
Chapter 13

p-Adic Numbers and Adeles

The majority of the examples of topological groups in this book given so far, are
locally euclidean, meaning that the groups are locally homeomorphic to R

n. In this
chapter the reader will see some examples which are not of this type. These examples,
the p-adic numbers and the adeles, resp. ideles, are not only interesting as examples
of this theory, but they also carry great importance for other areas of mathematics,
in particular number theory.

13.1 p-Adic Numbers

The set R of real numbers is the completion of Q with respect to the usual absolute
value

|x|∞ =
{
x if x ≥ 0,
−x if x < 0.

We shall see, that there are more “absolute values” defined on Q. But first we have
to give this notion a precise meaning.

Absolute Values

By an absolute value on a field K we mean a map | · | : K → [0,∞), such that for
all a, b ∈ K one has

• |a| = 0 ⇔ a = 0, (definiteness)

• |ab| = |a||b|, (multiplicativity)

• |a + b| ≤ |a| + |b|. (triangle inequality)

Remark Every absolute value maps ±1 to 1, i.e., one has |1| = | − 1| = 1. For a
proof consider |1| = |1 · 1| = |1|2 so |1| = 1 and | −1|2 = |(−1)2| = |1| = 1 so
that | − 1| = 1.
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Lemma 13.1.1 If | · | is an absolute value on the field K, then d(x, y) = |x − y| is
a metric on K.

Proof The map d is positive definite. It is symmetric, too, since

d(y, x) = |y − x| = |(−1)(x − y)| = | − 1||x − y| = |x − y| = d(x, y).

Finally. it satisfies the triangle inequality, since for x, y, z ∈ K one has

d(x, y) = |x − z + z − y| ≤ |x − z| + |z − y| = d(x, z) + d(z, y). �

Examples 13.1.2

• For K = Q the usual absolute value | · |∞ is an example.

• The discrete absolute value exists for every field and is given by

|x|triv =
{

0 if x = 0,
1 if x 
= 0.

The metric generated by this absolute value is the discrete metric

d(x, y) =
{

0 if x = y

1, if x 
= y.

The discrete metric induces the discrete topology, as for every x ∈ K the open
ball B1/2(x) of radius 1/2 equals the set {x}, which therefore is open.

Definition Consider the field K = Q of rational numbers and fix a prime number
p. Every rational can be written in the form

r = pk m

n
, n 
= 0,

where m, n ∈ Z are coprime to p. The exponent k ∈ Z is uniquely determined by r ,
if r 
= 0. We define the p-adic absolute value by

|r|p =
∣∣∣pk m

n

∣∣∣
p

:=
{
p−k if r 
= 0,

0 if r = 0.

Lemma 13.1.3 Let p be a prime number. Then | · |p is an absolute value on Q, which
satisfies the strong triangle inequality

|x + y|p ≤ max(|x|p, |y|p).

Here we have equality, if |x|p 
= |y|p.
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Proof Definiteness follows from the definition. To show multiplicativity, write x =
pk m

n
and y = pk′ m′

n′ , where m, n,m′, n′ are coprime to p. Then xy = pk+k′ mm′
nn′ , and

this yields |xy|p = |x|p|y|p in the case xy 
= 0. The case xy = 0 is trivial. For a
proof of the strong triangle inequality, we can assume xy 
= 0 and k ≤ k′. Then we
have

x + y = pk

(
m

n
+ pk′−k m

′

n′

)
= pk mn′ + pk′−knm′

nn′
.

If |x|p 
= |y|p, i.e., k′ − k > 0, then the number mn′ +pk′−knm′ is coprime to p and
we have |x+ y| = p−k = max(|x|p, |y|p). If on the other hand |x|p = |y|p, then the
enumerator mn′ +pk′−knm′ = mn′ + nm′ is of the form plN , where l ≥ 0 and N is
coprime top.This means that |x+y|p = |pk+l N

nn′ |p = p−k−l ≤ max(|x|p, |y|p). �

In what follows we denote by R× the group of units in a ring R. Of course, if K is a
field, we have K× = K�{0}.

Proposition 13.1.4 For every x ∈ Q
× we have the product formula∏

p≤∞
|x|p = 1.

The product is extended over all prime numbers and p = ∞. For a given number
x ∈ Q

×, almost all factors in the product are equal to 1.

Remark When we say almost all, we mean all, up to finitely many exceptions.

Proof Write x as a fraction of coprime integers and write these integers as product of
primes. Then one has x = ±p

k1
1 · · ·pkn

n for pairwise different primes p1, . . . ,pn and
k1, . . . , kn ∈ Z. The p-adic absolute value |x|p equals 1, if p is a prime not occurring
among the above. So the product indeed has only finitely many factors 
= 1. Further
one has |x|pj

= p
−kj
j and |x|∞ = p

k1
1 · · ·pkn

n . Hence

∏
p≤∞

|x|p =
⎛
⎝ n∏

j=1

p
−kj
j

⎞
⎠ · pk1

1 · · ·pkn
n = 1. �

Remark One can show that every non-trivial absolute value | · | on Q is of the form
|x| = |x|ap for a uniquely determined p ≤ ∞ and a uniquely determined real number
a > 0.

Qp as Completion of Q

We now give the first construction of the set Qp of p-adic numbers. This set is the
completion of Q in the p-adic metric

dp(x, y) = |x − y|p.
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Proposition 13.1.5 Let p ≤ ∞. Then Q is not complete in the metric dp.We denote
the completion by Qp. Addition and Multiplication of Q can be extended in a unique
way to continuous maps Qp×Qp → Qp.With these operations, Qp is a field, called
the field of p-adic numbers. The absolute value | · |p can be extended in a unique way
to a continuous map on Qp, which is an absolute value, again.

Proof We consider this proposition known for p = ∞. In this case one has Qp =
Q∞ = R. We now let p < ∞. We write | · | = | · |p. The non-completeness of Q

follows from another description of Qp, which will be shown in the next section.
We now extend the operations. Let x, y ∈ Qp. As Q is dense in the metric space
Qp, there are sequences (xn) and (yn) in Q, converging to x, resp. y in Qp. These
sequences are Cauchy sequences in Q. The estimate

|(xn + yn) − (xm + ym)| ≤ |xn − xm| + |yn − ym|
implies that (xn + yn) is a Cauchy sequence as well. So it converges in Qp to an
element z. This element does not depend on the choice of the sequences, since if (x ′n)
and (y ′n) is another choice, then the sequence

(
x ′n + y ′n

)
also is a Cauchy sequence,

which differs from (xn+ yn) only by a sequence converging to zero, hence gives the
same element in the completion. We set x+y = z and have thus extended the addition
to Qp. It is easy to see that addition is a continuous map from Qp × Qp → Qp.

