integral
∫
A
f (y)〈Lyφ,ψ〉 dy exists, and one has the estimate

∣∣∣∣
∫
A

f (y)
〈
Lyφ,ψ

〉
dy

∣∣∣∣ ≤ ‖f ‖1‖φ‖2‖ψ‖2.

In other words, the anti-linear map that sends ψ to the integral
∫
A
f (y)〈Lyφ,ψ〉 dy is

bounded, hence continuous by Lemma C.1.2. As every continuous anti-linear map on
a Hilbert space is represented by a unique vector, there exists a unique element L(f )φ
in L2(A) such that 〈L(f )φ,ψ〉 = ∫

A
f (y)〈Lyφ,ψ〉 dy for every ψ ∈ L2(A). The

above estimate gives |〈L(f )φ,ψ〉| ≤ ‖f ‖1‖φ‖2‖ψ‖2. In particular, for ψ = L(f )φ
one concludes ‖L(f )φ‖2

2 ≤ ‖f ‖1‖φ‖2‖L(f )φ‖2, hence ‖L(f )φ‖2 ≤ ‖f ‖1‖φ‖2,
which implies that the linear map φ �→ L(f )φ is bounded, hence continuous. Note
that for φ ∈ Cc(G) one has L(f )φ = f ∗ φ by Lemma 3.3.1 below.

Lemma 3.3.1 If f ∈ L1(A) and φ ∈ L1(A)∩L2(A), then L(f )φ = f ∗φ = φ ∗f .

Proof Let ψ ∈ Cc(A). Then the inner product 〈L(f )φ,ψ〉 equals∫
A
f (y)
∫
A
φ(y−1x)ψ(x) dx dy. This integral exists if f ,φ,ψ are replaced with their

absolute values. Therefore we can apply Fubini’s Theorem to get 〈L(f )φ,ψ〉 =
〈f ∗ φ,ψ〉, whence the claim.

Lemma 3.3.2 The map L from L1(A) to the space B(L2(A)) is an injective,
continuous homomorphism of Banach-*-algebras.

Proof The map is linear and satisfies ‖L(f )‖op ≤ ‖f ‖1, therefore is continuous.
For f , g ∈ L1(A) and φ in the dense subspace Cc(A) of L2(A) the above lemma and
the associativity of convolution implies

L(f ∗ g)φ = (f ∗ g) ∗ φ = f ∗ (g ∗ φ) = L(f )L(g)φ,

so L is multiplicative. For φ,ψ ∈ Cc(A) we get

〈f ∗ φ,ψ〉 =
∫
A

∫
A

f (y)φ(y−1x)ψ(x) dy dx

=
∫
A

∫
A

f (y)φ(x)ψ(yx) dx dy

=
∫
A

∫
A

φ(x)	(y−1)f (y−1)ψ(y−1x) dy dx

= 〈φ, f ∗ ∗ ψ
〉
,
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where we used the transformation x �→ yx followed by the transformation y �→ y−1.
This shows L(f ∗) = L(f )∗.

For the injectivity, let f ∈ L1(G) with L(f ) = 0. Then in particular f ∗ φ = 0 for
every φ ∈ Cc(A). Using Lemma 1.6.6 this implies f = 0.

Definition We define the group C∗-algebra C∗(A) of the LCA-group A to be the
norm-closure of (L1(A)) in the C∗-algebra B(L2(A)). As L1(A) is a commutative
Banach algebra, C∗(A) is a commutative C∗-algebra.

Theorem 3.3.3 The map L∗ : 	C∗(A) → 	L1(A) given by m �→ m ◦ L is a
homeomorphism. It follows 	C∗(A)

∼= Â and C∗(A) ∼= C0(Â).

Proof As the image of L is dense in C∗(A), it follows that m ◦ L 
= 0 for every
m ∈ 	C∗(A) and that L∗ is injective. Therefore by Lemma 2.4.7 it suffices to show
that L∗ is surjective.

To prove this, letm ∈ 	L1(A) andχ ∈ Â such thatm(f ) = f̂ (χ ) for everyf ∈ L1(A).
We have to show that m is continuous in the C∗-norm, because then it has a unique
extension to C∗(A). For this let μ0 ∈ 	C∗(A) be fixed. Then there is χ0 ∈ Â such
that for f ∈ L1(A) the identity f̂ (χ0) = μ0(f ) holds, where we have written
μ0(L(f )) = μ0(f ). For f ∈ L1(A), one has

m(f ) =
∫
A

f (x)χ (x) dx =
∫
A

f (x)χ (x)χ0(x)χ0(x) dx = μ0(f χ̄χ0).

It follows that |m(f )| = |μ0(f χ̄χ0)| ≤ ‖f χ̄χ0‖C∗(A). So we have to show that for
f ∈ L1(A) the C∗-norm of f equals the C∗-norm of f η for any η ∈ Â. As the
C∗-norm is the operator norm in B(L2(A)), we consider φ,ψ ∈ L2(A), and we
compute

〈L(ηf )φ,ψ〉 =
∫
A

η(x)f (x)〈Lxφ,ψ〉 dx

=
∫
A

η(x)f (x)
∫
A

φ(x−1y)ψ(y) dy dx

=
∫
A

f (x)
∫
A

(η̄φ)(x−1y)(η̄ψ)(y) dy dx

= 〈L(f )(η̄φ), η̄ψ〉.
Putting ψ = L(ηf )φ, we get

‖L(ηf )φ‖2
2 = 〈L(f )(η̄φ), η̄L(ηf )φ〉 ≤ ‖L(f )(η̄φ)‖2‖η̄L(ηf )φ‖2.

