
Chapter 1

Haar Integration

In this chapter, topological groups and invariant integration are introduced. The
existence of a translation invariant measure on a locally compact group, called Haar
measure, is a basic fact that makes it possible to apply methods of analysis to study
such groups. The Harmonic Analysis of a group is basically concerned with spaces
of measurable functions on the group, in particular the spaces L1(G) and L2(G),
both taken with respect to Haar measure. The invariance of this measure allows to
analyze these function spaces by some generalized Fourier Analysis, and we shall
see in further chapters of this book how powerful these techniques are.

In this book, we will freely use concepts of set-theoretic topology. For the
convenience of the reader we have collected some of these in Appendix A.

1.1 Topological Groups

A topological group is a group G, together with a topology on the set G such that the
group multiplication and inversion,

G×G → G G → G

(x, y) �→ xy, x �→ x−1,

are both continuous maps.

Remark 1.1.1 It suffices to insist that the map α : (x, y) → x−1y is continuous.
To see this, assume that α is continuous and recall that the map G → G ×G, that
maps x to (x, e) is continuous (Example A.5.3), where e is the unit element of the
group G. We can thus write the inversion as a composition of continuous maps as
follows x �→ (x, e) �→ x−1e = x−1. The multiplication can be written as the map
(x, y) �→ (x−1, y

)
followed by the map α, so is continuous as well, if α is.
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Examples 1.1.2

• Any given group becomes a topological group when equipped with the discrete
topology, i.e., the topology, in which every subset is open. In this case we speak
of a discrete group

• The additive and multiplicative groups (R,+) and (R×,×) of the field of real num-
bers are topological groups with their usual topologies. So is the group GLn(R)
of all real invertible n × n matrices, which inherits the R

n2
-topology from the

inclusion GLn(R) ⊂ Mn(R) ∼= R
n2

, where Mn(R) denotes the space of all n× n

matrices over the reals. As for the proofs of these statements, recall that in anal-
ysis one proves that if the sequences ai and bi converge to a and b, respectively,
then their difference ai − bi converges to a − b, and this implies that (R,+) is a
topological group. The proof for the multiplicative group is similar. For the matrix
groups recall that matrix multiplication is a polynomial map in the entries of the
matrices, and hence continuous. The determinant map also is a polynomial and
so the inversion of matrices is given by rational maps, as for an invertible matrix
A one has A−1 = det(A)−1A#, where A# is the adjugate matrix of A; entries of
the latter are determinants of sub-matrices of A, therefore the map A �→ A−1 is
indeed continuous.

Let A,B ⊂ G be subsets of the group G. We write

AB = {ab : a ∈ A, b ∈ B} and A−1 = {a−1 : a ∈ A},
as well as A2 = AA, A3 = AAA and so on.

Lemma 1.1.3 Let G be a topological group.

(a) For a ∈ G the translation maps x �→ ax and x �→ xa, as well as the inversion
x �→ x−1 are homeomorphisms of G. A set U ⊂ G is a neighborhood of a ∈ G

if and only if a−1U is a neighborhood of the unit element e ∈ G. The same holds
with Ua−1.

(b) If U is a neighborhood of the unit, then U−1 = {u−1 : u ∈ U
}

also is a neigh-
borhood of the unit. We call U a symmetric unit-neighborhood if U = U−1.
Every unit-neighborhood U contains a symmetric one, namely U ∩ U−1.

(c) For a given unit-neighborhood U there exists a unit-neighborhood V with
V 2 ⊂ U .

(d) If A,B ⊂ G are compact subsets, then AB is compact.

(e) If A,B are subsets of G and A or B is open, then so is AB.

(f) For A ⊂ G the topological closureA equalsA =⋂V AV , where the intersection
runs over all unit-neighborhoods V in G.
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Proof (a) follows from the continuity of the multiplication and the inversion. (b)
follows from the continuity of the inversion. For (c), let U be an open unit-
neighborhood, and let A ⊂ G×G be the inverse image of U under the continuous
map m : G × G → G given by the group multiplication. Then A is open in the
product topology of G × G. Any set, which is open in the product topology, is a
union of sets of the form W × X, where W,X are open in G. Therefore there are
unit-neighborhoods W,X with (e, e) ∈ W × X ⊂ A. Let V = W ∩ X. Then V is a
unit-neighborhood as well and V × V ⊂ A, i.e., V 2 ⊂ U . For (d) recall that the set
AB is the image of the compact set A × B under the multiplication map; therefore
it is compact. (e) Assume A is open, then AB = ⋃b∈B Ab is open since every set
Ab is open. For (f) let x ∈ A, and let V be a unit-neighborhood. Then xV −1 is a
neighborhood of x, and so xV −1 ∩ A 
= ∅. Let a ∈ xV −1 ∩ A. Then a = xv−1 for
some v ∈ V , so x = av ∈ AV , which proves the first inclusion. For the other way
round let x be in the intersection of all AV as above. Let W be a neighborhood of
x. Then V = x−1W is a unit-neighborhood and so is V −1. Hence x ∈ AV −1, so
there is a ∈ A, v ∈ V with x = av−1. It follows a = xv ∈ xV = W . This means
W ∩ A 
= ∅. As W was arbitrary, this implies x ∈ A. �

Lemma 1.1.4 Let H be a subgroup of the topological group G. Then its closure H

is also a subgroup of G. If H is normal, then so is H .

Proof Let H ⊂ G be a subgroup. To show that the closure H is a subgroup, it
suffices to show that x, y ∈ H implies xy−1 ∈ H . Let m denote the continuous map
H × H → G given by m(x, y) = xy−1. The pre-image m−1(H ) must be closed
and contains the dense set H ×H ; therefore it contains the whole of H ×H , which
proves the first claim. Next assume that H is normal, then for every g ∈ G the set
gHg−1 is closed and contains gHg−1 = H ; therefore H ⊂ gHg−1. Conjugating
by g one gets g−1Hg ⊂ H . As g varies, the second claim of the lemma follows. �

In functional analysis, people like to use nets in topological arguments. These have
the advantage of providing very intuitive proofs. We refer the reader to Sect. A.6 for
further details on nets and convergence in general. The next lemma is an example,
how nets provide intuitive proofs.

Lemma 1.1.5 Let G be a topological group. Let A ⊂ G be closed and K ⊂ G be
compact. Then AK is closed.

Proof Let
(
xj = ajkj

)
j∈J be a net in AK, convergent in G. As K is compact, one

can replace it with a subnet so that (kj ) converges in K. Since the composition in G
and the inversion are continuous, the net aj = xjk

−1
j converges too, with limit in

A = A. Therefore the limit of xj = ajkj lies in AK, which therefore is closed. �

Lemma 1.1.6 Let G be a topological group and K ⊂ G a compact subset. Let U
be an open set containing K. Then there exists a neighborhood V of the unit in G
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such that KV ∪ VK ⊂ U . In particular, if U is open and compact, then there exist
a neighborhood V of e such that UV = VU = U .

Proof For each x ∈ K choose a unit-neighborhood Vx such that xV 2
x ⊂ U . By

compactness of K we may find x1, . . . , xl ∈ K such that K ⊂ ⋃l
i=1 xiVxi and

K ⊂ ⋃l
i=1 Vxi xi . Set V = ⋂l

i=1 Vxi . Then KV ⊂ ⋃l
i=1 xiVxiV ⊂ ⋃l

i=1 xiV
2
xi
⊂ U

and similarly VK ⊂ U . �

Recall (Appendix A) that a topological space X is a T1-space if for x 
= y in X there
are neighborhoods Ux ,Uy of x and y, respectively, such that y is not contained in Ux

and x is not contained in Uy . So X is T1 if and only if all singletons {x} are closed.
The space is called a T2-space or Hausdorff space if the neighborhoods Ux and Uy

can always be chosen disjoint.

Lemma 1.1.7 Let G be a locally compact group.

(a) Let H ⊂ G be a subgroup. Equip the left coset space G/H = {xH : x ∈ G}
with the quotient topology. Then the canonical projection π : G → G/H , which
sends x ∈ G to the coset xH, is an open mapping. The space G/H is a T1-space
if and only if the group H is closed in G. If H is normal in G, then the quotient
group G/H is a topological group.

(b) For any open symmetric unit-neighborhood V the set H = ⋃∞
n=1 V

n is an open
subgroup.

(c) Every open subgroup of G is closed as well.

Proof (a) Let U ⊂ G be open, then π−1(π (U )) = UH is open by Lemma 1.1.3 (e).
As a subset of G/H is open in the quotient topology if and only if its inverse image
under π is open in G, the map π is indeed open. So, for every x ∈ G the set G� xH

is mapped to an open set if and only if H is closed. This proves that singletons are
closed in G/H, if and only if H is closed.

Now suppose that H is normal in G. One has a canonical group isomorphism
(G×G)/(H ×H ) → G/H ×G/H and one realizes that this map also is a home-
omorphism, where the latter space is equipped with the product topology. Consider
the map α : G×G → G and likewise for G/H. One gets a commutative diagram

G×G
α−−−−−−−→ G⏐⏐
 ⏐⏐


G/H ×G/H
α−−−→ G/H.

As G/H×G/H ∼= (G×G)/(H×H ), the map α is continuous if and only if the map
G×G → G/H is continuous, which it is, as α and the projection are continuous.

(b) Let V be a symmetric unit-neighborhood. For x ∈ V n and y ∈ V m one has
xy ∈ V n+m and as V is symmetric, one also has x−1 ∈ V n, so H is an open
subgroup.
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(c) Let H be an open subgroup. Writing G as union of left cosets we get G � H =⋃
g∈G�H gH.As H is open, so is gH for every g ∈ G. Hence the complement G�H ,

being the union of open sets, is open, so H is closed. �

Proposition 1.1.8 Let G be a topological group. Let H be the closure of the set {1}.

(a) The set H is the smallest closed subgroup of G. The group H is a normal subgroup
and the quotient G/H with the quotient topology is a T1- space.

(b) Every continuous map of G to a T1-space factors over the quotient G/H.

(c) Every topological group, which is T1, is already T2, i.e., a Hausdorff space.

Proof We prove part (a). The set H is a normal subgroup by Lemma 1.1.4. The last
assertion follows from Lemma 1.1.7 (a).

