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Preface

The thread of this book is formed by two fundamental principles of Harmonic Anal-
ysis: the Plancherel Formula and the Poisson Summation Formula. We first prove
both for locally compact abelian groups. For non-abelian groups we discuss the
Plancherel Theorem in the general situation for type-I groups. The generalization
of the Poisson Summation Formula to non-abelian groups is the Selberg Trace For-
mula, which we prove for arbitrary groups admitting uniform lattices. As examples
for the application of the Trace Formula we treat the Heisenberg group and the group
SL2(R). In the former case the trace formula yields a decomposition of the L2 -space
of the Heisenberg group modulo a lattice. In the case SL2(R), the trace formula is
used to derive results like the Weil asymptotic law for hyperbolic surfaces and to
provide the analytic continuation of the Selberg zeta function. We finally include a
chapter on the applications of abstract Harmonic Analysis on the theory of wavelets,
and we include a chapter on p-adic and adelic groups, which are important examples,
as they are used in number theory.

The present book is a text book for a graduate course on abstract harmonic analysis
and its applications. The book can be used as a follow up of the First Course in
Harmonic Analysis, [Dei05], or independently, if the students have required a modest
knowledge of Fourier Analysis already. In this book, among other things, proofs are
given of Pontryagin Duality and the Plancherel Theorem for LCA groups, which
were mentioned but not proved in [Dei05]. Using Pontryagin duality, we also obtain
various structure theorems for locally compact abelian groups.

Knowledge of set theoretic topology, Lebesgue integration, and functional analysis
on an introductory level will be required in the body of the book. For the convenience
of the reader we have included all necessary ingredients from these areas in the
appendices.

Differences to the first edition: Many details have been changed, new and better
proofs have been found, some assertions have been sharpened and a few are even
new to this book. Section 1.8 and Chap. 13 have not been part of the first edition.
Whilst fitting in the changes, we tried to preserve the numbering of Theorems etc. We
apologize for inconveniences that arise at those places where this was not possible.

v



Acknowledgments

The authors thank the following people for corrections and comments on the book:
Ralf Beckmann, Wolfgang Bertram, Robert Burckel, Cody Gunton, Linus Kramer,
Yi Li, Jonas Morrissey, Michael Mueger, Kenneth Ross, Alexander Schmidt, Christian
Schmidt, Vahid Shirbisheh, Frank Valckenborgh, Fabian Werner, Dana Williams.

Chapters 3 and 4 are partly based on written notes of a course given by Prof. Eberhard
Kaniuth on duality theory for abelian locally compact groups. The authors are grateful
to Prof. Kaniuth for allowing us to use this material.

vii



Chapter Dependency

1 2

3 5

4 6

13

7

8 9 12

10 11

Notation

We write N = {1,2, 3, . . . } for the set of natural numbers. The sets of integer,
real, and complex numbers are denoted as Z, R, C. For a set A we write 1A for
the characteristic function of A, i.e., 1A(x) is 1 if x ∈ A and zero otherwise. The
Kronecker-delta function is defined to be

δi,j
def=
{

1 if i= j,
0 otherwise.

The word positive will always mean≥ 0. For > 0, we use the words strictly positive.

ix



Contents

1 Haar Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Topological Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Locally Compact Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Haar Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The Modular Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 The Quotient Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.8 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Banach Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Banach Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 The Spectrum σA(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Adjoining a Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 The Gelfand Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 The Gelfand-Naimark Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 The Continuous Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 Exercises and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Duality for Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 The Dual Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 The C∗-Algebra of an LCA-Group . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 The Plancherel Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Pontryagin Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 The Poisson Summation Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Exercises and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



xii Contents

4 The Structure of LCA-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 The Structure Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Operators on Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Hilbert-Schmidt and Trace Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1 Schur’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 Representations of L1(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Compact Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1 Finite Dimensional Representations . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 The Peter-Weyl Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Isotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4 Induced Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.5 Representations of SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Direct Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.1 Von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 Weak and Strong Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.4 Hilbert Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.5 The Plancherel Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9 The Selberg Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.1 Cocompact Groups and Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Discreteness of the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.3 The Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.4 Locally Constant Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.5 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 The Heisenberg Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.2 The Unitary Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.3 The Plancherel Theorem for H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.4 The Standard Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
10.5 Exercises and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



Contents xiii

11 SL2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.1 The Upper Half Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
11.2 The Hecke Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
11.3 An Explicit Plancherel Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.4 The Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.5 Weyl’s Asymptotic Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
11.6 The Selberg Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.7 Exercises and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.1 First Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.2 Discrete Series Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.3 Examples of Wavelet Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.4 Exercises and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

13 p-Adic Numbers and Adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.1 p-Adic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.2 Haar Measures on p-adic Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 254
13.3 Adeles and Ideles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Appendix A Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Appendix B Measure and Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Appendix C Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



Chapter 1

Haar Integration

In this chapter, topological groups and invariant integration are introduced. The
existence of a translation invariant measure on a locally compact group, called Haar
measure, is a basic fact that makes it possible to apply methods of analysis to study
such groups. The Harmonic Analysis of a group is basically concerned with spaces
of measurable functions on the group, in particular the spaces L1(G) and L2(G),
both taken with respect to Haar measure. The invariance of this measure allows to
analyze these function spaces by some generalized Fourier Analysis, and we shall
see in further chapters of this book how powerful these techniques are.

In this book, we will freely use concepts of set-theoretic topology. For the
convenience of the reader we have collected some of these in Appendix A.

1.1 Topological Groups

A topological group is a group G, together with a topology on the set G such that the
group multiplication and inversion,

G×G → G G → G

(x, y) �→ xy, x �→ x−1,

are both continuous maps.

Remark 1.1.1 It suffices to insist that the map α : (x, y) → x−1y is continuous.
To see this, assume that α is continuous and recall that the map G → G ×G, that
maps x to (x, e) is continuous (Example A.5.3), where e is the unit element of the
group G. We can thus write the inversion as a composition of continuous maps as
follows x �→ (x, e) �→ x−1e = x−1. The multiplication can be written as the map
(x, y) �→ (x−1, y

)
followed by the map α, so is continuous as well, if α is.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 1
DOI 10.1007/978-3-319-05792-7_1, © Springer International Publishing Switzerland 2014



2 1 Haar Integration

Examples 1.1.2

• Any given group becomes a topological group when equipped with the discrete
topology, i.e., the topology, in which every subset is open. In this case we speak
of a discrete group

• The additive and multiplicative groups (R,+) and (R×,×) of the field of real num-
bers are topological groups with their usual topologies. So is the group GLn(R)
of all real invertible n × n matrices, which inherits the R

n2
-topology from the

inclusion GLn(R) ⊂ Mn(R) ∼= R
n2

, where Mn(R) denotes the space of all n× n

matrices over the reals. As for the proofs of these statements, recall that in anal-
ysis one proves that if the sequences ai and bi converge to a and b, respectively,
then their difference ai − bi converges to a − b, and this implies that (R,+) is a
topological group. The proof for the multiplicative group is similar. For the matrix
groups recall that matrix multiplication is a polynomial map in the entries of the
matrices, and hence continuous. The determinant map also is a polynomial and
so the inversion of matrices is given by rational maps, as for an invertible matrix
A one has A−1 = det(A)−1A#, where A# is the adjugate matrix of A; entries of
the latter are determinants of sub-matrices of A, therefore the map A �→ A−1 is
indeed continuous.

Let A,B ⊂ G be subsets of the group G. We write

AB = {ab : a ∈ A, b ∈ B} and A−1 = {a−1 : a ∈ A},
as well as A2 = AA, A3 = AAA and so on.

Lemma 1.1.3 Let G be a topological group.

(a) For a ∈ G the translation maps x �→ ax and x �→ xa, as well as the inversion
x �→ x−1 are homeomorphisms of G. A set U ⊂ G is a neighborhood of a ∈ G

if and only if a−1U is a neighborhood of the unit element e ∈ G. The same holds
with Ua−1.

(b) If U is a neighborhood of the unit, then U−1 = {u−1 : u ∈ U
}

also is a neigh-
borhood of the unit. We call U a symmetric unit-neighborhood if U = U−1.
Every unit-neighborhood U contains a symmetric one, namely U ∩ U−1.

(c) For a given unit-neighborhood U there exists a unit-neighborhood V with
V 2 ⊂ U .

(d) If A,B ⊂ G are compact subsets, then AB is compact.

(e) If A,B are subsets of G and A or B is open, then so is AB.

(f) For A ⊂ G the topological closureA equalsA =⋂V AV , where the intersection
runs over all unit-neighborhoods V in G.
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Proof (a) follows from the continuity of the multiplication and the inversion. (b)
follows from the continuity of the inversion. For (c), let U be an open unit-
neighborhood, and let A ⊂ G×G be the inverse image of U under the continuous
map m : G × G → G given by the group multiplication. Then A is open in the
product topology of G × G. Any set, which is open in the product topology, is a
union of sets of the form W × X, where W,X are open in G. Therefore there are
unit-neighborhoods W,X with (e, e) ∈ W × X ⊂ A. Let V = W ∩ X. Then V is a
unit-neighborhood as well and V × V ⊂ A, i.e., V 2 ⊂ U . For (d) recall that the set
AB is the image of the compact set A × B under the multiplication map; therefore
it is compact. (e) Assume A is open, then AB = ⋃b∈B Ab is open since every set
Ab is open. For (f) let x ∈ A, and let V be a unit-neighborhood. Then xV −1 is a
neighborhood of x, and so xV −1 ∩ A 
= ∅. Let a ∈ xV −1 ∩ A. Then a = xv−1 for
some v ∈ V , so x = av ∈ AV , which proves the first inclusion. For the other way
round let x be in the intersection of all AV as above. Let W be a neighborhood of
x. Then V = x−1W is a unit-neighborhood and so is V −1. Hence x ∈ AV −1, so
there is a ∈ A, v ∈ V with x = av−1. It follows a = xv ∈ xV = W . This means
W ∩ A 
= ∅. As W was arbitrary, this implies x ∈ A. �

Lemma 1.1.4 Let H be a subgroup of the topological group G. Then its closure H

is also a subgroup of G. If H is normal, then so is H .

Proof Let H ⊂ G be a subgroup. To show that the closure H is a subgroup, it
suffices to show that x, y ∈ H implies xy−1 ∈ H . Let m denote the continuous map
H × H → G given by m(x, y) = xy−1. The pre-image m−1(H ) must be closed
and contains the dense set H ×H ; therefore it contains the whole of H ×H , which
proves the first claim. Next assume that H is normal, then for every g ∈ G the set
gHg−1 is closed and contains gHg−1 = H ; therefore H ⊂ gHg−1. Conjugating
by g one gets g−1Hg ⊂ H . As g varies, the second claim of the lemma follows. �

In functional analysis, people like to use nets in topological arguments. These have
the advantage of providing very intuitive proofs. We refer the reader to Sect. A.6 for
further details on nets and convergence in general. The next lemma is an example,
how nets provide intuitive proofs.

Lemma 1.1.5 Let G be a topological group. Let A ⊂ G be closed and K ⊂ G be
compact. Then AK is closed.

Proof Let
(
xj = ajkj

)
j∈J be a net in AK, convergent in G. As K is compact, one

can replace it with a subnet so that (kj ) converges in K. Since the composition in G
and the inversion are continuous, the net aj = xjk

−1
j converges too, with limit in

A = A. Therefore the limit of xj = ajkj lies in AK, which therefore is closed. �

Lemma 1.1.6 Let G be a topological group and K ⊂ G a compact subset. Let U
be an open set containing K. Then there exists a neighborhood V of the unit in G
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such that KV ∪ VK ⊂ U . In particular, if U is open and compact, then there exist
a neighborhood V of e such that UV = VU = U .

Proof For each x ∈ K choose a unit-neighborhood Vx such that xV 2
x ⊂ U . By

compactness of K we may find x1, . . . , xl ∈ K such that K ⊂ ⋃l
i=1 xiVxi and

K ⊂ ⋃l
i=1 Vxi xi . Set V = ⋂l

i=1 Vxi . Then KV ⊂ ⋃l
i=1 xiVxiV ⊂ ⋃l

i=1 xiV
2
xi
⊂ U

and similarly VK ⊂ U . �

Recall (Appendix A) that a topological space X is a T1-space if for x 
= y in X there
are neighborhoods Ux ,Uy of x and y, respectively, such that y is not contained in Ux

and x is not contained in Uy . So X is T1 if and only if all singletons {x} are closed.
The space is called a T2-space or Hausdorff space if the neighborhoods Ux and Uy

can always be chosen disjoint.

Lemma 1.1.7 Let G be a locally compact group.

(a) Let H ⊂ G be a subgroup. Equip the left coset space G/H = {xH : x ∈ G}
with the quotient topology. Then the canonical projection π : G → G/H , which
sends x ∈ G to the coset xH, is an open mapping. The space G/H is a T1-space
if and only if the group H is closed in G. If H is normal in G, then the quotient
group G/H is a topological group.

(b) For any open symmetric unit-neighborhood V the set H = ⋃∞
n=1 V

n is an open
subgroup.

(c) Every open subgroup of G is closed as well.

Proof (a) Let U ⊂ G be open, then π−1(π (U )) = UH is open by Lemma 1.1.3 (e).
As a subset of G/H is open in the quotient topology if and only if its inverse image
under π is open in G, the map π is indeed open. So, for every x ∈ G the set G� xH

is mapped to an open set if and only if H is closed. This proves that singletons are
closed in G/H, if and only if H is closed.

Now suppose that H is normal in G. One has a canonical group isomorphism
(G×G)/(H ×H ) → G/H ×G/H and one realizes that this map also is a home-
omorphism, where the latter space is equipped with the product topology. Consider
the map α : G×G → G and likewise for G/H. One gets a commutative diagram

G×G
α−−−−−−−→ G⏐⏐
 ⏐⏐


G/H ×G/H
α−−−→ G/H.

As G/H×G/H ∼= (G×G)/(H×H ), the map α is continuous if and only if the map
G×G → G/H is continuous, which it is, as α and the projection are continuous.

(b) Let V be a symmetric unit-neighborhood. For x ∈ V n and y ∈ V m one has
xy ∈ V n+m and as V is symmetric, one also has x−1 ∈ V n, so H is an open
subgroup.
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(c) Let H be an open subgroup. Writing G as union of left cosets we get G � H =⋃
g∈G�H gH.As H is open, so is gH for every g ∈ G. Hence the complement G�H ,

being the union of open sets, is open, so H is closed. �

Proposition 1.1.8 Let G be a topological group. Let H be the closure of the set {1}.

(a) The set H is the smallest closed subgroup of G. The group H is a normal subgroup
and the quotient G/H with the quotient topology is a T1- space.

(b) Every continuous map of G to a T1-space factors over the quotient G/H.

(c) Every topological group, which is T1, is already T2, i.e., a Hausdorff space.

Proof We prove part (a). The set H is a normal subgroup by Lemma 1.1.4. The last
assertion follows from Lemma 1.1.7 (a).

For part (b) let x ∈ G. As the translation by x is a homeomorphism, the closure of
the set {x} is the set xH = Hx. So, if A ⊂ G is a closed set, then A = AH = HA.
Let f : G → Y be a continuous map into a T1-space Y . For y ∈ Y the singleton {y}
is closed, so f −1({y}) is closed, hence of the form AH for some set A ⊂ G. This
implies that f (gh) = f (g) for every g ∈ G and every h ∈ H .

To show part (c), let G be a topological group that is T1. Let x 
= y in G and set
U = G�{xy−1}. Then U is an open neighborhood of the unit. Let V be a symmetric
unit-neighborhood with V 2 ⊂ U . Then V ∩ V xy−1 = ∅, for otherwise there would
be a, b ∈ V with a = b−1xy−1, so xy−1 = ab ∈ V 2, a contradiction. So it follows
that V x ∩ Vy = ∅, i.e., V x and Vy are disjoint neighborhoods of x and y, which
means that G is a Hausdorff space. �

The following observation is often useful.

Lemma 1.1.9 Suppose that φ : G → H is a homomorphism between topological
groups G and H. Then φ is continuous if and only if it is continuous at the unit 1G.

Proof Assume that φ is continuous at 1G. Let x ∈ G be arbitrary and let (xj ) be
a net with xj → x in G. Then x−1xj → x−1x = 1G and we have φ(x)−1φ(xj ) =
φ(x−1xj ) → φ(1G) = 1H , which then implies φ(xj ) → φ(x). Thus φ is continuous.

�

Notation In the preceding proof we have used the notation xj → x indicating that
the net (xj ) converges to the point x.

1.2 Locally Compact Groups

A topological space is called locally compact if every point possesses a compact
neighborhood. A topological group is called a locally compact group if it is Hausdorff
and locally compact.
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Note that by Proposition 1.1.8, every topological group has a biggest Hausdorff quo-
tient group, and every continuous function to the complex numbers factors through
that quotient. So, as far as continuous functions are concerned, a topological group
is indistinguishable from its Hausdorff quotient. Thus it makes sense to restrict the
attention to Hausdorff groups.

A subset A ⊂ X of a topological space X is called relatively compact if its closure A

is compact in X. Note that in a locally compact Hausdorff space X, every point has a
neighborhood base consisting of compact sets. A subset S of G is called σ -compact
if it can be written as a countable union of compact sets.

Proposition 1.2.1 Let G be a locally compact group.

(a) For a closed subgroup H the quotient space G/H is a locally compact Hausdorff
space.

(b) The group G possesses an open subgroup, which is σ -compact.

(c) The union of countably many open σ -compact subgroups generates an open
σ -compact subgroup.

Proof For (a) let xH 
= yH in G/H . Choose an open, relatively compact neigh-
borhood U ⊂ G of x with U ∩ yH = ∅. The set UH is closed by Lemma 1.1.3, so
there is an open, relatively compact neighborhood V of y such that V ∩ UH = ∅.
This implies VH ∩ UH = ∅, and we have found disjoint open neighborhoods of
xH and yH, which means that G/H is a Hausdorff space. It is locally compact, as for
given x ∈ H , and a compact neighborhood U of x the set UH ⊂ G/H is the image
of the continuous map G → G/H of the compact set U; therefore it is a compact
neighborhood of xH in G/H.

To show (b), let V be a symmetric, relatively compact open unit-neighborhood. For
every n ∈ N one has V

n = V
n ⊂ V ·V n = V n+1. Therefore H =⋃n V

n =⋃n V
n.

An iterated application of Lemma 1.1.3 (d) shows that V
n

is compact, so H is
σ -compact. By Lemma 1.1.7 (b), H is an open subgroup.

Finally, for (c) let Ln be a sequence of σ -compact open subgroups. Then each Ln is
the union of a sequence

(
Kn,j
)
j

of compact sets. The group L generated by all Ln is

also generated by the family
(
Kn,j
)
n,j∈N

and is therefore σ -compact. It is also open
since it contains the open subgroup Ln for any n. �

1.3 Haar Measure

For a topological space X, we naturally have a σ -algebra B on X, the smallest σ -
algebra containing all open sets. This σ -algebra also contains all closed sets and
is generated by either class. It is called the Borel σ -algebra. Any element of this
σ -algebra is called a Borel set.
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Fix a measure space (X, A,μ), so A ⊂ P(X) is a σ -algebra and μ : A → [0,∞]
is a measure. One calls μ a complete measure if every subset of a μ-null-set is an
element of A. If μ is not complete, one can extend μ in a unique way to the σ -algebra
A generated by A and all subsets of μ-null-sets; this is called the completion of A
with respect to μ. A function f : X → C will be called μ-measurable if f −1(S) lies
in A for every Borel set S ⊂ C.

Any measure μ : A → [0,∞] defined on a σ -algebra A ⊃ B is called a Borel
measure. Unless specified otherwise, we will always assume A to be the completion
of B with respect to μ. A Borel measure μ is called locally finite if every point x ∈ X

possesses a neighborhood U with μ(U ) < ∞.

Example 1.3.1 The Lebesgue measure on R is a Borel measure. So is the counting
measure #, which for any set A is defined by

#(A)
def=
{

cardinality of A if A is finite

∞ otherwise.

The Lebesgue measure is locally finite; the counting measure is not.

Definition A locally finite Borel measure μ on B is called an outer Radon measure if

• μ(A) = infU⊃A μ(U ) holds for every A ∈ B, where the infimum is taken over all
open sets U containing A, and

• μ(U ) = supK⊂U μ(K) holds for every open set U, where the supremum is
extended over all compact sets K contained in U.

For the first property one says that an outer Radon measure is outer regular. The
second says that an outer Radon measure is weakly inner regular. For simplicity,
we will use the term Radon measure for an outer Radon measure. In the literature,
one will sometimes find the notion of Radon measure used for what we call an inner
Radon measure; see Appendix B.2 for a discussion.

Note that for an outer Radon measure μ one has μ(A) = supK⊂A μ(K) for every
measurable A with μ(A) < ∞, where the supremum is taken over all subsets of A
which are compact in X. This is proved in Lemma B.2.1.

Example 1.3.2

• The Lebesgue measure on the Borel sets of R is a Radon measure.

• A locally finite measure, which is not outer regular, is given by the following
example. Let X be an uncountable set equipped with the cocountable topology,
i.e., a non-empty set A is open if and only if its complementX�A is countable. The
Borel σ -algebra consists of all sets that are either countable or have a countable
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complement. On this σ -algebra define a measure μ by μ(A) = 0 if A is countable
and μ(A) = 1 otherwise. Then μ is finite, but not outer regular, since every open
subset U of X is either empty or satisfies μ(U ) = 1.

The following assertion is often used in the sequel.

Proposition 1.3.3 Let μ be an outer Radon measure on a locally compact Hausdorff
space X. Then the space Cc(X) is dense in Lp(μ) for every 1 ≤ p < ∞.

Proof Fix p as in the lemma and let V ⊂ Lp(μ) be the closure of Cc(X) inside
Lp = Lp(μ). We have to showV = Lp. By integration theory, the space of Lebesgue
step functions is dense in Lp and any such is a linear combination of functions of
the form 1A, where A ⊂ X is of finite measure. So we have to show 1A ∈ V . By
outer regularity, there exists a sequence Un ⊃ A of open sets such that 1Un

converges
to 1A in Lp. So it suffices to assume that A is open. By weak inner regularity we
similarly reduce to the case when A is compact. For given ε > 0 there exists an open
set U ⊃ A with μ(U � A) < ε. By Urysohn’s Lemma (A.8.1) there is g ∈ Cc(X)
with 0 ≤ g ≤ 1, the function vanishes outside U and is constantly equal to 1 on A.
Then the estimate

‖1A − g‖pp =
∫
U�A

|g(x)|p dx ≤ μ(U � A) < ε

shows the claim. �

Let G be a locally compact group. A measure μ on the Borel σ -algebra of G is
called a left-invariant measure, or simply invariant if μ(xA) = μ(A) holds for every
measurable set A ⊂ G and every x ∈ G. Here xA stands for the set of all xa, where
a ranges over A.

Examples 1.3.4

• The counting measure is invariant on any group.

• For the group (R,+) the Lebesgue measure dx is invariant under translations, so
it is invariant in the sense above.

• For the multiplicative group (R×, ·) the measure dx
|x| is invariant as follows from

the change of variables rule.

Theorem 1.3.5 Let G be a locally compact group. There exists a non-zero left-
invariant outer Radon measure on G. It is uniquely determined up to positive
multiples. Every such measure is called a Haar measure. The corresponding integral
is called Haar-integral.

The existence of an invariant measure can be made plausible as follows. Given an
open set U in a topological group G one can measure the relative size of a set A ⊂ G
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by the minimal number (A : U ) of translates xU needed to cover A. This relative
measure is clearly invariant under left translation, and is finite, if A is compact. One
can compare the sizes of sets and the quotient (A:U )

(K:U ) , where K is a given fixed compact,
should converge as U shrinks to a point. The limit is the measure in question. It is,
however, hard to verify that the limit exists and defines a measure. We circumvent
this problem by considering functionals on continuous functions of compact support
instead of measures. Before giving the proof of the theorem, we will draw a few
immediate conclusions.

For a function f on a topological space X the support is the closure of the set
{x ∈ X : f (x) 
= 0}.

Corollary 1.3.6 Let μ be a Haar measure on the locally compact group G.

(a) Every non-empty open set has strictly positive (> 0) measure.

(b) Every compact set has finite measure.

(c) Every continuous positive function f ≥ 0 with
∫
G
f (x) dμ(x) = 0 vanishes

identically.

(d) Let f be a measurable function on G, which is integrable with respect to a Haar
measure. Then the support of f is contained in a σ -compact open subgroup of G.

Proof For (a) assume there is a non-empty open set U of measure zero. Then every
translate xU of U has measure zero by invariance. As every compact set can be
covered by finitely many translates of U, every compact set has measure zero. Being
a Radon measure, μ is zero, a contradiction.

For (b) recall that the local-finiteness implies the existence of an open set U of finite
measure. Then every translate of U has finite measure. A given compact set can be
covered by finitely many translates, hence has finite measure.

For (c) let f be as above, then the measure of the open set f −1(0,∞) must be zero,
so it is empty by part (a).

To show (d), let f be an integrable function. It suffices to show that the set A = {x ∈
X : f (x) 
= 0} is contained in an open σ -compact subgroup L, as the closure will
then also be in L, which is closed by Lemma 1.1.7 (c). The set A is the union of the
sets An = {x ∈ X : |f (x)| > 1/n} for n ∈ N, each of which is of finite measure. By
Proposition 1.2.1 (c), it suffices to show that a setAof finite measure is contained in an
open σ -compact subgroup L. By the outer regularity there exists an open set U ⊃ A

with μ(U ) < ∞. It suffices to show that U lies in a σ -compact open subgroup. Let
H ⊂ G be any open σ -compact subgroup of G, which exists by Proposition 1.2.1
(b). Then G is the disjoint union of the open cosets xH , where x ∈ G ranges over a
set of representatives of G/H . The set U can only meet countably many cosets xH ,
since for every coset one has either xH ∩ U = ∅ or μ(xH ∩ U ) > 0 by part (a) of
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this corollary. Let L be the group generated by H and the countably many cosets xH

with xH ∩ U 
= ∅. Then L ⊃ U ⊃ A and L is σ -compact and open by Proposition
12.1 (c). �

Proof of the theorem Let Cc(G) denote the space of all continuous functions from
G to C of compact support.

Definition We say that a map f : G → X to a metric space (X, d) is uniformly
continuous, if for every ε > 0 there exists a unit-neighborhood U such that for
x−1y ∈ U or yx−1 ∈ U one has d (f (x), f (y))< ε.

Lemma 1.3.7 Any function f ∈ Cc(G) is uniformly continuous.

Proof We only show the part with x−1y ∈ U because the other part is proved simi-
larly and to obtain both conditions, one simply intersects the two unit-neighborhoods.
Let K be the support of f . Fix ε > 0 and a compact unit-neighborhood V . As f is
continuous, for everyx ∈ G there exists an open unit-neighborhoodVx ⊂ V such that
y ∈ xVx ⇒ |f (x) − f (y)| < ε/2. Let Ux be a symmetric open unit-neighborhood
with U 2

x ⊂ Vx . Then the sets xUx , for x ∈ KV , form an open covering of the
compact set KV , so there are x1, . . . xn ∈ KV such that KV ⊂ x1U1 ∩ · · · ∩ xnUn,
where we have written Uj for Uxj . Let U = U1 ∩ · · · ∩ Un. Then U is a symmetric
open unit-neighborhood. Let now x, y ∈ G with x−1y ∈ U . If x /∈ KV , then y /∈ K

as x ∈ yU−1 = yU ⊂ yV . So in this case we conclude f (x) = f (y) = 0. It
remains to consider the case when x ∈ KV . Then there exists j with x ∈ xjUj , and
so y ∈ xjUjU ⊂ xjVj . It follows that

|f (x) − f (y)| ≤ |f (x) − f (xj )| + |f (xj ) − f (y)| <
ε

2
+ ε

2
= ε

as claimed. �

In order to prove Theorem 1.3.5, we use Riesz’s Representation Theorem B.2.2. It
suffices to show that up to positive multiples there is exactly one positive linear map
I : Cc(G) → C, I 
= 0, which is invariant in the sense that I (Lxf ) = I (f ) holds
for every x ∈ G and every f ∈ Cc(G), where the left translation is defined by

Lxf (y)
def=f
(
x−1y
)
. Likewise, the right translation is defined by Rxf (y)

def=f (yx).
Note that Lxyf = LxLyf and likewise for R.

Definition We say that a function f on G is a positive function if f (x) ≥ 0 for
every x ∈ G. We then write f ≥ 0. Write C+

c (G) for the set of all positive functions
f ∈ Cc(G). For any two functions f , g ∈ C+

c (G) with g 
= 0 there are finitely
many elements sj ∈ G and positive numbers cj such that for every x ∈ G one has
f (x) ≤ ∑n

j=1 cjg(s−1
j x). We can also write this inequality without arguments as

f ≤∑n
j=1 cjLsj g. Put
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(f : g)
def= inf

⎧⎨
⎩

n∑
j=1

cj :
there are sj ∈ G

such thatf ≤∑n
j=1 cjLsj g

⎫⎬
⎭ .

Lemma 1.3.8 For f , f1, f2, g,h ∈ C+
c (G) with g,h 
= 0, c > 0 and y ∈ G one has

(a) (Lyf : g) = (f : g), so the index is translation-invariant,

(b) (f1 + f2 : g) ≤ (f1 : g) + (f2 : g), sub-additive,

(c) (cf : g) = c(f , g), homogeneous,

(d) f1 ≤ f2 ⇒ (f1 : g) ≤ (f2 : g), monotonic,

(e) (f : h) ≤ (f : g)(g : h),

(f) (f : g) ≥ max f

max g
, where maxf

def= max{f (x) : x ∈ G}.

Proof We only prove (e) and (f), as the other assertions are easy exercises. For (e)
assume f ≤∑j cjLsj g and g ≤∑l dlLtl h. Then f ≤ ∑j

∑
l cj dl Lsj tl h, which

implies the claim. For (f) choose x ∈ G with max f = f (x). Then max f = f (x) is

less than or equal to
∑

j cjg
(
s−1
j x
)
≤∑j cj max g. �

Fix a non-zero f0 ∈ C+
c (G). For f ,φ ∈ C+

c (G) with φ 
= 0 let

J (f ,φ) = Jf0 (f ,φ) = (f : φ)

(f0 : φ)
.

Lemma 1.3.9 For f , g,φ ∈ C+
c (G) with f ,φ 
= 0, c > 0 and s ∈ G one has

(a) 1
(f0:f ) ≤ J (f ,φ) ≤ (f : f0),

(b) J (Lsf ,φ) = J (f ,φ),

(c) J (f + g,φ) ≤ J (f ,φ) + J (g,φ),

(d) J (cf ,φ) = cJ (f ,φ).

Proof This follows from Lemma 1.3.8. �

The map J (·,φ) will approximate the Haar-integral as the support of φ shrinks to {e}.
Directly from Lemma 1.3.9 we only get sub-additivity, but in the limit this function
will become additive as the following lemma shows. This is the central point of the
proof of the existence of the Haar integral.

Lemma 1.3.10 Let f1, f2 ∈ C+
c (G) and ε > 0. Then there is a unit-neighborhood

V in G such that

J (f1,φ) + J (f2,φ) ≤ J (f1 + f2,φ)(1 + ε)
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holds for every φ ∈ C+
c (G) � {0} with support in V.

Proof Choose f ′ ∈ C+
c (G) such that f ′ ≡ 1 on the support of f1 +f2. Let ε, δ > 0

be arbitrary. Set

f = f1 + f2 + δf ′, h1 = f1

f
, h2 = f2

f
,

where we set hj (x) = 0 if f (x) = 0. Then hj ∈ C+
c (G) for j = 1, 2.

According to Lemma 1.3.7, every function in Cc(G) is left uniformly continuous,
so in particular, for hj this means that there is a unit-neighborhood V such that
for x, y ∈ G with x−1y ∈ V and j = 1, 2 one has |hj (x) − hj (y)| < ε

2 . Let
φ ∈ C+

c (G) � {0} with support in V . Choose finitely many sk ∈ G, ck > 0 with
f ≤ ∑k ckLskφ. Then φ(s−1

k x) 
= 0 implies |hj (x) − hj (sk)| < ε
2 , and for all x

one has

fj (x) = f (x)hj (x) ≤
∑
k

ckφ
(
s−1
k x
)
hj (x)

≤
∑
k

ckφ
(
s−1
k x
) (

hj (sk) + ε

2

)
,

so that (fj : φ) ≤ ∑k ck(hj (sk) + ε
2 ), implying that (f1 : φ) + (f2 : φ) is less than

or equal to
∑

k ck(1 + ε), which yields

J (f1,φ) + J (f2,φ) ≤ J (f ,φ)(1 + ε)

≤ (J (f1 + f2,φ) + δJ (f ′,φ))(1 + ε).

For δ → 0 we get the claim. �

Lemma 1.3.8(e) together with (f : f ) = 1 implies 1
(f0:f ) ≤ (f : f0). For

f ∈ C+
c (G) � {0} let Sf be the compact interval

[
1

(f0:f ) , (f : f0)
]
. The space

S
def=∏f 
=0 Sf , where the product runs over all non-zero f ∈ C+

c (G), is com-
pact by Tychonov’s Theorem A.7.1. Recall from Lemma 1.3.9 (a) that for every
φ ∈ C+

c (G) � {0} we get an element J (f ,φ) ∈ Sf and hence an element (J (f ,φ))f
of the product space S. For a unit-neighborhood V let LV be the closure in S of
the set of all (J (f ,φ))f where φ ranges over all φ with support in V . As S is com-
pact, the intersection

⋂
V LV over all unit-neighborhoods V is non-empty. Choose

an element (If0 (f ))f in this intersection. By Lemma 1.3.9 and 1.3.10, it follows
that I = If0 is a positive invariant homogeneous and additive map on C+

c (G). Any
real valued function f ∈ Cc(G) can be written as the difference f+ − f− of two
positive functions. Setting I (f ) = I (f+) − I (f−), and for complex-valued func-
tions I (f ) = I (Re(f )) + iI (Im(f )), one gets a well-defined positive linear map
that is invariant. This proves the existence of the Haar integral. For the proof of the
uniqueness we need the following lemma.
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Lemma 1.3.11 Let ν be a Haar measure on G. Then for every f ∈ Cc(G) the
function s �→ ∫

G
f (xs) dν(x) is continuous on G.

Proof We have to show that for a given s0 ∈ G and given ε > 0 there exists a neigh-
borhood U of s0 such that for every s ∈ U one has

∣∣∫
G
f (xs) − f (xs0) dν(x)

∣∣ < ε.
Replacing f by Rs0f (x) = f (xs0), we are reduced to the case s0 = e. Let K be the
support of f , and let V be a compact symmetric unit-neighborhood. For s ∈ V one
has supp(Rsf ) ⊂ KV . Let ε > 0. As f is uniformly continuous, there is a symmet-
ric unit-neighborhood W such that for s ∈ W one has |f (xs) − f (x)| < ε

ν(KV ) . For
s ∈ U = W ∩ V one therefore gets

∣∣∣∣
∫
G

f (xs) − f (x) dν(x)

∣∣∣∣ ≤
∫
KV

|f (xs) − f (x)| dν(x)

<
ε

ν(KV )
ν(KV ) = ε.

The lemma is proven. �

Suppose now that μ, ν are two non-zero invariant Radon measures. We have to show
that there is c > 0 with ν = cμ. For f ∈ Cc(G) with

∫
G
f (t) dμ(t) = Iμ(f ) 
= 0

set Df (s)
def= ∫

G
f (ts) dν(t) 1

Iμ(f ) . Then the function Df is continuous by the lemma.

Let g ∈ Cc(G). Using Fubini’s Theorem (B.3.3) and the invariance of the measures
μ, ν we get

Iμ(f )Iν(g) =
∫
G

∫
G

f (s)g(t) dν(t) dμ(s)

=
∫
G

∫
G

f (s)g(s−1t) dν(t) dμ(s) =
∫
G

∫
G

f (ts)g(s−1) dμ(s) dν(t)

=
∫
G

∫
G

f (ts)g(s−1) dν(t) dμ(s) =
∫
G

∫
G

f (ts) dν(t) g(s−1) dμ(s)

= Iμ(f )
∫
G

Df (s)g(s−1) dμ(s).

Since Iμ(f ) 
= 0 one concludes Iν(g) = ∫
G
Df (s)g(s−1) dμ(s). Let f ′ be another

function in Cc(G) with Iμ(f ′) 
= 0, so it follows
∫
G

(Df (s)−Df ′ (s))g(s−1) dμ(s) =
0 for every g ∈ Cc(G). Replacing g with the function g̃ given by g̃(s) =
|g(s)|2(Df (s−1) −Df ′ (s−1)) one gets

∫
G
|(Df (s) − Df ′ (s))g(s−1)|2 dμ(s) = 0.

Corollary 1.3.6 (c) implies that (Df (s)−Df ′ (s))g(s−1) = 0 holds for every s ∈ G. As
g is arbitrary, one gets Df = Df ′ . Call this function D. For every f with Iμ(f ) 
= 0
one has

∫
G
f (t) dμ(t)D(e) = ∫

G
f (t) dν(t). By linearity, it follows that this equality

holds everywhere. This finishes the proof of the theorem. �
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Example 1.3.12 Let B be the subgroup of GL2(R) defined by

B =
{(

1 x

y

)
: x, y ∈ R, y 
= 0

}
.

Then I (f ) = ∫
R
×
∫

R
f
((

1 x
y

))
dx

dy
y

is a Haar-integral on B. (See Exercise 1.8.)

1.4 The Modular Function

From now on, if not mentioned otherwise, for a given locally compact group G, we
will always assume a fixed choice of Haar measure. For the integral we will then
write
∫
G
f (x) dx, and for the measure of a set A ⊂ G we write vol(A). If the group G

is compact, any Haar measure is finite, so, if not mentioned otherwise, we will then
assume the measure to be the normalized Haar measure, i.e., we assume vol(G) = 1
in that case. Also, for p ≥ 1 we write Lp(G) for the Lp-space of G with respect to a
Haar measure, see Appendix B.4. Note that this space does not depend on the choice
of a Haar measure.

Definition Let G be a locally-compact group, and let μ be a Haar measure on G.
For x ∈ G the measure μx , defined by μx(A) = μ(Ax), is a Haar measure again,
as for y ∈ G one has μx(yA) = μ(yAx) = μ(Ax) = μx(A). Therefore, by the
uniqueness of the Haar measure, there exists a number 	(x) > 0 with μx = 	(x)μ.

In this way one gets a map 	 : G → R>0, which is called the modular function of
the group G. If 	 ≡ 1, then G is called a unimodular group. In this case every left
Haar measure is right invariant as well.

Let X be any set, and let f : X → C be a function. The sup-norm or supremum-norm
of f is defined by

‖f ‖X def= sup
x∈X

|f (x)|.

Note that some authors use ‖·‖∞ to denote the sup-norm. This, however, is in conflict
with the equally usual and better justified notation for the norm on the space L∞
(See Appendix B.4).

Theorem 1.4.1

(a) The modular function 	 : G → R
×
>0 is a continuous group homomorphism.

(b) One has 	 ≡ 1 if G is abelian or compact.

(c) For y ∈ G and f ∈ L1(G) one has Ryf ∈ L1(G) and

∫
G

Ryf (x) dx =
∫
G

f (xy) dx = 	(y−1)
∫
G

f (x) dx.
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(d) The equality
∫
G
f (x−1)	(x−1) dx = ∫

G
f (x) dx holds for every integrable

function f.

Proof Part (c) is clear if f is the characteristic function 1A of a measurable set A. It
follows generally by the usual approximation argument.

We now prove part (a) of the theorem. For x, y ∈ G and a measurable set A ⊂ G,
one computes

	(xy)μ(A) = μxy(A) = μ(Axy) = μy(Ax)

= 	(y)μ(Ax) = 	(y)	(x)μ(A).

Choose A with 0 < μ(A) < ∞ to get 	(xy) = 	(x)	(y). Hence 	 is a group
homomorphism.

Continuity: Let f ∈ Cc(G) with c = ∫
G
f (x) dx 
= 0. By part (c) we have

	(y) = 1

c

∫
G

f
(
xy−1
)
dx = 1

c

∫
G

Ry−1f (x) dx.

So the function 	 is continuous in y by Lemma 1.3.11.

For part (b), if G is abelian, then every right translation is a left translation, and so
every left Haar measure is right-invariant.

If G is compact, then so is the image of the continuous map 	. As 	 is a group
homomorphism, the image is also a subgroup of R>0. But the only compact subgroup
of the latter is the trivial group {1}, which means that 	 ≡ 1.

Finally, for part (d) of the theorem let f ∈ Cc(G) and set I (f ) =∫
G
f
(
x−1
)
	
(
x−1
)
dx. Then, by part (c),

I (Lzf ) =
∫
G

f (z−1x−1)	(x−1) dx =
∫
G

f ((xz)−1)	(x−1) dx

= 	(z−1)
∫
G

f (x−1)	((xz−1)−1) dx =
∫
G

f (x−1)	(x−1) dx = I (f ).

It follows that I is an invariant integral; hence there is c > 0 with I (f ) =
c
∫
G
f (x) dx. To show that c = 1 let ε > 0 and choose a symmetric unit-

neighborhood V with |1−	(s)| < ε for every s ∈ V . Choose a nonzero symmetric
function f ∈ C+

c (V ). Then
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|1 − c|
∫
G

f (x) dx =
∣∣∣∣
∫
G

f (x) dx − I (f )

∣∣∣∣ ≤
∫
G

|f (x) − f (x−1)	(x−1)| dx

=
∫
V

f (x) |1 −	(x−1)| dx < ε

∫
G

f (x) dx.

So one gets |1 − c| < ε, and as ε was arbitrary, it follows c = 1 as claimed. The
proof of the theorem is finished. �

Lemma 1.4.2 For given 1 ≤ p < ∞, and g ∈ Lp(G) the maps y �→ Lyg and
y �→ Ryg are continuous maps from G to Lp(G). In particular, for every ε > 0 there
exists a neighborhood U of the unit such that

y ∈ U ⇒ ‖Lyg − g‖p < ε,
‖Ryg − g‖p < ε.

The proof will show that L is even uniformly continuous and in case that G is
unimodular, so is R.

Proof Note that by invariance of the Haar integral we have

‖Lyg − Lxg‖p = ‖Lx−1yg − g‖p,

so uniform continuity as claimed follows from continuity at 1, which is the displayed
formula in the lemma. Likewise, for the right translation we have ‖Ryg − Rxg‖p =
	(x−1)1/p‖Rx−1yg − g‖p as follows from part (c) of the theorem. It remains to show
continuity at the unit element.We first assume that g ∈ Cc(G). Choose ε > 0. Let K
be the support of g. Then the support of Lyg is yK . Let U0 be a compact symmetric
unit-neighborhood. Then for y ∈ U0 one has suppLyg ⊂ U0K .

Let δ > 0. By Lemma 1.3.7 there exists a unit-neighborhood U ⊂ U0 such that for
y ∈ U , the sup-norm ‖Lyg − g‖G is less than δ.

In particular, for every y ∈ U one has

‖Lyg − g‖p =
(∫

G

|g(y−1x) − g(x)|p dx

) 1
p

< δ vol(U0K)
1
p .

By setting δ equal to ε/vol(U0K)1/p, one gets the claim for g ∈ Cc(G).

For general g, choose f ∈ Cc(G) such that ‖f − g‖p < ε/3. Choose a unit-
neighborhood U with ‖f − Lyf ‖p < ε/3 for every y ∈ U . Then for y ∈ U

one has

‖g − Lyg‖p ≤ ‖g − f ‖p + ‖f − Lyf ‖p + ‖Lyf − Lyg‖p <
ε

3
+ ε

3
+ ε

3
= ε.

In the last step we have used ‖Lyf − Lyg‖p = ‖f − g‖p, i.e., the left- invariance
of the p-norm. This implies the claim for the left translation. The proof for the right-
translation Ry is similar, except for the very last step, where instead of the invariance
we use the continuity of the modular function and the equality ‖Ryf − Ryg‖p =
	
(
y−1
)1/p ‖f − g‖p, which follows from part (c) of the theorem. �



1.5 The Quotient Integral Formula 17

Example 1.4.3 Let B be the group of real matrices of the form
(

1 x
0 y

)
with y 
= 0.

Then the modular function 	 is given by 	
(

1 x
0 y

) = |y| (See Exercise 1.8).

Proposition 1.4.4 Let G be a locally compact group. The following assertions are
equivalent.

(a) There exists x ∈ G such that the singleton {x} has non-zero measure.

(b) The set {1} has non-zero measure.

(c) The Haar measure is a multiple of the counting-measure.

(d) G is a discrete group.

Proof The equivalence of (a) and (b) is clear by the invariance of the measure.
Assume (b) holds. Let c > 0 be the measure of {1}. Then for every finite set E ⊂ G

one has vol(E) = ∑e∈E vol({e}) = c #E. Since the measure is monotonic, every
infinite set gets measure ∞, and so the Haar measure equals c times the counting
measure.

To see that (c) implies (d) recall that every compact set has finite measure, and by
locally compactness, there exists an open set of finite measure, i.e., a finite set U that
is open. By the Hausdorff axiom one can separate the elements of U by open sets,
so the singletons in U are open; hence every singleton, and so every set, is open, i.e.,
G is discrete. Finally, if G is discrete, then each singleton is open, hence has strictly
positive measure by Corollary 1.3.6. �

Proposition 1.4.5 Let G be a locally compact group. Then G has finite volume under
a Haar measure if and only if G is compact.

Proof If G is compact, it has finite volume by Corollary 1.3.2. For the other direction
suppose G has finite Haar measure. Let U be a compact unit-neighborhood. As the
Haar measure of G is finite, there exists a maximal number n ∈ N of pairwise disjoint
translates xU of U . Let z1U , . . . , znU be such pairwise disjoint translates, and set
K equal to the union of these finitely many translates. Then K is compact, and for
every x ∈ G one has K ∩xK 
= ∅. This means that G = KK−1, which is a compact
set. �

1.5 The Quotient Integral Formula

Let G be a locally compact group and let H be a closed subgroup. Then G/H

is a locally compact Hausdorff space by Proposition 1.2.1. For f ∈ Cc(G) let

f H (x)
def= ∫

H
f (xh) dh. For any x the function mapping h to f (xh) is continuous

of compact support, so the integral exists.
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Lemma 1.5.1 The function f H lies in Cc(G/H ), and the support of f H is contained
in (supp(f )H )/H . The map f �→ f H from Cc(G) to Cc(G/H ) is surjective.

Proof Let K be the support of f . Then KH/H is compact in G/H and contains the
support of f H , which therefore is compact. To prove continuity, let x0 ∈ G and U a
compact neighborhood of x0. For every x ∈ U , the function h �→ f (xh) is supported
in the compact set U−1K∩H . Put d = μH (U−1K∩H ), where μH denotes the given
Haar measure on H. Given ε > 0 it follows from uniform continuity of f (Lemma
1.3.7) that there exists a neighborhood V ⊆ U of x0 such that |f (xh)−f (x0h)| < ε

d

for every x ∈ V , from which it follows that

|f H (x) − f H (x0)| ≤
∫
U−1K∩H

|f (xh) − f (x0h)| dh < ε

for every x ∈ V , which proves continuity of f H .

Write π for the natural projection G → G/H . To show surjectivity of the map
f �→ f H , we first show that for a given compact subset C of the quotient G/H

there exists a compact subset K of G such that C ⊂ π (K). To this end choose a
pre-image yc ∈ G to every c ∈ C and an open, relatively compact neighborhood
Uc ⊂ G of yc. As π is open, the images π (Uc) form an open covering of C, so there
are c1, . . . cn ∈ C such that C ⊂ π (K) with K being the compact set Uc1 ∪· · ·∪Ucn .

Apply this construction to the set C being the support of a given g ∈ Cc(G/H ). Let
φ ∈ Cc(G) be such that φ ≥ 0 and φ ≡ 1 on K , which exists by Urysohn’s Lemma
(Lemma A.8.1). Then set f = gφ/φH where g is non-zero and f = 0 otherwise.
This definition makes sense as φH > 0 on the support of g. One gets f ∈ Cc(G) and
f H = gφH/φH = g. �

Remark 1.5.2 For later use we note that in the proof of the above lemma we also
showed that for any compact set C ⊂ G/H there exists a compact set K ⊂ G such
that C ⊆ π (K). By passing to π−1(C)∩K if necessary, we can even choose K such
that π (K) = C.

A measure ν on the Borelσ -algebra ofG/H is called an invariant measure if ν(xA) =
ν(A) holds for every x ∈ G and every measurable A ⊂ G/H . Let 	G be the modular
function of G and 	H the modular function of H.

Theorem 1.5.3 (Quotient Integral Formula) Let G be a locally compact group, and
let H be a closed subgroup. There exists an invariant Radon measure ν 
= 0 on the
quotient G/H if and only if the modular functions 	G and 	H agree on H. In this
case, the measure ν is unique up to a positive scalar factor. Given Haar measures
on G and H, there is a unique choice for ν, such that for every f ∈ Cc(G) one has
the quotient integral formula

∫
G

f (x) dx =
∫
G/H

∫
H

f (xh) dh dx.
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We will always assume this normalization and call the ensuing measure on G/H the
quotient measure.

The quotient integral formula is valid for every f ∈ L1(G).

The last assertion says that if f is an integrable function on G, then the integral
f H (x) = ∫

H
f (xh) dx exists almost everywhere in x and defines a ν-measurable,

indeed integrable function on G/H , such that the integral formula holds.

See Exercise 1.10 for a generalization of the quotient integral formula.

Proof Assume first that there exists an invariant Radon measure ν 
= 0 on the quo-
tient space G/H. Define a linear functional I on Cc(G) by I (f ) = ∫

G/H
f H (x) dν(x).

Then I (f ) is a non-zero invariant integral on G, so it is given by a Haar measure. We
write I (f ) = ∫

G
f (x) dx. For h0 ∈ H one gets

	G(h0)
∫
G

f (x) dx =
∫
G

f
(
xh−1

0

)
dx =
∫
G

Rh−1
0
f (x) dx

=
∫
G/H

∫
H

f
(
xhh−1

0

)
dh dν(x)

= 	H (h0)
∫
G/H

∫
H

f (xh) dh dν(x)

= 	H (h0)
∫
G

f (x) dx.

As f can be chosen with
∫
G
f (x) dx 
= 0, it follows that 	G|H = 	H .

For the converse direction assume 	G|H = 	H , and let f ∈ Cc(G) with f H = 0.
We want to show that

∫
G
f (x) dx = 0. For let φ be another function in Cc(G). We

use Fubini’s Theorem to get

0 =
∫
G

∫
H

f (xh)φ(x) dh dx =
∫
H

∫
G

φ(x)f (xh) dx dh

=
∫
H

	G(h−1)
∫
G

φ
(
xh−1
)
f (x) dx dh

=
∫
G

∫
H

	H

(
h−1
)
φ
(
xh−1
)
dh f (x) dx

=
∫
G

∫
H

φ(xh) dh f (x) dx =
∫
G

φH (x)f (x) dx.

As we can find φ with φH ≡ 1 on the support of f , it follows that
∫
G
f (x) dx = 0.

This means that we can unambiguously define a non-zero invariant integral on G/H

by I (g) = ∫
G
f (x) dx, whenever g ∈ Cc(G/H ) and f ∈ Cc(G) with f H = g. By

Riesz’s Theorem, this integral comes from an invariant Radon measure. In particular,
it follows that the quotient integral formula is valid for every f ∈ Cc(G). All but the
last assertion of the theorem is proven.
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We want to prove the quotient integral formula for an integrable function f on G.
It suffices to assume f ≥ 0. Then f is a monotone limit of step-functions, so by
monotone convergence one may assume f is a step-function itself and by linearity
one reduces to the case of f being the characteristic function of a measurable set A
with finite Haar measure. We have to show that 1H

A is measurable on G/H and that its
integral equals

∫
G

1A(x) dx. We start with the case of A = U being open. Note that
by Lemma B.3.2 the function g(xH ) = sup φ∈Cc (G)

0≤φ≤1U

∫
H
φ(xh) dh is measurable on

G/H and coincides with 1H
U . A repeated use of the Lemma of Urysohn and Lemma

B.3.2 shows the claim for A = U ,∫
G/H

∫
H

1U (xh) dh dx =
∫
G/H

∫
H

sup
0≤φ≤1U

φ(xh) dh dx

= sup
0≤φ≤1U

∫
G/H

∫
H

φ(xh) dh dx

= sup
0≤φ≤1U

∫
G

φ(x) dx =
∫
G

sup
0≤φ≤1U

φ(x) dx

=
∫
G

1U (x) dx.

If A = K is a compact set, then let V be a relatively compact open neighborhood of
K . Then 1K = 1V − 1V�K . The claim follows for A = K . For general A of finite
measure and given n ∈ N, by regularity and Lemma B.2.1, there are a compact set
Kn and an open set Un such that Kn ⊂ A ⊂ Un and μ(Un � Kn) < 1/n. We can
further assume that the sequence Un is decreasing and Kn is increasing. Let g be the
pointwise limit of the increasing sequence 1H

Kn
and let h be the limit of 1Un

. Then
g and h are integrable on G/H , one has 0 ≤ g ≤ 1H

A ≤ h and h − g is a positive
function of integral zero, hence a nullfunction. This means that 1H

A coincides with g

up to a nullfunction and thus is measurable. One has∫
G/H

1H
A (x) dx =

∫
G/H

g(x) dx = lim
n

∫
G/H

1H
Kn

(x) dx

= lim
n

∫
G

1Kn
(x) dx =

∫
G

1A(x) dx. �

The quotient integral formula should be understood as a one-sided version of Fubini’s
Theorem for product spaces. As for Fubini, it has a partial converse, which we give
now. Let μ be a measure on a set X. Recall that a measurable subset A ⊂ X is
called σ -finite if A can be written as a countable union A = ⋃∞

j=1 Aj of sets with
μ(Aj ) < ∞ for every j . If X itself is σ -finite, one also says that the measure μ is
σ -finite.

Corollary 1.5.4 Suppose that H is a closed subgroup of G such that there exists an
invariant Radon measure 
= 0 on G/H . Let f : G → C be a measurable function
such that the set A = {x ∈ G : f (x) 
= 0} is σ -finite. If the iterated integral∫
G/H

∫
H
|f (xh)| dh dx exists, then f is integrable.
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Proof It suffices to show that |f | is integrable. So choose a sequence (An)n∈N of
measurable sets in G with finite Haar measure such that A = ⋃∞

n=1 An, and define
fn : G → C by fn = min(|f | · 1An

, n). Then (fn)n∈N is an increasing sequence
of integrable functions that converges point-wise to |f |. It follows from Theorem
1.5.3 that

∫
G
fn(x) dx = ∫

G/H

∫
H
fn(xh) dh dx ≤ ∫

G/H

∫
H
|f (xh)| dh dx for every

n ∈ N. The result follows then from the Monotone Convergence Theorem. �

Corollary 1.5.5

(a) If H is a normal closed subgroup of G, then the modular functions 	G and 	H

agree on H.

(b) Let H be the kernel of 	G. Then H is unimodular.

Proof (a) The Haar measure of the group G/H is an invariant Radon measure, so
(a) follows from the theorem. Part (b) follows from part (a). �

Proposition 1.5.6 Let G be a locally compact group, K ⊂ G a compact subgroup
and H ⊂ G a closed subgroup such that G = HK . Then one can arrange the Haar
measures on G,H ,K in a way that for every f ∈ L1(G) one has

∫
G

f (x) dx =
∫
H

∫
K

f (hk) dk dh.

Proof The group H × K acts on G by (h, k).g = hgk−1. As this operation is
transitive, G can be identified withH×K/H∩K , where we embedH∩K diagonally
into H ×K . The group H ∩K is compact; therefore it has trivial modular function
and the modular function of H × K is trivial on this subgroup. By Theorem 1.5.3
there is a unique H ×K-invariant Radon measure on G up to scaling. We show that
the Haar measure on G also is H ×K-invariant, so the uniqueness implies our claim.
Obviously, the Haar measure is invariant under the action of H as the latter is the
left multiplication. As K is compact, we have 	G(k) = 1 for every k ∈ K and so∫
G
f (xk) dx = ∫

G
f (x) dx for every f ∈ Cc(G) by Theorem 1.4.1 (c). �

Lemma 1.5.7 Let H be a closed subgroup of the locally compact group G such that
there exists a G-invariant Radon measure on G/H. Fix such a measure. For given
1 ≤ p < ∞, and g ∈ Lp(G/H ) the map y �→ Lyg is a uniformly continuous map
from G to Lp(G/H ). In particular, for every ε > 0 there exists a neighborhood U of
the unit such that

y ∈ U ⇒ ‖Lyg − g‖p < ε.

Proof The lemma is a generalization of Lemma 1.4.2 and the proof of the latter
extends to give a proof of the current lemma. �
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1.6 Convolution

An algebra over C is a complex vector space A together with a map A×A → A,
called product or multiplication and written (a, b) �→ ab, which is bilinear, i.e., it
satisfies

a(b + c) = ab + ac, (a + b)c = ab + ac, λ(ab) = (λa)b = a(λb)

for a, b, c ∈ A and λ ∈ C, and it is associative, i.e., one has

a(bc) = (ab)c

for all a, b, c ∈ A. The algebra A is called a commutative algebra if in addition for
all a, b ∈ A one has ab = ba.

Example 1.6.1

• The vector space A = Mn(C) of complex n× n matrices forms an algebra with
matrix multiplication as product. This algebra is not commutative unless n = 1.

• For a setS the vector space Map(S, C) of all maps fromS to C forms a commutative
algebra with the point-wise product, i.e., for f , g ∈ Map(S, C) the product fg is
the function given by (fg)(s) = f (s)g(s) for s ∈ S.

Definition Let G be a locally-compact group. For two measurable functions f , g :
G → C define the convolution product as

f ∗ g(x) =
∫
G

f (y)g(y−1x) dy,

whenever the integral exists.

Theorem 1.6.2 If f , g ∈ L1(G), then the integral f ∗ g exists almost everywhere
in x and defines a function in L1(G). The L1-norm satisfies ‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1.

The convolution product endows L1(G) with the structure of an algebra.

Proof Let f , g be integrable functions on G. Then f and g are measurable in the
sense that pre-images of Borel-sets are in the completed Borel-σ -algebra. Let the
function ψ be defined by ψ(y, x) = f (y)g(y−1x). We write ψ as a composition
of the map α : G × G → G × G; (y, x) �→ (y, y−1x

)
followed by f × g and

multiplication, which are measurable. We show that α is measurable. Recall that
we need measurability here with respect to the completion of the Borel σ -algebra.
Since α is continuous, it is measurable with respect to the Borel σ -algebra, so we
need to know that the pre-image of a null-set is a null-set. This however is clear, as
α preserves the Haar measure on G×G, as follows from the formula
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∫
G

∫
G

φ(y, x) dx dy =
∫
G

∫
G

φ
(
y, y−1x

)
dx dy, φ ∈ Cc(G×G),

and Fubini’s Theorem. Being a composition of measurable maps, ψ is measurable.
Let S(f ) and S(g) be the supports of f and g, respectively. Then the sets S(f ) and
S(g) are σ -compact by Corollary 1.3.6 (d). The support of ψ is contained in the
σ -compact set S(f )×S(f )S(g), and therefore is σ -compact itself. We can apply the
Theorem of Fubini to calculate

‖f ∗ g‖1 ≤
∫
G

∫
G

|f (y)g
(
y−1x
) | dy dx =

∫
G

∫
G

|f (y)g
(
y−1x
) | dx dy

=
∫
G

∫
G

|f (y)g(x)| dx dy = ‖f ‖1 ‖g‖1 < ∞.

The function ψ(x, ·) is therefore integrable almost everywhere in x, and the function
f ∗ g exists and is measurable. Further, the norm ‖f ∗ g‖1 is less than or equal to∫
G×G

|ψ(x, y)| dx dy = ‖f ‖1‖g‖1. Associativity and distributivity are proven by
straightforward calculations. �

Recall that for a function f : G → C and y ∈ G we have defined

Ry(f )(x) = f (xy) and Ly(f )(x) = f (y−1x).

Lemma 1.6.3 For f , g ∈ L1(G) and y ∈ G one has Ry(f ∗ g) = f ∗ (Ryg) and
Ly(f ∗ g) = (Lyf ) ∗ g.

Proof We compute

Ry(f ∗ g)(x) =
∫
G

f (z)g
(
z−1xy
)
dz =
∫
G

f (z)Ryg
(
z−1x
)
dz = f ∗ (Ryg)(x),

and likewise for L. �

Theorem 1.6.4 The algebra L1(G) is commutative if and only if G is abelian.

Proof Assume L1(G) is commutative. Let f , g ∈ L1(G). For x ∈ G we have

0 = f ∗ g(x) − g ∗ f (x) =
∫
G

f (xy)g
(
y−1
)− g(y)f

(
y−1x
)
dy

=
∫
G

g(y)
(
	(y−1)f (xy−1) − f (y−1x)

)
dy.

Since this is valid for every g, one concludes that 	
(
y−1
)
f
(
xy−1
) = f

(
y−1x
)

holds for every f ∈ Cc(G). For x = 1 one gets 	 ≡ 1, so G is unimodular and
f
(
xy−1
) = f

(
y−1x
)

for every f ∈ Cc(G) and all x, y ∈ g. This implies that G is
abelian. The converse direction is trivial. �
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Definition By a Dirac function we mean a function φ ∈ Cc(G), which

• is positive, i.e., φ ≥ 0,

• has integral equal to one,
∫
G
φ(x) dx = 1, and

• is symmetric, φ(x−1) = φ(x).

A Dirac family is a family (φU )U of Dirac functions indexed by the set U of all
unit-neighborhoods U such that φU has support inside U . Note that the set U can
be partially ordered by reversed inclusion which makes it a directed set. So a Dirac-
family is a net, which we also refer to as a Dirac net

Lemma 1.6.5 If φ and ψ are Dirac functions, then so is their convolution product
φ ∗ ψ . To every unit neighborhood U their exists a Dirac function φU such that φU

as well φU ∗ φU have support inside U.

Proof If φ and ψ are positive, then so is their convolution product. For the integral
we have

∫
G
φ ∗ ψ(x) dx = ∫

G
φ(x) dx

∫
G
ψ(x) dx = 1 and symmetry is preserved

by convolution. For the second assertion, let U be a given unit neighborhood. Then
their exists a symmetric unit neighborhood W ⊂ U such that W 2 ⊂ U as well.
The Lemma of Urysohn (A.8.1) yields a function h ∈ Cc(G) with 0 
= h ≥ 0 and
supp(h) ⊂ W . Set φU (x) = h(x)+ h

(
x−1
)

and scale this function so it has integral
one. Then supp(φU ∗ φU ) ⊂ supp(φU )supp(φU ) ⊂ W 2 ⊂ U , so φU satisfies the
claim. �

Lemma 1.6.6 Let ε > 0. For every f ∈ L1(G) there exists a unit-neighborhood U
such that for every Dirac function φU with support in U one has

‖f ∗ φU − f ‖1 < ε, ‖φU ∗ f − f ‖1 < ε.

For every continuous function f on G and every compact set K ⊂ G there exists a
unit-neighborhood U such that for every Dirac function φU with support in U one
has

‖f ∗ φU − f ‖K < ε, ‖φU ∗ f − f ‖K < ε,

where ‖g‖K = supx∈K |g(x)|.
In other words this means that the net (φU ∗ f )U indexed by the set of all unit-
neighborhoods, converges to f in the L1 norm if f ∈ L1(G) and compactly
uniformly, if f is continuous.
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Proof It suffices to considerφU ∗f , as the other side is treated similarly. We compute

‖φU ∗ f − f ‖1 =
∫
G

∣∣∣∣
∫
G

φU (y)(f
(
y−1x
)− f (x)) dy

∣∣∣∣ dx
≤
∫
G

∫
G

φU (y)|f (y−1x
)− f (x)| dy dx

=
∫
G

φU (y)‖Lyf − f ‖1 dy.

The claim nor follows from Lemma 1.4.2.

For the last statement let f be continuous and let K ⊂ G be compact. Since a
continuous function on a compact set is uniformly continuous, for every ε > 0 there
exists a unit-neighborhood U , such that for x ∈ K , y−1x ∈ U one has |f (y) −
f (x)| < ε. Let now φU be a Dirac function with support in U . Then |φU ∗ f (x) −
f (x)| ≤ ∫

G
φU (y−1x)|f (y) − f (x)| dy < ε. �

1.7 The Fourier Transform

A locally compact abelian group will be called an LCA-group for short. A character
of an LCA-group A is a continuous group homomorphism

χ : A → T,

where T is the circle group, i.e., the multiplicative group of all complex numbers of
absolute value one.

Example 1.7.1

• The characters of the group Z are the maps k �→ e2πikx , where x varies in R/Z

(See [Dei05] Sect. 7.1).

• The characters of R/Z are the maps x �→ e2πikx , where k varies in Z (See [Dei05]
Sect. 7.1).

Definition The set of characters forms a group under point-wise multiplication,
called the dual group and denoted Â. Later, we will equip the group Â with a
topology that makes it an LCA-group.

Let f ∈ L1(A) and define its Fourier transform to be the map f̂ : Â → C given by

f̂ (χ )
def=
∫
A

f (x)χ (x) dx.

This integral exists as χ is bounded.
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Lemma 1.7.2 For f , g ∈ L1(A) and χ ∈ Â one has |f̂ (χ )| ≤ ‖f ‖1 and f̂ ∗ g =
f̂ ĝ.

Proof The first assertion is clear. Using Fubini’s Theorem, one computes,

f̂ ∗ g(χ ) =
∫
A

f ∗ g(x)χ (x) dx =
∫
A

∫
A

f (y)g
(
y−1x
)
dy χ (x) dx

=
∫
A

f (y)
∫
A

g
(
y−1x
)
χ (x) dx dy

=
∫
A

f (y)χ (y) dy
∫
A

g(x)χ (x) dx = f̂ (χ )ĝ(χ ). �

1.8 Limits

In this section we shall give a construction principle for locally compact groups as
limits, i.e., direct and projective limits. The reader mostly interested in developing
the theory may proceed to the next chapter.

We first recall the notion of a partial order on a set I . This is a relation ≤ such that
for all a, b, c ∈ I one has a ≤ a, (reflexivity); a ≤ b and b ≤ a implies a = b

(antisymmetry); a ≤ b and b ≤ c implies a ≤ c (transitivity).

Definition A directed set is a tuple (I ,≤ ) consisting of a non-empty set I and a
partial order ≤ on I , such that any two elements of I have a common upper bound,
which means that for any two a, b ∈ I there exists an element c ∈ I with a ≤ c and
b ≤ c.

Examples 1.8.1

• The set N of natural numbers is an example with the natural order ≤. In this
case the order is even linear, which means that any two elements on N can be
compared. Every linear order is directed.

• Let  be an infinite set and let I be the set of all finite subsets of , ordered by
inclusion, so A ≤ B ⇔ A ⊂ B. Then I is directed, as for A,B ∈ I the union
C = A ∪ B is an upper bound.

• Directed sets are precisely the index sets of nets (xi)i∈I .

Direct Limits

A direct system of groups consists of the following data
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• a directed set (I ,≤ ),

• a family (Gi)i∈I of groups and

• a family of group homomorphisms φ
j

i : Gi → Gj , if i ≤ j ,

such that the following axioms are satisfied:

φi
i = IdGi

and φk
j ◦ φ

j

i = φk
i , if i ≤ j ≤ k.

Examples 1.8.2

• Let G be a group and let (Gi)i∈I be a family of subgroups, such that for any two
indices i, j ∈ I there exists an index k ∈ I , such that Gi ,Gj ⊂ Gk . Then the Gi

form a direct system, if on I one installs the partial order

i ≤ j ⇔ Gi ⊂ Gj ,

and if for group homomorphisms φ
j

i one takes the inclusions.

• Let X be a topological space, fix x0 ∈ X and let I be the set of all neighborhoods
of x0 in X. For U ∈ I let GU be the group C(U ) of all continuous functions from
U to C. We order I by the inverse inclusion, i.e., U ≤ V ⇔ U ⊃ V . The
restriction homomorphisms

φV
U : C(U ) → C(V ), φV

U (f ) = f |V
form a direct system.

Definition Let
(
(Gi)i∈I , (φj

i )i≤j

)
be a direct system of groups. The direct limit of

the system is the set

lim→
i∈I

Gi
def=
∐
i∈I

Gi

/ ∼,

where
∐

denotes the disjoint union and ∼ the following equivalence relation: For
a ∈ Gi and b ∈ Gj we say a ∼ b, if there is k ∈ I with k ≥ i, j and φk

i (a) = φk
j (b).

On the set G = lim→ Gi we define a group multiplication as follows. Let a ∈ Gi

and b ∈ Gj and let [a] and [b] denote their equivalence classes in G. Then there
is k ∈ I with k ≥ i and k ≥ j . We define [a][b] to be the equivalence class of
the element φk

i (a)φk
j (b) in Gk , so [a][b] = [φk

i (a)φk
j (b)]. Some authors also use the

notion inductive limit instead of direct limit.

Proposition 1.8.3 The multiplication is well-defined and defines a group structure
on the set G. This group is called the direct limit of the system

(
Gi ,φi

j

)
. For every

i ∈ I the map
ψi : Gi ↪→

∐
j∈I

Gj → G

is a group homomorphism.
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The direct limit has the following universal property: Let Z be a group and for every
i ∈ I let a group homomorphism αi : Gi → Z be given, such that αi = αj ◦ φ

j

i

holds if i ≤ j . Then there exists exactly one group homomorphism α : G → Z

making all diagrams

Gi

ψi−−−→G

� |
αi� |α↘↓

Z

commutative.

Note that in this construction the word “group” can be replaced with other algebraic
structures, like rings. Then one assumes that the structure homomorphisms φ

j

i are
ring homomorphisms and gets a ring as direct limit.

Proof To show well-definedness, we need to show that the product is independent
of the choice of k. If k′ is another element of I with k′ ≥ i, j , there exists a common
upper bound l for k and k′, so l ≥ k, k′. We show that the construction gives the same
element with l as with k. Then we apply the same argument to k′ and l. Note that by
definition for every c ∈ Gk one has [c] = [φl

k(c)
]
. Gs φl

k is a group homomorphism,
it follows that[

φk
i (a)φk

j (b)
] = [φl

k

(
φk
i (a)φk

j (b)
)] = [φl

k(φk
i (a))φl

k

(
φk
j (b)
)] = [φl

i (a)φl
j (b)
]
.

This proves well-definedness. The rest is left as an exercise to the reader. �

Examples 1.8.4

• In the case of the direct system (C(U ))U , where U runs through all neighborhoods
of a point in a topological space, one calls the elements of lim→ C(U ) germs of

continuous functions.

• A special example of a direct limit is the direct sum of groups. So let S 
= ∅ be
an index set and for each s ∈ S let Gs be a group. Let I be the directed set of all
finite subsets of S. For each E ∈ I we let GE be the finite product of groups,

GE =
∏
s∈E

Gs.

For E ⊂ F in I we have the natural group homomorphism φF
E : GE → GF

sending x to (x, 1, . . . , 1). The direct limit constructed in this way is called the
direct sum of the groups Gs and is denoted as⊕

s∈S
Gs.
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Since all groups GE can also be embedded into the product
∏

s∈S Gs we find
that the direct sum is isomorphic to the subgroup of

∏
s∈S Gs consisting of those

elements x with xs = 1 for almost all s ∈ S.

Definition We say that a direct system
(
(Gi)i∈I ,

(
φ

j

i

)
i≤j

)
is a Mittag-Leffler direct

system, if the kernel of the homomorphism φk
i stabilizes as k grows. More precisely,

if for every i ∈ I there is a k0 ≥ i such that for every k ≥ k0 one has

ker(φk
i ) = ker

(
φ

k0
i

)
.

In particular, it follows that ker(ψi) = ker
(
φ

k0
i

)
.

Examples 1.8.5

• The case of a family of subgroups provides an example of a Mittag-Leffler system,
as here the structure homomorphisms are indeed injective.

• The system of germs of continuous functions at a point is in general not a Mittag-
Leffler system.

Definition Suppose that
(
Gi ,φ

j

i

)
is a direct system of topological groups, i.e., each

Gi is a topological group and each φ
j

i is continuous. Then one defines the direct
product topology on the limit G = lim→ Gi to be the topology generated by the maps

ψi : Gi → G, i.e., it is the finest topology that makes all maps Gi → G continuous.
Recall that a map f : G → X into some topological space is continuous if and only
if all compositions f ◦ ψi are continuous (see Appendix A.5).

Proposition 1.8.6 Let
(
Gi ,φ

j

i

)
be a direct system of topological groups with limit

G. Assume that all structure homomorphisms φ
j

i are open maps.

(a) The limit G is a topological group, when equipped with the inductive limit
topology. The natural homomorphisms ψi : Gi → G are open maps.

(b) Suppose that all the groups Gi are Hausdorff, then the limit G is Hausdorff if
and only if each of the kernels of the maps ψi : Gi → G is closed.

(c) If the system is Mittag-Leffler and all Gi are Hausdorff, then G is Hausdorff.

(d) If all Gi are locally compact groups and ker(ψi) is closed for each i ∈ I , then
G is a locally compact group.