Since ‖η̄L(ηf )φ‖2 = ‖L(ηf )φ‖2 it follows ‖L(ηf )φ‖2 ≤ ‖L(f )(η̄φ)‖2 and so
the operator norm of L(ηf ) is less than or equal to the operator norm of L(f ). By
symmetry we get equality and the theorem follows. �
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Corollary 3.3.4 Let A be an LCA-group. Then the Fourier transform L1(A) →
C0(Â), mapping f to f̂ , is injective.

Proof Let A = L1(A). As Â ∼= 	A ∼= 	C∗(A), the Fourier transform is the
composition of the injective maps A → C∗(A) → C0(Â). �

3.4 The Plancherel Theorem

In this section we will construct the Plancherel measure on the dual group Â relative to
a given Haar measure on the LCA group A and we will state the Plancherel Theorem,
which says that the Fourier transform extends to a unitary equivalence

L2(A) ∼= L2(Â ).

The proof of the Plancherel theorem will be postponed to the following section,
where it will be shown as a consequence of Pontryagin duality.

Lemma 3.4.1 Let φ,ψ ∈ L2(A). Then the convolution integral φ ∗ ψ(x) =∫
A
φ(y)ψ(y−1x) dy exists for every x ∈ A and defines a continuous function

in x. The convolution product φ ∗ ψ lies in C0(A) and its sup-norm satisfies
‖φ ∗ ψ‖A ≤ ‖φ‖2‖ψ‖2. Finally one has φ ∗ φ∗(1) = ‖φ‖2

2.

Proof With ψ , also the function Lxψ
∗ lies in L2(A), as A is abelian, hence uni-

modular. The convolution integral is the same as the inner product 〈φ,Lxψ
∗〉, hence

the integral exists for every x ∈ A. The continuity follows from Lemma 1.4.2 and
the fact that the map L2(A) → C, given by ψ �→ 〈φ,ψ〉 is continuous. Next use the
Cauchy-Schwarz inequality to get

‖φ ∗ ψ‖A = sup
x∈A

∣∣〈φ,Lxψ
∗〉∣∣ ≤ ‖φ‖2‖ψ‖2.

Choose sequences (φn) and (ψn) in Cc(A) with ‖φn − φ‖2, ‖ψn − ψ‖2 → 0. Then
it follows from the above inequality that φn ∗ ψn ∈ Cc(A) converges uniformly to
φ ∗ ψ . It follows that φ ∗ ψ ∈ C0(A) since C0(A) is complete. The final assertion
φ ∗ φ∗(1) = ‖φ‖2

2 is clear by definition. �

The space C = C0(A) × C0(Â) is a Banach space with the norm

‖(f , η)‖∗0 = max
(‖f ‖A,‖η‖Â

)
.

We embed C0(A) ∩ L1(A) into this product space by mapping f to (f , f̂ ) and we
denote the closure of C0(A) ∩ L1(A) inside C by

C∗
0 (A).

This is a Banach space the norm of which we write as ‖f ‖∗0.
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Lemma 3.4.2 Let p0 and p∗ be the projections from C to C0(A) and C0(Â), respec-
tively. Then the restrictions of p0 and p∗ to C∗

0 (A) are both injective. Hence we can
consider C∗

0 (A) as a subspace of C0(A) as well as of C0(Â).

Proof Let f ∈ C∗
0 (A) and write f∗ for p∗(f ) and f0 for p0(f ). We have to show

that if one of these two is zero, then so is the other. Let (fn) be a sequence in
C0(A) ∩ L1(A) converging to f in C∗

0 (A). Then fn converges to f∗ in C∗(A) and to
f0 uniformly on A. So for ψ ∈ L2(A) the sequence fn ∗ ψ converges to f∗(ψ) in
L2(A). If ψ is in Cc(A), then fn ∗ ψ also converges uniformly to f0 ∗ ψ . So for
every φ ∈ Cc(A), the sequence 〈fn ∗ ψ ,φ〉 converges to 〈f ∗(ψ),φ〉 and by uniform
convergence also to 〈f0 ∗ ψ ,φ〉, i.e., we have 〈f∗(ψ),φ〉 = 〈f0 ∗ ψ ,φ〉.As this holds
for all ψ ,φ ∈ Cc(G), we conclude f∗ = 0 ⇔ f0 = 0 as claimed. �

A given element f of C∗
0 (A) can be viewed as an element of C0(A), or of C∗(A) ∼=

C0(Â). We will freely switch between these two viewpoints in the sequel. If we want
to emphasize the distinction, we write f for the function on A and f̂ for its Fourier
transform, the function on Â.

For g ∈ C∗(A) and φ ∈ L2(A) we from now on write L(g)φ for the element g(φ) of
L2(A).

Lemma 3.4.3 Let f ∈ C∗
0 (A). If the Fourier transform f̂ is real-valued, then f (1)

is real. If f̂ ≥ 0, then f (1) ≥ 0. Here 1 denotes the unit element of A.

Proof Suppose that f̂ is real-valued. Then f̂ = f̂ = f̂ ∗, so we get f = f ∗,
and therefore f (1) = f ∗(1) = f (1). Now suppose f̂ ≥ 0. Then there exists g ∈
C0(Â) ∼= C∗(A) withg ≥ 0 and f̂ = g2. Letφ = φ∗ ∈ Cc(A). ThenL(g)φ ∈ L2(A),
so (L(g)φ) ∗ (L(g)φ)∗(1) = ‖L(g)φ‖2

2 ≥ 0. Now g is a limit in C∗(A) of a sequence
(gn) in L1(A). We can assume gn = g∗n for every n ∈ N. Using Lemma 3.3.1 we
have

(L(g)φ) ∗ (L(g)φ)∗ = lim
n

(L(gn)φ) ∗ (L(gn)φ)∗ = lim
n

(gn ∗ φ) ∗ (gn ∗ φ)∗

= lim
n

gn ∗ φ ∗ φ ∗ gn = lim
n

gn ∗ gn ∗ φ ∗ φ

= lim
n

L(gn ∗ gn)(φ ∗ φ) = L(f )(φ ∗ φ) = f ∗ φ ∗ φ.