The multiplication is extended analogously and it is not difficult to show that Qp is
a field with these operations and that the absolute value extends as well. We leave
the details as an exercise. �

The strong triangle inequality |x + y| ≤ max(|x|, |y|) still holds on Qp. It has
astonishing consequences, for example, the set

Zp = {x ∈ Qp : |x|p ≤ 1},
which contains Z, is a subring of the field Qp. This ring is called the ring of p-adic
integers.

Power Series

Let p be a prime. We now give a second construction of p-adic numbers. Every
integer n ≥ 0 can be written in the p-adic expansion,

n =
N∑

j=0

ajp
j ,

with uniquely determined coefficients aj ∈ {0, 1, . . . ,p − 1}. The sum of n and a
second number m =∑M

i=0 bip
i is

n+m =
max(M,N)+1∑

j=0

cjp
j ,
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where each cj only depend on a0, . . . , aj and b0, . . . , bj . More precisely, these co-
efficients are computed as follows: First one sets c′j = aj + bj . Then one has
0 ≤ c′j ≤ 2p − 2 and it may happen, then c′j ≥ p. Let j be the smallest index, for
which this happens. One replaces c′j by the remainder modulo p and increases c′j+1
by one. Then one repeats this step until all coefficients are ≤ p − 1.

For the multiplication one has

nm =
M+N+1∑

j=0

djp
j ,

where again the coefficient dj only depends on a0, . . . , aj and b0, . . . , bj .

These properties of multiplication and addition make it possible, to extend them to
the set Z of formal power series

∞∑
j=0

ajp
j ,

with 0 ≤ aj < p. A formal power series may be considered simply as the sequence of
its coefficients (a0, a1, . . . ). The multiplicative unit 1 is represented by the sequence
(1, 0, 0, . . . ). One only uses the notation of a series for convenience.

Lemma 13.1.6 With these operations, the set Z is a ring. An element x =∑∞
j=0 ajp

j

is invertible in Z if and only if a0 
= 0.

Proof Associativity and distributivity are inherited from Z, as it suffices to check
them on finite parts of the series. To show thatZ is a ring, we are left with showing that
an additive inverse exists. So let x =∑∞

j=0 ajp
j in Z. We have to show the existence

of some y =∑∞
j=0 bjp

j in Z, such that x + y = 0. We construct the coefficients bj

inductively. In the case a0 = 0 we set b0 = 0 and b0 = p − a0 otherwise. Assume
b0, . . . , bn already constructed with the property, that the element yn =∑n

j=0 bjp
j

satisfies

x + yn =
∞∑

j=n+1

cjp
j , 0 ≤ cj < p.

If cn+1 = 0, then one sets bn+1 = 0. Otherwise one sets bn+1 = p − cn+1. In this
way one gets an element y =∑∞

j=0 bjp
j , which satisfies x + y = 0.

We show the second assertion. If x = ∑∞
j=0 ajp

j is invertible, then a0 
= 0, since
otherwise the series xy would have vanishing zeroth coefficient for every y ∈ Z. For
the converse direction, let x =∑∞

j=0 ajp
j with a0 
= 0. We construct a multiplicative

inverse y =∑∞
j=0 bjp

j by giving the coefficients bj successively. Since Fp = Z/pZ

is a field, there exists exactly one 1 ≤ b0 < p such that a0b0 ≡ 1modp. Assume
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next that 0 ≤ b0, . . . , bn < p are already constructed with the property that⎛
⎝∑

0≤j

ajp
j

⎞
⎠

︸ ︷︷ ︸
=A

⎛
⎝ ∑

0≤j≤n

bjp
j

⎞
⎠

︸ ︷︷ ︸
=B

≡ 1 mod pn+1.

Then one has AB−1
pn+1 ∈ Z, so there exists exactly one 0 ≤ bn+1 < p, such that

AB−1
pn+1 + a0bn+1 = pc, c ∈ Z, or AB − 1 + a0bn+1p

n+1 = pn+2c. In other words,
one has ⎛

⎝∑
0≤j

ajp
j

⎞
⎠
⎛
⎝ ∑

0≤j≤n+1

bjp
j

⎞
⎠ ≡ 1 mod pn+2.

The element y = ∑∞
j=0 bjp

j constructed in this way satisfies the equation
xy = 1. �

Lemma 13.1.7 Let (aj ) be a sequence in {0, 1, . . . ,p − 1}. Then the series∑∞
j=0 ajp

j converges in Qp. We map the formal series to this limit and get a map
ψ : Z → Qp. This map is an isomorphism of rings

Z
∼=−→ Zp.

Proof Let xn =∑n
j=0 ajp

j . We have to show that (xn) is a Cauchy sequence in Qp.
For m ≥ n ≥ n0 one has

|xm − xn| =
∣∣∣∣∣∣

m∑
j=n+1

ajp
j

∣∣∣∣∣∣ ≤ max
n<j≤m

|aj |p|pj |p ≤ p−n0 .

Therefore the sequence is Cauchy, so the map ψ is well-defined. It is easy to show
that ψ is a ring homomorphism. It remains to show bijectivity of φ : Z → Zp.

Injectivity: Let x =∑∞
j=0 ajp

j 
= 0. Then there is a minimal j0 such that aj0 
= 0.
We have

|ψ(x)| =
∣∣∣∣∣∣aj0p

j0 +
∞∑

j=j0+1

ajp
j

∣∣∣∣∣∣ = p−j0 ,

since
∣∣∣∑∞

j=j0+1 ajp
j

∣∣∣ ≤ maxj>j0 |aj |p−j < p−j0 (use continuity of | · |p). So it

follows ψ(x) 
= 0 and therefore ψ has trivial kernel, thus is injective.