Proof (a) A subset U of G is open if and only if the pre-image ψ−1
i (U ) ⊂ Gi is

open in Gi for every i ∈ I . Since the structure homomorphisms are open, the maps
ψi : Gi → G are open as well and a set U ⊂ G is open if and only if it can be
written as U = ⋃i∈I ψi(Ui) for some open sets Ui ⊂ Gi . We use this to show that
the natural continuous bijection
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lim→
i,j

Gi ×Gj → G×G

is also open, hence a homeomorphism. As any open subset of the left hand side is a
union of images of open subsets of Gi ×Gj , it suffices to show that the image of an
open subset of Gi ×Gj in G×G is open. For this it suffices to assume that the open
set be a rectangle, i.e., of the form Ui ×Uj for open sets Ui ⊂ Gi and Uj ⊂ Gj . But
then the images of Ui and Uj in G are open, hence the image of Ui × Uj in G×G

is open.

We need to show continuity of the multiplication map G × G → G. As G × G

is homeomorphic with the direct limit of the Gi × Gj , it suffices to show that the
composite map α : Gi ×Gj → G×G → G is continuous, where the second map
is multiplication. Choose some k ∈ I with k ≥ i, j . Then α also equals the map
Gi ×Gj → Gk ×Gk → Gk → G. In the second description the continuity follows
from the continuity of the multiplication map of Gk . The inversion is dealt with in a
similar way. This shows that G is a topological group if all Gi are.

(b) Suppose that G is Hausdorff. Then for given i ∈ I the map ψi : Gi → G

is continuous, hence its kernel is closed, as it is the pre-image of the closed set
{1}. Conversely, assume all kernels ker(ψi) are closed and let y 
= 1 in G. Then
there exists i ∈ I and yi ∈ Gi such that y = ψi(yi). Now ψi is open, and so
U = ψi(Gi � ker(ψi)) is an open neighborhood of y which does not contain 1.
Therefore, G is Hausdorff.

(c) Now suppose the system is a Mittag-Leffler direct system and that all Gi are

Hausdorff. Let i ∈ I and fix k0 ∈ I such that Hi = ker
(
φk
i

) = ker
(
φ

k0
i

)
holds for

every k ≥ k0. Then the closed subgroup Hi is also the kernel of ψi , so G is Hausdorff
by part (b).

(d) Finally, suppose that all Gi are locally compact groups and the kernels ker(ψi)
are closed. Then G is Hausdorff by (b), further, as each ψi : Gi → G is open as well,
a compact unit neighborhood U inside Gi maps to a compact unit neighborhood in
G, which therefore is locally compact. �

Examples 1.8.7

• If all Gi are open subgroups of a given topological group H with their subspace
topology, then the limit is their union and the limit topology is the subspace
topology as well.

• If
(
Gi ,φ

j

i

)
is a direct system of discrete groups, then the limit is a discrete, hence

a locally compact group.

• This example shows that the Hausdorff property in the direct limit can fail if
the system does not satisfy the Mittag-Leffler condition. Let V be an infinite-
dimensional Hilbert space and let D 
= V be a dense subspace of V . Let I be the
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set of all finite subsets of D, for each α ∈ I let Vα denote the (finite-dimensional)
linear span of α and set

Gα = V/Vα.

We order I by set inclusion, then if α ≤ β there is a natural projection φβ
α : Gα →

Gβ . This family of maps forms a direct system. Each Vα is a Hilbert space, hence
a Hausdorff topological group and the structure maps are open, but the direct
limit, which can be identified with V/D is no longer Hausdorff, indeed, it carries
the trivial topology.

Projective Limits

There is a dual construction to the direct limit, called the projective limit.

Definition A projective system of groups consists of the following data

• a directed set (I ,≤ ),

• a family (Gi)i∈I of groups and

• a family of group homomorphisms

π
j

i : Gj → Gi , if i ≤ j ,

such that the following axioms are met:

πi
i = IdGi

and π
j

i ◦ πk
j = πk

i , if i ≤ j ≤ k.

Note that, in comparison to a direct system, the homomorphisms now run in the
opposite direction.

Example 1.8.8 Let p be a prime number. Let I = N with the usual order. For
n ∈ N let Gn = Z/pn

Z and for m ≥ n let πm
n : Z/pm

Z → Z/pn
Z be the canonical

projection. Then
(
Gn,πm

n

)
form a projective system of groups.

Definition Let
(
Gi ,π

j

i

)
be a projective system of groups. The projective limit of

the system is the set
G = lim←− Gi

of all a ∈∏i∈I Gi such that ai = π
j

i (aj ) holds for every pair i ≤ j in I .

Proposition 1.8.9 The projective limit G of the system (Gi) is a subgroup of the
product

∏
i∈I Gi . Let πi : G → Gi be the map given by the projection to the i-th

coordinate. Then πi is a group homomorphism. The projective limit has the following
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universal property: If Z is a group with group homomorphisms αi : Z → Gi , such
that αi = π

j

i ◦ αj holds for all i ≤ j in I , then there exists exactly one group
homomorphism α : Z → G, such that all diagrams

Gi

πi←−−−G

↖ ↑
αi� |α

� |
Z

commute.

As in the case of direct limits, one can replace the word “group” with, say, the
word “ring”. Then one assumes that the structure homomorphisms π

j

i are ring
homomorphisms and gets a ring as projective limit.

Proof The proof is left to the reader. �

Definition Again assume that the groups Gi in a given projective system are topo-
logical groups and that all structure homomorphisms π

j

i are continuous. Then one
equips G = lim← Gi with the topology induced by the projections pi : G → Gi and

calls this the projective limit topology.

Since the topology of the product
∏

i Gi is induced by the projections as well, the
projective limit G carries the subspace topology of the product. Hence the question
of locally compactness is connected to the same question for products.

Lemma 1.8.10 Let I be an index set and for every i ∈ I let there be given a non-
empty locally compact space Xi . Then the product space X = ∏i∈I Xi is locally
compact if and only if almost all the spaces Xi are compact.

Proof Let E ⊂ I be a finite subset and for each i ∈ E let Ui ⊂ Xi be a subset.
These data define a rectangle

R = R((Ui)i∈E) =
∏
i∈E

Ui ×
∏

i∈I�E

Xi.

A rectangle is open if and only if every Ui is open.

By definition of the product topology, every open set is a union of open rectangles.
The intersection of two open rectangles is again an open rectangle. If X 
= ∅ is
locally compact, there therefore exists a non-empty open rectangle with compact
closure. The closure of a rectangle R((Ui)i) is the rectangle R((Ui)i), and for this to
be compact, almost all Xi must be compact.

The converse direction follows from Tychonov’s Theorem and the simple observation
that a finite product of topological spaces is locally compact if and only if all factors
are locally compact. �
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Proposition 1.8.11 Let
(
Gi ,π

j

i

)
be a projective system of topological groups with

limit G. Then G is a closed subgroup of the product
∏

i Gi and carries the subspace
topology, hence it is a topological group. If all Gi are Hausdorff, then G is Hausdorff.
If all Gi are locally compact and all but finitely many are compact, then G is locally
compact.

Proof The assertions of this propositions are clear by what has been said above. �

Definition A profinite group is a locally compact group isomorphic to a projective
limit of finite groups.

Example 1.8.12 Let p be a prime number. The profinite group

Zp = lim←
n

Z/pn
Z

is called the group of p-adic integers, see Sect. 14.1.

1.9 Exercises

Exercise 1.1 Determine the Haar measures of the groups Z, R, (R×, ·), T.

Exercise 1.2 Give an example of a locally compact group G and two closed subsets
A,B of G such that AB is not closed.

(Hint: There is an example with G = R.)

Exercise 1.3 Let G be a topological group and suppose there exists a compact subset
K of G such that xK ∩K 
= ∅ for every x ∈ G. Show that G is compact.

Exercise 1.4 Let G be a locally compact group with Haar measure μ, and let S ⊂ G

be a measurable subset with 0 < μ(S) < ∞. Show that the map x �→ μ(S ∩ xS)
from G to R is continuous.

(Hint: Note that 1S ∈ L2(G). Write the map as 〈1S ,Lx−1 1S〉 and use the Cauchy-
Schwarz inequality.)

Exercise 1.5 Let G be a locally compact group with Haar measure μ, and let S be
a measurable subset with 0 < μ(S) < ∞. Show that the set K of all k ∈ G with
μ(S ∩ kS) = μ(S) is a closed subgroup of G.

Exercise 1.6 Let G be a locally compact group, H a dense subgroup, and μ a Radon
measure on G such that μ(hA) = μ(A) holds for every measurable set A ⊂ G and
every h ∈ H . Show that μ is a Haar measure.
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Exercise 1.7 Let G be a locally compact group, H a dense subgroup, and μ a Haar
measure. Let S ⊂ G be a measurable subset such that for each h ∈ H the sets

hS ∩ (G � S) and S ∩ (G � S)

are both null-sets. Show that either S or its complement G � S is a null-set.

(Hint: Show that the measure ν(A) = μ(A ∩ S) is invariant.)

Exercise 1.8 Let B be the subgroup of GL2(R) defined by

B =
{(

1 x

y

)
: x, y ∈ R, y 
= 0

}
.

Show that I (f ) = ∫
R
×
∫

R
f
(

1 x
y

)
dx

dy

y
is a Haar-integral on B. Show that the

modular function 	 of B satisfies: 	
(

1 x
y

) = |y|.

Exercise 1.9 Let G be a locally-compact group. Show that the convolution satisfies
f ∗ (g ∗ h) = (f ∗ g) ∗ h, f ∗ (g + h) = f ∗ g + f ∗ h.

Exercise 1.10 Let G be a locally compact group, and let χ : G → R
×
>0 be a

continuous group homomorphism.

(a) Show that there exists a unique Radon measure μ on G, which is χ -quasi-
invariant in the sense that μ(xA) = χ (x)μ(A) holds for every x ∈ G and every
measurable subset A ⊂ G.

(b) Let H ⊂ G be a closed subgroup. Show that there exists a Radon measure ν on
G/H with ν(xA) = χ (x)ν(A) for every x ∈ G and every measurableA ⊂ G/H ,
if and only if for every h ∈ H one has χ (h)	G(h) = 	H (h).

(Hint: Verify that the measure μ is χ -quasi-invariant if and only if the corresponding
integral J satisfies J (Lxf ) = χ (x)J (f ). If I is a Haar-integral, consider J (f ) =
I (χf ).)

Exercise 1.11 Let G,H be locally compact groups and assume that G acts on H
by group homomorphisms h �→ gh, such that the ensuing map G × H → H is
continuous.

(a) Show that the product (h, g)(h′, g′) = (h gh′, gg′) gives H ×G (with the product
topology) the structure of a locally compact group, called the semi-direct product
H � G.

(b) Show that there is a unique group homomorphism δ : G → (0,∞) such that
μH ( gA) = δ(g)μH (A), where μH is a Haar measure on H and A is a measurable
subset of H .
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(c) Show that
∫
H
f ( gx) dμH (x) = δ(g)

∫
H
f (x) dμH (x) forf ∈ Cc(H ) and deduce

that δ is continuous.

(d) Show that a Haar integral on H � G is given by
∫
H

∫
G

f (h, g)δ(g) dμH (h) dμG(g).

Exercise 1.12 For a finite group G define the group algebra C[G] to be a vector
space of dimension equal to the group order |G|, with a special basis (vg)g∈G, and

equipped with a multiplication vgvg′
def=vgg′ . Show that C[G] indeed is an algebra over

C. Show that the linear map vg �→ 1{g} is an isomorphism of C[G] to the convolution
algebra L1(G).



Chapter 2

Banach Algebras

In this chapter we present the basic concepts on Banach algebras and C∗-algebras,
which are needed to understand many of the further topics in this book. In particular,
we shall treat the basics of the Gelfand theory for commutative Banach algebras, and
we shall give a proof of the Gelfand-Naimark theorem, which asserts that a com-
mutative C∗-algebra is naturally isomorphic to the algebra of continuous functions
vanishing at infinity on a locally compact Hausdorff space.

2.1 Banach Algebras

Recall the notion of an algebra from Sect. 1.6. A Banach algebra is an algebra A
over the complex numbers together with a norm ‖·‖, in which A is complete, i.e., A
is a Banach space, such that the norm is submultiplicative, i.e., the inequality

‖a · b‖ ≤ ‖a‖‖b‖
holds for all a, b ∈ A. Note that this inequality in particular implies that the multi-
plication on A is a continuous map from A×A → A, which means that if (an)n∈N

and (bn)n∈N are sequences in A converging to a and b, respectively, then the product
sequence anbn converges to ab. This follows from the estimate

‖anbn − ab‖ = ‖anbn − anb + anb − ab‖
≤ ‖an‖‖bn − b‖ + ‖b‖‖an − a‖,

as the latter term tends to zero as n →∞.

Examples 2.1.1

• The algebra Mn(C) equipped with the norm

‖a‖ =
n∑

i,j=1

|ai,j |

is a Banach algebra.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 37
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• For a topological spaceX letC(X) denote the vector space of continuous functions
f : X → C. If X is compact, the space C(X) becomes a commutative Banach
algebra if it is equipped with the sup-norm ‖f ‖X = supx∈X |f (x)|.

• If G is a locally compact group, then L1(G) equipped with ‖ · ‖1 and the convo-
lution product (f , g) �→ f ∗ g is a Banach algebra by Theorem 1.6.2, which is
commutative if and only if G is abelian by Theorem 1.6.4.

• Let V be a Banach space. For a linear operator T : V → V define the operator
norm by

‖T ‖op def= sup
v 
=0

‖T v‖
‖v‖ .

The operator T is called a bounded operator if ‖T ‖op < ∞. By Lemma C.1.2 an
operator is bounded if and only if it is continuous. The set B(V ) of all bounded
linear operators on V is a Banach algebra with the operator norm (see Exercise
2.1 below).

Definition An algebra A is unital if there exists an element 1A ∈ A such that

1Aa = a1A = a for every a ∈ A.

The element 1A is then called the unit of A. It is uniquely determined, for if 1′A
is a second unit, one has 1A = 1A1′A = 1′A. We shall often write 1 for 1A if no
confusion can arise.

Recall that two norms ‖·‖ and ‖·‖′ on a complex vector space V are called equivalent
norms if there is C > 0 with

1

C
‖·‖ ≤ ‖·‖′ ≤ C‖·‖.

In that case, V is complete in the norm ‖·‖ if and only if it is complete in the norm
‖·‖′ and both norms define the same topology on V.

Lemma 2.1.2 Let A be a unital Banach algebra with unit 1. Then ‖1‖ ≥ 1 and
there is an equivalent norm ‖·‖′ such that (A, ‖·‖′) is again a Banach algebra with
‖1‖′ = 1.

With this lemma in mind, we will, when talking about a unital Banach algebra,
always assume that the unit element is of norm one.

Proof In the situation of the lemma one has ‖1‖2 ≥ ‖12‖ = ‖1‖, so ‖1‖ ≥ 1.
For a ∈ A let ‖a‖′ be the operator norm of the multiplication operator Ma , which
sends x to ax, so ‖a‖′ = supx 
=0

‖ax‖
‖x‖ . Then ‖·‖′ is a norm with ‖1‖′ = 1. Since

‖ax‖ ≤ ‖a‖‖x‖, it follows that ‖a‖′ ≤ ‖a‖. On the other hand one has ‖a‖′ =
supx 
=0

‖ax‖
‖x‖ ≥ ‖a·1‖

‖1‖ = ‖a‖
‖1‖ . This shows that ‖·‖ and ‖·‖′ are equivalent. The

inequality ‖ab‖′ ≤ ‖a‖′‖b‖′ is easy to show (See Exercise 2.1). �
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Proposition 2.1.3 Let G be a locally compact group. The algebra A = L1(G) is
unital if and only if G is discrete.

Proof If G is discrete, then the function 1{1} is easily seen to be a unit of A.
Conversely, assume that A = L1(G) possesses a unit φ and G is non-discrete. The
latter fact implies that any unit neighborhood U has at least two points. This implies
by Urysohn’s Lemma (A.8.1) that for every unit-neighborhood U there are two Dirac
functions φU and ψU , both with support in U , such that the supports of φU and ψU

are disjoint, hence in particular, ‖φU − ψU‖1 = 2 for every n ∈ N. The function
φ being a unit means that we have φ ∗ f = f ∗ φ = f for every f ∈ L1(G).
There exists a unit-neighborhood U , such that one has ‖φU ∗ φ − φ‖1 < 1 and
‖ψU ∗ φ − φ‖1 < 1. Hence 2 = ‖φU − ψU‖1 ≤ ‖φU − φ‖1 + ‖φ − ψU‖1 < 2, a
contradiction! Hence the assumption is false and G must be discrete. �

Definition Let A, B be Banach algebras. A homomorphism of Banach algebras is
by definition a continuous algebra homomorphism φ : A → B. This means that
φ is continuous, C-linear and multiplicative, i.e., satisfies φ(ab) = φ(a)φ(b). A
topological isomorphism of Banach algebras is a homomorphism with continuous
inverse, and an isomorphism of Banach algebras is an isomorphism φ, which is an
isometry, i.e., which satisfies ‖φ(a)‖ = ‖a‖ for every a ∈ A. For better distinction
we will call an isomorphism of Banach algebras henceforth an isometric isomorphism
of Banach algebras.

Example 2.1.4 Let Y ⊂ X be a compact subspace of the compact topological
space X. Then the restriction of functions is a homomorphism of Banach algebras
from C(X) to C(Y ). Note that this includes the special case when Y = {x} consists
of a single element. In this case C(Y ) ∼= C, and the restriction is the evaluation
homomorphism δx : C(X) → C mapping f to f (x).

If A is a unital Banach algebra, we denote by A× the group of invertible elements
of A, i.e., the multiplicative group of all a in A, for which there exists some b ∈ A
with ab = ba = 1. This b then is uniquely determined, as for a second such b′ one
has b′ = b′ab = b. Therefore it is denoted a−1 and called the inverse of a.

Recall that for a ∈ A we denote by Br (a) the open ball of radius r > 0 around
a ∈ A, in other words, Br (a) is the set of all z ∈ A with ‖a − z‖ < r .

Lemma 2.1.5 (Neumann series). Let A be a unital Banach algebra, and let a ∈ A
with ‖a‖ < 1. Then 1 − a is invertible with inverse

(1 − a)−1 =
∞∑
n=0

an.

The unit group A× is an open subset of A. With the subspace topology, A× is a
topological group.
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Proof Since ‖a‖ < 1 one has
∑∞

n=0 ‖an‖ ≤ ∑∞
n=0 ‖a‖n < ∞, so the series

b =∑∞
n=0 a

n converges absolutely in A, and we get the first assertion by computing
(1−a)b = (1−a)

∑∞
n=0 a

n =∑∞
n=0 a

n−∑∞
n=0 a

n+1 = 1, and likewise b(1−a) = 1.

For the second assertion let y ∈ A×. As the multiplication on A is continuous, the
map x �→ yx is a homeomorphism. This implies that yB1(1) ⊂ A× is an open
neighborhood of y, so A× is indeed open.

To show that A× is a topological group, it remains to show that the inversion is
continuous on A×. Note that the map a �→∑∞

n=0 a
n = (1 − a)−1 is continuous on

B1(0), which implies that inversion is continuous on B1(1). But then it is continuous
on the open neighborhood yB1(1) ⊂ A× of any y ∈ A×. �

Examples 2.1.6

• Let A = Mn(C). Then the unit group A× is the group of invertible matrices,
i.e., of those matrices a ∈ A with det(a) 
= 0. The continuity of the determinant
function in this case gives another proof that A× is open.

• Let A = C(X) for a compact Hausdorff space X. Then the unit group A× consists
of all f ∈ C(X) with f (x) 
= 0 for every x ∈ X.

2.2 The Spectrum σA(a)

Let A be a unital Banach algebra. For a ∈ A we denote by

Res (a)
def= {λ ∈ C : λ1 − a is invertible}

the resolvent set of a ∈ A. Its complement,

σA(a)
def= C�Res(a)

is called the spectrum of a. Since A× is open in A by Lemma 2.1.5 and since
λ �→ (λ1 − a) is continuous, we see that Res(a) is open, and σA(a) is closed in C.

Examples 2.2.1

• Let A = Mn(C). Then for a ∈ A the spectrum σ (a) equals the set of eigenvalues
of a.

• LetX be a compact topological space, and let A = C(X). For f ∈ A the spectrum
σ (f ) equals the image of the map f : X → C.

Lemma 2.2.2 Let A be a unital Banach algebra. Then for every a ∈ A the spectrum
σ (a) is a closed subset of the closed ball B̄‖a‖(0) around zero of radius ‖a‖, so in
particular, σ (a) is compact.
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Proof As the resolvent set is open, the spectrum is closed. Let a ∈ A, and let λ ∈ C

with |λ| > ‖a‖. We have to show that λ1 − a is invertible. As ‖λ−1a‖ < 1, by
Lemma 2.1.5 one has 1−λ−1a ∈ A×; it follows that λ ·1−a = λ(1−λ−1a) ∈ A×,
so λ ∈ Res(a). �

Definition Let D ⊂ C be an open set, and let f : D → V be a map, where V is a
Banach space. We say that f is holomorphic if for every z ∈ D the limit

f ′(z) = lim
h→0

1

h
(f (z + h) − f (z))

exists in V. Note that if f is holomorphic and α : V → C is a continuous linear
functional, then the function z �→ α(f (z)) is a holomorphic function from D to C.
A holomorphic map is continuous (see Exercise 2.2).

Lemma 2.2.3 Let a ∈ A, then the map f : λ �→ (λ − a)−1 is holomorphic on the
resolvent set Res(a). Here we have written λ for λ1 ∈ A.

Proof Letλ ∈ Res(a), and lethbe a small complex number. Then 1
h

(f (λ+h)−f (λ))
equals

1

h

(
(λ+ h− a)−1 − (λ− a)−1

)

= 1

h
((λ− a) − (λ+ h− a)) (λ+ h− a)−1(λ− a)−1

= −(λ+ h− a)−1(λ− a)−1.

This map is continuous at h = 0, since the inversion is a continuous map on the
resolvent set by Lemma 2.1.5. �

Theorem 2.2.4 Let A be a unital Banach algebra, and let a ∈ A. Then σA(a) 
= ∅.

Proof Assume there exists a ∈ A with empty spectrum. Let α be a continuous
linear functional on A, then the function fα : λ �→ α

(
(a − λ)−1

)
is entire. As α is

continuous, hence bounded, there exists C > 0 such that |α(b)| ≤ C‖b‖ holds for
every b ∈ A. For |λ| > 2‖a‖ we get

|fα(λ)| = |α ((a − λ)−1
) | = 1

|λ| |α
(
(1 − λ−1a)−1

) |

= 1

|λ|

∣∣∣∣∣α
( ∞∑

n=0

(λ−1a)n
)∣∣∣∣∣ ≤

1

|λ|
∞∑
n=0

|α ((λ−1a)n
) |

≤ C

|λ|
∞∑
n=0

‖λ−1a‖n <
C

|λ|
∞∑
n=0

(
1

2

)n
= 2 C

|λ| .
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It follows that the entire function fα is constantly zero by the Theorem of Liouville
[Rud87]. This holds for every α, so the Hahn-Banach Theorem C.1.3 implies that
f : λ �→ (λ− a)−1 is the zero map as well, which is a contradiction. �

Corollary 2.2.5 (Gelfand-Mazur). Let A be a unital Banach algebra such that all
non-zero elements a ∈ A are invertible. Then A = C1.

Proof If a ∈ A�C1 we have λ1−a invertible for every λ ∈ C. But this means that
σA(a) = ∅, which contradicts Theorem 2.2.4. �

Definition For an element a of a unital Banach algebra A we define the spectral
radius r(a) of a by

r(a)
def= sup{|λ| : λ ∈ σA(a)}.

In what follows next we want to prove an important formula for the spectral radius
r(a).

Theorem 2.2.6 (Spectral radius formula). Let A be a unital Banach algebra. Then
r(a) ≤ ‖a‖ and

r(a) = lim
n→∞‖a

n‖ 1
n .

Proof As ‖an‖ ≤ ‖a‖n the first assertion follows from the second. We shall show
the inequalities

r(a) ≤ lim inf ‖an‖ 1
n ≤ lim sup ‖an‖ 1

n ≤ r(a),

which clearly implies the theorem.

For λ ∈ σA(a), the equation λn1 − an = (λ1 − a)
∑n−1

j=0 λ
jan−1−j implies that

λn ∈ σA(an) and hence that |λ|n ≤ ‖an‖ for every n ∈ N. Thus r(a) ≤ ‖an‖ 1
n for

every n ∈ N, which gives the first inequality.

To see that lim sup ‖an‖ 1
n ≤ r(a) recall (λ1− a)−1 = λ−1(1− a

λ
)−1 =∑∞

n=0 a
n 1
λn+1

for |λ| > ‖a‖, and hence, as the function is holomorphic there, the series converges
in the norm-topology for every |λ| > r(a), as we derive from Corollary B.6.7 applied
to z = 1

λ
.

For a fixed |λ| > r(a), it follows that the sequence an 1
λn+1 is bounded in A, so that

there exists a constant C ≥ 0 such that ‖an‖ ≤ C|λ|n+1 for every n ∈ N. Taking
n-th roots on both sides and then applying lim sup shows that lim sup ‖an‖ 1

n ≤ |λ|.
Since this holds for every |λ| > r(a) we get lim sup ‖an‖ 1

n ≤ r(a). �
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Lemma 2.2.7 Suppose that A is a closed subalgebra of the unital Banach algebra
B such that 1 ∈ A. Then

∂σA(a) ⊂ σB(a) ⊂ σA(a)

for every a ∈ A, where ∂σA(a) denotes the boundary of σA(a) ⊂ C.

Proof If a ∈ A is invertible in A it is invertible in B ⊃ A. So ResA(a) ⊂ ResB(a),
which is equivalent to the second inclusion.

To see the first inclusion let λ ∈ ∂σA(a) ⊂ σA(a), and let (λn)n∈N be a sequence in
ResA(a) with λn → λ. If λ ∈ ResB(a), then A  (λn1 − a)−1 → (λ1 − a)−1 ∈ B.

Since A is closed in B we get (λ1 − a)−1 ∈ A, which implies that λ ∈ ResA(a).
This contradicts λ ∈ σA(a). �

Example 2.2.8 Let D ⊂ C be the closed disk of radius 1 around zero, and let D̊ be
its interior. The disk-algebra A is by definition the subalgebra of C(D) consisting
of all functions that are holomorphic inside D̊. Since uniform limits of holomorphic
functions are again holomorphic, the disk-algebra is a closed subalgebra of C(D) and
hence a Banach algebra. Let T = ∂D be the circle group. By the maximum principle
for holomorphic functions, every f ∈ A takes its maximum on T. Therefore the
restriction homomorphism A → C(T) mapping f ∈ A to its restriction f |T is an
isometry. So A can be viewed as a sub Banach algebra of B = C(T). For f ∈ A and
λ ∈ C the function (λ− f )−1 is defined in A if and only if λ is not in the image of f.
Therefore, the spectrum σA(f ) equals the image f (D). Likewise, considered as an
element of B, the spectrum of f equals σB(f ) = f (T).

2.3 Adjoining a Unit

The results of the previous section always depended on the existence of a unit in
the Banach algebra A. But many important Banach algebras, like L1(G) for a non-
discrete locally compact group G, do not have a unit. We solve this problem by
adjoining a unit if needed. Indeed, if A is any Banach algebra (with or without unit),
then the cartesian product,

Ae def= A× C

equipped with the obvious vector space structure and the multiplication

(a, λ)(b,μ) = (ab + λb + μa, λμ)

becomes an algebra with unit (0, 1). If we define ‖(a, λ)‖ = ‖a‖ + |λ|, one easily
checks that Ae becomes a Banach algebra containing A ∼= A × {0} as a closed
subalgebra of codimension 1. We call Ae the unitization of A.
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If A already has a unit 1A, then the algebra Ae is isomorphic to the direct sum
A ⊕ C of the algebras A and C, where we define multiplication component-wise.
The isomorphism from Ae to A⊕ C is given by (a, λ) �→ (a + λ1A) ⊕ λ.

If A is a Banach algebra without unit then we define the spectrum of a ∈ A as

σA(a)
def= σAe (a),

where we identify A with a subset of Ae via a �→ (a, 0). With this convention,
all results from the previous section, in particular the spectral radius formula, have
natural analogues in the non-unital case.

A very important class of commutative Banach-Algebras without unit is given as
follows:

Definition Suppose that X is a locally compact Hausdorff space. A function f :
X → C is said to vanish at infinity if for every ε > 0 there exists a compact
set K = Kε ⊂ X such that |f (x)| < ε holds for every x ∈ X�K . Let C0(X)
denote the vector space of all continuous functions on X that vanish at infinity.
Then C0(X) is a Banach algebra with point-wise multiplication and the sup-norm
‖f ‖X = supx∈X |f (x)|. Note that C0(X) is unital if and only if X is compact in
which case C0(X) equals C(X).

Example 2.3.1 As a crucial example we want to compute the unitization C0(X)e.
We recall the construction of the one point compactification, also called Alexandrov
compactification X∞, of the space X. Let∞ denote a new point and X∞ = X∪{∞},
so X∞ is just a set that contains X as a subset plus one more element. On X∞ one
introduces the following topology. A set U ⊂ X∞ is open if it is either already
contained in X and open in the topology of X, or if ∞ ∈ U and the set X�U is a
compact subset of X. Note that X being a Hausdorff space implies that compact sets
in X are closed in X. Every continuous function in C(X∞) defines, by restriction,
a continuous function on X. In this way one can identify C0(X) with the subspace
of all continuous functions f on X∞ with f (∞) = 0. This ultimately justifies the
notion “vanishing at infinity”.

Lemma 2.3.2 There is a canonical topological isomorphism of Banach algebras
C(X∞) ∼= C0(X)e.

Proof Extending every f ∈ C0(X) by zero to X∞, we consider C0(X) as a subspace
of C(X∞). Define ψ : C0(X)e → C(X∞) by ψ(f , λ) = f + λe, where e(x) = 1
for every x ∈ X∞. Then ψ is an isomorphism of algebras. For the norms one has

‖ψ(f , λ)‖X∞ = sup
x∈X∞

|f (x) + λ| ≤ sup
x∈X

|f (x)| + |λ| = ‖(f , λ)‖.

This implies that ψ is continuous. On the other hand, one has

sup
x∈X∞

|f (x) + λ| ≥ |f (∞) + λ| = |λ|.
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Since |f (x)| ≤ |λ| + |f (x) + λ| for every x, we then get

‖(f , λ)‖ = sup
x∈X∞

|f (x)| + |λ| ≤ 3‖ψ(f , λ)‖X∞ .

The lemma is proven. Note that ψ is not an isometry, but restricted to C0(X), it
becomes one. �

2.4 The Gelfand Map

In this section we shall always assume that A is a commutative Banach algebra. In
this case we define the structure space 	A to be the set of all non-zero continuous
algebra homomorphisms m : A → C. This space is often called the maximal
ideal space, which is justified by Theorem 2.5.2 below, that sets up a bijection
between 	A and the set of maximal ideals of A. The elements of 	A are also called
multiplicative linear functionals, which is why we use the letter m to denote them.
If A is unital, it follows automatically that m(1) = 1 for every m ∈ 	A, since
m(1) = m(12) = m(1)2 implies m(1) = 0 or m(1) = 1. Now m(1) = 0 implies
m = 0, a case which is excluded.

Examples 2.4.1

• Let A = C0(X) for a locally compact Hausdorff space X. For x ∈ X one gets an
element mx of 	A defined by mx(f ) = f (x).

• Let A = L1(A), whereA is an LCA-group. Letχ ∈ Â, then the mapmχ : A → C

defined by

mχ (f ) = f̂ (χ ) =
∫
A

f (x)χ (x) dx

is an element of 	A as follows from Lemma 1.7.2.

For a given multiplicative functional m ∈ 	A, there exists precisely one extension
of m to a multiplicative functional on Ae given by

me(a, λ) = m(a) + λ.

A multiplicative functional of Ae that is not extended from A must vanish on A,
and hence it must be equal to the augmentation functional m∞ of Ae given by
m∞(a, λ) = λ. Thus we get

	Ae = {me : m ∈ 	A} ∪ {m∞}.
We now want to equip 	A with a natural topology that makes 	A into a locally
compact space (compact if A is unital). For a Banach space V let V ′ be the dual
space consisting of all continuous linear maps α : V → C. This is a Banach space
with the norm ‖α‖ = supv∈V�{0}

|α(v)|
‖v‖ .
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Lemma 2.4.2 Suppose that A is a commutative Banach algebra. Let m ∈ 	A. Then
m is continuous with ‖m‖ ≤ 1. If A is unital, then ‖m‖ = 1.

Proof We first consider the case when A is unital. If a ∈ A, then m(a−m(a)1) = 0,
which implies that a − m(a)1 is not invertible in A, so that m(a) ∈ σ (a). Since
σ (a) ⊂ B‖a‖(0), this implies that |m(a)| ≤ ‖a‖ for every a ∈ A. By m(1) = 1 we
see that m is continuous with ‖m‖ = 1.

If A is not unital, the extension me : Ae → C is continuous with ‖me‖ = 1. But
then the restriction m = me|A is also continuous with ‖m‖ ≤ 1. �

It follows from the lemma that 	A ⊂ B̄ ′ ⊂ A′, where B̄ ′ = {f ∈ A′ : ‖f ‖ ≤ 1} is
the closed ball of radius one. Recall that for any normed space V, the weak-*-topology
on V ′ is defined as the initial topology on V ′ defined by the maps {δv : v ∈ V } with
δv : V ′ → C; α �→ α(v). It is the topology of point-wise convergence, i.e., a net
(αj )j in V ′ converges to α ∈ V ′ in the weak-* topology if and only if αj (v) → α(v)
for all v ∈ V .

We need the following important fact, which, as we shall see, is a consequence of
Tychonov’s Theorem.

Theorem 2.4.3 (Banach-Alaoglu). Let V be a normed (complex) vector space. Then
the closed unit ball

B̄ ′ def= {f ∈ V ′ : ‖f ‖ ≤ 1} ⊂ V ′

equipped with the weak-*-topology is a compact Hausdorff space.

Proof Recall D = {z ∈ C : |z| ≤ 1}. For α ∈ B̄ ′ and v ∈ V one has |α(v)| ≤ ‖v‖,
so α(v) is an element of the compact set D ‖v‖. So one gets an injective map

B̄ ′ →
∏
v∈V

D‖v‖

α → (α(v))v.

Note that the product space on the right is Hausdorff and compact by Tychonov’s
Theorem A.7.1. Since a net in the product space converges if and only if it converges
in each component, the weak-*-topology on B̄ ′ coincides with the subspace topology
if one views B̄ ′ as a subspace of the product space. Thus, all we need to show is that
B̄ ′ is closed in the product space. An element x of the product space lies in B̄ ′ if and
only if its coordinates satisfy xv+w = xv + xw and xλv = λxv for all v, w ∈ V and
every λ ∈ C. These conditions define a closed subset of the product. �

If A is any commutative Banach algebra, we equip the structure space 	A ⊂ A′ of
the algebra A with the topology induced from the weak-*-topology on A′.

Lemma 2.4.4 Suppose that A is a commutative Banach algebra. Then the inclusion
map � : 	A → 	Ae that maps m to me is a homeomorphism onto its image.
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Proof � is clearly injective. Since the weak-*-topology is the topology of point-
wise convergence, we only have to check that a net (mν)ν converges point-wise
to m ∈ 	A if and only if

(
me

ν

)
ν

converges point-wise to me. But it is clear that
me

ν(a, λ) = mν(a) + λ → m(a) + λ = me(a, λ) if and only if mν(a) → m(a). �

Every a ∈ A defines a function â on the structure space,

â : 	A → C, m �→ â(m) = m(a).

The map a �→ â is an algebra homomorphism from A to the algebra of continuous
functions on 	A. It is known as the Gelfand transform.

Theorem 2.4.5 (Gelfand Transform). Let A be a commutative Banach algebra.
Then the following hold.

(a) 	A is a locally compact Hausdorff space.

(b) If A is unital, then 	A is compact.

(c) For every a ∈ A the function â on 	A is continuous and vanishes at ∞. The
Gelfand transform

A → C0(	A); a �→ â.

is an algebra homomorphism.

(d) For every a ∈ A one has ‖â‖	A ≤ ‖a‖, so the Gelfand transform is continuous.

Proof We will show (a) and (b) in one go. The closure 	A of 	A in A′ is compact
by the Banach-Alaoglu Theorem. So we show that it equals 	A if A is unital, and
	A or 	A ∪ {0} if A is not unital. For this let (mν)ν be a net in 	A which converges
point-wise to f ∈ A′, it follows that

f (ab) = lim
ν

mν(ab) = lim
ν

mν(a) lim
ν

mν(b) = f (a)f (b),

which shows that f : A → C is an algebra homomorphism. If A is unital, then
f (1) = limν mν(1) = 1, we have f 
= 0, and hence f ∈ 	A. If A is not unital, it
can happen that f = 0. This implies (a) and (b).

For (c) note that, as the topology of 	A is induced by the weak-*-topology,
the point-evaluation â is continuous by definition. If 	A is compact, the claim
is clear. Otherwise, the closure of 	A is 	A ∪ {0} and coincides with the
one-point-compactification of 	A. Clearly, every â vanishes at the point 0 ∈ 	A.

Finally, for (d) note that for a ∈ A one has |â(m)| = |m(a)| ≤ ‖m‖‖a‖ = ‖a‖ by
Lemma 2.4.2. �

Example 2.4.6 Consider the case A = C0(X) for a locally compact Hausdorff space
X. For x ∈ X let mx : A → C be defined by mx(f ) = f (x). Then the map x �→ mx

is a homeomorphism from X to the structure space 	A (See Exercise 2.14).
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Lemma 2.4.7 Suppose that φ : A → B is an algebra homomorphism between
commutative Banach algebras A and B such that m ◦ φ 
= 0 for every m ∈ 	B.
Then

φ∗ : 	B → 	A

m �→ m ◦ φ

is continuous and is a homeomorphism if it is bijective.

Proof Since point-wise convergence of a net (mi) in 	B implies point-wise conver-
gence of (mi ◦ φ) in 	A, the map φ∗ is continuous. Assume now that it is bijective.
Let φe : Ae → Be be the canonical extension of φ to the unitizations defined by
φe(a, λ) = (φ(a), λ). Then the map (φe)∗ : 	Be → 	Ae , defined by m �→ m ◦φe, is
a continuous bijection between the one-point compactifications 	Be and 	Ae of 	A
and 	B, respectively, which restricts to the map φ∗ : 	B → 	A. The result then
follows from the fact that bijective continuous maps between compact Hausdorff
spaces are homeomorphisms. �

2.5 Maximal Ideals

If A is an algebra, a linear subspace I ⊂ A is called an ideal of A if for every a ∈ A
one has aI ⊂ I and Ia ⊂ I . Obviously, A itself is an ideal. Any ideal different from
A will be called a proper ideal. A maximal ideal is a proper ideal M such that for
any other proper ideal I with I ⊃ M , one has I = M .

Notice that if A is unital, then A× ∩ I = ∅ for any proper ideal I ⊂ A, since if
a ∈ A× ∩ I , then b = ba−1a ∈ I for every b ∈ A, and hence I = A. Since A× is
open in A, it follows that the closure I of any proper ideal in a unital Banach algebra
A is again a proper ideal in the algebra A.

Lemma 2.5.1 If A is a unital Banach algebra, then every proper ideal of A is
contained in a maximal ideal of A. Every maximal ideal is closed. Finally, if A is
commutative, then every non-invertible element of A lies in some maximal ideal.

Proof The first assertion is an easy application of Zorn’s Lemma. The second is
clear by the above remarks. For the third take an element a of A�A×. By the first
assertion it suffices to show that a lies in some proper ideal. Since we assume A
commutative, the set I = aA consisting of all elements of the form aa′ for a′ ∈ A,
is an ideal that contains a. It does not contain 1, as A is not invertible; therefore it is
a proper ideal. �

Definition If A is a Banach algebra and I ⊂ A is a closed ideal in A, then the

quotient vector space A/I
def= {a+ I : a ∈ A} is again a Banach algebra if we equip



2.6 The Gelfand-Naimark Theorem 49

A/I with the quotient norm

‖a + I‖ = inf{‖a + d‖ : d ∈ I }
and with multiplication given by (a + I )(b + I ) = ab + I (See Proposition C.1.7).

Theorem 2.5.2 Let A be a commutative unital Banach algebra.

(a) The map m �→ ker(m) = m−1(0) is a bijection between 	A and the set of all
maximal ideals of A.

(b) An element a ∈ A is invertible if and only if m(a) 
= 0 for every m ∈ 	A.

(c) For a ∈ A one has σ (a) = Im(â).

Proof (a) For the injectivity let m, n be two elements of 	A with ker(m) = ker(n) =
I . As I is a subspace of codimension one, every a ∈ A can be written as a0 + λ1 for
some a0 ∈ I . Then

m(a) = m(a0 + λ1) = λ = n(a0 + λ1) = n(a).

For the surjectivity let I be a maximal ideal. Then B = A/I is a unital Banach
algebra without any proper ideal. Let b ∈ B be non-zero. As B does not have any
proper ideal, Lemma 2.5.1 implies that b is invertible. Since this holds for any b,
Corollary 2.2.5 implies that B ∼= C. So I is the kernel of the map A → B ∼= C,
which lies in 	A.

For (b) let a ∈ A be invertible. For m ∈ 	A it holds m(a)m(a−1) = m(1) = 1;
therefore m(a) 
= 0. For the converse suppose a is not invertible. Then it is contained
in a maximal ideal, which is the kernel of some m ∈ 	A by part (a). Finally, (c)
follows by putting things together as follows: A given λ ∈ C lies in σ (a) ⇔ a − λ1
is not invertible ⇔ there is m ∈ 	A with m(a − λ1) = 0, i.e., â(m) = m(a) = λ,
which is equivalent to λ ∈ Im(â). Hence Im(â) ⊆ σ (a). The converse follows from
m(a −m(a)1) = 0 for every m ∈ 	A, from which it follows that a −m(a)1 is not
invertible, hence â(m) = m(a) ∈ σ (a). �

2.6 The Gelfand-Naimark Theorem

Let A be an algebra over C. An involution is a map A → A, denoted a �→ a∗ such
that for a, b ∈ A and λ ∈ C one has

(a + b)∗ = a∗ + b∗, (λa)∗ = λa∗, (ab)∗ = b∗a∗,

as well as (a∗)∗ = a. A Banach-*-algebra is a Banach algebra together with an
involution * such that for every a ∈ A one has

‖a∗‖ = ‖a‖.
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A Banach-*-algebra is called C∗-algebra if

‖a∗a‖ = ‖a‖2

holds for every a ∈ A. Equivalently, one can say ‖aa∗‖ = ‖a‖2.

An element a of a Banach-*-algebra A is called self-adjoint if a∗ = a.

Examples 2.6.1

• Let H be a Hilbert space and A = B(H ) the Banach algebra of all bounded linear
operators on H . Then the map T �→ T ∗ is an involution, where T ∗ is the adjoint
of T , i.e., the unique operator with 〈T v, w〉 = 〈v, T ∗w〉 for all v, w ∈ H . Then A
is a C∗-algebra, as for v ∈ H the Cauchy-Schwarz inequality says that

‖T v‖2 = 〈T v, T v〉 = 〈v, T ∗T v
〉 ≤ ‖v‖‖T ∗T v‖.

So, for v 
= 0, one gets ‖T v‖2

‖v‖2 ≤ ‖T ∗T v‖
‖v‖ and so, for the operator norm it follows

‖T ‖2 ≤ ‖T ∗T ‖ ≤ ‖T ∗‖‖T ‖. This inequality implies ‖T ‖ ≤ ‖T ∗‖, and by
replacing T by T ∗ one gets equality, and it also follows that ‖T ‖2 = ‖T ∗T ‖.

An operator T ∈ B(H ) with T ∗ = T is called a self adjoint operator.

• Let A = C0(X) for a locally compact Hausdorff space X. The involution

f ∗(x)
def= f (x)

makes this commutative Banach algebra into a C∗-algebra as ‖f ∗f ‖ =
supx∈X |f ∗(x)f (x)| = supx∈X |f (x)|2 = ‖f ‖2.

• A simple example of a Banach-*-algebra, which is not a C∗-algebra is given by
the disk-algebra (Example 2.2.8) with the involution f ∗(z) = f (z̄) (See Exercise
2.13).

Proposition 2.6.2 Let G be a locally compact group, and let A be the Banach
algebra L1(G). With the involution

f ∗(x) = 	G

(
x−1
)
f
(
x−1
)

the algebra A is a Banach-*-algebra but not a C∗-algebra unless G is trivial, in
which case A = C.

Proof The axioms of an involution are easily verified, and so is the fact that ‖f ∗‖ =
‖f ‖ for f ∈ A. For the last assertion, we need a lemma.
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Lemma 2.6.3 (a) Let X be a locally compact Hausdorff space and let x1, . . . , xn ∈ X

pairwise different points. Let λ1, . . . , λn ∈ C any given numbers. Then there exists
f ∈ Cc(G) with f (xj ) = λj for each j = 1, . . . , n.

(b) Let G be a locally compact group and g ∈ Cc(G) with the property that∣∣∫
G
g(y) dy

∣∣ = ∫
G
|g(y)| dy. Then there is θ ∈ T such that g(x) ∈ θ [0,∞) for

every x ∈ G.

Proof (a) By the Hausdorff property there are open sets Ui,j and Vi,j for i 
= j

with xi ∈ Ui,j , xj ∈ Vi,j and Ui,j ∩ Vi,j = ∅. Set Wj = ⋂j 
=i Uj ,i ∩ Vi,j . Then Wj

is an open neighborhood of xj and the sets W1, . . . ,Wn are pairwise disjoint. By the
Lemma of Urysohn (A.8.1) there is fj ∈ Cc(X) with support in Wj and f (xj ) = 1.
Set f = λ1f1 + · · · + λnfn. Then f satisfies the assertion of the lemma.

(b) Let g be given as in the assumption. If
∫
G
g(x) dx = 0, then

∫
G
|g(x)| dx = 0,

so g = 0. So we assume
∫
G
g(x) dx 
= 0. Replacing g by λg for some λ ∈ T, we

can assume
∫
G
g(x) dx > 0. Then

∫
G

|g(x)| dx =
∫
G

g(x) dx = Re

(∫
G

g(x) dx

)
=
∫
G

Re(g(x)) dx.

So
∫
G

(|g|−Re(g))(x) dx = 0. Since the continuous function |g|−Re(G) is positive,
it vanishes, hence |g| = Re(g), which means g ≥ 0. �

To prove the proposition assume that L1(G) is a C∗-algebra. We show that G = {1}.
By the C∗-property one has for every f ∈ Cc(G) that

∫
G

∣∣∣∣
∫
G

	(x−1y)f (y)f (x−1y) dy

∣∣∣∣ dx
= ‖f ∗ f ∗‖ = ‖f ‖2

=
∫
G

∫
G

	(x−1y)|f (y)f (x−1y)| dy dx.

The outer integrals on both sides have continuous integrands ≥ 0. The integrands
satisfy the inequality ≤. As the integrals are equal, the integrands are equal, too. So
for every x ∈ G we have

∣∣∣∣
∫
G

	(x−1y)f (y)f (x−1y) dy

∣∣∣∣ =
∫
G

	(x−1y)|f (y)f (x−1y)| dy.

By the lemma there is, for given x ∈ G, a θ ∈ T such that f (y)f (x−1y) ∈ θ [0,∞)
for every y ∈ G.
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Assume now that G is non-trivial. Then there is x0 
= 1 in G. By the lemma there
is a function f ∈ Cc(G) with f (x0) = f (x−1

0 ) = i and f (1) = 1. For x = x0 we
deduce

y = 1 ⇒ f (y)f (x−1y) = f (1)f (x−1
0 ) = −i,

y = x0 ⇒ f (y)f (x−1y) = f (x0)f (1) = i.

This is a contradiction! Therefore G is the trivial group. �

Recall that for an element a in a Banach algebra A, we denote by r(a) = max{|λ| :
λ ∈ σ (a)} the spectral radius of a. By adjoining a unit if necessary (See Sect. 2.3)
this makes sense also for non-unital algebras and the spectral radius formula r(a) =
limn→∞ ‖an‖1/n holds in general.

Lemma 2.6.4 Suppose that A is a C∗-algebra and that a ∈ A is self adjoint, i.e.,
a = a∗. Then the spectral radius of a equals its norm, i.e., r(a) = ‖a‖.

Proof If a = a∗ the C∗-condition implies that ‖a2‖ = ‖a∗a‖ = ‖a‖2. By induction
we get ‖a2n‖ = ‖a‖2n

for every n ∈ N. This implies r(a) = limn→∞ ‖a2n‖ 1
2n =

‖a‖. �

We should point out that the above result is remarkable, since it implies that the norm
in any C∗-algebra A only depends on the purely algebraic properties of A, since the
spectral radius r(a) only depends on the *-algebraic operations in A. This fact is
clear for a self-adjoint by the above lemma, and it follows for arbitrary a ∈ A by
‖a‖2 = ‖a∗a‖ = r(a∗a). In particular, it follows that every C∗-algebra has a unique
C∗-norm.

For later use we need to know that if A is a C∗-algebra, then Ae is also a C∗-
algebra, meaning that there exists a complete C∗-norm on Ae. It is easy to extend the
involution to Ae: Put (a, λ)∗ := (a∗, λ) . If A is unital, then we saw above that Ae

is isomorphic to the direct sum A ⊕ C, and it is easily checked that the point-wise
operations and the norm ‖(a, λ)‖ := max{‖a‖, ‖λ|} give A ⊕ C the structure of a
C∗-algebra. When A has no unit, the proof becomes more complicated:

Lemma 2.6.5 Suppose that A is a C∗-algebra. Then there exists a norm on Ae that
makes Ae a C∗-algebra. Moreover, the embedding of A into Ae is isometric.

Proof By the above discussion we may assume that A has no unit. Consider the
homomorphism L : Ae → B(A) given by L(a,λ)b := ab+λb, and define ‖(a, λ)‖ :=
‖L(a,λ)‖op. To see that this is a Banach algebra norm on Ae we only have to check
that L is injective. So let (a, λ) ∈ Ae such that ab + λb = 0 for every b ∈ A. If
λ 
= 0, it follows that

(− a
λ

)
b = b for every b ∈ A, and hence that − a

λ
is a unit for

A (See Exercise 2.4). This contradicts the assumption that A has no unit. If λ = 0,
then ab = 0 for every b ∈ A implies that aa∗ = 0. But then ‖a‖2 = ‖aa∗‖ = 0.
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The inclusion a �→ (a, 0), A → Ae is isometric: since ‖ab‖ ≤ ‖a‖‖b‖ for all
a, b ∈ A it follows that ‖L(a,0)‖op ≤ ‖a‖, and the equation ‖aa∗‖ = ‖a‖2 implies
that ‖a‖ ≤ ‖L(a,0)‖op. Since then A is a complete subspace of finite codimension in
Ae, this also implies that Ae is complete (See Lemma C.1.9).

It only remains to check that the norm on Ae satisfies the C∗- condition
‖(a, λ)∗(a, λ)‖ = ‖(a, λ)‖2. For this let ε > 0. By the definition of the operator norm
there exists b ∈ A with ‖b‖ = ‖(b, 0)‖ = 1 such that ‖ab+ λb‖ ≥ ‖(a, λ)‖(1− ε).
This implies

(1 − ε)2‖(a, λ)‖2 ≤ ‖ab + λb‖2 = ‖(ab + λb)∗(ab + λb)‖
= ‖(b∗, 0)(a∗, λ̄)(a, λ)(b, 0)‖,

and the latter is less than or equal to

‖(b∗, 0)‖‖(a, λ)∗(a, λ)‖‖(b, 0)‖ = ‖(a, λ)∗(a, λ)‖.
Since ε > 0 is arbitrary, we get the inequalities

‖(a, λ)‖2 ≤ ‖(a, λ)∗(a, λ)‖ ≤ ‖(a, λ)∗‖‖(a, λ)‖.
Replacing (a, λ) by (a, λ)∗, this implies equality everywhere. �

Definition If A is a C*-algebra and a ∈ A, we define the real and imaginary part
of a as

Re(a) = 1

2

(
a + a∗

)
an Im(a) = 1

2i

(
a − a∗

)
.

Then Re(a) and Im(a) are self-adjoint with a = Re(a) + iIm(a).

Lemma 2.6.6 If A is a commutative C∗-algebra, then m(a∗) = m(a) for every
a ∈ A and every m ∈ 	A.

Proof Let A be a commutative C∗-algebra. By passing to Ae if necessary, we may
assume that A is unital. Let m ∈ 	A and let a ∈ A. Decomposing a ∈ A in its real
and imaginary parts, we may assume that a = a∗. We want to show m(a) ∈ R. For

this write m(a) = x+ iy with x, y ∈ R. We have to show that y = 0. Put at
def=a+ it .

Then we get a∗t at = (a− it)(a+ it) = a2+ t2 and it follows m(at ) = x+ i(y+ t). So
for every t ∈ R we have x2 + (y+ t)2 = |m(at )|2 ≤ ‖at‖2 = ‖a∗t at‖ = ‖a2 + t2‖ ≤
‖a‖2 + t2, from which it follows that x2 + y2 + 2yt ≤ ‖a‖2 for every t ∈ R. But
this is possible only if y = 0. �

Theorem 2.6.7 (Gelfand-Naimark). If A is a commutative C∗-algebra, then the
Gelfand transform a �→ â is an isometric *-isomorphism

A
∼=−→ C0(	A).

So in particular, one has ‖â‖	A = ‖a‖ and â∗ = â for every a ∈ A. Finally, the
space 	A is compact if and only if A is unital. In this case the Gelfand transform
gives an isomorphism A ∼= C(	A).
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Proof We show that in case of a C∗-algebra the Gelfand map is isometric with dense
image. This will imply that Â = {â : a ∈ A} is a complete, hence closed, dense
subalgebra of C0(	A), and hence Â = C0(	A). For a ∈ A, using Theorem 2.5.2
and Lemma 2.6.4 we get ‖â‖2∞ = ‖ââ‖∞ = ‖â∗a‖∞ = r(a∗a) = ‖a∗a‖ = ‖a‖2,
so indeed the Gelfand transform is an isometric map. It remains to show that the
image is dense. The image of the Gelfand map Â = {â : a ∈ A} ⊂ C0(	A)
strictly separates the points of 	A: if m1,m2 ∈ 	A such that â(m1) = â(m2) for
every a ∈ A, then we clearly get m1 = m2, and since we require m 
= 0 for the
elements m ∈ 	A, we find at least one a ∈ A with â(m) = m(a) 
= 0 for any
given m ∈ 	A. Using this, it is then a direct consequence of the Stone-Weierstraß
Theorem A.10.1, that Â is dense in C0(	A) with respect to the supremum-norm
whenever Â is invariant under taking complex conjugates, which is the case thanks
to Lemma 2.6.6. Finally, if 	A is compact, then A ∼= C0(	A) is unital. The converse
is Theorem 2.4.5(b). �

2.7 The Continuous Functional Calculus

Let a be an element of a commutative unital C∗-algebra A, and let f be a continuous
function on its spectrum σ (a) = Im(â). Then f ◦ â defines a new element of A ∼=
C(	A), which we callf (a). The mapf �→ f (a) is called the (continuous) functional
calculus for a.

The functional calculus is one of the most important tools in functional analysis. In
case of the algebra B(H ) of bounded operators on a Hilbert space H , it will play a
very important role in further sections of this book.

An element a of a C∗-algebra A is called a normal element of A if a commutes
with its adjoint a∗. If A is unital and a ∈ A, then there exists a smallest unital
C∗-subalgebra C∗(a, 1) containing a, which we call the unital C∗-algebra generated
by a. In general, we let C∗(a) denote the smallest C∗-subalgebra of A containing a,
which also makes sense if A has no unit. One notices, that C∗(a) (resp. C∗(a, 1))
equals the norm closure in A of the algebra generated by a and a∗ (resp. a, a∗ and 1).
The element a is normal if and only if the C∗-algebra C∗(a) (resp. C∗(a, 1)) is
commutative.

In the construction of the functional calculus we will need the following remarkable
consequence of the spectral radius formula:

Lemma 2.7.1 Let � : A → B be a ∗-homomorphism from the Banach-*-algebra
A into the C∗-algebra B. Then ‖�(a)‖ ≤ ‖a‖ for every a ∈ A. In particular, the
map � is continuous.

Proof Adjoining units to A and B and passing to�e : Ae → Be given by�e(a, λ) =
(�(a), λ) if necessary, we may assume without loss of generality that A, B and � are
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unital. Let a ∈ A. Since σB(�(a∗a)) ⊆ σA(a∗a), it follows from the C∗-condition
‖b∗b‖ = ‖b‖2 on B and Lemma 2.6.4 that ‖�(a)‖2 = ‖�(a∗a)‖ = r(�(a∗a)) ≤
r(a∗a) ≤ ‖a∗a‖ ≤ ‖a‖2. �

Lemma 2.7.2 Let A ⊂ B be unital C∗-algebras and let a ∈ A be a normal element.
Then σA(a) = σB(a).

Proof One has C∗(1, a) ⊂ A ⊂ B and therefore σC∗(1,a)(a) ⊃ σA(a) ⊃ σB(a). So
it suffices to show that σC∗(1,a) ⊂ σB(a). We can replace the algebra A with C∗(1, a)
and therefore assume that A is commutative. In a first step we also assume B to
be commutative. Restriction of multiplicative functionals defines a continuous map
res : 	B → 	A. Define res∗ : C(	A) → C(	B) by res∗f (m) = f (res(m)). We
get a commutative diagram

C(ΔA) ≅

res *

A

Δ ≅

whose horizontal arrows are isomorphisms by the Gelfand-Naimark theorem. It
follows that res∗ is injective, hence res must be surjective. So σA(a) = â(	A) =
â(res(	B)) = â(	B) = σB(a).

We finally consider the general case, i.e., now B is no longer restricted to be commu-
tative. Let λ ∈ C with λ /∈ σB(a). We have to show λ /∈ σA(a). The element a − λ

is invertible in B. Put b = (a − λ)−1 ∈ B. Then b commutes with a and a∗, so the
C*-algebra C = C∗(1, a, b) generated by 1, a, b is commutative and λ /∈ σC(a). By
the first part we get σC(a) = σA(a). �

Theorem 2.7.3 Let A be a unital C*-algebra and let a ∈ A be a normal element.
Then there exists exactly one unital *-homomorphism

�a : C(σ (a)) → A

with the property that �a(Id) = a. We write f (a) = �a(f ). Then �a is isometric
and the image of �a is C∗(a, 1). If A is commutative, then �̂a(f ) = f ◦ â.

If A = C∗(1, a), then â : 	A → σ (a) is a homeomorphism.

If f : σ (a) → C is given by a power series f (z) =∑∞
n=0 an(z−z0)n which converges

uniformly on σ (a), then f (a) =∑∞
n=0 an(a−z01)n, and the series converges in norm.

Proof For the uniqueness, let �,� : C(σ (a)) → A be two unital *-
homomorphisms with �(Id) = �(Id) = a. Then they agree on all polynomials
in z and z̄, which span a dense subalgebra of C(σ (a)) by the Theorem of Stone-
Weierstraß A.10.1. By Lemma 2.7.1 the maps � and � are continuous, hence they
agree.
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To show existence, let B = C∗(a, 1) ⊆ A denote the abelian unital C*-algebra
generated by a. Let â : 	B → σB(a) = σA(a) denote the Gelfand transform of a.
Then â is surjective by Theorem 2.5.2 and it is also injective, because if m1,m2 ∈ 	B
with m1(a) = â(m1) = â(m2) = m2(a), then both characters will coincide on the
linear span of elements of the form al(a∗)k , which is dense in C∗(a, 1). Since 	B is
compact, it follows that â : 	B → σB(a) is a homeomorphism. We then get a unital
isometric ∗-isomorphism

� : C(σB(a)) → C(	B);�(f ) = f ◦ â−1.

Composing this with the inverse of the Gelfand transform̂: B → C(	B) gives us
a unital isometric ∗-isomorphism �a : C(	B) → B. If we apply � to the identity
Id : σB(a) → σB(a) we obtain the function â, which is mapped to a under the inverse
Gelfand transform. Thus we get �a(1) = 1 and �a(Id) = a.

The assertion for a uniformly convergent power series f follows from applying �a

to the polynomials fN (z) =∑N
n=0 an(z − z0)n and the fact that �a is isometric. �

Example 2.7.4 If A = C(X) for some compact Hausdorff space X, the functional
calculus sends an element g ∈ C(σ (f )) = C(f (X)) to the function g ◦ f ∈ C(X).
This follows from the uniqueness assertion in Theorem 2.5.2 and the fact that the
homomorphism � : C(f (X)) → C(X) : �(g) = g ◦ f satisfies �(Id) = f .

Corollary 2.7.5 (a) If a = a∗ is a self-adjoint element of the C*-algebra A, then
σA(a) ⊆ R.

(b) Let � : A → B be a unital *-homomorphism between C*-algebras and let a ∈ A
be a normal element. Then �(a) is normal and σ (�(a)) ⊂ σ (a). The diagram

C(σ (a))
�a−−−−−−−→ A

res

⏐⏐⏐

⏐⏐⏐
�

C(σ (�(a))
��(a)−−−−−−−→ B

commutes.

In particular, one has f (�(a)) = �(f (a)) for every f ∈ C(σ (a)).

(c) Suppose that a ∈ A is a normal element in the unital C*-algebra A and let
f ∈ C(σA(a)). Then f (a) is a normal element of A, σA(f (a)) = f (σA(a)) and
g(f (a)) = (g ◦ f )(a) for all g ∈ C(σA(f (a))).

Proof (a) We assume A to be unital. By Theorem 2.7.3 we have f (Id) = a =
a∗ = f (Id), where Id = IdσA(a). As the map C(σ (a)) → A, that sends f to f (a), is
isometric, hence injective, it follows Id = Id on σ (a) and hence σ (a) ⊂ R.
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(b) The two ways through the diagram give us two unital *- homomorphismsΠ1,Π2 :
C(σ (a)) → B. Both maps send the identity Id = IdσA(a) to �(a), and therefore they
agree.

Applying part (b) to the functional calculus homomorphism �a : C(σ (a)) → A
yields (c) except forσA(f (a)) = f (σA(a)), where it only gives “⊂”. IfX is a compact
Hausdorff space then σC(X)(f ) = f (X). If we apply this fact to the algebra C(σA(a))
and observe that the spectrum is preserved under isometric ∗-isomorphisms, we see
that σA(f (a)) = σC∗(a,1)(f (a)) = σC(σA(a))(f ) = f (σA(a)). �

We now show that injective ∗-homomorphisms between C∗-algebras are automati-
cally isometric.

Corollary 2.7.6 Suppose that the map � : A → B is an injective ∗-homomorphism
from the C∗-algebra A to the C∗-algebra B. Then ‖�(a)‖ = ‖a‖ for every a ∈ A,
i.e., � is isometric.

Proof By Lemma 2.7.1 we know that ‖�(a)‖ ≤ ‖a‖ for every a ∈ A. We want
to show equality. As in the proof of Lemma 2.7.1 we may assume without loss of
generality that A, B and � are unital.

So assume that there is a ∈ A with ‖�(a)‖ < ‖a‖. By scaling we may assume

‖a‖ = 1. Then α
def= ‖�(a∗a)‖ = ‖�(a)‖2 < ‖a‖2 = ‖a∗a‖ = 1. So with c = a∗a

we have c self-adjoint with σ (c) ⊆ [ − 1, 1] and σ (�(c)) ⊆ [ − α,α]. It follows
from Lemma 2.6.4 that σ (c) contains either 1 or −1. So we can find a function
0 
= f ∈ C(σ (c)) with f ≡ 0 on σ (�(c)). Using the injectivity of � it follows that
0 
= �(f (c)) = f (�(c)) = 0, a contradiction. �

2.8 Exercises and Notes

Exercise 2.1 Let (V , ‖·‖) be a Banach space. Let A = B(V ) be the set of all bounded
operators on V, i.e., the set of all linear operators T : A → A, such that

‖T ‖op def= sup
v 
=0

‖T v‖
‖v‖ < ∞.

Show: ‖·‖op is a norm, it is called the operator norm. Show that A is a unital Banach
algebra with this norm.

Exercise 2.2 Let V be a Banach space, D ⊂ C open and f : D → V holomorphic.
Show that f is continuous.

Exercise 2.3 Suppose that for an element a of a unital Banach-*-algebra one has
σA(a∗) = σA(a).
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Exercise 2.4 Suppose that A is a Banach-*-algebra. Show that any left unit is a unit.
In other words, suppose that a = ea holds for every a in the Banach-*-algebra A.
Show that e is a unit.

Exercise 2.5 Give an example of a unital Banach algebra A and two elements
x, y ∈ A with xy = 1, but yx 
= 1.

Exercise 2.6 Consider the Banach algebra l1(Z) with the usual convolution product.

Show that f ∗(n)
def= f (n) defines an involution on l1(Z) making l1(Z) into a Banach

*-algebra, which is not symmetric, i.e., there exists a self-adjoint element f ∈ l1(Z)
such that σ (f ) 
⊂ R.

Exercise 2.7 Let (V , ‖·‖) be a Banach space, and let (an)n∈N be a sequence in A.
Show that, if

∑
n ‖an‖ < ∞, then the series

∑
n an converges in A.

Exercise 2.8 Let (A, ‖·‖) be a Banach algebra. Show that for every a ∈ A the series

exp (a)
def=

∞∑
n=0

an

n!
converges and that, for a, b ∈ A with ab = ba, one has exp (a+b) = exp (a) exp (b).

Exercise 2.9 Let B ⊂ A a closed sub algebra of the Banach algebra A. Suppose
that A is unital and 1 ∈ B. Show that for x ∈ B,

rA(x) = rB(x),

where rA is the spectral radius with respect to the algebra A and likewise for B.

Exercise 2.10 Let A be a unital Banach algebra. Let x, y ∈ A with xy = yx. Show
that the spectral radius satisfies

r(xy) ≤ r(x)r(y), r(x + y) ≤ r(x) + r(y).

Exercise 2.11 Show that commuting idempotents repel each other. More precisely,
let A be a Banach algebra, and let e 
= f in A with e2 = e, f 2 = f , and ef = f e.
Show that ‖e − f ‖ ≥ 1.

Exercise 2.12 Let A be the disk-algebra of Example 2.2.8.. Show that the algebra
of polynomial functions is dense in A.

(Hint: For f ∈ A and 0 < r < 1 consider fr (z) = f (rz).)

Exercise 2.13 Show that the disk-algebra, equipped with the involution

f ∗(z)
def= f (z̄)

is a Banach-*-algebra, but not a C∗-algebra.
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Exercise 2.14 Let A = C0(X) for a locally compact Hausdorff space X. For x ∈ X

let mx : A → C be defined by mx(f ) = f (x). Show that the map x �→ mx is a
homeomorphism from X to the structure space 	A.

(Hint: By passing to the one-point compactification reduce to the case when X is
compact. For a given ideal I in A consider the set V of all x ∈ X such that f (x) = 0
for every f ∈ I . Show that V is non-empty for a proper ideal I .)

Exercise 2.15 Let A be a commutative C∗-algebra. A linear functional L is called
positive if L(aa∗) ≥ 0 for every a ∈ A. Show that every positive functional is
continuous.

Exercise 2.16 (Wiener’s Lemma) Suppose thatf : R → C is a 2π -periodic function
such that

f (x) =
∑
n∈Z

ane
inx with

∑
n∈Z

|an| < ∞.

Show that if f (x) 
= 0 for every x ∈ R, then there exist bn ∈ C such that

1

f (x)
=
∑
n∈Z

bne
inx with

∑
n∈Z

|bn| < ∞.

Exercise 2.17 Let A and B be commutative C∗-algebras, and let φ : A → B be a
linear map with φ(aa′) = φ(a)φ(a′) for any a, a′ ∈ A. Show that φ is a continuous
∗-homomorphism.

(Hint: Consider the map φ∗ : 	B → 	A given by φ∗(m) = m ◦ φ.)

Exercise 2.18 Assume that a is a normal element in the non-unital C∗-algebra A.
Let C0(σA(a)) = {f ∈ C(σA(a)) : f (0) = 0}.

(a) Show that there exists a unique ∗-homomorphism � : C0(σA(a)) → A such
that �(Id) = a where Id = IdσA(a).

(b) Show that the ∗-homomorphism � in (a) is isometric and satisfies
�(C0(σA(a))) = C∗(a).

(Hint: Apply Theorem 2.7.3 to the unitization Ae of A.)

Exercise 2.19 Let a be a self-adjoint element in the C∗-algebra A. Then a is called
positive if σA(a) ⊆ [0,∞). Show that for each positive element a ∈ A and for each
n ∈ N there exists a unique positive element b ∈ A with bn = a.

Exercise 2.20 Leta be any self-adjoint element in theC∗-algebra A. Then there exist
unique positive elements a+ and a− such that a = a+ − a− and a+a− = a−a+ = 0.
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Exercise 2.21 Suppose that a is a self-adjoint element in the unital C∗-algebra A,
and let f (z) = ∑∞

n=0 βnzn be a power series, which converges absolutely for every
z ∈ σA(a). Then f (a) =∑∞

n=0 βna
n.

Notes

It is a pleasure for us to recommend Kaniuth’s book [Kan09] for further reading on
the theory of commutative Banach Algebras.



Chapter 3

Duality for Abelian Groups

In this chapter we are mainly interested in the study of abelian locally compact groups
A, their dual groups Â together with various associated group algebras. Using the
Gelfand-Naimark Theorem as a tool, we shall then give a proof of the Plancherel
Theorem, which asserts that the Fourier transform extends to a unitary equivalence of
the Hilbert spaces L2(A) and L2(Â). We also prove the Pontryagin Duality Theorem

that gives a canonical isomorphism between A and its bidual ̂̂A.

3.1 The Dual Group

A locally compact abelian group will be called an LCA-group for short. A character
of an LCA-group A is a continuous group homomorphism

χ : A → T,

where T is the circle group, i.e., the multiplicative group of all complex numbers of
absolute value one. The set Â of all characters on A forms a group under point-wise
multiplication

(χ · μ)(x) = χ (x) · μ(x), x ∈ A.

The inverse element to a given χ ∈ Â is given by χ−1(x) = 1
χ (x) = χ (x). The group

Â is called the dual group of A.

Examples 3.1.1

• As explained in Example 1.7.1, the dual group of Z is R/Z and vice versa.

• The characters of the additive group R are the maps χt : x �→ e2πixt , where t
varies in R. We then get an isomorphism of groups R ∼= R̂ mapping t to χt .

Definition In what follows next we want to show that Â carries a natural topology
that makes it a topological group. For a given topological space X let C(X) be the

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 61
DOI 10.1007/978-3-319-05792-7_3, © Springer International Publishing Switzerland 2014
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complex vector space of all continuous maps from X to C. For a compact set K ⊂ X

and an open set U ⊂ C define the set

L(K ,U )
def= {f ∈ C(X) : f (K) ⊂ U}.

This is the set of all f that map a given compact set into a given open set. The topology
generated by the sets L(K ,U ) as K and U vary, is called the compact-open topology.

Lemma 3.1.2 (a) Let X be a topological space. With the compact-open topology,
C(X) is a Hausdorff space.

(b) A net (fi) in C(X) converges in the compact-open topology if and only if it
converges uniformly on every compact subset of X.

(c) If X is locally compact, then a net (fi) converges in the compact-open topology
if and only if it converges locally uniformly.

(d) If X is compact, the compact-open topology on C(X) coincides with the topology
given by the sup-norm.

(e) If C(X) is endowed with the compact-open topology, then each point evaluation
map δx : C(X) → C; f �→ f (x) is continuous.

Proof (a) Let f 
= g in C(X). Choose x ∈ X such that f (x) 
= g(x), and choose
disjoint open neighborhoods S, T in C of f (x) and g(x). Then the sets L({x}, S) and
L({x}, T ) are disjoint open neighborhoods of f and g, so C(X) is a Hausdorff space.

(b) Fix ε > 0, let fi → f be a net converging in the compact-open topology and let
K ⊂ X be a compact subset. For z ∈ C and r > 0 let Br (z) be the open ball of radius
r around z and let B̄r (z) be its closure. For x ∈ X let Ux be the inverse image under
f of the open ball Bε/3(f (x)). Then Ux is an open neighborhood of x and f maps its
closure Ūx into the closed ball Bε/3(f (x)). As K is compact, there are x1, . . . xn ∈ K

such that K is a subset of the union Ux1 ∪ · · · ∪Uxn . Since closed subsets of compact
sets are compact, the set Ūxi ∩ K is compact. Let L be the intersection of the sets
L(Ūxi ∩K ,B2ε/3(f (xi))). Then L is an open neighborhood of f in the compact-open
topology. Therefore, there exists an index j0 such that for j ≥ j0 each fj lies in L.
Let j ≥ j0 and x ∈ K . Then there exists i such that x ∈ Uxi . Therefore,

|fj (x) − f (x)| ≤ |fj (x) − f (xi)| + |f (xi) − f (x)|

<
2ε

3
+ ε

3
= ε.

It follows that the net converges uniformly on K . The converse direction is trivial.