We get f ∗ φ ∗ φ(1) ≥ 0, and therefore f (1) ≥ 0 by Lemma 1.6.6. since we can let
φ ∗ φ run through a Dirac net. �

Lemma 3.4.4 (a) The space L1(A) ∗ Cc(A) is a subspace of C0(A).

(b) Let f ∈ C∗(A), and let φ,ψ ∈ Cc(A). Then L(f )(φ ∗ψ) lies in C∗
0 (A)∩L2(A),

viewed as a subspace of C0(A). One has L(f )(φ ∗ ψ )̂ = f̂ φ̂ψ̂ .
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Proof (a) Let f ∈ L1(A) and φ ∈ Cc(A). Choose a sequence fn ∈ Cc(A) such that
‖fn − f ‖1 → 0. Then fn ∗ φ ∈ Cc(A), and for every x ∈ A we have |f ∗ φ(x) −
fn ∗ φ(x)| ≤ ‖f − fn‖1‖φ‖∞. This shows that f ∗ φ is a uniform limit of functions
in C0(A). Since C0(A) is complete with respect to ‖ · ‖A, the result follows.

For (b) let now f ∈ C∗(A). There is a sequence fn ∈ L1(A) converging to f in
C∗(A). Then L(fn)(φ ∗ ψ) = fn ∗ φ ∗ ψ lies in C0(A) ∩ L1(A). We have to show
that the ensuing sequence fn ∗ φ ∗ ψ is a Cauchy sequence in C∗

0 (A). This means
that the sequence, as well as its Fourier transform, are both Cauchy sequences in
C0(A) and C0(Â), respectively. Observe first that (fn ∗ φ ∗ ψ )̂ = f̂nφ̂ψ̂ . Now f̂n

converges uniformly on Â, so (fn ∗ φ ∗ ψ )̂ converges uniformly to f̂ φ̂ψ̂ , hence
is Cauchy in C0(Â). By Lemma 3.4.1 we conclude that for m, n ∈ N one has
‖(fm − fn) ∗ φ ∗ ψ‖A ≤ ‖(fm − fn) ∗ φ‖2‖ψ‖2. The right hand side tends to zero
as m, n grow large, so fn∗φ∗ψ is a Cauchy sequence in C0(A). Since L(f )(φ∗ψ) ∈
L2(A), the result follows. �

Lemma 3.4.5 Let (φU ) be a Dirac net in Cc(A). Then

(a) (f ∗ φU ) converges to f in C∗(A) for every f ∈ C∗(A),

(b) (f ∗ φU ) converges uniformly to f for every f ∈ C0(A),

(c) (f ∗ φU ) converges to f in C∗
0 (A) for every f ∈ C∗

0 (A),

(d) (φ̂U ) converges locally uniformly to 1 on Â.

Proof For (a) observe that the result holds for the dense subspace L1(A) by Lemma
1.6.6. Then a standard ε/3-argument extends it to all of C∗(A). For (b) we can use
the same argument with L1(A) replaced by the dense subspace Cc(A) of C0(A). Then
(c) is a consequence of (a) and (b). For the proof of (d) let C ⊆ Â be a compact set.
Choose a positive ψ ∈ Cc(Â) with ψ ≡ 1 on C and let f ∈ C∗(A) with f̂ = ψ .
Then ‖φ̂Uψ − ψ‖Â = ‖φU ∗ f − f ‖op → 0 by (a) and the result follows. �

Lemma 3.4.6 Let η ∈ Cc(Â) be real-valued, and let ε > 0. Then there are f1, f2 ∈
C∗

0 (A) ∩ L2(A), considered as subspace of C0(A), such that

• the Fourier transforms f̂1, f̂2 lie in Cc(Â),

• they satisfy f̂1 ≤ η ≤ f̂2, further ‖f̂1 − f̂2‖Â < ε, and supp(f̂i) ⊂ supp(η) for
i = 1, 2,

• as well as 0 ≤ f2(1) − f1(1) < ε.

In particular, every η ∈ Cc(Â) is the uniform limit of functions of the form f̂ with
f ∈ C∗

0 (A) of support contained in supp(η).
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Proof For any Dirac function φ in Cc(A) one has φ̂ ∈ C0(Â) by Theorem 3.2.1 and
by Lemma 3.4.5 the ensuing function φ̂ can be chosen to approximate the constant
1 arbitrarily close on any compact set. Note that the Fourier transform of a function
of the form h ∗ h∗ is ≥ 0. Let K ⊂ Â be the support of η. As Cc(A) contains Dirac
functions of arbitrary small support, we conclude that for every δ > 0 there exists a
function φδ ∈ C+

c (A) such that the function ψδ = φδ ∗ φ∗δ satisfies

1 − δ ≤ ψ̂δ(χ ) ≤ 1 + δ for everyχ ∈ K.

Fix φ ∈ C+
c (A) such that ψ = φ ∗ φ∗ satisfies ψ̂(χ ) ≥ 1 for every χ ∈ K . Let

f ∈ C∗(A) with f̂ = η and set

f1 = f ∗ (ψδ − δψ), f2 = f ∗ (ψδ + δψ).

According to Lemma 3.4.4, the functions f1 and f2 lie in the space C0(A) ∩ L2(A).
For every χ ∈ Â it holds,

f̂1(χ ) = f̂ (χ )
(
ψ̂δ(χ ) − δψ̂(χ )

) ≤ η(χ ) ≤ f̂2(χ ).