For part (b) let x ∈ G. As the translation by x is a homeomorphism, the closure of
the set {x} is the set xH = Hx. So, if A ⊂ G is a closed set, then A = AH = HA.
Let f : G → Y be a continuous map into a T1-space Y . For y ∈ Y the singleton {y}
is closed, so f −1({y}) is closed, hence of the form AH for some set A ⊂ G. This
implies that f (gh) = f (g) for every g ∈ G and every h ∈ H .

To show part (c), let G be a topological group that is T1. Let x 
= y in G and set
U = G�{xy−1}. Then U is an open neighborhood of the unit. Let V be a symmetric
unit-neighborhood with V 2 ⊂ U . Then V ∩ V xy−1 = ∅, for otherwise there would
be a, b ∈ V with a = b−1xy−1, so xy−1 = ab ∈ V 2, a contradiction. So it follows
that V x ∩ Vy = ∅, i.e., V x and Vy are disjoint neighborhoods of x and y, which
means that G is a Hausdorff space. �

The following observation is often useful.

Lemma 1.1.9 Suppose that φ : G → H is a homomorphism between topological
groups G and H. Then φ is continuous if and only if it is continuous at the unit 1G.

Proof Assume that φ is continuous at 1G. Let x ∈ G be arbitrary and let (xj ) be
a net with xj → x in G. Then x−1xj → x−1x = 1G and we have φ(x)−1φ(xj ) =
φ(x−1xj ) → φ(1G) = 1H , which then implies φ(xj ) → φ(x). Thus φ is continuous.

�

Notation In the preceding proof we have used the notation xj → x indicating that
the net (xj ) converges to the point x.

1.2 Locally Compact Groups

A topological space is called locally compact if every point possesses a compact
neighborhood. A topological group is called a locally compact group if it is Hausdorff
and locally compact.
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Note that by Proposition 1.1.8, every topological group has a biggest Hausdorff quo-
tient group, and every continuous function to the complex numbers factors through
that quotient. So, as far as continuous functions are concerned, a topological group
is indistinguishable from its Hausdorff quotient. Thus it makes sense to restrict the
attention to Hausdorff groups.

A subset A ⊂ X of a topological space X is called relatively compact if its closure A

is compact in X. Note that in a locally compact Hausdorff space X, every point has a
neighborhood base consisting of compact sets. A subset S of G is called σ -compact
if it can be written as a countable union of compact sets.

Proposition 1.2.1 Let G be a locally compact group.

(a) For a closed subgroup H the quotient space G/H is a locally compact Hausdorff
space.

(b) The group G possesses an open subgroup, which is σ -compact.

(c) The union of countably many open σ -compact subgroups generates an open
σ -compact subgroup.

Proof For (a) let xH 
= yH in G/H . Choose an open, relatively compact neigh-
borhood U ⊂ G of x with U ∩ yH = ∅. The set UH is closed by Lemma 1.1.3, so
there is an open, relatively compact neighborhood V of y such that V ∩ UH = ∅.
This implies VH ∩ UH = ∅, and we have found disjoint open neighborhoods of
xH and yH, which means that G/H is a Hausdorff space. It is locally compact, as for
given x ∈ H , and a compact neighborhood U of x the set UH ⊂ G/H is the image
of the continuous map G → G/H of the compact set U; therefore it is a compact
neighborhood of xH in G/H.

To show (b), let V be a symmetric, relatively compact open unit-neighborhood. For
every n ∈ N one has V

n = V
n ⊂ V ·V n = V n+1. Therefore H =⋃n V

n =⋃n V
n.

An iterated application of Lemma 1.1.3 (d) shows that V
n

is compact, so H is
σ -compact. By Lemma 1.1.7 (b), H is an open subgroup.

Finally, for (c) let Ln be a sequence of σ -compact open subgroups. Then each Ln is
the union of a sequence

(
Kn,j
)
j

of compact sets. The group L generated by all Ln is

also generated by the family
(
Kn,j
)
n,j∈N

and is therefore σ -compact. It is also open
since it contains the open subgroup Ln for any n. �

1.3 Haar Measure

For a topological space X, we naturally have a σ -algebra B on X, the smallest σ -
algebra containing all open sets. This σ -algebra also contains all closed sets and
is generated by either class. It is called the Borel σ -algebra. Any element of this
σ -algebra is called a Borel set.
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Fix a measure space (X, A,μ), so A ⊂ P(X) is a σ -algebra and μ : A → [0,∞]
is a measure. One calls μ a complete measure if every subset of a μ-null-set is an
element of A. If μ is not complete, one can extend μ in a unique way to the σ -algebra
A generated by A and all subsets of μ-null-sets; this is called the completion of A
with respect to μ. A function f : X → C will be called μ-measurable if f −1(S) lies
in A for every Borel set S ⊂ C.

Any measure μ : A → [0,∞] defined on a σ -algebra A ⊃ B is called a Borel
measure. Unless specified otherwise, we will always assume A to be the completion
of B with respect to μ. A Borel measure μ is called locally finite if every point x ∈ X

possesses a neighborhood U with μ(U ) < ∞.

Example 1.3.1 The Lebesgue measure on R is a Borel measure. So is the counting
measure #, which for any set A is defined by

#(A)
def=
{

cardinality of A if A is finite

∞ otherwise.

The Lebesgue measure is locally finite; the counting measure is not.

Definition A locally finite Borel measure μ on B is called an outer Radon measure if

• μ(A) = infU⊃A μ(U ) holds for every A ∈ B, where the infimum is taken over all
open sets U containing A, and

• μ(U ) = supK⊂U μ(K) holds for every open set U, where the supremum is
extended over all compact sets K contained in U.

For the first property one says that an outer Radon measure is outer regular. The
second says that an outer Radon measure is weakly inner regular. For simplicity,
we will use the term Radon measure for an outer Radon measure. In the literature,
one will sometimes find the notion of Radon measure used for what we call an inner
Radon measure; see Appendix B.2 for a discussion.

Note that for an outer Radon measure μ one has μ(A) = supK⊂A μ(K) for every
measurable A with μ(A) < ∞, where the supremum is taken over all subsets of A
which are compact in X. This is proved in Lemma B.2.1.

Example 1.3.2

• The Lebesgue measure on the Borel sets of R is a Radon measure.

• A locally finite measure, which is not outer regular, is given by the following
example. Let X be an uncountable set equipped with the cocountable topology,
i.e., a non-empty set A is open if and only if its complementX�A is countable. The
Borel σ -algebra consists of all sets that are either countable or have a countable
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complement. On this σ -algebra define a measure μ by μ(A) = 0 if A is countable
and μ(A) = 1 otherwise. Then μ is finite, but not outer regular, since every open
subset U of X is either empty or satisfies μ(U ) = 1.

The following assertion is often used in the sequel.

Proposition 1.3.3 Let μ be an outer Radon measure on a locally compact Hausdorff
space X. Then the space Cc(X) is dense in Lp(μ) for every 1 ≤ p < ∞.

Proof Fix p as in the lemma and let V ⊂ Lp(μ) be the closure of Cc(X) inside
Lp = Lp(μ). We have to showV = Lp. By integration theory, the space of Lebesgue
step functions is dense in Lp and any such is a linear combination of functions of
the form 1A, where A ⊂ X is of finite measure. So we have to show 1A ∈ V . By
outer regularity, there exists a sequence Un ⊃ A of open sets such that 1Un

converges
to 1A in Lp. So it suffices to assume that A is open. By weak inner regularity we
similarly reduce to the case when A is compact. For given ε > 0 there exists an open
set U ⊃ A with μ(U � A) < ε. By Urysohn’s Lemma (A.8.1) there is g ∈ Cc(X)
with 0 ≤ g ≤ 1, the function vanishes outside U and is constantly equal to 1 on A.
Then the estimate

‖1A − g‖pp =
∫
U�A

|g(x)|p dx ≤ μ(U � A) < ε

shows the claim. �

Let G be a locally compact group. A measure μ on the Borel σ -algebra of G is
called a left-invariant measure, or simply invariant if μ(xA) = μ(A) holds for every
measurable set A ⊂ G and every x ∈ G. Here xA stands for the set of all xa, where
a ranges over A.

Examples 1.3.4

• The counting measure is invariant on any group.

• For the group (R,+) the Lebesgue measure dx is invariant under translations, so
it is invariant in the sense above.

• For the multiplicative group (R×, ·) the measure dx
|x| is invariant as follows from

the change of variables rule.

Theorem 1.3.5 Let G be a locally compact group. There exists a non-zero left-
invariant outer Radon measure on G. It is uniquely determined up to positive
multiples. Every such measure is called a Haar measure. The corresponding integral
is called Haar-integral.

The existence of an invariant measure can be made plausible as follows. Given an
open set U in a topological group G one can measure the relative size of a set A ⊂ G
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by the minimal number (A : U ) of translates xU needed to cover A. This relative
measure is clearly invariant under left translation, and is finite, if A is compact. One
can compare the sizes of sets and the quotient (A:U )

(K:U ) , where K is a given fixed compact,
should converge as U shrinks to a point. The limit is the measure in question. It is,
however, hard to verify that the limit exists and defines a measure. We circumvent
this problem by considering functionals on continuous functions of compact support
instead of measures. Before giving the proof of the theorem, we will draw a few
immediate conclusions.

For a function f on a topological space X the support is the closure of the set
{x ∈ X : f (x) 
= 0}.

Corollary 1.3.6 Let μ be a Haar measure on the locally compact group G.

(a) Every non-empty open set has strictly positive (> 0) measure.

(b) Every compact set has finite measure.

(c) Every continuous positive function f ≥ 0 with
∫
G
f (x) dμ(x) = 0 vanishes

identically.

(d) Let f be a measurable function on G, which is integrable with respect to a Haar
measure. Then the support of f is contained in a σ -compact open subgroup of G.

Proof For (a) assume there is a non-empty open set U of measure zero. Then every
translate xU of U has measure zero by invariance. As every compact set can be
covered by finitely many translates of U, every compact set has measure zero. Being
a Radon measure, μ is zero, a contradiction.

For (b) recall that the local-finiteness implies the existence of an open set U of finite
measure. Then every translate of U has finite measure. A given compact set can be
covered by finitely many translates, hence has finite measure.