(c) Let X be a locally compact space and let (fj ) be a net in C(X) which converges
to f ∈ C(X) in the compact-open topology, i.e., it converges uniformly on compact
sets. As every x ∈ X has a compact neighborhood, (fj ) converges uniformly on
a neighborhood of a given x, hence it converges locally uniformly. Conversely,
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assume that (fj ) converges locally uniformly and let K ⊂ X be compact. For each
x ∈ K there exists an open neighborhood Ux on which the net (fj ) converges
uniformly. These Ux form an open covering of K , hence finitely many suffice, i.e.,
K ⊂ Ux1 ∪ · · · ∪Uxn for some x1, . . . , xn ∈ K . As (fj ) converges uniformly on each
Uxi , in converges uniformly on K .

(d) If X is compact, the compact-open topology and the sup-norm topology generate
the same set of convergent nets. Therefore they have the same closed sets, so they
are equal. For the last point, (e), let (fi) be a net in C(X) convergent to f. Then
δx(fi) = fi(x) converges to f (x) = δx(f ), so the evaluation map is continuous. �

By definition, the dual group Â is a subset of the setC(A) of all continuous maps from
A to C. It is a consequence of Lemma 3.1.2 (e) that Â is closed in the compact-open
topology of C(A).

Examples 3.1.3.

• The compact-open topology on the dual Ẑ ∼= T of Z is the natural topology of
the circle group T.

• The compact-open topology on the dual T̂ ∼= Z of T is the discrete topology.

• The compact-open topology on the dual R̂ ∼= R of R is the usual topology of R.

Proposition 3.1.4 With the compact-open topology, Â is a topological group that is
Hausdorff.

Later we will see that Â is also locally compact, i.e., an LCA-group.

Proof We have to show that the map α : Â × Â → Â, that sends a pair (χ , η) to
χη−1, is continuous. For two pairs (χ , η), (χ ′η′) and x ∈ A we have

|χ (x)η−1(x) − χ ′(x)η′−1(x)| ≤ |χ (x)η−1(x) − χ (x)η′−1(x)|
+ |χ (x)η′−1(x) − χ ′(x)η′−1(x)|

= |η−1(x) − η′−1(x)| + |χ (x) − χ ′(x)|,
Let K ⊂ A be compact and let ε > 0. Then

BK ,ε(χη−1) = {γ ∈ Â : ‖γ − χη−1‖K < ε
}

is an open neighborhood of χη−1 and sets of this form are a neighborhood base. The
estimate above shows that the open neighborhood BK ,ε/2(χ )×BK ,ε/2(η) of (χ , η) is
mapped to BK ,ε(χη−1), so α is continuous. �

The observation, that the dual group of the compact group T is the discrete group Z

and vice versa, is an example of the following general principle:



64 3 Duality for Abelian Groups

Proposition 3.1.5

(a) If A is compact, then Â is discrete.

(b) If A is discrete, then Â is compact.

Proof Let A be compact, and let L be the set of all η ∈ Â such that η(A) lies in the
open set {Re( ·) > 0}. As A is compact, L is an open unit-neighborhood in Â. For
every η ∈ Â, the image η(A) is a subgroup of T. The only subgroup of T, however,
that is contained in {Re( · ) > 0}, is the trivial group. Therefore L = {1}, and so Â

is discrete.

For the second part, assume that A is discrete. Then Â = Hom(A, T) is a subset of
the set Map(A, T) of all maps from A to T. The set Map(A, T) can be identified
with the product

∏
a∈A T. By Tychonov’s Theorem, the latter is a compact

Hausdorff space in the product topology and Â forms a closed subspace. As A
is discrete, the inclusion Â ↪→ ∏

a∈A T induces a homeomorphism of Â

onto its image in the product space. Hence Â is compact. �

3.2 The Fourier Transform

Let A be an LCA-group and consider its convolution algebra L1(A). In this section
we want to show that the topological space Â is canonically homeomorphic to the
structure space	L1(A) of the commutative Banach algebraL1(A). Since this structure
space is locally compact, this will show that the dual group Â is an LCA-group. Recall
that the Fourier transform f̂ : Â → C of a function f ∈ L1(A) is defined as

f̂ (χ ) =
∫
A

f (x)χ (x) dx.

Theorem 3.2.1 The map χ �→ dχ from the dual group Â to the structure space
	L1(A) defined by

dχ (f ) = f̂ (χ )

is a homeomorphism. In particular, Â is a locally compact Hausdorff space, so Â is
an LCA-group.

It follows that for every f ∈ L1(A) the Fourier transform f̂ is a continuous function
on the dual group Â, which vanishes at infinity.

Proof By Lemma 1.7.2 it follows that dχ indeed lies in the structure space of the
Banach algebra L1(A).
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Injectivity Assume dχ = dχ ′ , then
∫
A
f (x)(χ (x) − χ ′(x)) dx = 0 for every f ∈

Cc(A). This implies that the continuous functions χ and χ ′ coincide.

Surjectivity Let m ∈ 	L1(A). As Cc(A) is dense in L1(A), there exists an element
g ∈ Cc(A) with m(g) 
= 0. For x ∈ A define χ (x) = m(Lxg)/m(g). The continuity
of m and Lemma 1.4.2 implies that χ is a continuous function on A. One computes,

m(Lxg)m(Lyg) = m(Lxg ∗ Lyg) = m(Lxyg ∗ g) = m(Lxyg)m(g).

Dividing by m(g)2 and taking complex conjugates, one gets the identity χ (x)χ (y) =
χ (xy), so χ is a multiplicative map from A to C

×. Let f ∈ Cc(A). Then one can
write the convolution f ∗ g as

∫
A
f (x)Lxg dx, and this integral may be viewed as a

vector-valued integral with values in the Banach space L1(A) as in Sect. B.6. One
uses the continuity of the linear functional m and Lemma B.6.5 to get

∫
A

f (x)χ (x) dx = 1

m(g)

∫
A

f (x)m(Lxg) dx = 1

m(g)
m

(∫
A

f (x)Lxg dx

)

= 1

m(g)
m(f ∗ g) = m(f )m(g)

m(g)
= m(f ).

Let (φU ) be a Dirac net in Cc(A). Then φU ∗ χ converges point-wise to χ and so for
x ∈ A and ε > 0 there exists a unit-neighborhood U , such that

|χ (x)| ≤
∣∣∣φU ∗ χ (x)

∣∣∣+ ε =
∣∣∣∣
∫
A

LxφU (y)χ (y) dy

∣∣∣∣+ ε

=
∣∣∣m(LxφU )

∣∣∣ ≤ lim
U
‖LxφU‖1 + ε = 1 + ε.

As ε is arbitrary, we get |χ (x)| ≤ 1 for every x ∈ A. By χ (x−1) = χ (x)−1 we infer
|χ (x)| = 1 for every x ∈ A. So the map χ lies in Â, and the map d is surjective.

Continuity Let χj → χ be a net in Â which converges locally uniformly on A.
Let f ∈ L1(A) and choose ε > 0. We have to show that there exists j0 such that
for j ≥ j0 one has |f̂ (χj ) − f̂ (χ )| < ε. Let g ∈ Cc(A) with ‖f − g‖1 < ε/3.
Since χj → χ uniformly on supp(g), there exists j0 such that for j ≥ j0 it holds
|ĝ(χj ) − ĝ(χ )| < ε/3. For j ≥ j0 one has

|f̂ (χj ) − f̂ (χ )| ≤ |f̂ (χj − ĝ(χj )| + |ĝ(χj ) − ĝ(χ )| + |ĝ(χ ) − f̂ (χ )|
<

ε

3
+ ε

3
+ ε

3
= ε.

The continuity of the inverse map d−1 is a direct consequence of the following lemma.
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Lemma 3.2.2 Let χ0 ∈ Â. Let K be a compact subset of A, and let ε > 0. Then there
exist l ∈ N, functions f0, f1, . . . , fl ∈ L1(A), and δ > 0 such that for χ ∈ Â the
condition |f̂j (χ )− f̂j (χ0)| < δ for every j = 0, . . . , l implies |χ (x)− χ0(x)| < ε

for every x ∈ K .

Proof For f ∈ L1(A) we have

f̂ (χ ) − f̂ (χ0) =
∫
A

f (x)(χ (x) − χ0(x)) dx

=
∫
A

f (x)χ0(x) (χ (x)χ0(x) − 1) dx

= f̂ χ̄0(χχ̄0) − f̂ χ̄0(1).

So without loss of generality we can assume χ0 = 1.

Let f ∈ L1(A) with f̂ (1) = ∫
A
f (x) dx = 1. Then there is a unit-neighborhood U

in A with ‖Luf − f ‖1 < ε/3 for every u ∈ U . As K is compact, there are finitely
many x1, . . . , xl ∈ A such that K is a subset of x1U ∪ · · · ∪ xlU . Set fj = Lxj f

as well as f0 = f and let δ = ε/3. Let χ ∈ Â with |f̂j (χ ) − 1| < ε/3 for every
j = 0, . . . , l. Now let x ∈ K . Then there exists 1 ≤ j ≤ l and u ∈ U such that
x = xju ∈ xjU . One gets

|χ (x) − 1| =|χ (x) − 1|
≤ |χ (x) − χ (x)f̂ (χ )| + |f̂ (χ )χ (x) − f̂j (χ )| + |f̂j (χ ) − 1|

=|1 − f̂ (χ )| + |L̂xf (χ ) − L̂xj f (χ )| + |f̂j (χ ) − 1|
<

ε

3
+ ε

3
+ ε

3
= ε,

where the last inequality uses

|L̂xf (χ ) − L̂xj f (χ )| ≤ ‖Lxf − Lxj f ‖1 = ‖Lxj (Luf − f )‖1

= ‖Luf − f ‖1 < ε/3.

The lemma and the theorem are proven. �

3.3 The C∗-Algebra of an LCA-Group

In this section we introduce the C∗-algebra C∗(A) of the LCA-group A as a certain
completion of the convolution algebra L1(A). We show that restriction of multiplica-
tive functionals fromC∗(A) to the dense subalgebraL1(A) defines a homeomorphism
between 	C∗(A) and 	L1(A). Hence by the results of the previous section, 	C∗(A) is
canonically homeomorphic to the dual group Â. The Gelfand-Naimark Theorem then
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implies that the Fourier transform on L1(A) extends to an isometric *-isomorphism
between C∗(A) and C0(Â). These results will play an important role in the proof of
the Plancherel Theorem in the following section.

Let f ∈ L1(A) and φ,ψ ∈ L2(A). For every y ∈ A one has

|〈Lyφ,ψ
〉| ≤ ‖Lyφ‖2‖ψ‖2 = ‖φ‖2‖ψ‖2.

This implies that the integral
∫
A
f (y)〈Lyφ,ψ〉 dy exists, and one has the estimate

∣∣∣∣
∫
A

f (y)
〈
Lyφ,ψ

〉
dy

∣∣∣∣ ≤ ‖f ‖1‖φ‖2‖ψ‖2.

In other words, the anti-linear map that sends ψ to the integral
∫
A
f (y)〈Lyφ,ψ〉 dy is

bounded, hence continuous by Lemma C.1.2. As every continuous anti-linear map on
a Hilbert space is represented by a unique vector, there exists a unique element L(f )φ
in L2(A) such that 〈L(f )φ,ψ〉 = ∫

A
f (y)〈Lyφ,ψ〉 dy for every ψ ∈ L2(A). The

above estimate gives |〈L(f )φ,ψ〉| ≤ ‖f ‖1‖φ‖2‖ψ‖2. In particular, for ψ = L(f )φ
one concludes ‖L(f )φ‖2

2 ≤ ‖f ‖1‖φ‖2‖L(f )φ‖2, hence ‖L(f )φ‖2 ≤ ‖f ‖1‖φ‖2,
which implies that the linear map φ �→ L(f )φ is bounded, hence continuous. Note
that for φ ∈ Cc(G) one has L(f )φ = f ∗ φ by Lemma 3.3.1 below.

Lemma 3.3.1 If f ∈ L1(A) and φ ∈ L1(A)∩L2(A), then L(f )φ = f ∗φ = φ ∗f .

Proof Let ψ ∈ Cc(A). Then the inner product 〈L(f )φ,ψ〉 equals∫
A
f (y)
∫
A
φ(y−1x)ψ(x) dx dy. This integral exists if f ,φ,ψ are replaced with their

absolute values. Therefore we can apply Fubini’s Theorem to get 〈L(f )φ,ψ〉 =
〈f ∗ φ,ψ〉, whence the claim.

Lemma 3.3.2 The map L from L1(A) to the space B(L2(A)) is an injective,
continuous homomorphism of Banach-*-algebras.

Proof The map is linear and satisfies ‖L(f )‖op ≤ ‖f ‖1, therefore is continuous.
For f , g ∈ L1(A) and φ in the dense subspace Cc(A) of L2(A) the above lemma and
the associativity of convolution implies

L(f ∗ g)φ = (f ∗ g) ∗ φ = f ∗ (g ∗ φ) = L(f )L(g)φ,

so L is multiplicative. For φ,ψ ∈ Cc(A) we get

〈f ∗ φ,ψ〉 =
∫
A

∫
A

f (y)φ(y−1x)ψ(x) dy dx

=
∫
A

∫
A

f (y)φ(x)ψ(yx) dx dy

=
∫
A

∫
A

φ(x)	(y−1)f (y−1)ψ(y−1x) dy dx

= 〈φ, f ∗ ∗ ψ
〉
,
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where we used the transformation x �→ yx followed by the transformation y �→ y−1.
This shows L(f ∗) = L(f )∗.

For the injectivity, let f ∈ L1(G) with L(f ) = 0. Then in particular f ∗ φ = 0 for
every φ ∈ Cc(A). Using Lemma 1.6.6 this implies f = 0.

Definition We define the group C∗-algebra C∗(A) of the LCA-group A to be the
norm-closure of (L1(A)) in the C∗-algebra B(L2(A)). As L1(A) is a commutative
Banach algebra, C∗(A) is a commutative C∗-algebra.

Theorem 3.3.3 The map L∗ : 	C∗(A) → 	L1(A) given by m �→ m ◦ L is a
homeomorphism. It follows 	C∗(A)

∼= Â and C∗(A) ∼= C0(Â).

Proof As the image of L is dense in C∗(A), it follows that m ◦ L 
= 0 for every
m ∈ 	C∗(A) and that L∗ is injective. Therefore by Lemma 2.4.7 it suffices to show
that L∗ is surjective.

To prove this, letm ∈ 	L1(A) andχ ∈ Â such thatm(f ) = f̂ (χ ) for everyf ∈ L1(A).
We have to show that m is continuous in the C∗-norm, because then it has a unique
extension to C∗(A). For this let μ0 ∈ 	C∗(A) be fixed. Then there is χ0 ∈ Â such
that for f ∈ L1(A) the identity f̂ (χ0) = μ0(f ) holds, where we have written
μ0(L(f )) = μ0(f ). For f ∈ L1(A), one has

m(f ) =
∫
A

f (x)χ (x) dx =
∫
A

f (x)χ (x)χ0(x)χ0(x) dx = μ0(f χ̄χ0).

It follows that |m(f )| = |μ0(f χ̄χ0)| ≤ ‖f χ̄χ0‖C∗(A). So we have to show that for
f ∈ L1(A) the C∗-norm of f equals the C∗-norm of f η for any η ∈ Â. As the
C∗-norm is the operator norm in B(L2(A)), we consider φ,ψ ∈ L2(A), and we
compute

〈L(ηf )φ,ψ〉 =
∫
A

η(x)f (x)〈Lxφ,ψ〉 dx

=
∫
A

η(x)f (x)
∫
A

φ(x−1y)ψ(y) dy dx

=
∫
A

f (x)
∫
A

(η̄φ)(x−1y)(η̄ψ)(y) dy dx

= 〈L(f )(η̄φ), η̄ψ〉.
Putting ψ = L(ηf )φ, we get

‖L(ηf )φ‖2
2 = 〈L(f )(η̄φ), η̄L(ηf )φ〉 ≤ ‖L(f )(η̄φ)‖2‖η̄L(ηf )φ‖2.

Since ‖η̄L(ηf )φ‖2 = ‖L(ηf )φ‖2 it follows ‖L(ηf )φ‖2 ≤ ‖L(f )(η̄φ)‖2 and so
the operator norm of L(ηf ) is less than or equal to the operator norm of L(f ). By
symmetry we get equality and the theorem follows. �
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Corollary 3.3.4 Let A be an LCA-group. Then the Fourier transform L1(A) →
C0(Â), mapping f to f̂ , is injective.

Proof Let A = L1(A). As Â ∼= 	A ∼= 	C∗(A), the Fourier transform is the
composition of the injective maps A → C∗(A) → C0(Â). �

3.4 The Plancherel Theorem

In this section we will construct the Plancherel measure on the dual group Â relative to
a given Haar measure on the LCA group A and we will state the Plancherel Theorem,
which says that the Fourier transform extends to a unitary equivalence

L2(A) ∼= L2(Â ).

The proof of the Plancherel theorem will be postponed to the following section,
where it will be shown as a consequence of Pontryagin duality.

Lemma 3.4.1 Let φ,ψ ∈ L2(A). Then the convolution integral φ ∗ ψ(x) =∫
A
φ(y)ψ(y−1x) dy exists for every x ∈ A and defines a continuous function

in x. The convolution product φ ∗ ψ lies in C0(A) and its sup-norm satisfies
‖φ ∗ ψ‖A ≤ ‖φ‖2‖ψ‖2. Finally one has φ ∗ φ∗(1) = ‖φ‖2

2.

Proof With ψ , also the function Lxψ
∗ lies in L2(A), as A is abelian, hence uni-

modular. The convolution integral is the same as the inner product 〈φ,Lxψ
∗〉, hence

the integral exists for every x ∈ A. The continuity follows from Lemma 1.4.2 and
the fact that the map L2(A) → C, given by ψ �→ 〈φ,ψ〉 is continuous. Next use the
Cauchy-Schwarz inequality to get

‖φ ∗ ψ‖A = sup
x∈A

∣∣〈φ,Lxψ
∗〉∣∣ ≤ ‖φ‖2‖ψ‖2.

Choose sequences (φn) and (ψn) in Cc(A) with ‖φn − φ‖2, ‖ψn − ψ‖2 → 0. Then
it follows from the above inequality that φn ∗ ψn ∈ Cc(A) converges uniformly to
φ ∗ ψ . It follows that φ ∗ ψ ∈ C0(A) since C0(A) is complete. The final assertion
φ ∗ φ∗(1) = ‖φ‖2

2 is clear by definition. �

The space C = C0(A) × C0(Â) is a Banach space with the norm

‖(f , η)‖∗0 = max
(‖f ‖A,‖η‖Â

)
.

We embed C0(A) ∩ L1(A) into this product space by mapping f to (f , f̂ ) and we
denote the closure of C0(A) ∩ L1(A) inside C by

C∗
0 (A).

This is a Banach space the norm of which we write as ‖f ‖∗0.
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Lemma 3.4.2 Let p0 and p∗ be the projections from C to C0(A) and C0(Â), respec-
tively. Then the restrictions of p0 and p∗ to C∗

0 (A) are both injective. Hence we can
consider C∗

0 (A) as a subspace of C0(A) as well as of C0(Â).

Proof Let f ∈ C∗
0 (A) and write f∗ for p∗(f ) and f0 for p0(f ). We have to show

that if one of these two is zero, then so is the other. Let (fn) be a sequence in
C0(A) ∩ L1(A) converging to f in C∗

0 (A). Then fn converges to f∗ in C∗(A) and to
f0 uniformly on A. So for ψ ∈ L2(A) the sequence fn ∗ ψ converges to f∗(ψ) in
L2(A). If ψ is in Cc(A), then fn ∗ ψ also converges uniformly to f0 ∗ ψ . So for
every φ ∈ Cc(A), the sequence 〈fn ∗ ψ ,φ〉 converges to 〈f ∗(ψ),φ〉 and by uniform
convergence also to 〈f0 ∗ ψ ,φ〉, i.e., we have 〈f∗(ψ),φ〉 = 〈f0 ∗ ψ ,φ〉.As this holds
for all ψ ,φ ∈ Cc(G), we conclude f∗ = 0 ⇔ f0 = 0 as claimed. �

A given element f of C∗
0 (A) can be viewed as an element of C0(A), or of C∗(A) ∼=

C0(Â). We will freely switch between these two viewpoints in the sequel. If we want
to emphasize the distinction, we write f for the function on A and f̂ for its Fourier
transform, the function on Â.

For g ∈ C∗(A) and φ ∈ L2(A) we from now on write L(g)φ for the element g(φ) of
L2(A).

Lemma 3.4.3 Let f ∈ C∗
0 (A). If the Fourier transform f̂ is real-valued, then f (1)

is real. If f̂ ≥ 0, then f (1) ≥ 0. Here 1 denotes the unit element of A.

Proof Suppose that f̂ is real-valued. Then f̂ = f̂ = f̂ ∗, so we get f = f ∗,
and therefore f (1) = f ∗(1) = f (1). Now suppose f̂ ≥ 0. Then there exists g ∈
C0(Â) ∼= C∗(A) withg ≥ 0 and f̂ = g2. Letφ = φ∗ ∈ Cc(A). ThenL(g)φ ∈ L2(A),
so (L(g)φ) ∗ (L(g)φ)∗(1) = ‖L(g)φ‖2

2 ≥ 0. Now g is a limit in C∗(A) of a sequence
(gn) in L1(A). We can assume gn = g∗n for every n ∈ N. Using Lemma 3.3.1 we
have

(L(g)φ) ∗ (L(g)φ)∗ = lim
n

(L(gn)φ) ∗ (L(gn)φ)∗ = lim
n

(gn ∗ φ) ∗ (gn ∗ φ)∗

= lim
n

gn ∗ φ ∗ φ ∗ gn = lim
n

gn ∗ gn ∗ φ ∗ φ

= lim
n

L(gn ∗ gn)(φ ∗ φ) = L(f )(φ ∗ φ) = f ∗ φ ∗ φ.

We get f ∗ φ ∗ φ(1) ≥ 0, and therefore f (1) ≥ 0 by Lemma 1.6.6. since we can let
φ ∗ φ run through a Dirac net. �

Lemma 3.4.4 (a) The space L1(A) ∗ Cc(A) is a subspace of C0(A).

(b) Let f ∈ C∗(A), and let φ,ψ ∈ Cc(A). Then L(f )(φ ∗ψ) lies in C∗
0 (A)∩L2(A),

viewed as a subspace of C0(A). One has L(f )(φ ∗ ψ )̂ = f̂ φ̂ψ̂ .
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Proof (a) Let f ∈ L1(A) and φ ∈ Cc(A). Choose a sequence fn ∈ Cc(A) such that
‖fn − f ‖1 → 0. Then fn ∗ φ ∈ Cc(A), and for every x ∈ A we have |f ∗ φ(x) −
fn ∗ φ(x)| ≤ ‖f − fn‖1‖φ‖∞. This shows that f ∗ φ is a uniform limit of functions
in C0(A). Since C0(A) is complete with respect to ‖ · ‖A, the result follows.

For (b) let now f ∈ C∗(A). There is a sequence fn ∈ L1(A) converging to f in
C∗(A). Then L(fn)(φ ∗ ψ) = fn ∗ φ ∗ ψ lies in C0(A) ∩ L1(A). We have to show
that the ensuing sequence fn ∗ φ ∗ ψ is a Cauchy sequence in C∗

0 (A). This means
that the sequence, as well as its Fourier transform, are both Cauchy sequences in
C0(A) and C0(Â), respectively. Observe first that (fn ∗ φ ∗ ψ )̂ = f̂nφ̂ψ̂ . Now f̂n

converges uniformly on Â, so (fn ∗ φ ∗ ψ )̂ converges uniformly to f̂ φ̂ψ̂ , hence
is Cauchy in C0(Â). By Lemma 3.4.1 we conclude that for m, n ∈ N one has
‖(fm − fn) ∗ φ ∗ ψ‖A ≤ ‖(fm − fn) ∗ φ‖2‖ψ‖2. The right hand side tends to zero
as m, n grow large, so fn∗φ∗ψ is a Cauchy sequence in C0(A). Since L(f )(φ∗ψ) ∈
L2(A), the result follows. �

Lemma 3.4.5 Let (φU ) be a Dirac net in Cc(A). Then

(a) (f ∗ φU ) converges to f in C∗(A) for every f ∈ C∗(A),

(b) (f ∗ φU ) converges uniformly to f for every f ∈ C0(A),

(c) (f ∗ φU ) converges to f in C∗
0 (A) for every f ∈ C∗

0 (A),

(d) (φ̂U ) converges locally uniformly to 1 on Â.

Proof For (a) observe that the result holds for the dense subspace L1(A) by Lemma
1.6.6. Then a standard ε/3-argument extends it to all of C∗(A). For (b) we can use
the same argument with L1(A) replaced by the dense subspace Cc(A) of C0(A). Then
(c) is a consequence of (a) and (b). For the proof of (d) let C ⊆ Â be a compact set.
Choose a positive ψ ∈ Cc(Â) with ψ ≡ 1 on C and let f ∈ C∗(A) with f̂ = ψ .
Then ‖φ̂Uψ − ψ‖Â = ‖φU ∗ f − f ‖op → 0 by (a) and the result follows. �

Lemma 3.4.6 Let η ∈ Cc(Â) be real-valued, and let ε > 0. Then there are f1, f2 ∈
C∗

0 (A) ∩ L2(A), considered as subspace of C0(A), such that

• the Fourier transforms f̂1, f̂2 lie in Cc(Â),

• they satisfy f̂1 ≤ η ≤ f̂2, further ‖f̂1 − f̂2‖Â < ε, and supp(f̂i) ⊂ supp(η) for
i = 1, 2,

• as well as 0 ≤ f2(1) − f1(1) < ε.

In particular, every η ∈ Cc(Â) is the uniform limit of functions of the form f̂ with
f ∈ C∗

0 (A) of support contained in supp(η).
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Proof For any Dirac function φ in Cc(A) one has φ̂ ∈ C0(Â) by Theorem 3.2.1 and
by Lemma 3.4.5 the ensuing function φ̂ can be chosen to approximate the constant
1 arbitrarily close on any compact set. Note that the Fourier transform of a function
of the form h ∗ h∗ is ≥ 0. Let K ⊂ Â be the support of η. As Cc(A) contains Dirac
functions of arbitrary small support, we conclude that for every δ > 0 there exists a
function φδ ∈ C+

c (A) such that the function ψδ = φδ ∗ φ∗δ satisfies

1 − δ ≤ ψ̂δ(χ ) ≤ 1 + δ for everyχ ∈ K.

Fix φ ∈ C+
c (A) such that ψ = φ ∗ φ∗ satisfies ψ̂(χ ) ≥ 1 for every χ ∈ K . Let

f ∈ C∗(A) with f̂ = η and set

f1 = f ∗ (ψδ − δψ), f2 = f ∗ (ψδ + δψ).

According to Lemma 3.4.4, the functions f1 and f2 lie in the space C0(A) ∩ L2(A).
For every χ ∈ Â it holds,

f̂1(χ ) = f̂ (χ )
(
ψ̂δ(χ ) − δψ̂(χ )

) ≤ η(χ ) ≤ f̂2(χ ).

Further, as f̂ (χ ) = η(χ ), one has supp(f̂i) ⊂ supp(η). The other properties follow
by choosing δ small enough. �

Proposition 3.4.7 Let ψ ∈ Cc(Â) be real-valued. Then the supremum of the set

{f (1) : f ∈ C∗
0 (A), f̂ ≤ ψ}

equals the infimum of the set

{f (1) : f ∈ C∗
0 (A), f̂ ≥ ψ}.

We denote this common value by I (ψ). We extend I to all of Cc(Â) by setting I (u +
iv) = I (u) + iI (v), where u and v are real-valued. Then I is a Haar integral on
Cc(Â).

We write this integral as

I (ψ) =
∫
Â

ψ(χ ) dχ.

Proof It follows from Lemma 3.4.3 that the supremum is less or equal to the infimum
and Lemma 3.4.6 implies that they coincide. Thus I exists. It is clearly linear and
it is positive by Lemma 3.4.3. For the invariance let ψ ∈ Cc(Â) be real-valued,
and let f ∈ C∗

0 (A) with f̂ ≤ ψ . For χ ∈ Â we then have Lχf̂ ≤ Lχψ . Further,
Lχf̂ = χ̂f as well as χf (1) = f (1). This implies the invariance of I . The proof of
the proposition is finished. �

We close this section with formulating the Plancherel theorem for LCA groups. The
proof will be given as a consequence of the Pontryagin Duality Theorem in the
following section.
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Theorem 3.4.8 (Plancherel Theorem). For a given Haar measure on A there exists
a uniquely determined Haar measure on Â, called the Plancherel measure, such that
for f ∈ L1(A) ∩ L2(A) one has

‖f ‖2 = ‖f̂ ‖2.

This implies that the Fourier transform extends to an isometry from L2(A) to L2(Â).
Indeed, it is also surjective, so the Fourier transform extends to a canonical unitary
equivalence L2(A) ∼= L2(Â).

In the special case of a compact group we derive from this, that the characters form
an orthonormal basis of L2(A).

Corollary 3.4.9 Let A be a compact LCA-group. Then the elements of the dual group
Â form an orthonormal basis of L2(A).

Proof According to our conventions, we assume the Haar measure of A to be
normalized in a way that the total volume is one. As A is compact, any continuous
function on A, in particular every character, lies inL2(A). We show that the characters
of A form an orthonormal system, i.e., that for χ , η ∈ Â we have

〈χ , η〉 = δχ ,η =
{

1 χ = η,

0 χ 
= η.

If χ = η, then

〈χ , η〉 =
∫
A

χ (x)χ (x)︸ ︷︷ ︸
=1

dx =
∫
A

dx = 1.

If χ 
= η, then pick x0 ∈ A with χ (x0) 
= η(x0). We obtain

χ (x0)〈χ , η〉 =
∫
A

χ (x0x)η(x) dx =
∫
A

χ (x)η(x−1
0 x) dx = η(x0)〈χ , η〉,

which implies 〈χ , η〉 = 0 as claimed. It follows that the Fourier transform of a
character χ is the map δχ with δχ (η) = δχ ,η. These maps form an orthonormal basis

of the Hilbert space L2(Â) for the discrete group Â. Since the Fourier transform is a
unitary equivalence, the characters form an orthonormal basis of L2(A). �

3.5 Pontryagin Duality

In the previous sections we saw that the dual group Â of an LCA group A, which
consists of all continuous homomorphisms of A into the circle group T, is again an

LCA group. So we can also consider the dual group ̂̂A of Â. There is a canonical

homomorphism δ : A → ̂̂A, which we write as x �→ δx , and which is given by
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δx(χ ) = χ (x).

We call δ the Pontryagin map. To see that for each x ∈ A the map δx : Â → T

is indeed a continuous group homomorphism, and hence an element of ̂̂A, we first
observe that

δx(χμ) = χμ(x) = χ (x)μ(x) = δx(χ )δx(μ)

for all χ ,μ ∈ Â, which implies that δx is a homomorphism. Since convergence in Â

with respect to the compact open topology implies point-wise convergence we see
that if a net χj → χ converges in Â, then the net δx(χj ) = χj (x) converges to
χ (x) = δx(χ ), which proves continuity of δx for each x ∈ A.

Examples 3.5.1.

• If A = R we know that R ∼= R̂ via t �→ χt with χt (s) = e2πist . Thus we can
also identify R with its bidual by mapping s ∈ R to a character μs : R̂ → T,

μs(χt ) = e2πits . It is easy to check that the map μs = δs with δ : R → ̂̂R
coincides with the above defined Pontryagin map. So we see in particular that the
Pontryagin map is an isomorphism of groups in the case A = R.

• Very similarly, we see that the Pontryagin maps δ : T → ̂̂T and δ : Z → ̂̂Z
transform to the identity maps under the identifications Z ∼= T̂ and T ∼= Ẑ as
explained in Example 1.7.1.

Proposition 3.5.2 Let A be an LCA-group. The Pontryagin map is an injective

continuous group homomorphism from A to ̂̂A . In particular, if 1 
= x ∈ A there
exists some χ ∈ Â such that χ (x) 
= 1.

Proof Note first that the Pontryagin map δ is a group homomorphism, since δxy(χ ) =
χ (xy) = χ (x)χ (y) = δx(χ )δy(χ ). It suffices to show continuity at the unit element

1. So let V be an open unit-neighborhood in ̂̂A. Then there exists a compact set
K∗ ⊂ Â and an ε > 0, such that V contains the open unit-neighborhood

BK∗,ε =
{
α ∈ ̂̂A : |α(χ ) − 1| < ε ∀χ∈K∗

}
.

LetL ⊂ A be a compact unit-neighborhood. AsK∗ is compact, there areχ1 . . . ,χn ∈
K∗ such that K∗ ⊂ BL,ε/2(χ1) ∪ · · · ∪ BL,ε/2(χn), where

BL,ε(χ ) = {χ ′ ∈ Â : ‖χ ′ − χ‖L < ε
}
.

For j = 1, . . . , n let Uj = {x ∈ A : |χj (x)− 1| < ε/2}. Let U = L̊∩U1 ∩ · · · ∩Un.
Then U is a unit-neighborhood for which we have x ∈ U ⇒ |χ (x)−1| < ε ∀χ∈K∗ .
So δ(U ) ⊂ V and δ is continuous.
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We still have to show that δ : A → ̂̂A is injective. So assume that 1 
= x ∈ A with
δx = 1Â. Then χ (x) = 1 for every χ ∈ Â. Choose g ∈ Cc(A) with g(1) = 1 and
g(x−1) = 0. Then Lx(g) 
= g, but by Lemma 1.7.2 we have L̂x(g)(χ ) = χ̄ (x)ĝ(χ ) =
ĝ(χ ) for every χ ∈ Â. This contradicts the fact that the Fourier transform is injective
by Corollary 3.3.4. �

Lemma 3.5.3 Let f ∈ C∗
0 (A) be such that its Fourier transform lies in Cc(Â). Then

for every x ∈ A one has f (x) = ˆ̂
f (δx−1 ).

Proof One has for x ∈ A,

f (x) = Lx−1f (1) =
∫
Â

L̂x−1f (χ ) dχ =
∫
Â

f̂ (χ )δx(χ ) dχ = ˆ̂
f (δx−1 ). �

Lemma 3.5.4 For an LCA-group A the following hold.

(a) Cc(A) is dense in C∗
0 (A).

(b) Cc(Â) ∩ {f̂ : f ∈ C∗
0 (A)∩L2(A)} is dense in C∗

0 (Â).

(c) Cc(Â) ∩ {f̂ : f ∈ C∗
0 (A)∩L2(A)} is dense in L2(Â).

Proof (a) As C0(A)∩L1(A) is dense in C∗
0 (A) by definition, it suffices to show that

for a given f in this space there exists a sequence in Cc(A) converging to f in the
norms ‖·‖A and ‖·‖1 simultaneously. Let n ∈ N, and let Kn ⊂ A be a compact set
with |f | < 1/n outside Kn. Choose a function χn in Cc(A) with 0 ≤ χn ≤ 1, which
is constantly equal to 1 on Kn. Set fn = χnf. Then the sequence fn converges to f
in both norms. Parts (b) and (c) follow from part (a) and Lemma 3.4.6. �

Theorem 3.5.5 (Pontryagin Duality). The Pontryagin map δ : A → ̂̂
A is an

isomorphism of LCA groups.

Proof We already know that δ is an injective continuous group homomorphism. We
will demonstrate that it has a dense image. Assume this is not the case. Then there

is an open subset U of ̂̂A, which is disjoint from δ(A). By Lemma 3.4.6 applied to
Â, there exists ψ ∈ C∗

0 (Â), which is non-zero such that ψ̂ is supported in U , i.e.,
it satisfies ψ̂(δ(A)) = 0. By Lemma 3.5.4, there exists a sequence (fn) in C∗

0 (A)

such that ψn
def= f̂n lies in Cc(Â) and converges to ψ in C∗

0 (Â). The inversion
formula of Lemma 3.5.3 shows that fn(x) = ψ̂n(δx−1 ) for every x ∈ A. This implies
that the sequence fn tends to zero uniformly on A. On the other hand f̂n converges
to ψ uniformly on Â. This implies that (fn) is a Cauchy sequence in C∗

0 (A) so it
converges in this space. As the limit is unique, it follows from Lemma 3.4.2 that

ψ = 0 in contradiction to our assumption. So the image of δ is indeed dense in ̂̂A.
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We next show that δ is a proper map, i.e., that the inverse image of a compact

set is compact. For this let K ⊂ ̂̂A be compact. It suffices to show that the function
δ̆(x) = δ(x−1) is proper. By Lemma 3.4.6, there exists ψ ∈ C∗

0 (Â) such that ψ̂ has

compact support, is ≥ 0 on ̂̂A and ≥ 1 on K . As above, there is a sequence (fn) in

C∗
0 (A) such that ψn

def= f̂n ≥ 0 lies in Cc(Â) and converges to ψ in C∗
0 (Â). Fix n

with ‖ψ̂n − ψ̂‖ ̂̂
A

< 1/2. We also have fn(x) = ψ̂n(δx−1 ) for every x ∈ A again and,
as fn is in C0(A), there exists a compact set C ⊂ A such that |fn| < 1/2 outside C.
As ψ̂n is ≥ 1/2 on K , it follows that the pre-image of K under δ̆ is contained in C.
As δ is continuous, this pre-image is closed, hence compact, so δ is proper.

It remains to show that δ is a closed map, i.e., that it maps closed sets to closed sets.
Then δ is a homeomorphism, i.e., the theorem follows. So we finish our proof with
the following lemma.

Lemma 3.5.6 Let φ : X → Y be a continuous map between locally compact
Hausdorff spaces. If φ is proper, then it is closed.

Proof Let T be a closed subset of X. We show first that

(∗) For every compact set L ⊂ Y the intersection φ(T ) ∩ L is closed.

For this recall that φ−1(L) is compact and therefore T ∩ φ−1(L) is compact and so
φ(T ) ∩ L = φ(T ∩ φ−1(L)) is compact and therefore closed.

Now we use (∗) to deduce that φ(T ) is closed. Let y be in the closure of φ(T ).
Let L be a compact neighborhood of y. For every neighborhood U of y one has
U ∩ (L ∩ φ(T )) 
= ∅, so y is in L ∩ φ(T ) = L ∩ φ(T ) ⊂ φ(T ). This means that
φ(T ) is closed. �

Proposition 3.5.7 The Fourier transform induces an isometric isomorphism of Ba-
nach spaces F : C∗

0 (A) → C∗
0 (Â) with inverse map given by the dual Fourier

transform F̂ : C∗
0 (Â) → C∗

0 (A); F̂(ψ)(x)
def= ψ̂(δx−1 ).

Proof Let B be the space of all f ∈ C∗
0 (A) such that f̂ lies in Cc(Â). For f ∈ B

we have F̂ ◦ F(f ) = f by Lemma 3.5.3. Further, one has

‖f ‖∗0 = max(‖f̂ ‖Â, ‖f ‖A) = max(‖f̂ ‖Â, ‖F̂ ◦ F(f )‖A)

= max(‖f̂ ‖Â, ‖f̂ ‖̂̂
A

) = ‖F(f )‖∗0.
As the set F(B) is dense in C∗

0 (Â) by Lemma 3.5.4, the Fourier transform defines
a surjective isometry from the closure of B to C∗

0 (Â). Conversely, this means that
F̂ is an isometry from C∗

0 (Â) to C∗
0 (A). Since F̂ = FÂ ◦ δ−1, where FÂ denotes

the Fourier transform on Â and since FÂ

(
C∗

0 (Â)
)

contains a subset of Cc(
̂̂
A ) that is

dense in C∗
0 ( ̂̂A ) by Lemma 3.5.4, it follows from Pontryagin duality that F̂(C∗

0 (Â))
is dense in C∗

0 (A). Since it is isometric it must be an isomorphism of Banach spaces
as claimed. �
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Theorem 3.5.8 (Inversion Formula). Let f ∈ L1(A) be such that its Fourier trans-
form f̂ lies in L1(Â). Then f is a continuous function, and for every x ∈ A one
has

f (x) = ˆ̂
f (δx−1 ).

Proof Let f ∈ L1(A) with f̂ ∈ L1(Â). Then f̂ lies in C0(Â) ∩ L1(Â), which is a
subspace of C∗

0 (Â). By Proposition 3.5.7, there exists g ∈ C∗
0 (A) with ĝ = f̂ and

g(x) = f̂ (δx−1 ) for every x ∈ A. Since the Fourier transform is injective on C∗(A),
we have f = g. �

We are now ready for the proof of the Plancherel Theorem.

Proof of Theorem 3.4.8 Let f ∈ L1(A) ∩ L2(A). By Lemma 3.4.1 one has f ∗
f ∗ ∈ L1(A) ∩ C0(A). The continuous function h = f̂ ∗ f ∗ = |f̂ |2 is positive. Let
φ ∈ Cc(Â) satisfy 0 ≤ φ ≤ h. Then

∫
Â

φ(χ ) dχ ≤ f ∗ f ∗(1) = ‖f ‖2
2 < ∞.

Therefore h is integrable, so f̂ ∗ f ∗ ∈ L1(A). By Theorem 3.5.8 it follows that

‖f ‖2
2 = f ∗ f ∗(1) = ̂

f̂ ∗ f ∗(1) = |̂f̂ |2(1) = ‖f̂ ‖2
2. As L1(A) ∩ L2(A) is dense

in L2(A), the Fourier-transform f �→ f̂ extends uniquely to an isometric linear
map L2(A) → L2(Â). By Lemma 3.4.6 the image in L2(Â) is dense, so the map is
surjective. �

With the help of the Plancherel theorem, we can see that there are indeed many
functions f, to which the inversion formula applies.

Proposition 3.5.9 Let φ,ψ ∈ L1(A)∩L2(A), and let f = φ ∗ψ . Then f ∈ L1(A)
and f̂ ∈ L1(Â), so the inversion formula applies to f.

Proof We have f̂ = φ̂ ∗ ψ = φ̂ψ̂ is the point-wise product of L2-functions on Â,
hence f̂ ∈ L1(Â). �

3.6 The Poisson Summation Formula

Let A be an LCA group, and let B be a closed subgroup of A. We want to study
the relations between the dual group Â of A and the dual groups B̂ and Â/B of the
subgroup B and the quotient group A/B. The Poisson Summation Formula relates
the Fourier transform of A to the transforms on B and A/B.

We introduce some further notation: If E is a subset of A we denote by E⊥ the
annihilator of E in Â, i.e., the set of all characters χ ∈ Â with χ (E) = 1. Similarly,
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if L ⊂ Â, we denote by L⊥ the annihilator of L in A, i.e., the set of all x ∈ A such
that χ (x) = 1 for every χ ∈ L. In short, we have

E⊥ = {χ ∈ Â : χ (x) = 1 ∀x ∈ E}
L⊥ = {x ∈ A : χ (x) = 1 ∀χ ∈ L} .

It is easy to see that E⊥ is a closed subgroup of Â, and L⊥ is a closed subgroup

of A. Recall that the Pontryagin isomorphism δ : A → ̂̂A is defined by putting
δx(χ ) = χ (x) for every x ∈ A.

Proposition 3.6.1 Let A be an LCA group, and let B be a closed subgroup of A.
Then the following are true:

(a) B⊥ is isomorphic to Â/B via χ �→ χ̃ with χ̃ ∈ Â/B defined by χ̃ (xB)
def= χ (x).

(b) (B⊥)⊥ = B.

(c) Â/B⊥ is isomorphic to B̂ via χ · B⊥ �→ χ |B .

Proof This is a straightforward verification (See Exercise 3.10). �

As a direct corollary we get

Corollary 3.6.2 Let B be a closed subgroup of the LCA-group A. Then the restriction
map resAB : Â → B̂ defined by χ �→ χ |B is surjective with kernel Â/B.

Note that one could formulate the above result in more fancy language as follows:
If B is a closed subgroup of A, then we get the short exact sequence

1 −→ B
ι−→ A

q−→ A/B −→ 1

of LCA groups. The above result then says that the dual sequence

1 −→ Â/B
q̂−→ Â

ι̂−→ B̂ −→ 1

is also an exact sequence of LCA groups, where for any continuous homomorphism
ψ : A1 → A2 between two LCA groups A1,A2, we denote by ψ̂ : Â2 → Â1 the
homomorphism defined by ψ̂(χ ) = χ ◦ ψ for χ ∈ Â2. One should not mistake this
notation with the notion of the Fourier transform of a function. Note that if ι : B → A

is the inclusion map, then ι̂(χ ) = χ ◦ ι = χ |B , so ι̂ = resAB .

We now come to Poisson’s summation formula. Recall from Theorem 1.5.3 together
with Corollary 1.5.5 that for any closed subgroup B of the LCA group A we can
choose Haar measures on A, B and A/B in such a way that for every f ∈ Cc(A) we
get the quotient integral formula
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∫
A/B

∫
B

f (xb) db dxB =
∫
A

f (x) dx.

In what follows we shall always assume that the Haar measures are chosen this way.

Theorem 3.6.3 (Poisson’s Summation Formula). Let B be a closed subgroup of the
LCA group A. For f ∈ L1(A) define f B ∈ L1(A/B) as f B(xB) = ∫

B
f (xb) db.

Then, if we identify Â/B with B⊥ as in Proposition 3.6.1, we get f̂ B = f̂ |B⊥ . If, in
addition, f̂ |B⊥ ∈ L1(B⊥), then we get∫

B

f (xb) db =
∫
B⊥

f̂ (χ )χ (x) dχ ,

for almost all x ∈ A, where Haar measure on B̂⊥ ∼= Â/B is the Plancherel measure
with respect to the chosen Haar measure on A/B. If f B is everywhere defined and
continuous, the above equation holds for all x ∈ A.

Proof For χ ∈ B⊥ we have χ (xb) = χ (x) for every x ∈ A and b ∈ B. We therefore
get from Theorem 1.5.3,

f̂ B(χ ) =
∫
A/B

f B(xB)χ̄ (x) dxB =
∫
A/B

∫
B

f (xb)χ̄ (xb) db dxB

=
∫
A

f (x)χ̄ (x) dx = f̂ (χ )

for every χ ∈ B⊥. Moreover, if f̂ |B⊥ ∈ L1(B⊥) = L1(Â/B), then the inversion
formula of Theorem 1.5.3 implies that∫

B

f (xb) db = f B(xB) = ̂̂f B (δx−1B)

= ̂̂
f |B⊥ (δx−1B) =

∫
B⊥

f̂ (χ )χ (x) dχ.

almost everywhere. It holds everywhere if, in addition, the defining integral for f B

exists everywhere and f B is continuous. �

Example 3.6.4. (The Poisson Summation formula for R) Let A be the group (R,+)
with the usual topology. Then A ∼= Â via the map y �→ χy where χy(x) = e2πixy .
Let B be the closed subgroup Z. Then the above identification maps B bijectively to
B⊥. For f ∈ L1(R) such that f̂ |Z ∈ L1(Z), the equality

∑
k∈Z

f (x + k) =
∑
k∈Z

f̂ (k)e2πikx

holds almost everywhere in x, where f̂ (x) = ∫
R
f (y)e−2πixy dy. In particular, define

the Schwartz space S(R) as the space of all C∞- functions f : R → C such that
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for any two integers m, n ≥ 0 the function xnf (m)(x) is bounded. Then the Fourier
transform maps S(R) bijectively to itself (Exercise 3.14). For f ∈ S(R), both sums in
the Poisson summation formula converge uniformly and define continuous functions,
which then must be equal in every point. For x = 0 we get the elegant formula

∑
k∈Z

f (k) =
∑
k∈Z

f̂ (k).

For applications of this formula to theta series and the Riemann zeta function, see
[Dei05].

3.7 Exercises and Notes

Exercise 3.1. Let U be a basis for the topology on the LCA-group A. Let Uc denote
the set of all U ∈ U that are relatively compact. Show that the set B of all L(Ū ,V ),
where U ∈ Uc and V is open in T, generates the topology of Â.

Exercise 3.2. Show that if an LCA-group A is second countable, then so is its dual Â.

Exercise 3.3. Let b be the map b : R → ∏
t∈R

T sending x ∈ R to the element
b(x) with coordinates b(x)t = e2πitx . Let B denote the closure of b(R) in the product
space. By Tychonov’s Theorem the product is compact; therefore B is a compact
group called the Bohr compactification of R. Show that B is separable but not second
countable.

(Hint: Use the fact that Q is dense in R. Show that B is isomorphic to the dual group
of Rdisc, which is the group (R,+) with the discrete topology. Then use Exercise 3.2)

Exercise 3.4. Verify the statements in Example 3.1.3.

Exercise 3.5. Let A and B be two LCA groups. Show that Â× B = Â× B̂.

Exercise 3.6. Show that the multiplicative group C
× is locally compact with the

topology of C and that
Ĉ× ∼= Z× R.

Exercise 3.7. Let (Aj )j∈J be a family of discrete groups. Show that there is a
canonical isomorphism ⊕̂

j∈J
Aj

∼=
∏
j∈J

Âj .
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Exercise 3.8.

(a) Let (Aj ,pj

i ) be a projective system of compact groups. Show that there is a
canonical isomorphism of topological groups,

l̂im← Aj
∼= lim→ Âj .

(b) Let (Bj , dj

i ) be a direct system of discrete groups satisfying the Mittag-Leffler
condition. Show that there is a canonical isomorphism

l̂im→ Bj
∼= lim← B̂j .

Exercise 3.9. Let A be an LCA group, and let f ∈ L1(A) such that f̂ ∈ L1(Â).
Show f ∈ L2(A).

Exercise 3.10. For a closed subgroup B of the LCA-group A and a closed subgroup
L of Â let

B⊥ = {χ ∈ Â : χ (B) = 1}
L⊥ = {x ∈ A : δx(L) = 1}.

Show that B⊥ is canonically isomorphic to Â/B, (B⊥)⊥ = B, and Â/B⊥ is
canonically isomorphic to B̂.

Exercise 3.11. For a continuous group homomorphism φ : A → B between LCA
groups, define φ̂ : B̂ → Â by

φ̂(χ )
def= χ ◦ φ.

Show that for any two composable homomorphisms φ and ψ one has φ̂ ◦ ψ = ψ̂ ◦ φ̂.
This means that A �→ Â defines a contravariant functor on the category of LCA
groups and continuous group homomorphisms.

Exercise 3.12. A short exact sequence of LCA groups is a sequence of continuous
group homomorphisms

A
α
↪→ B

β
� C

such that α is injective, β is surjective, the image of α is the kernel of β, the group A
carries the subspace topology and C carries the quotient topology. Show that a short
exact sequence like this induces a short exact sequence of the dual groups

Ĉ
β̂
↪→ B̂

α̂
� Â.
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Exercise 3.13 Let A = R, and choose the Lebesgue measure as Haar measure.
Identify Â with R via x �→ χx with χx(y) = e2πixy . Show that via this identification,
the Lebesgue measure is the Plancherel measure on Â.

(Hint: Use the fact that
∫

R
e−πx2

dx = 1 and compute the Fourier transform of

f (x) = e−πx2
.)

Exercise 3.14. Show that f̂ ∈ S(R) for every f ∈ S(R) and that the map F :
S(R) → S(R) defined by F(f ) = f̂ is a bijective linear map with

F−1(g)(y) =
∫

R

g(x)e2πixydx.

Exercise 3.15. Let f ∈ S(R) and set g(x) = ∑k∈Z
f (x + k). Show that g is a

smooth function on R.

(Hint: The estimate |f (x)| ≤ C/(1 + x2) for a constant C shows point-wise con-
vergence. The same holds for the n-th derivative f (n) instead of f. Now integrate n
times.)

Exercise 3.16. As an application of Theorem 3.6.3, show that for every Schwartz
function f ∈ S(R), ∑

k∈Z

f (k) =
∑
k∈Z

f̂ (k)

holds, where f̂ (x) = ∫
R
f (y) e−2πixy dy.

Exercise 3.17. Let A = R
n with Lebesgue measure as Haar measure and identify

R
n with R̂

n via x �→ χx with χx(y) = e−2πi〈x,y〉, where 〈x, y〉 denotes the standard
inner product on R

n. Let S(Rn) denote the space of all C∞- functions f : R
n → C

such that for any two multi-indices α,β ∈ N
n
0 the function

xα∂β(f )
def= x

α1
1 . . . xαn

n

∂ |β|f
x
β1
1 . . . x

βn
n

is bounded, where |β| = β1 + · · · + βn. Formulate and prove the analogues of
Exercise 3.14 and Exercise 3.16 in this setting.

Exercise 3.18. (Parseval’s equation) Let A be an LCA group, and let Â be equipped
with the Plancherel measure with respect to a given Haar measure on A. Show that
the equation

〈f , g〉 =
∫
A

f (x)ḡ(x) dx =
∫
Â

f̂ (χ ) ¯̂g(χ ) dχ = 〈f̂ , ĝ〉

holds for all f, g ∈ L1(A) ∩ L2(A).
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Exercise 3.19. A finite abelian group A can be equipped either with the counting
measure or with the normalized Haar measure that gives A the volume 1. What is the
Plancherel measure in either case?

Exercise 3.20. For a finite abelian group A, let C(A) be the space of all function
from A to C. For a group homomorphism φ : A → B between finite abelian groups
let φ∗ : C(B) → C(A) be defined by φ∗f = f ◦ φ, and let φ∗ : C(A) → C(B) be
defined by

φ∗g(b)
def=
∑

a:φ(a)=b

g(a),

where the empty sum is interpreted as zero. Show that for composable homomor-
phisms one has (φψ)∗ = φ∗ψ∗ and (φψ)∗ = ψ∗φ∗.

Exercise 3.21. For a finite abelian group A let F : C(A) → C(Â) be the Fourier
transform. Show that for every group homomorphism φ : A → B between finite
abelian groups the diagram

C(A)
F−−−−→ C(Â)4⏐⏐φ∗ 4⏐⏐φ̂∗

C(B)
F−−−−→ C(B̂)

Exercise 3.22. An LCA-group A is called monothetic, if it contains a dense cyclic
subgroup. Show that a compact LCA-group A is monothetic if and only if its dual
Â is isomorphic to a subgroup of Td , where Td is the circle group with the discrete
topology.

Notes

In principle, the ideas for the proofs of the Plancherel Theorem and the Pontrya-
gin Duality Theorem given in this chapter goes back to the paper [Wil62] of J.H.
Williamson. However, to our knowledge, this book is the first that exploits the very
natural isomorphism C∗

0 (A) ∼= C∗
0 (Â).



Chapter 4

The Structure of LCA-Groups

In this chapter we will apply the duality theorem for proving structure theorems for
LCA groups. As main result we will show that all such groups are isomorphic to
groups of the form R

n × H for some n ∈ N0, such that H is a locally compact
abelian group that contains an open compact subgroup K . This theorem will imply
better structure theorems if more information on the group is available. For instance
it will follow that every compactly generated LCA group is isomorphic to a group
of the form R

n × Z
m × K for some compact group K and some n,m ∈ N0, and

every compactly generated locally euclidean group is isomorphic to one of the form
R

n×Z
m×T

l ×F , for some finite group F and some nonnegative integers n,m and
l. To prepare the proofs of these theorems, we start with a section on connectedness
in locally compact groups. The main result in that section shows that every totally
disconnected locally compact group G has a unit-neighborhood base consisting of
compact open subgroups of G. The structure theorems will be shown in the second
section of this chapter.

4.1 Connectedness

Recall that a topological space X is called connected if it cannot be written as the
disjoint union of two nonempty open subsets, i.e., if U ,V ⊂ X are two open (or
closed) subsets of X such that X = U ∪ V and U ∩ V = ∅, then X = U or X = V .
Another way to formulate connectedness is to say that the space X is connected if
and only if any set U ⊂ X, which is open and closed at the same time, must be equal
to ∅ or X.

A subset A ⊂ X is called connected if it is connected in the subspace topology, i.e.,
a subset A ⊂ X is connected if for all open sets U ,V ⊂ X with A ⊂ U ∪ V and
A∩U∩V = ∅ it follows thatA ⊂ U orA ⊂ V . IfA andB are two connected subsets
of X with non-empty intersection, then the union A∪B is also connected. Also, the
closure of a connected set is always connected, but intersections of connected sets
are not necessarily connected, for this see the examples below. If f : X → Y is a
continuous map, then the image of any connected subset of X is a connected subset
of Y (See Exercise 4.1).

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 85
DOI 10.1007/978-3-319-05792-7_4, © Springer International Publishing Switzerland 2014
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If x ∈ X, then the connected component C(x) of x is the union of all connected
subsets containing x. It is the biggest connected subset of X that contains x. The
set C(x) is closed in X, and the space X can be written as the disjoint union of
its connected components. A topological space X is called totally disconnected if
C(x) = {x} for every x ∈ X.

Examples 4.1.1

• Any interval in the real line is connected, and so is any ball in R
n (See Exercise

4.1).

• A circle in R
2 is connected, since it can be written as the image of an interval

under a continuous function. But the intersections of two circles may consist of
two distinct points, in which case it is not connected. This shows that intersections
of connected sets might not be connected.

• Every discrete topological space X is totally disconnected.

• The Cantor set is an example of a non-discrete totally disconnected set (See
Exercise 4.2).

Proposition 4.1.2 Let G be a topological group, and let G0 be the connected com-
ponent of the unit in G. Then G0 is a closed normal subgroup of G. Moreover, the
coset xG0 is the connected component of x for every x ∈ G and the quotient group
G/G0 is totally disconnected with respect to the quotient topology.

Proof The set xG0 is the image ofG0 under the homeomorphism lx : G → G, which
maps y to xy; therefore the set xG0 is the connected component of x. If x ∈ G0,
then xG0∩G0 
= ∅, and hence xG0 = G0. Since y �→ y−1 and y �→ xyx−1 are also
homeomorphisms from G to G, it also follows that G−1

0 = G0 and xG0x
−1 = G0

for every x ∈ G. This shows that G0 is a closed normal subgroup of G.

To see that G/G0 is totally disconnected, we have to show that every subset A ⊂
G/G0 that contains more then one element, is not connected. Take the inverse image
B = q−1(A) ⊂ G. Then B contains at least two disjoint cosets xG0, yG0 with
x, y ∈ G. Hence, B is not connected. Thus there exist open subsets W1,W2 ⊂ G

with B ∩ W1 ∩ W2 = ∅, B ∩ Wi 
= ∅ for i = 1, 2, and B ⊂ W1 ∪ W2. Then
xG0∩W1∩W2 = ∅, and xG0 ⊂ W1∪W2 for every x ∈ B. Since xG0 is connected,
it follows that for each x ∈ B there exists exactly one i ∈ {1, 2} with xG0 ⊂ Wi .
Thus, for Vi = q(Wi) it follows that V1,V2 are non-empty open subsets of G/G0

with A ∩ V1 ∩ V2 = ∅, A ∩ Vi 
= ∅ for i = 1, 2, and A ⊂ V1 ∪ V2. �

Definition A topological space X is called locally connected, if each point has a
connected neighborhood.
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Lemma 4.1.3 (a) If X is a locally connected space, then every connected component
C(x) is open.

(b) If the topological group G possesses a connected unit-neighborhood, then its
connected component G0 is open.

Proof (a) Let x ∈ X and let y ∈ C(x). Let U denote a connected neighborhood of
y. As C(x) = C(y), it follows U ⊂ C(x) and therefore C(x) is open.

(b) If G has a connected unit-neighborhood U , then every point x has a connected
neighborhood, for example xU . Therefore G is locally connected and the claim
follows from part (a). �

In what follows next, we shall prepare a few structural facts for groups with compact
open neighborhoods of the identity that will be used later.

Proposition 4.1.4 Let G be a topological group, and let U be a compact and open
neighborhood of the identity e in G. Then U contains a compact and open subgroup
K of G.

Proof By Lemma 1.1.6, we can find an open neighborhood V = V −1 of e such that
UV = VU = U . Since e ∈ U , it follows that V ⊂ U , and then V 2 ⊂ VU ⊂ U .
By induction we then see that V n ⊂ U for every n ∈ N, from which it follows that
the group K = ⋃n∈N

V n generated by V lies in U . By Lemma 1.1.7 (b) and (c) we
know that K is an open and closed subgroup of G. Thus, since it is contained in the
compact set U , it is also compact. �

Definition Let X be a topological space. Recall that a system B of open subsets of
X is called base of the topology if every open set is a union of sets in B. For example,
in a metric space, the open balls form a base of the topology.

Proposition 4.1.5 Every totally disconnected locally compact Hausdorff space X
has a base for its topology consisting of open and compact subsets of X.

Proof It is enough to show that for each x ∈ X and each compact neighborhood U

of x there exists an open and closed subset V of X such that x ∈ V ⊂ U . For this
let M denote the set of all y ∈ U such that there exists a relatively open and closed
subset Cy ⊂ U with y ∈ Cy and x /∈ Cy . Then M is the union of all such sets. This
implies in particular, that M is relatively open in U . Let A = U � M . Then x ∈ A

and A is closed. We shall show

(a) If W ⊂ U is relatively open in U and W�W is a subset of M , then there exists
W̃ ⊃ W open and closed in U , such that A ∩ W̃ = A ∩W .

(b) The set A is connected.
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Once this is shown, we conclude that A = {x} since X is totally disconnected. It
then follows that the compact boundary ∂U = U � Ů of U lies in M and lies in
the union of finitely many sets Cy1 , . . . ,Cyn . The set V = U�

(⋃n
i=1 Cyi

)
is then a

relatively open and closed subset of U that contains x. Since it lies in the interior Ů
of U , it is also open in X. Thus it satisfies the above stated requirements.

To show (a), let W be as assumed. Then the compact set W�W can be covered by
finitely many of the open sets Cy , hence we get

(
W�W

) ⊂ C for a set of the form
C = Cy1 ∪ · · · ∪ Cyn ⊂ M . Then C is closed and open in U . We set W̃ = W ∪ C.
Since C contains W�W it follows W ∪C = W ∪C, so W̃ is closed and open in U .
Finally, as C is contained in M , we have W̃ ∩ A = W ∩ A.

To end the proof, we conclude (b) from (a). Let B1,B2 be closed (hence compact)
subsets of A such that B1 ∩ B2 = ∅ and A = B1 ∪ B2. We have to show that one of
these sets is empty. Assume that x ∈ B1. Since B1,B2 are compact with B1∩B2 = ∅
we may choose a relatively open subset W ⊂ U such that B2 ⊂ W and W ∩B1 = ∅
by the Lemma of Urysohn (A.8.1). By (a) there exists W̃ open and closed in U with
B2 = W̃ ∩ A. Then x /∈ W̃ and so W̃ ⊂ M , which implies B2 = ∅. �

Theorem 4.1.6 (a) Let G be a locally compact group that is totally disconnected.
Then every unit-neighborhood U in G contains an open and compact subgroup of G.

(b) A locally compact group is profinite if and only if it is compact and totally
disconnected.

Proof (a) follows from the Propositions 4.1.4 and 4.1.5.

(b) Let G = lim←Gi be profinite, then G ⊂∏i Gi and the product is compact and
totally disconnected, hence the closed subset G is compact and totally disconnected.
For the converse, let G be compact and totally disconnected. By part (a), G possesses
a unit-neighborhood base of open subgroups. By compactness, every open subgroup
U has finite index. Let U be an open subgroup and let N be the kernel of the group
homomorphism G → Per(G/U ), where Per(G/U ) is the permutation group of the
finite set G/U . As U is open, this homomorphism is continuous, so N is an open
normal subgroup, which is contained in U , since the coset eU is stable under n ∈ N .
Therefore, G has a unit-neighborhood base consisting of open normal subgroups.
Consider the natural map

φ : G → lim←
N

G/N ,

where the limit is extended over all open normal subgroups. We claim that φ is an
isomorphism of locally compact groups.
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Injectivity Let x ∈ G�{1}. There exists an open normal subgroup N with x /∈ N .
So x is not equal to 1 in G/N and φ is injective.

Surjectivity Let y ∈ lim←
N
G/N . For each N , let AN denote the inverse image in G

of yN ∈ G/N . The family of closed sets (AN ) has the finite intersection property, so
there exists an element x in their intersection. This is a pre-image for y.

Continuity Every projection G → G/N is continuous and therefore so is φ.

Continuity of the Inverse A continuous surjective mapφ : X → Y between compact
Hausdorff spaces is automatically closed, for the image of compact sets are compact.

�

We will also need the concept of path-connectedness, which we present next.

Definition A topological space X is called path-connected if any two points can be
joined by a continuous path, i.e., if for any two x, y ∈ X there exists a continuous
map p : [0, 1] → X with p(0) = x and p(1) = y.

Lemma 4.1.7 (a) Any path-connected space is connected.

(b) A connected topological group having a path-connected neighborhood of the
unit element, is path-connected.

(c) If K is a compact LCA-group which is connected, then the discrete group K̂ has
no non-trivial elements of finite order.

Proof (a) Let X be a path-connected space and let X = U ∪ V where U and V

are open subsets with U ∩ U = ∅. Suppose U is non-empty and fix a point x ∈ U .
Let y ∈ X be any other point and let p : [0, 1] → X be a path with p(0) = x and
p(1) = y. Then [0, 1] = p−1(U ) ∪ p−1(V ) is a disjoint decomposition of the unit
interval into open subsets with p−1(U ) 
= ∅. The unit interval being connected, it
follows that p−1(V ) = ∅ and so y ∈ U , i.e., U = X, so X is connected.

(b) Let G be a connected topological group and U ⊂ G a path-connected unit-
neighborhood. The subgroup H generated by U is an open subgroup and as G is
connected, H = G. So any x ∈ G can be written in the form x = x

ε1
1 · · · xεn

n , where
x1, . . . , xn ∈ U and εj ∈ {±1}. Let p1, . . . ,pn : [0, 1] → G be paths connecting
the unit 1 ∈ G to the points x1, . . . , xn, i.e., pj (0) = 1 and pj (1) = xj . Then
p(t) = p1(t)ε1 · · ·pn(t)εn is a path connecting 1 ∈ G to x, which means that G is
path-connected.

(c) Let K be a compact LCA-group and let D = K̂ be its dual group. Suppose that
D has a non-trivial element χ of finite order, say χn = 1. We have to show that
K is non-connected. Let μn ⊂ C be the finite group of n-th root of unity, then the
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continuous group homomorphism K → μn mapping k ∈ K to χ (k), is non-trivial
and so χ−1(1) is an open subgroup different from K , so K is non-connected. �

In the proof of the next theorem we shall need the following path lifting lemma.

Lemma 4.1.8 Suppose that � ⊆ G is a discrete subgroup of the topological group
G and let q : G → G/� denote the quotient map. Suppose that σ : [0, 1] → G/�

is a path, connecting 0 = q(0) to q(x) for some given x ∈ G. Then there exists a
path σ̃ : [0, 1] → G connecting 0 to x in G such that σ = q ◦ σ̃ .

Proof First choose an open unit neighborhood U in G such U ∩ � = ∅. Then
V = q(U ) is an open neighborhood of 0 in G/� and for each y ∈ G the map
q : yU → q(y)V is a homeomorphism. Let σ : [0, 1] → G/� be as in the
lemma. Then there exists a partition 0 = t0 < t1 < · · · < tl = 1 of [0, 1] such
that σ ([ti , ti+1]) ⊆ σ (ti)V for every 0 ≤ i ≤ l − 1. We show by induction on j ∈
{0, . . . , l} that there exists a continuous path σ̃ : [0, tj ] → G/� with q ◦ σ̃ = σ on
[0, tj ]. This is clear for j = 0, so assume it is true for 0 ≤ j < l. Then σ

(
[tj , tj+1]

) ⊆
σ (tj )V = q(σ̃ (tj )U ). Since q : σ̃ (tj )U → σ (tj )V is a homeomorphism, we find
a continuous map σ̃j :

[
tj , tj+1

] → σ̃ (tj )U such that q ◦ σ̃j = σ on
[
tj , tj+1

]
and

σ̃j (tj ) = σ̃ (tj ). Glueing both maps at tj gives the desired path σ̃ : [0, tj+1] → G. �

Theorem 4.1.9 Let the LCA-group K be compact, path-connected and second count-
able. Then K is isomorphic to a product of countably many circle groups, i.e.,
K ∼=∏i∈I Ti , where Ti

∼= T for every i ∈ I and the index set I is countable.

Remark The restriction of second countability in this theorem is required, as Shelah
has shown in 1974 that the question, whether a path-connected compact LCA group
is a product of circle groups, is non-decidable in the context of the usual Zermelo-
Frenkel set theory plus axiom of choice. For details see Theorem 8.48 in [HM06].

The proof of this theorem requires the concept of a divisible hull of a torsion-free
abelian group which we shall introduce first. For this it is best to write abelian groups
additively, i.e., use the symbol + to denote the group law. For a ∈ A and n ∈ N we
then write

na = a + · · · + a (n-times).

We further write (−n)a = −na for n ∈ N.

Definition A group G is called torsion-free if it has no elements of finite order. If
the group is abelian and written additively, this means that na = 0 implies a = 0 for
n ∈ N and a ∈ A.

An abelian group A is called divisible, if for every a ∈ A and every n ∈ N there
exists b ∈ A such that a = nb. The additive group of rationals, (Q,+), is divisible,
the group (Z,+) is not.
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Lemma 4.1.10 Let the abelian group A be divisible and torsion-free. Then A is a
Q-vector space. More precisely, there exists a unique map Q×A → A making A a
vector space over the field of rationals.

Proof Let A be divisible and torsion-free. We first show that for a ∈ A and n ∈ N

the element b ∈ A with nb = a is uniquely determined. For this assume that b′ also
satisfies nb′ = a. Then n(b−b′) = a−a = 0 and so b−b′ = 0 which means b = b′.
We then write this element b as b = 1

n
a. We define a map Q × A → A by sending(

k
n

, a
)

to k
(

1
n
a
)
. The axioms of a Q-vector space are verified in a straightforward

manner.

For the uniqueness, assume there is a second map (r , a) �→ r ◦ a making A a vector
space over Q. For k ∈ N we get

k ◦ a = (1 + · · · + 1) ◦ a = a + · · · + a = ka.

Next for k = −1 we have a+ (k ◦ a) = 1 ◦ a+ (− 1) ◦ a = (1− 1) ◦ a = 0 ◦ a = 0
and so (−1) ◦ a = −a = (−1)a, so in total we have k ◦ a = ka for every k ∈ Z. For
r = k

n
∈ Q we finally have

n(r ◦ a) = n ◦ r ◦ a = (nr) ◦ a = k ◦ a = ka = nra,

so r ◦ a = ra and the uniqueness is proven. �

Lemma 4.1.11 Let A be a torsion-free abelian group. Then there exists a Q-vector
space AQ, called the divisible hull and an injective group homomorphism φ : A ↪→
AQ such that every group homomorphism A → V to a Q-vector space V factors
uniquely over φ. The vector space AQ is generated by the image of A and is unique
up to isomorphism.

For the reader familiar with the notion of tensor products over rings, the group AQ

can also be defined as the tensor product A⊗Q over the ring Z.

Definition We define the rank of a torsion-free abelian group A as the dimension
of the vector space AQ. It may be infinite. If the group is finitely generated, say with
r generators, then A ∼= Z

r by Theorem I.8.4 of [Lan02]. Therefore the rank is finite
and equals the smallest number of generators. On the other hand, there are groups
of finite rank which are not finitely generated as for example the group Q itself has
rank one but is not finitely generated as an additive group.

Proof of Lemma 4.1.11 We define AQ to be the quotient of A×N by the following
equivalence relation. We say (a,m) ∼ (b, n) if and only if na = mb. It is easy to see
that this establishes an equivalence relation. We write the class of (a,m) as a

m
and

we turn AQ into an abelian group by setting

a

m
+ b

n
= na +mb

mn
.
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The axioms of abelian groups are readily verified, and so is the fact that the map
a �→ a

1 injects A into AQ. We note that AQ is still torsion-free as n a
m
= 0 implies

0 = mn a
m
= na and hence a = 0 and so a

m
= 0. The equation n a

mn
= a

m
implies

that AQ is divisible, hence a Q-vector space, which is clearly generated by the image
of A. Finally, let ψ : A → V be a group homomorphism to a Q-vector space V .
Define ψQ : AQ → V by ψQ

(
a
m

) = 1
m
ψ(a). Then ψQ is the unique Q-linear map

such that ψ = ψQ ◦ φ. �

Proof of Theorem 4.1.9 Let D = K̂ be the dual group. Then D is discrete and, as K
is connected, Lemma 4.1.7 implies that D is torsion-free. So D may be considered
a subgroup of the Q-vector space DQ of Lemma 4.1.11.

We claim that D is countable. Recall that the elements of D form an orthonormal
basis of the Hilbert space L2(K) by Corollary 3.4.9. This Hilbert space is separable
by Lemma B.4.9, hence any orthornormal basis is countable.

