
Chapter 11

SL2(R)

The group SL2(R) is the simplest case of a so called reductive Lie group. Harmonic
analysis on these groups turns out to be more complex then the previous cases of
abelian, compact, or nilpotent groups. On the other hand, the applications are more
rewarding. For example, via the theory of automorphic forms, in particular the
Langlands program, harmonic analysis on reductive groups has become vital for
number theory. In this chapter we prove an explicit Plancherel Theorem for functions
in the Hecke algebra of the group G = SL2(R). We apply the trace formula to a
uniform lattice and as an application derive the analytic continuation of the Selberg
zeta function.

11.1 The Upper Half Plane

Let G = SL2(R) denote the special linear group of degree 2, i.e.

SL2(R) =
{(

a b

c d

)
∈ M2(R) : ad − bc = 1

}
.

The locally compact group SL2(R) acts on the upper half plane

H = {z ∈ C : Im(z) > 0}
by linear fractionals, i.e., for g = ( a b

c d

) ∈ SL2(R) and for z ∈ H one defines

gz = az + b

cz + d
.

To see that this is well-defined one has to show that cz+ d 
= 0. If c = 0 then d 
= 0
and so the claim follows. If c 
= 0 then Im(cz + d) = cIm(z) 
= 0. Next one has to
show that gz lies in H if z does and that (gh)z = g(hz) for g,h ∈ SL2(R). The latter
is an easy computation, for the former we will now derive an explicit formula for the
imaginary part of gz. Multiplying numerator and denominator by cz̄ + d one gets
gz = ac|z|2+bd+2bcRe(z)+z

|cz+d|2 , so in particular,
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Im(gz) = Im(z)

|cz + d|2 ,

which is strictly positive if Im(z) is. Note that the action of the central element
−1 ∈ SL2(R) is trivial.

If g = ( a b
c d

) ∈ G stabilizes the point i ∈ H, then ai+b
ci+d

= i, or ai + b = −c + di,
which implies a = d and b = −c. So the stabilizer of the point i ∈ H is the rotation
group:

K = SO(2) =
{(

a −b

b a

)
: a, b ∈ R, a2 + b2 = 1

}
,

which also can be described as the group of all matrices of the form(
cos t − sin t

sin t cos t

)
for t ∈ R.

The operation of G on H is transitive, as for z = x + iy ∈ H one has

z =
(√

y x√
y

0 1√
y

)
i.

It follows that via the map G/K → H, given by gK �→ gi, the upper half plane H

can be identified with the quotient G/K .

Theorem 11.1.1 (Iwasawa Decomposition). Let A be the group of all diagonal
matrices in G with positive entries. Let N be the group of all matrices of the form(

1 s
0 1

)
for s ∈ R. Then one has G = ANK . More precisely, the map

ψ : A×N ×K → G,

(a, n, k) �→ ank

is a homeomorphism.

Proof Let g ∈ G, and let gi = x + yi. Then, with

a =
(√

y

1/
√
y

)
and n =

(
1 x/y

1

)
,

one has gi = ani and so g−1an lies in K , which means that there exists k ∈ K

with g = ank. Using the explicit formula for gz above in the case z = i, one
constructs the inverse map to ψ as follows. Let φ : G → A × N × K be given by
φ(g) = (a(g), n(g), k(g)), where

a

(
a b

c d

)
=
(

1√
c2+d2 √

c2 + d2

)
,

n

(
a b

c d

)
=
(

1 ac + bd

1

)
,
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k

(
a b

c d

)
= 1√

c2 + d2

(
d −c

c d

)
.

A straightforward computation shows that φψ = Id and ψφ = Id. �

For g ∈ SL2(R) we shall use throughout this chapter the notation a(g), n(g), and
k(g) as explained above. Moreover, for x, t , θ ∈ R, we shall write

at
def=
(
et

e−t

)
∈ A

nx
def=
(

1 x

1

)
∈ N

kθ
def=
(

cos θ − sin θ

sin θ cos θ

)
∈ K.

A function f : G → C is called smooth if the map R
3 → C given by

(t , x, θ ) �→ f (atnxkθ )

is infinitely differentiable. We denote the space of smooth functions by C∞(G). The
space of smooth functions of compact support is denoted by C∞

c (G).

Theorem 11.1.2 The group G = SL2(R) is unimodular.

Proof Let φ : G → R
×
+ be a continuous group homomorphism. We show that

φ ≡ 1. First note that φ(K) = 1 as K is compact. As φ restricted to A is a continuous
group homomorphism, there exists x ∈ R such that φ(at ) = etx for every t ∈ R. Let
w = ( −1

1

)
, then watw−1 = a−t , and therefore etx = φ(at ) = φ(watw−1) = e−tx

for every t ∈ R, which implies x = 0 and so φ(A) = 1. Similarly, φ(nx) = erx for
some r ∈ R. As we have atnxa

−1
t = ne2t x it follows ers = ere

2t s for every t ∈ R,
which implies r = 0, so φ(N ) = 1 and by the Iwasawa decomposition, we conclude
φ ≡ 1. �

We write t(g) for the unique t ∈ R with a(g) = at , i.e., one has a(g) = at(g).

Theorem 11.1.3 For any given Haar measures on three of the four groups G,A,N,K,
there is a unique Haar measure on the fourth such that for f ∈ L1(G) the
decomposition formula

∫
G

f (x) dx =
∫
A

∫
N

∫
K

f (ank) dk dn da

holds. For φ ∈ L1(K) and x ∈ G one has
∫
K

φ(k) dk =
∫
K

φ(k(kx)) e2t(kx) dk.



198 11 SL2(R)

From now on we normalize Haar measures as follows. On K we normalize the
volume to be one. On A we choose the measure 2dt , where t = t(a), and on N we
choose

∫
R
f (ns)ds. The factor 2 is put there to match the usual invariant measure

dx dy

y2 on the upper half plane.

Proof Let B = AN , the subgroup of G consisting of all upper triangular matrices
with positive diagonal entries. Then an easy computation shows that db = dadn is a
Haar measure on B and that B is not unimodular. Indeed, one has 	B(axn) = e−2x ,
which follows from the equation atnxasny = at+sny+e−2sx . Let b : G → B be
the projection b(g) = a(g)n(g). The map B → G/K ∼= H mapping b to bK is
a B-equivariant homeomorphism. Any G-invariant measure on G/K gives a Haar
measure on B and as both these types of measures are unique up to scaling one
gets that every B-invariant measure on G/K is already G-invariant. So the for-
mula
∫
G
f (x) dx = ∫

G/K

∫
K
f (xk) dk dx leads to

∫
G
f (x) dx = ∫

B

∫
K
f (bk) dk db.

Since db = da dn, the integral formula follows.

For the second assertion let φ ∈ L1(K). Let η ∈ L1(B) and set g(bk) = η(b)φ(k).
Then g lies in L1(G). As G is unimodular, for y ∈ G one has

∫
B

∫
K

η(b)φ(k) dk db =
∫
G

g(y) dy =
∫
G

g(yx) dy

=
∫
G

η(b(yx))φ(k(yx)) dy

=
∫
B

∫
K

η(b(bkx))φ(k(kx)) dk db

=
∫
B

∫
K

η(bb(kx))φ(k(kx)) dk db

=
∫
B

∫
K

η(b)	B(b(kx))−1φ(k(kx)) dk db

=
∫
B

∫
K

η(b)e2t(kx)φ(k(kx)) dk db,

where we used the facts that k(bg) = k(g) for all b ∈ B, g ∈ G and t(b(kx)) = t(kx)
for all b ∈ B, k ∈ K , and x ∈ G. Varying η, we get the claim of the theorem. �

Hyperbolic Geometry

Let g = ( a b
c d

)
be in G = SL2(R). For z ∈ H one gets

d

dz
gz = d

dz

az + b

cz + d
= a(cz + d) − c(az + b)

(cz + d)2 = 1

(cz + d)2 .
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Since on the other hand, Im(gz) = Im(z)
|cz+d|2 , we get

∣∣ d
dzgz
∣∣ = Im(gz)

Im(z) , or

∣∣ d
dzgz
∣∣

Im(gz)
=
∣∣ d
dz z
∣∣

Im(z)
.