Further, as f̂ (χ ) = η(χ ), one has supp(f̂i) ⊂ supp(η). The other properties follow
by choosing δ small enough. �

Proposition 3.4.7 Let ψ ∈ Cc(Â) be real-valued. Then the supremum of the set

{f (1) : f ∈ C∗
0 (A), f̂ ≤ ψ}

equals the infimum of the set

{f (1) : f ∈ C∗
0 (A), f̂ ≥ ψ}.

We denote this common value by I (ψ). We extend I to all of Cc(Â) by setting I (u +
iv) = I (u) + iI (v), where u and v are real-valued. Then I is a Haar integral on
Cc(Â).

We write this integral as

I (ψ) =
∫
Â

ψ(χ ) dχ.

Proof It follows from Lemma 3.4.3 that the supremum is less or equal to the infimum
and Lemma 3.4.6 implies that they coincide. Thus I exists. It is clearly linear and
it is positive by Lemma 3.4.3. For the invariance let ψ ∈ Cc(Â) be real-valued,
and let f ∈ C∗

0 (A) with f̂ ≤ ψ . For χ ∈ Â we then have Lχf̂ ≤ Lχψ . Further,
Lχf̂ = χ̂f as well as χf (1) = f (1). This implies the invariance of I . The proof of
the proposition is finished. �

We close this section with formulating the Plancherel theorem for LCA groups. The
proof will be given as a consequence of the Pontryagin Duality Theorem in the
following section.
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Theorem 3.4.8 (Plancherel Theorem). For a given Haar measure on A there exists
a uniquely determined Haar measure on Â, called the Plancherel measure, such that
for f ∈ L1(A) ∩ L2(A) one has

‖f ‖2 = ‖f̂ ‖2.

This implies that the Fourier transform extends to an isometry from L2(A) to L2(Â).
Indeed, it is also surjective, so the Fourier transform extends to a canonical unitary
equivalence L2(A) ∼= L2(Â).

In the special case of a compact group we derive from this, that the characters form
an orthonormal basis of L2(A).

Corollary 3.4.9 Let A be a compact LCA-group. Then the elements of the dual group
Â form an orthonormal basis of L2(A).

Proof According to our conventions, we assume the Haar measure of A to be
normalized in a way that the total volume is one. As A is compact, any continuous
function on A, in particular every character, lies inL2(A). We show that the characters
of A form an orthonormal system, i.e., that for χ , η ∈ Â we have

〈χ , η〉 = δχ ,η =
{

1 χ = η,

0 χ 
= η.

If χ = η, then

〈χ , η〉 =
∫
A

χ (x)χ (x)︸ ︷︷ ︸
=1

dx =
∫
A

dx = 1.

If χ 
= η, then pick x0 ∈ A with χ (x0) 
= η(x0). We obtain

χ (x0)〈χ , η〉 =
∫
A

χ (x0x)η(x) dx =
∫
A

χ (x)η(x−1
0 x) dx = η(x0)〈χ , η〉,

which implies 〈χ , η〉 = 0 as claimed. It follows that the Fourier transform of a
character χ is the map δχ with δχ (η) = δχ ,η. These maps form an orthonormal basis

of the Hilbert space L2(Â) for the discrete group Â. Since the Fourier transform is a
unitary equivalence, the characters form an orthonormal basis of L2(A). �

3.5 Pontryagin Duality

In the previous sections we saw that the dual group Â of an LCA group A, which
consists of all continuous homomorphisms of A into the circle group T, is again an

LCA group. So we can also consider the dual group ̂̂A of Â. There is a canonical

homomorphism δ : A → ̂̂A, which we write as x �→ δx , and which is given by
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δx(χ ) = χ (x).

We call δ the Pontryagin map. To see that for each x ∈ A the map δx : Â → T

is indeed a continuous group homomorphism, and hence an element of ̂̂A, we first
observe that

δx(χμ) = χμ(x) = χ (x)μ(x) = δx(χ )δx(μ)

for all χ ,μ ∈ Â, which implies that δx is a homomorphism. Since convergence in Â

with respect to the compact open topology implies point-wise convergence we see
that if a net χj → χ converges in Â, then the net δx(χj ) = χj (x) converges to
χ (x) = δx(χ ), which proves continuity of δx for each x ∈ A.

Examples 3.5.1.

• If A = R we know that R ∼= R̂ via t �→ χt with χt (s) = e2πist . Thus we can
also identify R with its bidual by mapping s ∈ R to a character μs : R̂ → T,

μs(χt ) = e2πits . It is easy to check that the map μs = δs with δ : R → ̂̂R
coincides with the above defined Pontryagin map. So we see in particular that the
Pontryagin map is an isomorphism of groups in the case A = R.

• Very similarly, we see that the Pontryagin maps δ : T → ̂̂T and δ : Z → ̂̂Z
transform to the identity maps under the identifications Z ∼= T̂ and T ∼= Ẑ as
explained in Example 1.7.1.

Proposition 3.5.2 Let A be an LCA-group. The Pontryagin map is an injective

continuous group homomorphism from A to ̂̂A . In particular, if 1 
= x ∈ A there
exists some χ ∈ Â such that χ (x) 
= 1.

Proof Note first that the Pontryagin map δ is a group homomorphism, since δxy(χ ) =
χ (xy) = χ (x)χ (y) = δx(χ )δy(χ ). It suffices to show continuity at the unit element

1. So let V be an open unit-neighborhood in ̂̂A. Then there exists a compact set
K∗ ⊂ Â and an ε > 0, such that V contains the open unit-neighborhood

BK∗,ε =
{
α ∈ ̂̂A : |α(χ ) − 1| < ε ∀χ∈K∗

}
.