For (c) let f be as above, then the measure of the open set f −1(0,∞) must be zero,
so it is empty by part (a).

To show (d), let f be an integrable function. It suffices to show that the set A = {x ∈
X : f (x) 
= 0} is contained in an open σ -compact subgroup L, as the closure will
then also be in L, which is closed by Lemma 1.1.7 (c). The set A is the union of the
sets An = {x ∈ X : |f (x)| > 1/n} for n ∈ N, each of which is of finite measure. By
Proposition 1.2.1 (c), it suffices to show that a setAof finite measure is contained in an
open σ -compact subgroup L. By the outer regularity there exists an open set U ⊃ A

with μ(U ) < ∞. It suffices to show that U lies in a σ -compact open subgroup. Let
H ⊂ G be any open σ -compact subgroup of G, which exists by Proposition 1.2.1
(b). Then G is the disjoint union of the open cosets xH , where x ∈ G ranges over a
set of representatives of G/H . The set U can only meet countably many cosets xH ,
since for every coset one has either xH ∩ U = ∅ or μ(xH ∩ U ) > 0 by part (a) of
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this corollary. Let L be the group generated by H and the countably many cosets xH

with xH ∩ U 
= ∅. Then L ⊃ U ⊃ A and L is σ -compact and open by Proposition
12.1 (c). �

Proof of the theorem Let Cc(G) denote the space of all continuous functions from
G to C of compact support.

Definition We say that a map f : G → X to a metric space (X, d) is uniformly
continuous, if for every ε > 0 there exists a unit-neighborhood U such that for
x−1y ∈ U or yx−1 ∈ U one has d (f (x), f (y))< ε.

Lemma 1.3.7 Any function f ∈ Cc(G) is uniformly continuous.

Proof We only show the part with x−1y ∈ U because the other part is proved simi-
larly and to obtain both conditions, one simply intersects the two unit-neighborhoods.
Let K be the support of f . Fix ε > 0 and a compact unit-neighborhood V . As f is
continuous, for everyx ∈ G there exists an open unit-neighborhoodVx ⊂ V such that
y ∈ xVx ⇒ |f (x) − f (y)| < ε/2. Let Ux be a symmetric open unit-neighborhood
with U 2

x ⊂ Vx . Then the sets xUx , for x ∈ KV , form an open covering of the
compact set KV , so there are x1, . . . xn ∈ KV such that KV ⊂ x1U1 ∩ · · · ∩ xnUn,
where we have written Uj for Uxj . Let U = U1 ∩ · · · ∩ Un. Then U is a symmetric
open unit-neighborhood. Let now x, y ∈ G with x−1y ∈ U . If x /∈ KV , then y /∈ K

as x ∈ yU−1 = yU ⊂ yV . So in this case we conclude f (x) = f (y) = 0. It
remains to consider the case when x ∈ KV . Then there exists j with x ∈ xjUj , and
so y ∈ xjUjU ⊂ xjVj . It follows that

|f (x) − f (y)| ≤ |f (x) − f (xj )| + |f (xj ) − f (y)| <
ε

2
+ ε

2
= ε

as claimed. �

In order to prove Theorem 1.3.5, we use Riesz’s Representation Theorem B.2.2. It
suffices to show that up to positive multiples there is exactly one positive linear map
I : Cc(G) → C, I 
= 0, which is invariant in the sense that I (Lxf ) = I (f ) holds
for every x ∈ G and every f ∈ Cc(G), where the left translation is defined by

Lxf (y)
def=f
(
x−1y
)
. Likewise, the right translation is defined by Rxf (y)

def=f (yx).
Note that Lxyf = LxLyf and likewise for R.

Definition We say that a function f on G is a positive function if f (x) ≥ 0 for
every x ∈ G. We then write f ≥ 0. Write C+

c (G) for the set of all positive functions
f ∈ Cc(G). For any two functions f , g ∈ C+

c (G) with g 
= 0 there are finitely
many elements sj ∈ G and positive numbers cj such that for every x ∈ G one has
f (x) ≤ ∑n

j=1 cjg(s−1
j x). We can also write this inequality without arguments as

f ≤∑n
j=1 cjLsj g. Put
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(f : g)
def= inf

⎧⎨
⎩

n∑
j=1

cj :
there are sj ∈ G

such thatf ≤∑n
j=1 cjLsj g

⎫⎬
⎭ .

Lemma 1.3.8 For f , f1, f2, g,h ∈ C+
c (G) with g,h 
= 0, c > 0 and y ∈ G one has

(a) (Lyf : g) = (f : g), so the index is translation-invariant,

(b) (f1 + f2 : g) ≤ (f1 : g) + (f2 : g), sub-additive,

(c) (cf : g) = c(f , g), homogeneous,

(d) f1 ≤ f2 ⇒ (f1 : g) ≤ (f2 : g), monotonic,

(e) (f : h) ≤ (f : g)(g : h),

(f) (f : g) ≥ max f

max g
, where maxf

def= max{f (x) : x ∈ G}.

Proof We only prove (e) and (f), as the other assertions are easy exercises. For (e)
assume f ≤∑j cjLsj g and g ≤∑l dlLtl h. Then f ≤ ∑j

∑
l cj dl Lsj tl h, which

implies the claim. For (f) choose x ∈ G with max f = f (x). Then max f = f (x) is

less than or equal to
∑

j cjg
(
s−1
j x
)
≤∑j cj max g. �

Fix a non-zero f0 ∈ C+
c (G). For f ,φ ∈ C+

c (G) with φ 
= 0 let

J (f ,φ) = Jf0 (f ,φ) = (f : φ)

(f0 : φ)
.

Lemma 1.3.9 For f , g,φ ∈ C+
c (G) with f ,φ 
= 0, c > 0 and s ∈ G one has

(a) 1
(f0:f ) ≤ J (f ,φ) ≤ (f : f0),

(b) J (Lsf ,φ) = J (f ,φ),

(c) J (f + g,φ) ≤ J (f ,φ) + J (g,φ),

(d) J (cf ,φ) = cJ (f ,φ).

Proof This follows from Lemma 1.3.8. �

The map J (·,φ) will approximate the Haar-integral as the support of φ shrinks to {e}.
Directly from Lemma 1.3.9 we only get sub-additivity, but in the limit this function
will become additive as the following lemma shows. This is the central point of the
proof of the existence of the Haar integral.

Lemma 1.3.10 Let f1, f2 ∈ C+
c (G) and ε > 0. Then there is a unit-neighborhood

V in G such that

J (f1,φ) + J (f2,φ) ≤ J (f1 + f2,φ)(1 + ε)
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holds for every φ ∈ C+
c (G) � {0} with support in V.

Proof Choose f ′ ∈ C+
c (G) such that f ′ ≡ 1 on the support of f1 +f2. Let ε, δ > 0

be arbitrary. Set

f = f1 + f2 + δf ′, h1 = f1

f
, h2 = f2

f
,

where we set hj (x) = 0 if f (x) = 0. Then hj ∈ C+
c (G) for j = 1, 2.

According to Lemma 1.3.7, every function in Cc(G) is left uniformly continuous,
so in particular, for hj this means that there is a unit-neighborhood V such that
for x, y ∈ G with x−1y ∈ V and j = 1, 2 one has |hj (x) − hj (y)| < ε

2 . Let
φ ∈ C+

c (G) � {0} with support in V . Choose finitely many sk ∈ G, ck > 0 with
f ≤ ∑k ckLskφ. Then φ(s−1

k x) 
= 0 implies |hj (x) − hj (sk)| < ε
2 , and for all x

one has

fj (x) = f (x)hj (x) ≤
∑
k

ckφ
(
s−1
k x
)
hj (x)

≤
∑
k

ckφ
(
s−1
k x
) (

hj (sk) + ε

2

)
,

so that (fj : φ) ≤ ∑k ck(hj (sk) + ε
2 ), implying that (f1 : φ) + (f2 : φ) is less than

or equal to
∑

k ck(1 + ε), which yields

J (f1,φ) + J (f2,φ) ≤ J (f ,φ)(1 + ε)

≤ (J (f1 + f2,φ) + δJ (f ′,φ))(1 + ε).

For δ → 0 we get the claim. �

Lemma 1.3.8(e) together with (f : f ) = 1 implies 1
(f0:f ) ≤ (f : f0). For

f ∈ C+
c (G) � {0} let Sf be the compact interval

[
1

(f0:f ) , (f : f0)
]
. The space

S
def=∏f 
=0 Sf , where the product runs over all non-zero f ∈ C+

c (G), is com-
pact by Tychonov’s Theorem A.7.1. Recall from Lemma 1.3.9 (a) that for every
φ ∈ C+

c (G) � {0} we get an element J (f ,φ) ∈ Sf and hence an element (J (f ,φ))f
of the product space S. For a unit-neighborhood V let LV be the closure in S of
the set of all (J (f ,φ))f where φ ranges over all φ with support in V . As S is com-
pact, the intersection

⋂
V LV over all unit-neighborhoods V is non-empty. Choose

an element (If0 (f ))f in this intersection. By Lemma 1.3.9 and 1.3.10, it follows
that I = If0 is a positive invariant homogeneous and additive map on C+

c (G). Any
real valued function f ∈ Cc(G) can be written as the difference f+ − f− of two
positive functions. Setting I (f ) = I (f+) − I (f−), and for complex-valued func-
tions I (f ) = I (Re(f )) + iI (Im(f )), one gets a well-defined positive linear map
that is invariant. This proves the existence of the Haar integral. For the proof of the
uniqueness we need the following lemma.



1.3 Haar Measure 13

Lemma 1.3.11 Let ν be a Haar measure on G. Then for every f ∈ Cc(G) the
function s �→ ∫

G
f (xs) dν(x) is continuous on G.

Proof We have to show that for a given s0 ∈ G and given ε > 0 there exists a neigh-
borhood U of s0 such that for every s ∈ U one has

∣∣∫
G
f (xs) − f (xs0) dν(x)

∣∣ < ε.
Replacing f by Rs0f (x) = f (xs0), we are reduced to the case s0 = e. Let K be the
support of f , and let V be a compact symmetric unit-neighborhood. For s ∈ V one
has supp(Rsf ) ⊂ KV . Let ε > 0. As f is uniformly continuous, there is a symmet-
ric unit-neighborhood W such that for s ∈ W one has |f (xs) − f (x)| < ε

ν(KV ) . For
s ∈ U = W ∩ V one therefore gets

∣∣∣∣
∫
G

f (xs) − f (x) dν(x)

∣∣∣∣ ≤
∫
KV

|f (xs) − f (x)| dν(x)

<
ε

ν(KV )
ν(KV ) = ε.