That is to say, the Riemannian metric dx2+dy2

y2 is invariant under the group action of
G on H. For a continuously differentiable path p : [0, 1] → H we get the induced
hyperbolic length defined by

L(p) =
∫ 1

0

|p′(t)|
Im(p(t))

dt.

Then it follows that L(p) = L(g ◦p) for every g ∈ G, i.e., the length is G-invariant.
The hyperbolic distance of two points z, w ∈ H is defined by

ρ(z, w) = inf
p

L(p),

where the infimum is extended over all paths p with p(0) = z and p(1) = w.

Lemma 11.1.4 For any two point z, w ∈ H there exists g ∈ G such that gz = i

and gw = yi for some y ≥ 1.

Proof As we have seen in the beginning of this chapter, the group action of G on H

is transitive, hence there exists h ∈ G with hz = i. We next apply an element k ∈ K

so that g = kh does the job. For this we have to show that for any given z ∈ H there
exists k ∈ K such that kz = yi for some y ≥ 1. The map θ �→ kθ z is continuous, for
θ = 0 we have kθ z = z and for θ = π/2 we have kθ =

(
0 −1
1 0

)
so that kπ/2z = −1/z.

Hence the real parts of z and kπ/2z have opposite sign, by the intermediate value
theorem there exists k ∈ K such that Re(kz) = 0. If now kz = yi with y < 1, then
we replace k with kπ/2k to finish the proof �

Lemma 11.1.5 The hyperbolic distance is a metric on H. It is G-invariant, i.e.,
ρ(gz, gw) = ρ(z, w) holds for all z, w ∈ H, g ∈ G. For z, w ∈ H one has

ρ(z, w) = log
|z − w| + |z − w|
|z − w| − |z − w| ,

and

2 cosh ρ(z, w) = 2 + |z − w|2
Im(z)Im(w)

.

Proof The G-invariance follows from the invariance of the length. The axioms of
a metric are immediate from the definition. For the explicit formulae, we start with
the special case z = i and w = yi for y ≥ 1. For any path p with p(0) = i and
p(1) = yi we get
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L(p) =
∫ 1

0

√
Re(p′(t))2 + Im(p′(t))2

dt

Im(p(t))
.

This is minimized by the path p(t) = ity, since for any path p = Re(p)+ iIm(p) the
path iIm(p) will also connect the points i and yi. So one gets ρ(i, yi) = log y, which
also equals the right hand side of the first assertion in this case. Next the equivalence
of the first and second formula are easy, as is the G-invariance of the right hand side
of the second formula, which then concludes the proof. �

11.2 The Hecke Algebra

Let A+ be the subset of A consisting of all diagonal matrices with entries et, e−t,
where t > 0. Let A+ = A+ ∪ {1} be its closure in G.

Theorem 11.2.1 (Cartan Decomposition). The group G can be written as G =
KA+K , i.e. every x ∈ G is of the form x = k1ak2 with a ∈ A+, k1, k2 ∈ K . The
element a is uniquely determined by x. If a 
= 1, which means that x /∈ K , then
also k1 and k2 are uniquely determined up to sign, i.e., if k1ak2 = k′1ak′2, then either
(k1, k2) = (k′1, k′2) or (k1, k2) = (− k′1,−k′2).

For f ∈ L1(G) we have the integral formula
∫
G

f (x) dx = 2π
∫
K

∫ ∞

0

∫
K

f (kat l)
(
e2t − e−2t

)
dk dt dl.

Proof For x ∈ G the matrix xxt is symmetric and positive definite. As it has
determinant one, it follows from linear algebra, that there exists k ∈ K and t ≥ 0,
such that kxxtkt is the diagonal matrix with entries e2t , e−2t . For two elements x, x1 ∈
G the condition xxt = x1x

t
1 is equivalent to 1 = x−1(x1x

t
1)(xt )−1 = (x−1x1)(x−1x1)t .

The last is equivalent to x−1x1 ∈ K . So there is k′ ∈ K with x = k−1atk
′.

This shows existence of the decomposition. For the uniqueness note that e2t is the
larger of the two eigenvalues of xxt and thus determined by x. For the uniqueness
of k1, k2 assume that a ∈ A+ and k1ak2 = l1al2 with k1, k2, l1, l2 ∈ K . Then one has
ak2l

−1
2 = k−1

1 l1a. But the equation ak = k′a with k, k′ ∈ K implies k = k′ = ±1 as
we show now. Let a = at , k =

(
a −b
b a

)
, k′ = ( c −d

d c

)
. Then

(
eta −etb

e−t b e−t a

)
=
(
et

e−t

)(
a −b

b a

)
= ak = k′a

=
(
c −d

d c

)(
et

e−t

)
=
(
etc −e−t d

etd e−t c

)

Consider the norm of the first column of this matrix to get

e2t = e2t (c2 + d2) = e2t a2 + e−2t b2 = e2t a2 + e−2t (1 − a2),
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or e2t (1− a2) = e−2t (1− a2), which implies a = ±1 and therefore b = 0. But then
also d = 0 and the claim follows. So this means k2l

−1
2 = k−1

1 l1 = ±1 and therefore
the claimed uniqueness up to sign.

Let M = {±1} ⊆ K . In order to verify the integral formula, consider the map
φ : K/M × A+ → AN � {1} defined by

φ(kM , a) = a(ka)n(ka).

Lemma 11.2.2 The map φ is a C1 diffeomorphisms. In the coordinates R/πZ ×
R>0  (θ , s) �→ (kθM , as) on K/M × A and (t , x) �→ atnx on AN one has for the
differential matrix

|det(Dφ)(θ , s)| = |e2s − e−2s |.

Proof A computation shows that

φ(kθ , as) = a(kθas)n(kθ , as) = atnx ,

where

t = −1

2
log
(
e2s sin2 θ + e−2s cos2 θ

)
x = (e2s − e−2s

)
sin θ cos θ

According to the Cartan decomposition, the map K/M × A+ → (G�K)/K is
bijective. By the Iwasawa decomposition, the map AN → G/K is bijective as well,
hence φ is bijective.

The map φ is continuously differentiable. Once we have shown the claimed formula
for the differential, it follows that the differential matrix is invertible and so the
inverse function is continuously differentiable as well. We have

det(Dφ)(θ , s) = det

(
∂t
∂θ

∂t
∂s

∂x
∂θ

∂x
∂s

)
= ∂t

∂θ

∂x

∂s
− ∂t

∂s

∂x

∂θ
.

From this one gets the lemma by a computation �

The transformation formula for the variables (x, t) = φ(θ , s) shows∫
G

f (g) dg = 2
∫

R

∫
R

∫
K

f (atnyl) dl dy dt

= 2
∫ π

0

∫ ∞

0

∫
K

f (kθasl)
(
e2s − e−2s

)
dl ds dθ

=
∫ 2π

0

∫ ∞

0

∫
K

f (kθasl)
(
e2s − e−2s

)
dl ds dθ

= 2π
∫
K

∫ ∞

0

∫
K

f (kasl)
(
e2s − e−2s

)
dl ds dk,
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for every f ∈ L1(G), where the transition from the integral over [0,π ] to the integral
over [0, 2π ] in the middle equation is justified by the fact that kθ+πas = kθasm with
m = ±1 ∈ M for all θ ∈ R and s > 0. This finishes the proof of the theorem. �

Corollary 11.2.3 The map

K\G/K → [2,∞), x �→ tr (xtx)

is a bijection.

Proof The map is a bijection when restricted to A+, so the corollary follows from
the theorem. �

Definition A function f on G is said to be K-bi-invariant if it factors through
K\G/K . We define the Hecke algebra H ofG to be the set ofK-bi-invariant functions
f on G, which are in L1(G). So we can characterize H as the space of all f ∈ L1(G)
with Lkf = f = Rkf for every k ∈ K , where Lkf (x) = f (k−1x) and Rkf (x) =
f (xk). We know that for f , g ∈ L1(G),

Lk(f ∗ g) = (Lkf ) ∗ g and Rk(f ∗ g) = f ∗ (Rkg).

We conclude that H is a convolution subalgebra of L1(G). Further, H is stable under
the involution f ∗(x) = f(x−1), so H is a *-subalgebra of L1(G).