Surjectivity: We define an absolute value on Z by

|z| = |ψ(z)|p.
We claim that Z is complete in this absolute value. Let (zj ) be a Cauchy-sequence
in Z. For each k ∈ N there exists a j0(k) ∈ N, such that for all i, j ≥ j0(k) one has
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|zi − zj | ≤ p−k , which means, that ψ(zi) − ψ(zj ) ∈ pk
Zp, so zi − zj ∈ pkZ. We

conclude, that the coefficients of the power series zi and zj coincide up to the index
k−1. Therefore there are coefficients aν for ν = 0, 1, 2, . . . , such that for every k ∈ N

and every j ≥ j0(k) one has zj ≡ ∑k−1
ν=0 aνp

νmodpkZ. Set z = ∑∞
ν=0 aνp

ν ∈ Z.

The sequence (zj ) converges to z, so Z is complete. To finish the proof, it suffices to
show that ψ(Z) contains a dense subset of Zp. Such a set is given by the set of all
rational numbers in Zp, i.e., the set of all q = ±pk m

n
where k ≥ 0 and m, n coprime

to p. As Z is a ring, it suffices to show that 1
n
∈ Z, if n ∈ N is coprime to p. But

for n coprime to p the zeroth coefficient of the p-adic expansion is non-zero and
therefore n is invertible in Z. �

We now can identify Zp with the set of all power series in p. As Zp equals the set
of all z ∈ Qp with |z| ≤ 1, the set p−j

Zp is the set of all z ∈ Qp with |z| ≤ pj .
Therefore,

Qp =
∞⋃
j=0

p−j
Zp.

So we can write Qp as the set of all Laurent-series in p with only finitely many
negative entries, i.e.,

Qp =
⎧⎨
⎩

∞∑
j=−N

ajp
j : N ∈ N, 0 ≤ aj < p

⎫⎬
⎭ .

This also implies that Qp is uncountable. In particular, Q 
= Qp and therefore Q is
not complete in the p-adic metric.

Proposition 13.1.8 (a) The topological spaces Qp and Q
×
p are locally compact and

totally disconnected. So together with Proposition 13.1.5 this implies that these are
totally disconnected LCA-groups.

(b) The open compact subgroups pn
Zp, n ∈ N form a basis of the unit-

neighborhoods of the additive group (Qp,+).

(c) The compact open subgroups 1 + pn
Zp, n ∈ N form a basis of the

unit-neighborhoods of the multiplictive group (Q×
p ,×).

Proof It suffices to show (b) and (c), for these imply (a) as well. The subgroup pn
Zp

coincides with the open ball Br (0) for any r > 0 with p−n < r < p−n+1, so these
sets clearly form a neighborhood basis of zero. Likewise, the set 1 + pn

Zp equals
the open Ball Br (1) around 1 of radius r > 0, if p−n < r < p−n+1. Hence the
claim follows as soon as we have shown that Zp, and hence pn

Zp, is compact. But
if (xn) is a sequence in Zp and if we write each xn as a power series

∑∞
j=0 a

n
j p

j with
an
j ∈ {0, . . . ,p−1}we may pass inductively to subsequences

(
xl
nk

)
of (xn) such that

the first l coefficients a1, . . . , al of all elements in the l-th subsequence agree. It is
then easy to check that the diagonal subsequence

(
xl
nl

)
of (xn) converges in Zp. �
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p-Adic Numbers as Limits

Fix a prime p and let m, n ∈ N with m ≥ n. Then the natural projection

πm
n : Z/pm

Z → Z/pn
Z

is a ring homomorphism. The family
(
πn
m

)
m,n satisfies the axioms of a projective

system of rings as in Sect. 1.8.

Proposition 13.1.9 The ring Zp is canonically isomorphic with the projective limit
of the Z/pn

Z.

Proof If we view Zp as ring of power series, we get natural projections Zp → Z/pn
Z

by cutting off a power series beyond its n-th entry. These projections are compatible
with the projections πn

m : Z/pm
Z → Z/pn

Z, so these maps fit together to give a
ring homomorphism

Zp → lim←
n

Z/pn
Z.

Interpreting the right hand side as set of compatible elements in the product∏
n Z/pn

Z easily shows that this map is a bijection. �

13.2 Haar Measures on p-adic Numbers

The absolute value | · |p defines a metric, which yields a topology on Qp. We showed
above that with this topology the groups

(
Qp,+) and

(
Q
×
p , ·) are locally compact

abelian groups. We now determine their Haar measures.

Note that the group of units Z
×
p in Zp is exactly the set of all x ∈ Qp, which satisfy

|x|p = 1.

Let μ be the Haar measure on the group
(
Qp,+), which gives the compact open

subgroup Zp the volume 1, so μ(Zp) = 1. Invariance of μ means μ(x +A) = μ(A)
for every measurable A ⊂ Qp and every x ∈ Qp.

Lemma 13.2.1 For every measurable subset A ⊂ Qp and every x ∈ Qp one has
μ(xA) = |x|pμ(A). In particular, for every integrable function f and x 
= 0 one has

∫
Qp

f
(
x−1y
)
dμ(y) = |x|p

∫
Qp

f (y) dμ(y).

Proof Let x ∈ Qp�{0}. The measure μx , defined by μx(A) = μ(xA), is a Haar
measure again, as is easily seen. By uniqueness of Haar measures, there exists some
M(x) > 0 such that μx = M(x)μ. We show that M(x) = |x|p. It suffices to show
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μ(xZp) = |x|p. Assume that |x|p = p−k . Then x = pky for some y ∈ Z
×
p , and

so xZp = pk
Zp. Therefore it suffices to show μ

(
pk

Zp

) = p−k. We start with the
case k ≥ 0. Then [Zp : pk

Zp] = pk , so there is a disjoint decomposition of Zp,

Zp =⋃pk

j=1 (xj + pk
Zp). By invariance of Haar measure we have

1 = μ(Zp) =
pk∑
j=1

μ
(
xj + pk

Zp

) = pkμ
(
pk

Zp

)
,

which implies the claim. If k < 0, then one uses
[
pk

Zp : Zp

] = p−k in an analogous
way. �

For simplification, we write integration according to a Haar measure as dx, so∫
Qp

f (x) dμ(x) =
∫

Qp

f (x) dx.

Proposition 13.2.2 The measure dx
|x|p is a Haar measure of the multiplicative group

Q
×
p .