The lemma is proven. �

Suppose now that μ, ν are two non-zero invariant Radon measures. We have to show
that there is c > 0 with ν = cμ. For f ∈ Cc(G) with

∫
G
f (t) dμ(t) = Iμ(f ) 
= 0

set Df (s)
def= ∫

G
f (ts) dν(t) 1

Iμ(f ) . Then the function Df is continuous by the lemma.

Let g ∈ Cc(G). Using Fubini’s Theorem (B.3.3) and the invariance of the measures
μ, ν we get

Iμ(f )Iν(g) =
∫
G

∫
G

f (s)g(t) dν(t) dμ(s)

=
∫
G

∫
G

f (s)g(s−1t) dν(t) dμ(s) =
∫
G

∫
G

f (ts)g(s−1) dμ(s) dν(t)

=
∫
G

∫
G

f (ts)g(s−1) dν(t) dμ(s) =
∫
G

∫
G

f (ts) dν(t) g(s−1) dμ(s)

= Iμ(f )
∫
G

Df (s)g(s−1) dμ(s).

Since Iμ(f ) 
= 0 one concludes Iν(g) = ∫
G
Df (s)g(s−1) dμ(s). Let f ′ be another

function in Cc(G) with Iμ(f ′) 
= 0, so it follows
∫
G

(Df (s)−Df ′ (s))g(s−1) dμ(s) =
0 for every g ∈ Cc(G). Replacing g with the function g̃ given by g̃(s) =
|g(s)|2(Df (s−1) −Df ′ (s−1)) one gets

∫
G
|(Df (s) − Df ′ (s))g(s−1)|2 dμ(s) = 0.

Corollary 1.3.6 (c) implies that (Df (s)−Df ′ (s))g(s−1) = 0 holds for every s ∈ G. As
g is arbitrary, one gets Df = Df ′ . Call this function D. For every f with Iμ(f ) 
= 0
one has

∫
G
f (t) dμ(t)D(e) = ∫

G
f (t) dν(t). By linearity, it follows that this equality

holds everywhere. This finishes the proof of the theorem. �
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Example 1.3.12 Let B be the subgroup of GL2(R) defined by

B =
{(

1 x

y

)
: x, y ∈ R, y 
= 0

}
.

Then I (f ) = ∫
R
×
∫

R
f
((

1 x
y

))
dx

dy
y

is a Haar-integral on B. (See Exercise 1.8.)

1.4 The Modular Function

From now on, if not mentioned otherwise, for a given locally compact group G, we
will always assume a fixed choice of Haar measure. For the integral we will then
write
∫
G
f (x) dx, and for the measure of a set A ⊂ G we write vol(A). If the group G

is compact, any Haar measure is finite, so, if not mentioned otherwise, we will then
assume the measure to be the normalized Haar measure, i.e., we assume vol(G) = 1
in that case. Also, for p ≥ 1 we write Lp(G) for the Lp-space of G with respect to a
Haar measure, see Appendix B.4. Note that this space does not depend on the choice
of a Haar measure.

Definition Let G be a locally-compact group, and let μ be a Haar measure on G.
For x ∈ G the measure μx , defined by μx(A) = μ(Ax), is a Haar measure again,
as for y ∈ G one has μx(yA) = μ(yAx) = μ(Ax) = μx(A). Therefore, by the
uniqueness of the Haar measure, there exists a number 	(x) > 0 with μx = 	(x)μ.

In this way one gets a map 	 : G → R>0, which is called the modular function of
the group G. If 	 ≡ 1, then G is called a unimodular group. In this case every left
Haar measure is right invariant as well.

Let X be any set, and let f : X → C be a function. The sup-norm or supremum-norm
of f is defined by

‖f ‖X def= sup
x∈X

|f (x)|.

Note that some authors use ‖·‖∞ to denote the sup-norm. This, however, is in conflict
with the equally usual and better justified notation for the norm on the space L∞
(See Appendix B.4).

Theorem 1.4.1

(a) The modular function 	 : G → R
×
>0 is a continuous group homomorphism.

(b) One has 	 ≡ 1 if G is abelian or compact.

(c) For y ∈ G and f ∈ L1(G) one has Ryf ∈ L1(G) and

∫
G

Ryf (x) dx =
∫
G

f (xy) dx = 	(y−1)
∫
G

f (x) dx.
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(d) The equality
∫
G
f (x−1)	(x−1) dx = ∫

G
f (x) dx holds for every integrable

function f.

Proof Part (c) is clear if f is the characteristic function 1A of a measurable set A. It
follows generally by the usual approximation argument.

We now prove part (a) of the theorem. For x, y ∈ G and a measurable set A ⊂ G,
one computes

	(xy)μ(A) = μxy(A) = μ(Axy) = μy(Ax)

= 	(y)μ(Ax) = 	(y)	(x)μ(A).

Choose A with 0 < μ(A) < ∞ to get 	(xy) = 	(x)	(y). Hence 	 is a group
homomorphism.

Continuity: Let f ∈ Cc(G) with c = ∫
G
f (x) dx 
= 0. By part (c) we have

	(y) = 1

c

∫
G

f
(
xy−1
)
dx = 1

c

∫
G

Ry−1f (x) dx.

So the function 	 is continuous in y by Lemma 1.3.11.

For part (b), if G is abelian, then every right translation is a left translation, and so
every left Haar measure is right-invariant.

If G is compact, then so is the image of the continuous map 	. As 	 is a group
homomorphism, the image is also a subgroup of R>0. But the only compact subgroup
of the latter is the trivial group {1}, which means that 	 ≡ 1.

Finally, for part (d) of the theorem let f ∈ Cc(G) and set I (f ) =∫
G
f
(
x−1
)
	
(
x−1
)
dx. Then, by part (c),

I (Lzf ) =
∫
G

f (z−1x−1)	(x−1) dx =
∫
G

f ((xz)−1)	(x−1) dx

= 	(z−1)
∫
G

f (x−1)	((xz−1)−1) dx =
∫
G

f (x−1)	(x−1) dx = I (f ).

It follows that I is an invariant integral; hence there is c > 0 with I (f ) =
c
∫
G
f (x) dx. To show that c = 1 let ε > 0 and choose a symmetric unit-

neighborhood V with |1−	(s)| < ε for every s ∈ V . Choose a nonzero symmetric
function f ∈ C+

c (V ). Then
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|1 − c|
∫
G

f (x) dx =
∣∣∣∣
∫
G

f (x) dx − I (f )

∣∣∣∣ ≤
∫
G

|f (x) − f (x−1)	(x−1)| dx

=
∫
V

f (x) |1 −	(x−1)| dx < ε

∫
G

f (x) dx.

So one gets |1 − c| < ε, and as ε was arbitrary, it follows c = 1 as claimed. The
proof of the theorem is finished. �

Lemma 1.4.2 For given 1 ≤ p < ∞, and g ∈ Lp(G) the maps y �→ Lyg and
y �→ Ryg are continuous maps from G to Lp(G). In particular, for every ε > 0 there
exists a neighborhood U of the unit such that

y ∈ U ⇒ ‖Lyg − g‖p < ε,
‖Ryg − g‖p < ε.

The proof will show that L is even uniformly continuous and in case that G is
unimodular, so is R.

Proof Note that by invariance of the Haar integral we have

‖Lyg − Lxg‖p = ‖Lx−1yg − g‖p,

so uniform continuity as claimed follows from continuity at 1, which is the displayed
formula in the lemma. Likewise, for the right translation we have ‖Ryg − Rxg‖p =
	(x−1)1/p‖Rx−1yg − g‖p as follows from part (c) of the theorem. It remains to show
continuity at the unit element.We first assume that g ∈ Cc(G). Choose ε > 0. Let K
be the support of g. Then the support of Lyg is yK . Let U0 be a compact symmetric
unit-neighborhood. Then for y ∈ U0 one has suppLyg ⊂ U0K .

Let δ > 0. By Lemma 1.3.7 there exists a unit-neighborhood U ⊂ U0 such that for
y ∈ U , the sup-norm ‖Lyg − g‖G is less than δ.

In particular, for every y ∈ U one has

‖Lyg − g‖p =
(∫

G

|g(y−1x) − g(x)|p dx

) 1
p

< δ vol(U0K)
1
p .

By setting δ equal to ε/vol(U0K)1/p, one gets the claim for g ∈ Cc(G).

For general g, choose f ∈ Cc(G) such that ‖f − g‖p < ε/3. Choose a unit-
neighborhood U with ‖f − Lyf ‖p < ε/3 for every y ∈ U . Then for y ∈ U

one has

‖g − Lyg‖p ≤ ‖g − f ‖p + ‖f − Lyf ‖p + ‖Lyf − Lyg‖p <
ε

3
+ ε

3
+ ε

3
= ε.

In the last step we have used ‖Lyf − Lyg‖p = ‖f − g‖p, i.e., the left- invariance
of the p-norm. This implies the claim for the left translation. The proof for the right-
translation Ry is similar, except for the very last step, where instead of the invariance
we use the continuity of the modular function and the equality ‖Ryf − Ryg‖p =
	
(
y−1
)1/p ‖f − g‖p, which follows from part (c) of the theorem. �
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Example 1.4.3 Let B be the group of real matrices of the form
(

1 x
0 y

)
with y 
= 0.

Then the modular function 	 is given by 	
(

1 x
0 y

) = |y| (See Exercise 1.8).

Proposition 1.4.4 Let G be a locally compact group. The following assertions are
equivalent.

(a) There exists x ∈ G such that the singleton {x} has non-zero measure.

(b) The set {1} has non-zero measure.

(c) The Haar measure is a multiple of the counting-measure.

(d) G is a discrete group.