Theorem 11.2.4

(a) The Hecke algebra H is commutative.

(b) For every irreducible unitary representation π of G the space of K-invariants,

V K
π = {v ∈ Vπ : π (k)v = v ∀k ∈ K}

is zero or one dimensional.

(c) For every irreducible representation π of G and for every f ∈ H we have
π (f ) = PKπ (f )PK , where PK : Vπ → V K

π denotes the orthogonal projection.

Proof For x ∈ G the Cartan decomposition implies that KxK = Kx−1K , as this
is the case for x ∈ A, since conjugating x ∈ A with

( −1
1

) ∈ K gives x−1. This
implies that for every f ∈ H one has f (x−1) = f (x). For general f ∈ L1(G) let
f ∨(x) = f (x−1), then (f ∗ g)∨ = g∨ ∗ f ∨ for all f , g ∈ L1(G). For f , g ∈ H, one
has f ∨ = f and likewise for g and f ∗ g, so that

f ∗ g = (f ∗ g)∨ = g∨ ∗ f ∨ = g ∗ f.

So H is commutative, which proves (a).

For (b) assume V K
π 
= 0. The Hecke algebra acts on V K

π . We show that V K
π is

irreducible under H, so let U ⊂ V K
π a closed, H-stable subspace. We show that

U = 0 or U = V K
π . For this assume U 
= 0, then, as π is irreducible, one has
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π (L1(G))U = Vπ . Let PK : Vπ → V K
π be the orthogonal projection. Then PKv =∫

K
π (k)v dk for v ∈ Vπ (see Proposition 7.3.3), as we normalize the Haar measure

on K to have volume one. For f ∈ L1(G) let

f̃ (x) =
∫
K

∫
K

f (kxl) dk dl ∈ H.

It follows that PKπ (f )PK = π (f̃ ). Let u ∈ U and f ∈ L1(G). Then

PKπ (f )u = PKπ (f )PKu = π (f̄ )u ∈ U.

So we conclude that U = PKVπ = V K
π and thus V K

π is irreducible. Finally, to
see that every irreducible *-representation η : H → B(Vη) on a Hilbert space
Vη is one-dimensional, observe that for each f ∈ H the operator η(f ) commutes
with the self-adjoint irreducible set η(H) ⊂ B(Vη), since H is commutative. Thus
η(H) ⊂ CId by Schur’s Lemma (Theorem 5.1.6). As η is irreducible, it must be one
dimensional.

For (c) observe that f̃ = f for every f ∈ H. Thus it follows from the above
computations that π (f ) = PKπ (f )PK for every f ∈ H. �

Let ĜK be the set of all π ∈ Ĝ such that the space V K
π of K-invariants is non-zero.

We will now give a list of the π ∈ ĜK . For λ ∈ C let Vλ be the Hilbert space of all
functions φ : G → C with firstly, φ(matnx) = et(2λ+1)φ(x) for m = ±1 ∈ G, at ∈
A, n ∈ N and x ∈ G. By the Iwasawa decomposition, such φ is uniquely determined
by its restriction to K . We secondly insist that φ|K be in L2(K). We equip Vλ with
the inner product of L2(K). The group G acts on this space by πλ(y)φ(x) = φ(xy).
Note that the restriction to the subgroup K of the representation πλ is the induced
representation IndK

M (1) as in Sect. 7.4. The Frobenius reciprocity (Theorem 7.4.1)
implies that

πλ|K ∼=
⊕
l∈Z

ε2l ,

where for l ∈ Z the character εl on K is defined by

εl

(
cos θ − sin θ

sin θ cos θ

)
= eilθ .

Proposition 11.2.5 If λ ∈ iR, then the representation πλ is unitary.

Proof The map φ �→ φ|K yields an isomorphism of Hilbert spaces, Vλ
∼= L2(K̄),

where K̄ = K/±1. The representation πλ can, on L2(K̄), be written as πλ(y)φ(k) =
et(ky)(2λ+1)φ(k(ky)). To see this, recall that t = t(ky) is the unique real number such
that at = a(ky) in the Iwasawa decomposition ky = a(ky)n(ky)k(ky), and therefore

πλ(y)φ(k) = φ(ky) = φ
(
at(ky)n(ky)k(ky)

) = et(ky)(2λ+1)φ(k(ky)).

It follows that |πλ(y)φ(k)|2 = et(ky)(4Re(λ)+2)|φ(k(ky))|2. By the second assertion of
Theorem 11.1.3, one sees that πλ is indeed unitary if λ ∈ iR. �
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Definition For a general representation (π ,Vπ ) of G we let Vπ ,K denote the space of
all K-finite vectors, i.e., the space of all vectors v ∈ Vπ such that π (K)v spans a finite
dimensional space in Vπ . The vector space Vπ ,K is in general not stable under G, but
is always stable under K . Since Vπ has a decomposition Vπ = ⊕̂i∈IUi , where Ui

is an irreducible (hence finite-dimensional) K-representation, it follows that Vπ ,K is
dense in Vπ .

The representations πλ for λ ∈ iR are called the unitary principal series representa-
tions. One can show that πλ is irreducible and unitarily equivalent to π−λ if λ ∈ iR.
These are the only equivalences that occur. One can show that for 0 < λ < 1/2 there
is an inner product on the space Vλ,K such that the completion of Vλ,K with respect to
this inner product is the space of a unitary representation of G. By abuse of notation,
this representation is again denoted (πλ,Vλ). These are called the complementary
series representations. The set ĜK consists of

• the trivial representation,

• the unitary principal series representations πir , where r ≥ 0, and

• the complementary series πλ for 0 < λ < 1/2.

No two members of this list are equivalent. The proofs of these facts can be found
in [Kna01], Chapter II.

Note that the one dimensional space V K
λ is spanned by the element pλ with

pλ(mank) = et(a)(2λ+1).

By Corollary 11.2.3 there exists for every f ∈ H a unique function φf on [0,∞)
such that

f (x) = φf

(
tr (xtx) − 2

)
.

Consider the special case x ∈ AN , say x = atns , then tr (xtx) = (s2 + 1)e2t + e−2t .
For f ∈ H there exists a function hf such that

πir (f )pir = hf (r)pir .

The function hf is called the eigenvalue function of f . Here ir can vary in iR ∪
(0, 1/2). Since pir (1) = 1, we can compute hf (r) as follows

hf (r) = πir (f )pir (1) =
∫
G

f (x)pir (x) dx

Lemma 11.2.6 The map f �→ hf is injective on H. We have hf (r) = tr πir (f ),
and for f , g ∈ H the formula

hf ∗g = hf hg

holds. The function hf can be computed via the following integral transformations.
First set

qf (x) = A(φf )(x)
def=
∫

R

φf

(
x + s2

)
ds, x ≥ 0.
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The map φ �→ A(φ) is called the Abel transform. Next define

gf (u)
def= qf

(
eu + e−u − 2

)
, u ∈ R.

Then one has

hf =
∫

R

gf (u)eiru du.

Proof For the injectivity take an f ∈ H with hf = 0. Then π (f ) = 0 for every
π ∈ Ĝ. By the Plancherel Theorem the representation (R,L2(G)) is a direct integral
of irreducible representations and so it follows that R(f ) = 0. In particular it follows
that g ∗ f = 0 for every g ∈ Cc(G). Letting g run through a Dirac net, it follows
f = 0.

The equation hf (r) = tr πir (f ) is a consequences of Theorem 11.2.4 and hf ∗g =
hf hg follows from π (f ∗ g) = π (f )π (g) for all f , g ∈ L1(G).

Using Iwasawa coordinates and the K-invariance of f , we compute

hf (r) =
∫
AN

f (an)et(a)(2ir+1) da dn

= 2
∫ ∞

−∞

∫ ∞

−∞
φf

(
e2t + e−2t + s2 − 2

)
e2t ir ds dt ,

where we used the transformation s �→ e−t s. As qf (x) = Aφf (x) and g is even, we
have

hf (r) = 2
∫ ∞

−∞
qf

(
e2t + e−2t − 2

)
e2t ir dt =

∫
R

gf (u)eiru du. �

Definition Let S[0,∞) be the space of all infinitely differentiable functions φ on
[0,∞) such that the function xnφ(m)(x) is bounded for all m, n ≥ 0.