LetL ⊂ A be a compact unit-neighborhood. AsK∗ is compact, there areχ1 . . . ,χn ∈
K∗ such that K∗ ⊂ BL,ε/2(χ1) ∪ · · · ∪ BL,ε/2(χn), where

BL,ε(χ ) = {χ ′ ∈ Â : ‖χ ′ − χ‖L < ε
}
.

For j = 1, . . . , n let Uj = {x ∈ A : |χj (x)− 1| < ε/2}. Let U = L̊∩U1 ∩ · · · ∩Un.
Then U is a unit-neighborhood for which we have x ∈ U ⇒ |χ (x)−1| < ε ∀χ∈K∗ .
So δ(U ) ⊂ V and δ is continuous.
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We still have to show that δ : A → ̂̂A is injective. So assume that 1 
= x ∈ A with
δx = 1Â. Then χ (x) = 1 for every χ ∈ Â. Choose g ∈ Cc(A) with g(1) = 1 and
g(x−1) = 0. Then Lx(g) 
= g, but by Lemma 1.7.2 we have L̂x(g)(χ ) = χ̄ (x)ĝ(χ ) =
ĝ(χ ) for every χ ∈ Â. This contradicts the fact that the Fourier transform is injective
by Corollary 3.3.4. �

Lemma 3.5.3 Let f ∈ C∗
0 (A) be such that its Fourier transform lies in Cc(Â). Then

for every x ∈ A one has f (x) = ˆ̂
f (δx−1 ).

Proof One has for x ∈ A,

f (x) = Lx−1f (1) =
∫
Â

L̂x−1f (χ ) dχ =
∫
Â

f̂ (χ )δx(χ ) dχ = ˆ̂
f (δx−1 ). �

Lemma 3.5.4 For an LCA-group A the following hold.

(a) Cc(A) is dense in C∗
0 (A).

(b) Cc(Â) ∩ {f̂ : f ∈ C∗
0 (A)∩L2(A)} is dense in C∗

0 (Â).

(c) Cc(Â) ∩ {f̂ : f ∈ C∗
0 (A)∩L2(A)} is dense in L2(Â).

Proof (a) As C0(A)∩L1(A) is dense in C∗
0 (A) by definition, it suffices to show that

for a given f in this space there exists a sequence in Cc(A) converging to f in the
norms ‖·‖A and ‖·‖1 simultaneously. Let n ∈ N, and let Kn ⊂ A be a compact set
with |f | < 1/n outside Kn. Choose a function χn in Cc(A) with 0 ≤ χn ≤ 1, which
is constantly equal to 1 on Kn. Set fn = χnf. Then the sequence fn converges to f
in both norms. Parts (b) and (c) follow from part (a) and Lemma 3.4.6. �

Theorem 3.5.5 (Pontryagin Duality). The Pontryagin map δ : A → ̂̂
A is an

isomorphism of LCA groups.

Proof We already know that δ is an injective continuous group homomorphism. We
will demonstrate that it has a dense image. Assume this is not the case. Then there

is an open subset U of ̂̂A, which is disjoint from δ(A). By Lemma 3.4.6 applied to
Â, there exists ψ ∈ C∗

0 (Â), which is non-zero such that ψ̂ is supported in U , i.e.,
it satisfies ψ̂(δ(A)) = 0. By Lemma 3.5.4, there exists a sequence (fn) in C∗

0 (A)

such that ψn
def= f̂n lies in Cc(Â) and converges to ψ in C∗

0 (Â). The inversion
formula of Lemma 3.5.3 shows that fn(x) = ψ̂n(δx−1 ) for every x ∈ A. This implies
that the sequence fn tends to zero uniformly on A. On the other hand f̂n converges
to ψ uniformly on Â. This implies that (fn) is a Cauchy sequence in C∗

0 (A) so it
converges in this space. As the limit is unique, it follows from Lemma 3.4.2 that

ψ = 0 in contradiction to our assumption. So the image of δ is indeed dense in ̂̂A.
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We next show that δ is a proper map, i.e., that the inverse image of a compact

set is compact. For this let K ⊂ ̂̂A be compact. It suffices to show that the function
δ̆(x) = δ(x−1) is proper. By Lemma 3.4.6, there exists ψ ∈ C∗

0 (Â) such that ψ̂ has

compact support, is ≥ 0 on ̂̂A and ≥ 1 on K . As above, there is a sequence (fn) in

C∗
0 (A) such that ψn

def= f̂n ≥ 0 lies in Cc(Â) and converges to ψ in C∗
0 (Â). Fix n

with ‖ψ̂n − ψ̂‖ ̂̂
A

< 1/2. We also have fn(x) = ψ̂n(δx−1 ) for every x ∈ A again and,
as fn is in C0(A), there exists a compact set C ⊂ A such that |fn| < 1/2 outside C.
As ψ̂n is ≥ 1/2 on K , it follows that the pre-image of K under δ̆ is contained in C.
As δ is continuous, this pre-image is closed, hence compact, so δ is proper.

It remains to show that δ is a closed map, i.e., that it maps closed sets to closed sets.
Then δ is a homeomorphism, i.e., the theorem follows. So we finish our proof with
the following lemma.

Lemma 3.5.6 Let φ : X → Y be a continuous map between locally compact
Hausdorff spaces. If φ is proper, then it is closed.

Proof Let T be a closed subset of X. We show first that

(∗) For every compact set L ⊂ Y the intersection φ(T ) ∩ L is closed.

For this recall that φ−1(L) is compact and therefore T ∩ φ−1(L) is compact and so
φ(T ) ∩ L = φ(T ∩ φ−1(L)) is compact and therefore closed.