We next show that every finite rank subgroup of the group D is finitely generated. Let
F be a finite rank subgroup of D and L = F̂ , then the inclusion of F into D dualizes
to a surjection K � L, so L is compact and path-connected. Let r be the rank of
F . Then F is the union of all its finitely generated subgroups, where it suffices to
consider those subgroups of full rank. This means that F ∼= lim→ Fj , where (Fj )j∈J
is the directed family of all finitely generated subgroups of full rank. Our goal is to
show that this limit stops, i.e., that the map Fj → F is an isomorphism for some j .
By Exercise 3.8, dualizing gives

L ∼= lim← Tj ,

where Tj = F̂j is isomorphic to the torus group T
r and each projection in the

projective system is surjective. As T
r ∼= R

r/Zr we can fix some index ν ∈ J and an
isomorphism Tν

∼= R
r/Zr . Then for each j ≥ ν there is a subgroup �j ⊂ Z

r of full
rank and an isomorphism ψj : Tj → R

r/�j such that the diagram

Tj

π
j
ν−−−−→ Tν

ψj

⏐⏐⏐

⏐⏐⏐
 ∼=

R
r/�j

pj−−−−→ R
r/Zr

commutes, where pj is the natural projection. Let � be the intersection of all �j

for j ≥ ν. The group G = R
r/� injects to the projective limit and we claim that

G actually equals the path-connected group L. For this let x ∈ L and let p be a
path joining it to the neutral element. Lemma 4.1.8 implies that for every projection
πj : L → Tj with j ≥ ν the projected path πj ◦ p lifts to a path in G, and therefore
the whole path lies in G, which implies that x ∈ G. We get L ∼= R

r/� and as L is
compact, � has full rank. So the limit stops and hence every finite rank subgroup of
D is finitely generated.
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According to Exercise 3.7, the assertion of the theorem is equivalent to saying that D
is a direct sum of cyclic groups. Hence the theorem will follow from the next lemma.

Lemma 4.1.12 Let D be a countable torsion-free abelian group such that every finite
rank subgroup of D is finitely generated. Then D is a direct sum of cyclic groups.

Proof The Q-vector spaceDQ is generated byD, hence it contains a basis consisting
of elements of D. So let v1, v2, . . . be a basis of DQ with vj ∈ D for each j . As
an application of the theory of elementary divisors, we shall inductively construct a
basis w1, w2, . . . of DQ such that

Qw1 ⊕ · · · ⊕Qwn = Qv1 ⊕ · · · ⊕Qvn

and
(Qw1 ⊕ · · · ⊕Qwn) ∩D = Zw1 ⊕ · · · ⊕ Zwn

holds for every n ∈ N. To start, let F = Qv1 ∩ D. Then QF = Qv1 is one-
dimensional, so F has rank one. By the assumption, F is finitely generated, being of
rank one, it has one generator w1. This concludes the construction of w1. Now assume
w1, . . . , wn have been constructed. The group G = (Qw1⊕· · ·⊕Qwn⊕Qvn+1)∩D

has rank n + 1 and is a subgroup of D, hence is isomorphic to Zu1 ⊕ · · · ⊕ Zun+1

for some u1, . . . , un+1. We claim that the uj can be chosen such that uj = wj

for 1 ≤ j ≤ n. Using the basis (uj ) this is equivalent to the following. Suppose
that w1, . . . , wn ∈ Z

n+1 are linearly independent over Q and that (Qw1 ⊕ · · · ⊕
Qwn) ∩ Z

n+1 = Zw1 ⊕ · · · ⊕ Zwn, then there exists wn+1 ∈ Z
n+1 such that Z

n+1 =
Zw1 ⊕ · · · ⊕ Zwn+1. Consider the integral (n + 1) × n matrix B with columns
w1, . . . , wn. By Theorem III.7.9 of [Lan02], there exist invertible integral matrices
S, T such that the matrix SBT has non-zero entries only on the main diagonal. The
property (Qw1 ⊕ · · · ⊕Qwn) ∩ Z

n+1 = Zw1 ⊕ · · · ⊕ Zwn prevails for the columns
w′

1, . . . , w′
n of the matrix SBT , which implies that each diagonal entry of SBT can

be chosen equal to 1, so the w′
1, . . . , w′

n are the first n standard basis vectors. Let
w′

n+1 be the last standard basis vector, then the vector wn+1 = S−1w′
n+1 will do the

job. This finishes the construction of the sequence (wn). From the properties of this
sequence it follows that

D =
∞⊕
n=1

Zwn

and so the Lemma holds. The theorem also follows. �

4.2 The Structure Theorems

The main results of this section are the following three Structure Theorems.

Theorem 4.2.1 (First Structure Theorem). Let A be an LCA group. Then there exists
n ∈ N0 and an LCA group H such that
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(a) A is isomorphic to R
n ×H .

(b) H contains an open compact subgroup K.

A topological group G is called compactly generated if there exists a compact set
V ⊂ G generating G as a group. In this case the set W = V ∪ V −1 is compact as
well and that G = ⋃n∈N

Wn. Note that every connected locally compact group is
automatically compactly generated. Indeed, if V is any compact unit-neighborhood
in G, then 〈V 〉 is an open and closed subgroup of G and hence contains the connected
componentG0. ButG = G0 ifG is connected. For compactly generated LCA groups
we shall prove

Theorem 4.2.2 (Second Structure Theorem). Let A be a compactly generated LCA
group. Then there exist n,m ∈ N0 and a compact group K such that A is isomorphic
to R

n × Z
m ×K .

For the proof of this theorem we shall use without proof the well known structure
theorem for finitely generated abelian groups, as can be found in many text books
on algebra. It says that every finitely generated abelian group B is isomorphic to a
group of the form Z

m × F for some nonnegative integer m ∈ N0 and some finite
abelian group F . Moreover, recall that every finite abelian group F is known to be
a direct product of finite cyclic group.

A third structure theorem, which will be proved in this section, deals with LCA
groups which are locally euclidean.

Definition A topological space is called locally euclidean of dimension n if every
point has an open neighborhood homeomorphic to R

n.

Remark The notion of a locally euclidean group is closely related to the notion of
an abelian Lie group, which is by definition a differentiable manifold with a smooth
abelian group structure [War83]. The connection is this: For a given abelian Lie
group, the underlying topological group is a locally euclidean group. The other way
round, every locally euclidean group with countably generated topology allows for
a unique differentiable structure that makes it an abelian Lie group. The latter is a
deep theorem, known as the Montgomery-Zippin Theorem, see [MZ55]. The proof
of the existence part of this theorem in the special case of LCA groups follows from
our third structure theorem stated below. In this case, the proof was first obtained by
Pontryagin in [Pon34].

Two abelian Lie groups are isomorphic if and only if their underlying LCA groups
are isomorphic. This rounds up to saying that the notion of an abelian Lie group es-
sentially coincides with the notion of a locally euclidean LCA-group with countably
many connected components.
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Examples 4.2.3

• Every discrete abelian group is a locally euclidean LCA-group since it is locally
homeomorphic to R

0 = {0}.
• R

n and T
n are locally euclidean LCA groups of dimension n for every n ∈ N0.

There is nothing to show for R
n and for n = 0. For T

n with n > 0 consider the
set V = (− 1

2 , 1
2

)n ⊂ R
n and the map φ : V → T

n given by

φ (x1, . . . , , xn) =
(
e2πix1 , . . . , e2πixn

)
.

Then φ is a homeomorphism of V ∼= R
n onto a unit neighborhood of T

n.

• If the groups A1, . . . ,Al are locally euclidean LCA groups of dimensions
n1, . . . , nl , then the direct product A1×· · ·×Al is a locally euclidean LCA-group
of dimension n1 + n2 + · · · + nl .

Theorem 4.2.4 (Third Structure Theorem). Suppose that A is a locally euclidean
LCA-group. Then A is isomorphic to R

n × T
m × D for some nonnegative integers

n,m ∈ N0 and some discrete abelian group D.

Combining Theorems 4.2.2 and 4.2.4 together with the isomorphisms R̂n ∼= R
n,

Ẑm ∼= T
m, T̂l ∼= Z

l and the fact that the dual of a discrete group is compact and the
dual of a compact group is discrete, we get the following corollary as consequence
of the Pontryagin Duality Theorem.

Corollary 4.2.5 Let A be an LCA-group. Then the following are equivalent:

(a) A is compactly generated.

(b) Â is locally euclidean.

Using the easy fact that quotients of compactly generated groups are compactly
generated, Theorem 4.2.4 together with the structure theorem for finitely generated
abelian groups immediately implies

Corollary 4.2.6 Let A be a locally compact abelian group. Then the following are
equivalent:

(a) A is a compactly generated locally euclidean LCA-group.

(b) There exist n,m, l ∈ N0 and some finite abelian group F such that A ∼= R
n ×

T
m × Z

l × F .

Using Theorem 4.1.9, we derive the following classification of second countable
path-connected LCA groups.
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Corollary 4.2.7 Assume that the LCA-group A is second countable and path-
connected. Then A is isomorphic to R

n × ∏i∈I Ti for some n ≥ 0, where each
Ti is a circle group, i.e., Ti

∼= T and the set I is countable.

Proof Being path-connected, A is connected, so by Theorem 4.2.2 the group A is
isomorphic to R

n ×K for a compact group K . Then K ∼= A/Rn is path-connected
and by Theorem 4.1.9, K is isomorphic to a product of circle groups. �

The proofs of the structure theorems require several technical lemmas. We start with

Lemma 4.2.8 Let A and B be abelian topological groups, and let q : A → B

be a continuous and surjective homomorphism. Suppose further that there exists a
continuous section s : B → A for q, i.e., s is a continuous homomorphism such that
q ◦ s = idB . Then A is isomorphic to C × B with C = ker(q) ⊂ A.

Proof Just check that the map φ : A → C × B given by φ(x) =(
x · (s ◦ q)(x)−1, q(x)

)
is a continuous homomorphism with inverse given by

φ−1(c, b) = c · s(b). �

Example 4.2.9 If A is an abelian topological group such that there exists a surjective
continuous homomorphism q : A → Z

l , then A is isomorphic to N × Z
l for

N = ker(q). Indeed, if we choose xi ∈ A such that q(xi) = ei , where ei denotes
the ith unit vector in Z

l , then s : Z
l → A given by s (n1, . . . , nl) = x

n1
1 · · · xnl

l is a
(continuous) section for q and the lemma applies.

In the course of this section we shall need other criteria that imply that a given group
can be decomposed as a direct product of two subgroups. The main ingredient for
this is the Open Mapping Theorem for σ -compact locally compact groups that we
will formulate below. Recall that a topological space X is called σ -compact if it is the
union of countably many compact subsets of X. Every compactly generated group
G is σ -compact, since then G = ⋃n∈Z

V n for some compact subset V ⊂ G. Since
every connected locally compact group is compactly generated (see the discussion
preceding Theorem 4.2.2) it follows that such groups are also σ -compact.

Theorem 4.2.10 (Open Mapping Theorem). Suppose that G and H are locally com-
pact groups such that G is σ -compact. Suppose further that φ : G → H is a
continuous and surjective homomorphism. Then φ is open. In particular, if φ is a
continuous bijective homomorphism from G to H where G is σ -compact, then φ is a
topological isomorphism.

Proof Let 1G and 1H be the units in G and H , respectively. It is enough to show
that φ(U ) is a neighborhood of 1H whenever U is a neighborhood of 1G. To see this,
choose a compact neighborhood V of 1G such that V = V −1 and V 2 ⊂ U . Since G

is σ -compact, we can choose a countable family {Kn : n ∈ N} of compact subsets of
G such that G =⋃n∈N

Kn. For each n ∈ N we may then find a finite subset Fn ⊂ Kn
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such that Kn ⊂ ⋃x∈Fn
xV . Put F = ⋃n∈N

Fn. Then F is a countable subset of G

such that G = ⋃x∈F xV . Since φ is onto, it follows that H = ⋃x∈F φ(xV ). Since
φ(xV ) is compact, hence closed for every x ∈ F and since H is a Baire space by
Proposition A.9.1, it follows that there exists at least one x ∈ F such that the interior
of φ(xV ) = φ(x)φ(V ) is nonempty. But this implies that φ(V ) has nonempty interior
as well. So choose a nonempty open set W in H with W ⊂ φ(V ). Then W−1W is
an open set in H with

1H ∈ W−1W ⊂ φ(V )−1φ(V ) ⊂ φ
(
V −1V
) = φ
(
V 2
) ⊂ φ(U ). �

Example 4.2.11 The condition of σ -compactness in the open mapping theorem
is indeed necessary, as the following example shows. Let H = R with the usual
topology, and let G = R with the discrete topology. Then the identity map φ : G →
H is a surjective continuous homomorphism, which is not open.

Corollary 4.2.12 Suppose that G is a locally compact group and that N,H are closed
subgroups of G such that

(a) N and H are σ -compact,

(b) N ∩H = {1G} and N ·H = G,

(c) n · h = h · n for all n ∈ N ,h ∈ H .

Then the map φ : N ×H → G given by φ(n,h) = n ·h is an isomorphism of locally
compact groups.

Proof Conditions (b) and (c) imply that � is a continuous bijective homomorphism
and (a) implies that N × H is σ -compact. The result then follows from the Open
Mapping Theorem. �

Example 4.2.13 The condition of σ -compactness in the corollary is necessary. As
an example letG = R×Rd , where Rd denotes the real line equipped with the discrete
topology. Let H = R(1, 1) and N = R(1,−1). As groups, one has G ∼= H ×N , but
as H and N both have the discrete topology, the underlying map form G to H ×N

is not continuous.

Remark Recall that an abelian group D is called divisible if for every x ∈ D and
for every n ∈ N there exists an element y ∈ D such that yn = x. It is easy to
check that R

r × T
s is divisible for all r , s ∈ N0, but Z

l is certainly not divisible
if l > 0. Divisible groups have the following remarkable extension property for
homomorphisms to D:

Lemma 4.2.14 Let B be a subgroup of the abelian group A, and let ψ : B → D

be a homomorphism to a divisible group D. Then there exists a homomorphism
ψ̃ : A → D with ψ̃ |B = ψ .
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Proof This is a straightforward application of Zorn’s Lemma as soon as we can
show that the lemma applies to the case where A is generated by B ∪ {x} for some
element x ∈ A � B. If xn /∈ B for every 0 
= n ∈ Z, we may define ψ̃(bxn) = ψ(b)
for all b ∈ B, n ∈ Z. Suppose now that there exists m ∈ N with xm ∈ B and
suppose that m is minimal with this property. Since D is divisible, we can choose
an element d ∈ D with dm = ψ(xm). Define ψ̃(bxn) = ψ(b)dn. To check that
this gives a well-defined homomorphism we have to show that if bxn = b′xl , for
some b, b′ ∈ B and n, l ∈ Z, then ψ(b)dn = ψ(b′)dl . Assume that n > l. Since
xn−l = b−1b′ ∈ B there exists some q ∈ N with n− l = qm. Then b−1b′ = (xm)q ,
which implies that ψ

(
b−1b′
) = ψ(xm)q = (dm)q = dn−l . But this is equivalent to

ψ(b)dn = ψ(b′)dl . �

Lemma 4.2.15 Let A be an LCA group and let B and D be closed subgroups of A
such that

• B and D are σ -compact.

• B ·D is open in A and B ∩D = {1}.
• D is divisible.

Then there exists a closed subgroup C of A with B ⊂ C, B is open in C, such that
φ : C ×D → A, φ(c, d) = c · d is an isomorphism of locally compact groups.

Proof Note first that φ : B × D → B · D, φ(b, d) = bd is an isomorphism of
LCA groups by Corollary 4.2.12. Let ψ : B · D → D be the projection onto the
second factor. Since D is divisible, it extends to some homomorphism ψ̃ : A → D.
Since B · D is open in A, this extension is automatically continuous (since it is
continuous at the unit of A). Since the inclusion ι : D → A is a section for ψ̃ it
follows from Lemma 4.2.8 that A ∼= ker(ψ̃)×D. Put C = ker(ψ̃) and observe that
B = C ∩ (B ·D). Hence, since B ·D is open in A we have B open in C. �

Example 4.2.16 As a special case of the above corollary it follows that every divisi-
ble open subgroup D of an abelian topological group A splits off as a direct factor of
A. To be more precise, there exists a discrete subgroup C of A such that A ∼= C×D

via the obvious map.

In this special case one can omit the conditions that A is locally compact and D

is σ -compact, since the only place where these conditions were used in the above
lemma was to ensure that B × D ∼= B · D as topological groups, which is clear in
case of B = {1}.

Definition We say that a topological group A is topologically generated by some
subset U ⊂ A if the group 〈U〉 generated by U is dense in A. In particular, A is
topologically generated by a single element x ∈ A if {xn : n ∈ Z} is dense in A. This
is clearly equivalent to the existence of a homomorphism φ : Z → A with dense
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image and φ(1) = x. A group which is topologically generated by a single element
x is called monothetic (see also Exercise 3.22).

Lemma 4.2.17 (a) Let A be an LCA-group and let φ : A → T be an injective
continuous group homomorphism. Then φ is either an isomorphism or A is discrete.

(b) Every monothetic LCA group A is either compact or topologically isomorphic
to Z.

Proof (a) As a first step we assume A is totally disconnected and show that A is
discrete. By Theorem 4.1.6, A contains a compact open subgroup K . Then φ(K) is
a compact subgroup of T, hence finite or equal to T. If φ(K) equals T, then the open
mapping theorem says that φ maps K isomorphically to T, contradicting the fact
that A is totally disconnected. Hence K is finite, so K is a finite unit-neighborhood.
Being Hausdorff, A is discrete.

Next we assume that φ is not surjective and show that A is discrete. If x ∈ T�φ(A)
and y ∈ T with yk = x for some k ∈ Z, then y /∈ φ(A) as well. Therefore, there
exists a sequence x±1

k /∈ φ(A), tending to 1. Hence the connected component of φ(A)
is trivial, and the same holds for A, i.e., A is totally disconnected, hence discrete.

Finally suppose φ is surjective and that A is not totally disconnected, i.e., A0 
= {1},
where A0 is the connected component of A. If A0 
= A, then the second observation,
applied to A0, shows that A0 is discrete, hence trivial, contradicting our assumption.
ThereforeA is connected, hence σ -compact. By The Open Mapping Theorem 4.2.10,
φ is an isomorphism.

Now for (b) let A be as in the assumption, then there exists a group homomorphism
ψ : Z → A with dense image. The dual ψ̂ : Â → Ẑ ∼= T must therefore be injective,
hence by part (a) the group Â is either discrete or isomorphic to T and so A is either
compact or isomorphic to Z. �

Lemma 4.2.18 Suppose that A is an LCA group such that there exists a compact
unit-neighborhood V and x1, . . . , xl ∈ A with

A = V · 〈x1, . . . , xl〉.
Then either A is compact or there exists an i ∈ {1, . . . , l} with 〈xi〉 = {xn

i : n ∈ Z}
closed in A and isomorphic to Z.

Proof For each i ∈ {1, . . . , l} it follows from Lemma 4.2.17 that 〈xi〉 is closed and
isomorphic to Z or that 〈xi〉 is compact. If 〈xi〉 is compact for every 1 ≤ i ≤ n, it
follows that

〈x1, . . . , xl〉 = 〈x1〉 · · · 〈xl〉,
since products of compact sets are compact and hence closed. It then follows that
A = V · 〈x1, . . . , xl〉 is compact, too. �
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Lemma 4.2.19 Let A be a compactly generated LCA group. Then there exists a
closed subgroup L of A such that L ∼= Z

l for some l ∈ N0, and A/L is compact.

Proof Choose a compact unit-neighborhood V = V −1 such that A = 〈V 〉 =⋃
n∈N

V n. Since V 2 is compact, we find x1, . . . , xm ∈ A such that V 2 ⊂⋃m
i=1 V xi .

We first claim that A = V · H for H = 〈x1, . . . , xm〉. To see this, we show by
induction that V n ⊂ V · H for every n ∈ N. By definition of H , this is clear for
n = 2, and if it is known for n ∈ N, then

V n+1 = V · V n ⊂ V · (V ·H ) = V 2 ·H ⊂ (V ·H ) ·H = V ·H.

By Lemma 4.2.18 either A is compact and the proof is finished, or there is j such
that T = 〈xj 〉 is discrete and infinite. We assume j = m. The LCA-group Ā = A/T

is compactly generated and with V̄ = V T/T we have Ā = V̄ 〈x1, . . . , xm−1〉. By
induction on m we can assume that there is a subgroup L̄ in Ā with L̄ ∼= Z

l and
Ā/L̄ is compact. Let τ1, . . . , τl ∈ A be any pre-images of the generators of L̄. We
claim that the group L = 〈τ1, . . . , τl , xm〉 is discrete and isomorphic to Z

l+1. Only
discreteness is non-trivial. Let V̄ be a unit-neighborhood in Ā with V̄ ∩ L̄ = {1} and
let V be its pre-image in A. Further let U ⊂ A be a unit-neighborhood in A with
U ∩ 〈xm〉 = {1}. Set W = V ∩ U , then one has W ∩ L = {1}. �

Definition We say that two locally compact groups G and G′ are locally isomorphic
if there exist open unit neighborhoods V and V ′ in G and G′, respectively, together
with a homeomorphism φ : V → V ′ such that φ(xy) = φ(x)φ(y) and φ(x−1) =
φ(x)−1 for all x, y ∈ V such that xy ∈ V (resp. x−1 ∈ V ).

Lemma 4.2.20 Suppose that A is a connected LCA-group locally isomorphic to R
n.

Then A is isomorphic to R
n/L for some discrete subgroup L of R

n. If, in addition, A
does not contain any infinite compact subgroup, then A is isomorphic to R

n.

Proof Assume that A 
= {e}, i.e., n > 0. Then there exists a neighborhood V of {e}
in A, an ε > 0, and a homeomorphism φ : Uε(0) := {x ∈ R

n : ‖x‖2 < ε} → V

such that φ(x + y) = φ(x)φ(y) for all x, y ∈ Uε(0) such that x + y ∈ Uε(0). Define
� : R

n → A as follows: given x ∈ R
n choose m ∈ N such that ‖ 1

m
x‖2 < ε

and then put �(x) = φ( 1
m
x)m. � is well-defined, because if m, k ∈ N such that

‖ 1
m
x‖2, ‖ 1

k
x‖2 < ε, then we also have ‖ 1

mk
x‖2 < ε and it follows from the local

additivity of φ that

φ

(
1

m
x

)m
= φ

(
k · 1

km
x

)m
= φ

(
1

km
x

)km
= φ

(
m

1

km
x

)k
= φ

(
1

k
x

)k
.

A similar computation shows that the group homomorphism � is continuous, since
it is continuous at 0. As A is connected, we have A =⋃∞

m=1 V
m, and since �(Rn) ⊇

φ(U ) = V , it follows that� is onto. The space R
n isσ -compact, so it follows from the
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Open Mapping Theorem that � is open, i.e., that A ∼= R
n/L with L = ker� ⊂ R

n.
L is discrete since L ∩ Uε(0) = {0}.
If A does not contain nontrivial infinite compact subgroups, then � is also injective,
because if there would exist a 0 
= x ∈ R

n with�(x) = e, then�(R·x) = �([0, 1]·x)
would be a nontrivial infinite compact subgroup of A. �

Lemma 4.2.21 Suppose that A is a locally euclidean LCA-group. Then the connected
component A0 of A is open in A.

Proof This follows from Lemma 4.1.3. �

Definition If A,B are LCA groups and if φ : A → B is any continuous group
homomorphism, then there exists a dual homomorphism φ̂ : B̂ → Â given by
φ̂(χ ) = χ ◦ φ. Recall from Corollary 3.6.2 (see also Exercise 3.12) that any short
exact sequence of locally compact abelian groups

0 → A
ι→ B

q→ C → 0

(where we assume that ι is a topological embedding and q is open) dualizes to give
a short exact sequence

0 → Ĉ
q̂→ B̂

ι̂→ Â → 0.

We shall freely use this fact in the following lemma, which gives the proof of the
general structure theorem in the special case where A has co-compact connected
component A0.

Lemma 4.2.22 Suppose that A is a non-compact LCA group such that A/A0 is
compact. Then A ∼= R

n ×K for some n ∈ N and some compact group K.

Proof Let q : A → A/A0 denote the quotient map and choose a compact symmetric
unit-neighborhood V such that q(V ) = A/A0. Then A coincides with the subgroup
〈V 〉 = ⋃n∈N

V n generated by V because the open subgroup 〈V 〉 of A contains
the connected component A0 and q(〈V 〉) ⊃ q(V ) = A/A0. By Lemma 4.2.19 there
exists a closed subgroupL ⊂ A isomorphic to Z

n for some n ∈ N such thatC = A/L

is compact (we have n > 0 since A is not compact). We therefore get a short exact
sequence

0 → Z
n → A → C → 0,

which dualizes to a short exact sequence

0 → Ĉ → Â → T
n → 0,

since Ẑn ∼= T
n. Since C is compact, Ĉ is a discrete subgroup of Â. This implies that

the map Â → T
n is locally a homeomorphism, so Â is locally isomorphic to R

n.
But then the connected component (Â)0 of Â is an open subgroup of Â.
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Note that Â (and hence also (Â)0) does not contain any infinite compact subgroup,
because if E ⊂ Â would be such group, then it would follow from dualizing the
sequence 0 → E → Â → Â/E → 0 and the duality theorem that there is a short
exact sequence 0 → B → A → Ê → 0 with Ê an infinite discrete group. But this
would contradict the assumption that A/A0 is compact.

We can now apply Lemma 4.2.20 to see that (Â)0 is isomorphic to R
n for some

n ∈ N0. Since R
n is divisible, it follows from Example 4.2.16 that Â is isomorphic

to R
n ×H for some discrete abelian group H . The Pontryagin duality theorem then

implies that A ∼= R̂n × Ĥ ∼= R
n ×K , if K denotes the compact group Ĥ . �

Collecting all the previous information, the proof of the general structure theorem is
now very easy:

Proof of Theorem 4.2.1 Let A be any LCA group. We have to show that A is
isomorphic to some direct product R

n ×H for some n ∈ N0 and some LCA group
H such that H contains a compact open subgroup.

To show this, let A0 be the connected component of A. Then A/A0 is totally discon-
nected and therefore contains an open compact subgroup E by Theorem 4.1.6. The
inverse image M of E in A is then open in A with M/A0 compact. Since M0 = A0

we can apply Lemma 4.2.22 to M to see that M ∼= R
n×K for some n ∈ N0 and some

compact group K . Since M is open in A and R
n is divisible, we can apply Lemma

4.2.15 (to R
n and K) to see that there exists a closed subgroup H of A containing K

as an open subgroup such that A ∼= R
n ×H . �

From this we easily obtain the structure theorem for compactly generated LCA
groups:

Proof of Theorem 4.2.2 Let A be a compactly generated LCA group. By the general
structure theorem we know that A ∼= R

n × H for some n ∈ N0 and some LCA
group H such that H has a compact open subgroup C. Since quotients of compactly
generated groups are compactly generated it follows that H/C is a finitely generated
discrete group, and hence H/C is isomorphic to Z

l × F for some l ∈ N0 and some
finite group F . Let K be the inverse image of F in H under the quotient map. Then
K is compact and it follows then from Example 4.2.9 that H ∼= Z

l × K . Thus
A ∼= R

n × Z
l ×K . �

We finally want to prove the structure theorem for locally euclidean LCA groups.
For this we need

Lemma 4.2.23 Let L be a discrete subgroup of R
n. Then L ∼= Z

l for some 0 ≤ l ≤ n

and R
n/L ∼= R

n−l × T
l .

Proof We first show that L ∼= Z
l for some 0 ≤ l ≤ n. We give the proof by induction

on n. The lemma is clearly true for n = 0 and also for L = {0} (with l = 0). So
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suppose that n > 0 and L 
= {0}. Since L is discrete, we can find some x1 in L

such that ‖x1‖2 is minimal among all elements 0 
= x ∈ L. Put R = R · x1
∼= R.

Then R ∩ L = Z · x1
∼= Z because if there were an element y ∈ (R ∩ L) � Z · x1,

then there would exist (after passing to −x1 if necessary) an element n ∈ N0 with
nx1 < y < (n+ 1)x1 and then y − nx1 ∈ L�{0} with ‖y − n · x1‖2 < ‖x1‖2, which
would contradict the minimality condition for x1.

Let ε = 1
2‖x1‖2, and let q : R

n → R
n/R denote the quotient map. We claim that

q(Uε(0)) ∩ q(L) = {0}. To see this, suppose that there exists x ∈ R
n with ‖x‖2 <

1
2‖x1‖2 such that 0 
= q(x) ∈ q(L). Then there exists a t ∈ R with x + t · x1 ∈ L. If
x+ t ·x1 = 0 we have x ∈ R and q(x) = 0, which is impossible. If x+ t ·x1 
= 0 the
minimality condition on x1 implies that ‖x1‖2 ≤ ‖x+ t ·x1‖2 < ( 1

2 +|t |)‖x1‖2, from
which it follows that |t | > 1

2 . Choose n ∈ Z with |t + n| < 1
2 . Then x + (t + n) · x1

is also in L, which then implies that x ∈ R or that |t + n| > 1
2 . Both are impossible.

Since q(Uε(0)) ∩ q(L) = {0} it follows that q(L) is a discrete subgroup of R
n/R ∼=

R
n−1 and by the induction assumption we know that q(L) ∼= Z

k for some 0 ≤ k ≤
n− 1. Since R ∩ L = Z · x1

∼= Z we obtain a short exact sequence

{0} → Z → L → Z
k → {0}

of abelian groups. But then it follow from Example 4.2.9 that L ∼= Z
k+1.

If l > 0 let {x1, . . . , xl} be a (minimal) set of generators for L. Then {x1, . . . , xl}
is a set of linearly independent vectors in R

m, since otherwise L ∼= Z
l could be

realized as a discrete subgroup of some R
k with k < l, which would contradict the

first part of the proof. Choose vectors y1, . . . , ym ∈ R
n with m = n − l such that

{x1, . . . , xl , y1, . . . , ym} is a linear basis of R
n. Then one easily checks that

R
n/L ∼= Rx1/Zx1 × · · · × Rxl/Zxl × Ry1 × · · · × Rym

∼= T
l × R

m. �

For the proof of the structure theorem for locally euclidean LCA groups we need the
following lemma.

Lemma 4.2.24 Suppose that K is a compact normal subgroup of the locally compact
group G such that G/K is compactly generated. Then G is also compactly generated.

Proof Let C ⊂ G/K be a compact generating set for G/K . By Remark 1.5.2 we
find a compact set L ⊂ G with π (L) = C, where π : G → G/K denotes the
quotient map. But then L ·K is a compact generating set for G. �

Proof of Theorem 4.2.4 We first reduce the proof to the case of a connected group. So
assume we have shown the theorem for connected groups and let A be an arbitrary
locally euclidean LCA-group. Let A0 denote the connected component and let D

denote the quotient group A/A0, which by Lemma 4.1.3 is discrete. The exact
sequence 1 → A0 → A → D → 1 dualizes to 1 → L → Â → Â0 → 1,
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where L is the compact group D̂. If we can show that A0
∼= R

n × T
l it follows that

Â0
∼= R

n × Z
l is compactly generated, and as L is compact, it follows that A is

compactly generated, too. Hence, by the Second Structure Theorem the group Â is
isomorphic to R

n × Z
m × K , so that A is isomorphic to R

n × T
m × K̂ . As K̂ is

discrete, the general version of the Third Structure Theorem follows from the version
for connected groups.

So we now assume the group A to be connected. In this case, the First Structure
Theorem tells us that A is isomorphic to R

m×K for a compact group K . The locally
euclidean group A is path-connected by Lemma 4.1.7. As A ∼= R

m × K we have
K ∼= A/Rm and therefore the compact group K is path-connected. As R

n is second
countable and A is generated by a set homeomorphic to R

n, the space A is second
countable, and so is K . By Theorem 4.1.9 we have K ∼= ∏i∈I Ti where Ti

∼= T for
each i ∈ I .

So far we have shown that the connected locally euclidean group A is isomorphic to
R

m×∏i∈I T. It only remains to show that the product is finite. For this we need the
concept of contractible spaces.

Definition Let X be a topological space. A subset C of X is called contractible
in X or X-contractible if there exists a point x0 ∈ X and a zero-homotopy, i.e., a
continuous map h : [0, 1] × C → X such that

h(0, x) = x0 and h(1, x) = x

for every x ∈ C. If C is contractible in X, then every subset of C is contractible in
X.

Examples 4.2.25

• The space X = R
n is contractible in itself, as the map

h(t , x) = tx

is a zero-homotopy.

• Complex analysis tells us that the circle group T is not contractible in itself, as oth-
erwise the path γ (t) = e2πit would be homotopic to a constant path, contradicting
the fact that

∫
γ

1
z dz = 2πi and the homotopy-invariance of path integrals.

• We can elaborate the last example a bit further. Let Y be an arbitrary topological
space and let X = Y × T. Then for a given point y0 ∈ Y the set {y0} × T is
not contractible in X, as any zero-homotopy would, after projection to T, give a
zero-homotopy of T.

Now the group A possesses a unit-neighborhood U which is homeomorphic to R
n,

hence contractible in A. Assume that the product in A ∼= R
m×∏i∈I T is infinite, then



4.3 Exercises 105

every unit-neighborhood contains a non-empty set of the form V×∏i∈E Vi×∏i /∈E T

for some finite set E ⊂ I . Therefore, U contains a subset of the form {y0} × T in
A, which cannot be contractible, a contradiction. Therefore the product must be
finite. �

Remark 4.2.26 The proof of the third structure theorem for locally euclidean groups
becomes much easier under the stronger assumption that the LCA-group A is locally
isomorphic to R

n. In this case the connected component A0 is open in A and locally
isomorphic to R

n. Thus, by Lemma 4.2.20 and Lemma 4.2.23, A0 is isomorphic to
R

k × T
l for some k, l ∈ N0 with k + l = n. Hence A0 is divisible and it follows

from Lemma 4.2.23 (applied to B = {e} and D = A0) that A ∼= R
k × T

l ×D with
D ∼= A/A0 discrete. In particular, the proof does not use the quite intricate Theorem
4.1.9.

4.3 Exercises

Exercise 4.1 (a) Show that any interval in R is connected.

(b) Let A be a connected subset of the topological space X. Show that the closure
A is connected, too.

(c) Let f : X → Y be a continuous map. Show that if A ⊂ X is connected, then so
is f (A) ⊂ Y .

Exercise 4.2 Recall that the Cantor set C ⊂ [0, 1] is defined as the complement
[0, 1] � U , where U is the union of all intervals

(
3n+1

3l , 3n+2
3l

)
with l ∈ N and n ∈ N0

with 0 ≤ n < 3l−1. Show that C is totally disconnected.

Exercise 4.3 Let Xi be a topological space for every i in the nonempty index set I .
Show that the direct product

∏
i∈I Xi is connected (resp. totally disconnected) if and

only if all Xi are connected (resp. totally disconnected).

Exercise 4.4 Let G be a locally compact group. Show that the connected component
G0 of G is the intersection of all open subgroups of G.

Exercise 4.5 Show that every projective limit of finite groups is totally disconnected
(compare with Exercise 3.8). Give concrete examples of infinite compact abelian
groups that are totally disconnected.

Exercise 4.6 Suppose that G is a compact totally disconnected group.

(a) Show that G has a unit-neighborhood base consisting of open normal subgroups
of G.

(b) Show that G is a projective limit of finite groups.
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Exercise 4.7 Let G be a topological group, and let H be a closed subgroup of G

such that H and G/H are connected. Show that also G is connected. Show that the
groups U(n) and SO(n) are connected for every n ∈ N. Is O(n) connected?

Exercise 4.8 Show that an LCA-group, which is countable, must be discrete.

Exercise 4.9 (a) Describe all closed subgroups of R
n.

(b) Show that every closed subgroup and every quotient of a locally euclidean
LCA-group is again a locally euclidean LCA-group.

(c) Show that every closed subgroup and every quotient of a compactly generated
LCA-group is again a compactly generated LCA-group.



Chapter 5

Operators on Hilbert Spaces

In this chapter, we will apply the results of Chap. 2 on C∗-algebras to operators on
Hilbert spaces. In particular, we will discuss the continuous functional calculus for
normal bounded operators on Hilbert space, which turns out to be a powerful tool.

The space B(H ) of all bounded linear operators on a Hilbert space H is a Banach
algebra with the operator norm (Example 2.1.1), and, as we have seen in Example
2.6.1, even a C∗-algebra. We will write

σ (T ) = σB(H )(T )

for the spectrum of T with respect to the C∗-algebra B(H ) and call it simply the
spectrum of the operator T .

5.1 Functional Calculus

Let H be a Hilbert space, and let T be a bounded normal operator on H , this means
that T commutes with its adjoint T ∗, i.e., T is normal as an element of the C∗-algebra
B(H ). We then can apply the results of Sect. 2.7, which for any continuous function
f on the spectrum σ (T ) give a unique element f (T ) of B(H ) that commutes with
T and satisfies

f̂ (T ) = f ◦ T̂ ,

where the hat means the Gelfand transform with respect to the unital C∗-algebra
generated by T . Recall that by Lemma 2.7.2 the spectrum of a normal operator T

does not depend on the C∗-algebra. The map from C(σ (T )) to B(H ) mapping f to
f (T ) is the continuous functional calculus. In the next proposition, we summarize
some important properties.

Proposition 5.1.1. Let T be a normal bounded operator on the Hilbert space H and
let A = C∗(T , 1) be the unital C∗-algebra generated by T.

(a) The map f �→ f (T ) is a unital isometric C∗-isomorphism from C(σ (T )) to A,
which sends the identity map Idσ (T ) to T.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 107
DOI 10.1007/978-3-319-05792-7_5, © Springer International Publishing Switzerland 2014
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(b) Let V ⊂ H be a closed subspace stable under T and T ∗. Then V is stable under
A and f (T )|V = f (T |V ).

(c) Let V be the kernel of f (T ). Then V is stable under T and T ∗, and the spectrum
of f (T |V ) is contained in the zero-set of f.

(d) If f (z) = ∑∞
n=0 anzn is a power series that converges for z = ‖T ‖, then

f (T ) =∑∞
n=0 anT

n.

Proof The first assertion is a direct consequence of Theorem 2.7.3.

To show (b), note first that if V is stable under T and T ∗, then V is A-stable, since the
linear combinations of operators of the form T k(T ∗)l are dense in A. We therefore get
a well defined ∗-homomorphism � : A → B(V ) mapping S to S|V . The assertion
in (b) is then a consequence of Corollary 2.7.5.

In (c), the space V is stable under T and T ∗ as these operators commute with f (T ).
Further, using Corollary 2.7.5, one has

f (σ (T |V )) = σ (f (T |V )) = σ (f (T )|V ) = {0}.
Finally, part (d) is contained in Theorem 2.7.3, since convergence of the power series
at ‖T ‖ implies uniform convergence on σ (T ) ⊆ B‖T ‖(0). �

An important class of normal operators is formed by the self-adjoint operators, i.e.,
operators T with T = T ∗. It is shown in Corollary 2.7.5 that σ (T ) ⊆ R for every
self-adjoint T . Another class of interesting normal operators consists of the unitary
operators. These are operators U ∈ B(H ) satisfying UU ∗ = U ∗U = 1. Note that
a normal operator U ∈ B(H ) is unitary if and only if σ (U ) ⊆ T. This follows from
functional calculus, because if U is normal, then U∗U = 1 if and only if Īd · Id = 1
for Id = Idσ (U ), which is equivalent to σ (U ) ⊆ T.

Recall the Schwartz space S(R) consisting of all functions f : R → C such that for
any two integers m, n ≥ 0 the function xnf (m)(x) is bounded. So a Schwartz function
on R is a smooth function on R, which, together with all its derivatives, is rapidly
decreasing.

For f ∈ S(R) the Fourier inversion formula says that

f (x) =
∫

R

f̂ (y)e2πixy dy,

where f̂ (y) = ∫
R
f (x)e−2πixy dx is the Fourier transform (See Exercise 3.14 or

[Dei05] Sect. 3.4).

Proposition 5.1.2. Let T be a self-adjoint bounded operator on the Hilbert space
H. Then for every f ∈ S(R),

f (T ) =
∫

R

f̂ (y)e2πiyT dy,
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where the unitary operator e2πiyT is defined by the continuous functional calculus
and the integral is a vector-valued integral in the Banach space B(H ) as in Sect. B.6.

Proof To see that the operator e2πiyT is unitary, we compute

(
e2πiyT
)∗ = e−2πiyT ∗ = e−2πiyT = (e2πiyT

)−1
.

The Bochner integral exists by Lemma B.6.2 and Proposition B.6.3. Next, let � :
C(σ (T )) → C∗(T , 1), g �→ g(T ) denote the isometric ∗-homomorphism underlying
the Functional Calculus for T . The Fourier inversion formula implies that

f |σ (T ) =
∫

R

f̂ (y)e2πiyIdσ (T ) dy.

By continuity of � we therefore get

f (T ) = �(f |σ (T )) = �

(∫
R

f̂ (y)e2πiyIdσ (T ) dy

)

=
∫

R

f̂ (y)�
(
e2πiyIdσ (T )

)
dy =
∫

R

f̂ (y)e2πiyT dy,

where the last equation follows from Corollary 2.7.5, which implies �
(
e2πiyIdσ (T )

) =
e2πiy�(Idσ (T )) = e2πiT . �

Definition A self-adjoint operator T ∈ B(H ) is called positive if

〈T v, v〉 ≥ 0 ∀v ∈ H.

In what follows, we want to use the spectral theorem to compute a positive square
root for any positive operator T . For this we need to know that positive operators
have positive spectrum.

Theorem 5.1.3 Let T be a self-adjoint bounded operator on the Hilbert space H.
Then the following are equivalent:

(a) T is positive.

(b) The spectrum σ (T ) is contained in the interval [0,∞).

(c) There exists an operator R ∈ B(H ) with T = R∗R.

(d) There exists a unique positive operator S with T = S2. In this case we write
S = √

T .

Proof The implications (d) ⇒ (c) and (c) ⇒ (a) are trivial. So it is enough to show
that (a) ⇒ (b) and (b) ⇒ (d) hold.
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For (a)⇒ (b) assume without loss of generality that ‖T ‖ = 1. Then σ (T ) ⊆ [−1, 1]

since T is self-adjoint. We show that Tμ
def= T + μ1 is invertible for every μ > 0,

which will imply that there are no negative spectral values for T . By assumption we
have

‖Tμv‖‖v‖ ≥ 〈Tμv, v
〉 = 〈T v, v〉 + μ〈v, v〉 ≥ μ‖v‖2,

which implies that ‖Tμv‖ ≥ μ‖v‖ for every v ∈ H . It follows that Tμ is injective.
SinceTμ is self-adjoint we also get (Tμ(H ))⊥ = kerTμ = {0}, since if w ∈ (Tμ(H ))⊥,
then 0 = 〈Tμv, w

〉 = 〈v, Tμw
〉

for every v ∈ H , which implies that Tμw = 0. Thus
we get Tμ(H ) = H and for each w ∈ H we find a sequence vn in H with T vn → w.
Since ‖vn − vm‖ ≤ 1

μ
‖Tμvn − Tμvm‖ for all n,m ∈ N, it follows that (vn) is a

Cauchy-sequence and hence converges to some v ∈ H . Then Tμv = w, which shows
that Tμ is also surjective. The Open Mapping Theorem C.1.5 implies that T −1

μ is
continuous, so Tμ is invertible in B(H ).

Assume finally that (b) holds. Then t → √
t is a continuous function on σ (T ), and

by functional calculus we can build the operator S = √
T . Since

√· is real and
positive, it follows from Corollary 2.7.5 that S is self-adjoint, σ (S) ⊂ [0,∞), and
S2 = T . For uniqueness assume that S̃ is another such operator. Then T lies in the
commutative C∗-algebra C∗(S̃, 1). But then S ∈ C∗(T , 1) ⊆ C∗(S̃, 1) ∼= C(σ (S̃)),
and the result follows from the fact that a positive real function has a unique positive
square root. �

Definition Let T be a bounded operator on a Hilbert space H . Define the operator

|T | by |T | def=√
T ∗T , which exists and is well defined by the above theorem.

Proposition 5.1.4 Let T be a bounded operator on H. Then the norm of |T |v coin-
cides with ‖T v‖. There is an isometric operator U from the closure of Im(|T |) to the
closure of Im(T ) such that T = U |T |. This decomposition of T is called polar de-
composition. It is unique in the following sense. If T = U ′P , where P is self-adjoint
and positive, and U ′ : Im(P) → H is isometric, then U ′ = U and P = |T |.

Proof For v ∈ H the square of the norm ‖T v‖2 equals

〈T v, T v〉 = 〈T ∗T v, v
〉 = 〈|T |2v, v

〉 = 〈|T |v, |T |v〉,
and the latter is ‖|T |v‖2. For v ∈ H we define U (|T |v) = T v, then U is a well-
defined isometry from Im(|T |) to Im(T ), which extends to the closure, and satisfies
the claim. For the uniqueness let T = U |T | = U ′P . Extend U to a bounded operator
on H by setting U ≡ 0 on Im(|T |)⊥ and do likewise for U ′. Then U ∗U is the
orthogonal projection to Im(|T |) and (U ′)∗U ′ is the orthogonal projection to Im(P ),
so that (U ′)∗U ′P = P . Note |T | = √

T ∗T = √
(U ′P )∗U ′P = √

P ∗(U ′)∗U ′P =√
P ∗P = √

P 2 = P . This also implies U = U ′. �

An important application of the functional calculus for operators on Hilbert space is
Schur’s Lemma, which we shall use quite frequently in the remaining part of this
book. We first state
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Lemma 5.1.5 Let H be a Hilbert space, and let T be a bounded normal operator,
the spectrum of which consists of a single point {λ} ⊂ C. Then T = λId.

Proof If σ (T ) = {λ}, then Idσ (T ) = λ1σ (T ) and therefore T = Idσ (T )(T ) = λ ·
IdH . �

Theorem 5.1.6 (Schur’s Lemma) Suppose that A ⊆ B(H ) is a self-adjoint set of
bounded operators on the Hilbert space H (i.e., S ∈ A implies S∗ ∈ A). Then the
following are equivalent:

(a) A is topologically irreducible, i.e., if {0} 
= L ⊆ H is any A-invariant closed
subspace of H then L = H .

(b) If T ∈ B(H ) commutes with every S ∈ A, then T = μId for some μ ∈ C.

Proof Assume first that the second assertion holds. Then, if {0} 
= L ⊆ H is any
A-invariant closed subspace of H , the orthogonal complement L⊥ is A-invariant as
well, for with v ∈ L, u ∈ L⊥, and S ∈ A we have

〈v, Su〉 = 〈 S∗v︸︷︷︸
∈L

, u〉 = 0.

So the orthogonal projection PL : H → L commutes with A, so PL must be a
multiple of the identity. But this implies that PL = Id and L = H .

For the converse, assume that (a) holds, and let T ∈ B(H ) commute with A. Then
also T ∗ commutes with A since A is self-adjoint. Thus, writing T = 1

2 (T + T ∗) −
i 1

2 (iT − iT ∗) we may assume without loss of generality that T is self-adjoint and
T 
= 0. We want to show that the spectrum of T consists of a single point. Note
that an operator S, which commutes with T , also commutes with f (T ) for every
f ∈ C(σ (T )). Assume that there are x, y ∈ σ (T ) with x 
= y. Then there are two
functions f , g ∈ C(σ (T )) with f (x) 
= 0 
= g(y) and f · g = 0. Then f (T ) 
=
0 
= g(T ) and f (T )g(T ) = f · g(T ) = 0. Since g(T ) commutes with A, the space
L = g(T )H is a non-zero A-invariant subspace of H . By (a) we get L = H . But
then {0} 
= f (T )H = f (T )g(T )H ⊂ f (T )g(T )H = {0}, a contradiction. �

5.2 Compact Operators

An operator T on a Hilbert space H is called a compact operator if T maps bounded
sets to relatively compact ones. It is clear from the definition that if T is compact
and S a bounded operator on H , then ST and T S are compact. The definition can be
rephrased as follows. An operator T is compact if and only if for a given bounded
sequence vj ∈ H the sequence T vj has a convergent subsequence. If the vj lie in a
finite dimensional space, then this is true for every bounded operator. So one may
restrict to sequences vj that are linearly independent.
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Definition A bounded linear map F : H → H on a Hilbert space H is said to be a
finite rank operator if the image F (H ) is finite-dimensional.

Proposition 5.2.1 For a bounded operator T on a Hilbert space H the following are
equivalent.

(a) T is compact.

(b) For every orthonormal sequence ej the sequence T ej has a convergent
subsequence.

(c) There exists a sequence Fn of finite rank operators such that ‖T − Fn‖op tends
to zero, as n →∞.

Proof The implication (a)⇒(b) is trivial. For (b)⇒(c) let T : H → H be compact
and let B ⊂ H denote the closed unit ball. Then T (B) is compact, hence has a vector
v1 of maximal norm. Next suppose the vectors v1, . . . vn are already constructed and
letVn be their span. Choose a vector vn+1 of maximal norm in T (B)∩V ⊥

n . The vectors
v1, v2, . . . are pairwise orthogonal and for their norms we have ‖v1‖ ≥ ‖v2‖ ≥ . . . .
We claim that the sequence vn tends to zero. Assume not, then there exists δ > 0 such
that ‖vn‖ ≥ δ for all n. For i 
= j if follows ‖vi − vj‖2 = ‖vi‖2+‖vj‖2 ≥ 2δ2, hence
the sequence has no convergent subsequence, in contradiction to the compactness of
T (B). So the sequence does tend to zero. Let Pn be the orthogonal projection onto
Vn. Then

‖T − PnT ‖ = sup
v∈T (B)

‖v − Pnv‖ ≤ ‖vn‖ → 0.

So with Fn = PnT the claim follows.

For (c)⇒(a) let vj be a bounded sequence, and letT be the norm-limit of a sequence of
finite rank operatorsFn. We can assume ‖vj‖, ‖T ‖ ≤ 1. Then vj has a subsequence v1

j

such that F1(v1
j ) converges. Next, v1

j has a subsequence v2
j such that F2(v2

j ) converges,

and so on. Let wj = vj

j . Then for every n ∈ N, the sequence (Fn(wj ))j∈N converges.
As T is the uniform limit of the Fn, the sequence T wj converges as well. �

Theorem 5.2.2 (Spectral Theorem). Let T be a compact normal operator on the
Hilbert space H. Then there exists a sequenceλn of non-zero complex numbers, which
is either finite or tends to zero, such that one has an orthogonal decomposition

H = ker(T ) ⊕
⊕
n

Eig(T , λn).

Each eigenspace Eig(T , λn) = {v ∈ H : T v = λnv} is finite dimensional, and the
eigenspaces are pairwise orthogonal.

Proof We first show that a given compact normal operator T 
= 0 has an eigenvalue
λ 
= 0. We show that it suffices to assume that T is self-adjoint. Note that T =
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1
2 (T + T ∗)− i

2 (iT + (iT )∗) = T1 + iT2 is a linear combination of two commuting
compact self-adjoint operators. If T2 = 0, then T is self-adjoint and we are done.
Otherwise, T2 has a non-zero eigenvalue ν ∈ R�{0}. The corresponding eigenspace
is left stable by T1, which therefore induces a self-adjoint compact operator on that
space, hence has an eigenvalue μ ∈ R. Then λ = μ + iν is a non-zero eigenvalue
of T .

We have to show that a compact self-adjoint operator T 
= 0 has an eigenvalue λ 
= 0.

Lemma 5.2.3 For a bounded self-adjoint operator T on a Hilbert space H we have
‖T ‖ = sup{|〈T v, v〉| : ‖v‖ = 1}.

Proof Let C be the right hand side. By the Cauchy-Schwarz inequality we have
C ≤ ‖T ‖. On the other hand, for v, w ∈ H with ‖v‖, ‖w‖ ≤ 1 one has

C ≥ 1

2
C
(‖v‖2 + ‖w‖2

) = 1

4
C
(‖v + w‖2 + ‖v − w‖2

)

≥ 1

4
|〈T (v + w), v + w〉 − 〈T (v − w), v − w〉|

= 1

2
|〈T v, w〉 + 〈T w, v〉| = 1

2
|〈T v, w〉 + 〈w, T v〉|

= |Re〈T v, w〉|.
Replacing v with θv for some θ ∈ C with |θ | = 1 we get C ≥ |〈T v, w〉| for all
‖v‖, ‖w‖ ≤ 1 and so ‖T ‖ ≤ C. �

We continue the proof that a compact self-adjoint operator T 
= 0 has an eigenvalue
λ 
= 0. Indeed, we prove that either ‖T ‖ or −‖T ‖ is an eigenvalue for T . By the
lemma there is a sequence vj ∈ H with ‖vj‖ = 1 and

〈
T vj , vj

〉→±‖T ‖. Replacing
T with −T if necessary, we assume

〈
T vj , vj

〉 → ‖T ‖. Since T is compact, there
exists a norm-convergent subsequence, i.e., we can assume that T vj → u in norm.
Then ‖u‖ ≤ ‖T ‖ and we get

0 ≤ ‖T vj − ‖T ‖vj‖2 = ‖T vj‖2 − 2‖T ‖〈T vj , vj

〉+ ‖T ‖2‖vj‖2

→ ‖u‖2 − ‖T ‖2 ≤ 0,

which implies that ‖T vj − ‖T ‖vj‖ → 0. Thus v := limj vj = 1
‖T ‖u exists and

T v = limj T vj = u = ‖T ‖v.

We have proven that every compact normal operator T has an eigenvalue λ 
= 0. Let
U ⊂ V be the closure of the sum of all eigenspaces of T corresponding to non-zero
eigenvalues. By Lemma C.3.3 every eigenvector for T is also an eigenvector for T ∗,
so U is stable under T and T ∗ and hence the orthogonal complement U⊥ is stable
under T and T ∗ as well. The operator T induces a compact normal operator on U⊥;
as this operator cannot have a non-zero eigenvalue, it is zero and U⊥ is the kernel of
T . We have shown that H is a direct sum of eigenspaces of T .
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It remains to show that every eigenspace for a non-zero eigenvalue is finite dimen-
sional and that the eigenvalues do not accumulate away from zero. For this let f be
a continuous function on C whose zero set is the closed ε-neighborhood B̄ε(λ) of
a given λ ∈ C, where 0 < ε < |λ|. Let V be the kernel of f (T ). By Proposition
5.1.1, the space V is stable under T and T ∗, and σ (T |V ) ⊂ B̄ε(λ). It follows from
Functional Calculus that ‖T − λ‖V = ‖Idσ (T |V ) − λ1σ (T |V )‖σ (T |V ) ≤ ε, which im-
plies that for v ∈ V one has ‖T v‖ ≥ (|λ| − ε)‖v‖. We want to deduce that V is finite
dimensional. Assume the contrary, so there exists an orthonormal sequence (fj )j∈N

in V . Then ‖fi − fj‖ =
√

2 for i 
= j and so ‖Tfj − Tfi‖ ≥ (|λ| − ε)
√

2, which
means that no subsequence of (Tfj ) is a Cauchy sequence, hence (Tfj ) does not
contain a convergent subsequence, a contradiction to the compactness of T . So V

is finite dimensional, hence it is a direct orthogonal sum of T -eigenspaces. It now
follows that no spectral values of T can accumulate away from zero, and all spectral
values apart from zero are eigenvalues of finite multiplicity. Finally, the fact that the
eigenspaces are pairwise orthogonal is in Lemma C.3.3. The theorem is proven. �

Definition Let T be a compact operator on a Hilbert space H . Then T ∗T is a self-
adjoint compact operator with positive eigenvalues. The operator |T | = √

T ∗T also
is a compact operator. Let sj (T ) be the family of non-zero eigenvalues of |T | repeated
with multiplicities and such that sj+1(T ) ≤ sj (T ) for all j . These sj (T ) are called
the singular values of T .

Proposition 5.2.4 Let T be a compact operator.

(a) We have s1(T ) = ‖T ‖ and

sj+1(T ) = inf
v1,...,vj∈H

sup{‖T w‖ : w ⊥ v1, . . . , vj , ‖w‖ = 1},

where the vectors v1, . . . , vj are unit eigenvectors for the eigenvalues
s1(T ), . . . , sj (T ), respectively.

(b) For any bounded operator S on H one has sj (ST ) ≤ ‖S‖sj (T ).

Proof The formulas in (a) follow from the fact that the sj are the eigenvalues of
the self-adjoint operator |T | and ‖T ‖ = ‖|T |‖. Part (b) is a consequence of (a). We
leave the details as an exercise (See Exercise 5.4). �

5.3 Hilbert-Schmidt and Trace Class

Let T ∈ B(H ), and let (ej ) be an orthonormal basis of H . The Hilbert-Schmidt norm
‖T ‖HS of T is defined by

‖T ‖2
HS

def=
∑
j

〈
T ej , T ej

〉
.
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This number is≥ 0 but can be+∞. It does not depend on the choice of the orthonor-
mal basis, as we will prove now. Along the way we also show that ‖T ‖HS = ‖T ∗‖HS

holds for every bounded operator T . First recall that for any two vectors v, w ∈ H

and any orthonormal basis (ej ) one has

〈v, w〉 =
∑
j

〈
v, ej
〉〈
ej , w
〉
.

Let now (φα) be another orthonormal basis; then, not knowing the independence yet,
we write ‖T ‖2

HS(ei) and ‖T ‖2
HS(φα), respectively. We compute

‖T ‖2
HS(ej ) =

∑
j

∑
α

〈
T ej ,φα

〉〈
φα , T ej

〉 =∑
j

∑
α

〈
ej , T ∗φα

〉〈
T ∗φα , ej

〉

=
∑
α

∑
j

〈
ej , T ∗φα

〉〈
T ∗φα , ej

〉 = ‖T ∗‖2
HS(φα).

The interchange of summation order is justified by the fact that all summands are
positive. Applying this to (ej ) = (φα) first and then to T ∗ instead of T we get
‖T ‖2

HS(ej ) = ‖T ∗‖2
HS(ej ) = ‖T ‖2

HS(φα), as claimed.

We say that the operator T is a Hilbert-Schmidt operator if the Hilbert-Schmidt norm
‖T ‖HS is finite.

Lemma 5.3.1 For any two bounded operators S,T on H one has ‖ST ‖HS ≤
‖S‖op‖T ‖HS , and ‖ST ‖HS ≤ ‖S‖HS‖T ‖op, as well as ‖T ‖op ≤ ‖T ‖HS. For every
unitary operator U we have ‖UT ‖HS = ‖T U‖HS = ‖T ‖HS .

Proof Let (ej ) be an orthonormal basis. We have ‖ST ‖2
HS = ∑j ‖ST ej‖2 ≤

‖S‖2
op

∑
j ‖T ej‖2, which implies the first estimate. The second follows by using

‖T ‖HS = ‖T ∗‖HS and the same assertion for the operator norm.

Let v ∈ H with ‖v‖ = 1. Then there is an orthonormal basis (ej ) with e1 = v. We get
‖T v‖2 = ‖T e1‖2 ≤ ∑j ‖T ej‖2 = ‖T ‖2

HS. The invariance under multiplication by
unitary operators is clear, since (Uej ) is an orthonormal basis when (ej ) is. �

Example 5.3.2 The main example we are interested in is the following. For a mea-
sure space (X, A,μ) consider the Hilbert space L2(X). Assume that μ is either
σ -finite or that X is locally compact and μ is an outer Radon measure, so that
Fubini’s Theorem holds with respect to the product measure μ⊗ μ on L2(X ×X).
Let k be a function in L2(X ×X). Then we call k an L2-kernel.

Proposition 5.3.3 Suppose k(x, y) is an L2-kernel on X. For φ ∈ L2(X) define

Kφ(x)
def=
∫
X

k(x, y)φ(y) dμ(y).
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Then this integral exists almost everywhere in x. The function Kφ lies in L2(X), and
K extends to a Hilbert-Schmidt operator K : L2(X) → L2(X) with

‖K‖2
HS =
∫
X

∫
X

|k(x, y)|2 dμ(x) dμ(y).

Proof To see that the integral exists for almost all x ∈ X let ψ be any element
in L2(X). Then (x, y) �→ ψ(x)φ(y) lies in L2(X × X), and therefore the function
(x, y) → k(x, y)φ(y)ψ(x) is integrable over X ×X. By Fubini, it follows that

∫
X

ψ(x)k(x, y)φ(y) dy = ψ(x)
∫
X

k(x, y)φ(y) dy

exists for almost all x ∈ X. Since k(x, y) vanishes for every x outside some σ -
finite subset A of X, we may let ψ run through the characteristic functions of an
increasing sequence of finite measurable sets that exhaust A, to conclude that the
integral

∫
X
k(x, y)φ(y) dy exists for almost all x ∈ X.

We use the Cauchy-Schwarz inequality to estimate

‖Kφ‖2 =
∫
X

|Kφ(x)|2 dx

=
∫
X

∣∣∣∣
∫
X

k(x, y)φ(y) dy

∣∣∣∣
2

dx

≤
∫
X

∫
X

|k(x, y)|2 dx dy

∫
X

|φ(y)|2 dy

=
∫
X

∫
X

|k(x, y)|2 dx dy ‖φ‖2.

So K extends to a bounded operator on L2(X). Let (ej ) be an orthonormal basis of
L2(X). Then

‖K‖2
HS =
∑
j

〈
Kej ,Kej

〉 =∑
j

∫
X

Kej (x)Kej (x) dx

=
∑
j

∫
X

∫
X

k(x, y)ej (y) dy
∫
X

k(x, y)ej (y) dy dx

=
∑
j

∫
X

〈
k(x, .), ej

〉〈
ej , k(x, .)

〉
dx

=
∫
X

∑
j

〈
k(x, .), ej

〉〈
ej , k(x, .)

〉
dx

=
∫
X

〈k(x, .), k(x, .)〉 dx =
∫
X

∫
X

|k(x, y)|2 dx dy. �
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Proposition 5.3.4 The operator T is Hilbert-Schmidt if and only if it is compact
and its singular values satisfy

∑
j sj (T )2 < ∞. Indeed, then one has

∑
j sj (T )2 =

‖T ‖2
HS.

Proof We show that a bounded operator T is Hilbert-Schmidt if and only if |T | =√
T ∗T is. This follows from

∑
j

〈
T ej , T ej

〉 =∑
j

〈
T ∗T ej , ej

〉 =∑
j

〈|T |2ej , ej
〉

=
∑
j

〈|T |ej , |T |ej
〉
.

Let T be Hilbert-Schmidt. To see that T is compact, it suffices to show that if ej is an
orthonormal sequence, then T ej has a convergent subsequence. But indeed, extend
ej to an orthonormal basis, then the Hilbert-Schmidt criterion shows that T ej tends to
zero. So T is compact. The operator |T | is Hilbert-Schmidt if and only if

∑
j sj (T )2

converges, as one sees by applying the Hilbert-Schmidt criterion to an orthonormal
basis consisting of eigenvectors of |T |. Finally, it is clear that

∑
j sj (T )2 = ‖|T |‖2

HS,
but by the above computation the latter equals ‖T ‖2

HS. �

A compact operator T is called a trace class operator if the trace norm,

‖T ‖ tr
def=
∑
j

sj (T ),

is finite. It follows that every trace class operator is also Hilbert-Schmidt.

Lemma 5.3.5 Let T be a trace class operator and S a bounded operator.

(a) The norms ‖ST ‖ tr , ‖T S‖ tr are both ≤ ‖S‖‖T ‖ tr .

(b) Let T be a compact operator on H. One has

‖T ‖ tr = sup
(ei ),(hi )

∑
i

|〈T ei ,hi〉|,

where the supremum runs over all orthonormal bases (ei) and (hi).

Proof The inequality ‖ST ‖ tr ≤ ‖S‖‖T ‖ tr is a consequence of Proposition 5.2.4
(b). The other follows from ‖T ‖ = ‖T ∗‖ and the same for the trace norm.

For the second part we use the Spectral Theorem for compact operators to find an
orthonormal sequence (fj ) such that

|T |v =
∑
j

sj
〈
v, fj

〉
fj .
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We then write T = U |T |, where U is an isometric operator on the image of |T | to
get

T v = U
∑
j

sj
〈
v, fj

〉
fj =
∑
j

sj
〈
v, fj

〉
gj ,

where (gj ) is the orthonormal sequencegj = Ufj . Therefore, we can use the Cauchy-
Schwarz inequality to get for any two orthonormal bases e,h,

∑
i

|〈T ei ,hi〉| =
∑
i

∣∣∣∣∣∣
∑
j

sj
〈
ei , fj

〉〈
gj ,hi

〉
∣∣∣∣∣∣

≤
∑
j

sj
∑
i

∣∣〈ei , fj

〉〈
gj ,hi

〉∣∣

≤
∑
j

sj

(∑
i

∣∣〈ei , fj

〉∣∣2
) 1

2
(∑

i

∣∣〈gj ,hi

〉∣∣2
) 1

2

=
∑
j

sj‖fj‖‖gj‖ =
∑
j

sj .

This implies the ≥ part of the claim. The other part is obtained by taking e

to be any orthonormal basis that prolongs the orthonormal sequence f and h

any orthonormal basis that prolongs the orthonormal sequence g, because then∑
i |〈T ei ,hi〉| =∑j sj . �

Theorem 5.3.6 For a trace class operator T the trace

tr (T )
def=
∑
j

〈
T ej , ej

〉

does not depend on the choice of an orthonormal base (ej ). If T is trace class
and normal, we have tr (T ) = ∑n λndim Eig(T , λn), where the sum runs over the
sequence of non-zero eigenvalues (λn) of T. The sum converges absolutely.

Proof Let T = U |T | be the polar decomposition of T . It follows from the Spectral
Theorem that the image of the operator S2 = √|T | equals the image of |T | and
therefore we can define the operator S1 = U

√|T |. The operators S1, S2 and S∗1 are
Hilbert-Schmidt operators, andT = S1S2. Therefore

∑
i 〈T ei , ei〉 =∑i

〈
S2ei , S∗1ei

〉
,

and the latter does not depend on the choice of the orthonormal basis as can be seen
in a similar way as in the beginning of this section. Choose a basis of eigenvectors
to prove the second statement. �

Theorem 5.3.7 Let H be a Hilbert space, F the space of bounded operators T of
finite rank (i.e., finite dimensional image), T the set of trace class operators, HS
the set of Hilbert-Schmidt operators, and K the set of compact operators. Further,
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we write HS2 for the linear span of all opertors of the form ST , where S and T are
both in HS.

(a) The spaces F , T , HS and K are ideals in the algebra B(H ), which are stable
under ∗.

(b) The space K is the norm closure of F .

(c) One has

F ⊂ T = HS2 ⊂ HS ⊂ K,

where the inclusions are strict if dim(H ) = ∞.

Proof (a) The *-ideal property is clear for F and K. The space T is an ideal
by Lemma 5.3.5 and HS by Lemma 5.3.1. Part (b) of the theorem is contained in
Proposition 5.2.1. The first inclusion of (c) is clear. LetT be in T and writeT = U |T |
as in Proposition 5.1.4. With S = √|T | one has T = (US)S and by Proposition
5.3.4, the operators S and US are in HS, so T ∈ HS2. If S ∈ HS, then by definition
S∗S ∈ T and by polarization we find HS2 ⊂ T . The remaining inclusions are clear
and we leave the strictness as an exercise. �

5.4 Exercises

Exercise 5.1 Let A and B be bounded operators on a Hilbert space H . Show that
AB − BA 
= Id, where Id is the identity operator.

(Hint: Assume the contrary and show that ABn − BnA = nBn−1 holds for every
n ∈ N. Then take norms.)

Exercise 5.2 Let H be a Hilbert space, and let T ∈ B(H ) be a normal operator.
Show that the map ψ : t �→ exp (tT ) satisfies ψ(t + s) = ψ(t)ψ(s), that it is
differentiable as a map from R to the Banach space B(H ), which satisfies ψ(0) = Id
and ψ ′(t) = T ψ(t).

Exercise 5.3 Show that for a bounded operator T on a Hilbert space H the following
are equivalent:

• T is compact,

• T ∗T is compact,

• T ∗ is compact.

Exercise 5.4 Check the details of the proof of Proposition 5.2.4.
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Exercise 5.5 Show that a continuous invertible operator T on a Hilbert space H can
only be compact if H is finite dimensional.

Exercise 5.6 Show that T ∈ B(H ) for a Hilbert space H is compact if and only if
the image of the closed unit ball is compact (as opposed to relatively compact).

Exercise 5.7 Let H be a Hilbert space.

(a) Show that for a trace class operator T on H one has tr (T ∗) = tr (T ).

(b) Show that for two Hilbert-Schmidt operators S, T on H one has

tr (ST ) = tr (T S).

Exercise 5.8 Let H be the real Hilbert space �2(N, R) and let (ej )j∈N be the standard
orthonormal basis. Define a linear operator T on H by

T (ej ) = ( − 1)j+1

j
ej+(−1)j+1 .

Show that for every orthonormal basis (fn) of H one has

∑
n

|〈Tfn, fn〉| ≤
∞∑
j=1

1

2j (2j − 1)
.

Exercise 5.9 Show that the set HS(V ) of Hilbert-Schmidt operators on a given
Hilbert space V becomes a Hilbert space with the inner product 〈S, T 〉 = tr (ST ∗).
Show that the map ψ : V ⊗̂V ′ → HS(V ) given by ψ(v ⊗ α)(w) = α(w)v defines a
Hilbert space isomorphism (Compare Appendix C.3 for the notation).

Exercise 5.10 Let H be a Hilbert space. For p > 0 let Sp(H ) be the set of all
compact operators T on H such that

‖T ‖p def=
⎛
⎝∑

j

sj (T )p

⎞
⎠

1
p

< ∞.

Show that Sp(H ) is a vector space. It is called the p-th Schatten class.

Exercise 5.11 Let H be a Hilbert space. An operator T ∈ B(H ) is called nilpotent
if T k = 0 for some k ∈ N. Show that if T is nilpotent, then σ (T ) = {0}. Show also
that the converse is not generally true.

Exercise 5.12 Let H be a Hilbert space. Show that an operator T is invertible in
B(H ) if and only if |T | is invertible.
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Exercise 5.13 Let H be a Hilbert space, T ∈ B(H ) invertible. Let T = U |T | be
the polar decomposition. Show that T is normal if and only if U |T | = |T |U .

Exercise 5.14 Let G = SLn(R), and let H be the subgroup of upper triangular
matrices in G. Let K = SO(n). Show that G = HK .

(Hint: For g ∈ G apply the spectral theorem to the positive definite matrix gtg.)



Chapter 6

Representations

In this chapter we introduce the basic concepts of representation theory of locally
compact groups. Classically, a representation of a group G is an injective group
homomorphism from G to some GLn(C), the idea being that the “abstract” group G

is “represented” as a matrix group.

In order to understand a locally compact group, it is necessary to consider its actions
on possibly infinite dimensional spaces like L2(G). For this reason, one considers
infinite dimensional representations as well.

6.1 Schur’s Lemma

For a Banach space V , let GLcont(V ) be the set of bijective bounded linear operators
T on V . It follows from the Open Mapping Theorem C.1.5 that the inverses of such
operators are bounded as well, so that GLcont(V ) is a group. Let G be a topological
group. A representation of G on a Banach space V is a group homomorphism of
G to the group GLcont(V ), such that the resulting map G × V → V , given by
(g, v) �→ π (g)v, is continuous.

Lemma 6.1.1 Let π be a group homomorphism of the topological group G to
GLcont(V ) for a Banach space V. Then π is a representation if and only if

(a) the map g �→ π (g)v is continuous at g = 1 for every v ∈ V , and

(b) the map g �→ ‖π (g)‖op is bounded in a neighborhood of the unit in G.

Proof Suppose π is a representation. Then (a) is obvious. For (b) note that for
every neighborhood Z of zero in V there exists a neighborhood Y of zero in V and
a neighborhood U of the unit in G such that π (U )Y ⊂ Z. This proves (b). For the
converse direction write

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 123
DOI 10.1007/978-3-319-05792-7_6, © Springer International Publishing Switzerland 2014
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‖π (g)v − π (g0)v0‖ ≤ ‖π (g0)‖op‖π (g−1
0 g)v − v0‖

≤ ‖π (g0)‖op‖π (g−1
0 g)(v − v0)‖

+ ‖π (g0)‖op‖π (g−1
0 g)v0 − v0‖

≤ ‖π (g0)‖op‖π (g−1
0 g)‖op‖v − v0‖

+ ‖π (g0)‖op‖π (g−1
0 g)v0 − v0‖.

Under the assumptions given, both terms on the right are small if g is close to g0,
and v is close to v0. �

Examples 6.1.2

• For a continuous group homomorphism χ : G → C
× define a representation πχ

on V = C by πχ (g)v = χ (g) · v.

• Let G = SL2(R) be the group of real 2 × 2 matrices of determinant one. This
group has a natural representation on C

2 given by matrix multiplication.

Definition Let V be a Hilbert space. A representation π on V is called a uni-
tary representation if π (g) is unitary for every g ∈ G. That means π is unitary if
〈π (g)v,π (g)w〉 = 〈v, w〉 holds for every g ∈ G and all v, w ∈ V .

Lemma 6.1.3 A representation π of the group G on a Hilbert space V is unitary if
and only if π (g−1) = π (g)∗ holds for every g ∈ G.

Proof An operator T is unitary if and only if it is invertible and T ∗ = T −1. For a
representation π and g ∈ G the operator π (g) is invertible and satisfies π (g−1) =
π (g)−1. So π is unitary if and only if for every g ∈ G one has π (g−1) = π (g)−1 =
π (g)∗. �

Examples 6.1.4

• The representation πχ defined by a continuous group homomorphism χ : G →
C
× is unitary if and only if χ maps into the compact torus T.

• Let G be a locally compact group. On the Hilbert space L2(G) consider the left
regular representation x �→ Lx with

Lxφ(y) = φ(x−1y), φ ∈ L2(G).

This representation is unitary, as by the left invariance of the Haar measure,
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〈Lxφ,Lx ,ψ〉 =
∫
G

Lxφ(y)Lxψ(y) dy

=
∫
G

φ(x−1y)ψ(x−1y) dy

=
∫
G

φ(y)ψ(y) dy = 〈φ,ψ〉.