Proof The equivalence of (a) and (b) is clear by the invariance of the measure.
Assume (b) holds. Let c > 0 be the measure of {1}. Then for every finite set E ⊂ G

one has vol(E) = ∑e∈E vol({e}) = c #E. Since the measure is monotonic, every
infinite set gets measure ∞, and so the Haar measure equals c times the counting
measure.

To see that (c) implies (d) recall that every compact set has finite measure, and by
locally compactness, there exists an open set of finite measure, i.e., a finite set U that
is open. By the Hausdorff axiom one can separate the elements of U by open sets,
so the singletons in U are open; hence every singleton, and so every set, is open, i.e.,
G is discrete. Finally, if G is discrete, then each singleton is open, hence has strictly
positive measure by Corollary 1.3.6. �

Proposition 1.4.5 Let G be a locally compact group. Then G has finite volume under
a Haar measure if and only if G is compact.

Proof If G is compact, it has finite volume by Corollary 1.3.2. For the other direction
suppose G has finite Haar measure. Let U be a compact unit-neighborhood. As the
Haar measure of G is finite, there exists a maximal number n ∈ N of pairwise disjoint
translates xU of U . Let z1U , . . . , znU be such pairwise disjoint translates, and set
K equal to the union of these finitely many translates. Then K is compact, and for
every x ∈ G one has K ∩xK 
= ∅. This means that G = KK−1, which is a compact
set. �

1.5 The Quotient Integral Formula

Let G be a locally compact group and let H be a closed subgroup. Then G/H

is a locally compact Hausdorff space by Proposition 1.2.1. For f ∈ Cc(G) let

f H (x)
def= ∫

H
f (xh) dh. For any x the function mapping h to f (xh) is continuous

of compact support, so the integral exists.
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Lemma 1.5.1 The function f H lies in Cc(G/H ), and the support of f H is contained
in (supp(f )H )/H . The map f �→ f H from Cc(G) to Cc(G/H ) is surjective.

Proof Let K be the support of f . Then KH/H is compact in G/H and contains the
support of f H , which therefore is compact. To prove continuity, let x0 ∈ G and U a
compact neighborhood of x0. For every x ∈ U , the function h �→ f (xh) is supported
in the compact set U−1K∩H . Put d = μH (U−1K∩H ), where μH denotes the given
Haar measure on H. Given ε > 0 it follows from uniform continuity of f (Lemma
1.3.7) that there exists a neighborhood V ⊆ U of x0 such that |f (xh)−f (x0h)| < ε

d

for every x ∈ V , from which it follows that

|f H (x) − f H (x0)| ≤
∫
U−1K∩H

|f (xh) − f (x0h)| dh < ε

for every x ∈ V , which proves continuity of f H .

Write π for the natural projection G → G/H . To show surjectivity of the map
f �→ f H , we first show that for a given compact subset C of the quotient G/H

there exists a compact subset K of G such that C ⊂ π (K). To this end choose a
pre-image yc ∈ G to every c ∈ C and an open, relatively compact neighborhood
Uc ⊂ G of yc. As π is open, the images π (Uc) form an open covering of C, so there
are c1, . . . cn ∈ C such that C ⊂ π (K) with K being the compact set Uc1 ∪· · ·∪Ucn .

Apply this construction to the set C being the support of a given g ∈ Cc(G/H ). Let
φ ∈ Cc(G) be such that φ ≥ 0 and φ ≡ 1 on K , which exists by Urysohn’s Lemma
(Lemma A.8.1). Then set f = gφ/φH where g is non-zero and f = 0 otherwise.
This definition makes sense as φH > 0 on the support of g. One gets f ∈ Cc(G) and
f H = gφH/φH = g. �

Remark 1.5.2 For later use we note that in the proof of the above lemma we also
showed that for any compact set C ⊂ G/H there exists a compact set K ⊂ G such
that C ⊆ π (K). By passing to π−1(C)∩K if necessary, we can even choose K such
that π (K) = C.

A measure ν on the Borelσ -algebra ofG/H is called an invariant measure if ν(xA) =
ν(A) holds for every x ∈ G and every measurable A ⊂ G/H . Let 	G be the modular
function of G and 	H the modular function of H.

Theorem 1.5.3 (Quotient Integral Formula) Let G be a locally compact group, and
let H be a closed subgroup. There exists an invariant Radon measure ν 
= 0 on the
quotient G/H if and only if the modular functions 	G and 	H agree on H. In this
case, the measure ν is unique up to a positive scalar factor. Given Haar measures
on G and H, there is a unique choice for ν, such that for every f ∈ Cc(G) one has
the quotient integral formula

∫
G

f (x) dx =
∫
G/H

∫
H

f (xh) dh dx.
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We will always assume this normalization and call the ensuing measure on G/H the
quotient measure.

The quotient integral formula is valid for every f ∈ L1(G).

The last assertion says that if f is an integrable function on G, then the integral
f H (x) = ∫

H
f (xh) dx exists almost everywhere in x and defines a ν-measurable,

indeed integrable function on G/H , such that the integral formula holds.

See Exercise 1.10 for a generalization of the quotient integral formula.

Proof Assume first that there exists an invariant Radon measure ν 
= 0 on the quo-
tient space G/H. Define a linear functional I on Cc(G) by I (f ) = ∫

G/H
f H (x) dν(x).

Then I (f ) is a non-zero invariant integral on G, so it is given by a Haar measure. We
write I (f ) = ∫

G
f (x) dx. For h0 ∈ H one gets

	G(h0)
∫
G

f (x) dx =
∫
G

f
(
xh−1

0

)
dx =
∫
G

Rh−1
0
f (x) dx

=
∫
G/H

∫
H

f
(
xhh−1

0

)
dh dν(x)

= 	H (h0)
∫
G/H

∫
H

f (xh) dh dν(x)

= 	H (h0)
∫
G

f (x) dx.

As f can be chosen with
∫
G
f (x) dx 
= 0, it follows that 	G|H = 	H .

For the converse direction assume 	G|H = 	H , and let f ∈ Cc(G) with f H = 0.
We want to show that

∫
G
f (x) dx = 0. For let φ be another function in Cc(G). We

use Fubini’s Theorem to get

0 =
∫
G

∫
H

f (xh)φ(x) dh dx =
∫
H

∫
G

φ(x)f (xh) dx dh

=
∫
H

	G(h−1)
∫
G

φ
(
xh−1
)
f (x) dx dh

=
∫
G

∫
H

	H

(
h−1
)
φ
(
xh−1
)
dh f (x) dx

=
∫
G

∫
H

φ(xh) dh f (x) dx =
∫
G

φH (x)f (x) dx.

As we can find φ with φH ≡ 1 on the support of f , it follows that
∫
G
f (x) dx = 0.

This means that we can unambiguously define a non-zero invariant integral on G/H

by I (g) = ∫
G
f (x) dx, whenever g ∈ Cc(G/H ) and f ∈ Cc(G) with f H = g. By

Riesz’s Theorem, this integral comes from an invariant Radon measure. In particular,
it follows that the quotient integral formula is valid for every f ∈ Cc(G). All but the
last assertion of the theorem is proven.
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We want to prove the quotient integral formula for an integrable function f on G.
It suffices to assume f ≥ 0. Then f is a monotone limit of step-functions, so by
monotone convergence one may assume f is a step-function itself and by linearity
one reduces to the case of f being the characteristic function of a measurable set A
with finite Haar measure. We have to show that 1H

A is measurable on G/H and that its
integral equals

∫
G

1A(x) dx. We start with the case of A = U being open. Note that
by Lemma B.3.2 the function g(xH ) = sup φ∈Cc (G)

0≤φ≤1U

∫
H
φ(xh) dh is measurable on

G/H and coincides with 1H
U . A repeated use of the Lemma of Urysohn and Lemma

B.3.2 shows the claim for A = U ,∫
G/H

∫
H

1U (xh) dh dx =
∫
G/H

∫
H

sup
0≤φ≤1U

φ(xh) dh dx

= sup
0≤φ≤1U

∫
G/H

∫
H

φ(xh) dh dx

= sup
0≤φ≤1U

∫
G

φ(x) dx =
∫
G

sup
0≤φ≤1U

φ(x) dx

=
∫
G

1U (x) dx.

If A = K is a compact set, then let V be a relatively compact open neighborhood of
K . Then 1K = 1V − 1V�K . The claim follows for A = K . For general A of finite
measure and given n ∈ N, by regularity and Lemma B.2.1, there are a compact set
Kn and an open set Un such that Kn ⊂ A ⊂ Un and μ(Un � Kn) < 1/n. We can
further assume that the sequence Un is decreasing and Kn is increasing. Let g be the
pointwise limit of the increasing sequence 1H

Kn
and let h be the limit of 1Un

. Then
g and h are integrable on G/H , one has 0 ≤ g ≤ 1H

A ≤ h and h − g is a positive
function of integral zero, hence a nullfunction. This means that 1H

A coincides with g

up to a nullfunction and thus is measurable. One has∫
G/H

1H
A (x) dx =

∫
G/H

g(x) dx = lim
n

∫
G/H

1H
Kn

(x) dx

= lim
n

∫
G

1Kn
(x) dx =

∫
G

1A(x) dx. �

The quotient integral formula should be understood as a one-sided version of Fubini’s
Theorem for product spaces. As for Fubini, it has a partial converse, which we give
now. Let μ be a measure on a set X. Recall that a measurable subset A ⊂ X is
called σ -finite if A can be written as a countable union A = ⋃∞

j=1 Aj of sets with
μ(Aj ) < ∞ for every j . If X itself is σ -finite, one also says that the measure μ is
σ -finite.

Corollary 1.5.4 Suppose that H is a closed subgroup of G such that there exists an
invariant Radon measure 
= 0 on G/H . Let f : G → C be a measurable function
such that the set A = {x ∈ G : f (x) 
= 0} is σ -finite. If the iterated integral∫
G/H

∫
H
|f (xh)| dh dx exists, then f is integrable.
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Proof It suffices to show that |f | is integrable. So choose a sequence (An)n∈N of
measurable sets in G with finite Haar measure such that A = ⋃∞

n=1 An, and define
fn : G → C by fn = min(|f | · 1An

, n). Then (fn)n∈N is an increasing sequence
of integrable functions that converges point-wise to |f |. It follows from Theorem
1.5.3 that

∫
G
fn(x) dx = ∫

G/H

∫
H
fn(xh) dh dx ≤ ∫

G/H

∫
H
|f (xh)| dh dx for every

n ∈ N. The result follows then from the Monotone Convergence Theorem. �

Corollary 1.5.5

(a) If H is a normal closed subgroup of G, then the modular functions 	G and 	H

agree on H.