Now we use (∗) to deduce that φ(T ) is closed. Let y be in the closure of φ(T ).
Let L be a compact neighborhood of y. For every neighborhood U of y one has
U ∩ (L ∩ φ(T )) 
= ∅, so y is in L ∩ φ(T ) = L ∩ φ(T ) ⊂ φ(T ). This means that
φ(T ) is closed. �

Proposition 3.5.7 The Fourier transform induces an isometric isomorphism of Ba-
nach spaces F : C∗

0 (A) → C∗
0 (Â) with inverse map given by the dual Fourier

transform F̂ : C∗
0 (Â) → C∗

0 (A); F̂(ψ)(x)
def= ψ̂(δx−1 ).

Proof Let B be the space of all f ∈ C∗
0 (A) such that f̂ lies in Cc(Â). For f ∈ B

we have F̂ ◦ F(f ) = f by Lemma 3.5.3. Further, one has

‖f ‖∗0 = max(‖f̂ ‖Â, ‖f ‖A) = max(‖f̂ ‖Â, ‖F̂ ◦ F(f )‖A)

= max(‖f̂ ‖Â, ‖f̂ ‖̂̂
A

) = ‖F(f )‖∗0.
As the set F(B) is dense in C∗

0 (Â) by Lemma 3.5.4, the Fourier transform defines
a surjective isometry from the closure of B to C∗

0 (Â). Conversely, this means that
F̂ is an isometry from C∗

0 (Â) to C∗
0 (A). Since F̂ = FÂ ◦ δ−1, where FÂ denotes

the Fourier transform on Â and since FÂ

(
C∗

0 (Â)
)

contains a subset of Cc(
̂̂
A ) that is

dense in C∗
0 ( ̂̂A ) by Lemma 3.5.4, it follows from Pontryagin duality that F̂(C∗

0 (Â))
is dense in C∗

0 (A). Since it is isometric it must be an isomorphism of Banach spaces
as claimed. �
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Theorem 3.5.8 (Inversion Formula). Let f ∈ L1(A) be such that its Fourier trans-
form f̂ lies in L1(Â). Then f is a continuous function, and for every x ∈ A one
has

f (x) = ˆ̂
f (δx−1 ).

Proof Let f ∈ L1(A) with f̂ ∈ L1(Â). Then f̂ lies in C0(Â) ∩ L1(Â), which is a
subspace of C∗

0 (Â). By Proposition 3.5.7, there exists g ∈ C∗
0 (A) with ĝ = f̂ and

g(x) = f̂ (δx−1 ) for every x ∈ A. Since the Fourier transform is injective on C∗(A),
we have f = g. �

We are now ready for the proof of the Plancherel Theorem.

Proof of Theorem 3.4.8 Let f ∈ L1(A) ∩ L2(A). By Lemma 3.4.1 one has f ∗
f ∗ ∈ L1(A) ∩ C0(A). The continuous function h = f̂ ∗ f ∗ = |f̂ |2 is positive. Let
φ ∈ Cc(Â) satisfy 0 ≤ φ ≤ h. Then

∫
Â

φ(χ ) dχ ≤ f ∗ f ∗(1) = ‖f ‖2
2 < ∞.

Therefore h is integrable, so f̂ ∗ f ∗ ∈ L1(A). By Theorem 3.5.8 it follows that

‖f ‖2
2 = f ∗ f ∗(1) = ̂

f̂ ∗ f ∗(1) = |̂f̂ |2(1) = ‖f̂ ‖2
2. As L1(A) ∩ L2(A) is dense

in L2(A), the Fourier-transform f �→ f̂ extends uniquely to an isometric linear
map L2(A) → L2(Â). By Lemma 3.4.6 the image in L2(Â) is dense, so the map is
surjective. �

With the help of the Plancherel theorem, we can see that there are indeed many
functions f, to which the inversion formula applies.

Proposition 3.5.9 Let φ,ψ ∈ L1(A)∩L2(A), and let f = φ ∗ψ . Then f ∈ L1(A)
and f̂ ∈ L1(Â), so the inversion formula applies to f.

Proof We have f̂ = φ̂ ∗ ψ = φ̂ψ̂ is the point-wise product of L2-functions on Â,
hence f̂ ∈ L1(Â). �

3.6 The Poisson Summation Formula

Let A be an LCA group, and let B be a closed subgroup of A. We want to study
the relations between the dual group Â of A and the dual groups B̂ and Â/B of the
subgroup B and the quotient group A/B. The Poisson Summation Formula relates
the Fourier transform of A to the transforms on B and A/B.

We introduce some further notation: If E is a subset of A we denote by E⊥ the
annihilator of E in Â, i.e., the set of all characters χ ∈ Â with χ (E) = 1. Similarly,
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if L ⊂ Â, we denote by L⊥ the annihilator of L in A, i.e., the set of all x ∈ A such
that χ (x) = 1 for every χ ∈ L. In short, we have

E⊥ = {χ ∈ Â : χ (x) = 1 ∀x ∈ E}
L⊥ = {x ∈ A : χ (x) = 1 ∀χ ∈ L} .

It is easy to see that E⊥ is a closed subgroup of Â, and L⊥ is a closed subgroup

of A. Recall that the Pontryagin isomorphism δ : A → ̂̂A is defined by putting
δx(χ ) = χ (x) for every x ∈ A.

Proposition 3.6.1 Let A be an LCA group, and let B be a closed subgroup of A.
Then the following are true:

(a) B⊥ is isomorphic to Â/B via χ �→ χ̃ with χ̃ ∈ Â/B defined by χ̃ (xB)
def= χ (x).

(b) (B⊥)⊥ = B.

(c) Â/B⊥ is isomorphic to B̂ via χ · B⊥ �→ χ |B .