Proof Let f ∈ Cc(Q×
p ) and y ∈ Q

×
p . Then one has∫

Q
×
p

f
(
y−1x
) dx

|x|p = |y|−1
p

∫
Q
×
p

f
(
y−1x
) 1

|y−1x|p dx =
∫

Q
×
p

f (x)
dx

|x|p
by Lemma 13.2.1. �

The subgroup Z
×
p of Q

×
p is the kernel of the group homomorphism Q

×
p → Z;

x �→ log (|x|p)
logp

. Hence Q
×
p can be written as disjoint union: Q

×
p = ⋃k∈Z

pk
Z
×
p .

One has vol dx
|x|p

(
pk

Z
×
p

) = vol dx
|x|p

(
Z
×
p

)
. It is therefore of interest, to compute the

measure vol dx
|x|p

(
Z
×
p

)
. One has vol dx

|x|p

(
Z
×
p

) = ∫
Z
×
p

dx
|x|p = ∫

Z
×
p

dx = voldx
(
Z
×
p

)
.

Consider the power series representation of Zp and order the elements of Z
×
p by their

first coefficient. We get a disjoint decomposition

Z
×
p =

·⋃
a mod p

a 
≡0 mod p

(
a + pZp

)
.

This means that the subgroup 1 + pZp of Z
×
p has index p − 1, so

voldx
(
Z
×
p

) = (p − 1)voldx
(
pZp

) = p − 1

p
.

We define the normalized multiplicative Haar measure on Qp by

d×x = p

p − 1

dx

|x|p .

This Haar measure is determined by the property that the volume of the compact
open subgroup Z

×
p is one.
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Self-duality

The group R is self-dual in the way that there is a character χ0(x) = e2πix such that
every character χ can be written as χ (x) = χ0(ax) for a unique a ∈ R. Actually, the
choice of χ0 was arbitrary, so, given any non-trivial character ω, any character can
uniquely be written as x �→ ω(ax). We will now find that Qp is self-dual as well.

Theorem 13.2.3 (Self-duality of Qp). Fix any non-trivial character ω ∈ Q̂p. Then
the map � : Qp → Q̂p, given by �(a) = ωa , where ωa(x) = ω(ax), is an
isomorphism of LCA groups.

Proof The computation

ωa+b(x) = ω(ax + bx) = ω(ax)ω(bx) = ωa(x)ωb(x)

shows that � is a group homomorphism. For injectivity, assume �(a) = 1, then
ω(ax) = 1 for every x ∈ Qp and as ω is non-trivial, this implies a = 0.

For surjectivity, we construct a standard character χ0 : Qp → T and show that
χ (x) = χ0(ax) for some a ∈ Qp. Since the same holds for ω we get ω(x) =
χ0(bx) and as ω is non-trivial, it follows b 
= 0. Then we infer χ (x) = χ0(ax) =
χ0(bb−1ax) = ω(b−1ax). We use the power series representation of elements of Qp

to define χ0 as follows

χ0

( ∞∑
k=−N

akp
k

)
= e2πi

∑−1
k=−N akp

k

.

This is easily seen to be a character with χ0(Zp) = 1 and χ0
(
p−N
) = e2πip−N

.
Let now χ be any character. By continuity, there exists k ∈ Z such that the open
subgroup pk

Zp is mapped into the open unit-neighborhood {Re(z) > 0} in T. The
latter set contains only one subgroup of T, the trivial group. So we get χ

(
pk

Zp

) = 1.
Replacing χ (x) with χ (pkx), we can assume χ (Zp) = 1. Let N ∈ N. Then we have

χ
(
p−N
)pN = 1, so there are uniquely determined coefficients ak ∈ {0, . . . ,p − 1},

such that

χ
(
p−N
) = e

2πi
(∑N−1

k=0 akp
k
)
p−N

.

Since χ (p−N ) = χ
(
p−(N+1)p

) = χ
(
p−(N+1)

)p
, these coefficients do not depend on

N , so there is a number a =∑∞
k=0 akp

k in Zp with χ (p−N ) = χ0(ap−N ) for every
N ∈ N. We apply this to varying N to conclude

χ

( ∞∑
k=−N

akp
k

)
= χ

( −1∑
k=−N

akp
k

)
=

−1∏
k=−N

χ (akp
k) =

−1∏
k=−N

χ (pk)ak

=
−1∏

k=−N

χ0(apk)ak =
−1∏

k=−N

χ0(aakp
k) = χ0

(
a

∞∑
k=−N

akp
k

)
.
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To establish continuity of φ, recall that the topology of Q̂p is the topology of the
structure space of L1(Qp). So it suffices to show that the map a �→ f̂ (ωa) is contin-
uous for every f ∈ L1(Qp). This map, however, is f̂ (ωa) = ∫

Qp
f (x)ω(ax) dx, and

is seen to be continuous by means of the Theorem on Dominated Convergence, as
for a sequence aj → a the sequence f̂ (ωaj ) converges dominatedly to f̂ (ωa).

The continuity of the inverse map follows from the Open Mapping Theorem 4.2.10.
�

13.3 Adeles and Ideles

In this section, we compose all the completions Qp to a big ring, called the adele
ring, which contains number theoretical information on all primes. The naive idea
would be to simply take the product of all Qp. This, however, will not give a locally
compact space, as we show in the first section. The construction has to be refined to
the so-called restricted product.

Restricted Products

By the Theorem of Tychonov, direct products of compact spaces are compact. For
“locally compact”, this does not hold in general, as Lemma 1.8.10 shows. Let (Xi)i∈I
be a family of locally compact spaces and for each i ∈ I let there be given a compact
open subset Ki ⊂ Xi . Define the restricted product as

X =
∏̂
i∈I

Ki

Xi :=
{
x ∈
∏
i∈I

Xi : xi ∈ Ki for almost all i ∈ I

}

=
⋃
E⊂I
finite

{∏
i∈E

Xi ×
∏
i /∈E

Ki.

}

If it is clear, which sets Ki to take, one leaves them out of the notation and simply
writes X = ∏̂i∈IXi .