Lemma 11.2.7 The Abel transform is invertible in the following sense: Let φ be
continuously differentiable on [0,∞) such that

|φ (x + s2
) |, |sφ′ (x + s2

) | ≤ g(s)

for some g ∈ L1([0,∞)), then q = A(φ) is continuously differentiable and

φ = −1

π
A(q ′).

Moreover, the Abel transform maps S[0,∞) to itself and defines a bijection A :
S[0,∞) → S[0,∞).
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Proof We first show that for anyφ satisfying the conditions we have limx→∞ φ(x) =
0. To see this, let h(s) = sφ′(s2). Then h is integrable on [0,∞]. It follows that

φ(y) − φ(0) =
∫ y

0

h(
√
t)√
t

dt = 2
∫ √

y

0
h(u) du.

Letting y →∞, we see that limx→∞ φ(x) exists and since φ(x + s2) is integrable,
this limit is zero.

Next by the theorem of dominated convergence one sees that q is continuously
differentiable and that q ′ = A(φ′). Using polar coordinates, we compute

− 1

π

∫
R

∫
R

φ′
(
x + s2 + t2

)
ds dt = −2

∫ ∞

0
rφ′
(
x + r2

)
dr

= −φ
(
x + r2

) |∞0 = φ(x).

It is easy to see that the Abel transform as well as its inverse map S[0,∞) to itself. The
lemma follows. �

Lemma 11.2.8 Let E be the space of all entire functions h such that xnh(m)(x + ki)
is bounded in x ∈ R for all m, n ≥ 0 and every k ∈ R. Let F be the space of all
smooth functions g on R such that (eu + e−u)ng(m)(u) is bounded for all m, n ≥ 0.
Then the Fourier transform

�(h)(u)
def= 1

2π

∫
R

h(r)e−iru dr , h ∈ E,

defines a linear bijection � : E → F . Its inverse is given by

�−1(g)(r) =
∫

R

g(u)eiru du.

The map�maps the subspace of even functionsEev in E to the space of even functions
F ev in F.

Proof By some simple estimates, the space F can also be characterized as the space
of all smooth g such that e−kug(m)(u) is bounded for every k ∈ R and every m ≥ 0.

The space F is a subspace of the Schwartz space S(R) be definition. By the identity
theorem of holomorphic functions, the restriction h �→ h|R is an injection of E into
S(R). As the Fourier transform is a bijection on S(R), it suffices to show that it maps
E to F and vice versa.

For h ∈ E let g = �(h). With k ∈ R, and m ≥ 0 compute

e−kug(m)(u) = e−ku 1

2πim

∫
R

h(r)rme−iru dr
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= 1

2πim

∫
R

h(r)rme−i(r−ik)u dr

= 1

2πim

∫
R

h(r + ik)(r + ik)me−iru dr.

The latter is the Fourier transform of a Schwartz function and hence a bounded
function in u. It follows that g lies in F .

For the converse, let g ∈ F . Then the Fourier integral

h(r) =
∫

R

g(u)eiru du

converges for every r ∈ C, so h extends to a unique entire function. Further, for
m, n ≥ 0 and k ∈ R we have

xnh(m)(x + ik) = xnim
∫

R

umg(u)e−kueixu du.

The latter function is bounded in x ∈ R. So h lies in E as claimed. The last assertion
is clear as the Fourier transform preserves evenness. �

Recall the definition of the function hf for f ∈ H as given preceding Lemma 11.2.6.

Proposition 11.2.9 Let HS be the space of all smooth functions f on G of the form
f (x) = φ( tr (xtx)− 2) for some φ ∈ S[0,∞). Then HS is a subalgebra of the Hecke
algebra H and the map � : f �→ hf is a bijection onto the space Eev.

For a given h ∈ Eev the function f = �−1(h) is computed as follows. First one
defines the even function

g(u) = 1

2π

∫
R

h(r)e−iru dr.

Then q : [0,∞) → C is defined to be the unique function with g(u) = q(eu+e−u−2).
Further one sets φ = − 1

π
A(q ′). Then

f (x) = φ
(

tr (xtx) − 2
)
.

Proof First note that that the map q �→ g with g(u) = q(eu + e−u − 2) is a
bijection between S[0,∞) and the space F ev. Finally, Lemma 11.2.7 and 11.2.8 give
the claim. �
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11.3 An Explicit Plancherel Theorem

The Plancherel Theorem says that there exists a measure μ on Ĝ such that for
g ∈ L1(G) ∩ L2(G) one has

‖g‖2
2 =
∫
Ĝ

‖π (g)‖HS dμ(π ).

The techniques developed so far allow us as a side-result, to give an explicit measure
on ĜK , for which this equation holds with f ∈ Hsym. Any such computation is called
an Explicit Plancherel Theorem.

Theorem 11.3.1 For every g ∈ Hsym one has

‖g‖2
2 =

1

4π

∫
R

‖πir (g)‖2
HS r tanh (πr) dr.

Moreover, for every f ∈ Hsym one has

f (1) = 1

4π

∫
R

tr (πir (f )) r tanh (πr) dr.

Proof We show the second assertion first. Let h = hf , φ = φf and g = gf be as
in the discussion at the end of the previous section. Recall in particular that

Aφ
(
eu + e−u − 2

) = g(u) = 1

2π

∫
R

h(r)eiru dr

(since h is even), from which it follows that g′(u) = i
2π

∫
R
rh(r)eiru dr . Using this

and Lemma 11.2.7 we compute

f (1) = φ(0) = − 1

π

∫
R

(Aφ)′(x2) dx.

As gf (u) = Aφ(eu + e−u − 2) = Aφ((eu/2 − e−u/2)2), we get g′(u) = (Aφ)′((eu/2 −
e−u/2)2)(eu − e−u). Putting x = eu/2 − e−u/2 in the above integral, we get

f (1) = − 1

2π

∫
R

g′(u)

eu/2 − e−u/2
du

= − i

4π2

∫
R

∫
R

rh(r)
eiru

eu/2 − e−u/2
dr du.

As h is even, the latter equals

− i

8π2

∫
R

rh(r)
∫

R

eiru − e−iru

eu/2 − e−u/2
du dr.

The first step of the following computation is justified by the fact that the integrand
is even. We compute
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− i

8π2

∫
R

eiru − e−iru

eu/2 − e−u/2
du = 1

4π2i

∫ ∞

0

eiru − e−iru

eu/2 − e−u/2
du

= 1

4π2i

∫ ∞

0
e−u/2 e

iru − e−iru

1 − e−u
du

= 1

4π2i

∫ ∞

0
e−u/2
(
eiru − e−iru

) ∞∑
n=0

e−nu du

= 1

4π2i

∞∑
n=0

∫ ∞

0
e−u(n+ 1

2−ir) du −
∫ ∞

0
e−u(n+ 1

2+ir) du

= 1

4π2i

∞∑
n=0

1

n+ 1
2 − ir

− 1

n+ 1
2 + ir

.

For this latter expression we temporarily write ψ(r). Then

ψ

(
i

(
r + 1

2

))
= 1

4π2i

∞∑
n=0

1

n+ 1 + r
− 1

n− r
= 1

4πi
cot (πr).

The last step is the well known Mittag-Leffler expansion of the cotangent function.
We conclude

ψ(r) = 1

4πi
tan (πir) = 1

4π
tanh (πr).

The second assertion of the theorem follows. For the first, put f = g ∗ g∗ and apply
the theorem to this f . Then, on the one hand, f (1) = g ∗ g∗(1) = ‖g‖2

2, and on the
other, for π ∈ Ĝ,

tr π (f ) = tr π (g)π (g)∗ = ‖π (g)‖2
HS.

This implies the theorem. �

11.4 The Trace Formula

For g ∈ SL2(R) the two eigenvalues in C must be inverse to each other as the
determinant is one. Since g is a real matrix, its characteristic polynomial is real,
and so the eigenvalues are either both real, or complex conjugates of each other. Let
g 
= ±1. There are three cases.