Proof This is a straightforward verification (See Exercise 3.10). �

As a direct corollary we get

Corollary 3.6.2 Let B be a closed subgroup of the LCA-group A. Then the restriction
map resAB : Â → B̂ defined by χ �→ χ |B is surjective with kernel Â/B.

Note that one could formulate the above result in more fancy language as follows:
If B is a closed subgroup of A, then we get the short exact sequence

1 −→ B
ι−→ A

q−→ A/B −→ 1

of LCA groups. The above result then says that the dual sequence

1 −→ Â/B
q̂−→ Â

ι̂−→ B̂ −→ 1

is also an exact sequence of LCA groups, where for any continuous homomorphism
ψ : A1 → A2 between two LCA groups A1,A2, we denote by ψ̂ : Â2 → Â1 the
homomorphism defined by ψ̂(χ ) = χ ◦ ψ for χ ∈ Â2. One should not mistake this
notation with the notion of the Fourier transform of a function. Note that if ι : B → A

is the inclusion map, then ι̂(χ ) = χ ◦ ι = χ |B , so ι̂ = resAB .

We now come to Poisson’s summation formula. Recall from Theorem 1.5.3 together
with Corollary 1.5.5 that for any closed subgroup B of the LCA group A we can
choose Haar measures on A, B and A/B in such a way that for every f ∈ Cc(A) we
get the quotient integral formula
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∫
A/B

∫
B

f (xb) db dxB =
∫
A

f (x) dx.

In what follows we shall always assume that the Haar measures are chosen this way.

Theorem 3.6.3 (Poisson’s Summation Formula). Let B be a closed subgroup of the
LCA group A. For f ∈ L1(A) define f B ∈ L1(A/B) as f B(xB) = ∫

B
f (xb) db.

Then, if we identify Â/B with B⊥ as in Proposition 3.6.1, we get f̂ B = f̂ |B⊥ . If, in
addition, f̂ |B⊥ ∈ L1(B⊥), then we get∫

B

f (xb) db =
∫
B⊥

f̂ (χ )χ (x) dχ ,

for almost all x ∈ A, where Haar measure on B̂⊥ ∼= Â/B is the Plancherel measure
with respect to the chosen Haar measure on A/B. If f B is everywhere defined and
continuous, the above equation holds for all x ∈ A.

Proof For χ ∈ B⊥ we have χ (xb) = χ (x) for every x ∈ A and b ∈ B. We therefore
get from Theorem 1.5.3,

f̂ B(χ ) =
∫
A/B

f B(xB)χ̄ (x) dxB =
∫
A/B

∫
B

f (xb)χ̄ (xb) db dxB

=
∫
A

f (x)χ̄ (x) dx = f̂ (χ )

for every χ ∈ B⊥. Moreover, if f̂ |B⊥ ∈ L1(B⊥) = L1(Â/B), then the inversion
formula of Theorem 1.5.3 implies that∫

B

f (xb) db = f B(xB) = ̂̂f B (δx−1B)

= ̂̂
f |B⊥ (δx−1B) =

∫
B⊥

f̂ (χ )χ (x) dχ.

almost everywhere. It holds everywhere if, in addition, the defining integral for f B

exists everywhere and f B is continuous. �

Example 3.6.4. (The Poisson Summation formula for R) Let A be the group (R,+)
with the usual topology. Then A ∼= Â via the map y �→ χy where χy(x) = e2πixy .
Let B be the closed subgroup Z. Then the above identification maps B bijectively to
B⊥. For f ∈ L1(R) such that f̂ |Z ∈ L1(Z), the equality

∑
k∈Z

f (x + k) =
∑
k∈Z

f̂ (k)e2πikx

holds almost everywhere in x, where f̂ (x) = ∫
R
f (y)e−2πixy dy. In particular, define

the Schwartz space S(R) as the space of all C∞- functions f : R → C such that



80 3 Duality for Abelian Groups

for any two integers m, n ≥ 0 the function xnf (m)(x) is bounded. Then the Fourier
transform maps S(R) bijectively to itself (Exercise 3.14). For f ∈ S(R), both sums in
the Poisson summation formula converge uniformly and define continuous functions,
which then must be equal in every point. For x = 0 we get the elegant formula

∑
k∈Z

f (k) =
∑
k∈Z

f̂ (k).

For applications of this formula to theta series and the Riemann zeta function, see
[Dei05].

3.7 Exercises and Notes

Exercise 3.1. Let U be a basis for the topology on the LCA-group A. Let Uc denote
the set of all U ∈ U that are relatively compact. Show that the set B of all L(Ū ,V ),
where U ∈ Uc and V is open in T, generates the topology of Â.

Exercise 3.2. Show that if an LCA-group A is second countable, then so is its dual Â.

Exercise 3.3. Let b be the map b : R → ∏
t∈R

T sending x ∈ R to the element
b(x) with coordinates b(x)t = e2πitx . Let B denote the closure of b(R) in the product
space. By Tychonov’s Theorem the product is compact; therefore B is a compact
group called the Bohr compactification of R. Show that B is separable but not second
countable.

(Hint: Use the fact that Q is dense in R. Show that B is isomorphic to the dual group
of Rdisc, which is the group (R,+) with the discrete topology. Then use Exercise 3.2)

Exercise 3.4. Verify the statements in Example 3.1.3.

Exercise 3.5. Let A and B be two LCA groups. Show that Â× B = Â× B̂.

Exercise 3.6. Show that the multiplicative group C
× is locally compact with the

topology of C and that
Ĉ× ∼= Z× R.

Exercise 3.7. Let (Aj )j∈J be a family of discrete groups. Show that there is a
canonical isomorphism ⊕̂

j∈J
Aj

∼=
∏
j∈J

Âj .
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Exercise 3.8.