Definition Let (π1,V1) and (π2,V2) be two unitary representations. On the direct
sumV = V1⊕V2 one has the direct sum representationπ = π1⊕π2. More generally,
if {πi : i ∈ I } is a family of unitary representations acting on the Hilbert spaces Vi ,
we write

⊕
i∈I πi for the direct sum of the representations πi , i ∈ I on the Hilbert

space
⊕̂

i∈IVi . See also Exercise 6.3 and appendix C.3.

Example 6.1.5 Let G = R/Z, and let V = L2(R/Z). Let π be the left regular
representation. By the Plancherel Theorem, the elements of the dual group Ĝ =
{ek : k ∈ Z} with ek([x]) = e2πikx form an orthonormal basis of L2(R/Z) so that π
is a direct sum representation on V = ⊕̂k∈Z

Cek , where ek(x) = e2πikx and G acts
on Cek through the character ēk .

Definition A representation (π ,Vπ ) is called a subrepresentation of a representation
(η,Vη) if Vπ is a closed subspace of Vη and π equals η restricted to Vπ . So every
closed subspace U ⊂ Vη that is stable under η, i.e., η(G)U ⊂ U , gives rise to a
subrepresentation.

A representation is called irreducible if it does not possess any proper subrepresenta-
tion, i.e., if for every closed subspace U ⊂ Vπ that is stable under π , one has U = 0
or U = Vπ .

Example 6.1.6. Let U(n) denote the group of unitary n× n matrices, so the group
of all u ∈ Mn(C) such that uu∗ = I (unit matrix), where u∗ = ūt . The natural
representation of U(n) on C

n is irreducible (See Exercise 6.5).

Definition Let (π ,Vπ ) be a representation of G. A vector v ∈ Vπ is called a cyclic
vector if the linear span of the set {π (x)v : x ∈ G} is dense in Vπ . In other words, v
is cyclic if the only subrepresentation containing v is the whole of π . It follows that
a representation is irreducible if and only if every nonzero vector is cyclic.

Lemma 6.1.7 (Schur) Let (π ,Vπ ) be a unitary representation of the topological
group G. Then the following are equivalent

(a) (π ,Vπ ) is irreducible.

(b) If T is a bounded operator on Vπ such that T π (g) = π (g)T for every g ∈ G,
then T ∈ C Id.
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Proof Since π (g−1) = π (g)∗, the set {π (g) : g ∈ G} is a self-adjoint subset of
B(Vπ ). Thus the result follows from Theorem 5.1.6. �

Let (π ,Vπ ), (η,Vη) be representations of G. A continuous linear operator T : Vπ →
Vη is called a G-homomorphism or intertwining operator if

T π (g) = η(g)T

holds for every g ∈ G. We write HomG(Vπ ,Vη) for the set of all G-homomorphisms
from Vπ to Vη. A nice way to rephrase the Lemma of Schur is to say that a unitary
representation (π ,Vπ ) is irreducible if and only if HomG(Vπ ,Vπ ) = C Id.

Definition If π , η are unitary, they are called unitarily equivalent if there exists a
unitary G-homomorphism T : Vπ → Vη.

Example 6.1.8. Let G = R, and let Vπ = Vη = L2(R). The representation π is
given by π (x)φ(y) = φ(x+y) and η is given by η(x)φ(y) = e2πixyφ(y). By Theorem
3.3.1 in [Dei05] (see also Exercise 6.4), the Fourier transform L2(R) → L2(R) is an
intertwining operator from π to η.

Corollary 6.1.9 Let (π ,Vπ ) and (η,Vη) be two irreducible unitary representations.
Then a G-homomorphism T from Vπ to Vη is either zero or invertible with continuous
inverse. In the latter case there exists a scalar c > 0 such that cT is unitary. The
space HomG(Vπ ,Vη) is zero unless π and η are unitarily equivalent, in which case
the space is of dimension 1.

Proof Let T : Vπ → Vη be a G-homomorphism. Its adjoint T ∗ : Vη → Vπ is also
a G-homomorphism as is seen by the following calculation for v ∈ Vπ , w ∈ Vη, and
g ∈ G, 〈

v, T ∗η(g)w
〉 = 〈T v, η(g)w〉 = 〈η(g−1)T v, w

〉
= 〈T π (g−1)v, w

〉 = 〈π (g−1)v, T ∗w
〉

= 〈v,π (g)T ∗w
〉
.

This implies that T ∗T is a G-homomorphism on Vπ , and therefore it is a multiple
of the identity λ Id by the Lemma of Schur. If T is non-zero, T ∗T is non-zero and
positive semi-definite, so λ > 0. Let c = √

λ−1, then (cT )∗(cT ) = Id. A similar
argument shows that T T ∗ is bijective, which then implies that cT is bijective, hence
unitary. The rest is clear. �

Definition For a locally compact group G we denote by Ĝ the set1 of all equivalence
classes of irreducible unitary representations of G. We call Ĝ the unitary dual of

1 There is a set-theoretic problem here, since it is not clear why the equivalence classes should form
a set. It is, however, not difficult to show that there exists a cardinality α, depending on G, such that
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G. It is quite common to make no notational difference between a given irreducible
representation π and its unitary equivalence class [π], and we will often do so in this
book.

Example 6.1.10 If G is a locally compact abelian group, then every irreducible
representation is one-dimensional, and therefore the unitary dual Ĝ coincides with
the Pontryagin dual of G. To see this, let (π ,Vπ ) be any irreducible representation
of G. Then π (x)π (y) = π (xy) = π (yx) = π (y)π (x) for all x, y ∈ G, so it follows
from Schur’s Lemma that π (x) = λ(x)IdVπ

for some λ(x) ∈ T. But this implies that
every non-zero closed subspace of Vπ is invariant, hence must be equal to Vπ . This
implies dimVπ = 1.

6.2 Representations of L1(G)

A unitary representation (π ,Vπ ) of G induces an algebra homomorphism from the
convolution algebra L1(G) to the algebra B(Vπ ), as the following proposition shows.

Proposition 6.2.1 Let (π ,Vπ ) be a unitary representation of the locally compact
group G. For every f ∈ L1(G) there exists a unique bounded operator π (f ) on Vπ

such that

〈π (f )v, w〉 =
∫
G

f (x)〈π (x)v, w〉 dx
holds for any two vectors v, w ∈ Vπ . The induced map π : L1(G) → B(Vπ ) is a
continuous homomorphism of Banach-*-algebras.

Proof Taking complex conjugates one sees that the claimed equation is equiv-
alent to the equality 〈w,π (f )v〉 = ∫

G
f (x)〈w,π (x)v〉 dx. The map w �→∫

G
f (x)〈w,π (x)v〉 dx is linear. It is also bounded, since∣∣∣∣

∫
G

f (x)〈w,π (x)v〉 dx
∣∣∣∣ ≤
∫
G

|f (x)〈w,π (x)v〉| dx

≤
∫
G

|f (x)|‖w‖‖π (x)v‖ dx

= ‖f ‖1‖w‖v‖.

every irreducible unitary representation (π ,Vπ ) of G satisfies dimVπ ≤ α. This means that one can
fix a Hilbert space H of dimension α and each irreducible unitary representation π can be realized
on a subspace of H . Setting the representation equal to 1 on the orthogonal complement one gets
a representation on H , i.e., a group homomorphism G → GL(H ). Indeed, since every irreducible
representation has a cyclic vector by Schur’s lemma, one can choose α as the cardinality of G.
Therefore, each equivalence class has a representative in the set of all maps from G to GL(H ) and
so Ĝ forms a set.
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Therefore, by Proposition C.3.1, there exists a unique vector π (f )v ∈ Vπ such
that the equality holds. It is easy to see that the map v �→ π (f )v is linear. To
see that it is bounded, note that the above shows ‖π (f )v‖2 = 〈π (f )v,π (f )v〉 ≤
‖f ‖1‖v‖‖π (f )v‖, and hence ‖π (f )v‖ ≤ ‖f ‖1‖v‖. A straightforward computation
finally shows π (f ∗ g) = π (f )π (g) and π (f )∗ = π (f ∗) for f , g ∈ L1(G). �

Alternatively, one can define π (f ) as the Bochner integral π (f ) = ∫
G
f (x)π (x) dx

in the Banach space B(Vπ ). By the uniqueness in the above proposition, these two
definitions agree.

The above proposition has a converse, as we shall see in Proposition 6.2.3 below.

Lemma 6.2.2 Let (π ,Vπ ) be a representation of G. Then for every v ∈ Vπ and every
ε > 0 there exists a unit-neighborhood U such that for every Dirac function φU with
support in U one has ‖π (φU )v − v‖ < ε. In particular, for every Dirac net (φU )U
the net (π (φU )v) converges to v in the norm topology.

Proof The norm ‖π (φU )v − v‖ equals ‖∫
G
φU (x)(π (x)v − v) dx‖ and is therefore

less than or equal to
∫
G
φU (x)‖π (x)v − v‖ dx. For given ε > 0 there exists a unit-

neighborhood U0 in G such that for x ∈ U0 one has ‖π (x)v − v‖ < ε. For U ⊂ U0

it follows ‖π (φU )v − v‖ < ε. �

Definition We say that a ∗-representation π : L1(G) → B(V ) of L1(G) on a Hilbert
space V is non-degenerate if the vector space

π (L1(G))V
def= span{π (f )v : f ∈ L1(G), v ∈ V }

is dense in V . It follows from the above lemma that every representation of L1(G)
that comes from a representation (π ,Vπ ) as in Proposition 6.2.1, is non-degenerate.
The next proposition gives a converse to this.

Proposition 6.2.3 Let π : L1(G) → B(V ) be a non-degenerate ∗- representation
on a Hilbert space V. Then there exists a unique unitary representation (π̃ ,V ) of
G such that 〈π (f )v, w〉 = ∫

G
f (x)〈π̃ (x)v, w〉 dx holds for all f ∈ L1(G) and all

v, w ∈ V .

Proof Note first that π is continuous by Lemma 2.7.1. We want to define an
operator π̃ (x) on the dense subspace π (L1(G))V of V . This space is made up
of sums of the form

∑n
i=1 π (fi)vi for fi ∈ L1(G) and vi ∈ V . We propose to

define π̃ (x)
∑n

i=1 π (fi)vi
def=∑n

i=1 π (Lxfi)vi . We have to show well-definedness,
which amounts to show that if

∑n
i=1 π (fi)vi = 0, then

∑n
i=1 π (Lxfi)vi = 0

for every x ∈ G. For x ∈ G and f, g ∈ L1(G) a short computation shows
that g∗ ∗ (Lxf ) = (Lx−1g)∗ ∗ f . Based on this, we compute for v, w ∈ V and
f1, . . . , fn ∈ L1(G),
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〈
n∑

i=1

π (Lxfi)v,π (g)w

〉
=

n∑
i=1

〈
π(g∗ ∗ (Lxfi))v, w

〉

=
n∑

i=1

〈
π ((Lx−1g)∗ ∗ fi)v, w

〉 =
〈

n∑
i=1

π (fi)v,π (Lx−1g)w

〉
.

Now for the well-definedness of π̃ (x) assume
∑n

i=1 π (fi)vi = 0, then the above
computation shows that the vector

∑n
i=1 π (Lxfi)vi is orthogonal to all vectors of the

formπ (g)w, which span the dense subspaceπ (L1(G))V , hence
∑n

i=1 π (Lxfi)vi = 0
follows. The computation also shows that this, now well-defined operator π̃ (x) is
unitary on the space π (L1(G))V and since the latter is dense in V , the operator π̃ (x)
extends to a unique unitary operator on V with inverse π̃ (x−1), and we clearly have
π̃ (xy) = π̃ (x)π̃ (y) for all x, y ∈ G. Since for each f ∈ L1(G) the map G → L1(G)
sending x to Lxf is continuous by Lemma 1.4.2, it follows that x �→ π̃ (x)v is
continuous for every v ∈ V . Thus (π̃ ,V ) is a unitary representation of G.

It remains to show that π (f ) equals π̃ (f ) for every f ∈ L1(G). By continuity it
is enough to show that 〈π̃ (f )π (g)v, w〉 = 〈π (f )π (g)v, w〉 for all f, g ∈ Cc(G) and
v, w ∈ V . Since g �→ 〈π (g)v, w〉 is a continuous linear functional on L1(G) we can
use Lemma B.6.5 to get

〈π̃ (f )π (g)v, w〉 =
∫
G

f (x)〈π̃ (x)(π (g)v), w〉 dx

=
∫
G

〈π (f (x)Lxg)v, w〉 dx

=
〈
π

(∫
G

f (x)Lxg dx

)
v, w

〉

= 〈π (f ∗ g)v, w〉 = 〈π (f )π (g)v, w〉,
which completes the proof. �

Remark 6.2.4 If we define unitary equivalence and irreducibility for representa-
tions of L1(G) in the same way as we did for unitary representations of G, then it
is easy to see that the one-to-one correspondence between unitary representations of
G and non-degenerate ∗-representations of L1(G) preserves unitary equivalence and
irreducibility in both directions. Note that an irreducible representation π of L1(G) is
automatically non-degenerate, since the closure of π (L1(G))Vπ is an invariant sub-
space of Vπ . Thus, we obtain a bijection between the space Ĝ of equivalence classes
of irreducible representations ofG and the setL1(G)̂ of irreducible ∗-representations
of L1(G).

Example 6.2.5 Consider the left regular representation on G. Then the correspond-
ing representation L : L1(G) → B(L2(G)) is given by the convolution operators
L(f )φ = f ∗ φ whenever the convolution f ∗ φ makes sense.
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6.3 Exercises

Exercise 6.1 Let G be a topological group and let V be a Banach space. We equip
the group GLcont(V ) with the topology induced by the operator norm. Show that any
continuous group homomorphism G → GLcont(V ) is a representation but that not
every representation is of this form.

Exercise 6.2 If π is a unitary representation of the locally compact group G, then
‖π (g)‖ = 1. Give an example of a representation π , for which the map g �→ ‖π (g)‖
is not bounded on G.

Exercise 6.3 Let I be an index set, and for i ∈ I let (πi ,Vi) be a unitary represen-
tation of the locally compact group G. Let V =⊕i∈I Vi be the Hilbert direct sum
(See Appendix C.3). Define the map π : G → B(V ) by

π (g)
∑
i

vi =
∑
i

πi(g)vi .

Show that this is a unitary representation of the group G. It is called the direct sum
representation.

Exercise 6.4 Show that the Fourier transform on R induces a unitary equivalence
between the the unitary representations π and η of R on L2(R) given by π (x)φ(y) =
φ(x + y) and η(x)φ(y) = e2πixyφ(y).

Exercise 6.5 Show that the natural representation of U(n) on C
n is irreducible.

Exercise 6.6 (a) For t ∈ R let A(t) = ( 1 t
0 1

)
. Show that A(t) is not conjugate to a

unitary matrix for t 
= 0.

(b) Let P be the group of upper triangular matrices in SL2(R). The injection η :
P ↪→ GL2(C) can be viewed as a representation on V = C

2. Show that η is not the
sum of irreducible representations. Determine all irreducible subrepresentations.

Exercise 6.7 LetG be a locally compact group andH a closed subgroup. Let (π ,Vπ )
be an irreducible unitary representation of G, and let

V H
π = {v ∈ Vπ : π (h)v = v ∀h ∈ H }

be the space of H -fixed vectors. Show: If H is normal in G, then V H
π is either zero

or the whole space Vπ .

Exercise 6.8 Show that G = SL2(R) has no finite dimensional unitary representa-
tions except the trivial one.
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Instructions:

• For m ∈ N show(
m

m−1

)
A(t)

(
m

m−1

)−1

= A(m2t) = A(t)m
2
.

Let φ : G → U(n) be a representation. Show that the eigenvalues of φ(A(t))
are a permutation of their m-th powers for every m ∈ N. Conclude that they
all must be equal to 1.

• Show that the normal subgroup of G generated by {A(t) : t ∈ R} is the whole
group.

Exercise 6.9 Let (π ,Vπ ) be a unitary representation of the locally compact group
G. Let f ∈ L1(G). Show that the Bochner integral∫

G

f (x)π (x) dx ∈ B(Vπ )

exists and that the so defined operator coincides with π (f ) as defined in Proposition
6.2.1.

(Hint: Use Corollary 1.3.6 (d) and Lemma B.6.2 as well as Proposition B.6.3.)

Exercise 6.10 In Lemma 6.2.2 we have shown that for a representation π and Dirac
functions φU the numbers ‖π (φU )v − v‖ become arbitrarily small for fixed v ∈ Vπ .
Give an example, in which ‖π (φU ) − Id‖op does not become small as the support of
the Dirac function φU shrinks.

Exercise 6.11 Give an example of a representation that possesses cyclic vectors
without being irreducible.

Notes

As for abelian groups, one can associate to each locally compact group G the group
C∗-algebra C∗(G). It is defined as the completion of L1(G) with respect to the norm

‖f ‖C∗
def= sup{‖π (f )‖ : π a unitary representation of G},

which is finite since ‖π (f )‖ ≤ ‖f ‖1 for every unitary representation π of G. By def-
inition of the norm, every unitary representation π of G extends to a ∗-representation
of C∗(G), and, as for L1(G), this extension provides a one-to-one correspondence
between the unitary representation of G to the non-degenerate ∗-representations of
C∗(G). Therefore, the rich representation theory of generalC∗-algebras, as explained
beautifully in Dixmier’s classic book [Dix96] can be used for the study of unitary
representations of G. For a more recent treatment of C∗-algebras related to locally
compact groups we also refer to Dana William’s book [Wil07].



Chapter 7

Compact Groups

In this chapter we will show that every unitary representation of a compact group
is a direct sum of irreducibles, and that every irreducible unitary representation is
finite dimensional. We further prove the Peter-Weyl theorem, which gives an explicit
decomposition of the regular representation of the compact group K on L2(K).

The term compact group will always mean a compact topological group, which is a
Hausdorff space.

7.1 Finite Dimensional Representations

Let K be a compact group, and let (τ ,Vτ ) be a finite dimensional representation, i.e.,
the complex vector space Vτ is finite dimensional.

Lemma 7.1.1 On the space Vτ , there exists an inner product, such that τ becomes a
unitary representation. If τ is irreducible, this inner product is uniquely determined
up to multiplication by a positive constant.

Proof Let (·, ·) be any inner product on Vτ . We define a new inner product 〈v, w〉 for
v, w ∈ Vτ to be equal to

∫
K

(τ (k)v, τ (k)w) dk, where we have used the normalized
Haar measure that gives K the measure 1. We have to show that this constitutes an
inner product. Linearity in the first argument and anti-symmetry are clear. For the
positive definiteness let v ∈ Vτ with 〈v, v〉 = 0, i.e.,

0 = 〈v, v〉 =
∫
K

(τ (k)v, τ (k)v) dk.

The function k �→ (τ (k)v, τ (k)v) is continuous and positive, hence, by Corollary
1.3.6, the function vanishes identically, so in particular, (v, v) = 0, which implies
v = 0 and 〈·, ·〉 is an inner product. With respect to this inner product the
representation τ is unitary, as for x ∈ K one has

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 133
DOI 10.1007/978-3-319-05792-7_7, © Springer International Publishing Switzerland 2014
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〈τ (x)v, τ (x)w〉 =
∫
K

(τ (k)τ (x)v, τ (k)τ (x)w) dk

=
∫
K

(τ (kx)v, τ (kx)w) dk

=
∫
K

(τ (k)v, τ (k)w) dk = 〈v, w〉,

as K is unimodular.

Finally, assume that τ is irreducible, let 〈·, ·〉1 and 〈·, ·〉2 be two inner products that
make τ unitary. Let (τ1,V1) and (τ2,V2) denote the representation (τ ,Vτ ) when
equipped with the inner products 〈·, ·〉1 and 〈·, ·〉2, respectively. Since Vτ is finite
dimensional, the identity Id : V1 → V2 is a bounded non-zero intertwining operator
for τ1 and τ2. By Corollary 6.1.9 there exists a number c > 0 such that c · Id is
unitary. But this implies that c2〈v, w〉2 = 〈v, w〉1 for all v, w ∈ Vτ . �

Proposition 7.1.2 A finite dimensional representation of a compact group is a direct
sum of irreducible representations.

Proof Let (τ ,V ) be a finite dimensional representation of the compact group K .
We want to show that τ is a direct sum of irreducibles. We proceed by induction on
the dimension of V . If this dimension is zero or one, there is nothing to show. So
assume the claim proven for all spaces of dimension smaller than dimV . By the last
lemma, we can assume that τ is a unitary representation. If τ is irreducible itself, we
are done. Otherwise, there is an invariant subspace U ⊂ V with 0 
= U 
= V . Let
W = U⊥ be the orthogonal complement to U in V , so that V = U ⊕W . We claim
that W is invariant as well. For this let k ∈ K and w ∈ W . Then for every u ∈ U ,

〈τ (k)w, u〉 = 〈w, τ
(
k−1
)
u︸ ︷︷ ︸

∈U

〉 = 0.

This implies that τ (k)w ∈ U⊥ = W , so W is indeed invariant. We conclude that
τ is the direct sum of the subrepresentations on U and W . As both spaces have
dimensions smaller than the one of V , the induction hypothesis shows that both are
direct sums of irreducibles, and so is V . �

Definition Let (τ ,Vτ ) be a finite dimensional representation of a compact group K .
The dual space

V ∗
τ = Hom(Vτ , C)

of all linear functionals α : Vτ → C carries a natural representation of K , the dual
representation τ ∗ defined by

τ ∗(x)α(v) = α
(
τ (x−1)v

)
.
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Suppose that Vτ is a Hilbert space. By the Riesz Representation Theorem for every
α ∈ V ∗

τ there exists a unique vector vα such that

α(w) = 〈w, vα〉
holds for every w ∈ Vτ . One instals a Hilbert space structure on the dual V ∗

τ by
setting

〈α,β〉 = 〈vβ , vα

〉
.

Lemma 7.1.3 If the representation τ is irreducible, then so is the dual representation
τ ∗. The same holds for the property of being unitary. For x ∈ K and α ∈ V ∗

τ one
gets the intertwining relation

vτ∗(x)α = τ (x)vα ,

so the map α �→ vα is an anti-linear intertwining operator between V ∗
τ and Vτ .

Proof Suppose that W ∗ ⊂ V ∗
τ is a subrepresentation. Then the space (W ∗)⊥ of

all v ∈ Vτ with α(v) = 0 for every α ∈ W ∗ is a subrepresentation of Vτ . If τ is
irreducible the latter space is trivial and so then is W ∗.

For the remaining assertions, we first show the claimed intertwining relation. For
w ∈ Vτ we use unitarity of τ to get

〈
w, vτ∗(x)α

〉 = τ ∗(x)α(w) = α(τ (x−1)w)

= 〈τ (x−1)w, vα

〉 = 〈w, τ (x)vα〉.
Varying w, the relation follows. Now the unitarity of τ ∗ follows by transport of
structure,

〈
τ ∗(x)α, τ ∗(x)β

〉 = 〈vτ∗(x)β , vτ∗(x)α
〉 = 〈τ (x)vβ , τ (x)vα

〉
= 〈vβ , vα

〉 = 〈α,β〉
The Lemma is proven. �

7.2 The Peter-Weyl Theorem

Let K be a compact group, and let K̂ be the set of all equivalence classes of irre-
ducible unitary representations of K . Let K̂fin be the subset of all finite dimensional
irreducible representations. We want to show that K̂ = K̂fin.

A matrix coefficient for a unitary representation τ of K on Vτ is a function of the
form k �→ 〈τ (k)v, w〉 for some v, w ∈ Vτ . The matrix coefficients are continuous
functions, so they lie in the Hilbert space L2(K). We need to know that the set of
matrix coefficients, where τ runs through all finite dimensional representations is
closed under taking complex conjugates. To see this we use Lemma 7.1.3 for a finite
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dimensional unitary representation (τ ,Vτ ). So let v, v′ ∈ Vτ and let α,β ∈ V ∗
τ be

their Riesz duals, i.e., v = vα and v′ = vβ in the notation of the last section. Then

〈τ (x)v, v′〉 = 〈vβ , τ (x)vα

〉 = 〈vβ , vτ∗(x)α
〉 = 〈τ ∗(x)α,β

〉
shows that the complex conjugate of a matrix coefficient is indeed a matrix coefficient.

Now, for every class in K̂fin choose a representative (τ ,Vτ ). Choose an orthonormal

basis e1, . . . , en of Vτ and write τij (k)
def= 〈τ (k)ei , ej

〉
for the corresponding matrix

coefficient. It is easy to see that for every v, w ∈ Vτ the function k �→ 〈τ (k)v, w〉 is
a linear combination of the τij , 1 ≤ i, j ≤ dimVτ . In what follows we shall write
dim(τ ) for dimVτ .

Theorem 7.2.1 (Peter-Weyl Theorem).

(a) For τ 
= γ in K̂fin one has

〈
τij , γrs

〉 =
∫
K

τij (k)γrs(k) dk = 0.

So the matrix coefficients of non-equivalent representations are orthogonal.

(b) For τ ∈ K̂fin one has
〈
τij , τrs

〉 = 0, except for the case when i = r and j = s.
In the latter case the products are

〈
τij , τij
〉 = 1

dim(τ ) . One can summarize this by
saying that the family (√

dim(τ ) τij )τ ,i,j

is an orthonormal system in L2(K).

(c) It even is complete, i.e., an orthonormal basis.

(d) The translation-representations (L,L2(K)) and (R,L2(K)) decompose into
direct sums of finite-dimensional irreducible representations.

Proof For (a) let τ 
= γ in K̂fin. Let T : Vτ → Vγ be linear and set S = ST =∫
K
γ (k−1)T τ (k) dk. Then one has Sτ (k) = γ (k)S, hence S = 0 by Corollary 6.1.9.

Let (ej ) and (fs) be orthonormal bases of Vτ and Vγ , respectively, and choose
Tjs : Vτ → Vγ given by Tjs(v) = 〈v, ej

〉
fs. Let Sjs = STjs

as above. One gets

0 = 〈Sjsei , fr

〉 =
∫
K

〈
γ (k−1)Tjsτ (k)ei , fr

〉
dk

=
∫
K

〈
γ (k−1)

〈
τ (k)ei , ej

〉
fs , fr

〉
dk

=
∫
K

〈
τ (k)ei , ej

〉 〈
γ (k−1)fs , fr

〉
︸ ︷︷ ︸

=〈fs ,γ (k)fr 〉=〈γ (k)fr ,fs 〉

dk

=
∫
K

τij (k)γrs(k) dk = 〈τij , γrs

〉
.
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To prove (b), we perform the same computation for γ = τ to get
〈
Sjsei , er

〉 = 〈τij , τrs
〉
.

In this case the matrix Sjs is a multiple of the identity Sjs = λId for some λ ∈ C, so
if i 
= r we infer

〈
Sjsei , er

〉 = 0, hence
〈
τij , τrs

〉 = 0. Assume j 
= s. We claim that
Sjs = 0, which implies the same conclusion, so in total we get the first assertion of
(b). To show Sjs = 0 recall that S = Sjs = λ Id, so the trace equals

λ dimVτ = tr (S) = tr

(∫
K

τ (k)−1T τ (k) dk

)

=
∫
K

tr
(
τ (k)−1T τ (k)

)
dk =
∫
K

tr (T ) dk = tr (T ),

but as j 
= s, the trace of T is zero, hence S is zero and so is 〈Sei , ei〉 =
〈
τij , τi,s

〉
.

Finally, we consider the case j = s and i = r . Then Sjj = λj Id for some λj ∈ C.
Our computation shows λj =

〈
τij , τij
〉
, independent of i. But τij (k) = τji(k−1) and

therefore, as K is unimodular we get

〈
τij , τij
〉 =
∫
K

τij (k)τij (k) dk =
∫
K

τji(k−1)τji(k
−1) dk

=
∫
K

τji(k)τji(k) dk = 〈τji , τji 〉.
We conclude λj = 〈τij , τij

〉 = 〈τji , τji 〉 = λi . We call this common value λ and
we have to show that λ = 1

dim(τ ) . Write n = dimVτ and note that Id = ∑n
j=1 Tjj .

Therefore (nλ)Id =∑n
j=1 Sjj =

∫
K
τ (k−1)Idτ (k) dk = Id and the claim follows.

Finally, to show (c), let τ ∈ K̂fin, and let Mτ be the subspace of L2(K) spanned by
all matrix coeficients of the representation τ . If h(k) = 〈τ (k)v, w〉, then one has

h∗(k) = h(k−1) = 〈τ (k)w, v〉 ∈ Mτ ,

Lk0h(k) = h(k−1
0 k) = 〈τ (k)v, τ (k0)w〉 ∈ Mτ ,

Rk0h(k) = h(kk0) = 〈τ (k)τ (k0)v, w〉 ∈ Mτ .

This means that the finite-dimensional space Mτ is closed under adjoints, and left
and right translations. Let M be the closure in L2(K) of the span of all Mτ , where
τ ∈ K̂fin. Then M decomposes into a direct sum of irreducible representations un-
der the left or the right translation. By the discussion preceding the theorem, M

is also closed under complex conjugation. We want to show that L2(K) = M , or,
equivalently, M⊥ = 0. So assume M⊥ is not trivial. Our first claim is that M⊥
contains a non-zero continuous function. Let H 
= 0 in M⊥. Let (φU )U be a Dirac
net. Then the net φU ∗H converges to H in the L2-norm. Since M⊥ is closed under
translation it follows that φU ∗ H ∈ M⊥ for every U . As there must exist some U
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with φU ∗ H 
= 0, the first claim follows. So let F1 ∈ M⊥ be continuous. After
applying a translation and a multiplication by a scalar, we can assume F1(e) > 0.
Set F2(x) = ∫

K
F1
(
y−1xy

)
dy. Then F2 ∈ M⊥ is invariant under conjugation and

F2(e) > 0. Finally put F (x) = F2(x)+F2
(
x−1
)
. Then the function F is continuous,

F ∈ M⊥, F (e) > 0, andF = F ∗. Consider the operator T (f ) = f ∗F = R(F )f for
f ∈ L2(K). Since R : L1(K) → B

(
L2(K)

)
is a ∗-representation, T is self-adjoint.

Further, as Tf (x) = ∫
K
f (y)F

(
y−1x
)
dy, the operator T is an integral operator

with continuous kernel k(x, y) = F
(
y−1x
)
. By Proposition 5.3.3, T = T ∗ 
= 0

is a Hilbert-Schmidt operator, hence compact, and thus it follows that T has a real
eigenvalue λ 
= 0 with finite dimensional eigenspace Vλ. We claim that Vλ is stable
under left-translations. For this let f ∈ Vλ, so f ∗ F = λf . Then, for k ∈ K one
has (Lkf ) ∗ F = Lk(f ∗ F ) = λLkf. This implies that Vλ with the left translation
gives a finite dimensional unitary representation of K , hence it contains an irre-
ducible subrepresentation W ⊂ Vλ ⊂ M⊥. Let f , g ∈ W , and let h(k) = 〈Lkf , g〉
be the corresponding matrix coefficient. One has h(k) = ∫

K
f (k−1x)g(x) dx, so

h = g ∗ f ∗ ∈ M⊥. On the other hand, h ∈ M , and so 〈h,h〉 = 0, which is a
contradiction. It follows that the assumption is wrong, so M = L2(K).

Above, we showed in particular that L2(K) decomposes as the closure of the direct
sum
⊕

τ∈K̂fin
Mτ , where the the linear span Mτ of all matrix coefficients of τ has

dimension dim(τ )2. Since each Mτ is stable under left and right translations, this
implies that

(
L2(K),L

)
and
(
L2(K),R

)
decompose as direct sums of finite dimen-

sional representations. Hence (d) follows from Proposition 7.1.2 and the Peter-Weyl
Theorem is proven. �

Definition Let π be a finite dimensional representation of the compact group K .
The function χπ : K → C defined by χπ (k) = tr π (k) is called the character of the
representation π .

Corollary 7.2.2 Let π , η be two finite-dimensional irreducible unitary representa-
tions of the compact group K. For their characters we have

〈
χπ ,χη

〉 =
{

1 if π = η,

0 otherwise.

Here the inner product is the one of L2(K).

Proof The proof follows immediately from the Peter-Weyl Theorem. Note that it
is shown in Exercise 7.10 that {χπ : π ∈ K̂} even forms an orthonormal base of the
space L2(K/conj) of conjugacy invariant L2-functions on K . �

Let (π ,Vπ ) be a representation of a locally compact groupG. An irreducible subspace
is a closed subspace U ⊂ Vπ which is stable under π (G) such that the representation
(π ,U ), obtained by restricting each π (k) to U , is irreducible.
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Theorem 7.2.3

(a) Let K be a compact group. Then K̂ = K̂fin, so every irreducible unitary
representation of K is finite dimensional.

(b) Every unitary representation of the compact group K is an orthogonal sum of
irreducible representations.

Proof Let (π ,Vπ) be a unitary representation of K . We show that Vπ can be written
as a direct sum Vπ =⊕i∈I Vi , where each Vi is a finite dimensional irreducible sub-
space of Vπ . This proves (b) and if we apply this to a given irreducible representation
Vπ it also implies (a).

So let (π ,Vπ ) be a given unitary representation ofK . Consider the set S of all families
(Vi)i∈I , where each Vi is a finite dimensional irreducible subrepresentation of Vπ and
for i 
= j in I we insist that Vi and Vj are orthogonal. We introduce a partial order
on S given by (Vi)i∈I ≤ (Wα)α∈A if and only if I ⊂ A and for each i ∈ I we have
Vi = Wi . The Lemma of Zorn yields the existence of a maximal element (Vi)i∈I .
We claim that the orthogonal sum

⊕
i∈I Vi is dense in Vπ . This is equivalent to the

orthogonal space W = (⊕i∈I Vi

)⊥
being the zero space. Now assume that inside W

we find a finite-dimensional irreducible subspace U , then we can extend I by one
element i0 and we set Vi0 = U which contradicts the maximality of I . Therefore,
it suffices to show that any given non-zero unitary representation (η,Wη) contains
a finite-dimensional irreducible subspace. For this let v, w ∈ Wη, and let ψv,w(x) =
〈η(x)v, w〉 be the corresponding matrix coefficient. Then ψv,w ∈ C(K) ⊂ L2(K) and
ψη(y)v,w(x) = 〈η(xy)v, w〉 = ψv,w(xy) = Ryψv,w(x). In other words, for fixed w, the
map v �→ ψv,w is a K-homomorphism from Vη to (R,L2(K)). We assume 〈v, w〉 
= 0.
Then this map is non-zero. Since

(
R,L2(K)

)
is a direct sum of finite dimensional

irreducible representations, there exists an orthogonal projection P : L2(K) → F

to a finite dimensional irreducible subrepresentation, such that P
(
ψv,w
) 
= 0. So

there exists a non-zero K-homomorphism T : Vη → F , which is surjective, hence
induces an isomorphism from U = (ker(T ))⊥ ⊂ Vη to F . Therefore U is the desired
finite-dimensional irreducible subspace. �

We now give a reformulation of the Peter-Weyl Theorem. The group K acts on the
space L2(K) by left and right translations, and these two actions commute, that is
to say, we have a unitary representation η of the group K ×K on the Hilbert space
L2(K), given by

η (k1, k2) f (x) = f
(
k−1

1 xk2
)
.

On the other hand, for (τ ,Vτ ) ∈ K̂ the group K ×K acts on the finite dimensional
vector space End(Vτ )= HomK (Vτ ,Vτ ) by

ητ (k1, k2)(T ) = τ (k1)T τ
(
k−1

2

)
.
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On End (Vτ ) we have a natural inner product

〈S, T 〉 = dim(Vτ ) tr (ST ∗)

making the representation of K ×K unitary (Compare with Exercise 5.8).

Theorem 7.2.4 (Peter-Weyl Theorem, second version). There is a natural unitary
isomorphism

L2(K) ∼=
⊕̂
τ∈K̂

End(Vτ ),

which intertwines the conjugation representation η of K × K on L2(K) with⊕
τ∈K̂ ητ . This isomorphism maps a given f ∈ L2(K) ⊂ L1(K) onto

∑
τ∈K̂ τ (f ),

where

τ (f ) =
∫
K

f (x)τ (x) dx.

In particular, if for a given f ∈ L2(K) we define the map f̂ : K̂ → ⊕̂τ∈K̂End(Vτ )
by f̂ (τ ) = τ (f ), then we get

‖f ‖ = ‖f̂ ‖
for every f ∈ L2(K). In this way the Peter-Weyl Theorem presents itself as a
generalization of the Plancherel Formula.

Proof Since τ �→ τ ∗ is a bijection from K̂ onto itself, the Peter-Weyl Theorem
yields the orthonormal basis

√
dim(τ )τ ∗kl , where the indices are taken with respect

to the dual basis of a given orthonormal basis {e1, . . . , edim(τ )} of Vτ . For f ∈ L2(K)
and indices i, j one has

〈
τ (f )ei , ej

〉 = ∫
K
f (x)τij (x) dx = 〈f , τij

〉
. If we apply this

formula to f = σ ∗
kl = σkl for some σ ∈ K̂ , we see that σ̂ ∗

kl(τ ) = τ (σkl) = 0 for
σ 
= τ and 〈

τ̂ ∗kl(τ )ei , ej
〉 =
{

dim(τ ) if k = i and l = j

0 otherwise.

Thus it follows that τ ∗kl is mapped to the operator 1
dim(τ )E

τ
kl ∈ End(Vτ ), where Eτ

kl

denotes the endomorphism which sends ek to el and all other basis elements to 0.
Hence, the basis element

√
dim(τ )τ ∗kl ∈ Mτ∗ is mapped to

√
dim(τ )Eτ

kl . It is trivial
to check that these elements form an orthonormal basis of End(Vτ ) with respect to
the given inner product. �

Definition Let (τ ,Vτ ) and (γ ,Vγ ) be finite dimensional representations of the com-
pact group K . There is a natural representation τ ⊗ γ of the group K × K on the
tensor product space Vτ ⊗ Vγ given by

(τ ⊗ γ ) (k1, k2) = τ (k1) ⊗ γ (k2).
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Lemma 7.2.5 For given τ ∈ K̂ , there is a natural unitary isomorphism

� : Vτ ⊗ Vτ∗ → End(Vτ ),

which intertwines τ ⊗ τ ∗ with ητ .

Show that the direct summand End(Vπ ) of L2(K) equipped with the conjugation
action η of K ×K as in the second version of the Peter-Weyl Theorem is equivalent
to the irreducible representation π∗ ⊗ π of K ×K . (Compare with Exercise 5.8.)

Proof The map ψ : Vτ ⊗ Vτ∗ → End(Vτ ) given by

ψ(v ⊗ α) = [w �→ α(w)v]

is linear and sends the simple tensors to the operators of rank one. Every operator of
rank one is in the image, so the map is surjective as End(Vτ ) is linearly generated by
the operators of rank one. As the dimensions of the spaces agree, the map is bijective.
It further is intertwining, as for k, l ∈ K one has

ψ
(
τ ⊗ τ ∗(k, l)(v ⊗ α)

)
(w) = ψ

(
τ (k)v ⊗ τ ∗(k)α

)
(w)

= α(τ (l−1)w)τ (k)v

= τ (k)ψ(w ⊗ α)τ (l−1)(w)

= [ητ (k, l)ψ(w ⊗ α)] (w).

By Corollary 6.1.9 it follows that, modulo a scalar, ψ is unitary. Plugging in test
vectors, one sees that � = √

dim(Vτ )−1ψ satisfies the lemma. �

Corollary 7.2.6 There is a natural unitary isomorphism

L2(K) ∼=
⊕̂
τ∈K̂

Vτ ⊗ Vτ∗ ,

where each finite dimensional space Vτ ⊗ Vτ∗ carries the tensor product Hilbert-
space structure. This isomorphism intertwines the K × K representation η with
the sum of the representations τ ⊗ τ ∗, where τ ∗ is the representation dual to τ. In
particular, we get direct sum decompositions

L ∼=
⊕̂
τ∈K̂

1Vτ
⊗ τ ∗ and R ∼=

⊕̂
τ∈K̂

τ ⊗ 1Vτ∗

for the left and right regular representations of K.

Proof The corollary is immediate from the theorem and the lemma. The assertion
about the left and right translation operations follows from restricting to one factor
of the group K ×K . �
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7.3 Isotypes

Let (π ,Vπ) be a unitary representation of the compact group K . For (τ ,Vτ ) ∈ K̂ we
define the isotype of τ or the isotypical component of τ in π as the subspace

Vπ (τ )
def=
∑
U⊂Vπ
U∼=Vτ

U.

This is the sum of all invariant subspaces U , which are K-isomorphic to Vτ . Another
description of the isotype is this: There is a canonical map

Tτ : HomK (Vτ ,Vπ ) ⊗ Vτ → Vπ

α ⊗ v �→ α(v).

This map intertwines the action Id⊗ τ on HomK (Vτ ,Vπ )⊗Vτ with π , from which it
follows that the image of Tτ lies in Vπ (τ ). Indeed, the image is all of Vπ (τ ), since if
U ⊂ Vπ is a closed subspace with π |U ∼= τ viaα : Vτ → U , then U = Tτ (α⊗Vτ ) by
construction of Tτ . Note that if (τ ,Vτ ) and (σ ,Vσ ) are two non-equivalent irreducible
representations, then Vπ (τ ) ⊥ Vπ (σ ), which follows from the fact that if U ,U ′ ⊆ Vπ

are subspaces with U ∼= Vτ ,U ′ ∼= Vσ , then the orthogonal projection P : Vπ → U ′
restricts to a K-homomorphism P |U : U → U ′, which therefore must be 0.

Lemma 7.3.1 On the vector space HomK (Vτ ,Vπ ) there is an inner product, making
it a Hilbert space, such that Tτ is an isometry.

Proof Let v0 ∈ Vτ be of norm one. For α,β ∈ H = HomK (Vτ ,Vπ ) set
〈α,β〉 def=〈α(v0),β(v0)〉. As by Corollary 6.1.9, any element of HomK (Vτ ,Vπ ) is
either zero or injective, it follows that 〈·, ·〉 is indeed an inner product on H . We
show that H is complete. For this let αn be a Cauchy-sequence in H . Then αn(v0)
is a Cauchy-sequence in Vπ , so there exists w0 ∈ Vπ such that αn(v0) converges
to w0. For k ∈ K the sequence αn(τ (k)v0) = π (k)αn(v0) converges to π (k)w0.
Likewise, for f ∈ L1(K) the sequence αn(τ (f )v0) = π (f )αn(v0) converges to
π (f )w0. Let I ⊂ L1(K) be the annihilator of v0, i.e., I is the set of all f ∈ L1(K)
with τ (f )v0 = 0. It follows that every f ∈ I also annihilates w0. Therefore the
map α : Vτ

∼= L1(K)/I → Vπ mapping τ (f )v0 to π (f )w0 is well-defined and
a K-homomorphism. It follows that α is the limit of the sequence αn, so H is
complete. We now show that T = Tτ is an isometry. For fixed α the inner prod-
uct on Vτ given by (v, w) = 〈α(v),α(w)〉 is K-invariant. Therefore, by Lemma
7.1.1, there is c(α) > 0 such that (v, w) = c(α)〈v, w〉 for all v, w ∈ Vτ . So we
get 〈T (α ⊗ v), T (α ⊗ v)〉 = (v, v) = c(α)〈v, v〉. Setting v = v0, we conclude that
c(α) = 〈α,α〉, which proves that Tτ is indeed an isometry. �

It follows from the above lemma that Vπ (τ ) is isometrically isomorphic to the Hilbert
space tensor product HomK (Vτ ,Vπ) ⊗̂Vτ and that π |Vπ (τ ) is unitarily equivalent to
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the representation Id ⊗ τ on this tensor product. If we choose an orthonormal base
{αi : i ∈ I } of HomK (Vτ ,Vπ), then we get a canonical isomorphism

HomK (Vτ ,Vπ) ⊗̂Vτ
∼=
⊕̂
i∈I

Vτ

given by sending an elementary tensor α ⊗ v to
∑

i∈I 〈α,αi〉v. Thus we see
that Vπ (τ ) is unitarily equivalent to a direct sum of Vτ ’s with multiplicity I =
dim HomK (Vτ ,Vπ ).

Theorem 7.3.2

(a) Vπ (τ ) is a closed invariant subspace of Vπ .

(b) Vπ (τ ) is K-isomorphic to a direct Hilbert sum of copies of Vτ .

(c) Vπ is the direct Hilbert sum of the isotypes Vπ (τ ) where τ ranges over K̂ .

Proof As Vπ (τ ) is an isometric image of a complete space, it is complete,
hence closed. The space Vπ (τ ) is a sum of invariant spaces, hence invariant, so
(a) follows. Now let Vπ = ⊕̂iVi be any decomposition into irreducibles. Set
Ṽπ (τ ) = ⊕̂i:Vi

∼=Vτ
Vi. Then it follows that Ṽπ (τ ) ⊂ Vπ (τ ) as the latter contains

the direct sum and is closed. Now clearly Vπ is the direct Hilbert sum of the spaces
Ṽπ (τ ), and hence it is also the direct Hilbert sum of the Vπ (τ ), as the latter are
pairwise orthogonal. This implies (c) and a fortiori Ṽπ (τ ) = Vπ (τ ) and thus (b). �

Proposition 7.3.3 Let (π ,Vπ ) be a unitary representation of the compact group K.
For τ ∈ K̂ the orthogonal projection P : Vπ → Vπ (τ ) is given by

P (v) = dim(τ )
∫
K

χτ (x)π (x)v dx.

Proof We have to show that for any two vectors v, w ∈ Vπ one has 〈P v, w〉 =
dim(τ )

∫
K
χτ (x)〈π (x)v, w〉 dx. Let (v, w) denote the right hand side of this identity.

Write v = v0 + v1, where v0 ∈ Vπ (τ ) and v1 ∈ Vπ (τ )⊥. Likewise decompose w as
w0 + w1. Then 〈P v, w〉 = 〈v0, w0〉. The Peter-Weyl theorem implies that (v0, w0) =
〈v0, w0〉. To see this, we decompose Vπ (τ ) into a direct sum of irreducibles, each
equivalent to Vτ . It then suffices to assume that v0, w0 lie in the same summand,
since otherwise we have 〈P v, w〉 = 0 = 〈v0, w0〉. The result then follows from
expressing v0, w0 in terms of an orthonormal basis of Vτ . The spaces Vπ (τ ) and its
orthocomplement are invariant under π , therefore (v0, w1) = 0 = (v1, w0). Finally,
as Vπ (τ )⊥ is a direct sum of isotypes different from τ , the Peter-Weyl theorem also
implies that (v1, w1) = 0. As the map (·, ·) is additive in both components, we get

(v, w) = (v0, w0) + (v0, w1) + (v1, w0) + (v1 + w1)

= (v0, w0) = 〈v0, w0〉 = 〈P v, w〉,
as claimed. �
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Example 7.3.4 It follows from the Peter-Weyl Theorem that the isotype L2(K)R(τ )
of the right regular representation (R,L2(K)) for the irreducible representation τ

of the compact group K is the linear span of the functions τij (x) = 〈τ (x)ei , ej
〉
. In

particular, it follows that all functions in L2(K)R(τ ) are continuous. Similarly, the
isotype L2(K)L(τ ) of the left regular representation (L,L2(K)) is given by the linear
span of the functions τ ij , the complex conjugates of the τij .

7.4 Induced Representations

Let K be a compact group, and let M ⊂ K be a closed subgroup. Let (σ ,Vσ )
be a finite dimensional unitary representation of M . We now define the induced
representation πσ = IndK

M (σ ) as follows. First define the Hilbert-space L2(K ,Vσ )
of all measurable functions f : K → Vσ satisfying

∫
K
‖f (x)‖2

σ dk < ∞ modulo
nullfunctions, where ‖·‖σ is the norm in the space Vσ . This is a Hilbert-space with
inner product 〈f , g〉 = ∫

K
〈f (k), g(k)〉σ dk. Choosing an orthonormal basis of Vσ

gives an isomorphism L2(K ,Vσ ) ∼= L2(K)dim(Vσ ), which shows completeness of
L2(K ,Vσ ).

The space of the representation πσ is the space IndK
M (Vσ ) of all f ∈ L2(K ,Vσ ) such

that for every m ∈ M the identity f (mk) = σ (m)f (k) holds almost everywhere in
k ∈ K . This is a closed subspace of L2(K ,Vσ ) as we have

IndK
M (Vσ ) =

⋂
m∈M

kerTm,

where for given m ∈ M the continuous operator f �→ Lm−1f − σ (m)f is denoted
by Tm. The representation πσ is now defined by

πσ (y)f (x) = f (xy).

The representation πσ is clearly unitary.

It suffices to consider finite dimensional, indeed irreducible representations σ here,
since an arbitrary representation σ of M decomposes as a direct sum σ =⊕i∈I σi

of irreducibles and there is a canonical isomorphism

IndK
M

(⊕
i∈I

σi

)
∼=
⊕
i∈I

IndK
M (σi).

So suppose that σ is irreducible. As K is compact, πσ decomposes as a direct
sum of irreducible representations τ ∈ K̂ , each occurring with some multiplicity

[πσ : τ ]
def= dim HomK

(
Vτ ,Vπσ

)
.
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Theorem 7.4.1 (Frobenius reciprocity). Ifσ is irreducible, the multiplicities [πσ : τ ]
are all finite and can be given as

[πσ : τ ] = [τ |M : σ ].

More precisely, for every irreducible representation (τ ,U ) there is a canonical
isomorphism HomK

(
U , IndK

M (Vσ )
) → HomM (U |M ,Vσ ).

Proof Let V c be the subspace of Vπσ
consisting of all continuous functions f :

K → Vσ with f (mk) = σ (m)f (k). The space V c is stable under the K-action
and dense in the Hilbert space Vπσ

, which can be seen by approximating any f

in Vπσ
by πσ (φ)f with Dirac functions φ in C(K) of arbitrary small support. Let

α ∈ HomK

(
U , IndK

M (Vσ )
)
. We show that the image ofα lies inV c. For this recall that

by the Peter-Weyl Theorem the spaceL2(K) decomposes into a direct sum of isotypes
L2(K)(γ ) for γ ∈ K̂ . Here we consider the K-action by right translations only. Each
isotype L2(K)(γ ) is finite dimensional and consists of continuous functions. We have
isometric K-homomorphisms,

α : U → IndK
M (Vσ ) ↪→ L2(K ,Vσ )

∼=−→ L2(K) ⊗ Vσ ,

where K acts trivially on Vσ . This implies that α(U ) ⊂ L2(K)(τ ) ⊗ Vσ consists
of continuous functions. Let δ : V c → Vσ be given by δ(f ) = f (1), and define
ψ : HomK (U , IndK

M (Vσ )) → HomM (U |M ,Vσ ) by ψ(α)(u) = δ(α(u)) = α(u)(1).
We claim the ψ is a bijection. For injectivity assume that ψ(α) = 0. Then for every
u ∈ U and k ∈ K one has α(u)(k) = πσ (k)α(u)(1) = α(τ (k)u)(1) = ψ(α)(τ (k)u) =
0, which means α = 0.

For surjectivity let β ∈ HomM (U ,Vσ ) and define an element α ∈
HomC

(
U , IndK

M (Vσ )
)

by α(u)(k) = β
(
τ (k−1)u

)
. By definition, α is a K-

homomorphism and β = ψ(α). The theorem is proven. �

Example 7.4.2 Let M be a closed subgroup of the compact group K . Then K/M

carries a unique Radon measure μ that is invariant under the left translation action
of the group K and is normalized by μ(K/M) = 1. The group K acts on the Hilbert
space L2(K/M ,μ) by left translations and this constitutes a unitary representation.
This representation is isomorphic to the induced representation IndK

M (C) induced
from the trivial representation. An isomorphism between these representations is
given by the map � : L2(K/M) → IndK

M (C), which maps ψ ∈ L2(K/M) to the
function �(ψ) : K → C defined by

�(ψ)(k)
def=ψ
(
k−1M
)
.

Now, for any τ ∈ K̂ the multiplicity [τ |M : 1] equals dimVM
τ , where VM

τ denotes
the space of M-invariant vectors in Vτ . Thus by Frobenius we get

L2(K/M) ∼=
⊕̂

τ∈K̂dim
(
VM

τ

)
Vτ

where dim
(
VM

τ

)
Vτ denotes the dim

(
VM

τ

)
-fold direct sum of the Vτ ’s.
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7.5 Representations of SU(2)

In this section we consider the irreducible representations of the compact group
SU(2). We use the description of these representations to construct decompositions of
the Hilbert spaces L2(S3) and L2(S2), thus giving a glance into the harmonic analysis
of the spheres. For this recall the n-dimensional sphere, Sn = {x ∈ R

n+1 : ‖x‖ = 1},
where ‖x‖ =

√
x2

1 + · · · + x2
n+1 is the euclidean norm on R

n+1. The set Sn inherits a

topology from R
n+1. For a subset A ⊂ Sn let IA be the set of all ta, where a ∈ A and

0 ≤ t ≤ 1. The set IA ⊂ R
n is Borel measurable if and only if A ⊂ Sn is, (Exercise

7.13). For a measurable set A ⊂ Sn, define the normalized Lebesgue measure as

μ(A)
def= λ(IA)

λ(ISn) , where λ denotes the Lebesgue measure on R
n+1. As a consequence

of the transformation formula on R
n+1, the Lebesgue measure λ is invariant under

the action of the orthogonal group

O(n+ 1)
def= {g ∈ Mn+1(R) : gtg = 1

}
.

The group O(n+ 1) can also be described as the group of all g ∈ Mn+1(R) such that
‖gv‖ = ‖v‖ holds for every v ∈ R

n+1. It follows from this description, that O(n+1)
leaves stable the sphere Sn and that the measure μ is invariant under O(n + 1). We
denote by SO(n+1) the special orthogonal group, i.e., the group of all g ∈ O(n+1)
of determinant one. For the next lemma, we consider O(n) as a subgroup of O(n+1)
via the embedding g �→ ( 1 0

0 g

)
.

Lemma 7.5.1 Let n ∈ N, and let e1 = (1, 0, . . . , 0)t be the first standard basis
vector of R

n+1. The matrix multiplication g �→ ge1 gives an identification

Sn ∼= O(n+ 1)/O(n) ∼= SO(n+ 1)/SO(n).

This map is invariant under left translations and the normalized Lebesgue measure
on Sn is the unique normalized invariant measure on this quotient space.

Proof The group O(n) is the subgroup of O(n+1) of all elements with first column
equal to e1, so it is the stabilizer of e1 and one indeed gets a map O(n+1)/O(n) → Sn.
As the invariance of the measure is established by the transformation formula, we
only need to show surjectivity. Now let v ∈ Sn. Then there always exists a rotation
in SO(n + 1) that transforms e1 into v. One simply chooses a rotation around an
axis that is orthogonal to both e1 and v. This proves surjectivity. The assertion on the
measure is due to the uniqueness of invariant measures. �

Recall that SU(2) is the group of all matrices g ∈ M2(C) that are unitary: g∗g =
gg∗ = 1 and satisfy det(g) = 1. These conditions imply

SU(2) =
{(

a −b̄

b ā

)
:

(
a

b

)
∈ S3

}
,
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where we realize the three sphere S3 as the set of all z ∈ C
2 with |z1|2 + |z2|2 = 1.

From this description and the fact that the Lebesgue measure on S3 is invariant under
O(4) as well as the uniqueness of invariant measures we get the following lemma.

Lemma 7.5.2 The map SU(2) → S3, mapping the matrix g ∈ SU(2) to its first
column, is a homeomorphism. Via this homeomorphism, the normalized Lebesgue
measure on S3 coincides with the normalized Haar measure on SU(2).

We want to obtain a convenient formula for computations with the Haar integral
on SU(2) ∼= S3. Recall from Calculus that the gamma function � : (0,∞) → R

is defined by the integral �(x) = ∫∞0 tx−1e−t dt. Note that �(1) = 1 and that
�(x + 1) = x�(x) for every x > 0, which implies that �(n) = (n − 1)! for
every n ∈ N. Moreover, via the substitution t = r2 we get the alternative formula
�(x) = 2

∫∞
0 r2x−1e−r2

dr , which we shall use below.

Lemma 7.5.3 Let f : S3 → C be any integrable function, and for each m ∈ N0 let
Fm : C

2 → C be defined by Fm (rx) = rmf (x) for every x ∈ S3 and r > 0. Further

let cm
def=π−2�

(
m
2 + 2
)−1

. Then

∫
S3

f (x) dμ(x) = cm

∫
C

2
Fm(z)e−(‖z‖2)dλ(z),

where λ stands for the Lebesgue measure on C
2 ∼= R

4, and ‖z‖2 = |z1|2 + |z2|2.

Proof Integration in polar coordinates on C
2 implies

∫
C

2
Fm(z)e−(‖z‖2) dλ(z) = c

∫ ∞

0
r3
∫
S3

Fm(rx)e−r2
dμ(x) dr

= c

(∫ ∞

0
r3+me−r2

dr

)∫
S3

f (x) dμ(x)

= c

2
�
(m

2
+ 2
) ∫

S3
f (x) dμ(x).

where c is some positive constant (the non-normalized volume of S3). To compute
the constant c let f ≡ 1 and m = 0. Since �(2) = 1 one gets

c = 2
∫

C
2
e−(‖z‖2)dλ(z) = 2

(∫
C

e−|z1|2dz1

)(∫
C

e−|z2|2dz2

)
= 2π2.

The lemma follows. �

For m ∈ N0 let Pm denote the set of homogeneous polynomials on C
2 of degree m.

In other words, Pm is the space of all polynomial functions p : C
2 → C that satisfy

p(tz) = tmp(z) for every z ∈ C
2 and every t ∈ C. Every p ∈ Pm can uniquely be

written as p(z) =∑m
k=0 ck zk1zm−k

2 . For p, η ∈ Pm define
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〈p, η〉m def=〈p|S3 , η|S3〉L2(S3) =
∫
S3

p(x)η(x) dμ(x).

It then follows from Lemma 7.5.3 that

〈p, η〉m = c2m

∫
C

2
p(z)η(z)e−‖z‖2

dλ(z).

We define a representation πm of SU(2) on Pm by

(πm(g)p)(z)
def=p
(
g−1(z)

)
.

Theorem 7.5.4 For every m ≥ 0, the representation (πm, Pm) is irreducible. Every
irreducible unitary representation of SU(2) is unitarily equivalent to one of the
representations (Pm,πm). Thus

ŜU(2) = {[(Pm,πm)] : m ∈ N0},
where [(Pm,πm)] denotes the equivalence class of (Pm,πm).

Proof This is Theorem 10.2.2 in [Dei05]. �

The next corollary follows from the Peter-Weyl Theorem.

Corollary 7.5.5 The SU(2) representation onL2(S3) is isomorphic to the orthogonal
sum
⊕

m≥0 (m+1)Pm, where Pm is the space of homogeneous polynomials of degree
m and each Pm occurs with multiplicity m+ 1.

We want to close this section with a study of the two-sphere S2. For each λ ∈ T

consider the matrix gλ
def= diag(λ, λ̄). Then we may regard T ∼= {gλ : λ ∈ T} as

a closed subgroup of SU(2). Recall that we can identify SU(2) ∼= S3. The map
p : S3 → S2 of the following lemma is known as the Hopf fibration of S3.

Lemma 7.5.6 Let us realize the two-sphere as

S2 = {(v, x) : v ∈ C, x ∈ R and |v|2 + x2 = 1
}
.

Then the map η : S3 → S2 defined by η(a, b) = (2ab̄, |a|2 − |b|2) factors through
a homeomorphism SU(2)/T ∼= S2, which maps the normalized SU(2)-invariant
measure on SU(2)/T to the normalized Lebesgue measure on S2.

Proof For (a, b) ∈ S3 we compute |2ab̄|2+(|a|2−|b|2)2 = 4|ab|2+|a|4−2|ab|2+
|b|4 = (|a|2 + |b|2)2 = 1, which shows that the image of η lies in S2. To see that
the map is surjective let (v, x) ∈ S2 be given. Choose a, b ∈ C with |a|2 + |b|2 = 1
and |a|2 − |b|2 = x, which is possible since |x| ≤ 1. Then |v| = 2|ab|, and there
exists a complex number z of modulus one such that v = 2zab̄. It then follows that
η(za, b) = (v, x).
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We now claim that η(a, b) = η(a′, b′) if and only if there exists λ ∈ T with (a, b) =
λ(a′, b′). The if direction is easy to check, so assume now that (2ab̄, |a|2 − |b|2) =
(2a′b̄′, |a′|2 − |b′|2). Since |a|2 + |b|2 = 1 = |a′|2 + |b′|2 we get 1 − 2|b|2 =
|a|2 − |b|2 = |a′|2 − |b′|2 = 1− 2|b′|2, from which it follows that |b| = |b′|. Hence
λ = b′/b ∈ T with b = λb′. Since ab̄ = a′b̄′ it also follows that a = λa′.

Finally, since (
a −b̄

b ā

)(
λ 0
0 λ̄

)
=
(
λa −λb

λb λa

)

it is then clear that η factorizes through a bijection SU(2)/T ∼= S2. Since η is
continuous and all spaces are compact, this bijection is also a homeomorphism.

We next need to show that the induced action of g ∈ SU(2) on S2 ∼= SU(2)/T comes
from some linear transformation. Since it maps S2 to S2 it is then automatically

orthogonal. But if g =
(
a −b̄

b ā

)
and

(
v
x

)
= p

(
z
w

)
∈ S2 then a short computation

shows that

g ·
(

v
x

)
= p

(
az − b̄w
bz + āw

)
=
(

2(az − b̄w)(b̄z̄ + aw̄)
|az − b̄w|2 − |bz + āw|2

)

=
(

2ab̄x − a2v − b̄2v̄
(|a|2 − |b|2)x − abv − abv̄

)
.

This expression is obviously R-linear in v and x. This implies that SU(2) acts on S2

through orthogonal transformations. As the normalized Lebesgue measure on S2 is
invariant under such transformations, it is invariant under the action of SU(2), so it
coincides with the unique invariant measure on SU(2)/T. �

The left translation on SU(2)/T induces a unitary representation π of SU(2) on
L2(S2) ∼= L2(SU(2)/T). We will now make use of the Frobenius reciprocity to give
an explicit decomposition of this representation.

Proposition 7.5.7 The representation π of SU(2) on L2(S2) is isomorphic to the
direct sum

⊕
m≥0 π2m.

Proof As SU(2) is a compact group, Theorem 7.2.3 implies that π is a direct sum
of irreducibles. By Theorem 7.5.4, it is a direct sum of copies of the πm. It remains
to show that for m ≥ 0 the irreducible representation πm has multiplicity 1 in π if
m is even and 0 otherwise. Example 7.4.2 shows that π is equivalent to the induced
representation IndSU(2)

T
(1), hence the Frobenius reciprocity applies. So by Theorem

7.4.1 we can compute the multiplicity as [π : πm] = [πm|T : 1]. Using the basis
zm1 , zm−1

1 z2, . . . , zm2 one sees that

[πm|T : 1] =
{

1 m even,

0 otherwise.

The proposition is proven. �
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7.6 Exercises

Exercise 7.1 Let A be an abelian subgroup of U(n). Show that there is S ∈ GL2(C)
such that SAS−1 consists of diagonal matrices only.

Exercise 7.2 Let G be a finite group.

(a) Show that the number of elements of G equals
∑

τ∈Ĝ dim(Vτ )2.

(b) Show that the space of conjugation-invariant functions has a basis (χτ )τ∈Ĝ. Con-
clude that the number of irreducible representations of G equals the number of
conjugacy classes.

Exercise 7.3 Let (π ,Vπ ) and (η,Vη) be two unitary representations of the compact
group K . Suppose there exists a bijective bounded linear operator T : Vπ → Vη that
intertwines π and η, i.e., T π (k) = η(k)T holds for every k ∈ K . Show that there
already exists a unitary intertwining operator S : Vπ → Vη.

Exercise 7.4 For a compact group K write L2(K̂) := ⊕̂τ∈K̂End(Vτ ) equipped with
the inner product as in the second version of the Peter-Weyl Theorem and let

F : L2(K) → L2(K̂), F(f ) = f̂

be the Plancherell-isomorphism as given in that theorem. Show that the inverse of
this isomorphism is given by the inverse Fourier transform

F̂ : L2(K̂) → L2(K); F̂(g)(x) =
∑
τ∈K̂

dim(τ ) tr
(
g(τ )τ (x−1)

)
,

for (τ �→ g(τ )) ∈ L2(K̂).

Exercise 7.5 Let K and L be compact groups, and let τ ∈ K̂ and η ∈ L̂. Show that
τ⊗η(k, l) = τ (k)⊗τ (l) defines an element of K̂ × L and that the map (τ , η) �→ τ⊗η

is a bijection from K̂ × L̂ to K̂ × L.

Exercise 7.6 Let K be a compact group, let (π ,Vπ ) ∈ K̂ , and let χπ be its character.
Show that for x ∈ K ,

∫
K
π (kxk−1) dk = χπ (x)

dimVπ
Id. Conclude that χπ (x)χπ (y) =

dim(Vπ )
∫
K
χπ

(
kxk−1y

)
dk holds for all x, y ∈ K .

Exercise 7.7 Let (π ,Vπ ) be a finite dimensional representation of the compact group
K with character χπ . Let π∗ be the dual representation on Vπ∗ = V ∗

π . Show that
χπ∗ = χπ .

Exercise 7.8 Keep the notation of the last exercise. The representation π is called a
self-dual representation if π ∼= π∗. Show that the following are equivalent.
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(a) π is self-dual,

(b) there exists an antilinear bijective K-homomorphism C : Vπ → Vπ ,

(c) there exists a real sub vector space VR of Vπ such that Vπ is the orthogonal sum
of VR and iVR, and π (K)VR = VR.

(d) χπ takes only real values,

Exercise 7.9 Show that every unitary representation of SU(2) is self dual. (Hint:
Use Theorem 7.2.3.)

Exercise 7.10 Let the compact group K act on L2(K) by conjugation, i.e.,
k.f (x) = f (k−1xk). Show that the space of K-invariants L2(K/conj) is closed
and that (χπ )π∈K̂ is an orthonormal basis of the Hilbert space L2(K/conj).

Exercise 7.11 Let (π ,Vπ ) be a representation of a compact group K on a Banach
space Vπ . Show that Vπ =⊕i∈I Vi , where each Vi is a finite-dimensional irreducible
subspace.

(Hint: Use matrix coefficients as in the proof of Theorem 7.2.3 to get a map T :
Vπ → W , where W is a finite-dimensional irreducible representation. Then fix
a complementary space of ker(T ) inside Vπ and apply a projection operator as in
Proposition 7.3.3.)

Exercise 7.12 Let K be a compact group. Show that the following are equivalent.

• Every character χπ for π ∈ K̂ is real valued.

• For every k ∈ K there exists l ∈ K such that lkl−1 = k−1.

Exercise 7.13 For a subset A ⊂ Sn let IA be defined as in the beginning of Sect. 7.5.
Show that A is Borel measurable as a subset of Sn if and only if IA is measurable
as a subset of R

n.

Exercise 7.14 Consider the map φ : SU(2) × T → U(2) that sends a pair (g, z) to
the matrix zg. Show that φ is a surjective homomorphism. Compute kerφ and Û(2).

Exercise 7.15 Via Lemma 7.5.6, the group SU(2) acts on S2 ∼= SU(2)/T. Show that
this action determines a surjective homomorphism ψ : SU(2) → SO(3) such that
ker ψ = {±I }. In particular, this gives an isomorphism SO(3) ∼= SU(2)/{±I }. Use
this to compute ŜO(3).



Chapter 8

Direct Integrals

Direct integrals are a generalization of direct sums. For a compact group every
representation is a direct sum of irreducibles. This property fails in general for
non-compact groups. The best one can get for general groups is a direct inte-
gral decomposition into factor representations. The latter is a notion more general
than irreducibility. For nice groups these notions coincide, and then every unitary
representation is a direct integral of irreducible representations.

8.1 Von Neumann Algebras

Let H be a Hilbert space. For a subset M of the space of bounded operators B(H )
on H , define the commutant to be

M◦ def= {T ∈ B(H ) : Tm = mT ∀m ∈ M}.
So the commutant is the centralizer of M in B(H ). If M ⊂ N ⊂ B(H ), then
N◦ ⊂ M◦. We write M◦◦ for the bi-commutant, i.e., the commutant of M◦. For a
subset M of B(H ) we define its adjoint set to be the set M∗ of all adjoints m∗ where
m is in M . The set M is called a self-adjoint set if M = M∗.

We define a von Neumann algebra to be a sub-*-algebra A of B(H ) that satisfies
A◦◦ = A. A von Neumann algebra is closed in the operator norm, and so every von
Neumann algebra is a C∗-algebra. The converse does not hold (See Exercise 8.6).

For a subset M ⊂ B(H ), one has M ⊂ M◦◦ and hence M◦◦◦ ⊂ M◦. Since, on the
other hand, also M◦ ⊂ (M◦)◦◦ = M◦◦◦, it follows M◦ = M◦◦◦, so M◦ is a von
Neumann algebra if M is a self-adjoint set. In particular, for a self-adjoint set M

the algebra M◦◦ is the smallest von Neumann algebra containing M , called the von
Neumann algebra generated by M .

Let A ⊂ B(H ) be a von Neumann algebra. Then Z(A) = A∩A◦ is the center of A,
i.e., the set of elements a of A that commute with every other element of A. A von
Neumann algebra A is called a factor if the center is trivial, i.e., if Z(A) = C Id.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 153
DOI 10.1007/978-3-319-05792-7_8, © Springer International Publishing Switzerland 2014
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Examples 8.1.1

• A = B(H ) is a factor, this is called a type-I factor.

• A = C Id is a factor.

• The algebra of diagonal matrices in M2(C) ∼= B(C2) is a von Neumann algebra,
which is not a factor.

• Let V ,W be two Hilbert spaces. The algebra B(V ) ⊗ B(W ) acts on the Hilbert
tensor product V ⊗̂W via A ⊗ B(v ⊗ w) = A(v) ⊗ B(w). Then the von Neu-
mann algebra generated by the image of B(V ) ⊗ B(W ) is the entire B(V ⊗̂W )
(See Exercise 8.2).

8.2 Weak and Strong Topologies

Let H be a Hilbert space. On B(H ) one has the topology induced by the operator
norm, called the norm topology. There are other topologies as well. For instance,
every v ∈ H induces a seminorm on B(H ) through T �→ ‖T v‖. The topology given
by this family of seminorms is called the strong topology on B(H ). Likewise, any two
v, w ∈ H induce a seminorm by T �→ |〈T v, w〉|. The topology thus induced is called
the weak topology. It is clear that norm convergence implies strong convergence and
that strong convergence implies weak convergence. Therefore, for a set A ⊂ B(H )
one has

A ⊂ An ⊂ As ⊂ Aw
,

where An
denotes the closure of A in the norm topology, or norm closure, As

the
strong closure, and Aw

the weak closure. In general, these closures will differ from
each other. It is easy to see that As

, Aw ⊂ A◦◦ since multiplication in B(H ) is easily
seen to be separately continuous with respect to the weak topology. Hence every von
Neumann algebra is strongly and weakly closed.

Theorem 8.2.1 (von Neumann’s Bicommutant Theorem). Let H be a Hilbert space,
and let A be a unital *-subalgebra of B(H ). Then As = Aw = A◦◦.

Proof It suffices to show that A◦◦ ⊂ As
. LetT ∈ A◦◦. We want to show thatT lies in

the strong closure of A. A neighborhood base of zero in the strong topology is given
by the system of all sets of the form {S ∈ B(H ) : ‖Svj‖ < ε, j = 1, . . . , n} where
v1, . . . , vn are arbitrary vectors in H and ε > 0. So it suffices to show that for given
v1, . . . , vn ∈ H and ε > 0 there is a ∈ A with ‖T vj − avj‖ < ε for j = 1, . . . n.
For this let B(H ) act diagonally on Hn. The commutant of A in B(Hn) is the algebra
of all n × n matrices with entries in A◦, and the bicommutant of A in B(Hn) is
the algebra A◦◦I , where I = In denotes the n× n unit matrix. Consider the vector
v = (v1, . . . , vn)t in Hn. The closure of Av in Hn is a closed, A-stable subspace
of Hn. As A is a *-algebra, the orthogonal complement (Av)⊥ is A-stable as well;
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therefore the orthogonal projection P onto the closure of Av is in the commutant of
A in B(Hn). It follows that T ∈ A◦◦I commutes with P and leaves Av stable. One
concludes T v ∈ Av, and so there is, to given ε > 0, an element a of A such that
‖T v − av‖ < ε, which implies the desired ‖T vj − avj‖ < ε for j = 1, . . . , n. �

The Bicommutant Theorem says that for a *-subalgebra A of B(H ) the von Neumann
algebra generated by A equals the weak or strong closure of A.

Lemma 8.2.2 A von Neumann algebra A is generated by its unitary elements.

Proof Let A be a von Neumann algebra in B(H ). Let AR be the real vector space
of self-adjoint elements, then A = AR + iAR. Let T ∈ AR, and let f ∈ S(R) be
such that f (x) = x for x in the (bounded) spectrum of T (see Exercise 8.1). By
Proposition 5.1.2,

T = f (T ) =
∫

R

f̂ (y)e2πiyT dy.

The unitary elements e2πiyT ∈ B(H ) are power series in T , so belong to the von
Neumann algebra A, and every operator that commutes with the e2πiyT will commute
with T , so T belongs to the von Neumann algebra generated by the unitaries e2πiyT .