On the restricted product we introduce the restricted product topology as follows. A
restricted open rectangle is a subset of the restricted product of the form

∏
i∈E Ui ×∏

i /∈E Ki , where E ⊂ I is a finite subset and for each i ∈ E the set Ui ⊂ Xi is
an arbitrary open subset of Xi . A subset A ⊂ ∏̂i∈IXi is called open, if it can be
written as a union of restricted open rectangles. Note that the intersection of two
restricted open rectangles is again a restricted open rectangle, since the sets Ki have
been assumed to be open.
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Lemma 13.3.1 (a) If I is finite, then
∏

i Xi = ∏̂iXi and the restricted product
topology is the usual product topology.

(b) For every disjoint decomposition of the index set I = A ·∪B one has a
homeomorphism

∏̂
i∈IXi

∼=
(∏̂

i∈AXi

)
×
(∏̂

i∈BXi

)
.

(c) The inclusion map
∏̂

iXi ↪→ ∏i Xi is continuous, but the restricted product
topology only equals the subspace topology, if Xi = Ki for almost all i ∈ I.

(d) If all the spaces Xi are locally compact, then so is X = ∏̂iXi.

Proof (a) is trivial. For (b) note that both sides of the equation describe the same
set. The definition of the restricted product topology implies that the left hand side
carries the product topology of the two factors on the right.

(c) For continuity we have to show that the pre-image of a set of the form
∏

i∈E Ui ×∏
i /∈E Xi is open in

∏̂
iXi , where E ⊂ I is a finite subset and every Ui ⊂ Xi is open.

This follows from (a) and (b). The second assertion is clear.

We finally show (d). Let x ∈ X. Then there exists a finite set E ⊂ I such that
xi ∈ Ki , if i /∈ E. For every i ∈ E choose a compact neighborhood Ui of xi . Then∏

i∈E Ui ×∏i /∈E Ki is a compact neighborhood of x, so X is locally compact. �

Adeles

By a place of Q we either mean a prime number or ∞, the latter we call the infinite
place. Write p < ∞, if p is a prime and p ≤ ∞ if p is an arbitrary place. This
manner of speaking comes from algebraic geometry, as these “places” behave in
many ways like points on a curve. We write Q∞ = R.

The set of finite adeles is the restricted product

Afin =
∏̂Zp

p<∞Qp.

The set of adeles is the set A = Afin × R. We also write A = ∏̂p≤∞Qp, although
this is not a restricted product, as there is no restriction at the infinite place. For an
arbitrary set of places S we write AS = ∏̂p∈SQp and A

S = ∏̂p/∈SQp. Note that
A = AS × A

S.

Theorem 13.3.2

(a) For every set of places S the ring AS is a locally compact topological ring.
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(b) The set Q, embedded diagonally into A, is a discrete subgroup and the quotient
of abelian groups A/Q is compact.

(c) Q is dense in Afin.

Proof The space AS is locally compact by Lemma 13.3.1. For (a) we have to show
that addition and multiplication are continuous maps from AS ×AS to AS . We only
show this for addition, as the proof for multiplication is analogous. Let a, b ∈ AS

and let U be an open neighborhood of a + b. We have to show that there are open
neighborhoods V ,W of a and b such that V +W ⊂ U . Choosing U smaller, we can
assume that U = ∏p∈E Up ×∏p∈S�E Zp for a finite set E ⊂ S. For given p ∈ E

the addition is continuous on Qp, so there are open neighborhoods Vp,Wp ⊂ Qp

of ap and bp, such that Vp + Wp ⊂ Up. Set V = ∏p∈E Vp × ∏p∈S�E Zp and
W =∏p∈E Wp ×∏p∈S�E Zp. Then V and W are open neighborhoods of a and b,
and one has V +W ⊂ U as claimed.

For part (b) let U = (− 1
2 , 1

2

) ×∏p<∞ Zp. The set U is an open neighborhood of
zero in A. For r ∈ Q ∩ U one has |r|p ≤ 1 for every p < ∞ and therefore r ∈ Z.
Further one has |r|∞ < 1

2 and so r = 0. We have thus found an open neighborhood
of zero with U ∩Q = {0}. As Q is a subgroup of the additive group A, it is discrete in
A. For compactness it suffices to show, that the compact set K = [0, 1]×∏p<∞ Zp

contains a set of representatives of A/Q, because then the projection P : K → A/Q

is surjective, so A/Q is the continuous image of a compact set, hence compact.

So let x ∈ A. There is a finite set E of places with ∞ ∈ E, such that p /∈ E ⇒ xp ∈
Zp. For p ∈ E with p < ∞ we write xp =∑∞

j=−N ajp
j . Then

xp −
−1∑

j=−N

ajp
j

︸ ︷︷ ︸
=r∈Q

∈ Zp.

For a prime q 
= p one has |r|q =
∣∣∣∑−1

j=−N ajp
j

∣∣∣
q
≤ max{|a jp

j|q} ≤ 1. We replace

x by x − r and thus reduce E to E�{p}. Repeating this argument, we end up with
E = {∞}, so xp ∈ Zp for every prime numberp. This means that x ∈ R×∏p<∞ Zp.
Modulo Z one can move x to [0, 1] ×∏p<∞ Zp = K .

Note that the above argument implies in particular that Afin = Q + Ẑ for Ẑ =∏
p<∞ Zp. Hence, for (c) it suffices to show that Z is dense in Ẑ. We have to show

that Z meets every open subset of Ẑ. Every such set is a union of sets of the form
U =∏p∈E Bp×∏p/∈E Zp, where E is a finite set of places and every Bp is an open
ball in Zp. This means that Bp is of the form Bp = np+pkpZp for some np ∈ Z and
some kp ∈ N0. We have to show that there is l ∈ Z, such that for every p ∈ E one
has l ∈ np + pkpZp, or l ≡ npmod pkp . The existence of such l is a consequence of
the Chinese Remainder Theorem. �
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The ring A is locally compact, so in particular a locally compact group with respect
to addition, so there is an additive Haar measure dx on A. To describe it, we need
the following definition.

Definition A simple function f on A is a function of the form f = ∏p≤∞ fp with
fp = 1Zp

for almost all p. Likewise, a simple function on Afin is a function of the
form f =∏p<∞ fp with fp = 1Zp

for almost all p.

Theorem 13.3.3 The Haar measure dx on (A,+) can be chosen such that for every
integrable simple function f =∏p fp one has the product formula

∫
A

f (x) dx =
∏
p

∫
Qp

fp(xp) dxp.