(b) Let H be the kernel of 	G. Then H is unimodular.

Proof (a) The Haar measure of the group G/H is an invariant Radon measure, so
(a) follows from the theorem. Part (b) follows from part (a). �

Proposition 1.5.6 Let G be a locally compact group, K ⊂ G a compact subgroup
and H ⊂ G a closed subgroup such that G = HK . Then one can arrange the Haar
measures on G,H ,K in a way that for every f ∈ L1(G) one has

∫
G

f (x) dx =
∫
H

∫
K

f (hk) dk dh.

Proof The group H × K acts on G by (h, k).g = hgk−1. As this operation is
transitive, G can be identified withH×K/H∩K , where we embedH∩K diagonally
into H ×K . The group H ∩K is compact; therefore it has trivial modular function
and the modular function of H × K is trivial on this subgroup. By Theorem 1.5.3
there is a unique H ×K-invariant Radon measure on G up to scaling. We show that
the Haar measure on G also is H ×K-invariant, so the uniqueness implies our claim.
Obviously, the Haar measure is invariant under the action of H as the latter is the
left multiplication. As K is compact, we have 	G(k) = 1 for every k ∈ K and so∫
G
f (xk) dx = ∫

G
f (x) dx for every f ∈ Cc(G) by Theorem 1.4.1 (c). �

Lemma 1.5.7 Let H be a closed subgroup of the locally compact group G such that
there exists a G-invariant Radon measure on G/H. Fix such a measure. For given
1 ≤ p < ∞, and g ∈ Lp(G/H ) the map y �→ Lyg is a uniformly continuous map
from G to Lp(G/H ). In particular, for every ε > 0 there exists a neighborhood U of
the unit such that

y ∈ U ⇒ ‖Lyg − g‖p < ε.

Proof The lemma is a generalization of Lemma 1.4.2 and the proof of the latter
extends to give a proof of the current lemma. �
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1.6 Convolution

An algebra over C is a complex vector space A together with a map A×A → A,
called product or multiplication and written (a, b) �→ ab, which is bilinear, i.e., it
satisfies

a(b + c) = ab + ac, (a + b)c = ab + ac, λ(ab) = (λa)b = a(λb)

for a, b, c ∈ A and λ ∈ C, and it is associative, i.e., one has

a(bc) = (ab)c

for all a, b, c ∈ A. The algebra A is called a commutative algebra if in addition for
all a, b ∈ A one has ab = ba.

Example 1.6.1

• The vector space A = Mn(C) of complex n× n matrices forms an algebra with
matrix multiplication as product. This algebra is not commutative unless n = 1.

• For a setS the vector space Map(S, C) of all maps fromS to C forms a commutative
algebra with the point-wise product, i.e., for f , g ∈ Map(S, C) the product fg is
the function given by (fg)(s) = f (s)g(s) for s ∈ S.

Definition Let G be a locally-compact group. For two measurable functions f , g :
G → C define the convolution product as

f ∗ g(x) =
∫
G

f (y)g(y−1x) dy,

whenever the integral exists.

Theorem 1.6.2 If f , g ∈ L1(G), then the integral f ∗ g exists almost everywhere
in x and defines a function in L1(G). The L1-norm satisfies ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.

The convolution product endows L1(G) with the structure of an algebra.

Proof Let f , g be integrable functions on G. Then f and g are measurable in the
sense that pre-images of Borel-sets are in the completed Borel-σ -algebra. Let the
function ψ be defined by ψ(y, x) = f (y)g(y−1x). We write ψ as a composition
of the map α : G × G → G × G; (y, x) �→ (y, y−1x

)
followed by f × g and

multiplication, which are measurable. We show that α is measurable. Recall that
we need measurability here with respect to the completion of the Borel σ -algebra.
Since α is continuous, it is measurable with respect to the Borel σ -algebra, so we
need to know that the pre-image of a null-set is a null-set. This however is clear, as
α preserves the Haar measure on G×G, as follows from the formula
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∫
G

∫
G

φ(y, x) dx dy =
∫
G

∫
G

φ
(
y, y−1x

)
dx dy, φ ∈ Cc(G×G),

and Fubini’s Theorem. Being a composition of measurable maps, ψ is measurable.
Let S(f ) and S(g) be the supports of f and g, respectively. Then the sets S(f ) and
S(g) are σ -compact by Corollary 1.3.6 (d). The support of ψ is contained in the
σ -compact set S(f )×S(f )S(g), and therefore is σ -compact itself. We can apply the
Theorem of Fubini to calculate

‖f ∗ g‖1 ≤
∫
G

∫
G

|f (y)g
(
y−1x
) | dy dx =

∫
G

∫
G

|f (y)g
(
y−1x
) | dx dy

=
∫
G

∫
G

|f (y)g(x)| dx dy = ‖f ‖1 ‖g‖1 < ∞.

The function ψ(x, ·) is therefore integrable almost everywhere in x, and the function
f ∗ g exists and is measurable. Further, the norm ‖f ∗ g‖1 is less than or equal to∫
G×G

|ψ(x, y)| dx dy = ‖f ‖1‖g‖1. Associativity and distributivity are proven by
straightforward calculations. �

Recall that for a function f : G → C and y ∈ G we have defined

Ry(f )(x) = f (xy) and Ly(f )(x) = f (y−1x).

Lemma 1.6.3 For f , g ∈ L1(G) and y ∈ G one has Ry(f ∗ g) = f ∗ (Ryg) and
Ly(f ∗ g) = (Lyf ) ∗ g.

Proof We compute

Ry(f ∗ g)(x) =
∫
G

f (z)g
(
z−1xy
)
dz =
∫
G

f (z)Ryg
(
z−1x
)
dz = f ∗ (Ryg)(x),

and likewise for L. �

Theorem 1.6.4 The algebra L1(G) is commutative if and only if G is abelian.

Proof Assume L1(G) is commutative. Let f , g ∈ L1(G). For x ∈ G we have

0 = f ∗ g(x) − g ∗ f (x) =
∫
G

f (xy)g
(
y−1
)− g(y)f

(
y−1x
)
dy

=
∫
G

g(y)
(
	(y−1)f (xy−1) − f (y−1x)

)
dy.

Since this is valid for every g, one concludes that 	
(
y−1
)
f
(
xy−1
) = f

(
y−1x
)

holds for every f ∈ Cc(G). For x = 1 one gets 	 ≡ 1, so G is unimodular and
f
(
xy−1
) = f

(
y−1x
)

for every f ∈ Cc(G) and all x, y ∈ g. This implies that G is
abelian. The converse direction is trivial. �
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Definition By a Dirac function we mean a function φ ∈ Cc(G), which

• is positive, i.e., φ ≥ 0,

• has integral equal to one,
∫
G
φ(x) dx = 1, and

• is symmetric, φ(x−1) = φ(x).

A Dirac family is a family (φU )U of Dirac functions indexed by the set U of all
unit-neighborhoods U such that φU has support inside U . Note that the set U can
be partially ordered by reversed inclusion which makes it a directed set. So a Dirac-
family is a net, which we also refer to as a Dirac net

Lemma 1.6.5 If φ and ψ are Dirac functions, then so is their convolution product
φ ∗ ψ . To every unit neighborhood U their exists a Dirac function φU such that φU

as well φU ∗ φU have support inside U.

Proof If φ and ψ are positive, then so is their convolution product. For the integral
we have

∫
G
φ ∗ ψ(x) dx = ∫

G
φ(x) dx

∫
G
ψ(x) dx = 1 and symmetry is preserved

by convolution. For the second assertion, let U be a given unit neighborhood. Then
their exists a symmetric unit neighborhood W ⊂ U such that W 2 ⊂ U as well.
The Lemma of Urysohn (A.8.1) yields a function h ∈ Cc(G) with 0 
= h ≥ 0 and
supp(h) ⊂ W . Set φU (x) = h(x)+ h

(
x−1
)

and scale this function so it has integral
one. Then supp(φU ∗ φU ) ⊂ supp(φU )supp(φU ) ⊂ W 2 ⊂ U , so φU satisfies the
claim. �

Lemma 1.6.6 Let ε > 0. For every f ∈ L1(G) there exists a unit-neighborhood U
such that for every Dirac function φU with support in U one has

‖f ∗ φU − f ‖1 < ε, ‖φU ∗ f − f ‖1 < ε.

For every continuous function f on G and every compact set K ⊂ G there exists a
unit-neighborhood U such that for every Dirac function φU with support in U one
has

‖f ∗ φU − f ‖K < ε, ‖φU ∗ f − f ‖K < ε,

where ‖g‖K = supx∈K |g(x)|.
In other words this means that the net (φU ∗ f )U indexed by the set of all unit-
neighborhoods, converges to f in the L1 norm if f ∈ L1(G) and compactly
uniformly, if f is continuous.
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Proof It suffices to considerφU ∗f , as the other side is treated similarly. We compute

‖φU ∗ f − f ‖1 =
∫
G

∣∣∣∣
∫
G

φU (y)(f
(
y−1x
)− f (x)) dy

∣∣∣∣ dx
≤
∫
G

∫
G

φU (y)|f (y−1x
)− f (x)| dy dx

=
∫
G

φU (y)‖Lyf − f ‖1 dy.

The claim nor follows from Lemma 1.4.2.

For the last statement let f be continuous and let K ⊂ G be compact. Since a
continuous function on a compact set is uniformly continuous, for every ε > 0 there
exists a unit-neighborhood U , such that for x ∈ K , y−1x ∈ U one has |f (y) −
f (x)| < ε. Let now φU be a Dirac function with support in U . Then |φU ∗ f (x) −
f (x)| ≤ ∫

G
φU (y−1x)|f (y) − f (x)| dy < ε. �

1.7 The Fourier Transform

A locally compact abelian group will be called an LCA-group for short. A character
of an LCA-group A is a continuous group homomorphism

χ : A → T,

where T is the circle group, i.e., the multiplicative group of all complex numbers of
absolute value one.