Let B1 be the unit ball in B(H ), i.e., the set of all T ∈ B(H ) with ‖T ‖op ≤ 1.

Lemma 8.2.3 B1 is weakly compact.

Proof For r ≥ 0 and z ∈ C let B̄r (z) be the closed ball around z of radius r . For
T ∈ B1 and v, w ∈ H , one has |〈T v, w〉| ≤ ‖v‖‖w‖, so the map

ψ : B1 →
∏

v,w∈H
B̄‖v‖‖w‖(0)

with ψ(T )v,w = 〈T v, w〉 embeds B1 into the Hausdorff space on the right, which
is compact by Tychonov’s Theorem A.7.1. The weak topology is induced by ψ , so
B1 is weakly compact if we can show that the image of ψ is closed. We claim that
this image equals the set A of all elements x of the product such that (v, w) �→ xv,w

is linear in v and conjugate linear in w. Since convergence in the product space is
component-wise, this set is closed. Given x ∈ A and w ∈ H , the map αv : w �→ xv,w

is a linear functional on H with ‖αv‖ ≤ ‖v‖ and hence there exists an element
T v ∈ H such that xv,w = 〈T v, w〉 for all w ∈ H . One then checks that v �→ T v
defines an element in B1 such that ψ(T ) = x. �

8.3 Representations

A unitary representation (π ,Vπ ) of a locally compact group G is called a factor
representation if the von Neumann algebra VN(π ) generated by π (G) ⊂ B(Vπ ) is a
factor. So π is a factor representation if and only if π (G)◦ ∩ π (G)◦◦ = C Id.
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Lemma 8.3.1 Every irreducible representation is a factor representation.

Proof It follows from the Lemma of Schur 6.1.7 that VN(π ) = B(Vπ ) for every
irreducible representation π . �

Definition Two unitary representations π1,π2 of G are called quasi-equivalent if
there is an isomorphism of *-algebras

φ : VN(π1) → VN(π2)

satisfying φ(π1(x)) = π2(x) for every x ∈ G.

Example 8.3.2 A given unitary representation π is quasi-equivalent to the direct
sum representation π⊕π . This follows from the general fact that any von-Neumann

algebra A ⊂ B(H ) is isomorphic to A
(

1
1

)
⊆ B
(
H 2
)
. (Compare with the proof

of von Neumann’s Bicommutant Theorem.)

Lemma 8.3.3 Two irreducible unitary representations of a locally compact group
are quasi-equivalent if and only if they are unitarily equivalent.

Proof Let the unitary representations (π ,Vπ ) and (η,Vη) be unitarily equivalent,
i.e., there is a unitary intertwining operator T : Vπ → Vη. Then T induces an
isomorphism VN(π ) → VN(η) by mapping S to T ST −1. This shows that π and
η are also quasi-equivalent. Conversely, let (π ,Vπ ) and (η,Vη) be two irreducible
unitary representations of G, and let φ : VN(π ) → VN(η) be an isomorphism of C∗-
algebras such that φ(π (x)) = η(x) for all x ∈ G. For u, v ∈ Vπ let Tu,v : Vπ → Vπ

be given by Tu,v(x)
def=〈x, u〉v. Then Tu,vTw,z = 〈z, u〉Tw,v, and T ∗

u,v = Tv,u. Let (ej )j∈I
be an orthonormal basis of Vπ . For each j ∈ I the map Pj = Tej ,ej is the orthogonal
projection onto the one dimensional space Cej and Tej ,ek is an isometry from Cej to
Cek and is zero on Cei for i 
= j . The Pj are pairwise orthogonal projections that
add up to the identity in the strong topology. The same holds for the images φ(Pj ).
Let Vη,j = φ(Pj )Vη. Then Vη is the direct orthogonal sum of the Vη,j . We claim
that φ(Tej ,ek ) is an isometry from Vη,j to Vη,k and zero on Vη,i for i 
= j . For this let
x, y ∈ Vη,j , then

〈
φ(Tej ,ek )x,φ(Tej ,ek )y

〉 = 〈φ(Tek ,ej Tej ,ek )x, y
〉

= 〈φ(Tej ,ej )x, y
〉 = 〈x, y〉.

Now fix some j0 ∈ I and choose fj0 ∈ Vη,j0 of norm one. For j 
= j0 set fj =
φ(Tej0 ,ej )fj0 . Consider the isometry S : Vπ → Vη given by S(ej ) = fj . It then
follows that STej ,ek = φ(Tej ,ek )S. The C∗-algebra VN(π ) = B(Vπ ) is generated by
the Tej ,ek , so S is an intertwining operator onto a closed subspace of Vη. As η is
irreducible, S must be surjective, i.e., unitary. �
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Definition A factor representation π is called a type-I representation if π is quasi-
equivalent to a representation π1 whose von Neumann algebra VN(π1) is a type-I
factor. Then π is of type I if and only if π is quasi-equivalent to an irreducible
representation.

Example 8.3.4 We here give an example of a factor representation, which is not of
type I. Let � be a non-trivial group with the property that every conjugacy class in
� is infinite or trivial. So the only finite conjugacy class in � is {1}. An example of
this instance is the free group F2 generated by two elements. Another example is the
group SL2(Z)/± 1.

Consider the regular right representation R of � on the Hilbert space H = �2(�).
Let VN(R) be the von Neumann algebra generated by R(�) ⊂ B(�2(�)).

Proposition 8.3.5 VN(R) is a factor, which is not of type I.

Proof We show that the commutant VN(R)◦ is the von Neumann algebra generated
by the regular left representation L of �. For this consider the natural orthonormal
basis (δγ )γ∈� , which is defined by δγ (τ ) = 1 if γ = τ and zero otherwise. One
has Rγ δγ0 = δγ0γ−1 and Lγ δγ0 = δγ γ0 . Let T ∈ VN(R)◦, so T Rγ = Rγ T for
every γ ∈ �. Then T (δ1) = ∑γ cγ δγ for some coefficients cγ ∈ C satisfying∑

γ |cγ |2 < ∞. For γ0 ∈ � arbitrary one gets

T (δγ0 ) = T
(
Rγ−1

0
δ1

)
= Rγ−1

0
T (δ1)

= Rγ−1
0

∑
γ

cγ δγ =
∑
γ

cγ δγ γ0

=
∑
γ

cγ Lγ (δγ0 ),

so T = ∑γ cγ Lγ , where the sum converges in the strong topology. Hence T ∈
VN(L). As trivially VN(L) ⊂ VN(R)◦ we get VN(R)◦ = VN(L). This means
that VN(L) and VN(R) are each other’s commutants. In particular, it follows that
each element of VN(L) can be written as a point-wise convergent sum of the form∑

γ cγ Lγ , and likewise each element of VN(R) can be written as a sum of the
form
∑

γ dγRγ . We show that VN(R) is a factor. For this we have to show that the
intersection of VN(R) and VN(L) is trivial. So let T ∈ VN(L) ∩ VN(R). Then we
have two representations ∑

γ

cγ Lγ = T =
∑
γ

dγRγ .

In particular,
∑

γ cγ δγ = T (δ1) = ∑γ dγ δγ−1 , which implies dγ = cγ−1 , so for
α ∈ �, on the one hand,

T (δα) =
∑
γ

cγ Lγ δα =
∑
γ

cγ δγα =
∑
γ

cγα−1δγ
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and on the other,

T (δα) =
∑
γ

cγ Rγ−1δα =
∑
γ

cγ δαγ =
∑
γ

cα−1γ δγ .

This means that the function γ �→ cγ is constant on conjugacy classes. Since the
sums must converge, this function can only be supported on finite conjugacy classes.
As there is only one of them, it follows that cγ = 0 except for γ = 1, so T ∈ C Id.

Finally we show that VN(R) is not of type I. For this consider the map σ : VN(R) →
C; T �→ 〈T δ1, δ1〉. This map is evidently continuous with respect to the strong and
weak topologies. We show σ (ST ) = σ (T S) for all S, T ∈ VN(R). By continuity it
suffices to show this for S = Rγ and T = Rτ , where γ , τ ∈ �. Then we have

σ (ST ) = σ (RγRτ ) = σ (Rγτ ) = 〈δγ τ , δ1
〉 =
{

1 if γ τ = 1,

0 otherwise.

The last condition is symmetric in γ and τ , since in the group � we have
γ τ = 1 ⇔ τγ = 1, so the same calculation gives σ (ST ) = σ (T S) as claimed.

We now show that for every selfadjoint projection P 
= 0 in VN(R) one has 0 <

σ (P ) ≤ 1. We first observe that for T =∑γ∈� cγRγ ∈ VN(R) one has σ (T ) = c1.

Next let P be a selfadjoint projection, which is the same as an orthogonal projection.
So it satisfies P ∗ = P = P 2. We write P =∑γ∈� cγRγ and we get

∑
γ

cγ Rγ = P = P 2 =
∑
γ

(∑
δ

cδcδ−1γ

)
Rγ .

So in particular c1 = ∑δ cδcδ−1 . The condition P = P ∗ = ∑γ cγ−1Rγ implies
cγ−1 = cγ and therefore σ (P ) = c1 = ∑γ |cγ |2. This implies c1 > 0 and c1 ≥ c2

1,
so 1 ≥ c1.

Now assume there is a *-isomorphism φ : B(H ) → VN(R) for some Hilbert space
H . Since VN(R) is infinite-dimensional, the space H is infinite-dimensional. So let
(ej )j∈N be an orthogonal sequence in H . Let Qj be the orthogonal projection with
image Cej and let Pj = φ(Qj ). Then Pj is a selfadjoint projection. Further Qj is
conjugate to Qk in B(H ), since there are unitary operators interchanging ej and ek .
Then Pj and Pk are conjugate in VN(R) and therefore σ (Pj ) = σ (Pk) is a fixed
number c > 0. Now Q1 + · · · + Qn again is a selfadjoint projection, so the same
holds for P1 + · · · + Pn. So we have

1 ≥ σ (P1 + · · · + Pn) = σ (P1) + · · · + σ (Pn) = nc,

Since this holds foe every n, we get c = 0, a contradiction! Hence φ does not exist
and VN(R) is not of type I. �
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8.4 Hilbert Integrals

A family of vectors (ξi)i∈I in a Hilbert space H is called a quasi-orthonormal basis
if the non-zero members of the family form an orthonormal basis of H .

Let X be a set and D a σ -algebra of subsets of X. A Hilbert bundle over X is a family
of Hilbert spaces (Hx)x∈X and a family of maps ξi : X →⋃x∈X Hx (disjoint union)
with ξi(x) ∈ Hx , such that for each x ∈ X the family (ξi(x)) is a quasi-orthonormal
basis of Hx , and for each i ∈ I the set of all x ∈ X with ξi(x) = 0 is measurable.

A section is a map s : X → ⋃x∈X Hx with s(x) ∈ Hx for every x ∈ X. A section
is called measurable section if for every j ∈ I the function x �→ 〈s(x), ξj (x)

〉
is

measurable on X, and there exists a countable set Is ⊂ I , such that the function
x �→ 〈s(x), ξi(x)〉 vanishes identically for every i /∈ Is .

Let μ be a measure on D. A measurable section s is called a nullsection if it vanishes
outside a set of measure zero. The direct Hilbert integral is the vector space of all
measurable sections s, which satisfy

‖s‖2 def=
∫
X

‖s(x)‖2 dμ(x) < ∞

modulo the space of nullsections.

This space, written as H = ∫
X
Hx dμ(x), is a Hilbert space with the inner product

〈s, t〉 = ∫
X
〈s(x), t(x)〉 dμ(x). To show the completeness, for i ∈ I let Xi be the

set of all x ∈ X with ξi(x) 
= 0. We get a map Pi : H → L2(Xi) given by
Pi(s)(x) = 〈s(x), ξi(x)〉. These maps combine to give a unitary isomorphism,

H =
∫
X

Hx dμ(x)
∼=−→
⊕̂
i∈I

L2(Xi).

Example 8.4.1 Direct sums are special cases of direct integrals. Let H =⊕j∈I Hj

be a direct sum of separable Hilbert spaces. This space equals the direct integral∫
X
Hx dμ(x) with X = I and μ the counting measure on X.

Let (Hx , ξj ) be a Hilbert bundle and μ a measure on X. Let G be a locally compact
group, and for every x ∈ X let ηx be a unitary representation of G on Hx , such that
for every g ∈ G and all i, j ∈ I the map x �→ 〈ηx(g)ξi(x), ξj (x)

〉
is measurable. Then

(η(g)s)(x)
def= ηx(g)s(x) defines a unitary representation of G on H = ∫

X
Hx dμ(x).

Example 8.4.2 LetAbe a locally compact abelian group with dual group Â equipped
with the Plancherel measure. Each character χ : A → T = U (C) determines a
one-dimensional representation of A on Hχ = C. Consider the constant section
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ξ1(χ ) = 1 ∈ C = Hχ . Let ηχ (y) = χ (y). Then the direct integral satisfies∫
Â

Hχ dχ ∼= L2(Â)

with (η(y)ξ)(χ ) = χ (y)ξ (χ ). It follows then from the Plancherel Theorem 3.4.8 that
(η,L2(Â)) is unitarily equivalent to the left regular representation (L,L2(A)) of A

via the Fourier transform.

8.5 The Plancherel Theorem

A locally compact group G is called a type-I group if every factor representation of
G is of type I, i.e., is quasi-equivalent to an irreducible one.

Examples 8.5.1

• Abelian groups are of type I. For an abelian group A and a unitary representation
π of A, the von Neumann algebra VN(π ) is commutative. So, if VN(π ) is a
factor, it must be isomorphic to C, which means that π is quasi-equivalent to a
one-dimensional representation.

• Compact groups are of type I. For a compact group any unitary representation is
a direct sum of irreducible representations.

• Nilpotent Lie groups are of type I. See [BCD+72] Chapter VI.

• Semisimple Lie groups are of type I. See [HC76].

• A discrete group is of type I if and only if it contains a normal abelian subgroup
of finite index. See [Tho68].

Let G and H be locally compact groups, and let (π ,Vπ ), (σ ,Vσ ) be unitary rep-
resentations of G and H , respectively. On the Hilbert tensor product Vπ⊗̂Vσ

(see Appendix C.3) we define a representation π ⊗ σ of the product group G × H

by linear extension of
v ⊗ w �→ π (x)v ⊗ σ (y)w

for (x, y) ∈ G×H , v ∈ Vπ , and w ∈ Vσ .

Recall that the unitary dual Ĝ consists of all equivalence classes of irreducible unitary
representations of G. On Ĝ we will install a natural σ -algebra in the case that G has
a countable dense subset.

Lemma 8.5.2 Assume that G has a countable dense subset. Then every irreducible
unitary representation (π ,Vπ ) has countable dimension, i.e., the Hilbert space Vπ

has a countable orthonormal system.

Proof Let (π ,Vπ ) be an irreducible unitary representation of G. A subset T ⊂ Vπ is
called total, if the linear span of T is dense in Vπ . By the orthonormalization scheme
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it suffices to show that there is a countable total set in Vπ . Let 0 
= v ∈ Vπ . Then
the set π (G)v is total in Vπ , as Vπ is irreducible. Let D ⊂ G be a countable dense
subset. Then the set π (D)v is dense in π (G)v, hence also total in Vπ .

Assume thatG has a dense countable subset. For a countable cardinaln = 1, 2, . . .ℵ0,
let Hn denote a fixed Hilbert space of dimension n. For each class C in Ĝ we fix a
representative π ∈ C with representation space Hn, which exists by Lemma 8.5.2.
The cardinal n is uniquely determined by C = [π ] and is called the dimension of the
representation. Let Ĝn be the subset of Ĝ consisting of all classes [π] of dimension
n. On Ĝn we install the smallest σ -algebra making all maps [π ] �→ 〈π (g)v, w〉
measurable, where g ranges in G and v, w range over Hn. On Ĝ =⋃n Ĝn we install
the union σ -algebra.

The prescription η(x, y) = LxRy defines a unitary representation of G × G on the
Hilbert space L2(G). Note that if G is second countable, then it contains a dense
countable subset, i.e., is separable.

Theorem 8.5.3 Let G be a second countable, unimodular, locally compact group of
type I. There is a unique measure μ on Ĝ such that for f ∈ L1(G)∩L2(G) one has

‖f ‖2
2 =
∫
Ĝ

‖π (f )‖2
HS dμ(π ).

The map f �→ (π (f ))π extends to a unitary G×G equivariant map

L2(G) ∼=
∫
Ĝ

HS(Vπ ) dμ(π ),

where the representation of ηπ of G×G on the space of Hilbert-Schmidt operators
HS(Vπ ) is given by ηπ (x, y)(T ) = π (x)T π (y−1) for each π ∈ Ĝ and x, y ∈ G.

The proof is in [Dix96], 18.8.1.

This Plancherel Theorem generalizes the Plancherel Theorem in the abelian case,
Theorem 3.4.8, as well as the Peter-Weyl Theorem in the compact case, Theorems
7.2.1 and 7.2.4. Concrete examples for groups, which are neither abelian nor compact
will be given in Theorem 10.3.1 and Theorem 11.3.1.

8.6 Exercises

Exercise 8.1 For S > 0 show that there exists a function f : R → R which is
infinitely differentiable, of compact support and satisfies f (x) = x for |x| ≤ S.

(Hint: Let g(x) = 1 for |x| ≤ S+ 1 and g(x) = 0 otherwise. Let h = φ ∗ g for some
smooth Dirac function with support in [−1, 1]. Set f (x) = xh(x).)
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Exercise 8.2 Let V ,W be Hilbert spaces.

(a) For A ∈ B(V ) set α(A)(v ⊗ w) = A(v) ⊗ w. Show that α is a norm-preserving
*-homomorphism from B(V ) to B(V ⊗̂W ).

(b) Let β be the analogous map on the second factor. Show that α ⊗ β defines a
*-homomorphism from B(V ) ⊗ B(W ) to B(V ⊗̂W ).

(c) Show that the von Neumann algebra generated by the image of α⊗β equals the
entire B(V ⊗̂W ).

Exercise 8.3 Give an example of a set of bounded operators on a Hilbert space, for
which the norm-closure differs from the strong closure. Also give an example, for
which the strong and weak closures differ.

Exercise 8.4 Let H be a Hilbert space, and let P be the set of all orthogonal pro-
jections on H . Let Ts and Tw be the restrictions of the strong and weak topologies to
the set P . Show that Ts = Tw.

Exercise 8.5 Let H be a Hilbert space, and let U be the set of all unitary operators
on H . Let T ′

s and T ′
w be the restrictions of the strong and weak topologies to the set

U . Show that T ′
s = T ′

w.

Exercise 8.6 Show that not every unital C∗-algebra is isomorphic to a von Neumann
algebra.

(Hint: Consider an infinite dimensional Hilbert space H and the space K of compact
operators. The algebra A = K + CId is a C∗-algebra.)

Exercise 8.7 Let H be a Hilbert space, and let M ⊂ B(H ) be self-adjoint and
commutative, i.e., for S, T ∈ M one has S∗, T ∗ ∈ M and ST = T S. Show that the
bicommutant M◦◦ is commutative.

Exercise 8.8 For a von Neumann algebra A ⊂ B(H ) let A+ be the set of all finite
sums of elements of the form aa∗ for some a ∈ A. Show:

(a) A+ is a proper cone, i.e.:

A+ +A+ ⊂ A+, R
+A+ ⊂ A+, A+ ∩ (−A+) = 0.

(b) For a ∈ A one has

a ∈ A+ ⇔ ∃b ∈ A : a = bb∗, ⇔ a ≥ 0.

Exercise 8.9 Let A ⊂ B(H ) be a von Neumann algebra. A finite trace is a linear
map τ : A → C with τ (A+) ⊂ R

+ and τ (ab) = τ (ba) for all a, b ∈ A. Show:



8.6 Exercises 163

(a) Let τ be a finite trace on A = Mn(C). Then τ (a) = c tr (a) for some c ≥ 0.

(b) Let A = B(H ), where H is an infinite-dimensional Hilbert space. Then there is
no finite trace on A.

(c) Let � be a discrete group, and let A = VN(R). Then τ
(∑

γ∈� cγRγ

)
= c1 is a

finite trace on A.

Exercise 8.10 Show that a von Neumann algebra A is generated by all orthogonal
projections it contains.

Exercise 8.11 LetG be a locally compact group. For a unitary representation (π ,Vπ )
let its matrix coefficients be all continuous functions on G of the form

g �→ ψv,w(g)
def=〈π (g)v, w〉, v, w ∈ Vπ .

LetG be of type I. Letπ be a unitary representation such that all its matrix coefficients
are in L2(G). Show that π is a direct sum of irreducible representations.



Chapter 9

The Selberg Trace Formula

In this chapter we introduce the Selberg trace formula, which is a natural generaliza-
tion of the Poisson summation formula to non-abelian groups. Applications of the
trace formula will be given in the next two chapters.

9.1 Cocompact Groups and Lattices

We will study the following situation. G will be a locally compact group, and H will
be a closed subgroup, which is unimodular. We say that a subgroupH of a topological
group G is a cocompact subgroup if the quotient G/H is a compact space.

Examples 9.1.1

• A classical example is G = R and H = Z.

• For a unimodular group H and a compact group K together with a group ho-
momorphism η : K → Aut(H ) such that the ensuing map K × H → H

given by (k,h) �→ η(k)(h) is continuous, one can form the semi-direct prod-
uct G = H �K . As a topological space, one has G = H ×K . The multiplication
is (h, k)(h1, k1) = (h η(k)(h1), kk1). Then H is a cocompact subgroup of G.

• For G = SL2(R), one uses hyperbolic geometry [Bea95] to construct discrete
subgroups � = H ⊂ G, which provide examples of the situation considered here.

Proposition 9.1.2 Let G be a locally compact group. If G admits a unimodular
closed cocompact subgroup, then G is unimodular itself.

Proof Let H ⊂ G be a unimodular closed cocompact subgroup. The inversion
on G induces a homeomorphism G/H → H\G by gH �→ Hg−1. Therefore
H\G is compact as well. We install a Radon measure μ on the compact Hausdorff
space H\G using Riesz’s representation theorem as follows. For f ∈ C(H\G)

choose g ∈ Cc(G) with Hg = f , where Hg(x)
def= ∫

H
g(hx) dh. In this case de-

fine
∫
H\G f (x) dμ(x) by

∫
G
g(x) dx. For this to be well-defined, we have to show

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 165
DOI 10.1007/978-3-319-05792-7_9, © Springer International Publishing Switzerland 2014
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that Hg = 0 implies
∫
G
g(x) dx = 0. Note that, as H is unimodular, we have∫

H
g(h−1x) dh = ∫

H
g(hx) dh = 0. Let φ ∈ Cc(G) with Hφ ≡ 1. One gets

∫
G

g(x) dx =
∫
G

∫
H

φ(hx)g(x) dh dx

=
∫
H

∫
G

φ(hx)g(x) dx dh

=
∫
H

∫
G

φ(x)g(h−1x) dx dh

=
∫
G

φ(x)
∫
H

g(h−1x) dh dx = 0.

This measure μ on H\G satisfies
∫
H\G

f (xy) dμ(x) =
∫
G

g(xy) dx = 	(y−1)
∫
G

g(x) dx

= 	(y−1)
∫
H\G

f (x) dμ(x).

So in particular, for f ≡ 1 ∈ C(H\G) one gets

0 <

∫
H\G

f (x) dμ(x) =
∫
H\G

f (xy) dμ(x) = 	(y−1)
∫
H\G

f (x) dμ(x),

which implies 	(y−1) = 1. �

Definition A subgroup � ⊂ G of a topological group is called a discrete subgroup
if the subspace-topology on � is the discrete topology.

Lemma 9.1.3

(a) A subgroup � ⊂ G is discrete if and only if there is a unit-neighborhood U ⊂ G

with � ∩ U = {1}.
(b) A discrete subgroup is closed in G.

Proof As � is a topological group, it is discrete if and only if {1} is open, which is
equivalent to the existence of an open set U with � ∩U = {1}. This implies part (a).
For part (b) let � be a discrete subgroup, and let γj → x be a net in �, convergent
in G. We have to show that x ∈ �. Let U be a unit-neighborhood in G such that
� ∩ U = {1} and let V be a symmetric unit-neighborhood such that V 2 ⊂ U . As
xV is a neighborhood of x, there exists an index j0 such that for i, j ≥ j0 one has
γi , γj ∈ xV , therefore γ−1

i γj ∈ V 2 ⊂ U , hence γi = γj , so the net is eventually
constant, hence x = γj0 ∈ �. �



9.2 Discreteness of the Spectrum 167

Example 9.1.4

• The subgroup Z of R is a discrete subgroup.

• Let G be Hausdorff and compact. Then a subgroup � ⊂ G is discrete if and only
if it is finite.

• Let G = SL2(R) be the group of real 2 × 2 matrices of determinant one. Then
� = SL2(Z) is a discrete subgroup of G.

Definition Let G be a locally compact group. A discrete subgroup � such that G/�

carries an invariant Radon measure μ with μ(G/�) < ∞ is called a lattice in G.
A cocompact lattice is also called a uniform lattice.

Proposition 9.1.5 Let G be a locally compact group. A discrete, cocompact
subgroup � is a uniform lattice.

Proof Let � ⊂ G as in the proposition. Then G is unimodular by Proposition 9.1.2.
As � is unimodular, by Theorem 1.5.3 there exists an invariant Radon measure on
G/�, and, as the latter space is compact, its volume is finite, so � is a lattice. �

Remark There are lattices, which are not uniform, like � = SL2(Z) in G = SL2(R)
(See [Ser73] ).

Theorem 9.1.6 Let G be a locally compact group. If G admits a lattice, then G is
unimodular.

Proof Let 	 be the modular function of G, and let H = ker(	). Then H is
unimodular by Corollary 1.5.5. Let � ⊂ G be a lattice. As there is an invariant
measure on G/�, Theorem 1.5.3 implies that 	 is trivial on �, so � ⊂ H . On G/H

and on H/� there are invariant measures by Theorem 1.5.3, so by the uniqueness
of these respective measures we conclude that

∞ > vol(G/�) =
∫
G/�

1 dx =
∫
G/H

∫
H/�

1 dx dy.

Therefore G/H has finite volume. Being a locally compact group, it follows that
G/H is compact. By Proposition 9.1.2. the group G is unimodular. �

9.2 Discreteness of the Spectrum

Let G be a locally compact group, and let � ⊂ G be a cocompact lattice. It is a
convention that one uses the right coset space �\G instead of the left coset space.
This quotient carries a Radon measure μ that is invariant under right translations
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by elements of G and has finite volume. On the ensuing Hilbert space L2(�\G) the
right translations give a unitary representation R of G by

R(x)φ(y)
def=φ(yx).

Example 9.2.1 Let G = R, and � = Z then � is a closed cocompact subgroup
and the theory of Fourier series, [Dei05] Chap. 1, implies that the representation
R decomposes into the direct sum

⊕̂
n∈Z

χn, where χn : R → T is the character
given by χn(x) = e2πinx . Thus R decomposes into a discrete sum of irreducible
representations. This is a general phenomenon, as the next theorem shows.

For a representation π and a natural number N we write Nπ for the N -fold direct
sum π ⊕ π · · · ⊕ π .

Theorem 9.2.2 Let G be a locally compact group, and let � ⊂ G be a unimodular
closed cocompact subgroup. The representation R on L2(�\G) decomposes as a
direct sum of irreducible representations with finite multiplicities, i.e.,

L2(�\G) ∼=
⊕
π∈Ĝ

N�(π )π ,

where the sum runs over the unitary dual Ĝ of G, and N�(π ) ∈ N0 is a finite
multiplicity for π ∈ Ĝ.

Proof We need a lemma that tells us that for f ∈ Cc(G) the operator R(f ) is given
by a continuous integral kernel. For later use we will extend this to a greater class of
functions f . Let U be a compact unit-neighborhood in G. For a continuous function
f on G let fU : G → [0,∞) be defined by

fU (y)
def= sup

x,z∈U
|f (xyz)|.

Lemma 9.2.3 The function fU is continuous.

Proof It suffices to show that for a ≥ 0 the sets f −1
U ((a,∞)) and f −1

U ([0, a))
are open. For the former assume fU (x) > a, then there exist u1, u2 ∈ U with
|f (u1xu2)| > a. As the function y �→ f (u1yu2) is continuous, there exists an open
neighborhood V of x such that |f (u1vu2)| > a for every v ∈ V . This implies
fU (v) > a for every v ∈ V .

The second assertion is equivalent to saying thatf −1
U ([a,∞)) is closed. So let (xj ) be a

net in this set, convergent to some x ∈ G. This means that fU (xj ) ≥ a and we have to
show thatfU (x) ≥ a. For each j fix some uj , vj ∈ U such thatfU (xj ) = |f (uj xjvj )|.
By switching to a subnet, we may assume that the nets (uj ), (vj ) are both convergent
in the compact set U with limits u and v respectively. It follows that

fU (x) ≥ |f (uxv)| = lim
j
|f (uj xjvj | ≥ a. �
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Definition We say that a continuous function f is a uniformly integrable function
if there exists a compact unit-neighborhood U such that fU is in L1(G). If f is
uniformly integrable, then f ∈ L1(G) as |f | ≤ fU . Let Cunif (G) be the set of all
continuous functions f on G that are uniformly integrable.

Example 9.2.4

• If f ∈ Cc(G), then f is uniformly integrable, as fU ∈ Cc(G) again.

• Every Schwartz-function on R is uniformly integrable (Exercise 9.1).

Lemma 9.2.5 Let G be unimodular. Every uniformly integrable function vanishes
at infinity, and the space Cunif (G) is an algebra under convolution.

Proof Assume that f is uniformly integrable and let U be a compact symmetric
unit-neighborhood in G such that fU is integrable. If f does not vanish at ∞, there
exists an ε > 0 such that for every compact set K ⊂ G there is x ∈ G�K with
|f (x)| ≥ ε. Let x1 ∈ G be any element with |f (x1)| ≥ ε. Then there exists x2 /∈ x1U

2

such that |f (x2)| ≥ ε. As U is symmetric, it follows that x1U ∩ x2U = ∅. Next
we pick an element x3 outside of x1U

2 ∪ x2U
2 with |f (x3)| ≥ ε. Repeating this

argument, we find a sequence {xn : n ∈ N} in G such that xnU ∩ xmU = ∅ for all
n 
= m and |f (xn)| ≥ ε for every n. But then fU ≥ ε on xnU for every n, which
contradicts the integrability of fU .

Since integrable functions in C0(G) are square integrable, we get

Cunif (G) ⊂ L2(G).

Let f , g ∈ Cunif (G). We can write f ∗ g(x) = 〈f ,Lxg
∗〉. The map x �→ Lxg

∗
is continuous as a map from G to L2(G). The inner product is continuous, hence
so is f ∗ g. Finally, choose a unit-neighborhood U such that fU and gU are both
integrable. Then

(f ∗ g)U (y) = sup
x,z∈U

∣∣∣∣
∫
G

f (ξ )g(ξ−1xyz) dξ

∣∣∣∣
= sup

x,z∈U

∣∣∣∣
∫
G

f (xξ )g(ξ−1yz) dξ

∣∣∣∣
≤ sup

x,z∈U

∫
G

|f (xξ )g(ξ−1yz)| dξ

≤
∫
G

fU (ξ )gU (ξ−1y) dξ = fU ∗ gU (y).

This implies that (f ∗ g)U is integrable over G. �
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Lemma 9.2.6 For f ∈ Cunif (G) and φ ∈ L2(�\G) one has

R(f )φ(x) =
∫
�\G

k(x, y)φ(y) dy,

where k(x, y) =∑γ∈� f (x−1γy) dh. The kernel k is continuous on �\G× �\G.

Proof Let f ∈ L1(G). For φ ∈ L2(�\G), one computes with the quotient integral
formula

R(f )φ(x) =
∫
G

f (y)R(y)φ(x) dy =
∫
G

f (y)φ(xy) dy

=
∫
G

f (x−1y)φ(y) dy

=
∫
�\G

∑
γ∈�

f (x−1γy)φ(γy) dy =
∫
�\G

∑
γ∈�

f (x−1γy)φ(y) dy,

as claimed, and the integral converges almost everywhere in x. In particular, for
f ∈ Cunif (G) this argument works with f replaced by fU for a suitable symmetric
unit-neighborhood U to get a kernel kU . We choose g ∈ Cc(G) with g ≥ 0 and∑

γ∈� g(γ x) = 1 for all x ∈ G and use the quotient integral formula to compute

∫
�\G×�\G

kU (x, y) dx dy =
∫
�\G

∫
�\G

∑
γ∈�

g(γ x)
∑
τ∈�

fU (x−1τy) dx dy

=
∫
�\G

∫
G

g(x)
∑
τ∈�

fU (x−1τy) dx dy

=
∫
G

∫
G

g(x)fU (x−1y) dx dy = ‖g ∗ fU‖1 < ∞

By the quotient integral theorem, the sum
∑

γ∈� fU (x−1γy) converges almost ev-
erywhere in (x, y), so it converges on a dense set of (x, y). Let (x0, y0) be such a
point of convergence. We show that k(x, y) is continuous in the set x0U × y0U . For
given ε > 0 there exists a finite set S ⊂ � such that

∑
γ /∈S fU (x−1

0 γy0) < ε/2. This
means that for (x, y) ∈ x0U × y0U one has

∑
γ /∈S |f (x−1γy)| < ε/2. This implies

for (x ′, y ′) ∈ x0U × y0U ,

|k(x, y) − k(x ′, y ′)| ≤
∑
γ∈S

|f (x−1γy) − f (x ′−1
γy ′)| + ε,

from which the continuity of k follows �

As k ∈ C(�\G×�\G) ⊂ L2(�\G×�\G), the operator R(f ) is a Hilbert-Schmidt
operator, hence compact. The theorem follows from the next lemma.
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Lemma 9.2.7 Let A be a *-closed subspace of Cc(G). Let (η,Vη) be a unitary
representation of G such that for every f ∈ A, the operator η(f ) is compact and
such that for every non-zero v ∈ Vη the space η(A)v is non-zero. Then η is a direct
sum of irreducible representations with finite multiplicities.

Note that the condition η(A)v 
= 0 is always satisfied if A contains a Dirac-net (φU )U .

Proof Zorn’s Lemma provides us with a subspace E, maximal with the property
that it decomposes as a sum of irreducibles. The assumption of the Lemma also holds
for the orthocomplement E⊥ of E in V = Vη. This orthocomplement cannot contain
any irreducible subspace. We have to show that it is zero. In other words, we have
to show that a representation η as in the assumption, always contains an irreducible
subspace.

The space A is generated by its self-adjoint elements. Let f ∈ A be self-adjoint.
Then η(f ) is self-adjoint and compact. By the spectral theorem for compact operators
5.2.2 the space V = Vη decomposes,

V = Vf ,0 ⊕
∞⊕
j=1

Vf ,j ,

where Vf ,0 is the kernel of η(f ) and Vf ,j is the eigenspace of η(f ) for an eigenvalue
λj 
= 0. The sequence λj tends to zero and each Vf ,j is finite dimensional for j > 0.
For every closed invariant subspace E ⊂ V one has a similar decomposition

E = E′
f ,0 ⊕

∞⊕
j=1

E′
f ,j ,

and E′
f ,j ⊂ Vf ,j for every j ≥ 0. It follows that every non-zero closed invariant

subspace E has a non-zero intersection with one of the Vf ,i for some i > 0 and some
f ∈ A, since otherwise E ⊂ ker η(f ) for every f ∈ A. Fix f and j and consider
the set of all non-zero intersections Vf ,j ∩E, where E runs over all closed invariant
subspaces. Among these intersections choose one W = Vf ,j ∩E of minimal dimen-
sion 
= 0, which is possible as Vf ,j is finite-dimensional. Let E1 =⋂E:E∩Vf ,j=W E,
where the intersection runs over all closed invariant subspaces E with E∩Vf ,j = W .
Then E1 is a closed invariant subspace. We claim that it is irreducible. For this as-
sume that E1 = F ⊕F ′ with closed invariant subspaces F ,F ′. Then by minimality,
W ⊂ F or W ⊂ F ′, which implies that one of the spaces F or F ′ is zero, so E1 is
indeed irreducible. We have shown that V indeed has an irreducible subspace E1.
As shown above this implies that V decomposes as a sum of irreducibles.

It remains to show that the multiplicities are finite. For this note first that if τ and
σ are unitarily equivalent representations, then λ is an eigenvalue of τ (f ) if and
only if it is one for σ (f ). Thus finiteness of the multiplicities follows from the fact
that any collection of orthogonal subspaces, which give rise to unitarily equivalent
representations, must all have non-trivial intersection with the same eigenspacesVf ,j .
Since the Vf ,j are finite dimensional, there can only exist finitely many of them. �
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9.3 The Trace Formula

Let X be a locally compact Hausdorff space, and let μ be a Radon measure on X.
A continuous L2-kernel k on X is called admissible kernel if there exists a function
g ∈ C(X) ∩ L2(X) such that |k(x, y)| ≤ g(x)g(y). Note that if X is compact, then
every continuous kernel is admissible.

An operator S : L2(X) → L2(X) is called an admissible operator if there exists an
admissible kernel k such that

Sφ(x) =
∫
X

k(x, y)φ(y) dy,

where we have written dy for dμ(y).

Proposition 9.3.1 Let X be a locally compact Hausdorff space equipped with a
Radon measure. Assume that X is first countable or compact. Let T be an inte-
gral operator with continuous L2-kernel on X. Assume that there exists admissible
operators S1, S2 with T = S1S2.

Then T is of trace class and

tr (T ) =
∫
X

k(x, x) dx.

Proof Replacing S2 with S∗2 we can assume T = S1S
∗
2 in the proposition. The map

σ : (S1, S2) �→ S1S
∗
2 is sesquilinear, so it obeys the polarization rule,

σ (S,R) = 1

4
(σ (S + R) − σ (S − R) + i (σ (S + iR) − σ (S − iR))) ,

where we have written σ (S + R) for σ (S + R, S + R). This implies that, in order
to prove the proposition, it suffices to assume that T = SS∗ for some admissible
operator S. As S is a Hilbert-Schmidt operator, T = SS∗ is trace class and also
tr (T ) = ‖S‖2

HS. Let l(x, y) be the admissible kernel of S. For φ ∈ Cc(X) we
compute

SS∗φ(x) =
∫
X

l(x, u)S∗φ(u) du

=
∫
X

∫
X

l(x, u)l(y, u)φ(y) dy du

=
∫
X

(∫
X

l(x, u)l(y, u) du

)
φ(y) dy.

So the operator SS∗ has the kernel l ∗ l∗(x, y) = ∫
X
l(x, z)l(y, z) dz. If l is admis-

sible and X is first countable, it suffices to check convergence with sequences, and
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therefore the Theorem of Dominated Convergence implies that the kernel l ∗ l∗ is
continuous. If X is compact, the Radon measure is finite and the function l is uni-
formly continuous in the following sense: For every x0 ∈ X and every ε > 0 there
exists a neighborhood U of x0 such that for all x ∈ U and all z ∈ X we have
|l(x, z) − l(x0, z)| < ε. This implies the continuity of l ∗ l∗. For φ,ψ ∈ Cc(X) we
have ∫

X

∫
X

l ∗ l∗(x, y)φ(y)ψ(x) dy dx = 〈SS∗φ,ψ
〉

=
∫
X

∫
X

k(x, y)φ(y)ψ(x) dy dx.

Varying φ and ψ we conclude that the continuous kernels k and l ∗ l∗ coincide.
Therefore, ∫

X

k(x, x) dx=
∫
X

∫
X

|l(x, u)|2 du dx=‖S‖HS = tr (T ).

The proposition follows. �

Recall that for π ∈ Ĝ the number N�(π ) ≥ 0 is the multiplicity of π as a
subrepresentation of (R,L2(�\G)). Let Ĝ� denote the set of all π ∈ Ĝ with
N�(π ) > 0.

Definition We write Cunif (G)2 for the space of all linear combinations of functions
of the form g ∗ h with g,h ∈ Cunif (G). Moreover, if � is a lattice in G and γ ∈ �,
then we denote by [γ ] the conjugacy class of γ in �, Gγ

def={x ∈ G : xγ x−1 = γ }
denotes the centralizer of γ in G, and �γ

def=Gγ ∩� denotes the centralizer of γ in �.
Note that the map from � to [γ ], which sends ν to ν−1γ ν, factors through a bijection
�γ \� ∼= [γ ].

Theorem 9.3.2 (Trace Formula) Let G be a locally compact group and � ⊂ G a
uniform lattice. Let Ĝ� denote the set of all π ∈ Ĝ which appear as subrepresenta-
tions of the representation R on L2(�\G) and let f ∈ Cunif (G)2. For every π ∈ Ĝ�

the operator π (f ) is of trace class and∑
π∈Ĝ�

N�(π ) tr π (f ) =
∑
[γ ]

vol(�γ \Gγ ) Oγ (f ),

where the summation on the right runs over all conjugacy classes [γ ] in the group
�, and Oγ (f ) denotes the orbital integral,

Oγ (f ) =
∫
Gγ \G

f (x−1γ x) dx.

We shall see in Lemma 9.3.3 below that the centralizer Gγ is unimodular and that
�γ \Gγ has finite measure for every γ ∈ �. The expression vol(�γ \Gγ )Oγ (f ) is
therefore well-defined. It does not depend on the choice of Haar measure on Gγ .
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Proof of the trace formula The algebra Cunif (G)2 consists of all finite linear combi-
nations of convolution products of the form g∗h∗ with g,h ∈ Cunif (G). So it suffices
to show the trace formula for f = g ∗ h∗. According to Lemma 9.2.6, the operators
R(g) and R(h) are integral operators with continuous kernels

kg(x, y) =
∑
γ∈�

g(x−1γy) and kh(x, y) =
∑
γ∈�

h(x−1γy).

By Proposition 9.3.1 the operator R(f ) is of trace class and tr (R(f )) =∫
�\G kf (x, x) dx. With R(f ), all its restrictions to subrepresentations are of trace

class. It follows that

∑
π∈Ĝ�

N�(π ) tr π (f ) = tr (R(f )) =
∫
�\G

kf (x, x) dx

=
∫
�\G

∑
γ∈�

f (x−1γ x) dx.

We order the sum according to conjugacy classes [γ ] in �, interchange integration
and summation and use the quotient integral formula to get

tr (R(f )) =
∫
�\G

∑
[γ ]

∑
σ∈�γ \�

f (x−1σ−1γ σx) dx

=
∑
[γ ]

∫
�\G

∑
σ∈�γ \�

f ((σx)−1γ σx) dx

=
∑
[γ ]

∫
�γ \G

f (x−1γ x) dx.

Lemma 9.3.3 For every γ ∈ �, the centralizer Gγ is unimodular and �γ \Gγ has
finite invariant measure vol(�γ \Gγ ).

Proof The above calculation shows that for every f as in the theorem, which is
positive, i.e., for f ≥ 0, one has

∫
�γ \G f (x−1γ x) dx < ∞ for every γ ∈ �.

Consider the projection p : �γ \G → Gγ \G. Since G is unimodular by Theorem
9.1.6, the space �γ \G carries an invariant Radon measure ν. Let μ be the image
under p of ν, i.e., we define

∫
Gγ \G f (x) dμ(x) = ∫

�γ \G f (p(y)) dν(y) for every
f ∈ Cc(Gγ \G). We need to show that this is finite. For this let 0 ≤ f ∈ Cc(Gγ \G),
and let � : Gγ \G → G be given by �(Gγ x) = x−1γ x. Then K = �(suppf ) ⊆ G

is compact in G and by Tietze’s extension theorem we can find a function 0 ≤ f̃ ∈
Cc(G) such that f̃ (y−1γy) = f (Gγ y) for every y ∈ G with f (Gγ y) > 0. Choose
0 ≤ F ∈ Cc(G)2 such that f̃ ≤ F . To show the existence of such a function, let
g ≥ 0 in Cc(G) such that g > 0 in a neighborhood of supp(f ). There exists a unit-
neighborhood U , such that φU ∗ g is > 0 on the set supp(f ), where φU is a Dirac
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function of support in U . Set F = cφU ∗ g for some sufficiently large c > 0, then
f ∈ Cc(G)2 and F ≥ f . Further F satisfies the conditions of the theorem, so we get

∫
Gγ \G

f (x) dx =
∫
�γ \G

f (p(y)) dν(y) =
∫
�γ \G

f̃ (y−1γy) dν(y)

≤
∫
�γ \G

F (y−1γy) dν(y),

which is finite by computations preceding the lemma. Thus μ is a well defined Radon
measure. One easily checks that it is invariant. By Theorem 1.5.3 it follows that the
modular function of Gγ agrees with the one of G. As G is unimodular, so is Gγ .
Finally, since for every function in Cc(Gγ \G) the function f ◦ p is invariant under
Gγ , it follows from the finiteness of

∫
�γ \G f (p(y)) dν(y) that �γ \Gγ has finite

invariant volume. �

By the lemma, we can continue the calculation above to arrive at

tr R(f ) =
∑
[γ ]

∫
Gγ \G

∫
�γ \Gγ

f ((σx)−1γ σx) dσ dx

=
∑
[γ ]

vol(�γ \Gγ ) Oγ (f ).

This proves the theorem. �

Example 9.3.4 Consider the case G = R and � = Z. Every t ∈ R gives a character
x �→ e2πitx , and in this way we identify Ĝ with R. The subset Ĝ� is mapped to Z

and the multiplicities N�(π ) are each equal to one. Therefore the spectral side of the
trace formula equals

∑
k∈Z

f̂ (k), and the geometric side equals
∑

k∈Z
f (k). In other

words, the trace formula is the same as the Poisson summation formula.

For applications of the trace formula, the following lemma will be important.

Lemma 9.3.5 Let G be a locally compact group, and let A be a *-subalgebra of
Cc(G) which contains a Dirac net (φU )U . Assume further that A is stable under
left translations Ly , y ∈ G. Let (π ,V ) and (σ ,W ) be unitary representations of G
such that for every f ∈ A the operators π (f ) and σ (f ) are trace class and that
tr π (f ) = tr σ (f ). Then π and σ are both direct sums of irreducible representations
with finite multiplicities, and they are equivalent.

Proof The fact that π and σ are both direct sums of irreducible representations
with finite multiplicities is Lemma 9.2.7. There is a subrepresentation of π , maxi-
mal with the property of being isomorphic to a subrepresentation of σ . Restricting
to the orthogonal space we can assume that π and σ do not have isomorphic
subrepresentations. We have to show that they both are zero.
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Let V = ⊕α∈I Vα be a decomposition in pairwise orthogonal subrepresentations
and let vα,μ ∈ Vα be vectors, such that

∑
α

∑
μ

‖π (f )vα,μ‖2 < ∞

for every f ∈ A. Choose a vector 0 
= w ∈ W . We claim that for every ε > 0 there
exists some f ∈ A, such that

∑
α

∑
μ

‖π (f )vα,μ‖2 < ε‖σ (f )w‖2.

If this were not the case, the map

∑
α

∑
μ

π (f )vα,μ �→ σ (f )w, f ∈ A,

would be well-defined and could be extended to a non-trivial intertwining map from
the closure L of the space

{∑
α

∑
μ

π (f )vα,μ : f ∈ A

}
⊂
⊕
α

⊕
μ

Vα,μ

to W . Here every Vα,μ is a new copy of the space Vα . The space L decomposes as a
direct sum of irreducibles and it only contains isotypes, which don’t occur in W , so
such an intertwiner cannot exist.

Now assume σ 
= 0. As A contains Dirac functions of arbitrary small supports, there
is a function h in A, such that σ (h) 
= 0. Let f = h ∗ h∗. Then σ (f ) is of trace class
and positive. Therefore σ (f ) possesses a largest eigenvalue and we can scale h in
such a way that this eigenvalue is equal to 1. Let w ∈ W of norm one withσ (f )w = w.
Let λ > 0 be the largest eigenvalue of π (f ). For every α, let (vα,μ) be an orthonormal
basis of Vα consisting of eigenvectors of π (f ), say π (f )vα,μ = λα,μvα,μ. For every
g ∈ A, the sum

∑
α

∑
μ ‖π (g)vα,μ‖2 equals the square of the Hilbert-Schmidt norm

of π (g) and therefore is finite. By the above remark there is a g ∈ A with

∑
α

∑
μ

‖π (g)vα,μ‖2 <
1

λ2
‖σ (g)w‖2.

The trace of π (g ∗ f )∗π (g ∗ f ) equals

∑
α

∑
μ

‖π (g ∗ f )vα,μ‖2 =
∑
α

∑
μ

λ2
α,μ‖π (g)vαμ‖2

≤ λ2
∑
α

∑
μ

‖π (g)vα,μ‖2.
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The right hand side is strictly smaller than ‖σ (g)w‖2 = ‖σ (g ∗ f )w‖2, which again
is smaller than

tr
(
σ (g ∗ f )∗σ (g ∗ f )

) = tr
(
π (g ∗ f )∗π (g ∗ f )

)
,

a contradiction!

This implies σ = 0 and, by symmetry, also π = 0. �

9.4 Locally Constant Functions

Let G be a locally compact group with a cocompact lattice � ⊂ G. A function f on
G is called locally constant, if for every x ∈ G there exists a neighborhood Ux of x
such that f is constant on Ux . There are not many locally constant functions if G is
connected, but there are many if G is totally disconnected.

The function f is called uniformly locally constant, if there exists a unit-
neighborhood U such that f is constant on every set of the form UxU , x ∈ G.
For example, if f is locally constant and of compact support, then f is uniformly
locally constant.

Proposition 9.4.1 Let G be totally disconnected and f a uniformly locally constant
and integrable function on G. Then f ∈ Cunif (G)2. Hence the trace formula is valid
for f.

Proof Let U denote a compact open subgroup such that f is constant on every
set of the form UxU . Then fU = |f | and therefore f ∈ Cunif (G). The same holds
for the function g = 1

vol(U ) 1U and one sees that f = g ∗ f , so f ∈ Cunif (G)2 as
claimed. �

9.5 Lie Groups

In this section, we shall present a simple class of functions which satisfy the trace
formula in the case of a Lie-group, i.e., a group which is a smooth manifold such
that the group operations are smooth maps. We shall freely make use of the notion
of a smooth manifold as in [War83].

Theorem 9.5.1 Let G be a Lie group of dimension n and let � ⊂ G be a cocompact
lattice. Let f be a continuous integrable function on G, such that the sum

k(x, y) =
∑
γ∈�

f (x−1γy)
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converges uniformly and the kernel k is 2r-times continuously differentiable, where
r is the smallest integer with r > n/2. Then the trace formula is valid for f.

In particular, the trace formula holds for every f ∈ Cr
c (G).

Proof To show the theorem, we need a partition of unity with a smooth square-root.
The easiest way to achieve that is to adapt the classical construction of a partition of
unity as is done in the following proposition.

Lemma 9.5.2 Let M be a smooth manifold and let (Ui)i∈I be an open covering of
M. Then there are smooth functions ui : M → [0, 1], such that the support of ui in
contained in Ui and that ∑

i∈I
ui ≡ 1,

where the sum is locally finite, i.e., for every p ∈ M there is a neighborhood U, such
that the set

{i ∈ I : ui |U 
= 0}
is finite. The family (ui) is called a smooth partition of unity subordinate to the
covering (Ui). One can choose the ui in a way that for each i ∈ I the function

√
ui

is smooth as well.

Proof Except for the smoothness of the square-root, this is Theorem 1.11 of
[War83], the proof of which is adapted to give the lemma. In loc.cit., one con-
structs a sequence (ψj )j≥1 of smooth functions, which are≥ 0 and such that the sets
{p : ψj (p) > 0} form a locally-finite covering of M , subordinate to the covering
(Ui). So the function

ψ =
∑
j≥1

ψ2
j

is a smooth function with ψ(p) > 0 for every p ∈ M . The functions

uj =
ψ2

j

ψ

are smooth with smooth square root and satisfy
∑

j uj = 1. �

A Borel measure ν on R
n is called a smooth measure, if it has a smooth, strictly

positive density with respect to the Lebesgue measure λ, i.e., if there is a smooth
function

d : R
n → (0,∞)

such that

ν(A) =
∫
A

d(x) dλ(x)

holds for every Borel set A ⊂ R
n.
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A measureμ on a smooth manifoldM is called a smooth measure, if for every smooth
chart φ : U → R

n the induced measure ν = φ∗μ on R
n, given by μ(A) = ν(φ−1(A))

is smooth.

Proposition 9.5.3 Let M be a compact smooth manifold of dimension n with a
smooth measure μ. Let k : M ×M → C be continuous and 2r-times continuously
differentiable in the first argument, where r is the smallest integer r > n/2. Then the
induced integral operator Tk : L2(M) → L2(M),

Tk(φ)(x) =
∫
M

k(x, y)φ(y) dy,

is of trace class and

tr (Tk) =
∫
M

k(x, x) dx.

Proof We first prove the assertion in the case M = R
n/Zn and μ being the Lebesgue

measure λ. In this case we define

l(x, y) =
∑
k∈Z

n

(
1

1 + 4π2‖k‖2

)r
ek(x)ek(y),

where ek(x) = e2πi(x1k1+x2k2+···+xnkn) and ‖k‖2 = k2
1 +· · ·+k2

n.As the corresponding
integral converges, this sum converges absolutely uniformly and the kernel l(x, y)
therefore is continuous. Let 	 be the Laplace operator,

	 = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n

.

Lemma 9.5.4 For φ ∈ C2r (Rn/Zn) one has

Tl(1 +	)rφ = φ.

Proof Both sides are continuous functions, so it suffices to show that they agree as
L2-functions. But for all ek , k ∈ Z

n, we have (1 +	)rek = (1 + 4π2‖k‖2)rek and
Tlek = (1 + 4π2‖k‖2)−rek , hence Tl(1 + 	)rek = ek . Since {ek : k ∈ Z

n} is an
orthonormal basis of L2(Rn/Zn) we see that Tl(1+	)r = IdL2(Rn/Zn), and the result
follows. �

We now show the proposition in the case M = R
n/Zn equipped with the Lebesgue

measure. Let k be as in the theorem. Then for φ ∈ L2(M) the function Tkφ is in
C2r (M), so by the lemma,
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Tl(1 +	)rTkφ = Tkφ.

One has (1 +	)rTk = Tk′ , where k′ is the continuous kernel

k′(x, y) = (1 +	x)rk(x, y).

So Tk = TlTk′ is a product of two Hilbert-Schmidt operators, hence of trace class.
As both, Tl and Tk′ are admissible, the claim follows from Lemma 9.3.1.

Next let M be an arbitrary smooth compact manifold of dimension n. Let (Ui)si=1 be
an open covering by chart sets, where we choose the chart maps ψi not as maps to
R

n but instead to R
n/Zn, which is possible as well. So for every i the map ψi is a

homeomorphism of Ui to some open set Vi ⊂ R
n/Zn. The sets V1, . . . ,Vs ⊂ R

n/Zn

can be chosen pairwise disjoint. Let (ui) be a smooth partition of unity with smooth
square root subordinate to the covering (Ui). For 1 ≤ i, j ≤ s let

ki,j (x, y) = √ui(x)k(x, y)
√

uj (y).

Then ki,j is a continuous kernel on M × M . For given 1 ≤ i, j ≤ s, define a
continuous kernel k̃i,j on R

n/Zn × R
n/Zn by

k̃i,j (x, y) =
{√

di(x)ki,j (ψ−1
i (x),ψ−1

j (y))
√
dj (y) (x, y) ∈ Vi × Vj ,

0 otherwise.

Here dj denotes the density of the measure (ψj )∗μ with respect to the Lebesgue
measure, i.e.

∫
Vi

f (x)di(x) dλ(x) = ∫
Ui

f (ψi(y))dμ(y) for all f ∈ Cc(Vi). We

define k̃ =∑i,j k̃i,j and for φ ∈ L2(M) we set

φj (x) = φ(x)
√

uj (x).

We define φ̃j ∈ L2(Rn/Zn) by

φ̃j (x) =
{
φj (ψ−1

j (x))
√
dj (x) x ∈ Vj ,

0 otherwise.

Finally set φ̃ =∑j φ̃j .

Lemma 9.5.5 The map � : φ �→ φ̃ is a linear isometry L2(M) ↪→ L2(Rn/Zn) and
one has

�(Tkφ) = Tk̃�(φ)

for every φ ∈ L2(M). The operator Tk̃ equals PTk̃P , where P is the orthogonal
projection L2(Rn/Zn) → Im(�). Finally we have∫

M

k(x, x) dμ(x) =
∫

R
n/Zn

k̃(x, x) dx.
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Proof The map � is linear. For φ ∈ L2(M) we compute

‖�(φ)‖2 =
∫

R
n/Zn

|φ̃(x)|2 dλ(x) =
∑
j

∫
Vj

|φ̃j (x)|2 dλ(x)

=
∑
j

∫
Vj

|φj (

=z︷ ︸︸ ︷
ψ−1

j (x))|2 dj (x) dλ(x)︸ ︷︷ ︸
d(ψj )∗μ(x)

=
∑
j

∫
Uj

|φj (z)|2 dμ(z) =
∑
j

∫
M

|φ(z)|2uj (x) dμ(z)

=
∫
M

|φ(z)|2 dμ(x) = ‖φ‖2,

so � is an isometry. In order to show �Tk = Tk̃�, we compute

Tk̃�(φ)(x) = Tk̃φ̃(x) =
∑
j

Tk̃φ̃j (x) =
∑
j

∫
Vj

k̃(x, y)φ̃j (y) dλ(y)

=
∑
i,j

√
di(x)
∫
Vj

ki,j (ψ−1
i (x),ψ−1

j (y))φj (ψ−1
j (y)) dj (y) dλ(y)︸ ︷︷ ︸

=d(ψj )∗μ(y)

=
∑
i,j

√
di(x)
∫
Uj

ki,j (ψ−1
i (x), z)φj (z) dμ(z)

=
∑
i,j

√
di(x)
∫
Uj

√
ui(ψ

−1
i (x))k(ψ−1

i (x), z)uj (z)φ(z) dμ(z)

=
∑
i

√
di(x)
√

ui(ψ
−1
i (x))

∫
M

k(ψ−1
i (x), z)φ(z) dμ(z)

=
∑
i

√
di(x)
√

ui(ψ
−1
i (x))Tkφ(ψ−1

i (x)) = �Tkφ(x).

To show Tk̃ = PTk̃P one has to show that for g ∈ Im(�)⊥,

Tk̃(g) = 0 and
〈
Tk̃h, g
〉 = 0

holds for every h ∈ L2(Rn/Zn). The first of these assertions follows from the fact
that for fixed x, the map y �→ k̃(x, y) lies in the image of �. The second assertion
follows similarly from the observation, that for fixed y the map x �→ k̃(x, y) lies in
the image of �.

We finish the proof of the lemma with
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∫
R

n/Zn

k̃(x, x) dλ(x) =
∑
i,j

∫
R

n/Zn

k̃i,j (x, x)︸ ︷︷ ︸
=0 if i 
=i

dλ(x)

=
∑
j

∫
Vj

kj ,j (ψ−1
j (x),ψ−1

j (x))dj (x) dλ(x)

=
∑
j

∫
Uj

kj ,j (x, x) dμ(x)

=
∑
j

∫
Uj

k(x, x)uj (x) dμ(x)

=
∫
M

k(x, x) dμ(x). �

The lemma implies

tr Tk = tr Tk̃ =
∫

R
n/Zn

k̃(x, x) dx =
∫
M

k(x, x) dx

and the proposition follows. �

Now Theorem 9.5.1 follows from Proposition 9.5.3 in the same way as Theorem
9.3.2, i.e., the trace formula, follows from Proposition 9.3.1. �

9.6 Exercises

Exercise 9.1 Show that every Schwartz function on R is uniformly integrable.

Exercise 9.2 Let B be the group of upper triangular matrices in SL2(R). Show that
B does not contain a lattice.

Exercise 9.3 Let � be a subgroup of the locally compact group G. Show that � is
discrete if and only if for every compact subset C ⊂ G the intersection � ∩ C is
finite.

Exercise 9.4 A group � acts discontinuously on a topological space X if for every
x ∈ X there is a neighborhood U of x, such that the set of all γ ∈ � with U∩γU 
= ∅
is finite.

Let K ⊂ G be a compact subgroup of the locally compact group G. Show that a
subgroup � ⊂ G is discrete if and only if it acts discontinuously on the space G/K .

Exercise 9.5 Let G be a finite group, and let H be a subgroup. For each choose the
counting measure as Haar measure. For x ∈ H let Hx ,Gx be the centralizers of x in
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H and G, respectively. For π ∈ Ĝ let χπ : G → C be defined by χπ (x) = tr π (x).
For x ∈ H let [x]H be the H -conjugacy class of x, i.e., [x]H = {hxh−1 : h ∈ H }.
Show: ∑

π∈Ĝ
(dimV H

π )χπ =
∑
[h]H

|Gh|
|Hh| 1[h]G ,

where V H
π denotes the space of H -invariant vectors in Vπ .

(Hint: Let g be one of the sides of the equation. For f ∈ L2(G) consider the inner
product 〈f , g〉 and use the trace formula.)

Exercise 9.6 Let f ∈ S(R) be a Schwartz function. Apply the trace formula to f

with G = R and � = Z to give a proof of the classical Poisson summation formula:

∑
k∈Z

f (k) =
∑
k∈Z

f̂ (k),

where f̂ (x) = ∫
R
f (y)e−2πixy dy.

Exercise 9.7 Let G be a first countable compact group and H ⊂ G a closed sub-
group. Let f ∈ C(G)2 with supp(f ) ∩ G.H = ∅, where G.H is the union of all
conjugates gHg−1 of H . Show that

∑
π∈Ĝ

dim(V H
π ) tr π (f ) = 0.



Chapter 10

The Heisenberg Group

In this chapter we prove the Stone-von Neumann Theorem, which gives a full char-
acterization of the unitary dual of the Heisenberg group H. We then apply the trace
formula to describe the spectral decomposition of L2(�\H), where � is the standard
integer lattice in H.

10.1 Definition

The Heisenberg group H is defined to be the group of real upper triangular 3 × 3
matrices with ones on the diagonal:

H def=
⎧⎨
⎩
⎛
⎝ 1 x z

1 y

1

⎞
⎠
∣∣∣∣∣∣ x, y, z ∈ R

⎫⎬
⎭ .

It can also be identified with R
3, where the group law is given by

(a, b, c)(x, y, z)
def= (a + x, b + y, c + z + ay).

The inverse of (a, b, c) is

(a, b, c)−1 = (−a,−b, ab − c).

The center of H is Z(H) = {(0, 0, z) | z ∈ R}, and the projection to the first two
coordinates induces an isomorphism

H/Z(H) ∼= R
2.

An easy calculation ([Dei05] Chap. 12) shows that H is unimodular and that a Haar
integral on H is given by∫

H
f (h) dh

def=
∫

R

∫
R

∫
R

f (a, b, c) da db dc, f ∈ Cc(H).

We will use this Haar measure on H for all computations in the sequel.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 185
DOI 10.1007/978-3-319-05792-7_10, © Springer International Publishing Switzerland 2014
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10.2 The Unitary Dual

In this section we are going to describe the unitary dual Ĥ of the Heisenberg group
H.

Let Ĥ0 denote the subset of Ĥ consisting of all classes π ∈ Ĥ such that π (h) = 1
whenever h lies in the center Z(H) of H. Since H/Z(H) ∼= R

2, it follows that

Ĥ0 = Ĥ/Z(H) ∼= R̂2 ∼= (R̂)2 ,

and the latter can be identified with R
2 in the following explicit way. Let (a, b) ∈ R

2

and define a character

χa,b : H → T,
(x, y, z) �→ e2πi(ax+by).

The identification is given by (a, b) �→ χa,b. In particular, it follows that all repre-
sentations in Ĥ0 are one-dimensional. This observation indicates the importance of
the behavior of the center under a representation.

As a consequence of the Lemma of Schur 6.1.7, for each π ∈ Ĥ there is a character
χπ : Z(H) → T with π (z) = χπ (z)Id for every z ∈ Z(H). This character χπ is
called the central character of the representation π .

For every character χ 
= 1 of Z(H), we will now construct an irreducible unitary
representation of the Heisenberg group that has χ for its central character. So let
t 
= 0 be a real number and consider the central character

χt (0, 0, c) = e2πict .

For (a, b, c) ∈ H we define the operator πt (a, b, c) on L2(R) by

πt (a, b, c)φ(x)
def= e2πi(bx+c)tφ(x + a).

It is straightforward that πt is a unitary representation.

Recall from Exercise 3.17 that the Schwartz space S(Rn) consists of allC∞-functions
f : R

n → C such that xα∂βf is bounded for all multi-indices α,β ∈ N
n
0. We have

S(Rn) ⊆ Lp(Rn) for every p ≥ 1 and S(Rn) is stable under Fourier transform.

Theorem 10.2.1 (Stone-von Neumann). For t 
= 0 the unitary representation πt is
irreducible. Every irreducible unitary representation of H with central character χt

is isomorphic to πt . It follows that

Ĥ = R̂
2 ∪ {πt : t 
= 0}.

Proof We show irreducibility first. Fix t 
= 0, and let V ⊂ L2(R) be a closed
non-zero subspace that is invariant under the set of operators πt (H). If φ ∈ V ,
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then so is the function πt (−a, 0, 0)φ(x) = φ(x − a). As V is closed, it therefore
contains ψ ∗ φ(x) = ∫

R
ψ(a)φ(x − a) da for ψ ∈ S = S(R). These convolution

products are smooth functions, so V contains a smooth function φ 
= 0. One has
πt (0,−b, 0)φ(x) = e−2πibtxφ(x) ∈ V. By integration it follows that for ψ ∈ S one
has that ψ̂(tx)φ(x) lies in V . The set of possible functions ψ̂(tx) contains all smooth
functions of compact support, as the Fourier transform is a bijection on the space of
Schwartz functions to itself. Choose an open interval I , in which φ has no zero. It
follows that C∞

c (I ) ⊂ V . Translating, taking sums, and using a partition of unity
argument gives C∞

c (R) ⊂ V . This space is dense in L2(R), so V = L2(R), which
means that πt is irreducible.

For the second assertion of the theorem, let π be an irreducible unitary representation
with central character χt . We want to show that π is isomorphic to πt . For notational
ease, let’s first reduce to the case t = 1. Consider the map θt : H → H given by
θt (a, b, c) = (a, bt , ct). A calculation shows that θt is an automorphism of H with
χ1 ◦ θt = χt . So we conclude that π has central character χt if and only if π ◦ θ−1

t

has central character χ1. It therefore suffices to show the uniqueness for t = 1.

Let (η,Vη) be an irreducible unitary representation of H with central character χ1.
Let � be the subgroup of H consisting of all (0, 0, k) with k ∈ Z. Then � lies in
the center and χ1(�) = {1}. So the representation η factors over the quotient group

B
def=H/�, which is homeomorphic to the space R

2 × R/Z. For φ ∈ S(R2), let
φB(a, b, c) = φ(a, b)e−2πic. Then φ(a, b) = φB(a, b, 0). For φ,ψ ∈ S(R2), one
computes

φB ∗ ψB(a, b, c) =
∫
B

φB(h)ψB(h−1(a, b, c)) dh

=
∫

R
2

∫
R/Z

φ(x, y)e−2πizψB(a − x, b − y, c − z + xy − xb) dx dy dz

=
∫

R
2

∫
R/Z

φ(x, y)e−2πizψ(a − x, b − y)e−2πi(c−z+xy−xb) dx dy dz

= e−2πic
∫

R
2
φ(x, y)ψ(a − x, b − y)e2πix(b−y) dx dy.

Inspired by this, we define a new, non-commutative convolution product on S(R2)
by

φ ∗B ψ(a, b)
def=
∫

R
2
φ(x, y)ψ(a − x, b − y)e2πix(b−y) dx dy.

For φ ∈ S(R2) we define η(φ) = η(φB). This equals

η(φ) =
∫

R
2
φ(a, b)η(a, b, 0) da db.

By construction of the convolution product one gets η(φ ∗B ψ) = η(φ)η(ψ), so η

is an algebra homomorphism of the algebra A = (S(R2), ∗B). One computes that
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(φB)∗ = (φ∗)B , where the involution on the left is the usual involution of functions g

on the group B, given by g∗(b) = g(b−1). The involution on the algebra A = S(R2)
on the other hand is defined by φ∗(a, b) = φ(−a,−b)e2πiab. So η is a homomorphism
of *-algebras.

Lemma 10.2.2 The *-algebra homomorphism η : A → B(Vη) is injective.

Proof Assume η(φ) = 0. Then, for h = (a, b, 0) ∈ B and v, w ∈ Vη we have

0 = 〈η(h)η(φ)η(h−1)v, w
〉

=
∫

R
2
〈η (x, y, 0) v, w〉φ(x, y)e2πi(ay−bx) dx dy

The continuous, rapidly decreasing function 〈η(x, y, 0)v, w〉φ(x, y) therefore has zero
Fourier transform, hence is zero. Varying v and w, this leads to φ being zero. �

In the special case η = π1 the lemma has the consequence that relations among
the π1(φ) for φ ∈ A already hold in A. We will make use of this principle for
special elements as follows. For F ,G ∈ S(R) let φ̃F ,G(a, b) = F (a + b)G(b), and
φF ,G(a, b) = F2φ̃F ,G(a, b) ∈ S(R2), where F2 denotes taking Fourier transform in
the second variable. An application of the properties of the Fourier transform yields

π1(φF ,G)f (x) =
∫

R
2
φF ,G(a, b)π1(a, b, 0)f (x) da db

=
∫

R
2
φF ,G(a, b)f (x + a)e2πibx da db

=
∫

R
2
F2φ̃F ,G(a − x, b)f (a)e2πibx da db

=
∫

R

φ̃F ,G(a − x, x)f (a) da

=
∫

R

F (a)G(x)f (a) da = 〈f ,F 〉G(x).

In particular, if the norm of F is one, then π1(φF ,F ) is the orthogonal projection onto
the one dimensional space CF .

For h ∈ B = H/� and φ ∈ S(R2) define Lhφ by the formula (Lhφ)B = Lh(φB).
Explicitly, one computes that L(x,y,z)φ(a, b) = φ(a − x, b − y)e2πi(bx−xy+z). For
φ,ψ ∈ A we also write φψ for the convolution product φ ∗B ψ .

Lemma 10.2.3 In the algebra A, one has the relations

φF ,GφH ,L = 〈L,F 〉φH ,G and φ∗F ,G = φG,F .

For h ∈ B one has LhφF ,G = φF ,π1(h)G.
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Proof Using the formula π1(φF ,G)f = 〈f ,F 〉G one computes for f ∈ L2(R),

π1(φF ,GφH ,L)f = π1(φF ,G)π1(φH ,L)f

= 〈π1(φH ,L)f ,F 〉G
= 〈〈f ,H 〉L,F 〉G = 〈L,F 〉〈f ,H 〉G.

This implies the first claim as π1 is injective. The second follows from

〈π1(φF ,G)f,h〉 = 〈f ,F 〉〈G,h〉 = 〈f ,π1(φG,F )h〉.
For the last claim compute

π1(LhφF ,G)f = π1(h)π1(φF ,G)f = π1(h)〈f,F 〉G
= 〈f,F 〉π1(h)G = π1(φF ,π1(h)G)f.

The lemma follows. �

As S(R) is dense in L2(R), by the orthonormalizing scheme one can find a sequence
Fj in S(R) that forms an orthonormal base of L2(R). For j , k ∈ N write φj ,k for
φFj ,Fk

. Lemma 10.2.3 implies that φj ,kφs,t = δj ,tφs,k (Kronecker-delta), and φ2
j ,j =

φj ,j = φ∗j ,j .

Let now (η,Vη) again denote an irreducible unitary representation with central
character χ1. By integration, η gives an algebra homomorphism A → B(Vη).

Lemma 10.2.4 The η(φj ,j )j∈N are non-zero projections. They are pairwise orthog-
onal. Write Vj for the image of η(φj ,j ). Then η(φj ,k) is an isometry from Vj to Vk

and it annihilates every Vl for l 
= j .

Proof Since φ2
j ,j = φj ,j = φ∗j ,j , the same holds for η(φj ,j ) hence the latter

are projections. They are non-zero by Lemma 10.2.2. For v ∈ Vj one com-
putes 〈η(φj ,k)v, η(φj ,k)v〉 = 〈η(φk,jφj ,k)v, w〉 = 〈η(φj ,j )v, w〉 = 〈v, v〉. The claim
follows. �

Now choose v1 ∈ V1 of norm one and set vj = η(φ1,j )v1. Then (vj ) is an orthonormal
system in Vη. Define an isometry T : L2(R) → Vη by mapping Fj to vj . Then

η(h)T (Fj ) = η(h)vj = η(h)η(φj ,j )vj

= η(Lhφj ,j )vj = η(φFj ,π1(h)Fj
)vj .

By the fact that (Fj ) is an orthonormal basis, one concludes

π1(h)Fj =
∑
k

〈π1(h)Fj ,Fk〉Fk.

So that by Lemma 10.2.3
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η(h)T (Fj ) =
∑
k

〈π1(h)Fj ,Fk〉η(φFj ,Fk
)vj

=
∑
k

〈π1(h)Fj ,Fk〉vk = T (π1(h)Fj ).