The Haar measure dxp on Qp is normalized such that vol(Zp) = 1 for p < ∞
and dx∞ equals the Lebesgue measure. The product is alway finite, i.e., almost all
factors are equal to 1,

This theorem also holds for AS for an arbitrary set of places S. In the sequel, we will
always use the normalization of the theorem.

Proof Since A = Afin × R, any Haar measure on A is a product of the Lebesgue
measure and some Haar measure on Afin. It therefore suffices to show that the Haar
measure on Afin can be normalized in a way that for every simple function f on Afin

one has ∫
Afin

f (x) dx =
∏
p

∫
Qp

fp(xp) dxp.

Lemma 13.3.4 Let f ∈ Cc(Afin) be a continuous function with compact support.
Then there is a compact subset K ⊆ Afin and a sequence of simple functions (fn) on
Afin with supports in K which converges uniformly to f.

Proof Let L be the support of f . Since f is uniformly continuous, we find a neigh-
borhood Un of zero of the form

∏
p<∞ Bp with Bp = pkpZp for all p < ∞ with

kp ∈ Z for all p and kp = 0 for almost all p such that |f (x + y) − f (x)| < 1
n

for all x ∈ Afin and y ∈ Un. Then Un is a compact open subgroup of Afin, so
L can be covered by a disjoint union of a finite number of translates of Un, so
L ⊂∐l

i=1 (xi +Un) for suitable xi ∈ K . Define gn(x) = f (xi) if x ∈ xi +Un. Then
supp gn ⊆ suppf +Un and ‖f − gn‖Afin ≤ 1

n
. Doing this construction for all n and

taking care that Un+1 ⊆ Un for all n, we obtain the desired sequence (gn). �

Proof of Theorem 13.3.3 If f ∈ Cc(Afin) choose a sequence (fn) of simple functions

as in the lemma. Then it is easy to check that
(∫

Afin
fn(x) dx

)
is a Cauchy sequence

in C, and that the limit
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∫
A

f (x) dx := lim
n

∫
A

fn(x) dx

does not depend on the chosen sequence. Then
∫

A
: Cc(A) → C is a positive

Radon integral which is left invariant, since it is left invariant on the set of simple
functions. �

We will finally show that A is self-dual as well. For this let χ be a character of the
LCA-group A. For p ≤ ∞, we define the character χp of Qp as the composition

Qp ↪→ A
χ−→T. If p is a prime, we say that χp is unramified, if χp(Zp) = 1.

Lemma 13.3.5 For almost all p, the character χp is unramified. For an adele a one
has χ (a) = ∏p≤∞ χp(ap), where the product is finite, i.e., almost all factors are
equal to one.

Proof As χ is continuous, there exists a unit-neighborhood U in A such that χ (U ) ⊂
{Re(z) > 0}. Then U contains a restricted open rectangle, therefore U contains Zp

for almost all p. The image χ (Zp) = χp(Zp) is a subgroup of T contained in
{Re(z) > 0}, hence trivial. So almost all χp are unramified. Finally, let a ∈ A and let
S be a finite set of places outside which ap ∈ Zp and χp is unramified. This implies
that outside S one has χp(ap) = 1. Let aS be the product of all ap with p ∈ S and
aS the product of all ap with p /∈ S. Then a = aSa

S and we have χ (aS) = 1 as well
as χ (aS) =∏p∈S χp(ap) as the product is finite. �

Definition We say that a character ω is nowhere trivial, if ωp 
= 1 for every p ≤ ∞.

Theorem 13.3.6 (Self-duality of adeles). There are characters ω of A which are
nowhere trivial. For any such, the map � : A → Â given by �(a) = ωa with
ωa(x) = ω(ax) is an isomorphism of locally compact groups.

Proof At each p ≤ ∞, fix a non-trivial character ωp in a way that ωp is unramified
for almost all p. One can, for instance, choose ωp to be the standard character used
in the proof of Theorem 13.2.3, which was called χ0 there. It is easy to verify that
the prescription

ω(a) =
∏
p≤∞

ωp(ap)

defines a nowhere trivial character.

As in the case of Qp in Theorem 13.2.3, we observe that� is a group homomorphism.
For injectivity, let a ∈ A with �(a) = 1. Then ω(ax) = 1 for every x ∈ A, which
implies ωp(apxp) = 1 for every xp ∈ Qp, hence ap = 0 and so a = 0.

To show surjectivity, let χ be a character. By the corresponding local result, for each
p ≤ ∞, there exists a unique ap ∈ Qp with χp(xp) = ωp(apxp) for every xp ∈ Qp.
At places p, where χ and ω are both unramified, we get ap ∈ Zp. Hence the ap are
the coordinates of an adele a and we have χ (x) = ω(ax) for all x ∈ A.
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Continuity and openness follows exactly as in the proof of the corresponding result
for Qp in Theorem 13.2.3. �

The ring of adeles A can be used to describe the dual group Q̂ of the discrete additive
group Q. For this recall that Q imbeds diagonally into A as a discrete subgroup. Thus
we obtain a short exact sequence

0 → Q
ι→ A

q→ A/Q → 0

which dualizes to the short exact sequence

0 → Q
⊥ → Â

res→ Q̂ → 0

For each p < ∞ let ep : Qp → T denote the standard character given by

ep

( ∞∑
k=−N

akp
k

)
= e2πi

∑−1
k=−N akp

k

and let e∞ : R → T be the character e∞(x) = e−2πix . Then the character
ω = ∏p≤∞ ep : A → T is nowhere trivial and by Theorem 13.3.6 we have an

isomorphism A ∼= Â given by a �→ ωa with ωa(x) = ω(xa). If we compose
this with the restriction map res : Â → Q̂ we obtain a surjective homomorphism
φ : A → Q̂ by a �→ ωa|Q.

Theorem 13.3.7 The kernel kerφ ⊆ A is precisely the image of Q under the diag-
onal embedding. Therefore φ factors through an isomorphism of topological groups
A/Q ∼= Q̂ given by a +Q �→ ωa|Q.