• g is in SL2(C) conjugate to a diagonal matrix with entries ε, ε̄ for some ε ∈ C of
absolute value one. In this case, g is called an elliptic element of G; or

• g is conjugate to ± ( 1 1
1

)
. In this case g is called a parabolic element; or

• g is conjugate to a diagonal matrix with entries t , 1/t for some t ∈ R, in which
case g is called a hyperbolic element.
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Let g be elliptic, say g is conjugate to
(
a+bi

a−bi

)
. As an element of G, the element

g is conjugate to some
(
a −b
b a

)
in K . This implies that g has a unique fixed point in

H.

Proposition 11.4.1 A uniform lattice � ⊂ G contains no parabolic elements.

Proof Consider the map η : H → [0,∞) given by

η(z) = inf{ρ(z, γ z) : γ ∈ �, γ 
= ±1, γ not elliptic}.
It is easy to see that the map η is continuous. Further it is �-invariant and therefore it
constitutes a continuous function�\H → (0,∞). Since�\H ∼= �\G/K is compact,
the function η attains its minimum, hence there exists θ > 0 such that η(z) ≥ θ for all
z ∈ H. Now assume that � contains a parabolic element, say p = g

(
1 1

1

)
g−1 ∈ �

for some g ∈ G. Then for y > 1 we have

ρ(g(yi),pg(yi)) = ρ(g(yi), g(yi + 1)) = ρ(yi, yi + 1)

and the latter tends to zero as y →∞, which follows from

ρ(yi, yi + 1) ≤
∫ 1

0
|p′(t)| dt

Im(p(t))
= 1

y
,

where p(t) = yi + t . We therefore have a contradiction! Hence � does not contain
any parabolic element. �

For a hyperbolic element g, with eigenvalues λ, 1/λ for |λ| > 1, define the length of
g as l(g) = 2 log |λ|.
Let � ⊂ G be a uniform lattice. For convenience we will assume that � contains
no elliptic elements. Then � consists, besides ±1, of hyperbolic elements only. We
call such a group a hyperbolic lattice. In [Bea95], there are given many examples
of uniform lattices in G without elliptic elements. For instance, every Riemannian
manifold of genus g ≥ 2 is a quotient of the upper half plane by a hyperbolic lattice
in G.

So let � be a hyperbolic lattice in G. Let r0 = i
2 , and let (rj )j≥1 be a sequence

in C such that irj ∈ iR ∪ (0, 1
2 ) with the property that πirj is isomorphic to a

subrepresentation of (R,L2(�\G)) and the value r = rj is repeated in the sequence
as often as N�(πir ) times, i.e, as often as πirj appears in the decomposition of R.
Let f ∈ H such that the operator R(f ) is of trace class, and define φ = φf , g = gf

and h = hf as in the previous two sections (See Lemma 11.2.6). Recall that f (x) =
φ( tr (xtx)− 2), g(u) = Aφ(eu + e−u − 2), where A denotes the Abel transform, and
h(r) = ∫

R
g(u)eiru du. Recall from Lemma 11.2.6 that h(r) = tr πir (f ) for every

ir ∈ iR ∪ (0, 1
2 ). Moreover, it follows from Theorem 11.2.4 that tr π (f ) = 0 for

all π ∈ Ĝ � ĜK . We therefore get tr R(f ) = ∑∞
j=0 h(rj ). Suppose that the trace

formula of Theorem 9.3.2 is valid for the function f . Then
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∞∑
j=0

h(rj ) =
∑
[γ ]

vol(�γ \Gγ )Oγ (f ).

Recall the hyperbolic tangent function tanh (x) = ex−e−x

ex+e−x .

An element γ ∈ ��{1} is called primitve, if it is not a power in �, i.e., if the equation
γ = σn with n ∈ N and σ ∈ � implies n = 1.

Lemma 11.4.2 If � is a torsion free uniform lattice, every element γ of ��{1} is a
positive power of a uniquely determined primitive element γ0. This element generates
the centralizer �γ of γ in �. We call it the primitive element underlying γ .

Proof Let γ ∈ ��{1}. By assumption, γ is hyperbolic. Replacing � with a con-
jugate group we may assume that γ is the diagonal matrix with entries et , e−t for
some t > 0, as the other case of γ = −diag(et , e−t ) gives the same result. Then the
centralizer Gγ of γ in G equals ±A, the group of all diagonal matrices in G and
�γ = � ∩ ±A. As −1 /∈ �, since � is torsion-free, it follows that there is γ0 ∈ �

such that the centralizer �γ in � is equal to 〈γ0〉. Replacing γ0 by γ−1
0 if necessary,

we can assume that γ = γ n
0 for some n ∈ N. It follows that γ0 is primitive. �

Theorem 11.4.3 Assume that � is a torsion free uniform lattice in SL(2, R). Let
ε > 0, and let h be a holomorphic function on the strip {|Im(z)| < 1

2 + ε}. Suppose

that h is even, i.e., h(− z) = h(z) for every z, and that h(z) = O(|z|−2−ε) as |z| tends
to infinity. Let g(u) = 1

2π

∫
R
h(r)e−iru dr . Then one has

∞∑
j=0

h(rj ) = vol(�\G)

4π

∫
R

rh(r) tanh (πr) dr

+
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2
g(l(γ )),

where for γ 
= 1, γ0 is the primitive element underlying γ .

Proof We start with functions f ∈ Hsym, for which the trace formula holds and
then we extend the range of the trace formula up to the level of the theorem. So let
f ∈ Hsym such that the trace formula is valid for f . For instance, f ∈ C∞

c (G)2 =
C∞

c (G) ∗ C∞
c (G) will suffice. At first we consider the class [γ ] with γ = 1. Then

vol(�γ \Gγ )Oγ (f ) = vol(�\G) f (1).

Theorem 11.3.1 tells us that

f (1) = 1

4π

∫
R

tr (πir (f )) r tanh (πr) dr = 1

4π

∫
R

h(r) r tanh (πr) dr.

Next let γ be an element of � with γ 
= 1 and recall that this implies Gγ = ±A. If
γ0 = diag(et , e−t ) and if we identify A with R via the exponential map, the group
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�γ = 〈γ0〉 corresponds to the subgroup tZ. It follows that vol(�γ \Gγ ) = 2t = l(γ0),
where the factor 2 is due to the normalization of Haar measure on A.

By the Iwasawa decomposition, the set Gγ \G can be identified with NK/ ± 1. As
f is K-bi-invariant and f (x) = φ( tr (xtx)− 2) for every x ∈ G, the orbital integral
Oγ (f ) equals∫

R

f (n−1
s γ ns) ds =

∫
R

φ
(
e2t + e−2t + s2(et − e−t )2 − 2

)
ds,

so that

Oγ (f ) = 1

et − e−t
Aφ
(
e2t + e−2t − 2

)

= 1

et − e−t
g(2t) = 1

el(γ )/2 − e−l(γ )/2
g(l(γ )).

By the general trace formula as stated before the theorem, we see that the theorem
holds if f ∈ Hsym is admissible for the trace formula.

We now derive the trace formula for the special case of the heat kernel. Let

h(r) = ht (r) = e−(
1
4+r2)t .

Note that ht ∈ E and so Proposition 11.2.9 applies. One gets g(u) = e−t/4√
4πt

e−
u2
4t . Let

ft = �−1(ht ) with � : Hsym → Eev as in Proposition 11.2.9. Recall from Sect. 9.2
the definition of the space Cunif (G) of uniformly integrable functions on G.

Proposition 11.4.4 The function ft lies in Cunif (G)2, so the trace formula is valid
for f.

Proof Note that ht = h2
t/2, which means ft = ft/2 ∗ ft/2 and so, in order to show

that the trace formula is valid for ft , it suffices to show that ft ∈ Cunif (G) for every
t > 0, as it then follows that ft ∈ Cunif (G)2. Let r > 0 and define

U (r)
def= K{as : 0 ≤ s < r}K ⊂ G.

ThenU (r) is an open neighborhood of the unit. Note thatU (r) = {x ∈ G : tr (xtx) <

e2r + e−2r} and the boundary satisfies

∂U (r) = {x ∈ G : tr (xtx) = e2r + e−2r} = KarK.

Lemma 11.4.5 For 0 < r < s
2 we have

U (r)asU (r) ⊂ U (s + 2r)�U (s − 2r).