(a) Let (Aj ,pj

i ) be a projective system of compact groups. Show that there is a
canonical isomorphism of topological groups,

l̂im← Aj
∼= lim→ Âj .

(b) Let (Bj , dj

i ) be a direct system of discrete groups satisfying the Mittag-Leffler
condition. Show that there is a canonical isomorphism

l̂im→ Bj
∼= lim← B̂j .

Exercise 3.9. Let A be an LCA group, and let f ∈ L1(A) such that f̂ ∈ L1(Â).
Show f ∈ L2(A).

Exercise 3.10. For a closed subgroup B of the LCA-group A and a closed subgroup
L of Â let

B⊥ = {χ ∈ Â : χ (B) = 1}
L⊥ = {x ∈ A : δx(L) = 1}.

Show that B⊥ is canonically isomorphic to Â/B, (B⊥)⊥ = B, and Â/B⊥ is
canonically isomorphic to B̂.

Exercise 3.11. For a continuous group homomorphism φ : A → B between LCA
groups, define φ̂ : B̂ → Â by

φ̂(χ )
def= χ ◦ φ.

Show that for any two composable homomorphisms φ and ψ one has φ̂ ◦ ψ = ψ̂ ◦ φ̂.
This means that A �→ Â defines a contravariant functor on the category of LCA
groups and continuous group homomorphisms.

Exercise 3.12. A short exact sequence of LCA groups is a sequence of continuous
group homomorphisms

A
α
↪→ B

β
� C

such that α is injective, β is surjective, the image of α is the kernel of β, the group A
carries the subspace topology and C carries the quotient topology. Show that a short
exact sequence like this induces a short exact sequence of the dual groups

Ĉ
β̂
↪→ B̂

α̂
� Â.
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Exercise 3.13 Let A = R, and choose the Lebesgue measure as Haar measure.
Identify Â with R via x �→ χx with χx(y) = e2πixy . Show that via this identification,
the Lebesgue measure is the Plancherel measure on Â.

(Hint: Use the fact that
∫

R
e−πx2

dx = 1 and compute the Fourier transform of

f (x) = e−πx2
.)

Exercise 3.14. Show that f̂ ∈ S(R) for every f ∈ S(R) and that the map F :
S(R) → S(R) defined by F(f ) = f̂ is a bijective linear map with

F−1(g)(y) =
∫

R

g(x)e2πixydx.

Exercise 3.15. Let f ∈ S(R) and set g(x) = ∑k∈Z
f (x + k). Show that g is a

smooth function on R.

(Hint: The estimate |f (x)| ≤ C/(1 + x2) for a constant C shows point-wise con-
vergence. The same holds for the n-th derivative f (n) instead of f. Now integrate n
times.)

Exercise 3.16. As an application of Theorem 3.6.3, show that for every Schwartz
function f ∈ S(R), ∑

k∈Z

f (k) =
∑
k∈Z

f̂ (k)

holds, where f̂ (x) = ∫
R
f (y) e−2πixy dy.

Exercise 3.17. Let A = R
n with Lebesgue measure as Haar measure and identify

R
n with R̂

n via x �→ χx with χx(y) = e−2πi〈x,y〉, where 〈x, y〉 denotes the standard
inner product on R

n. Let S(Rn) denote the space of all C∞- functions f : R
n → C

such that for any two multi-indices α,β ∈ N
n
0 the function

xα∂β(f )
def= x

α1
1 . . . xαn

n

∂ |β|f
x
β1
1 . . . x

βn
n

is bounded, where |β| = β1 + · · · + βn. Formulate and prove the analogues of
Exercise 3.14 and Exercise 3.16 in this setting.

Exercise 3.18. (Parseval’s equation) Let A be an LCA group, and let Â be equipped
with the Plancherel measure with respect to a given Haar measure on A. Show that
the equation

〈f , g〉 =
∫
A

f (x)ḡ(x) dx =
∫
Â

f̂ (χ ) ¯̂g(χ ) dχ = 〈f̂ , ĝ〉

holds for all f, g ∈ L1(A) ∩ L2(A).
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Exercise 3.19. A finite abelian group A can be equipped either with the counting
measure or with the normalized Haar measure that gives A the volume 1. What is the
Plancherel measure in either case?

Exercise 3.20. For a finite abelian group A, let C(A) be the space of all function
from A to C. For a group homomorphism φ : A → B between finite abelian groups
let φ∗ : C(B) → C(A) be defined by φ∗f = f ◦ φ, and let φ∗ : C(A) → C(B) be
defined by

φ∗g(b)
def=
∑

a:φ(a)=b

g(a),

where the empty sum is interpreted as zero. Show that for composable homomor-
phisms one has (φψ)∗ = φ∗ψ∗ and (φψ)∗ = ψ∗φ∗.

Exercise 3.21. For a finite abelian group A let F : C(A) → C(Â) be the Fourier
transform. Show that for every group homomorphism φ : A → B between finite
abelian groups the diagram

C(A)
F−−−−→ C(Â)4⏐⏐φ∗ 4⏐⏐φ̂∗

C(B)
F−−−−→ C(B̂)

Exercise 3.22. An LCA-group A is called monothetic, if it contains a dense cyclic
subgroup. Show that a compact LCA-group A is monothetic if and only if its dual
Â is isomorphic to a subgroup of Td , where Td is the circle group with the discrete
topology.

Notes

In principle, the ideas for the proofs of the Plancherel Theorem and the Pontrya-
gin Duality Theorem given in this chapter goes back to the paper [Wil62] of J.H.
Williamson. However, to our knowledge, this book is the first that exploits the very
natural isomorphism C∗

0 (A) ∼= C∗
0 (Â).
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