Proof An element a ∈ A lies in the kernel of φ if and only if aQ ⊆ ker ω with
ω = ∏p≤∞ ep as above. We first show that Q ⊆ ker ω, which then implies that
Q ⊆ ker φ. For this let x ∈ Q. Let E be the finite set of primes p such that |x|p > 1
and for p ∈ E let xp = ∑∞

k=−N akp
k denote the p-adic expansion of x and let

rp := ∑−1
k=−N akp

k ∈ Q. Then |rp|q ≤ maxk≤−1|akpk|q ≤ 1 for all q 
= p and
therefore rp ∈ ker eq for all primes q 
= p. It follows that

ω(x − rp) = ω(x)e∞
(−rp
)
ep
(−rp
) = ω(x)e−2πirp e2πirp = ω(x).

Thus, replacing x by x +∑p∈E rp, we may assume without loss of generality that
|xp|p ≤ 1 for all p < ∞. But this implies that x ∈ Z, hence xp ∈ ker ep for all
p ≤ ∞ and ω(x) = 1.

Assume now that a ∈ A such that ω(ax) = 1 for all x ∈ Q. We need to show that
a ∈ Q. Let E be the finite set of primes p with |ap|p = pkp > 1. By passing from
a to a′ = a ·∏p∈E pkp if necessary we may assume that E = ∅, hence |ap|p ≤ 1
for all p < ∞. It follows that ap ∈ kerep for all p ≤ ∞ and 1 = ω(a) = e∞(a∞),
hence a∞ ∈ Z. Writing a∞ = ±p

k1
1 · · ·pkl

l with k1, . . . , kl ≥ 0 and after passing to
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a′′ = a·(±p
−k1
1 · · ·p−kl

l ) we may even assume that a∞ = 1. (Note that multiplication
of a with p

−ki
i only alters the norm of api

. But since 1 = e∞(a∞ · p−ki
i ) and 1 =

ω
(
a · p−ki

i

)
= e∞
(
a∞ · p−ki

i

)
·epi

(
ap · p−ki

i

)
we still have |api

·p−ki
i |pi

≤ 1, hence

|a′′p|p ≤ 1 for all p < ∞.)

After these reductions we need to show that ap = 1 for all p < ∞. To see this let
ap =∑∞

k=0 bkp
k . We need to show that b0 = 1 and bk = 0 for all k > 0. To see this

we consider for all l ∈ N

1 = ω
(
a · p−l

) = e∞
(
p−k
)
ep

(
l∑

k=0

bkp
k−l

)

= exp

(
2πi

pl

(
(b0 − 1) +

l−1∑
k=1

bkp
k

))

which is only possible if b0 = 1 and bk = 0 for all 1 ≤ k < l. Since l is arbitrary,
the result follows. �

Ideles

The group A
× of invertible elements of the adele ring A can be described as follows

A
× =
{
a ∈ A :

ap 
= 0 ∀p ≤ ∞
|ap|p = 1 for almost all p

}
.

Equipping A
× with the subspace topology makes the multiplication continuous, but

not the map x �→ x−1. In order to make A
× a topological group, we need more open

sets. We have to insist, that with each open setU , the setU−1 = {u−1 : u ∈ U} is open
as well. The topology of A is generated by all sets of the form

∏
p∈E Up×∏p/∈E Zp,

where E is a finite set of places and Up is open in Qp for every p ∈ E. The subspace
topology of A

× therefore is generated by all sets of the form

U =
{
a ∈ A

× :
ap ∈ Up, p ∈ E

|ap| ≤ 1,p /∈ E

}
,

where we can insist, that every Up lies in Q
×
p . So we have to ask that sets of the form

U−1 =
{
a ∈ A

× :
a−1
p ∈ Up, p ∈ E

|ap| ≥ 1,p /∈ E

}

be open as well. This implies that the intersection of sets of the form U and another
of the form (U ′)−1 be open. Such intersections are of the form

W =
{
a ∈ A

× :
ap ∈ Wp, p ∈ E

|ap| = 1,p /∈ E

}
,

where Wp is any open subset of Q
×
p . On the other hand, sets of the form U or U−1

above can be written as unions of sets of the form W .
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Lemma 13.3.8 The coarsest topology on A
×, which contains the subspace topology

of A and makes A
× a topological group is the topology generated by all sets of the

form W above with Wp any open set in Q
×
p . This topology is a restricted product

topology, i.e., one can write A
× as restricted product

A
× =
(∏̂Z

×
p

p<∞Q
×
p

)
× R

×.

With this topology, A
× is a locally compact group, called the idele group of Q. The

elements are referred to as ideles.

Proof This is clear by what we have said above. �

Definition The absolute value of an idele a ∈ A
× is defined as |a| =∏p |ap|p.This

product is well defined, since almost all factors are equal to 1. We extend the definition
to all of A by setting |a| = 0, if a ∈ A�A

×. Note that the identity |a| = ∏p |ap|p
also holds in this case, if one interprets the product as (|a∞|∞ limN→∞

∏
p≤N |ap|p).

Let
A

1 = {a ∈ A
× : |a| = 1}.

Proposition 13.1.4 says that Q
× ⊂ A

1. Recall that we write

Ẑ =
∏
p<∞

Zp.

Then Ẑ is a compact subring of Afin. Its unit group is Ẑ
× =∏p<∞ Z

×
p .

Theorem 13.3.9 The subgroup Q
× is discrete in A

×, it lies in the closed subgroup A
1,

and the quotient A
1/Q× is compact. More precisely, there is a canonical isomorphism

A
1/Q× ∼= Ẑ

×.

The absolute value induces an isomorphism of topological groups: A
× ∼= A

1×(0,∞)
given by x �→ (x̃, |x|∞), where x̃ ∈ A

1 is defined by

x̃p =
{
xp ifp < ∞,
x∞
|x| ifp = ∞.

Further one has A
1 ∼= A

×
fin × {±1}.

Proof Choose 0 < ε < 1 and set U = (1 − ε, 1 + ε) ×∏p<∞ Z
×
p . Then U is an

open unit neighborhood in A
×. With r ∈ Q ∩ U we get |r|p = 1 for every prime

number p, so r ∈ Z and r−1 ∈ Z. We have r ∈ (1 − ε, 1 + ε), so r = 1.

Consider the map η :
∏

p Z
×
p → A

1/Q× given by x �→ (x, 1)Q×. We claim that
η is an isomorphism of topological groups. The map η is a group homomorphism,
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and since the map
∏

p Z
×
p ↪→ A

× is continuous, η is continuous. The inverse map is
given by x = (xfin, x∞) �→ 1

x∞ xfin, where we note, that for x ∈ A
1 one has x∞ ∈ Q

×.