Hence T is an H-homomorphism onto a non-zero closed subspace of Vη. As η is
irreducible, T must be surjective, so T is unitary and η is equivalent to π1. This
finishes the proof of the Theorem of Stone and von Neumann. �

10.3 The Plancherel Theorem for H

We have an identification H ∼= R
3. We interpret f ∈ S(R3) as a function on H, and

we write S(H) for this space of functions.

Theorem 10.3.1 (Plancherel Theorem). Let f ∈ S(H). For every t ∈ R
× the

operator πt (f ) is a Hilbert-Schmidt operator, and we have
∫

R
×
||πt (f )||2HS |t | dt =

∫
H
|f (h)|2 dh.

It follows that the Plancherel measure of H in the sense of Theorem 8.5.3 equals
|t | dt and that the set of one dimensional representations of H has Plancherel measure
zero.

Proof This is proved in [Dei05], Chap. 12. �

10.4 The Standard Lattice

Let � be the set of all (a, b, c) ∈ H, where a, b, c are integers. The multiplication
and inversion keep this set stable, so � is a discrete subgroup.

Lemma 10.4.1 � is a uniform lattice in H.

Proof Let K = [0, 1]× [0, 1]× [0, 1] ⊂ H. Then K is a compact subset. We claim
that the projection map K → H/� is surjective. This means we have to show that
for every h ∈ H there exists λ ∈ � such that hλ ∈ K . Let h = (x, y, z) ∈ H, and let
λ = (a, b, c) ∈ �. Then hλ = (x + a, y + b, z + c + xb). So we can find a, b ∈ Z

such that x + a and y + b lie in the unit interval. So we may assume as well that
x, y ∈ [0, 1]. Assuming that, we only consider such λ, which are central, i.e., of the
form λ = (0, 0, c) and it becomes clear that we can find λ such that hλ ∈ K . �
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By Theorem 9.2.2 we conclude that as H-representation one has the decomposition

L2(�\H) ∼=
⊕
π∈Ĥ

N (π )π ,

with finite multiplicities N (π ).

We want to apply the trace formula to compute the numbers N (π ). For this recall
the characters of H given by χr ,s(a, b, c) = e2πi(ra+sb), where r , s ∈ R.

Theorem 10.4.2 For a character χr ,s of H the multiplicity N (χr ,s) in L2(�\H) is
equal to one if r and s are both integers. Otherwise it is zero. For t ∈ R, t 
= 0, the
multiplicity N (πt ) is |t | if t is an integer and zero otherwise. So the decomposition
of the representation

(
L2(�\H),R

)
reads

R ∼=
⊕
r ,s∈Z

χr ,s ⊕
⊕
k∈Z

k 
=0

|k|πk.

Proof We first consider the subspace H of L2(�\H), which is invariant under
the action of the center Z ⊂ H. This is isomorphic to L2

(
Z

2\R2
)

as �\H/Z ∼=
Z

2\R2 and the representation of H on H factors through the representation of R
2 on

L2
(
Z

2\R2
)
. By the theory of Fourier series this gives us the value of N

(
χr ,s
)

as in
the theorem. The difficult part is to determine N (πt ).

Let h ∈ C∞
c (H) and set f = h ∗ h∗. Then the trace formula says,

tr R(f ) =
∑
π∈Ĥ

N (π ) tr π (f ) =
∑
[λ]

vol (�λ\Hλ) Oλ(f ),

where the sum is taken over all conjugacy classes [λ] in �, �λ and Hλ denote the
centralizers of λ in � and H, respectively, and Oλ(f ) = ∫Hλ\H f (x−1λx) dx. First

consider π ∈ Ĥ with trivial central character, say π = χr ,s . Then

tr π (f ) = χr ,s(f ) =
∫

R

∫
R

∫
R

f (a, b, c)e2πi(ar+bs) da db dc

= F1F2F3f (−r ,−s, 0),

where Fi denotes Fourier transform on R applied to the i-th component of H. Next
the center Z� of �, the set of all (0, 0, k) for k ∈ Z, is contained in the center of H
and therefore acts trivially on L2(�\H). This implies that for π ∈ Ĥ one has that
N (π ) 
= 0 implies π (Z�) = {1}. Therefore, N (πt ) 
= 0 implies that t ∈ Z. For
t = k ∈ Z one computes

πk(f )φ(x) =
∫

R

∫
R

(∫
R

f (a, b, c)e2πikc dc

)
e2πikbxφ(a + x) da db

=
∫

R

F2F3f (a − x,−kx,−k)φ(a) da
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So πk(f ) is an integral operator with kernel

k(x, y) = F2F3f (y − x,−kx,−k).

Analogously, the kernel of πk(h) is F2F3h(y − x,−kx,−k). The latter kernel is in
S(R2) and therefore is admissible. By Proposition 9.3.1 and Fourier inversion, we
have

tr πk(f ) =
∫

R

F2F3f (0,−kx,−k) dx = 1

|k|F3f (0, 0,−k).

Together we get

tr R(f ) =
∑
r ,s∈Z

Ff (r , s, 0) +
∑

k∈Z�{0}

N (πk)

|k| F3f (0, 0, k),

where Ff = F1F2F3f .

Next we consider the geometric side of the trace formula. Let λ ∈ �. First assume
that λ lies in the center of �. Then λ = (0, 0, k) for some k ∈ Z, and the centralizer
Hλ equals H, so that the orbital integral equals Oλ(f ) = f (λ) = f (0, 0, k). Next
let λ = (r , s, t) ∈ � = Z

3 with (r , s) 
= (0, 0). Let h = (a, b, c) ∈ H, then
hλh−1 = (r , s, t + as − br). So h lies in the centralizer Hλ if and only if as = br .
It follows that Hλ is the subspace generated by the vectors (r , s, 0) and (0, 0, c) as
a subspace of R

3. On Hλ we pick the Haar measure that comes from the euclidean
length in R

3; then the volume of �λ\Hλ is the minimal value
√
a2 + b2 where

a, b ∈ Z, not both zero, and as = br . This minimum is taken in a = r
gcd(r ,s)

and b = s
gcd(r ,s) , where gcd(r , s) denotes the greatest common divisor of r and s.

Therefore,

vol(�λ\Hλ) =
√
r2 + s2

gcd(r , s)
.

The orbital integral equals

Oλ(f ) =
∫
U⊥

f (r , s, t + xs − yr) d(x, y),

where U is the subspace of all
(
a
b

) ∈ R
2 with as − br = 0. Then U = R ( r

s ) and
the orthogonal space is spanned by the norm one vector 1√

r2+s2

(
s−r

)
. So we get

Oλ(f ) =
∫

R

f

(
r , s, t + x

s2 + r2

√
r2 + s2

)
dx = 1√

r2 + s2
F3f (r , s, 0).

The number of conjugacy classes with given (r , s, ∗) equals gcd(r , s), hence

tr R(f ) =
∑
k∈Z

f (0, 0, k) +
∑

(r ,s)
=(0,0)

F3f (r , s, 0).
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Using the Poisson summation formula in the first two variables we get

∑
(r ,s)∈Z

2

F3f (r , s, 0) =
∑

(r ,s)∈Z
2

Ff (r , s, 0)

with F = F1F2F3 and using the formula in the third variable gives

∑
k∈Z

f (0, 0, k) =
∑
k∈Z

F3f (0, 0, k).

Combining this with the two expressions for tr R(f ) we conclude

∑
k 
=0

N (πk)

|k| F3f (0, 0, k) =
∑
k 
=0

F3f (0, 0, k).

By Lemma 9.3.5 this implies N (πk) = |k|. The theorem is proven. �

10.5 Exercises and Notes

Exercise 10.1 Let H be the Heisenberg group, and let Z be its center. Show that
every normal subgroup of H lies in the center Z or contains the center.

Exercise 10.2 On R
2 consider the bilinear form

b(v, w)
def= vt

(
0 1

−1 0

)
w.

Let L be the group R
2 × R with the multiplication (v, t)(w, s)

def= (v + w, s + t +
1
2b(v, w)). Show: The map ψ : H → L, defined by ψ(a, b, c) = ((a, b)t , c− 1

2ab) is
a continuous group isomorphism with continuous inverse.

Exercise 10.3 Let L be defined as in Exercise 10.2. The group G = SL2(R) acts
on L via g(v, t) = (gv, t). Show that G acts by group homomorphisms, which fix
the center of L point-wise. Conclude that for every g ∈ G one has π1 ◦ g ∼= π1.
Conclude that for every g ∈ G there is a T (g) ∈ U (L2(R)), which is unique up to
scalar multiplication, such that π1(gl) = T (g)π1(l)T (g)−1, where we consider π1

as a representation of L via Exercise 10.2. Show that the map g �→ T (g) is a group
homomorphism G → U (L2(R))/T.

Exercise 10.4 Let Aut(H) be the group of all continuous group automorphisms
of H. Every φ ∈ Aut(H) preserves the center Z , hence induces an element of
Aut(H/Z) = Aut(R2) = GL2(R). Show that the ensuing map Aut(H) → GL2(R)
is surjective.
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Exercise 10.5 For h ∈ H let φh ∈ Aut(H) be defined by φh(x) = hxh−1. Every
such automorphism is called an inner automorphism. Let Inn(H) be the group of
all inner automorphisms. Show that Inn(H) ∼= R

2, and that, together with the last
exercise, one gets an exact sequence

1 → R
2 → Aut(H) → GL2(R) → 1.

Exercise 10.6 Let N ⊂ GLn(R) be the group of all upper triangular matrices with
ones on the diagonal. Show that � = N ∩ GLn(Z) is a uniform lattice in N .

Exercise 10.7 The (2n + 1)-dimensional Heisenberg group Hn is defined as the

group of all matrices of the form
(

1 xt z
1 y

1

)
in GLn+2(R) where x, y ∈ R

n and z ∈ R.

Determine its unitary dual along the lines of the Stone-von Neumann Theorem.

Exercise 10.8 LetL be as in Exercise 10.2. Let� ⊂ R
2 be a lattice with b(�×�) ⊂

2Z. Show that �×�×Z is a uniform lattice in L. Use the proof of Theorem 10.4.2
to find the decomposition of L2(�\L).

Notes

As shown in Exercise 10.3, the Stone-von Neumann Theorem yields a group homo-
morphism SL2(R) → U (L2(R))/T. There is a unique non-trivial covering group
SL2

2(R) of degree 2. On this group the homomorphism induces a proper unitary
representation SL2

2(R) → U (L2(R)). This representation is known as the Weil repre-
sentation. It is used to explain the behavior of theta-series, in particular with respect
to lifting of automorphic forms [How79, LV80, Wei64].



Chapter 11

SL2(R)

The group SL2(R) is the simplest case of a so called reductive Lie group. Harmonic
analysis on these groups turns out to be more complex then the previous cases of
abelian, compact, or nilpotent groups. On the other hand, the applications are more
rewarding. For example, via the theory of automorphic forms, in particular the
Langlands program, harmonic analysis on reductive groups has become vital for
number theory. In this chapter we prove an explicit Plancherel Theorem for functions
in the Hecke algebra of the group G = SL2(R). We apply the trace formula to a
uniform lattice and as an application derive the analytic continuation of the Selberg
zeta function.

11.1 The Upper Half Plane

Let G = SL2(R) denote the special linear group of degree 2, i.e.

SL2(R) =
{(

a b

c d

)
∈ M2(R) : ad − bc = 1

}
.

The locally compact group SL2(R) acts on the upper half plane

H = {z ∈ C : Im(z) > 0}
by linear fractionals, i.e., for g = ( a b

c d

) ∈ SL2(R) and for z ∈ H one defines

gz = az + b

cz + d
.

To see that this is well-defined one has to show that cz+ d 
= 0. If c = 0 then d 
= 0
and so the claim follows. If c 
= 0 then Im(cz + d) = cIm(z) 
= 0. Next one has to
show that gz lies in H if z does and that (gh)z = g(hz) for g,h ∈ SL2(R). The latter
is an easy computation, for the former we will now derive an explicit formula for the
imaginary part of gz. Multiplying numerator and denominator by cz̄ + d one gets
gz = ac|z|2+bd+2bcRe(z)+z

|cz+d|2 , so in particular,

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 195
DOI 10.1007/978-3-319-05792-7_11, © Springer International Publishing Switzerland 2014
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Im(gz) = Im(z)

|cz + d|2 ,

which is strictly positive if Im(z) is. Note that the action of the central element
−1 ∈ SL2(R) is trivial.

If g = ( a b
c d

) ∈ G stabilizes the point i ∈ H, then ai+b
ci+d

= i, or ai + b = −c + di,
which implies a = d and b = −c. So the stabilizer of the point i ∈ H is the rotation
group:

K = SO(2) =
{(

a −b

b a

)
: a, b ∈ R, a2 + b2 = 1

}
,

which also can be described as the group of all matrices of the form(
cos t − sin t

sin t cos t

)
for t ∈ R.

The operation of G on H is transitive, as for z = x + iy ∈ H one has

z =
(√

y x√
y

0 1√
y

)
i.

It follows that via the map G/K → H, given by gK �→ gi, the upper half plane H

can be identified with the quotient G/K .

Theorem 11.1.1 (Iwasawa Decomposition). Let A be the group of all diagonal
matrices in G with positive entries. Let N be the group of all matrices of the form(

1 s
0 1

)
for s ∈ R. Then one has G = ANK . More precisely, the map

ψ : A×N ×K → G,

(a, n, k) �→ ank

is a homeomorphism.

Proof Let g ∈ G, and let gi = x + yi. Then, with

a =
(√

y

1/
√
y

)
and n =

(
1 x/y

1

)
,

one has gi = ani and so g−1an lies in K , which means that there exists k ∈ K

with g = ank. Using the explicit formula for gz above in the case z = i, one
constructs the inverse map to ψ as follows. Let φ : G → A × N × K be given by
φ(g) = (a(g), n(g), k(g)), where

a

(
a b

c d

)
=
(

1√
c2+d2 √

c2 + d2

)
,

n

(
a b

c d

)
=
(

1 ac + bd

1

)
,
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k

(
a b

c d

)
= 1√

c2 + d2

(
d −c

c d

)
.

A straightforward computation shows that φψ = Id and ψφ = Id. �

For g ∈ SL2(R) we shall use throughout this chapter the notation a(g), n(g), and
k(g) as explained above. Moreover, for x, t , θ ∈ R, we shall write

at
def=
(
et

e−t

)
∈ A

nx
def=
(

1 x

1

)
∈ N

kθ
def=
(

cos θ − sin θ

sin θ cos θ

)
∈ K.

A function f : G → C is called smooth if the map R
3 → C given by

(t , x, θ ) �→ f (atnxkθ )

is infinitely differentiable. We denote the space of smooth functions by C∞(G). The
space of smooth functions of compact support is denoted by C∞

c (G).

Theorem 11.1.2 The group G = SL2(R) is unimodular.

Proof Let φ : G → R
×
+ be a continuous group homomorphism. We show that

φ ≡ 1. First note that φ(K) = 1 as K is compact. As φ restricted to A is a continuous
group homomorphism, there exists x ∈ R such that φ(at ) = etx for every t ∈ R. Let
w = ( −1

1

)
, then watw−1 = a−t , and therefore etx = φ(at ) = φ(watw−1) = e−tx

for every t ∈ R, which implies x = 0 and so φ(A) = 1. Similarly, φ(nx) = erx for
some r ∈ R. As we have atnxa

−1
t = ne2t x it follows ers = ere

2t s for every t ∈ R,
which implies r = 0, so φ(N ) = 1 and by the Iwasawa decomposition, we conclude
φ ≡ 1. �

We write t(g) for the unique t ∈ R with a(g) = at , i.e., one has a(g) = at(g).

Theorem 11.1.3 For any given Haar measures on three of the four groups G,A,N,K,
there is a unique Haar measure on the fourth such that for f ∈ L1(G) the
decomposition formula

∫
G

f (x) dx =
∫
A

∫
N

∫
K

f (ank) dk dn da

holds. For φ ∈ L1(K) and x ∈ G one has
∫
K

φ(k) dk =
∫
K

φ(k(kx)) e2t(kx) dk.
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From now on we normalize Haar measures as follows. On K we normalize the
volume to be one. On A we choose the measure 2dt , where t = t(a), and on N we
choose

∫
R
f (ns)ds. The factor 2 is put there to match the usual invariant measure

dx dy

y2 on the upper half plane.

Proof Let B = AN , the subgroup of G consisting of all upper triangular matrices
with positive diagonal entries. Then an easy computation shows that db = dadn is a
Haar measure on B and that B is not unimodular. Indeed, one has 	B(axn) = e−2x ,
which follows from the equation atnxasny = at+sny+e−2sx . Let b : G → B be
the projection b(g) = a(g)n(g). The map B → G/K ∼= H mapping b to bK is
a B-equivariant homeomorphism. Any G-invariant measure on G/K gives a Haar
measure on B and as both these types of measures are unique up to scaling one
gets that every B-invariant measure on G/K is already G-invariant. So the for-
mula
∫
G
f (x) dx = ∫

G/K

∫
K
f (xk) dk dx leads to

∫
G
f (x) dx = ∫

B

∫
K
f (bk) dk db.

Since db = da dn, the integral formula follows.

For the second assertion let φ ∈ L1(K). Let η ∈ L1(B) and set g(bk) = η(b)φ(k).
Then g lies in L1(G). As G is unimodular, for y ∈ G one has

∫
B

∫
K

η(b)φ(k) dk db =
∫
G

g(y) dy =
∫
G

g(yx) dy

=
∫
G

η(b(yx))φ(k(yx)) dy

=
∫
B

∫
K

η(b(bkx))φ(k(kx)) dk db

=
∫
B

∫
K

η(bb(kx))φ(k(kx)) dk db

=
∫
B

∫
K

η(b)	B(b(kx))−1φ(k(kx)) dk db

=
∫
B

∫
K

η(b)e2t(kx)φ(k(kx)) dk db,

where we used the facts that k(bg) = k(g) for all b ∈ B, g ∈ G and t(b(kx)) = t(kx)
for all b ∈ B, k ∈ K , and x ∈ G. Varying η, we get the claim of the theorem. �

Hyperbolic Geometry

Let g = ( a b
c d

)
be in G = SL2(R). For z ∈ H one gets

d

dz
gz = d

dz

az + b

cz + d
= a(cz + d) − c(az + b)

(cz + d)2 = 1

(cz + d)2 .
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Since on the other hand, Im(gz) = Im(z)
|cz+d|2 , we get

∣∣ d
dzgz
∣∣ = Im(gz)

Im(z) , or

∣∣ d
dzgz
∣∣

Im(gz)
=
∣∣ d
dz z
∣∣

Im(z)
.

That is to say, the Riemannian metric dx2+dy2

y2 is invariant under the group action of
G on H. For a continuously differentiable path p : [0, 1] → H we get the induced
hyperbolic length defined by

L(p) =
∫ 1

0

|p′(t)|
Im(p(t))

dt.

Then it follows that L(p) = L(g ◦p) for every g ∈ G, i.e., the length is G-invariant.
The hyperbolic distance of two points z, w ∈ H is defined by

ρ(z, w) = inf
p

L(p),

where the infimum is extended over all paths p with p(0) = z and p(1) = w.

Lemma 11.1.4 For any two point z, w ∈ H there exists g ∈ G such that gz = i

and gw = yi for some y ≥ 1.

Proof As we have seen in the beginning of this chapter, the group action of G on H

is transitive, hence there exists h ∈ G with hz = i. We next apply an element k ∈ K

so that g = kh does the job. For this we have to show that for any given z ∈ H there
exists k ∈ K such that kz = yi for some y ≥ 1. The map θ �→ kθ z is continuous, for
θ = 0 we have kθ z = z and for θ = π/2 we have kθ =

(
0 −1
1 0

)
so that kπ/2z = −1/z.

Hence the real parts of z and kπ/2z have opposite sign, by the intermediate value
theorem there exists k ∈ K such that Re(kz) = 0. If now kz = yi with y < 1, then
we replace k with kπ/2k to finish the proof �

Lemma 11.1.5 The hyperbolic distance is a metric on H. It is G-invariant, i.e.,
ρ(gz, gw) = ρ(z, w) holds for all z, w ∈ H, g ∈ G. For z, w ∈ H one has

ρ(z, w) = log
|z − w| + |z − w|
|z − w| − |z − w| ,

and

2 cosh ρ(z, w) = 2 + |z − w|2
Im(z)Im(w)

.

Proof The G-invariance follows from the invariance of the length. The axioms of
a metric are immediate from the definition. For the explicit formulae, we start with
the special case z = i and w = yi for y ≥ 1. For any path p with p(0) = i and
p(1) = yi we get
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L(p) =
∫ 1

0

√
Re(p′(t))2 + Im(p′(t))2

dt

Im(p(t))
.

This is minimized by the path p(t) = ity, since for any path p = Re(p)+ iIm(p) the
path iIm(p) will also connect the points i and yi. So one gets ρ(i, yi) = log y, which
also equals the right hand side of the first assertion in this case. Next the equivalence
of the first and second formula are easy, as is the G-invariance of the right hand side
of the second formula, which then concludes the proof. �

11.2 The Hecke Algebra

Let A+ be the subset of A consisting of all diagonal matrices with entries et, e−t,
where t > 0. Let A+ = A+ ∪ {1} be its closure in G.

Theorem 11.2.1 (Cartan Decomposition). The group G can be written as G =
KA+K , i.e. every x ∈ G is of the form x = k1ak2 with a ∈ A+, k1, k2 ∈ K . The
element a is uniquely determined by x. If a 
= 1, which means that x /∈ K , then
also k1 and k2 are uniquely determined up to sign, i.e., if k1ak2 = k′1ak′2, then either
(k1, k2) = (k′1, k′2) or (k1, k2) = (− k′1,−k′2).

For f ∈ L1(G) we have the integral formula
∫
G

f (x) dx = 2π
∫
K

∫ ∞

0

∫
K

f (kat l)
(
e2t − e−2t

)
dk dt dl.

Proof For x ∈ G the matrix xxt is symmetric and positive definite. As it has
determinant one, it follows from linear algebra, that there exists k ∈ K and t ≥ 0,
such that kxxtkt is the diagonal matrix with entries e2t , e−2t . For two elements x, x1 ∈
G the condition xxt = x1x

t
1 is equivalent to 1 = x−1(x1x

t
1)(xt )−1 = (x−1x1)(x−1x1)t .

The last is equivalent to x−1x1 ∈ K . So there is k′ ∈ K with x = k−1atk
′.

This shows existence of the decomposition. For the uniqueness note that e2t is the
larger of the two eigenvalues of xxt and thus determined by x. For the uniqueness
of k1, k2 assume that a ∈ A+ and k1ak2 = l1al2 with k1, k2, l1, l2 ∈ K . Then one has
ak2l

−1
2 = k−1

1 l1a. But the equation ak = k′a with k, k′ ∈ K implies k = k′ = ±1 as
we show now. Let a = at , k =

(
a −b
b a

)
, k′ = ( c −d

d c

)
. Then

(
eta −etb

e−t b e−t a

)
=
(
et

e−t

)(
a −b

b a

)
= ak = k′a

=
(
c −d

d c

)(
et

e−t

)
=
(
etc −e−t d

etd e−t c

)

Consider the norm of the first column of this matrix to get

e2t = e2t (c2 + d2) = e2t a2 + e−2t b2 = e2t a2 + e−2t (1 − a2),
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or e2t (1− a2) = e−2t (1− a2), which implies a = ±1 and therefore b = 0. But then
also d = 0 and the claim follows. So this means k2l

−1
2 = k−1

1 l1 = ±1 and therefore
the claimed uniqueness up to sign.

Let M = {±1} ⊆ K . In order to verify the integral formula, consider the map
φ : K/M × A+ → AN � {1} defined by

φ(kM , a) = a(ka)n(ka).

Lemma 11.2.2 The map φ is a C1 diffeomorphisms. In the coordinates R/πZ ×
R>0  (θ , s) �→ (kθM , as) on K/M × A and (t , x) �→ atnx on AN one has for the
differential matrix

|det(Dφ)(θ , s)| = |e2s − e−2s |.

Proof A computation shows that

φ(kθ , as) = a(kθas)n(kθ , as) = atnx ,

where

t = −1

2
log
(
e2s sin2 θ + e−2s cos2 θ

)
x = (e2s − e−2s

)
sin θ cos θ

According to the Cartan decomposition, the map K/M × A+ → (G�K)/K is
bijective. By the Iwasawa decomposition, the map AN → G/K is bijective as well,
hence φ is bijective.

The map φ is continuously differentiable. Once we have shown the claimed formula
for the differential, it follows that the differential matrix is invertible and so the
inverse function is continuously differentiable as well. We have

det(Dφ)(θ , s) = det

(
∂t
∂θ

∂t
∂s

∂x
∂θ

∂x
∂s

)
= ∂t

∂θ

∂x

∂s
− ∂t

∂s

∂x

∂θ
.

From this one gets the lemma by a computation �

The transformation formula for the variables (x, t) = φ(θ , s) shows∫
G

f (g) dg = 2
∫

R

∫
R

∫
K

f (atnyl) dl dy dt

= 2
∫ π

0

∫ ∞

0

∫
K

f (kθasl)
(
e2s − e−2s

)
dl ds dθ

=
∫ 2π

0

∫ ∞

0

∫
K

f (kθasl)
(
e2s − e−2s

)
dl ds dθ

= 2π
∫
K

∫ ∞

0

∫
K

f (kasl)
(
e2s − e−2s

)
dl ds dk,
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for every f ∈ L1(G), where the transition from the integral over [0,π ] to the integral
over [0, 2π ] in the middle equation is justified by the fact that kθ+πas = kθasm with
m = ±1 ∈ M for all θ ∈ R and s > 0. This finishes the proof of the theorem. �

Corollary 11.2.3 The map

K\G/K → [2,∞), x �→ tr (xtx)

is a bijection.

Proof The map is a bijection when restricted to A+, so the corollary follows from
the theorem. �

Definition A function f on G is said to be K-bi-invariant if it factors through
K\G/K . We define the Hecke algebra H ofG to be the set ofK-bi-invariant functions
f on G, which are in L1(G). So we can characterize H as the space of all f ∈ L1(G)
with Lkf = f = Rkf for every k ∈ K , where Lkf (x) = f (k−1x) and Rkf (x) =
f (xk). We know that for f , g ∈ L1(G),

Lk(f ∗ g) = (Lkf ) ∗ g and Rk(f ∗ g) = f ∗ (Rkg).

We conclude that H is a convolution subalgebra of L1(G). Further, H is stable under
the involution f ∗(x) = f(x−1), so H is a *-subalgebra of L1(G).

Theorem 11.2.4

(a) The Hecke algebra H is commutative.

(b) For every irreducible unitary representation π of G the space of K-invariants,

V K
π = {v ∈ Vπ : π (k)v = v ∀k ∈ K}

is zero or one dimensional.

(c) For every irreducible representation π of G and for every f ∈ H we have
π (f ) = PKπ (f )PK , where PK : Vπ → V K

π denotes the orthogonal projection.

Proof For x ∈ G the Cartan decomposition implies that KxK = Kx−1K , as this
is the case for x ∈ A, since conjugating x ∈ A with

( −1
1

) ∈ K gives x−1. This
implies that for every f ∈ H one has f (x−1) = f (x). For general f ∈ L1(G) let
f ∨(x) = f (x−1), then (f ∗ g)∨ = g∨ ∗ f ∨ for all f , g ∈ L1(G). For f , g ∈ H, one
has f ∨ = f and likewise for g and f ∗ g, so that

f ∗ g = (f ∗ g)∨ = g∨ ∗ f ∨ = g ∗ f.

So H is commutative, which proves (a).

For (b) assume V K
π 
= 0. The Hecke algebra acts on V K

π . We show that V K
π is

irreducible under H, so let U ⊂ V K
π a closed, H-stable subspace. We show that

U = 0 or U = V K
π . For this assume U 
= 0, then, as π is irreducible, one has



11.2 The Hecke Algebra 203

π (L1(G))U = Vπ . Let PK : Vπ → V K
π be the orthogonal projection. Then PKv =∫

K
π (k)v dk for v ∈ Vπ (see Proposition 7.3.3), as we normalize the Haar measure

on K to have volume one. For f ∈ L1(G) let

f̃ (x) =
∫
K

∫
K

f (kxl) dk dl ∈ H.

It follows that PKπ (f )PK = π (f̃ ). Let u ∈ U and f ∈ L1(G). Then

PKπ (f )u = PKπ (f )PKu = π (f̄ )u ∈ U.

So we conclude that U = PKVπ = V K
π and thus V K

π is irreducible. Finally, to
see that every irreducible *-representation η : H → B(Vη) on a Hilbert space
Vη is one-dimensional, observe that for each f ∈ H the operator η(f ) commutes
with the self-adjoint irreducible set η(H) ⊂ B(Vη), since H is commutative. Thus
η(H) ⊂ CId by Schur’s Lemma (Theorem 5.1.6). As η is irreducible, it must be one
dimensional.

For (c) observe that f̃ = f for every f ∈ H. Thus it follows from the above
computations that π (f ) = PKπ (f )PK for every f ∈ H. �

Let ĜK be the set of all π ∈ Ĝ such that the space V K
π of K-invariants is non-zero.

We will now give a list of the π ∈ ĜK . For λ ∈ C let Vλ be the Hilbert space of all
functions φ : G → C with firstly, φ(matnx) = et(2λ+1)φ(x) for m = ±1 ∈ G, at ∈
A, n ∈ N and x ∈ G. By the Iwasawa decomposition, such φ is uniquely determined
by its restriction to K . We secondly insist that φ|K be in L2(K). We equip Vλ with
the inner product of L2(K). The group G acts on this space by πλ(y)φ(x) = φ(xy).
Note that the restriction to the subgroup K of the representation πλ is the induced
representation IndK

M (1) as in Sect. 7.4. The Frobenius reciprocity (Theorem 7.4.1)
implies that

πλ|K ∼=
⊕
l∈Z

ε2l ,

where for l ∈ Z the character εl on K is defined by

εl

(
cos θ − sin θ

sin θ cos θ

)
= eilθ .

Proposition 11.2.5 If λ ∈ iR, then the representation πλ is unitary.

Proof The map φ �→ φ|K yields an isomorphism of Hilbert spaces, Vλ
∼= L2(K̄),

where K̄ = K/±1. The representation πλ can, on L2(K̄), be written as πλ(y)φ(k) =
et(ky)(2λ+1)φ(k(ky)). To see this, recall that t = t(ky) is the unique real number such
that at = a(ky) in the Iwasawa decomposition ky = a(ky)n(ky)k(ky), and therefore

πλ(y)φ(k) = φ(ky) = φ
(
at(ky)n(ky)k(ky)

) = et(ky)(2λ+1)φ(k(ky)).

It follows that |πλ(y)φ(k)|2 = et(ky)(4Re(λ)+2)|φ(k(ky))|2. By the second assertion of
Theorem 11.1.3, one sees that πλ is indeed unitary if λ ∈ iR. �
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Definition For a general representation (π ,Vπ ) of G we let Vπ ,K denote the space of
all K-finite vectors, i.e., the space of all vectors v ∈ Vπ such that π (K)v spans a finite
dimensional space in Vπ . The vector space Vπ ,K is in general not stable under G, but
is always stable under K . Since Vπ has a decomposition Vπ = ⊕̂i∈IUi , where Ui

is an irreducible (hence finite-dimensional) K-representation, it follows that Vπ ,K is
dense in Vπ .

The representations πλ for λ ∈ iR are called the unitary principal series representa-
tions. One can show that πλ is irreducible and unitarily equivalent to π−λ if λ ∈ iR.
These are the only equivalences that occur. One can show that for 0 < λ < 1/2 there
is an inner product on the space Vλ,K such that the completion of Vλ,K with respect to
this inner product is the space of a unitary representation of G. By abuse of notation,
this representation is again denoted (πλ,Vλ). These are called the complementary
series representations. The set ĜK consists of

• the trivial representation,

• the unitary principal series representations πir , where r ≥ 0, and

• the complementary series πλ for 0 < λ < 1/2.

No two members of this list are equivalent. The proofs of these facts can be found
in [Kna01], Chapter II.

Note that the one dimensional space V K
λ is spanned by the element pλ with

pλ(mank) = et(a)(2λ+1).

By Corollary 11.2.3 there exists for every f ∈ H a unique function φf on [0,∞)
such that

f (x) = φf

(
tr (xtx) − 2

)
.

Consider the special case x ∈ AN , say x = atns , then tr (xtx) = (s2 + 1)e2t + e−2t .
For f ∈ H there exists a function hf such that

πir (f )pir = hf (r)pir .

The function hf is called the eigenvalue function of f . Here ir can vary in iR ∪
(0, 1/2). Since pir (1) = 1, we can compute hf (r) as follows

hf (r) = πir (f )pir (1) =
∫
G

f (x)pir (x) dx

Lemma 11.2.6 The map f �→ hf is injective on H. We have hf (r) = tr πir (f ),
and for f , g ∈ H the formula

hf ∗g = hf hg

holds. The function hf can be computed via the following integral transformations.
First set

qf (x) = A(φf )(x)
def=
∫

R

φf

(
x + s2

)
ds, x ≥ 0.
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The map φ �→ A(φ) is called the Abel transform. Next define

gf (u)
def= qf

(
eu + e−u − 2

)
, u ∈ R.

Then one has

hf =
∫

R

gf (u)eiru du.

Proof For the injectivity take an f ∈ H with hf = 0. Then π (f ) = 0 for every
π ∈ Ĝ. By the Plancherel Theorem the representation (R,L2(G)) is a direct integral
of irreducible representations and so it follows that R(f ) = 0. In particular it follows
that g ∗ f = 0 for every g ∈ Cc(G). Letting g run through a Dirac net, it follows
f = 0.

The equation hf (r) = tr πir (f ) is a consequences of Theorem 11.2.4 and hf ∗g =
hf hg follows from π (f ∗ g) = π (f )π (g) for all f , g ∈ L1(G).

Using Iwasawa coordinates and the K-invariance of f , we compute

hf (r) =
∫
AN

f (an)et(a)(2ir+1) da dn

= 2
∫ ∞

−∞

∫ ∞

−∞
φf

(
e2t + e−2t + s2 − 2

)
e2t ir ds dt ,

where we used the transformation s �→ e−t s. As qf (x) = Aφf (x) and g is even, we
have

hf (r) = 2
∫ ∞

−∞
qf

(
e2t + e−2t − 2

)
e2t ir dt =

∫
R

gf (u)eiru du. �

Definition Let S[0,∞) be the space of all infinitely differentiable functions φ on
[0,∞) such that the function xnφ(m)(x) is bounded for all m, n ≥ 0.

Lemma 11.2.7 The Abel transform is invertible in the following sense: Let φ be
continuously differentiable on [0,∞) such that

|φ (x + s2
) |, |sφ′ (x + s2

) | ≤ g(s)

for some g ∈ L1([0,∞)), then q = A(φ) is continuously differentiable and

φ = −1

π
A(q ′).

Moreover, the Abel transform maps S[0,∞) to itself and defines a bijection A :
S[0,∞) → S[0,∞).
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Proof We first show that for anyφ satisfying the conditions we have limx→∞ φ(x) =
0. To see this, let h(s) = sφ′(s2). Then h is integrable on [0,∞]. It follows that

φ(y) − φ(0) =
∫ y

0

h(
√
t)√
t

dt = 2
∫ √

y

0
h(u) du.

Letting y →∞, we see that limx→∞ φ(x) exists and since φ(x + s2) is integrable,
this limit is zero.

Next by the theorem of dominated convergence one sees that q is continuously
differentiable and that q ′ = A(φ′). Using polar coordinates, we compute

− 1

π

∫
R

∫
R

φ′
(
x + s2 + t2

)
ds dt = −2

∫ ∞

0
rφ′
(
x + r2

)
dr

= −φ
(
x + r2

) |∞0 = φ(x).

It is easy to see that the Abel transform as well as its inverse map S[0,∞) to itself. The
lemma follows. �

Lemma 11.2.8 Let E be the space of all entire functions h such that xnh(m)(x + ki)
is bounded in x ∈ R for all m, n ≥ 0 and every k ∈ R. Let F be the space of all
smooth functions g on R such that (eu + e−u)ng(m)(u) is bounded for all m, n ≥ 0.
Then the Fourier transform

�(h)(u)
def= 1

2π

∫
R

h(r)e−iru dr , h ∈ E,

defines a linear bijection � : E → F . Its inverse is given by

�−1(g)(r) =
∫

R

g(u)eiru du.

The map�maps the subspace of even functionsEev in E to the space of even functions
F ev in F.

Proof By some simple estimates, the space F can also be characterized as the space
of all smooth g such that e−kug(m)(u) is bounded for every k ∈ R and every m ≥ 0.

The space F is a subspace of the Schwartz space S(R) be definition. By the identity
theorem of holomorphic functions, the restriction h �→ h|R is an injection of E into
S(R). As the Fourier transform is a bijection on S(R), it suffices to show that it maps
E to F and vice versa.

For h ∈ E let g = �(h). With k ∈ R, and m ≥ 0 compute

e−kug(m)(u) = e−ku 1

2πim

∫
R

h(r)rme−iru dr
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= 1

2πim

∫
R

h(r)rme−i(r−ik)u dr

= 1

2πim

∫
R

h(r + ik)(r + ik)me−iru dr.

The latter is the Fourier transform of a Schwartz function and hence a bounded
function in u. It follows that g lies in F .

For the converse, let g ∈ F . Then the Fourier integral

h(r) =
∫

R

g(u)eiru du

converges for every r ∈ C, so h extends to a unique entire function. Further, for
m, n ≥ 0 and k ∈ R we have

xnh(m)(x + ik) = xnim
∫

R

umg(u)e−kueixu du.

The latter function is bounded in x ∈ R. So h lies in E as claimed. The last assertion
is clear as the Fourier transform preserves evenness. �

Recall the definition of the function hf for f ∈ H as given preceding Lemma 11.2.6.

Proposition 11.2.9 Let HS be the space of all smooth functions f on G of the form
f (x) = φ( tr (xtx)− 2) for some φ ∈ S[0,∞). Then HS is a subalgebra of the Hecke
algebra H and the map � : f �→ hf is a bijection onto the space Eev.

For a given h ∈ Eev the function f = �−1(h) is computed as follows. First one
defines the even function

g(u) = 1

2π

∫
R

h(r)e−iru dr.

Then q : [0,∞) → C is defined to be the unique function with g(u) = q(eu+e−u−2).
Further one sets φ = − 1

π
A(q ′). Then

f (x) = φ
(

tr (xtx) − 2
)
.

Proof First note that that the map q �→ g with g(u) = q(eu + e−u − 2) is a
bijection between S[0,∞) and the space F ev. Finally, Lemma 11.2.7 and 11.2.8 give
the claim. �
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11.3 An Explicit Plancherel Theorem

The Plancherel Theorem says that there exists a measure μ on Ĝ such that for
g ∈ L1(G) ∩ L2(G) one has

‖g‖2
2 =
∫
Ĝ

‖π (g)‖HS dμ(π ).

The techniques developed so far allow us as a side-result, to give an explicit measure
on ĜK , for which this equation holds with f ∈ Hsym. Any such computation is called
an Explicit Plancherel Theorem.

Theorem 11.3.1 For every g ∈ Hsym one has

‖g‖2
2 =

1

4π

∫
R

‖πir (g)‖2
HS r tanh (πr) dr.

Moreover, for every f ∈ Hsym one has

f (1) = 1

4π

∫
R

tr (πir (f )) r tanh (πr) dr.

Proof We show the second assertion first. Let h = hf , φ = φf and g = gf be as
in the discussion at the end of the previous section. Recall in particular that

Aφ
(
eu + e−u − 2

) = g(u) = 1

2π

∫
R

h(r)eiru dr

(since h is even), from which it follows that g′(u) = i
2π

∫
R
rh(r)eiru dr . Using this

and Lemma 11.2.7 we compute

f (1) = φ(0) = − 1

π

∫
R

(Aφ)′(x2) dx.

As gf (u) = Aφ(eu + e−u − 2) = Aφ((eu/2 − e−u/2)2), we get g′(u) = (Aφ)′((eu/2 −
e−u/2)2)(eu − e−u). Putting x = eu/2 − e−u/2 in the above integral, we get

f (1) = − 1

2π

∫
R

g′(u)

eu/2 − e−u/2
du

= − i

4π2

∫
R

∫
R

rh(r)
eiru

eu/2 − e−u/2
dr du.

As h is even, the latter equals

− i

8π2

∫
R

rh(r)
∫

R

eiru − e−iru

eu/2 − e−u/2
du dr.

The first step of the following computation is justified by the fact that the integrand
is even. We compute
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− i

8π2

∫
R

eiru − e−iru

eu/2 − e−u/2
du = 1

4π2i

∫ ∞

0

eiru − e−iru

eu/2 − e−u/2
du

= 1

4π2i

∫ ∞

0
e−u/2 e

iru − e−iru

1 − e−u
du

= 1

4π2i

∫ ∞

0
e−u/2
(
eiru − e−iru

) ∞∑
n=0

e−nu du

= 1

4π2i

∞∑
n=0

∫ ∞

0
e−u(n+ 1

2−ir) du −
∫ ∞

0
e−u(n+ 1

2+ir) du

= 1

4π2i

∞∑
n=0

1

n+ 1
2 − ir

− 1

n+ 1
2 + ir

.

For this latter expression we temporarily write ψ(r). Then

ψ

(
i

(
r + 1

2

))
= 1

4π2i

∞∑
n=0

1

n+ 1 + r
− 1

n− r
= 1

4πi
cot (πr).

The last step is the well known Mittag-Leffler expansion of the cotangent function.
We conclude

ψ(r) = 1

4πi
tan (πir) = 1

4π
tanh (πr).

The second assertion of the theorem follows. For the first, put f = g ∗ g∗ and apply
the theorem to this f . Then, on the one hand, f (1) = g ∗ g∗(1) = ‖g‖2

2, and on the
other, for π ∈ Ĝ,

tr π (f ) = tr π (g)π (g)∗ = ‖π (g)‖2
HS.

This implies the theorem. �

11.4 The Trace Formula

For g ∈ SL2(R) the two eigenvalues in C must be inverse to each other as the
determinant is one. Since g is a real matrix, its characteristic polynomial is real,
and so the eigenvalues are either both real, or complex conjugates of each other. Let
g 
= ±1. There are three cases.

• g is in SL2(C) conjugate to a diagonal matrix with entries ε, ε̄ for some ε ∈ C of
absolute value one. In this case, g is called an elliptic element of G; or

• g is conjugate to ± ( 1 1
1

)
. In this case g is called a parabolic element; or

• g is conjugate to a diagonal matrix with entries t , 1/t for some t ∈ R, in which
case g is called a hyperbolic element.
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Let g be elliptic, say g is conjugate to
(
a+bi

a−bi

)
. As an element of G, the element

g is conjugate to some
(
a −b
b a

)
in K . This implies that g has a unique fixed point in

H.

Proposition 11.4.1 A uniform lattice � ⊂ G contains no parabolic elements.

Proof Consider the map η : H → [0,∞) given by

η(z) = inf{ρ(z, γ z) : γ ∈ �, γ 
= ±1, γ not elliptic}.
It is easy to see that the map η is continuous. Further it is �-invariant and therefore it
constitutes a continuous function�\H → (0,∞). Since�\H ∼= �\G/K is compact,
the function η attains its minimum, hence there exists θ > 0 such that η(z) ≥ θ for all
z ∈ H. Now assume that � contains a parabolic element, say p = g

(
1 1

1

)
g−1 ∈ �

for some g ∈ G. Then for y > 1 we have

ρ(g(yi),pg(yi)) = ρ(g(yi), g(yi + 1)) = ρ(yi, yi + 1)

and the latter tends to zero as y →∞, which follows from

ρ(yi, yi + 1) ≤
∫ 1

0
|p′(t)| dt

Im(p(t))
= 1

y
,

where p(t) = yi + t . We therefore have a contradiction! Hence � does not contain
any parabolic element. �

For a hyperbolic element g, with eigenvalues λ, 1/λ for |λ| > 1, define the length of
g as l(g) = 2 log |λ|.
Let � ⊂ G be a uniform lattice. For convenience we will assume that � contains
no elliptic elements. Then � consists, besides ±1, of hyperbolic elements only. We
call such a group a hyperbolic lattice. In [Bea95], there are given many examples
of uniform lattices in G without elliptic elements. For instance, every Riemannian
manifold of genus g ≥ 2 is a quotient of the upper half plane by a hyperbolic lattice
in G.

So let � be a hyperbolic lattice in G. Let r0 = i
2 , and let (rj )j≥1 be a sequence

in C such that irj ∈ iR ∪ (0, 1
2 ) with the property that πirj is isomorphic to a

subrepresentation of (R,L2(�\G)) and the value r = rj is repeated in the sequence
as often as N�(πir ) times, i.e, as often as πirj appears in the decomposition of R.
Let f ∈ H such that the operator R(f ) is of trace class, and define φ = φf , g = gf

and h = hf as in the previous two sections (See Lemma 11.2.6). Recall that f (x) =
φ( tr (xtx)− 2), g(u) = Aφ(eu + e−u − 2), where A denotes the Abel transform, and
h(r) = ∫

R
g(u)eiru du. Recall from Lemma 11.2.6 that h(r) = tr πir (f ) for every

ir ∈ iR ∪ (0, 1
2 ). Moreover, it follows from Theorem 11.2.4 that tr π (f ) = 0 for

all π ∈ Ĝ � ĜK . We therefore get tr R(f ) = ∑∞
j=0 h(rj ). Suppose that the trace

formula of Theorem 9.3.2 is valid for the function f . Then
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∞∑
j=0

h(rj ) =
∑
[γ ]

vol(�γ \Gγ )Oγ (f ).

Recall the hyperbolic tangent function tanh (x) = ex−e−x

ex+e−x .

An element γ ∈ ��{1} is called primitve, if it is not a power in �, i.e., if the equation
γ = σn with n ∈ N and σ ∈ � implies n = 1.

Lemma 11.4.2 If � is a torsion free uniform lattice, every element γ of ��{1} is a
positive power of a uniquely determined primitive element γ0. This element generates
the centralizer �γ of γ in �. We call it the primitive element underlying γ .

Proof Let γ ∈ ��{1}. By assumption, γ is hyperbolic. Replacing � with a con-
jugate group we may assume that γ is the diagonal matrix with entries et , e−t for
some t > 0, as the other case of γ = −diag(et , e−t ) gives the same result. Then the
centralizer Gγ of γ in G equals ±A, the group of all diagonal matrices in G and
�γ = � ∩ ±A. As −1 /∈ �, since � is torsion-free, it follows that there is γ0 ∈ �

such that the centralizer �γ in � is equal to 〈γ0〉. Replacing γ0 by γ−1
0 if necessary,

we can assume that γ = γ n
0 for some n ∈ N. It follows that γ0 is primitive. �

Theorem 11.4.3 Assume that � is a torsion free uniform lattice in SL(2, R). Let
ε > 0, and let h be a holomorphic function on the strip {|Im(z)| < 1

2 + ε}. Suppose

that h is even, i.e., h(− z) = h(z) for every z, and that h(z) = O(|z|−2−ε) as |z| tends
to infinity. Let g(u) = 1

2π

∫
R
h(r)e−iru dr . Then one has

∞∑
j=0

h(rj ) = vol(�\G)

4π

∫
R

rh(r) tanh (πr) dr

+
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2
g(l(γ )),

where for γ 
= 1, γ0 is the primitive element underlying γ .

Proof We start with functions f ∈ Hsym, for which the trace formula holds and
then we extend the range of the trace formula up to the level of the theorem. So let
f ∈ Hsym such that the trace formula is valid for f . For instance, f ∈ C∞

c (G)2 =
C∞

c (G) ∗ C∞
c (G) will suffice. At first we consider the class [γ ] with γ = 1. Then

vol(�γ \Gγ )Oγ (f ) = vol(�\G) f (1).

Theorem 11.3.1 tells us that

f (1) = 1

4π

∫
R

tr (πir (f )) r tanh (πr) dr = 1

4π

∫
R

h(r) r tanh (πr) dr.

Next let γ be an element of � with γ 
= 1 and recall that this implies Gγ = ±A. If
γ0 = diag(et , e−t ) and if we identify A with R via the exponential map, the group
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�γ = 〈γ0〉 corresponds to the subgroup tZ. It follows that vol(�γ \Gγ ) = 2t = l(γ0),
where the factor 2 is due to the normalization of Haar measure on A.

By the Iwasawa decomposition, the set Gγ \G can be identified with NK/ ± 1. As
f is K-bi-invariant and f (x) = φ( tr (xtx)− 2) for every x ∈ G, the orbital integral
Oγ (f ) equals∫

R

f (n−1
s γ ns) ds =

∫
R

φ
(
e2t + e−2t + s2(et − e−t )2 − 2

)
ds,

so that

Oγ (f ) = 1

et − e−t
Aφ
(
e2t + e−2t − 2

)

= 1

et − e−t
g(2t) = 1

el(γ )/2 − e−l(γ )/2
g(l(γ )).

By the general trace formula as stated before the theorem, we see that the theorem
holds if f ∈ Hsym is admissible for the trace formula.

We now derive the trace formula for the special case of the heat kernel. Let

h(r) = ht (r) = e−(
1
4+r2)t .

Note that ht ∈ E and so Proposition 11.2.9 applies. One gets g(u) = e−t/4√
4πt

e−
u2
4t . Let

ft = �−1(ht ) with � : Hsym → Eev as in Proposition 11.2.9. Recall from Sect. 9.2
the definition of the space Cunif (G) of uniformly integrable functions on G.

Proposition 11.4.4 The function ft lies in Cunif (G)2, so the trace formula is valid
for f.

Proof Note that ht = h2
t/2, which means ft = ft/2 ∗ ft/2 and so, in order to show

that the trace formula is valid for ft , it suffices to show that ft ∈ Cunif (G) for every
t > 0, as it then follows that ft ∈ Cunif (G)2. Let r > 0 and define

U (r)
def= K{as : 0 ≤ s < r}K ⊂ G.

ThenU (r) is an open neighborhood of the unit. Note thatU (r) = {x ∈ G : tr (xtx) <

e2r + e−2r} and the boundary satisfies

∂U (r) = {x ∈ G : tr (xtx) = e2r + e−2r} = KarK.

Lemma 11.4.5 For 0 < r < s
2 we have

U (r)asU (r) ⊂ U (s + 2r)�U (s − 2r).

Proof As U (r) is invariant under K-multiplication from both sides, it suffices to
show everything modulo K-multiplication on both sides. Suppose that for 0 ≤ y < r
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and k ∈ K we can show that aykax and axkay both lie in U (x+ r)�U (x− r). Then,
modulo K-multiplication one has aykas = at for s − r < t < s + r . Iterating the
argument with t taking the part of s, one gets for 0 ≤ y ′ < r ,

aykask
′ay′ = atk

′′ay′ ∈ U (t + r)�U (t − r) ⊂ U (s + 2r)�U (s − 2r).

So it suffices to show that for k ∈ K one has aykas , askay ∈ U (s + r)�U (s − r) for
0 ≤ y < r and arbitrary s. For x ∈ G let T (x) = tr (xtx). Note that

T

(
a b

c d

)
= a2 + b2 + c2 + d2.

We have to show that

e2(s−r) + e2(r−s) < T (aykas) < e2(s+r) + e−2(s+r).

Now any k ∈ K can be written as k = ( a −b
b a

)
for some a, b ∈ R with a2 + b2 = 1.

Then

T (aykas) = T

(
ey+sa −ey−sb

es−yb e−(y+s)a

)

= e2(y+s) + e−2(y+s) + b2(e2(y−s) + e2(s−y) − e2(y+s) − e−2(y+s)).

Here we have used a2 = 1 − b2. Now b ∈ [ − 1, 1] and the above is a quadratic
polynomial in b, which takes its extremal values at the zero of its derivative, i.e., at
b = 0 or at b = ±1. In both cases we get the claim. �

The proof of the proposition now proceeds as follows: One notes that the function
φt with ft (x) = φt

(
tr xtx − 2

)
is monotonically decreasing. This follows from

φt = − 1
π
A(q ′t ). Hence Lemma 11.4.5 implies that (ft )U (r)(as) ≤ ft (as−2r ) for

0 ≤ r < s/2. (Recall the notation fU (x) = sup |f (UxU )|.) Therefore it suffices to
show that for any r ≥ 0,

∫
{x∈G:T (x)≥2r}

φt ( tr (xtx) − 2 − 2r) dx < ∞.

For this we use the integration formula of the Cartan decomposition in Theorem
11.2.1, which shows that the integral equals

2π
∫
e2x+e−2x−2>2r

φt

(
e2x + e−2x − 2 − 2r

) (
e2x − e−2x

)
dx.

Substituting u = e2x + e−2x this becomes

π

∫
u>2r+2

φt (u − 2 − 2r) du = π

∫ ∞

0
φt (x) dx.

As ht ∈ Eev, the function φt lies in S[0,∞) and so this integral is indeed finite. �
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The trace formula for the function ft says

∞∑
j=0

e
−
(

1
4+r2

j

)
t = vol(�\G)

4π

∫
R

re−(
1
4+r2)t tanh (πr) dr

+
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫
R

e−(r
2+1/4)t eirl(γ ) dr ,

where we used the equation gt (u) = 1
2π

∫
R
ht (r)eiru dr , which follows from inverse

Fourier transform and the fact that ht is even. Let μ(t) denote either side of this
equation. For a complex number s with Re(s2) < − 1

4 let

α(s)
def=
∫ ∞

1
μ(t)et(s

2+ 1
4 ) dt.

By realizing μ via the left hand side of the trace formula gives

α(s) =
∞∑
j=0

e
s2−r2

j

r2
j − s2

and using the right hand side of the trace formula gives

α(s) = vol(�\G)

4π

∫
R

r
es

2−r2

r2 − s2
tanh (πr) dr

+
∑

[γ ]
=[1]

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫
R

es
2−r2

r2 − s2
eirl(γ ) dr.

Now take h as in the assumptions of the theorem, but with the stronger growth
condition h(z) = O( exp (− a|z|4)) for some a > 0 and |Im(z)| < 1

2 + ε. For T > 0,
let RT denote the positively oriented rectangle with vertices ±T ± i ε+1

2 . By the
Residue Theorem we can compute

1

2πi

∫
RT

es
2−r2

r2 − s2
sh(s) ds = 1

2
(h(r) + h(−r)) = h(r)

whenever r lies in the interior of the rectangle, and 0 else. For T →∞ this converges

to h(r) for every r ∈ R ∪ i(0, 1
2 ). Thus, using the realization α(s) = ∑∞

j=0
e
s2−r2

j

r2
j−s2 it

follows that that 1
2πi

∫
RT

α(s)sh(s) ds converges to the right hand side of Theorem
11.4.3 if T →∞. On the other hand, using the realization of α(s) given by the left
hand side of the trace formula and interchanging the order of integration, which is
justified by the growth condition on h, shows that 1

2πi

∫
RT

α(s)sh(s) ds equals

vol(�\G)

4π

∫ T

−T

rh(r) tanh (πr) dr +
∑

[γ ]
=[1]

l(γ0)

el(γ )/2 − e−l(γ )/2

1

2π

∫ T

−T

h(r)eirl(γ ) dr.



11.5 Weyl’s Asymptotic Law 215

This converges to the left hand side of Theorem 11.4.3 if T → ∞ since g(l(γ )) =
1

2π

∫
R
h(r)eirl(γ ) dr .

This proves the theorem for h satisfying the stronger growth condition. For arbitrary
h, let a > 0 and set ha(z) = h(z) exp (−az4). Then the function ha satisfies the
stronger growth condition for |Im(z)| < 1

2 +ε and the limit a → 0, using Lebesgue’s
convergence theorem for the integrals, gives the claim. �

11.5 Weyl’s Asymptotic Law

In the proof of the trace formula, we have used the “heat kernel” ht (r) = e−(
1
4+r2)t .

The reason for this being called so is the following. The Laplace operator for
hyperbolic geometry on H,

	 = −y2

((
∂

∂x

)2

+
(

∂

∂y

)2
)

,

is invariant under G, i.e., 	Lg = Lg	 for every g ∈ G. Therefore 	 defines a
differential operator on the quotient �\H, which we denote by the same letter. It
can be shown that its eigenvalues are λj = ( 1

4 + r2
j ) for j ≥ 0. Since this requires

additional arguments from Lie theory and is not essential for our purposes, we will
not give the proof, but only mention the fact as an explanation for the terminology.
The interested reader may consult Helgason’s book [Hel01].

The hyperbolic heat operator is e−t	 for t > 0. This is an integral operator whose
kernel kt (z, w) describes the amount of heat flowing in time t from point z to point
w. Therefore ∞∑

j=0

e
−
(

1
4+r2

j

)
t =

∞∑
j=0

e−tλj = tr e−t	

is the heat trace on �\H.

Proposition 11.5.1 As t → 0, one has

t

∞∑
j=0

e
−
(

1
4+r2

j

)
t → vol(�\H)

4π
.

Proof As g(u) = e−t/4√
4πt

e−
u2
4t , the trace formula for the heat kernel gives

t

∞∑
j=0

e
−t( 1

4+r2
j ) = t

vol(�\H)

4π

∫ ∞

−∞
re−( 1

4+r2)t tanh (πr) dr

+ t
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

e−
t
4− l(γ )2

4t√
4πt

.
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Substituting r with r/
√
t shows that the first summand equals

vol(�\H)

4π
e−t/4
∫

R

re−r2
tanh

(
π

r√
t

)
dr.

The integral equals
∫∞

0 2re−r2
tanh
(
π r√

t

)
dr. As t → 0, the tanh-term tends to 1

monotonically from below; therefore the integral tends to
∫ ∞

0
2re−r2

dr = −e−r2
∣∣∣∞
0
= 1.

It remains to show that

√
t
∑

[γ ]
=1

l(γ0)

el(γ )/2 − e−l(γ )/2

e−
t
4− l(γ )2

4t√
4π

tends to zero as t → 0. This is clear as the sum is finite for every 0 < t < 1 and each
summand tends to zero monotonically as soon as t < l/2, where l is the minimal
length l(γ ) for γ ∈ ��{1}. �

We use this proposition to derive Weyl’s asymptotic formula.

Theorem 11.5.2 For T > 0, let N (T ) be the number of eigenvalues λj = 1
4 + r2

j

of 	 that are ≤ T . Then, as T →∞, one has

N (T ) ∼ vol(�\H)

4π
T ,

where the asymptotic equivalence ∼ means that the quotient of the two sides tends
to 1, as T →∞.

Proof We need a lemma. Recall the definition of the �-function from Sect. 11.2.6.

Lemma 11.5.3 Let μ be a Borel measure on [0,∞) such that

lim
t→0

t

∫
[0,∞)

e−tλ dμ(λ) = C

for some C > 0. Then the following hold.

(a) If f is a continuous function on [0, 1], then

lim
t→0

t

∫
[0,∞)

f (e−tλ)e−tλ dμ(λ) = C

∫ ∞

0
f (e−x)e−x dx.

(b) One has

lim
t→0

t

∫
[0, 1

t
]
dμ(λ) = C.
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Proof (a) By The Stone-Weierstraß TheoremA.10.1, the set of polynomials is dense
in C([0, 1]). We first show that it suffices to prove the lemma for polynomials in the
role of f . So let fn → f be a convergent sequence in C([0, 1]) and assume the
lemma holds for each fn. We have to show that it holds for f as well. Let ε > 0.
Then there exists n0 such that ‖fn − f ‖[0,1] < ε for every n ≥ n0. For such n one
gets ∣∣∣∣t

∫
[0,∞)

(
fn(e−tλ) − f (e−tλ)

)
e−tλ dμ(λ)

∣∣∣∣ < εt

∫
[0,∞)

e−tλ dμ(λ),

and the latter tends to εC as t → 0.

On the other hand, ∣∣∣∣C
∫ ∞

0

(
fn(e−x) − f (e−x)

)
e−x dx

∣∣∣∣ < εC.

So it suffices to prove the lemma for a polynomial and indeed for f (x) = xn, in
which case it comes down to

lim
t→0

t

∫
[0,∞)

e−t(n+1)λ dμ = (n+ 1)−1 lim
t→0

t

∫
[0,∞)

e−tλ dμ(λ)

= C

(n+ 1)

= C

∫ ∞

0
e−(n+1)t dt.

Now for (b). Consider any continuous function f ≥ 0 on the interval such that
f (x) = 1

x
for x ≥ e−1. Then

t

∫
[0, 1

t
]
f
(
e−tλ
)
e−tλ dμ(λ) = t

∫
[0, 1

t
]
dμ(λ),

so that for the limit superior we have the bound

lim sup
t→0

t

∫
[0, 1

t
]
dμ(λ) ≤ lim

t→0
t

∫
[0,∞)

f
(
e−tλ
)
e−tλ dμ(λ)

= C

∫ ∞

0
f
(
e−x
)
e−x dx

= C + C

∫ ∞

1
f
(
e−x
)
e−x dx.

As the last integral can be chosen arbitrarily small, by using the Monotone Con-
vergence Theorem we get that the limit superior in question is ≤ C. Similarly, by
choosing f (x) to vanish for x ≤ e−1 and satisfy 0 ≤ f (x) ≤ 1/x one gets

lim inf
t→0

t

∫
[0, 1

t
]
dμ(λ) ≥ C. �
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To get the theorem, we apply part (b) of the last lemma to the measure μ =∑∞
j=0 δλj

.
Indeed, substituting T = 1

t
, the left hand side of the above equation becomes

limT→∞ 1
T
N (T ), while, by the proposition, we have C = limt→0 t

∑∞
j=0 e

−tλj =
vol(�\H)

4π . �

11.6 The Selberg Zeta Function

As in the previous sections, let � be a torsion free hyperbolic uniform lattice in
SL(2, R). The compact surface �\H is homeomorphic to a 2-sphere with a finite
number of handles attached. The number of handles g is ≥ 2. It is called the genus
of the surface �\H (See [Bea95]).

The Selberg zeta function for � is defined for s ∈ C with Re(s) > 1 as

Z(s) =
∏
γ

∏
k≥0

(
1 − e−(s+k)l(γ )

)
,

where the first product runs over all primitive hyperbolic conjugacy classes in �.

Theorem 11.6.1 The product Z(s) converges for Re(s) > 1 and the function Z(s)
extends to an entire function with the following zeros. For k ∈ N the number s = −k

is a zero of multiplicity 2(g − 1)(2k + 1), where g is the genus of �\H. For every
j ≥ 0 the numbers

1

2
+ irj , and

1

2
− irj

are zeros of Z(s) of multiplicity equal to the multiplicity N�(πirj ). These are all
zeros.

Proof Let a, b ∈ C with real part > 1
2 . Then the function

h(r) = 1

a2 + r2
− 1

b2 + r2

satisfies the conditions of the trace formula of Theorem 11.4.3. One computes
(Exercise 11.5),

g(u) = 1

2π

∫
R

h(r)e−iru dr = e−a|u|

2a
− e−b|u|

2b
.

We compute, formally at first,

Z′

Z
(s) = ∂s

(
log

(∏
γ0

∏
k≥0

(
1 − e−(s+k)l(γ0)

)))

= ∂s

(
−
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)

n

)
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=
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)l(γ0).

If γ0 runs over all primitive classes, then γ = γ n
0 will run over all classes 
= 1. Using

l(γ n
0 ) = nl(γ0) we get

Z′

Z
(s) =
∑
γ

∑
k≥0

e−(s+k)l(γ )l(γ0)

=
∑
γ

e−sl(γ ) l(γ0)

1 − e−l(γ )

=
∑
γ

e−(s− 1
2 )l(γ ) l(γ0)

el(γ )/2 − e−l(γ )/2
.

Up to this point we have ignored questions of convergence. To deal with these,
note that the geometric side of the trace formula for our function h equals
vol(�\G)

4π

∫
R
rh(r) tanh (πr) dr plus

1

2

∑
[γ ]
=1

(
e−al(γ )

a
− e−bl(γ )

b

)
l(γ0)

el(γ )/2 − e−l(γ )/2
.

By the trace formula, the latter sum converges absolutely for all complex numbers
a, b with Re(a), Re(b) > 1

2 . In the special case b = 2a > 1 all summands are positive
and the estimate

e−al(γ )

a
− e−2al(γ )

2a
>

e−al(γ )

a
− e−al(γ )

2a
= 1

2

e−al(γ )

a

shows that the series

∑
[γ ]
=1

e−al(γ ) l(γ0)

el(γ )/2 − e−l(γ )/2
= Z′

Z
(a + 1

2
)

converges locally uniformly absolutely for Re(a) > 1
2 . To be precise, for every a0 >

1
2 consider the open set U = {Re(a) > a0}. For a ∈ U and every γ ∈ ��{1} one has
|e−al(γ )| = e−Re(a)l(γ ) < e−a0l(γ ). This shows locally uniform absolute convergence
of the logarithmic derivative

Z′

Z
(s) =
∑
γ0

∑
k≥0

∞∑
n=1

e−n(s+k)l(γ0)l(γ0)

for Re(s) > 1. By direct comparison we conclude the absolute locally uniform
convergence of the series −∑γ0

∑
k≥0

∑∞
n=1

e−n(s+k)l(γ0)

n
, which is the logarithm of

Z. This implies the locally uniform convergence of the product Z(s) in the region
{Re(s) > 1}.
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The geometric side of the trace formula for h equals

vol(�\G)

4π

∫
R

rh(r) tanh (πr) dr + 1

2a

Z′

Z

(
a + 1

2

)
− 1

2b

Z′

Z

(
b + 1

2

)
.

The spectral side is

∞∑
j=0

1

2a

(
1

a + irj
+ 1

a − irj

)
− 1

2b

(
1

b + irj
+ 1

b − irj

)
.

The trace formula implies that this series converges for complex numbers a, b with
Re(a), Re(b) > 1

2 . Being a Mittag-Leffler series, it converges for all a, b ∈ C, which
are not one of the poles±irj , and it represents a meromorphic function in, say a ∈ C

with simple poles at the ±irj of residue 1/2a times the multiplicity of ±irj .

We want to evaluate the integral
∫

R

rh(r) tanh (πr) dr.

The Mittag-Leffler series of tanh equals

tanh (πz) = 1

π

∞∑
n=0

1

z + i(n+ 1
2 )
+ 1

z − i(n+ 1
2 )

,

where the sum converges absolutely locally uniformly outside the set of poles
i( 1

2 + Z). For n ∈ N the path γn consisting of the interval [−n, n] and the half-
circle in {Imz > 0} around zero of radius n will not pass through a pole. Note that
the function tanh (πr) is periodic, i.e, tanh (π (r + 2i)) = tanh (πr). Further, it is
globally bounded on any set of the form {z ∈ C : |z − i(k + 1/2)| ≥ ε ∀k ∈ Z}
for any ε > 0. As rh(r) is decreasing to the power r−3, it follows that the integral∫
γn

rh(r) tanh (πr) dr converges to the integral in question. By the residue theorem
we conclude∫

R

rh(r) tanh (πr) dr = 2πi
∑

z:Imz>0

resr=z(rh(r) tanh (πr)).

We have

rh(r) = 1

2

(
1

r + ia
+ 1

r − ia

)
− 1

2

(
1

r + ib
+ 1

r − ib

)
.

We will assume a 
= b, both in C�( 1
2 +Z). Then the poles of rh(r) and of tanh (πr)

are disjoint and we conclude that the integral equals

πi tanh (πia) − πi tanh (πib) + 2i
∞∑
n=0

1

2

(
1

i(n+ 1
2 ) + ia

+ 1

i(n+ 1
2 ) − ia

)
− (. . .),
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where the dots indicate the same term forb instead ofa. Plugging in the Mittag-Leffler
series of tanh, one shows that the integral equals

2
∞∑
n=0

(
1

a + 1
2 + n

− 1

b + 1
2 + n

)
.

From hyperbolic geometry (see [Bea95] Theorem 10.4.3) we take

Lemma 11.6.2 The positive number vol(�\G)
4π is an integer. More precisely, it is equal

to g − 1, where g ≥ 2 is the genus of the compact Riemann surface �\H.

After a change of variables a �→ a + 1
2 and the same for b, comparing the two sides

of the trace formula tells us that

Z′

Z

(
a + 1

2

)
= a

b

Z′

Z

(
b + 1

2

)
+ 4a(1 − g)

∞∑
n=0

(
1

a + 1
2 + n

− 1

b + 1
2 + n

)

+
∞∑
j=0

1

a + irj
+ 1

a − irj
− a

b

1

b + irj
+ a

b

1

b − irj
.

Fixing an appropriate b, this extends to a meromorphic function on C with simple
poles at a = −n and a = 1

2 ± irj . It follows that Z extends to an entire function on C

and by a theorem from Complex Analysis (see [Rud87], Theorem 10.43) it follows
that the poles of Z′

Z
are precisely the zeros of Z with multiplicity the respective

residues. These are 2(2n+ 1)(g − 1) for a = −n and 1 in all other cases. �

We define the Ruelle zeta function of � as the infinite product

R(s) =
∏
[γ ]

(1 − e−sl)γ .

Corollary 11.6.3 The product defining the Ruelle zeta function converges for
Re(s) > 1 and the so defined Ruelle zeta function extends to a meromorphic function
on C. Its poles and zeros all lie in the union of R with the two vertical lines Re(s) = 1

2
and Re(s) = − 1

2 . One has

R(s) = Z(s)

Z(s + 1)
.

Proof The correlation between the Ruelle and the Selberg zeta function is immediate
from the Euler product. The rest of the Corollary follows from this and Theorem
11.6.1. �

Note that, as rj ∈ i
[− 1

2 , 1
2

] ∪ R, the Selberg zeta function satisfies a weak form of
the Riemann hypothesis, as its zeros in the critical strip {0 < Re(s) < 1} are all in
the set {Re(s) = 1

2 } with the possible exception of finitely many zeros in the interval
[0, 1].
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Note further, that one has a simple zero at s = 1 and no other poles or zeros in
{Re(s) ≥ 1}. This information, together with the product expansion, suffices to
use standard machinery from analytic number theory as in [Cha68] to derive the
following theorem.

Theorem 11.6.4 (Prime Geodesic Theorem). For x > 0 let π (x) be the number of
hyperbolic conjugacy classes [γ ] in � with l(γ ) ≤ x. Then, as x →∞,

π (x) ∼ e2x

2x
.

11.7 Exercises and Notes

Exercise 11.1 Show that
∫

R

e−u/2 sin (ru)
1+e−u du = π tanh (πr).

(Hint: Write sin (ru) = 1
2i (e

iru−e−iru) and thus decompose the integral into the sum
of two integrals, each of which can be computed by the residue theorem.)

Exercise 11.2 Show that g ∈ G = SL2(R) is

hyperbolic ⇔ | tr (g)| > 2,

parabolic ⇔ | tr (g)| = 2,

elliptic ⇔ | tr (g)| < 2.

Exercise 11.3 Show that a circle or a line in C is described by the equation Azz +
Bz + Bz + C = 0, where A,C ∈ R. Show that the linear fractional z �→ az+b

cz+d
for(

a b
c d

) ∈ GL2(C) maps circles and lines to circles and lines.

Exercise 11.4 Let A ∈ Mn(C). Show that

det( exp (A)) = exp (tr (A)).

Exercise 11.5 Let a ∈ C with Re(a) > 0. Show that
∫

R
e−a|u|eiru dr = 2a

a2+r2 .

Exercise 11.6 Let G be a locally compact group and K a compact subgroup. The
Hecke algebra H = L1(K\G/K) is defined to be the space of all L1-functions on
G which are invariant under right and left translations from K . Show that H is an
algebra under convolution. Show that for every (π ,Vπ ) ∈ Ĝ the space V K

π of K-
invariants is either zero, or an irreducible H-module in the sense that it does not
contain a closed H-stable subspace.

Exercise 11.7 Continue the notation of the last exercise. The pair (G,K) is called
a Gelfand pair if H is commutative. Show that if (G,K) is a Gelfand pair, then for
every (π ,Vπ ) ∈ Ĝ the space V K

π is at most one dimensional.
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Exercise 11.8 Keep the notation of Exercise 11.6. Suppose that there is a continuous
map G → G, x �→ xc such that (xy)c = ycxc and (xc)c = x as well as xc ∈ KxK

for every x ∈ G. Show that G is unimodular and that (G,K) is a Gelfand pair.

(Hint: Let μ be the Haar measure on G and set μc(A) = μ(Ac). Show that μc

is a right Haar measure and that
∫
G
f (x) dμ(x) = ∫

G
f (x) dμc(x) holds for every

f ∈ H. Consider the equation
∫
G
f (xy) dμ(x) = 	(y−1)

∫
G
f (x) dμ(x) for f ∈ H

and make the integrand on the right hand side K-bi-invariant.)

Exercise 11.9 Let f ∈ H with tr (πir (f )πir (x)) = 0 for every x ∈ G and every
r ∈ R. Show that f ≡ 0.

Exercise 11.10 Let 	 denote the hyperbolic Laplace operator. Show that the
function z �→ Im(z)s for s ∈ C is an eigenfunction of 	 of eigenvalue s(1 − s).

Exercise 11.11 Read and understand the proof of the prime number theorem in
[Cha68]. Apply the same methods to give a proof of Theorem 11.6.4.

Notes

The Selberg zeta function has been introduced in Selberg’s original paper on the
trace formula [Sel56]. It has fascinated mathematicians from the beginning as its
relation to the trace formula is similar to the relation of the Riemann zeta function to
the Poisson summation formula and, as we have seen, a weak form of the Riemann
hypothesis can be proved for the Selberg zeta function. However, Selberg’s zeta
continues to live in a world separate from Riemann’s, and although many tried, no
one has found a bridge between these worlds yet.