Example 1.7.1

• The characters of the group Z are the maps k �→ e2πikx , where x varies in R/Z

(See [Dei05] Sect. 7.1).

• The characters of R/Z are the maps x �→ e2πikx , where k varies in Z (See [Dei05]
Sect. 7.1).

Definition The set of characters forms a group under point-wise multiplication,
called the dual group and denoted Â. Later, we will equip the group Â with a
topology that makes it an LCA-group.

Let f ∈ L1(A) and define its Fourier transform to be the map f̂ : Â → C given by

f̂ (χ )
def=
∫
A

f (x)χ (x) dx.

This integral exists as χ is bounded.
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Lemma 1.7.2 For f , g ∈ L1(A) and χ ∈ Â one has |f̂ (χ )| ≤ ‖f ‖1 and f̂ ∗ g =
f̂ ĝ.

Proof The first assertion is clear. Using Fubini’s Theorem, one computes,

f̂ ∗ g(χ ) =
∫
A

f ∗ g(x)χ (x) dx =
∫
A

∫
A

f (y)g
(
y−1x
)
dy χ (x) dx

=
∫
A

f (y)
∫
A

g
(
y−1x
)
χ (x) dx dy

=
∫
A

f (y)χ (y) dy
∫
A

g(x)χ (x) dx = f̂ (χ )ĝ(χ ). �

1.8 Limits

In this section we shall give a construction principle for locally compact groups as
limits, i.e., direct and projective limits. The reader mostly interested in developing
the theory may proceed to the next chapter.

We first recall the notion of a partial order on a set I . This is a relation ≤ such that
for all a, b, c ∈ I one has a ≤ a, (reflexivity); a ≤ b and b ≤ a implies a = b

(antisymmetry); a ≤ b and b ≤ c implies a ≤ c (transitivity).

Definition A directed set is a tuple (I ,≤ ) consisting of a non-empty set I and a
partial order ≤ on I , such that any two elements of I have a common upper bound,
which means that for any two a, b ∈ I there exists an element c ∈ I with a ≤ c and
b ≤ c.

Examples 1.8.1

• The set N of natural numbers is an example with the natural order ≤. In this
case the order is even linear, which means that any two elements on N can be
compared. Every linear order is directed.

• Let 
 be an infinite set and let I be the set of all finite subsets of 
, ordered by
inclusion, so A ≤ B ⇔ A ⊂ B. Then I is directed, as for A,B ∈ I the union
C = A ∪ B is an upper bound.

• Directed sets are precisely the index sets of nets (xi)i∈I .

Direct Limits

A direct system of groups consists of the following data
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• a directed set (I ,≤ ),

• a family (Gi)i∈I of groups and

• a family of group homomorphisms φ
j

i : Gi → Gj , if i ≤ j ,

such that the following axioms are satisfied:

φi
i = IdGi

and φk
j ◦ φ

j

i = φk
i , if i ≤ j ≤ k.

Examples 1.8.2

• Let G be a group and let (Gi)i∈I be a family of subgroups, such that for any two
indices i, j ∈ I there exists an index k ∈ I , such that Gi ,Gj ⊂ Gk . Then the Gi

form a direct system, if on I one installs the partial order

i ≤ j ⇔ Gi ⊂ Gj ,

and if for group homomorphisms φ
j

i one takes the inclusions.

• Let X be a topological space, fix x0 ∈ X and let I be the set of all neighborhoods
of x0 in X. For U ∈ I let GU be the group C(U ) of all continuous functions from
U to C. We order I by the inverse inclusion, i.e., U ≤ V ⇔ U ⊃ V . The
restriction homomorphisms

φV
U : C(U ) → C(V ), φV

U (f ) = f |V
form a direct system.

Definition Let
(
(Gi)i∈I , (φj

i )i≤j

)
be a direct system of groups. The direct limit of

the system is the set

lim→
i∈I

Gi
def=
∐
i∈I

Gi

/ ∼,

where
∐

denotes the disjoint union and ∼ the following equivalence relation: For
a ∈ Gi and b ∈ Gj we say a ∼ b, if there is k ∈ I with k ≥ i, j and φk

i (a) = φk
j (b).

On the set G = lim→ Gi we define a group multiplication as follows. Let a ∈ Gi

and b ∈ Gj and let [a] and [b] denote their equivalence classes in G. Then there
is k ∈ I with k ≥ i and k ≥ j . We define [a][b] to be the equivalence class of
the element φk

i (a)φk
j (b) in Gk , so [a][b] = [φk

i (a)φk
j (b)]. Some authors also use the

notion inductive limit instead of direct limit.

Proposition 1.8.3 The multiplication is well-defined and defines a group structure
on the set G. This group is called the direct limit of the system

(
Gi ,φi

j

)
. For every

i ∈ I the map
ψi : Gi ↪→

∐
j∈I

Gj → G

is a group homomorphism.
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The direct limit has the following universal property: Let Z be a group and for every
i ∈ I let a group homomorphism αi : Gi → Z be given, such that αi = αj ◦ φ

j

i

holds if i ≤ j . Then there exists exactly one group homomorphism α : G → Z

making all diagrams

Gi

ψi−−−→G

� |
αi� |α↘↓

Z

commutative.

Note that in this construction the word “group” can be replaced with other algebraic
structures, like rings. Then one assumes that the structure homomorphisms φ

j

i are
ring homomorphisms and gets a ring as direct limit.

Proof To show well-definedness, we need to show that the product is independent
of the choice of k. If k′ is another element of I with k′ ≥ i, j , there exists a common
upper bound l for k and k′, so l ≥ k, k′. We show that the construction gives the same
element with l as with k. Then we apply the same argument to k′ and l. Note that by
definition for every c ∈ Gk one has [c] = [φl

k(c)
]
. Gs φl

k is a group homomorphism,
it follows that[

φk
i (a)φk

j (b)
] = [φl

k

(
φk
i (a)φk

j (b)
)] = [φl

k(φk
i (a))φl

k

(
φk
j (b)
)] = [φl

i (a)φl
j (b)
]
.

This proves well-definedness. The rest is left as an exercise to the reader. �

Examples 1.8.4

• In the case of the direct system (C(U ))U , where U runs through all neighborhoods
of a point in a topological space, one calls the elements of lim→ C(U ) germs of

continuous functions.

• A special example of a direct limit is the direct sum of groups. So let S 
= ∅ be
an index set and for each s ∈ S let Gs be a group. Let I be the directed set of all
finite subsets of S. For each E ∈ I we let GE be the finite product of groups,

GE =
∏
s∈E

Gs.

For E ⊂ F in I we have the natural group homomorphism φF
E : GE → GF

sending x to (x, 1, . . . , 1). The direct limit constructed in this way is called the
direct sum of the groups Gs and is denoted as⊕

s∈S
Gs.
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Since all groups GE can also be embedded into the product
∏

s∈S Gs we find
that the direct sum is isomorphic to the subgroup of

∏
s∈S Gs consisting of those

elements x with xs = 1 for almost all s ∈ S.

Definition We say that a direct system
(
(Gi)i∈I ,

(
φ

j

i

)
i≤j

)
is a Mittag-Leffler direct

system, if the kernel of the homomorphism φk
i stabilizes as k grows. More precisely,

if for every i ∈ I there is a k0 ≥ i such that for every k ≥ k0 one has

ker(φk
i ) = ker

(
φ

k0
i

)
.

In particular, it follows that ker(ψi) = ker
(
φ

k0
i

)
.

Examples 1.8.5

• The case of a family of subgroups provides an example of a Mittag-Leffler system,
as here the structure homomorphisms are indeed injective.

• The system of germs of continuous functions at a point is in general not a Mittag-
Leffler system.

Definition Suppose that
(
Gi ,φ

j

i

)
is a direct system of topological groups, i.e., each

Gi is a topological group and each φ
j

i is continuous. Then one defines the direct
product topology on the limit G = lim→ Gi to be the topology generated by the maps

ψi : Gi → G, i.e., it is the finest topology that makes all maps Gi → G continuous.
Recall that a map f : G → X into some topological space is continuous if and only
if all compositions f ◦ ψi are continuous (see Appendix A.5).

Proposition 1.8.6 Let
(
Gi ,φ

j

i

)
be a direct system of topological groups with limit

G. Assume that all structure homomorphisms φ
j

i are open maps.

(a) The limit G is a topological group, when equipped with the inductive limit
topology. The natural homomorphisms ψi : Gi → G are open maps.

(b) Suppose that all the groups Gi are Hausdorff, then the limit G is Hausdorff if
and only if each of the kernels of the maps ψi : Gi → G is closed.

(c) If the system is Mittag-Leffler and all Gi are Hausdorff, then G is Hausdorff.

(d) If all Gi are locally compact groups and ker(ψi) is closed for each i ∈ I , then
G is a locally compact group.

Proof (a) A subset U of G is open if and only if the pre-image ψ−1
i (U ) ⊂ Gi is

open in Gi for every i ∈ I . Since the structure homomorphisms are open, the maps
ψi : Gi → G are open as well and a set U ⊂ G is open if and only if it can be
written as U = ⋃i∈I ψi(Ui) for some open sets Ui ⊂ Gi . We use this to show that
the natural continuous bijection
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lim→
i,j

Gi ×Gj → G×G

is also open, hence a homeomorphism. As any open subset of the left hand side is a
union of images of open subsets of Gi ×Gj , it suffices to show that the image of an
open subset of Gi ×Gj in G×G is open. For this it suffices to assume that the open
set be a rectangle, i.e., of the form Ui ×Uj for open sets Ui ⊂ Gi and Uj ⊂ Gj . But
then the images of Ui and Uj in G are open, hence the image of Ui × Uj in G×G

is open.

We need to show continuity of the multiplication map G × G → G. As G × G

is homeomorphic with the direct limit of the Gi × Gj , it suffices to show that the
composite map α : Gi ×Gj → G×G → G is continuous, where the second map
is multiplication. Choose some k ∈ I with k ≥ i, j . Then α also equals the map
Gi ×Gj → Gk ×Gk → Gk → G. In the second description the continuity follows
from the continuity of the multiplication map of Gk . The inversion is dealt with in a
similar way. This shows that G is a topological group if all Gi are.