We leave it as an exercise to check that the map x �→ (x̃, |x|∞) gives an isomorphism
A
× ∼= A

1 × (0,∞). Finally, the map φ : A
×
fin × {±1} → A

1 given by φ(afin, ε) =
(afin, ε|afin|−1) is easily seen to be an isomorphism. �

Proposition 13.3.10 (a) The set A
×
fin is the disjoint union

A
×
fin =

∐
q∈Q

×
>0

qẐ
×.

The set Ẑ ∩ A
×
fin is the disjoint union

Ẑ ∩ A
×
fin =
∐
k∈N

kẐ
×.

(b) For every s ∈ C with Re(s) > 1 the integral
∫

Ẑ
|x|s d×x converges absolutely

and equals the Riemann zeta function ζ (s). Here d×x is the uniquely determined
Haar measure on A

×
fin, which gives the compact open subgroup Ẑ

× the measure 1.
We consider this measure also as a measure on Afin, which is zero outside A

×
fin.

Proof For given x ∈ A
×
fin the absolute value |x| lies in Q

×
>0. Consider the element

|x|x ∈ A
×
fin. Let p be a prime number. One has xp = pku for some k ∈ Z and

some u ∈ Z
×
p . So one has |x| = p−kr , where r ∈ Q is coprime to p. We infer that

||x|xp|p = 1, so |x|x ∈ Ẑ
×. With q = |x|−1 we have x ∈ qẐ

×. If x ∈ Ẑ we have
kp ≥ 0 for all p, which implies that q ∈ Z. This concludes the proof of (a).

We use (a) to show (b) as follows∫
Ẑ

|x|s d×x =
∑
k∈N

∫
kẐ

×
|x|s d×x

=
∑
k∈N

∫
Ẑ
×
|kx|s d×x =

∑
k∈N

k−s

∫
Ẑ
×
|x|s d×x.

︸ ︷︷ ︸
=1

The convergence follows from the convergence of the Dirichlet series ζ (s). �

13.4 Exercises

Exercise 13.1 For a ∈ Qp and r > 0 let Br (a) be the open ball Br (a) = {x ∈ Qp :
|a − x|p < r}. Show:

(a) If b ∈ Br (a), then Br (a) = Br (b).

(b) Two open balls are either disjoint or one is contained in the other.
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Exercise 13.2 Show that there is a canonical ring isomorphism Qp
∼= Q⊗Z Zp.

Exercise 13.3 Show that
∑∞

j=−N ajp
j �→ ∑∞

j=−N ajp
−j , 0 ≤ aj < p, defines a

continuous map Qp → R. Is this a ring homomorphism? Describe its image.

Exercise 13.4 Let T = {z ∈ C : |z| = 1} denote the circle group and letχ : Zp → T

be a continuous group homomorphism, i.e., χ (a + b) = χ (a)χ (b).

Show that there exists k ∈ N with χ (pk
Zp) = 1. It follows that χ factors through

the finite group Zp/p
k
Zp

∼= Z/pk
Z, so the image of χ is finite.

(Hint: Let U = {z ∈ T : Re(z) > 0}. Then U is an open neighborhood of the unit,
so χ−1(U ) is an open neighborhood of zero.)

Exercise 13.5 Let ep : Qp → T be defined by

ep

⎛
⎝ ∞∑

j=−N

ajp
j

⎞
⎠ = exp

⎛
⎝2πi

−1∑
j=−N

ajp
j

⎞
⎠ ,

where aj ∈ Z with 0 ≤ aj < p. Show that ep is a continuous group homomorphism.

Exercise 13.6 (For this exercise it helps to have some familiarity with number
theory.) Let p be a prime number and let O be the polynomial ring Fp[t]. As one
can perform division with remainder, the ring O is a factorial principal domain. The
prime ideals of O are the principal ideals of the form 0 or (η), where η 
= 0 is an
irreducible polynomial in O.

(a) For such η let vη : O → N0 ∪ {∞} be defined by vη(f ) = sup{k : f ∈ (ηk)}.
Show that |f |η = p− deg (η)vη(f ) defines an absolute value on the ring O.

(b) Let v∞(f ) = − deg (f ). Show that |f |∞ = p−v∞(f ) is an absolute value.

(c) Prove the product formula
∏

η≤∞ |f |η = 1.

Exercise 13.7 (a) Show that the family (NẐ)N∈N is a neighborhood basis of zero
in Afin. That is, show that every NẐ is a neighborhood of zero and that every zero
neighborhood contains a set of the form NẐ for some N .

(b) Show that the sets of the form (1+NẐ)∩ Ẑ
×, N ∈ N are a neighborhood basis

of the unit 1 in A
×
fin.

Exercise 13.8 Let p be a prime number, n ∈ N and let dx be the additive Haar
measure on Mn(Qp), so

∫
Mn(Qp)

f (x) dx =
∫

Qp

· · ·
∫

Qp

f (xi,j ) dx1,1 · · · dxn,n.
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(a) Show that dx
|detx|n is a left- and right-invariant Haar measure on the group GLn(Qp).

Conclude that the group GLn(Qp) is unimodular.

(b) Show that the group GLn(A) is unimodular.

Exercise 13.9 Let n,N ∈ N and let KN be the set of all invertible n× n matrices g

with entries in Ẑ such that g ≡ I mod N . Show

• KN is a compact open subgroup of GLn(Ẑ),

• KN ⊂ Kd if d|N ,

• the KN form a neighborhood basis of the unit in GLn(Ẑ).

Exercise 13.10 Let U be a compact open subgroup of the locally compact group G.
Show that for every g ∈ G the set UgU/U is finite.

Exercise 13.11 Let G be a totally disconnected locally compact group. For a com-
pact open subgroup U and a compact set K let L(U ,K) be the set of all functions
f : G → C with

• suppf ⊂ K and

• f (ux) = f (x) for every x ∈ G and every u ∈ U .

Further let R(U ,K) be the set of all functions f : G → C with

• suppf ⊂ K and

• f (xu) = f (x) for every x ∈ G and every u ∈ U .

Show that in general one has L(U ,K) 
= R(U ,K), but

⋃
U ,K

L(U ,K) =
⋃
U ,K

R(U ,K).
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