Proof As U (r) is invariant under K-multiplication from both sides, it suffices to
show everything modulo K-multiplication on both sides. Suppose that for 0 ≤ y < r
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and k ∈ K we can show that aykax and axkay both lie in U (x+ r)�U (x− r). Then,
modulo K-multiplication one has aykas = at for s − r < t < s + r . Iterating the
argument with t taking the part of s, one gets for 0 ≤ y ′ < r ,

aykask
′ay′ = atk

′′ay′ ∈ U (t + r)�U (t − r) ⊂ U (s + 2r)�U (s − 2r).

So it suffices to show that for k ∈ K one has aykas , askay ∈ U (s + r)�U (s − r) for
0 ≤ y < r and arbitrary s. For x ∈ G let T (x) = tr (xtx). Note that

T

(
a b

c d

)
= a2 + b2 + c2 + d2.

We have to show that

e2(s−r) + e2(r−s) < T (aykas) < e2(s+r) + e−2(s+r).

Now any k ∈ K can be written as k = ( a −b
b a

)
for some a, b ∈ R with a2 + b2 = 1.

Then

T (aykas) = T

(
ey+sa −ey−sb

es−yb e−(y+s)a

)

= e2(y+s) + e−2(y+s) + b2(e2(y−s) + e2(s−y) − e2(y+s) − e−2(y+s)).

Here we have used a2 = 1 − b2. Now b ∈ [ − 1, 1] and the above is a quadratic
polynomial in b, which takes its extremal values at the zero of its derivative, i.e., at
b = 0 or at b = ±1. In both cases we get the claim. �

The proof of the proposition now proceeds as follows: One notes that the function
φt with ft (x) = φt

(
tr xtx − 2

)
is monotonically decreasing. This follows from

φt = − 1
π
A(q ′t ). Hence Lemma 11.4.5 implies that (ft )U (r)(as) ≤ ft (as−2r ) for

0 ≤ r < s/2. (Recall the notation fU (x) = sup |f (UxU )|.) Therefore it suffices to
show that for any r ≥ 0,

∫
{x∈G:T (x)≥2r}

φt ( tr (xtx) − 2 − 2r) dx < ∞.

For this we use the integration formula of the Cartan decomposition in Theorem
11.2.1, which shows that the integral equals

2π
∫
e2x+e−2x−2>2r

φt

(
e2x + e−2x − 2 − 2r

) (
e2x − e−2x

)
dx.

Substituting u = e2x + e−2x this becomes

π

∫
u>2r+2

φt (u − 2 − 2r) du = π

∫ ∞

0
φt (x) dx.

As ht ∈ Eev, the function φt lies in S[0,∞) and so this integral is indeed finite. �
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The trace formula for the function ft says

∞∑
j=0

e
−
(

1
4+r2

j

)
t = vol(�\G)

4π

∫
R

re−(
1
4+r2)t tanh (πr) dr

+
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫
R

e−(r
2+1/4)t eirl(γ ) dr ,

where we used the equation gt (u) = 1
2π

∫
R
ht (r)eiru dr , which follows from inverse

Fourier transform and the fact that ht is even. Let μ(t) denote either side of this
equation. For a complex number s with Re(s2) < − 1

4 let

α(s)
def=
∫ ∞

1
μ(t)et(s

2+ 1
4 ) dt.

By realizing μ via the left hand side of the trace formula gives

α(s) =
∞∑
j=0

e
s2−r2

j

r2
j − s2

and using the right hand side of the trace formula gives

α(s) = vol(�\G)

4π

∫
R

r
es

2−r2

r2 − s2
tanh (πr) dr

+
∑

[γ ]
=[1]

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫
R

es
2−r2

r2 − s2
eirl(γ ) dr.

Now take h as in the assumptions of the theorem, but with the stronger growth
condition h(z) = O( exp (− a|z|4)) for some a > 0 and |Im(z)| < 1

2 + ε. For T > 0,
let RT denote the positively oriented rectangle with vertices ±T ± i ε+1

2 . By the
Residue Theorem we can compute

1

2πi

∫
RT

es
2−r2

r2 − s2
sh(s) ds = 1

2
(h(r) + h(−r)) = h(r)

whenever r lies in the interior of the rectangle, and 0 else. For T →∞ this converges

to h(r) for every r ∈ R ∪ i(0, 1
2 ). Thus, using the realization α(s) = ∑∞

j=0
e
s2−r2

j

r2
j−s2 it

follows that that 1
2πi

∫
RT

α(s)sh(s) ds converges to the right hand side of Theorem
11.4.3 if T →∞. On the other hand, using the realization of α(s) given by the left
hand side of the trace formula and interchanging the order of integration, which is
justified by the growth condition on h, shows that 1

2πi

∫
RT

α(s)sh(s) ds equals

vol(�\G)

4π

∫ T

−T

rh(r) tanh (πr) dr +
∑

[γ ]
=[1]

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫ T

−T

h(r)eirl(γ ) dr.
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This converges to the left hand side of Theorem 11.4.3 if T → ∞ since g(l(γ )) =
1

2π

∫
R
h(r)eirl(γ ) dr .

This proves the theorem for h satisfying the stronger growth condition. For arbitrary
h, let a > 0 and set ha(z) = h(z) exp (−az4). Then the function ha satisfies the
stronger growth condition for |Im(z)| < 1

2 +ε and the limit a → 0, using Lebesgue’s
convergence theorem for the integrals, gives the claim. �

11.5 Weyl’s Asymptotic Law

In the proof of the trace formula, we have used the “heat kernel” ht (r) = e−(
1
4+r2)t .

The reason for this being called so is the following. The Laplace operator for
hyperbolic geometry on H,

	 = −y2

((
∂

∂x

)2

+
(

∂

∂y

)2
)

,

is invariant under G, i.e., 	Lg = Lg	 for every g ∈ G. Therefore 	 defines a
differential operator on the quotient �\H, which we denote by the same letter. It
can be shown that its eigenvalues are λj = ( 1

4 + r2
j ) for j ≥ 0. Since this requires

additional arguments from Lie theory and is not essential for our purposes, we will
not give the proof, but only mention the fact as an explanation for the terminology.
The interested reader may consult Helgason’s book [Hel01].

The hyperbolic heat operator is e−t	 for t > 0. This is an integral operator whose
kernel kt (z, w) describes the amount of heat flowing in time t from point z to point
w. Therefore ∞∑

j=0

e
−
(

1
4+r2

j

)
t =

∞∑
j=0

e−tλj = tr e−t	

is the heat trace on �\H.

Proposition 11.5.1 As t → 0, one has

t

∞∑
j=0

e
−
(

1
4+r2

j

)
t → vol(�\H)

4π
.

Proof As g(u) = e−t/4√
4πt

e−
u2
4t , the trace formula for the heat kernel gives

t

∞∑
j=0

e
−t( 1

4+r2
j ) = t

vol(�\H)

4π

∫ ∞

−∞
re−( 1

4+r2)t tanh (πr) dr

+ t
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

e−
t
4− l(γ )2

4t√
4πt

.
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Substituting r with r/
√
t shows that the first summand equals

vol(�\H)

4π
e−t/4
∫

R

re−r2
tanh

(
π

r√
t

)
dr.

The integral equals
∫∞

0 2re−r2
tanh
(
π r√

t

)
dr. As t → 0, the tanh-term tends to 1

monotonically from below; therefore the integral tends to
∫ ∞

0
2re−r2

dr = −e−r2
∣∣∣∞
0
= 1.

It remains to show that

√
t
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

e−
t
4− l(γ )2

4t√
4π

tends to zero as t → 0. This is clear as the sum is finite for every 0 < t < 1 and each
summand tends to zero monotonically as soon as t < l/2, where l is the minimal
length l(γ ) for γ ∈ ��{1}. �

We use this proposition to derive Weyl’s asymptotic formula.

Theorem 11.5.2 For T > 0, let N (T ) be the number of eigenvalues λj = 1
4 + r2

j

of 	 that are ≤ T . Then, as T →∞, one has

N (T ) ∼ vol(�\H)

4π
T ,

where the asymptotic equivalence ∼ means that the quotient of the two sides tends
to 1, as T →∞.

Proof We need a lemma. Recall the definition of the �-function from Sect. 11.2.6.