(b) Suppose that G is Hausdorff. Then for given i ∈ I the map ψi : Gi → G

is continuous, hence its kernel is closed, as it is the pre-image of the closed set
{1}. Conversely, assume all kernels ker(ψi) are closed and let y 
= 1 in G. Then
there exists i ∈ I and yi ∈ Gi such that y = ψi(yi). Now ψi is open, and so
U = ψi(Gi � ker(ψi)) is an open neighborhood of y which does not contain 1.
Therefore, G is Hausdorff.

(c) Now suppose the system is a Mittag-Leffler direct system and that all Gi are

Hausdorff. Let i ∈ I and fix k0 ∈ I such that Hi = ker
(
φk
i

) = ker
(
φ

k0
i

)
holds for

every k ≥ k0. Then the closed subgroup Hi is also the kernel of ψi , so G is Hausdorff
by part (b).

(d) Finally, suppose that all Gi are locally compact groups and the kernels ker(ψi)
are closed. Then G is Hausdorff by (b), further, as each ψi : Gi → G is open as well,
a compact unit neighborhood U inside Gi maps to a compact unit neighborhood in
G, which therefore is locally compact. �

Examples 1.8.7

• If all Gi are open subgroups of a given topological group H with their subspace
topology, then the limit is their union and the limit topology is the subspace
topology as well.

• If
(
Gi ,φ

j

i

)
is a direct system of discrete groups, then the limit is a discrete, hence

a locally compact group.

• This example shows that the Hausdorff property in the direct limit can fail if
the system does not satisfy the Mittag-Leffler condition. Let V be an infinite-
dimensional Hilbert space and let D 
= V be a dense subspace of V . Let I be the
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set of all finite subsets of D, for each α ∈ I let Vα denote the (finite-dimensional)
linear span of α and set

Gα = V/Vα.

We order I by set inclusion, then if α ≤ β there is a natural projection φβ
α : Gα →

Gβ . This family of maps forms a direct system. Each Vα is a Hilbert space, hence
a Hausdorff topological group and the structure maps are open, but the direct
limit, which can be identified with V/D is no longer Hausdorff, indeed, it carries
the trivial topology.

Projective Limits

There is a dual construction to the direct limit, called the projective limit.

Definition A projective system of groups consists of the following data

• a directed set (I ,≤ ),

• a family (Gi)i∈I of groups and

• a family of group homomorphisms

π
j

i : Gj → Gi , if i ≤ j ,

such that the following axioms are met:

πi
i = IdGi

and π
j

i ◦ πk
j = πk

i , if i ≤ j ≤ k.

Note that, in comparison to a direct system, the homomorphisms now run in the
opposite direction.

Example 1.8.8 Let p be a prime number. Let I = N with the usual order. For
n ∈ N let Gn = Z/pn

Z and for m ≥ n let πm
n : Z/pm

Z → Z/pn
Z be the canonical

projection. Then
(
Gn,πm

n

)
form a projective system of groups.

Definition Let
(
Gi ,π

j

i

)
be a projective system of groups. The projective limit of

the system is the set
G = lim←− Gi

of all a ∈∏i∈I Gi such that ai = π
j

i (aj ) holds for every pair i ≤ j in I .

Proposition 1.8.9 The projective limit G of the system (Gi) is a subgroup of the
product

∏
i∈I Gi . Let πi : G → Gi be the map given by the projection to the i-th

coordinate. Then πi is a group homomorphism. The projective limit has the following
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universal property: If Z is a group with group homomorphisms αi : Z → Gi , such
that αi = π

j

i ◦ αj holds for all i ≤ j in I , then there exists exactly one group
homomorphism α : Z → G, such that all diagrams

Gi

πi←−−−G

↖ ↑
αi� |α

� |
Z

commute.

As in the case of direct limits, one can replace the word “group” with, say, the
word “ring”. Then one assumes that the structure homomorphisms π

j

i are ring
homomorphisms and gets a ring as projective limit.

Proof The proof is left to the reader. �

Definition Again assume that the groups Gi in a given projective system are topo-
logical groups and that all structure homomorphisms π

j

i are continuous. Then one
equips G = lim← Gi with the topology induced by the projections pi : G → Gi and

calls this the projective limit topology.

Since the topology of the product
∏

i Gi is induced by the projections as well, the
projective limit G carries the subspace topology of the product. Hence the question
of locally compactness is connected to the same question for products.

Lemma 1.8.10 Let I be an index set and for every i ∈ I let there be given a non-
empty locally compact space Xi . Then the product space X = ∏i∈I Xi is locally
compact if and only if almost all the spaces Xi are compact.

Proof Let E ⊂ I be a finite subset and for each i ∈ E let Ui ⊂ Xi be a subset.
These data define a rectangle

R = R((Ui)i∈E) =
∏
i∈E

Ui ×
∏

i∈I�E

Xi.

A rectangle is open if and only if every Ui is open.

By definition of the product topology, every open set is a union of open rectangles.
The intersection of two open rectangles is again an open rectangle. If X 
= ∅ is
locally compact, there therefore exists a non-empty open rectangle with compact
closure. The closure of a rectangle R((Ui)i) is the rectangle R((Ui)i), and for this to
be compact, almost all Xi must be compact.

The converse direction follows from Tychonov’s Theorem and the simple observation
that a finite product of topological spaces is locally compact if and only if all factors
are locally compact. �
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Proposition 1.8.11 Let
(
Gi ,π

j

i

)
be a projective system of topological groups with

limit G. Then G is a closed subgroup of the product
∏

i Gi and carries the subspace
topology, hence it is a topological group. If all Gi are Hausdorff, then G is Hausdorff.
If all Gi are locally compact and all but finitely many are compact, then G is locally
compact.

Proof The assertions of this propositions are clear by what has been said above. �

Definition A profinite group is a locally compact group isomorphic to a projective
limit of finite groups.

Example 1.8.12 Let p be a prime number. The profinite group

Zp = lim←
n

Z/pn
Z

is called the group of p-adic integers, see Sect. 14.1.

1.9 Exercises

Exercise 1.1 Determine the Haar measures of the groups Z, R, (R×, ·), T.

Exercise 1.2 Give an example of a locally compact group G and two closed subsets
A,B of G such that AB is not closed.

(Hint: There is an example with G = R.)

Exercise 1.3 Let G be a topological group and suppose there exists a compact subset
K of G such that xK ∩K 
= ∅ for every x ∈ G. Show that G is compact.

Exercise 1.4 Let G be a locally compact group with Haar measure μ, and let S ⊂ G

be a measurable subset with 0 < μ(S) < ∞. Show that the map x �→ μ(S ∩ xS)
from G to R is continuous.

(Hint: Note that 1S ∈ L2(G). Write the map as 〈1S ,Lx−1 1S〉 and use the Cauchy-
Schwarz inequality.)

Exercise 1.5 Let G be a locally compact group with Haar measure μ, and let S be
a measurable subset with 0 < μ(S) < ∞. Show that the set K of all k ∈ G with
μ(S ∩ kS) = μ(S) is a closed subgroup of G.

Exercise 1.6 Let G be a locally compact group, H a dense subgroup, and μ a Radon
measure on G such that μ(hA) = μ(A) holds for every measurable set A ⊂ G and
every h ∈ H . Show that μ is a Haar measure.
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Exercise 1.7 Let G be a locally compact group, H a dense subgroup, and μ a Haar
measure. Let S ⊂ G be a measurable subset such that for each h ∈ H the sets

hS ∩ (G � S) and S ∩ (G � S)

are both null-sets. Show that either S or its complement G � S is a null-set.

(Hint: Show that the measure ν(A) = μ(A ∩ S) is invariant.)

Exercise 1.8 Let B be the subgroup of GL2(R) defined by

B =
{(

1 x

y

)
: x, y ∈ R, y 
= 0

}
.

Show that I (f ) = ∫
R
×
∫

R
f
(

1 x
y

)
dx

dy

y
is a Haar-integral on B. Show that the

modular function 	 of B satisfies: 	
(

1 x
y

) = |y|.

Exercise 1.9 Let G be a locally-compact group. Show that the convolution satisfies
f ∗ (g ∗ h) = (f ∗ g) ∗ h, f ∗ (g + h) = f ∗ g + f ∗ h.

Exercise 1.10 Let G be a locally compact group, and let χ : G → R
×
>0 be a

continuous group homomorphism.

(a) Show that there exists a unique Radon measure μ on G, which is χ -quasi-
invariant in the sense that μ(xA) = χ (x)μ(A) holds for every x ∈ G and every
measurable subset A ⊂ G.

(b) Let H ⊂ G be a closed subgroup. Show that there exists a Radon measure ν on
G/H with ν(xA) = χ (x)ν(A) for every x ∈ G and every measurableA ⊂ G/H ,
if and only if for every h ∈ H one has χ (h)	G(h) = 	H (h).

(Hint: Verify that the measure μ is χ -quasi-invariant if and only if the corresponding
integral J satisfies J (Lxf ) = χ (x)J (f ). If I is a Haar-integral, consider J (f ) =
I (χf ).)

Exercise 1.11 Let G,H be locally compact groups and assume that G acts on H
by group homomorphisms h �→ gh, such that the ensuing map G × H → H is
continuous.

(a) Show that the product (h, g)(h′, g′) = (h gh′, gg′) gives H ×G (with the product
topology) the structure of a locally compact group, called the semi-direct product
H � G.

(b) Show that there is a unique group homomorphism δ : G → (0,∞) such that
μH ( gA) = δ(g)μH (A), where μH is a Haar measure on H and A is a measurable
subset of H .
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(c) Show that
∫
H
f ( gx) dμH (x) = δ(g)

∫
H
f (x) dμH (x) forf ∈ Cc(H ) and deduce

that δ is continuous.

(d) Show that a Haar integral on H � G is given by
∫
H

∫
G

f (h, g)δ(g) dμH (h) dμG(g).

Exercise 1.12 For a finite group G define the group algebra C[G] to be a vector
space of dimension equal to the group order |G|, with a special basis (vg)g∈G, and

equipped with a multiplication vgvg′
def=vgg′ . Show that C[G] indeed is an algebra over

C. Show that the linear map vg �→ 1{g} is an isomorphism of C[G] to the convolution
algebra L1(G).
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