Lemma 11.5.3 Let μ be a Borel measure on [0,∞) such that

lim
t→0

t

∫
[0,∞)

e−tλ dμ(λ) = C

for some C > 0. Then the following hold.

(a) If f is a continuous function on [0, 1], then

lim
t→0

t

∫
[0,∞)

f (e−tλ)e−tλ dμ(λ) = C

∫ ∞

0
f (e−x)e−x dx.

(b) One has

lim
t→0

t

∫
[0, 1

t
]
dμ(λ) = C.
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Proof (a) By The Stone-Weierstraß TheoremA.10.1, the set of polynomials is dense
in C([0, 1]). We first show that it suffices to prove the lemma for polynomials in the
role of f . So let fn → f be a convergent sequence in C([0, 1]) and assume the
lemma holds for each fn. We have to show that it holds for f as well. Let ε > 0.
Then there exists n0 such that ‖fn − f ‖[0,1] < ε for every n ≥ n0. For such n one
gets ∣∣∣∣t

∫
[0,∞)

(
fn(e−tλ) − f (e−tλ)

)
e−tλ dμ(λ)

∣∣∣∣ < εt

∫
[0,∞)

e−tλ dμ(λ),

and the latter tends to εC as t → 0.

On the other hand, ∣∣∣∣C
∫ ∞

0

(
fn(e−x) − f (e−x)

)
e−x dx

∣∣∣∣ < εC.

So it suffices to prove the lemma for a polynomial and indeed for f (x) = xn, in
which case it comes down to

lim
t→0

t

∫
[0,∞)

e−t(n+1)λ dμ = (n+ 1)−1 lim
t→0

t

∫
[0,∞)

e−tλ dμ(λ)

= C

(n+ 1)

= C

∫ ∞

0
e−(n+1)t dt.

Now for (b). Consider any continuous function f ≥ 0 on the interval such that
f (x) = 1

x
for x ≥ e−1. Then

t

∫
[0, 1

t
]
f
(
e−tλ
)
e−tλ dμ(λ) = t

∫
[0, 1

t
]
dμ(λ),

so that for the limit superior we have the bound

lim sup
t→0

t

∫
[0, 1

t
]
dμ(λ) ≤ lim

t→0
t

∫
[0,∞)

f
(
e−tλ
)
e−tλ dμ(λ)

= C

∫ ∞

0
f
(
e−x
)
e−x dx

= C + C

∫ ∞

1
f
(
e−x
)
e−x dx.

As the last integral can be chosen arbitrarily small, by using the Monotone Con-
vergence Theorem we get that the limit superior in question is ≤ C. Similarly, by
choosing f (x) to vanish for x ≤ e−1 and satisfy 0 ≤ f (x) ≤ 1/x one gets

lim inf
t→0

t

∫
[0, 1

t
]
dμ(λ) ≥ C. �
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To get the theorem, we apply part (b) of the last lemma to the measure μ =∑∞
j=0 δλj

.
Indeed, substituting T = 1

t
, the left hand side of the above equation becomes

limT→∞ 1
T
N (T ), while, by the proposition, we have C = limt→0 t

∑∞
j=0 e

−tλj =
vol(�\H)

4π . �

11.6 The Selberg Zeta Function

As in the previous sections, let � be a torsion free hyperbolic uniform lattice in
SL(2, R). The compact surface �\H is homeomorphic to a 2-sphere with a finite
number of handles attached. The number of handles g is ≥ 2. It is called the genus
of the surface �\H (See [Bea95]).

The Selberg zeta function for � is defined for s ∈ C with Re(s) > 1 as

Z(s) =
∏
γ

∏
k≥0

(
1 − e−(s+k)l(γ )

)
,

where the first product runs over all primitive hyperbolic conjugacy classes in �.

Theorem 11.6.1 The product Z(s) converges for Re(s) > 1 and the function Z(s)
extends to an entire function with the following zeros. For k ∈ N the number s = −k

is a zero of multiplicity 2(g − 1)(2k + 1), where g is the genus of �\H. For every
j ≥ 0 the numbers

1

2
+ irj , and

1

2
− irj

are zeros of Z(s) of multiplicity equal to the multiplicity N�(πirj ). These are all
zeros.

Proof Let a, b ∈ C with real part > 1
2 . Then the function

h(r) = 1

a2 + r2
− 1

b2 + r2

satisfies the conditions of the trace formula of Theorem 11.4.3. One computes
(Exercise 11.5),

g(u) = 1

2π

∫
R

h(r)e−iru dr = e−a|u|

2a
− e−b|u|

2b
.

We compute, formally at first,

Z′

Z
(s) = ∂s

(
log

(∏
γ0

∏
k≥0

(
1 − e−(s+k)l(γ0)

)))

= ∂s

(
−
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)

n

)
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=
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)l(γ0).

If γ0 runs over all primitive classes, then γ = γ n
0 will run over all classes 
= 1. Using

l(γ n
0 ) = nl(γ0) we get

Z′

Z
(s) =
∑
γ

∑
k≥0

e−(s+k)l(γ )l(γ0)

=
∑
γ

e−sl(γ ) l(γ0)

1 − e−l(γ )

=
∑
γ

e−(s− 1
2 )l(γ ) l(γ0)

el(γ )/2 − e−l(γ )/2
.

Up to this point we have ignored questions of convergence. To deal with these,
note that the geometric side of the trace formula for our function h equals
vol(�\G)

4π

∫
R
rh(r) tanh (πr) dr plus

1

2

∑
[γ ]
=1

(
e−al(γ )

a
− e−bl(γ )

b

)
l(γ0)

el(γ )/2 − e−l(γ )/2
.

By the trace formula, the latter sum converges absolutely for all complex numbers
a, b with Re(a), Re(b) > 1

2 . In the special case b = 2a > 1 all summands are positive
and the estimate

e−al(γ )

a
− e−2al(γ )

2a
>

e−al(γ )

a
− e−al(γ )

2a
= 1

2

e−al(γ )

a

shows that the series

∑
[γ ]
=1

e−al(γ ) l(γ0)

el(γ )/2 − e−l(γ )/2
= Z′

Z
(a + 1

2
)

converges locally uniformly absolutely for Re(a) > 1
2 . To be precise, for every a0 >

1
2 consider the open set U = {Re(a) > a0}. For a ∈ U and every γ ∈ ��{1} one has
|e−al(γ )| = e−Re(a)l(γ ) < e−a0l(γ ). This shows locally uniform absolute convergence
of the logarithmic derivative

Z′

Z
(s) =
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)l(γ0)

for Re(s) > 1. By direct comparison we conclude the absolute locally uniform
convergence of the series −∑γ0

∑
k≥0

∑∞
n=1

e−n(s+k)l(γ0)

n
, which is the logarithm of

Z. This implies the locally uniform convergence of the product Z(s) in the region
{Re(s) > 1}.
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The geometric side of the trace formula for h equals

vol(�\G)

4π

∫
R

rh(r) tanh (πr) dr + 1

2a

Z′

Z

(
a + 1

2

)
− 1

2b

Z′

Z

(
b + 1

2

)
.

The spectral side is

∞∑
j=0

1

2a

(
1

a + irj
+ 1

a − irj

)
− 1

2b

(
1

b + irj
+ 1

b − irj

)
.

The trace formula implies that this series converges for complex numbers a, b with
Re(a), Re(b) > 1

2 . Being a Mittag-Leffler series, it converges for all a, b ∈ C, which
are not one of the poles±irj , and it represents a meromorphic function in, say a ∈ C

with simple poles at the ±irj of residue 1/2a times the multiplicity of ±irj .

We want to evaluate the integral
∫

R

rh(r) tanh (πr) dr.

The Mittag-Leffler series of tanh equals

tanh (πz) = 1

π

∞∑
n=0

1

z + i(n+ 1
2 )
+ 1

z − i(n+ 1
2 )

,

where the sum converges absolutely locally uniformly outside the set of poles
i( 1

2 + Z). For n ∈ N the path γn consisting of the interval [−n, n] and the half-
circle in {Imz > 0} around zero of radius n will not pass through a pole. Note that
the function tanh (πr) is periodic, i.e, tanh (π (r + 2i)) = tanh (πr). Further, it is
globally bounded on any set of the form {z ∈ C : |z − i(k + 1/2)| ≥ ε ∀k ∈ Z}
for any ε > 0. As rh(r) is decreasing to the power r−3, it follows that the integral∫
γn

rh(r) tanh (πr) dr converges to the integral in question. By the residue theorem
we conclude∫

R

rh(r) tanh (πr) dr = 2πi
∑

z:Imz>0

resr=z(rh(r) tanh (πr)).

We have

rh(r) = 1

2

(
1

r + ia
+ 1

r − ia

)
− 1

2

(
1

r + ib
+ 1

r − ib

)
.

We will assume a 
= b, both in C�( 1
2 +Z). Then the poles of rh(r) and of tanh (πr)

are disjoint and we conclude that the integral equals

πi tanh (πia) − πi tanh (πib) + 2i
∞∑
n=0

1

2

(
1

i(n+ 1
2 ) + ia

+ 1

i(n+ 1
2 ) − ia

)
− (. . .),



11.6 The Selberg Zeta Function 221

where the dots indicate the same term forb instead ofa. Plugging in the Mittag-Leffler
series of tanh, one shows that the integral equals

2
∞∑
n=0

(
1

a + 1
2 + n

− 1

b + 1
2 + n

)
.

From hyperbolic geometry (see [Bea95] Theorem 10.4.3) we take

Lemma 11.6.2 The positive number vol(�\G)
4π is an integer. More precisely, it is equal

to g − 1, where g ≥ 2 is the genus of the compact Riemann surface �\H.

After a change of variables a �→ a + 1
2 and the same for b, comparing the two sides

of the trace formula tells us that

Z′

Z

(
a + 1

2

)
= a

b

Z′

Z

(
b + 1

2

)
+ 4a(1 − g)

∞∑
n=0

(
1

a + 1
2 + n

− 1

b + 1
2 + n

)

+
∞∑
j=0

1

a + irj
+ 1

a − irj
− a

b

1

b + irj
+ a

b

1

b − irj
.

Fixing an appropriate b, this extends to a meromorphic function on C with simple
poles at a = −n and a = 1

2 ± irj . It follows that Z extends to an entire function on C

and by a theorem from Complex Analysis (see [Rud87], Theorem 10.43) it follows
that the poles of Z′

Z
are precisely the zeros of Z with multiplicity the respective

residues. These are 2(2n+ 1)(g − 1) for a = −n and 1 in all other cases. �

We define the Ruelle zeta function of � as the infinite product

R(s) =
∏
[γ ]

(1 − e−sl)γ .

Corollary 11.6.3 The product defining the Ruelle zeta function converges for
Re(s) > 1 and the so defined Ruelle zeta function extends to a meromorphic function
on C. Its poles and zeros all lie in the union of R with the two vertical lines Re(s) = 1

2
and Re(s) = − 1

2 . One has

R(s) = Z(s)

Z(s + 1)
.

Proof The correlation between the Ruelle and the Selberg zeta function is immediate
from the Euler product. The rest of the Corollary follows from this and Theorem
11.6.1. �

Note that, as rj ∈ i
[− 1

2 , 1
2

] ∪ R, the Selberg zeta function satisfies a weak form of
the Riemann hypothesis, as its zeros in the critical strip {0 < Re(s) < 1} are all in
the set {Re(s) = 1

2 } with the possible exception of finitely many zeros in the interval
[0, 1].
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Note further, that one has a simple zero at s = 1 and no other poles or zeros in
{Re(s) ≥ 1}. This information, together with the product expansion, suffices to
use standard machinery from analytic number theory as in [Cha68] to derive the
following theorem.

Theorem 11.6.4 (Prime Geodesic Theorem). For x > 0 let π (x) be the number of
hyperbolic conjugacy classes [γ ] in � with l(γ ) ≤ x. Then, as x →∞,

π (x) ∼ e2x

2x
.

11.7 Exercises and Notes

Exercise 11.1 Show that
∫

R

e−u/2 sin (ru)
1+e−u du = π tanh (πr).

(Hint: Write sin (ru) = 1
2i (e

iru−e−iru) and thus decompose the integral into the sum
of two integrals, each of which can be computed by the residue theorem.)

Exercise 11.2 Show that g ∈ G = SL2(R) is

hyperbolic ⇔ | tr (g)| > 2,

parabolic ⇔ | tr (g)| = 2,

elliptic ⇔ | tr (g)| < 2.

Exercise 11.3 Show that a circle or a line in C is described by the equation Azz +
Bz + Bz + C = 0, where A,C ∈ R. Show that the linear fractional z �→ az+b

cz+d
for(

a b
c d

) ∈ GL2(C) maps circles and lines to circles and lines.

Exercise 11.4 Let A ∈ Mn(C). Show that

det( exp (A)) = exp (tr (A)).

Exercise 11.5 Let a ∈ C with Re(a) > 0. Show that
∫

R
e−a|u|eiru dr = 2a

a2+r2 .

Exercise 11.6 Let G be a locally compact group and K a compact subgroup. The
Hecke algebra H = L1(K\G/K) is defined to be the space of all L1-functions on
G which are invariant under right and left translations from K . Show that H is an
algebra under convolution. Show that for every (π ,Vπ ) ∈ Ĝ the space V K

π of K-
invariants is either zero, or an irreducible H-module in the sense that it does not
contain a closed H-stable subspace.

Exercise 11.7 Continue the notation of the last exercise. The pair (G,K) is called
a Gelfand pair if H is commutative. Show that if (G,K) is a Gelfand pair, then for
every (π ,Vπ ) ∈ Ĝ the space V K

π is at most one dimensional.



11.7 Exercises and Notes 223

Exercise 11.8 Keep the notation of Exercise 11.6. Suppose that there is a continuous
map G → G, x �→ xc such that (xy)c = ycxc and (xc)c = x as well as xc ∈ KxK

for every x ∈ G. Show that G is unimodular and that (G,K) is a Gelfand pair.

(Hint: Let μ be the Haar measure on G and set μc(A) = μ(Ac). Show that μc

is a right Haar measure and that
∫
G
f (x) dμ(x) = ∫

G
f (x) dμc(x) holds for every

f ∈ H. Consider the equation
∫
G
f (xy) dμ(x) = 	(y−1)

∫
G
f (x) dμ(x) for f ∈ H

and make the integrand on the right hand side K-bi-invariant.)

Exercise 11.9 Let f ∈ H with tr (πir (f )πir (x)) = 0 for every x ∈ G and every
r ∈ R. Show that f ≡ 0.

Exercise 11.10 Let 	 denote the hyperbolic Laplace operator. Show that the
function z �→ Im(z)s for s ∈ C is an eigenfunction of 	 of eigenvalue s(1 − s).

Exercise 11.11 Read and understand the proof of the prime number theorem in
[Cha68]. Apply the same methods to give a proof of Theorem 11.6.4.

Notes

The Selberg zeta function has been introduced in Selberg’s original paper on the
trace formula [Sel56]. It has fascinated mathematicians from the beginning as its
relation to the trace formula is similar to the relation of the Riemann zeta function to
the Poisson summation formula and, as we have seen, a weak form of the Riemann
hypothesis can be proved for the Selberg zeta function. However, Selberg’s zeta
continues to live in a world separate from Riemann’s, and although many tried, no
one has found a bridge between these worlds yet.

The name Prime Geodesic Theorem for Theorem 11.6.4 is derived from the following
geometric facts. On the upper half plane H there is a Riemannian metric given by
dx2+dy2

y2 , which is left stable by the action of the group G, in other words, G acts
by isometries. If � ⊂ G is a torsion-free discrete cocompact subgroup, the quotient
�\H will inherit the metric and thus become a Riemannian manifold, the projection
H → �\H is a covering. A closed geodesic c in �\H is covered by geodesics of
infinite lengths in H and any such geodesic is being closed by an element γ ∈ �,
which is uniquely determined up to conjugacy. The map c �→ γ sets up a bijection
between closed geodesics and primitive conjugacy classes in �. The number l(γ ) is
just the length of the geodesic c. So indeed, Theorem 11.6.4 gives an asymptotic of
lengths of closed geodesics. This theorem has been generalized several times, the
most general version being a theorem of Margulis [KH95], which gives a similar
asymptotic for compact manifolds of strictly negative curvature.
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