The name Prime Geodesic Theorem for Theorem 11.6.4 is derived from the following
geometric facts. On the upper half plane H there is a Riemannian metric given by
dx2+dy2

y2 , which is left stable by the action of the group G, in other words, G acts
by isometries. If � ⊂ G is a torsion-free discrete cocompact subgroup, the quotient
�\H will inherit the metric and thus become a Riemannian manifold, the projection
H → �\H is a covering. A closed geodesic c in �\H is covered by geodesics of
infinite lengths in H and any such geodesic is being closed by an element γ ∈ �,
which is uniquely determined up to conjugacy. The map c �→ γ sets up a bijection
between closed geodesics and primitive conjugacy classes in �. The number l(γ ) is
just the length of the geodesic c. So indeed, Theorem 11.6.4 gives an asymptotic of
lengths of closed geodesics. This theorem has been generalized several times, the
most general version being a theorem of Margulis [KH95], which gives a similar
asymptotic for compact manifolds of strictly negative curvature.



Chapter 12

Wavelets

In this chapter we will give an introduction to the theory of wavelets and wavelet
transforms from the viewpoint of Harmonic Analysis. We will not be able to cover
all theoretical aspects of wavelet theory, but we shall at least give a first introduction
into this fascinating field. A much more complete coverage is given in the Lecture
Notes [Füh05], which we recommend for further reading.

12.1 First Ideas

Let (X,μ) be any measure space. Roughly speaking, a wavelet is an element φ ∈
L2(X,μ) together with a family of transformations t �→ πtφ indexed by the elements
of some other measure space (T , ν). The corresponding wavelet transform is a map

� : L2(X,μ) → L2(T , ν),

which maps a function ψ to the function �(ψ), which is defined by

�(ψ)(t) = 〈ψ ,πtφ〉 .
One usually considers only cases where the wavelet transform is injective and allows
some reconstruction formula for a given ψ out of the transformed data. In many
interesting cases, the measure space T is a locally compact group equipped with
Haar measure and the transformation t �→ πt is a unitary representation of T on
L2(X,μ), so it is evident that Harmonic Analysis is entering the picture. Although
there are many important cases that do not fit directly into this setting (like most
discretized versions), we shall restrict ourselves to this setting below. The basic
example is given by the continuous wavelet transform of the real line:

Example 12.1.1 Recall the ax + b-group G consisting of all matrices of the form(
a b

0 1

)
with a ∈ R

∗ = R � {0} and b ∈ R. It is the group of affine transformations

(a, b) �→ Ta,b on the real line given by Ta,b(x) = ax+ b. A short computation shows
that left Haar measure on G is given by the formula

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 225
DOI 10.1007/978-3-319-05792-7_12, © Springer International Publishing Switzerland 2014
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∫
G

f (a, b) d(a, b) =
∫

R
∗

∫
R

f (a, b) db
da

|a|2
and that 	 : (a, b) �→ 1

|a| is the modular function on G.

The action of G on R induces a unitary representation (a, b) �→ π (a, b) of the
ax + b-group on L2(R) via

(π (a, b)φ)(x) = 1√|a|φ
(
T −1

(a,b)(x)
) = 1√|a|φ

(
x − b

a

)
.

Now fix an element φ ∈ L2(R). Then for each ψ ∈ L2(R) we obtain a bounded
continuous function Wφ(ψ) : G → C given by

(a, b) �→ Wφ(ψ)(a, b) = 〈ψ ,π (a, b)φ〉 .
In order to get useful transformations in this way, we have to find conditions on φ,
which guarantee that the transform ψ �→ Wφ(ψ) is injective with image in L2(G)
and allows for a suitable inversion formula.

Of course, the optimal solution to the above stated problem would be to find functions
φ ∈ L2(R) such that the resulting transform ψ �→ Wφ(ψ) is an isometry from L2(R)
into L2(G). In that case the reconstruction formula would be given by the adjoint
operator W ∗

φ : L2(G) → L2(R), since for every ψ , η ∈ L2(R) we would have

〈ψ , η〉 = 〈Wφ(ψ),Wφ(η)
〉 = 〈W ∗

φWφ(ψ), η
〉
,

and hence
ψ = W ∗

φWφ(ψ),

as elements in L2(R).

Before we give specific answers to the questions asked in the above example, we
want to put the problem into a more general framework: Suppose that G is an
arbitrary locally compact group and that (π ,Vπ ) is a unitary representation of G on
some Hilbert space Vπ . Given any fixed vector ξ ∈ Vπ , we obtain a corresponding
transformation

Wξ : Vπ → C(G),

which sends η ∈ Vπ to the matrix coefficient x �→ 〈η,π (x)ξ〉. We call this the
(generalized) continuous wavelet transform corresponding to π and ξ . Note that this
transformation is injective if and only if ξ is a cyclic vector for π .

If Wξ mapped Vπ into the Hilbert space L2(G), we would be able to use Hilbert space
methods. But in general the function x �→ 〈η,π (x)ξ〉may not be an L2-function. So,
in order to be able to use inner products, we have to restrict Wξ to the linear space

Dξ = {η ∈ Vπ : Wξ (η) ∈ L2(G)}.
We then get a linear operator Wξ : Dξ → L2(G). Up to now we have always
considered operators from Banach spaces to Banach spaces. The current example
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shows that sometimes linear operators occur naturally, which are only defined on
linear subspaces of Banach spaces. So let V ,W be Banach spaces, and let D ⊂ V be
a linear subspace. A linear map T : D → W will loosely be called a linear operator
from V to W with domain D.

Let D be a linear subspace of the Banach space V .

• A linear operator T : D → W is called a closed operator if its graph

G(T ) = {(η, T η) : η ∈ D}
is a closed subset of V ×W .

• A linear operator T : D → W is called a bounded operator if its norm

‖T ‖ = sup
v∈D
‖v‖=1

‖T v‖

is finite.

• A linear operator T : D → W is called densely defined if D is dense in V .

Note (Exercise 12.1) that if T is densely defined and bounded, it extends to a unique
bounded operator T : V → W .

Lemma 12.1.2 The operator Wξ : Dξ → L2(G) is closed.

Proof Suppose that (ηn)n∈N is a sequence in Vπ such that ηn → η in Vπ and
Wξ (ηn) → φ in L2(G). Passing to a subsequence (Theorem B.4.3) if necessary,
we may assume in addition that Wξ (ηn) → φ point-wise almost everywhere. But for
every x ∈ G we have:

|Wξ (η)(x) −Wξ (ηn)(x)| = | 〈η − ηn,π (x)ξ〉 |
≤ ‖η − ηn‖‖ξ‖,

which converges to 0. This implies that φ = Wξ (η) almost everywhere. �

Definition A vector ξ ∈ Vπ is called square integrable if Dξ = Vπ , i.e., if Wξ (η) :
x �→ 〈η,π (x)ξ〉 is square integrable on G for every η ∈ Vπ . We put

Dπ
def= {ξ ∈ Vπ : ξ is square integrable}.

It is easily checked that Dπ is a π (G)-invariant linear subspace of Vπ , and it follows
from the above lemma and the closed graph theorem (C.1.6) that Wξ : Vπ →
L2(G) is bounded for every ξ ∈ Dπ . The representation (π ,Vπ ) is called a square
integrable representation, if Dπ is dense in Vπ . A square integrable vector ξ is called
an admissible vector if Wξ : Vπ → L2(G) is isometric. Having fixed notation as
above, the general problems to be solved are now as follows:
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1. Under what conditions does a unitary representation (π ,Vπ ) have any nontrivial
square integrable vectors, or when is π a square integrable representation?

2. Suppose the unitary representation(π ,Vπ ) is square integrable. Characterize all
admissible vectors in Vπ (if they exist).

3. Given an admissible vector ξ for the representation (π ,Vπ ). Find an explicit
reconstruction formula for the corresponding continuous wavelet transform Wξ :
Vπ → L2(G).

As explained in the above example, if ξ is an admissible vector for (π ,Vπ ), then
the reconstruction operator for the wavelet transform Wξ : Vπ → L2(G) is given
by the adjoint W ∗

ξ : L2(G) → Vπ . So Problem 3 reduces to the problem of finding
an explicit formula for W ∗

ξ . In the next section we shall give a general answer to
the first two problems in case where the representation (π ,Vπ ) is irreducible. This
case covers many of the known examples and applies in particular to the continuous
wavelet transform of the real line as discussed in Example 12.1.1 above.

In what follows next, we shall present some more or less easy observations concerning
the above stated problems in general. Since the wavelet transformation Wξ : Vπ →
Cb(G) is injective if and only if ξ is a cyclic vector for π , we should restrict our
attention to cyclic representations and cyclic vectors thereof. Then the following easy
lemma shows that we are really only interested in square integrable representations.

Lemma 12.1.3 Suppose that ξ ∈ Vπ is a cyclic square integrable vector of the
unitary representation (π ,Vπ ). Then π is a square integrable representation.

Proof If ξ ∈ Dπ is cyclic then Dπ contains the dense subspace span{π (x)ξ : x ∈ G}
of Vπ . �

We now give a description of the adjoint operator W ∗
ξ : L2(G) → Vπ :

Lemma 12.1.4 Suppose that ξ ∈ Vπ is a square integrable vector for the unitary
representation (π ,Vπ ). Then the adjoint operator W ∗

ξ : L2(G) → Vπ of the wavelet
transform Wξ is given by the formula

W ∗
ξ (φ) =

∫
G

φ(x)π (x)ξ dx.

Proof This integral is to be understood in the weak sense, i.e., it signifies the unique
vector such that 〈∫

G

φ(x)π (x)ξ dx, η

〉
=
∫
G

φ(x) 〈π (x)ξ , η〉 dx

for every η ∈ H . Note that it follows from the square integrability of ξ that the
integral on the right hand side of this formula exists. For η ∈ Vπ and φ ∈ L2(G) we
have
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〈
W ∗

ξ (φ), η
〉 = 〈φ,Wξ (η)

〉

=
∫
G

φ(x)Wξ (η)(x) dx

=
∫
G

φ(x) 〈π (x)ξ , η〉 dx.

�

As a consequence, we obtain the following general reconstruction formula for
continuous wavelet transforms corresponding to admissible vectors ξ ∈ Vπ :

Proposition 12.1.5 Suppose that ξ ∈ Vπ is an admissible vector for the unitary
representation (π ,Vπ ). Then for all η ∈ Vπ we have

η = W ∗
ξ Wξη =

∫
G

〈η,π (x)ξ〉π (x)ξ dx.

Moreover, the image Wξ (Vπ ) ⊂ L2(G) of the wavelet transform is a closed subspace
of L2(G) with orthogonal projection Pξ : L2(G) → Wξ (Vπ ) given by the formula

(
Pξφ
)

(y) = (WξW
∗
ξ (φ)
)

(y) =
∫
G

φ(x) 〈π (x)ξ ,π (y)ξ〉 dx.

Proof It is a general fact for isometries S : V → W between Hilbert spaces V and
W that S∗S is the identity on V and SS∗ : W → S(V ) is the projection onto the
closed range S(V ) ⊂ W of S (we leave the verification as an easy exercise for the
reader). Thus the proposition follows directly from the explicit description of W ∗

ξ

given in the previous lemma. �

Corollary 12.1.6 Suppose that ξ ∈ Vπ is an admissible vector for the unitary
representation (π ,Vπ ). Then the orthogonal projection Pξ : L2(G) → Wξ (Vπ ) is
given by right convolution with Wξ (ξ ) ∈ L2(G), i.e. Pξ (φ) = φ ∗Wξ (ξ ) for every
φ ∈ L2(G).

Proof By definition of Wξ and convolution of functions on G, we have

φ ∗Wξ (ξ )(y) =
∫
G

φ(x)
〈
ξ ,π (x−1y)ξ

〉
dx

=
∫
G

φ(x) 〈π (x)ξ ,π (y)ξ〉 dx

and the result follows from the previous proposition. �

We close this section by observing that every group has at least one square integrable
representation:
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Example 12.1.7. Consider the left regular representation of G. We claim that every
g ∈ Cc(G) ⊂ L2(G) is square integrable. Since Cc(G) is dense in L2(G) it then
follows that (L,L2(G)) is square integrable.

Consider the right regular representation R of G on L2(G) given by R(y)φ(x) =√
	(y)φ(xy), where 	 = 	G denotes the modular function on G. Put g̃(y) =

	(y)−1/2g(y), and let φ ∈ L2(G) be arbitrary. Consider the continuous function
x �→ 〈φ,L(x)g〉. We compute

〈φ,L(x)g〉 =
∫
G

φ(y)g(x−1y) dy =
∫
G

g(y)φ(xy) dy

=
∫
G

g̃(y)
√
	(y)φ(xy) dy

=
∫
G

g̃(y)R(y)φ(x) dy = R(g̃)φ(x).

It follows that x �→ 〈φ,L(x)g〉 is in L2(G) indeed.

12.2 Discrete Series Representations

In this section we want to characterize the irreducible square integrable represen-
tations of a locally compact group as precisely those irreducible representations,
which are direct summands of the left regular representation (L,L2(G)). Note that
such representations are commonly called the discrete series representations of G.
Aside of their relation to wavelet theory, as discussed here, they play a very important
role in the general representation theory of reductive Lie groups, and a good deal
of research work has been done to characterize the discrete series representations of
certain locally compact groups. We start with some easy observations:

Suppose that (π ,Vπ ) is a unitary representation, let ξ ∈ Vπ be any vector, and let
Dξ ⊂ Vπ be the domain of Wξ : Dξ → L2(G). Then, if y ∈ G, we have

(Wξ (π (y)η))(x) = 〈π (y)η,π (x)ξ〉
= 〈η,π (y−1x)ξ

〉
= (L(y)Wξ (η))(x),

which proves that Dξ is a π (G)-invariant subset of Vπ . Moreover, we see that Wξ

intertwines the representation π restricted to Dξ with the left regular representation
L : G → L2(G). Thus, if ξ is admissible it follows that the closed subspace
Wξ (Vπ ) ⊂ L2(G) is L-invariant and that Wξ establishes a unitary equivalence
between (π ,Vπ ) and a subrepresentation of (L,L2(G)). So we have shown

Proposition 12.2.1 Suppose that ξ is an admissible vector for the unitary represen-
tation (π ,Vπ ). Then (π ,Vπ ) is equivalent to a subrepresentation of (L,L2(G)).
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Definition In what follows we shall need the following generalization of Schur’s
Lemma for possibly unbounded intertwining operators. Let (π ,Vπ ) and (ρ,Vρ) be
two representations of the locally compact groupG. LetD ⊂ Vπ be a linear subspace.
A linear operator T : D → Vρ is called an intertwining operator if D is stable under
π and

ρ(x)T = T π (x)

holds for every x ∈ G.

Proposition 12.2.2 Let (π ,Vπ ) and (ρ,Vρ) be two unitary representations of G
with π irreducible and let T : D → Vρ with D ⊂ Vπ be a densely defined closed
intertwining operator. Then D = Vπ and T = μS for some 0 ≤ μ ∈ R and some
isometry S : Vπ → Vρ .

Proof We may assume that T 
= 0. Denote by 〈·, ·〉π and 〈·, ·〉ρ the inner products
on Vπ and Vρ , respectively. Since G(T ) is a closed subspace of Vπ ×Vρ , we see that

〈(ξ , T ξ ), (η, T η)〉 def= 〈ξ , η〉π + 〈T ξ , T η〉ρ
defines an inner product on G(T ), which turns G(T ) into a Hilbert space. Let
P : G(T ) → Vπ denote the projection to the first factor, and let P ∗ be its ad-
joint operator. Then PP ∗ : Vπ → Vπ is a bounded intertwining operator for the
irreducible representation π , which, by the classical version of Schur’s Lemma (see
Lemma 6.1.7), must be a multiple of the identity. Since T 
= 0 it follows PP ∗ 
= 0,
and therefore Vπ = PP ∗(Vπ ) ⊂ P (G(T )) = D, so T is everywhere defined. By
the closed graph theorem (Theorem C.1.6) it must be bounded. Now we can apply
Schur’s Lemma to the positive intertwining operator T ∗T of π to obtain some μ > 0
such that T ∗T = μ2IdVπ

. Put S = 1
μ
T . Then

〈Sξ , Sη〉ρ =
〈
S∗Sξ , η

〉
π
= 1

μ2

〈
T ∗T ξ , η

〉
π
= 〈ξ , η〉π ,

which implies that S is an isometry. �

As a first consequence, we obtain the following characterization of admissible vectors
in irreducible representations:

Proposition 12.2.3 Let (π ,Vπ ) be an irreducible unitary representation, and let
0 
= ξ ∈ Vπ . Then the following are equivalent.

(a) There exists 0 
= η ∈ Vπ such that Wξ (η) ∈ L2(G).

(b) ξ is a square integrable vector.

(c) There exists 0 < λ ∈ R such that λξ is admissible.

Moreover, if these assertions are true, then λ = ‖ξ‖
‖Wξ (ξ )‖ .
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Proof The implications (c)⇒ (b) and (b)⇒ (a) are trivial, so we only have to show
that (a) implies (c). The discussion preceding Proposition 12.2.1 shows that Dξ is a
π (G)-invariant linear subspace of Vπ , which is nonzero by condition (a). Thus, since
π is irreducible, it must be dense in Vπ . We further observed above that the densely
defined linear operator

Wξ : Dξ → L2(G)

intertwines π with the left regular representation (L,L2(G)) and Lemma 12.1.2
shows that Wξ is a closed operator. Thus by Proposition 12.2.2 we know that Wξ =
μS for some 0 ≤ μ ∈ R and some isometry S : Vπ → L2(G). Since (Wξ (ξ ))(e) =
〈ξ , ξ〉 
= 0, and since x �→ 〈ξ ,π (x)ξ〉 is continuous, it follows that Wξ (ξ ) 
= 0,
and Wξ is not the zero operator. Thus μ 
= 0. Applying Wξ = μS to ξ implies that
S = 1

μ
Wξ = Wλξ with λ = 1

μ
= ‖ξ‖

‖Wξ (ξ )‖ . �

Corollary 12.2.4 Let (π ,Vπ ) be an irreducible representation of the locally compact
group G. Then the following are equivalent:

(a) (π ,Vπ ) is square integrable.

(b) There exists an admissible vector ξ ∈ Vπ .

(c) (π ,Vπ ) is a discrete series representation, i.e., it is equivalent to a subrepresen-
tation of the left regular representation (L,L2(G)).

Proof The equivalence (a) ⇔ (b) follows from Proposition 12.2.3 together with
Lemma 12.1.3. The part (b) ⇒ (c) follows from Proposition 12.2.1. Thus it only
remains to show that (c) implies (a). Recall from Example 12.1.7 that every function
φ ∈ Cc(G) is a square integrable element in L2(G) for the regular representation
(L,L2(G)). Suppose that T : Vπ → L2(G) is an isometric intertwining operator.
Let P : L2(G) → T (Vπ ) denote the orthogonal projection on the image T (Vπ ) ⊂
L2(G). Since Cc(G) is dense in L2(G), the image P (Cc(G)) is dense in T (Vπ ) and
D = {ξ ∈ Vπ : T ξ ∈ P (Cc(G))} is dense in Vπ . But all elements ξ ∈ D are square
integrable vectors for (π ,Vπ ): Using the fact that L(x) commutes with P for every
x ∈ G and that P ◦ T = T we obtain

〈η,π (x)ξ〉 = 〈T η,L(x)T ξ〉 = 〈T η,L(x)Pφ〉 = 〈T η,L(x)φ〉 ,

where φ ∈ Cc(G) such that T ξ = Pφ. But x → 〈T η,L(x)φ〉 is square
integrable. �

We now come to the main result of this section, which is mainly due to Duflo and
Moore in [DM76]. But its importance to wavelet theory was first highlighted by
Grossmann, Morlet and Paul in [GMP85]:

Theorem 12.2.5 Let (π ,Vπ ) be a discrete series representation of the locally
compact group G, and let Dπ be the set of square integrable vectors in Vπ .
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(a) There exists a closed densely defined operator Cπ : Dπ → Vπ satisfying the
orthogonality relation

〈
Cπξ

′,Cπξ
〉 〈
η, η′
〉 = 〈Wξ (η),Wξ ′ (η

′)
〉

for all ξ , ξ ′ ∈ Dπ and all η, η′ ∈ Vπ .

(b) The operator Cπ : Dπ → Vπ is injective and ξ ∈ Vπ is admissible if and only
if ξ ∈ Dπ with ‖Cπξ‖ = 1

(c) If, in addition, G is unimodular, then all vectors ξ ∈ Vπ are square-integrable,
so Dπ = Vπ and there exists a unique constant cπ > 0 such that Cπ can be
chosen equal to cπ IdVπ

.

Proof Choose any η ∈ Vπ with ‖η‖ = 1. Then, if Cπ exists as in the theorem, we
must have 〈

Cπξ ,Cπξ
′〉 = 〈Wξ ′ (η),Wξ (η)

〉
.

Thus, in order to obtain the operator Cπ , we have to check that

Bη(ξ , ξ ′) def= 〈Wξ (η),Wξ ′ (η)
〉

is a closed, positive definite, hermitian form onDπ×Dπ as explained in the appendix
preceding Theorem C.4.5. Linearity (resp. conjugate linearity) in the first (resp.
second) variable follows easily from the equation

〈
Wξ ′ (η),Wξ (η)

〉 =
∫
G

〈
η,π (x)ξ ′

〉 〈π (x)ξ , η〉 dx.

Positivity follows from the fact that every non-zero vector ξ ∈ Vπ is cyclic by irre-
ducibility of π , and hence the function x �→ 〈η,π (x)ξ〉 does not vanish everywhere
if 0 
= ξ . To see that Bη : Dπ ×Dπ → C is closed, let (ξn)n∈N be any sequence in
Dπ , which converges to some ξ ∈ Vπ and such that

Bη(ξn − ξm, ξn − ξm) → 0 for n,m →∞.

Since

Bη(ξn − ξm, ξn − ξm) = ‖Wξn−ξm (η)‖2
2

= ‖Wξn (η) −Wξm (η)‖2
2,

it follows that (Wξn (η))n∈N is a Cauchy-sequence in L2(G). Hence it converges to
some φ ∈ L2(G). By passing to a subsequence if necessary we may further assume
that (Wξn (η))n∈N converges to φ point-wise almost everywhere. On the other hand,
we have

|Wξn (η)(x) −Wξ (η)(x)| = | 〈η,π (x)(ξn − ξ )〉 | ≤ ‖ξn − ξ‖
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from which we may conclude that φ = Wξ (η) in L2(G) and all requirements of
Theorem C.4.5 are satisfied. We therefore obtain an operator Cπ : Dπ → Vπ such
that

〈
Cπξ ,Cπξ

′〉 = 〈Wξ ′ (η),Wξ (η)
〉
.

We now check that Bη = Bη′ whenever η′ is some other unit vector in Vπ , hence
proving that the constructed operator Cπ does not depend on the choice of η. To see
this, we simply use the fact that by Proposition 12.2.3 we have Wξ = μξS with S an
isometry and μξ = ‖Wξ (ξ )‖2

‖ξ‖ whenever 0 
= ξ ∈ Dπ . It then follows that

Bη(ξ , ξ ) = 〈Wξ (η),Wξ (η)
〉 = μ2

ξ 〈Sη, Sη〉 = μ2
ξ .

Hence the expression Bη(ξ , ξ ) does not depend on the chosen unit vector η and, via
polarization, neither does the hermitian form Bη. This shows that we have

〈
Cπξ

′,Cπξ
〉 ‖η‖2 = 〈Wξ (η),Wξ ′(η)

〉
for all ξ , ξ ′ ∈ Dπ and all η ∈ Vπ . Now if

〈
Cπξ

′,Cπξ
〉 = 0 it follows from

Cauchy-Schwartz applied to the positive semi-definite hermitian form (η, η′) �→〈
Wξ (η),Wξ ′ (η′)

〉
that this form vanishes on Vπ × Vπ and if

〈
Cπ (ξ ′),Cπ (ξ )

〉 
= 0 we
can apply the polarization formula to the positive definite hermitian form

(η, η′) �→ 1

〈Cπξ ′,Cπξ〉
〈
Wξ (η),Wξ ′ (η

′)
〉

to obtain the orthogonality relation of (a) for all ξ , ξ ′ ∈ Dπ and all η, η′ ∈ Vπ .

The injectivity of Cπ follows from the orthogonality, since the inner product〈
Wξ (η),Wξ (η)

〉
is> 0 if ξ andη are non-zero. Moreover, a vector ξ ∈ Vπ is admissible

if and only if ξ ∈ Dπ and Wξ is isometric. But the latter is equivalent to

‖Cπξ‖2 = 〈Wξ (η),Wξ (η)
〉 = 1

for all unit vectors η ∈ Vπ . This finishes the proof of (b).

Assume now that G is unimodular. For f ∈ L2(G), the function f ∗(x) = f (x−1)
then lies in L2(G) again, and for g ∈ L2(G) one has 〈f ∗, g∗〉 = 〈g, f 〉. For ξ , η ∈ Vπ

one has Wξ (η)∗ = Wη(ξ ). Therefore, for ξ , ξ ′, η, η′ ∈ Dπ one has
〈
Cπξ

′,Cπξ
〉 〈
η, η′
〉 = 〈Wξ (η),Wξ ′ (η

′)
〉

= 〈Wη′ (ξ
′),Wη(ξ )

〉
= 〈Cπη,Cπη

′〉 〈ξ ′, ξ 〉 .
For fixed η = η′ 
= 0, one sees that there exists a constant dπ > 0 such that〈
ξ ′, ξ
〉 = dπ

〈
Cπξ

′,Cπξ
〉
. For arbitrary ξ , η ∈ Vπ , we choose a sequence ξn that

converges to ξ in Vπ . The above implies that ‖Wξn (η)−Wξm (η)‖2 = ‖Wξn−ξm (η)‖2 =
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‖Cπ (η)‖2‖ξn − ξm‖2 for all n,m ∈ N. Thus Wξn (η) is a Cauchy-sequence in L2(G),
hence converges to an L2-function f . Passing to a subsequence if necessary, we
may assume that it converges point-wise almost everywhere to f . But the sequence
Wξn (η) converges point-wise to the continuous function Wξ (η), hence f = Wξ (η)
and the latter is in L2(G). As ξ was arbitrary, it follows Dπ = Vπ . The number
cπ = √

dπ
−1

will satisfy the claim. �

Remark 12.2.6 Using functional calculus for unbounded operators one can
strengthen the above theorem by showing that there exists a unique positive operator
Cπ , which satisfies the requirements of the theorem (See Remark C.4.6). Since we
did not discuss functional calculus for unbounded operators and since this stronger
result is not needed in what follows, we decided to state the theorem in the present
weaker form.

Example 12.2.7 We should discuss the content of the theorem in case of a compact
group G. In this case every bounded continuous function is square integrable, and
hence we have Dπ = Vπ for every irreducible representation (π ,Vπ ). By Theorem
7.2.3, we know that every irreducible representation of the compact group G is finite
dimensional. We claim that the operator Cπ is then given by multiplication with the
constant 1√

dimVπ
, so in other words, dπ = dim(Vπ ). To see this, recall that it follows

from the Peter-Weyl Theorem (Theorem 7.2.1) that for any vectors ξ , ξ ′, η, η′ ∈ Vπ

we have the orthogonality relation

〈
Wξ (η),Wξ ′ (η

′)
〉 =
∫
G

〈η,π (x)ξ〉 〈η′,π (x)ξ ′〉 dx

= 1

dπ

〈
ξ , ξ ′
〉 〈
η, η′
〉
,

which follows easily from part (b) of Theorem 7.2.1 by choosing an orthonormal
basis and writing all vectors as linear combinations of that basis. Thus we see that
multiplication by 1√

dπ
satisfies the requirements for the operator Cπ in the theorem.

This relation between Cπ and the dimension dπ led to the study of the operator
Kπ = (Cπ )−2 by Duflo and Moore in [DM76] (with Cπ being the positive operator
of Remark 12.2.6), which they called the formal dimension operator of the square
integrable irreducible representation π .

Definition If G is unimodular, then Cπ = cπ IdVπ
for some positive number cπ , and

we can define the formal dimension of the discrete series representation π to be the
positive number dπ = 1

c2
π

.

12.3 Examples of Wavelet Transforms

In this section we want to give several examples of continuous wavelet transforms
where the results of the previous sections are used. But before we start we want to
give a useful result concerning the construction of certain irreducible representations



236 12 Wavelets

of semi-direct product groups. For notation, we say that a subset L of a locally
compact space Y is locally closed if L = O ∩ C for some open subset O of Y and
some closed subset C of Y . It is clear that all open and all closed sets are locally
closed and one can show that the locally closed subsets are precisely those that are
locally compact with respect to the subspace topology.

Lemma 12.3.1 Let L ⊂ Y be a locally closed subset of the locally compact space
Y. Then for every function f ∈ C0(L) there exists F ∈ C0(Y ) such that f = F |L.

Proof LetL = O∩C withO open andC closed inY . ByTietze’s ExtensionTheorem
(TheoremA.8.3), every function inC0(C) is the restriction of some function inC0(Y ).
On the other hand, since L = O ∩C is open in C, it follows that C0(L) is a subspace
of C0(C). �

The following proposition is a very special case of Mackey’s Theory of irreducible
representations for group extensions. For a more general treatment of this theory we
refer to Folland’s book [Fol95].

Proposition 12.3.2 Suppose that G = N � H is the semi-direct product of the
abelian locally compact group N by the locally compact group H. Consider the
action of H on the dual group N̂ of N given by (h · χ )(n) = χ (h−1n). Suppose
further that there exists χ ∈ N̂ such that the map H → H (χ ) defined by h �→
h · χ is a homeomorphism (this implies that H (χ ) is locally closed in N̂ ). Then the
representation (πχ ,L2(H )) defined by

(πχ (n,h)ξ)(l) = χ (l−1n)ξ (h−1l)

is irreducible.

Proof It is straightforward to check that π = πχ is a unitary representation. To see
that it is irreducible let 0 
= V ⊂ L2(H ) be any closed invariant subspace, and let
ξ ∈ V . Let f ∈ L1(N ). We then get

(π |N (f )ξ)(s) =
∫
N

f (n)(π (n, 1)ξ )(l) dn

=
∫
N

f (n)χ (l−1n)ξ (l) dn = f̂ (l · χ )ξ (l).

Since the set of Fourier transforms {f̂ : f ∈ L1(N )} is dense in C0(N̂ ), we see that
l �→ g(l · χ )ξ (l) lies in V for every g ∈ C0(N̂ ). Since the orbit H (χ ) is locally
closed, every function in C0(H (χ )) can be realized as a restriction of some function
in C0(N̂ ). Thus, identifying H with H (χ ) via h �→ h · χ shows that Mgξ ∈ V for
every g ∈ C0(H ) and ξ ∈ V , where Mg denotes multiplication operator with g.
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Suppose now that f ∈ Cc(H ). Integrating the restriction of π to H against f yields
the operator

(π |H (f )ξ)(l) =
∫
H

f (h)ξ (h−1l) dh.

Thus we observe that V is invariant under all operators of the form Mgπ |H (f ) for
all f , g ∈ Cc(H ). Computing

(Mgπ |H (f )ξ )(l) =
∫
H

g(l)f (h)ξ (h−1l) dh =
∫
H

g(l)f (lh)ξ (h−1) dh

=
∫
H

	H (h−1)g(l)f (lh−1)ξ (h) dh,

we see that Mgπ |H (f ) is an integral operator on L2(H ) with kernel (h, l) �→
	H (h−1)g(l)f (lh−1) in Cc(H × H ). We leave it as an exercise to show that every
function in L2(H ×H ) can be approximated in the L2-norm by finite linear combi-
nations of functions of the form (h, l) �→ 	H (h−1)g(l)f (lh−1) with f , g ∈ Cc(H ).
This shows that V is invariant under all Hilbert-Schmidt operators on L2(H ). Since
V 
= {0} this implies that V = L2(H ) and π is irreducible. �

We are now ready to treat our motivating example of the continuous wavelet transform
of the real line:

Example 12.3.3 Recall from Example 12.1.1 the definition of the ax + b-group G

and of the unitary representation (π ,L2(R)) given by

(π (a, b)φ)(x) = 1√|a|φ
(
x − b

a

)
.

We want to study the admissible vectors for π . For this we first observe that π is
irreducible, and hence the results of the previous section apply. In order to apply
the above proposition we want to realize π as a representation on L2(R∗) with
respect to Haar measure 1

|x|dx. As a first step we apply the Plancherel isomorphism

F : L2(R) → L2(R) given by φ → φ̂ for φ ∈ L1(R) ∩ L2(R), where we use the
formula

φ̂(x) =
∫

R

φ(t)e−2πitx dt.

for the Fourier Transform on R. We then compute

(π (a, b)φ )̂(x) =
∫

R

1√|a|φ(
t − b

a
)e−2πitx dt

= √|a|
∫

R

φ(u)e2πix(au+b) du

= √|a|e−2πixbφ̂(ax),
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so that on the transformed side we get the representation (π̂ ,L2(R))

(π̂ (a, b)φ̂)(x) = √|a|e−2πixbφ̂(ax).

If we now identify L2(R) with L2(R∗) via g �→ (x �→ √|x|g(x)), and then use the
transform on L2(R∗) given by η �→ η̌ with η̌(x) = η( 1

x
), we see that π̂ transforms

to the representation (also called π̂ ) given by

(π̂ (a, b)ξ )(x) = e−2πib/xξ (a−1x)

for ξ ∈ L2(R∗). But this is precisely the representation πχ of the semi-direct product
G = R � R

∗ corresponding to the character χ (x) = e−2πix of R as in the previous
proposition. One easily checks that χ satisfies all conditions of that proposition. It
follows that π is irreducible.

We now want to show that π is a discrete series representation, and we want to
compute explicitly the Duflo-Moore operator Cπ : Dπ → L2(R). Indeed, using the
Plancherel isomorphism for the real line, we shall show the following:

• φ ∈ Dπ if and only if x �→ 1√|x| φ̂(x) ∈ L2(R), and

• Cπφ = F−1( 1√|x| φ̂), where F−1 denotes the inverse Plancherel isomorphism on

L2(R).

As a result, it will follow that φ ∈ L2(R) is admissible if and only if

1 = ‖Cπφ‖2 =
∫

R

|φ̂(x)|2
|x| dx.

For the first item we directly compute the norm ‖Wφ(ψ)‖2 for vectors φ,ψ ∈ L2(R).
In the following computations we write φ̂ also for the Plancherel transform on L2(R),
although the Fourier integral itself might not always be defined. Using the Plancherel
isomorphism and the above computation for (π (b, a)η)̂ , we get

‖Wφ(ψ)‖2
2 =
∫
G

| 〈ψ ,π (b, a)η〉 |2 d(a, b)

=
∫
G

∣∣∣〈ψ̂ , (π (b, a)η)̂
〉∣∣∣2 d(a, b)

=
∫
G

∣∣∣∣
∫

R

ψ̂(x)e2πixbφ̂(ax) dx

∣∣∣∣
2

|a| d(a, b).

The interior integral is the Fourier integral for the function Fa(x) = ψ̂(x)φ̂(ax) at
the point −b ∈ R. Thus, applying the formula for the Haar measure on G and the
Plancherel isomorphism in the variable b the last term is equal to
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∫
G

|F̂a( − b)|2|a| d(a, b) =
∫

R
∗

∫
R

|F̂a( − b)|2 1

|a| db da

=
∫

R
∗

∫
R

|ψ̂(x)φ̂(ax)|2 dx 1

|a| da

=
∫

R

|ψ̂(x)|2
(∫

R
∗
|φ̂(ax)|2 1

|a| da
)

dx

= ‖ψ̂‖2
2

∫
R
∗
|φ̂(a)|2 1

|a| da,

where the last two equations follow from Fubini and the translation invariance of Haar
measure 1

|a|da on R
∗. In particular, ‖Wφ(ψ)‖2 is finite if and only if

∫
R
∗ |φ̂(a)|2 1

|a| da
is finite.

Now a similar (but a bit more tedious) computation shows that for two elements
φ,φ′ ∈ Dπ and ψ ∈ L2(G) with ‖ψ‖2 = 1 we get the equation

〈
Wφ′ (ψ),Wφ(ψ)

〉 =
∫

R
∗
φ̂(a)φ̂′(a)

1

|a| da = 〈Cπφ,Cπφ
′〉

with Cπ as in the second item of our claim.

Notice that the Duflo-Moore operator Cπ for the representation π is not a bounded
operator since its domain is not all of L2(R). This reflects the fact that G is not
unimodular.

If φ ∈ L2(R) is an admissible vector, then by Proposition 12.1.5 the reconstruction
formula for the continuous wavelet transform

Wφ : L2(R) → L2(G)

is given by the adjoint operator W ∗
φ : L2(G) → L2(R), which is given by the formula

W ∗
φ (f ) =

∫
G

f (a, b)π (a, b)φ d(a, b),

where the integral has to be understood in the weak sense. However, in good cases
(see Exercise 12.2 below) we obtain a point-wise reconstruction formula

ψ(x) =
∫

R
∗

∫
R

f (a, b)
1√|a|φ
(x − b

a

) 1

|a|2 db da

from the transform f = Wφ(ψ) of ψ .

We now proceed by describing some explicit admissible functions φ ∈ L2(R) for
the continuous wavelet transform of the real line.
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Lemma 12.3.4 Suppose that φ ∈ L2(R) such that x �→ xφ(x) lies in L1(R). Then
φ is a square integrable vector for the continuous wavelet transform on R if and only
if φ̂(0) = ∫

R
φ(x) dx = 0.

Proof We first note that the conditions of the lemma imply that φ ∈ L1(R)∩L2(R).
Then φ̂ lies in C0(R) ∩ L2(R), and the existence of

∫
R
|φ̂(x)|2 1

|x| dx implies that

φ̂(0) = 0.

Conversely, the condition xφ ∈ L1(R) implies that φ̂ is continuously differentiable
with d

dx
φ̂ = −2πi ˆxφ(x) (see [Dei05, Theorem 3.3.1]). Let M be any upper bound

of |φ̂′| on the interval [ − 1, 1]. Then the mean value theorem implies that

|φ̂(x)| ≤ M|x|
for every x ∈ [ − 1, 1], which implies that

∫
R
∗
|φ̂(x)|2 1

|x| dx ≤
∫
|x|≤1

M2|x| dx +
∫
|x|≥1

|φ̂(x)|2 dx

≤ M2 + ‖φ‖2. �

Corollary 12.3.5 Suppose that f ∈ S(R) is a Schwartz-function. Then f ′ is a
square integrable vector for the continuous wavelet transform.

Proof By the computation rules for the Fourier transform as in [Dei05, Theorem
3.3.1], we have

f̂ ′(x) = 2πixf̂ (x),

so that f̂ ′(0) = 0. �

Example 12.3.6. To get an explicit example for an admissible vectorφ for the contin-
uous wavelet transform on the real line we look at the Gauss function f (x) = e−πx2

.
This function has the remarkable property that f̂ = f (See [Dei05, Proposition
3.4.6]). By the above corollary we see that the derivatives of any positive order of f
are square integrable vectors for the continuous wavelet transform. The first two of
them are given by

f ′(x) = −2πxe−πx2

f ′′(x) = 2π (2πx2 − 1)e−πx2
.

This yields even and odd square integrable functions. Their Fourier transforms are
given by

f̂ ′(x) = 2πixe−πx2

f̂ ′′(x) = −4π2x2e−πx2
.
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We can use this to compute the integrals
∫

R
∗ |ψ̂(x)|2 1

|x| dx for ψ = f ′ and ψ = f ′′.
In the first case we obtain the integral

8π2
∫ ∞

0
xe−2πx2

dx = 2π ,

as follows from the standard substitution z = πx2. In the second case we arrive at
the integral

32π4
∫ ∞

0
x3e−2πx2

dx = 4π2,

as follows from the same simple substitution plus a straightforward partial integra-
tion. Thus, scaling f ′ and f ′′ by the factors − 1√

2π
and − 1

2π , respectively, we obtain
the admissible vectors

φ1(x) = √
2πxe−πx2

and

φ2(x) = (1 − 2πx2)e−πx2

for the continuous wavelet transform of the real line. The following figure shows the
graph of the function φ2, which is known under the name Mexican hat:

The big advantage of using wavelet transforms with functions like the Mexican hat
lies in the fact that such transforms have much better local properties than the usual
Fourier transform. Note that the wavelet transform is given by integration of a given
function ψ on the real line with translates and dilates of the function φ. Now if ψ is a
function with a large peak at the point b ∈ R, say, then it is in general impossible to
localize this peak in any local data of the Fourier transform. However, if we translate
the Mexican hat by b, its peak will match the peak of the function ψ , and therefore
this peak will have a strong effect at the wavelet transform Wφ(ψ)(a, b) if φ = φ2

is the Mexican hat. In addition, this effect will be amplified by the dilations with
the factors a ∈ R

∗. Of course, the possibility of having infinitely many choices
for the admissible function (often called mother wavelet in the literature) gives the
possibility to adjust the transformations to special needs.

Before we finish, we want to give one other example of a (generalized) continu-
ous wavelet transform by using a variant of the Heisenberg group H as studied in
Chap. 10.



242 12 Wavelets

Example 12.3.7 The transform we are studying here is known as the windowed
Fourier transform or Gabor transform named after the 1971 physics Nobel prize
winner Dennis Gabor, who was one of the first who systematically studied this
transform. The idea behind the Gabor transform is to force the Fourier transform to
be local by taking a window function φ ∈ L2(R) and use this function to cut out the
relevant pieces of a given function ψ ∈ L2(R) in its Fourier integral. To be more
precise, if φ,ψ ∈ L2(R) are given then we define the transform Wφ(ψ) : R×R → C

by the formula

Wφ(ψ)(t , y) =
∫

R

ψ(x)φ(x − y)e−2πitx dx.

We shall show that this transform also fits in our general scheme. For this we consider
the group Hr = H/Z, where H denotes the real Heisenberg group as introduced
in Chap. 10, and Z denotes the standard lattice in the center of H. The group may
be realized as the semi-direct product (T × R) � R with action of y ∈ R on a pair
(z, t) ∈ T× R given by

y(z, t) = (ze−2πiyx , t).

The dual group T̂× R of T × R is given by the characters χ(n,s) indexed by n ∈ Z

and s ∈ R such that

χ(n,s)(z, t) = zne−2πist .

Let χ = χ(1,0), i.e., χ (z, t) = z. Then the action of R on χ is given by

y · χ (z, t) = χ ( − y · (z, t)) = χ (ze2πity , t)

= ze2πity = χ(1,−y)(z, t).

It follows that the character χ satisfies all requirements of Proposition 12.3.2, and
we obtain an irreducible representation σ of the group Hr = (T×R) � R on L2(R)
by the formula (

σ (z, t , y)φ
)

(x) = ze2πitxφ(x − y).

The corresponding wavelet transform for a function ψ ∈ L2(R) is then given by

(
Wφ(ψ)

)
(z, t , y) = z

∫
R

ψ(x)e−2πitxφ(x − y) dx.

The parameter z ∈ T obviously plays no important role in this transformation, and
we observe that (up to this parameter) we end up with the Gabor transform.

As in the case of the ordinary Heisenberg group one easily checks that the Lebesgue
measure on T × R × R serves as Haar measure on Hr and that Hr is unimodular.
Thus it follows from Theorem 12.2.5 that either every vector φ ∈ L2(R) is square
integrable or σ has no square integrable vectors at all. Let’s do the calculations: Since
|z|2 = 1, applying the Plancherel formula to the function Fy(x) = ψ(x)φ(x − y)
and applying Fubini several times we get
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‖Wφ(ψ)‖2
2 =
∫

R

∫
R

∫
T

|Wφ(ψ)(z, t , y)|2 dz dt dy

=
∫

R

∫
R

∣∣∣∣
∫

R

ψ(x)φ(x − y)e−2πitx dx

∣∣∣∣
2

dt dy

=
∫

R

∫
R

|F̂y(t)|2 dt dy =
∫

R

∫
R

|Fy(x)|2 dx dy

=
∫

R

∫
R

|ψ(x)φ(x − y)|2 dx dy = ‖ψ‖2
2‖φ‖2

2,

which is always finite. So we see that σ is a discrete series representation. Since Hr

is unimodular, the Duflo-Moore operator is given by multiplication with a positive
scalar, which must be one since

‖Cσφ‖2 = ‖Wφ(ψ)‖2
2 = ‖φ‖2

2

if ‖ψ‖2 = 1. Thus the unit vectors in L2(R) are precisely the admissible vectors and
the formal dimension of the representation σ is one.

12.4 Exercises and Notes

Exercise 12.1. Show that a densely defined bounded operator T : D ⊂ V → W

extends to a unique bounded operator V → W .

(Use the methods of the proof of Lemma C.1.2.)

Exercise 12.2. Let φ ∈ L2(R) be an admissible vector for the continuous wavelet
transform of Example 12.1.1 that lies in S(R) (For example φ is the Mexican hat
of Example 12.3.6). Show that the reconstruction formula for the wavelet transform
Wφ(ψ) holds point-wise for every ψ ∈ S(R), i.e.

ψ(x) =
∫

R
∗

∫
R

Wφ(ψ)(a, b)
1√|a|φ
(x − b

a

) 1

|a|2 db da

for every x ∈ R.

Exercise 12.3. Let φ ∈ L1(R) ∩ L2(R) with compact support. Show that φ is a
square integrable vector for the representation (π ,L2(R)) underlying the continuous
wavelet transform of Example 12.1.1 if and only if

∫
R
φ(x) dx = 0. In particular,

the Haar wavelet φ : R → R defined by

φ(x) =
{

x
|x| for |x| ≤ 1
0 for |x| > 1

}

is square integrable for π . Compute the scaling constant λ > 0 such that ψ = λφ

is admissible for π and give explicit formulas for the continuous wavelet transform
corresponding to ψ and for its reconstruction.
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Exercise 12.4. (a) Let G be any locally compact group, and let (π ,Vπ ) be any
discrete series representation of G. Let Cπ : Vπ ⊃ Dξ → Vπ be the corresponding
Duflo-Moore operator, and let ξ1, ξ2 ∈ Dπ be two square integrable vectors for π

such that 〈Cπξ1,Cπξ2〉 
= 0. Show the following (mixed) reconstruction formula for
the wavelet transform with respect to ξ1:

η = 1

〈Cπξ2,Cπξ1〉
∫
G

〈η,π (x)ξ1〉π (x)ξ2 dx.

(Hint: Use the orthogonality relations for Cπ .)

(b) Assume now that G is the ax+ b-group and that (π ,L2(R)) is the representation
corresponding to the continuous wavelet transform of the real line. Use the formula
in (a) to give a reconstruction formula for the wavelet transform corresponding to
the Mexican hat by using reconstruction corresponding to the Haar wavelet of the
previous exercise.

Exercise 12.5. Let π = ⊕i∈I πi be a direct sum of discrete series representations
of the locally compact group G, and let ξ = (ξi)i∈I ∈ Vπ = ⊕i∈IVπi

. For each pair
i, j ∈ I let Sij : Vπi

→ Vπj
be an intertwining operator (which must be 0 if πi is not

equivalent to πj ). Then ξ is admissible for π if and only if ξi is admissible for πi for
every i ∈ I and 〈

Cπj
Sij ξi ,Cπj

ξj
〉 = 0

for all i, j ∈ I with i 
= j .

Exercise 12.6 In this exercise we work out the two-dimensional analogue of the
continuous wavelet transform of the real line. For this we consider the similitude
group G = R

2
� (SO(2)×R

+) (with R
+ the multiplicative group of positive reals)

with respect to the action

(g, r) · y = y + rgy

for x ∈ R
2, g ∈ SO(2), and r ∈ R

+. Show that the representation (π ,L2(R2)) given
by (

π (y, g, r)φ
)

(x) = 1

r
φ
(1

r
g−1(x − y)

)

is an irreducible discrete series representation of G with

Dπ = {φ ∈ L2(R2) :
(
x �→ φ̂(x)

|x|
)
∈ L2(R2)}

and Duflo-Moore operator given by

Ĉπφ(x) = φ̂(x)

|x| ,

where |x| denotes the Euclidean norm of x.
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Notes

The examples of continuous wavelet transforms we considered so far are all con-
structed with the help of irreducible representations. But there are interesting
examples of transforms that arise from more general representations. For instance, a
frequently used wavelet transform is the dyadic wavelet transform, which is given by
the restriction of the representation (π ,L2(R)) of the continuous wavelet transform
of the real line via the ax + b-group G to the subgroup

{(2k , b) : k ∈ Z, b ∈ R} ⊂ G.

The resulting representation is not irreducible and the results of the previous section
are not applicable for the analysis of the corresponding transforms. We refer to Führ’s
book [Füh05] for more details on this more general setting. We should point out that
the content of this chapter bases to a good extend on the first two chapters of that
book. Other sources for the material of this chapter are the original articles [DM76],
[GMP85] and the more basic introduction into wavelet theory given in Blattner’s
book [Bla98].



Chapter 13

p-Adic Numbers and Adeles

The majority of the examples of topological groups in this book given so far, are
locally euclidean, meaning that the groups are locally homeomorphic to R

n. In this
chapter the reader will see some examples which are not of this type. These examples,
the p-adic numbers and the adeles, resp. ideles, are not only interesting as examples
of this theory, but they also carry great importance for other areas of mathematics,
in particular number theory.

13.1 p-Adic Numbers

The set R of real numbers is the completion of Q with respect to the usual absolute
value

|x|∞ =
{
x if x ≥ 0,
−x if x < 0.

We shall see, that there are more “absolute values” defined on Q. But first we have
to give this notion a precise meaning.

Absolute Values

By an absolute value on a field K we mean a map | · | : K → [0,∞), such that for
all a, b ∈ K one has

• |a| = 0 ⇔ a = 0, (definiteness)

• |ab| = |a||b|, (multiplicativity)

• |a + b| ≤ |a| + |b|. (triangle inequality)

Remark Every absolute value maps ±1 to 1, i.e., one has |1| = | − 1| = 1. For a
proof consider |1| = |1 · 1| = |1|2 so |1| = 1 and | −1|2 = |(−1)2| = |1| = 1 so
that | − 1| = 1.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 247
DOI 10.1007/978-3-319-05792-7_13, © Springer International Publishing Switzerland 2014
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Lemma 13.1.1 If | · | is an absolute value on the field K, then d(x, y) = |x − y| is
a metric on K.

Proof The map d is positive definite. It is symmetric, too, since

d(y, x) = |y − x| = |(−1)(x − y)| = | − 1||x − y| = |x − y| = d(x, y).

Finally. it satisfies the triangle inequality, since for x, y, z ∈ K one has

d(x, y) = |x − z + z − y| ≤ |x − z| + |z − y| = d(x, z) + d(z, y). �

Examples 13.1.2

• For K = Q the usual absolute value | · |∞ is an example.

• The discrete absolute value exists for every field and is given by

|x|triv =
{

0 if x = 0,
1 if x 
= 0.

The metric generated by this absolute value is the discrete metric

d(x, y) =
{

0 if x = y

1, if x 
= y.

The discrete metric induces the discrete topology, as for every x ∈ K the open
ball B1/2(x) of radius 1/2 equals the set {x}, which therefore is open.

Definition Consider the field K = Q of rational numbers and fix a prime number
p. Every rational can be written in the form

r = pk m

n
, n 
= 0,

where m, n ∈ Z are coprime to p. The exponent k ∈ Z is uniquely determined by r ,
if r 
= 0. We define the p-adic absolute value by

|r|p =
∣∣∣pk m

n

∣∣∣
p

:=
{
p−k if r 
= 0,

0 if r = 0.

Lemma 13.1.3 Let p be a prime number. Then | · |p is an absolute value on Q, which
satisfies the strong triangle inequality

|x + y|p ≤ max(|x|p, |y|p).

Here we have equality, if |x|p 
= |y|p.
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Proof Definiteness follows from the definition. To show multiplicativity, write x =
pk m

n
and y = pk′ m′

n′ , where m, n,m′, n′ are coprime to p. Then xy = pk+k′ mm′
nn′ , and

this yields |xy|p = |x|p|y|p in the case xy 
= 0. The case xy = 0 is trivial. For a
proof of the strong triangle inequality, we can assume xy 
= 0 and k ≤ k′. Then we
have

x + y = pk

(
m

n
+ pk′−k m

′

n′

)
= pk mn′ + pk′−knm′

nn′
.

If |x|p 
= |y|p, i.e., k′ − k > 0, then the number mn′ +pk′−knm′ is coprime to p and
we have |x+ y| = p−k = max(|x|p, |y|p). If on the other hand |x|p = |y|p, then the
enumerator mn′ +pk′−knm′ = mn′ + nm′ is of the form plN , where l ≥ 0 and N is
coprime top.This means that |x+y|p = |pk+l N

nn′ |p = p−k−l ≤ max(|x|p, |y|p). �

In what follows we denote by R× the group of units in a ring R. Of course, if K is a
field, we have K× = K�{0}.

Proposition 13.1.4 For every x ∈ Q
× we have the product formula∏

p≤∞
|x|p = 1.

The product is extended over all prime numbers and p = ∞. For a given number
x ∈ Q

×, almost all factors in the product are equal to 1.

Remark When we say almost all, we mean all, up to finitely many exceptions.

Proof Write x as a fraction of coprime integers and write these integers as product of
primes. Then one has x = ±p

k1
1 · · ·pkn

n for pairwise different primes p1, . . . ,pn and
k1, . . . , kn ∈ Z. The p-adic absolute value |x|p equals 1, if p is a prime not occurring
among the above. So the product indeed has only finitely many factors 
= 1. Further
one has |x|pj

= p
−kj
j and |x|∞ = p

k1
1 · · ·pkn

n . Hence

∏
p≤∞

|x|p =
⎛
⎝ n∏

j=1

p
−kj
j

⎞
⎠ · pk1

1 · · ·pkn
n = 1. �

Remark One can show that every non-trivial absolute value | · | on Q is of the form
|x| = |x|ap for a uniquely determined p ≤ ∞ and a uniquely determined real number
a > 0.

Qp as Completion of Q

We now give the first construction of the set Qp of p-adic numbers. This set is the
completion of Q in the p-adic metric

dp(x, y) = |x − y|p.
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Proposition 13.1.5 Let p ≤ ∞. Then Q is not complete in the metric dp.We denote
the completion by Qp. Addition and Multiplication of Q can be extended in a unique
way to continuous maps Qp×Qp → Qp.With these operations, Qp is a field, called
the field of p-adic numbers. The absolute value | · |p can be extended in a unique way
to a continuous map on Qp, which is an absolute value, again.

Proof We consider this proposition known for p = ∞. In this case one has Qp =
Q∞ = R. We now let p < ∞. We write | · | = | · |p. The non-completeness of Q

follows from another description of Qp, which will be shown in the next section.
We now extend the operations. Let x, y ∈ Qp. As Q is dense in the metric space
Qp, there are sequences (xn) and (yn) in Q, converging to x, resp. y in Qp. These
sequences are Cauchy sequences in Q. The estimate

|(xn + yn) − (xm + ym)| ≤ |xn − xm| + |yn − ym|
implies that (xn + yn) is a Cauchy sequence as well. So it converges in Qp to an
element z. This element does not depend on the choice of the sequences, since if (x ′n)
and (y ′n) is another choice, then the sequence

(
x ′n + y ′n

)
also is a Cauchy sequence,

which differs from (xn+ yn) only by a sequence converging to zero, hence gives the
same element in the completion. We set x+y = z and have thus extended the addition
to Qp. It is easy to see that addition is a continuous map from Qp × Qp → Qp.

The multiplication is extended analogously and it is not difficult to show that Qp is
a field with these operations and that the absolute value extends as well. We leave
the details as an exercise. �

The strong triangle inequality |x + y| ≤ max(|x|, |y|) still holds on Qp. It has
astonishing consequences, for example, the set

Zp = {x ∈ Qp : |x|p ≤ 1},
which contains Z, is a subring of the field Qp. This ring is called the ring of p-adic
integers.

Power Series

Let p be a prime. We now give a second construction of p-adic numbers. Every
integer n ≥ 0 can be written in the p-adic expansion,

n =
N∑

j=0

ajp
j ,

with uniquely determined coefficients aj ∈ {0, 1, . . . ,p − 1}. The sum of n and a
second number m =∑M

i=0 bip
i is

n+m =
max(M,N)+1∑

j=0

cjp
j ,
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where each cj only depend on a0, . . . , aj and b0, . . . , bj . More precisely, these co-
efficients are computed as follows: First one sets c′j = aj + bj . Then one has
0 ≤ c′j ≤ 2p − 2 and it may happen, then c′j ≥ p. Let j be the smallest index, for
which this happens. One replaces c′j by the remainder modulo p and increases c′j+1
by one. Then one repeats this step until all coefficients are ≤ p − 1.

For the multiplication one has

nm =
M+N+1∑

j=0

djp
j ,

where again the coefficient dj only depends on a0, . . . , aj and b0, . . . , bj .

These properties of multiplication and addition make it possible, to extend them to
the set Z of formal power series

∞∑
j=0

ajp
j ,

with 0 ≤ aj < p. A formal power series may be considered simply as the sequence of
its coefficients (a0, a1, . . . ). The multiplicative unit 1 is represented by the sequence
(1, 0, 0, . . . ). One only uses the notation of a series for convenience.

Lemma 13.1.6 With these operations, the set Z is a ring. An element x =∑∞
j=0 ajp

j

is invertible in Z if and only if a0 
= 0.

Proof Associativity and distributivity are inherited from Z, as it suffices to check
them on finite parts of the series. To show thatZ is a ring, we are left with showing that
an additive inverse exists. So let x =∑∞

j=0 ajp
j in Z. We have to show the existence

of some y =∑∞
j=0 bjp

j in Z, such that x + y = 0. We construct the coefficients bj

inductively. In the case a0 = 0 we set b0 = 0 and b0 = p − a0 otherwise. Assume
b0, . . . , bn already constructed with the property, that the element yn =∑n

j=0 bjp
j

satisfies

x + yn =
∞∑

j=n+1

cjp
j , 0 ≤ cj < p.

If cn+1 = 0, then one sets bn+1 = 0. Otherwise one sets bn+1 = p − cn+1. In this
way one gets an element y =∑∞

j=0 bjp
j , which satisfies x + y = 0.

We show the second assertion. If x = ∑∞
j=0 ajp

j is invertible, then a0 
= 0, since
otherwise the series xy would have vanishing zeroth coefficient for every y ∈ Z. For
the converse direction, let x =∑∞

j=0 ajp
j with a0 
= 0. We construct a multiplicative

inverse y =∑∞
j=0 bjp

j by giving the coefficients bj successively. Since Fp = Z/pZ

is a field, there exists exactly one 1 ≤ b0 < p such that a0b0 ≡ 1modp. Assume
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next that 0 ≤ b0, . . . , bn < p are already constructed with the property that⎛
⎝∑

0≤j

ajp
j

⎞
⎠

︸ ︷︷ ︸
=A

⎛
⎝ ∑

0≤j≤n

bjp
j

⎞
⎠

︸ ︷︷ ︸
=B

≡ 1 mod pn+1.

Then one has AB−1
pn+1 ∈ Z, so there exists exactly one 0 ≤ bn+1 < p, such that

AB−1
pn+1 + a0bn+1 = pc, c ∈ Z, or AB − 1 + a0bn+1p

n+1 = pn+2c. In other words,
one has ⎛

⎝∑
0≤j

ajp
j

⎞
⎠
⎛
⎝ ∑

0≤j≤n+1

bjp
j

⎞
⎠ ≡ 1 mod pn+2.

The element y = ∑∞
j=0 bjp

j constructed in this way satisfies the equation
xy = 1. �

Lemma 13.1.7 Let (aj ) be a sequence in {0, 1, . . . ,p − 1}. Then the series∑∞
j=0 ajp

j converges in Qp. We map the formal series to this limit and get a map
ψ : Z → Qp. This map is an isomorphism of rings

Z
∼=−→ Zp.

Proof Let xn =∑n
j=0 ajp

j . We have to show that (xn) is a Cauchy sequence in Qp.
For m ≥ n ≥ n0 one has

|xm − xn| =
∣∣∣∣∣∣

m∑
j=n+1

ajp
j

∣∣∣∣∣∣ ≤ max
n<j≤m

|aj |p|pj |p ≤ p−n0 .

Therefore the sequence is Cauchy, so the map ψ is well-defined. It is easy to show
that ψ is a ring homomorphism. It remains to show bijectivity of φ : Z → Zp.

Injectivity: Let x =∑∞
j=0 ajp

j 
= 0. Then there is a minimal j0 such that aj0 
= 0.
We have

|ψ(x)| =
∣∣∣∣∣∣aj0p

j0 +
∞∑

j=j0+1

ajp
j

∣∣∣∣∣∣ = p−j0 ,

since
∣∣∣∑∞

j=j0+1 ajp
j

∣∣∣ ≤ maxj>j0 |aj |p−j < p−j0 (use continuity of | · |p). So it

follows ψ(x) 
= 0 and therefore ψ has trivial kernel, thus is injective.

Surjectivity: We define an absolute value on Z by

|z| = |ψ(z)|p.
We claim that Z is complete in this absolute value. Let (zj ) be a Cauchy-sequence
in Z. For each k ∈ N there exists a j0(k) ∈ N, such that for all i, j ≥ j0(k) one has
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|zi − zj | ≤ p−k , which means, that ψ(zi) − ψ(zj ) ∈ pk
Zp, so zi − zj ∈ pkZ. We

conclude, that the coefficients of the power series zi and zj coincide up to the index
k−1. Therefore there are coefficients aν for ν = 0, 1, 2, . . . , such that for every k ∈ N

and every j ≥ j0(k) one has zj ≡ ∑k−1
ν=0 aνp

νmodpkZ. Set z = ∑∞
ν=0 aνp

ν ∈ Z.

The sequence (zj ) converges to z, so Z is complete. To finish the proof, it suffices to
show that ψ(Z) contains a dense subset of Zp. Such a set is given by the set of all
rational numbers in Zp, i.e., the set of all q = ±pk m

n
where k ≥ 0 and m, n coprime

to p. As Z is a ring, it suffices to show that 1
n
∈ Z, if n ∈ N is coprime to p. But

for n coprime to p the zeroth coefficient of the p-adic expansion is non-zero and
therefore n is invertible in Z. �

We now can identify Zp with the set of all power series in p. As Zp equals the set
of all z ∈ Qp with |z| ≤ 1, the set p−j

Zp is the set of all z ∈ Qp with |z| ≤ pj .
Therefore,

Qp =
∞⋃
j=0

p−j
Zp.

So we can write Qp as the set of all Laurent-series in p with only finitely many
negative entries, i.e.,

Qp =
⎧⎨
⎩

∞∑
j=−N

ajp
j : N ∈ N, 0 ≤ aj < p

⎫⎬
⎭ .

This also implies that Qp is uncountable. In particular, Q 
= Qp and therefore Q is
not complete in the p-adic metric.

Proposition 13.1.8 (a) The topological spaces Qp and Q
×
p are locally compact and

totally disconnected. So together with Proposition 13.1.5 this implies that these are
totally disconnected LCA-groups.

(b) The open compact subgroups pn
Zp, n ∈ N form a basis of the unit-

neighborhoods of the additive group (Qp,+).

(c) The compact open subgroups 1 + pn
Zp, n ∈ N form a basis of the

unit-neighborhoods of the multiplictive group (Q×
p ,×).

Proof It suffices to show (b) and (c), for these imply (a) as well. The subgroup pn
Zp

coincides with the open ball Br (0) for any r > 0 with p−n < r < p−n+1, so these
sets clearly form a neighborhood basis of zero. Likewise, the set 1 + pn

Zp equals
the open Ball Br (1) around 1 of radius r > 0, if p−n < r < p−n+1. Hence the
claim follows as soon as we have shown that Zp, and hence pn

Zp, is compact. But
if (xn) is a sequence in Zp and if we write each xn as a power series

∑∞
j=0 a

n
j p

j with
an
j ∈ {0, . . . ,p−1}we may pass inductively to subsequences

(
xl
nk

)
of (xn) such that

the first l coefficients a1, . . . , al of all elements in the l-th subsequence agree. It is
then easy to check that the diagonal subsequence

(
xl
nl

)
of (xn) converges in Zp. �
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p-Adic Numbers as Limits

Fix a prime p and let m, n ∈ N with m ≥ n. Then the natural projection

πm
n : Z/pm

Z → Z/pn
Z

is a ring homomorphism. The family
(
πn
m

)
m,n satisfies the axioms of a projective

system of rings as in Sect. 1.8.

Proposition 13.1.9 The ring Zp is canonically isomorphic with the projective limit
of the Z/pn

Z.

Proof If we view Zp as ring of power series, we get natural projections Zp → Z/pn
Z

by cutting off a power series beyond its n-th entry. These projections are compatible
with the projections πn

m : Z/pm
Z → Z/pn

Z, so these maps fit together to give a
ring homomorphism

Zp → lim←
n

Z/pn
Z.

Interpreting the right hand side as set of compatible elements in the product∏
n Z/pn

Z easily shows that this map is a bijection. �

13.2 Haar Measures on p-adic Numbers

The absolute value | · |p defines a metric, which yields a topology on Qp. We showed
above that with this topology the groups

(
Qp,+) and

(
Q
×
p , ·) are locally compact

abelian groups. We now determine their Haar measures.

Note that the group of units Z
×
p in Zp is exactly the set of all x ∈ Qp, which satisfy

|x|p = 1.

Let μ be the Haar measure on the group
(
Qp,+), which gives the compact open

subgroup Zp the volume 1, so μ(Zp) = 1. Invariance of μ means μ(x +A) = μ(A)
for every measurable A ⊂ Qp and every x ∈ Qp.

Lemma 13.2.1 For every measurable subset A ⊂ Qp and every x ∈ Qp one has
μ(xA) = |x|pμ(A). In particular, for every integrable function f and x 
= 0 one has

∫
Qp

f
(
x−1y
)
dμ(y) = |x|p

∫
Qp

f (y) dμ(y).

Proof Let x ∈ Qp�{0}. The measure μx , defined by μx(A) = μ(xA), is a Haar
measure again, as is easily seen. By uniqueness of Haar measures, there exists some
M(x) > 0 such that μx = M(x)μ. We show that M(x) = |x|p. It suffices to show
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μ(xZp) = |x|p. Assume that |x|p = p−k . Then x = pky for some y ∈ Z
×
p , and

so xZp = pk
Zp. Therefore it suffices to show μ

(
pk

Zp

) = p−k. We start with the
case k ≥ 0. Then [Zp : pk

Zp] = pk , so there is a disjoint decomposition of Zp,

Zp =⋃pk

j=1 (xj + pk
Zp). By invariance of Haar measure we have

1 = μ(Zp) =
pk∑
j=1

μ
(
xj + pk

Zp

) = pkμ
(
pk

Zp

)
,

which implies the claim. If k < 0, then one uses
[
pk

Zp : Zp

] = p−k in an analogous
way. �

For simplification, we write integration according to a Haar measure as dx, so∫
Qp

f (x) dμ(x) =
∫

Qp

f (x) dx.

Proposition 13.2.2 The measure dx
|x|p is a Haar measure of the multiplicative group

Q
×
p .

Proof Let f ∈ Cc(Q×
p ) and y ∈ Q

×
p . Then one has∫

Q
×
p

f
(
y−1x
) dx

|x|p = |y|−1
p

∫
Q
×
p

f
(
y−1x
) 1

|y−1x|p dx =
∫

Q
×
p

f (x)
dx

|x|p
by Lemma 13.2.1. �

The subgroup Z
×
p of Q

×
p is the kernel of the group homomorphism Q

×
p → Z;

x �→ log (|x|p)
logp

. Hence Q
×
p can be written as disjoint union: Q

×
p = ⋃k∈Z

pk
Z
×
p .

One has vol dx
|x|p

(
pk

Z
×
p

) = vol dx
|x|p

(
Z
×
p

)
. It is therefore of interest, to compute the

measure vol dx
|x|p

(
Z
×
p

)
. One has vol dx

|x|p

(
Z
×
p

) = ∫
Z
×
p

dx
|x|p = ∫

Z
×
p

dx = voldx
(
Z
×
p

)
.

Consider the power series representation of Zp and order the elements of Z
×
p by their

first coefficient. We get a disjoint decomposition

Z
×
p =

·⋃
a mod p

a 
≡0 mod p

(
a + pZp

)
.

This means that the subgroup 1 + pZp of Z
×
p has index p − 1, so

voldx
(
Z
×
p

) = (p − 1)voldx
(
pZp

) = p − 1

p
.

We define the normalized multiplicative Haar measure on Qp by

d×x = p

p − 1

dx

|x|p .

This Haar measure is determined by the property that the volume of the compact
open subgroup Z

×
p is one.



256 13 p-Adic Numbers and Adeles

Self-duality

The group R is self-dual in the way that there is a character χ0(x) = e2πix such that
every character χ can be written as χ (x) = χ0(ax) for a unique a ∈ R. Actually, the
choice of χ0 was arbitrary, so, given any non-trivial character ω, any character can
uniquely be written as x �→ ω(ax). We will now find that Qp is self-dual as well.

Theorem 13.2.3 (Self-duality of Qp). Fix any non-trivial character ω ∈ Q̂p. Then
the map � : Qp → Q̂p, given by �(a) = ωa , where ωa(x) = ω(ax), is an
isomorphism of LCA groups.

Proof The computation

ωa+b(x) = ω(ax + bx) = ω(ax)ω(bx) = ωa(x)ωb(x)

shows that � is a group homomorphism. For injectivity, assume �(a) = 1, then
ω(ax) = 1 for every x ∈ Qp and as ω is non-trivial, this implies a = 0.

For surjectivity, we construct a standard character χ0 : Qp → T and show that
χ (x) = χ0(ax) for some a ∈ Qp. Since the same holds for ω we get ω(x) =
χ0(bx) and as ω is non-trivial, it follows b 
= 0. Then we infer χ (x) = χ0(ax) =
χ0(bb−1ax) = ω(b−1ax). We use the power series representation of elements of Qp

to define χ0 as follows

χ0

( ∞∑
k=−N

akp
k

)
= e2πi

∑−1
k=−N akp

k

.

This is easily seen to be a character with χ0(Zp) = 1 and χ0
(
p−N
) = e2πip−N

.
Let now χ be any character. By continuity, there exists k ∈ Z such that the open
subgroup pk

Zp is mapped into the open unit-neighborhood {Re(z) > 0} in T. The
latter set contains only one subgroup of T, the trivial group. So we get χ

(
pk

Zp

) = 1.
Replacing χ (x) with χ (pkx), we can assume χ (Zp) = 1. Let N ∈ N. Then we have

χ
(
p−N
)pN = 1, so there are uniquely determined coefficients ak ∈ {0, . . . ,p − 1},

such that

χ
(
p−N
) = e

2πi
(∑N−1

k=0 akp
k
)
p−N

.

Since χ (p−N ) = χ
(
p−(N+1)p

) = χ
(
p−(N+1)

)p
, these coefficients do not depend on

N , so there is a number a =∑∞
k=0 akp

k in Zp with χ (p−N ) = χ0(ap−N ) for every
N ∈ N. We apply this to varying N to conclude

χ

( ∞∑
k=−N

akp
k

)
= χ

( −1∑
k=−N

akp
k

)
=

−1∏
k=−N

χ (akp
k) =

−1∏
k=−N

χ (pk)ak

=
−1∏

k=−N

χ0(apk)ak =
−1∏

k=−N

χ0(aakp
k) = χ0

(
a

∞∑
k=−N

akp
k

)
.
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To establish continuity of φ, recall that the topology of Q̂p is the topology of the
structure space of L1(Qp). So it suffices to show that the map a �→ f̂ (ωa) is contin-
uous for every f ∈ L1(Qp). This map, however, is f̂ (ωa) = ∫

Qp
f (x)ω(ax) dx, and

is seen to be continuous by means of the Theorem on Dominated Convergence, as
for a sequence aj → a the sequence f̂ (ωaj ) converges dominatedly to f̂ (ωa).

The continuity of the inverse map follows from the Open Mapping Theorem 4.2.10.
�

13.3 Adeles and Ideles

In this section, we compose all the completions Qp to a big ring, called the adele
ring, which contains number theoretical information on all primes. The naive idea
would be to simply take the product of all Qp. This, however, will not give a locally
compact space, as we show in the first section. The construction has to be refined to
the so-called restricted product.

Restricted Products

By the Theorem of Tychonov, direct products of compact spaces are compact. For
“locally compact”, this does not hold in general, as Lemma 1.8.10 shows. Let (Xi)i∈I
be a family of locally compact spaces and for each i ∈ I let there be given a compact
open subset Ki ⊂ Xi . Define the restricted product as

X =
∏̂
i∈I

Ki

Xi :=
{
x ∈
∏
i∈I

Xi : xi ∈ Ki for almost all i ∈ I

}

=
⋃
E⊂I
finite

{∏
i∈E

Xi ×
∏
i /∈E

Ki.

}

If it is clear, which sets Ki to take, one leaves them out of the notation and simply
writes X = ∏̂i∈IXi .

On the restricted product we introduce the restricted product topology as follows. A
restricted open rectangle is a subset of the restricted product of the form

∏
i∈E Ui ×∏

i /∈E Ki , where E ⊂ I is a finite subset and for each i ∈ E the set Ui ⊂ Xi is
an arbitrary open subset of Xi . A subset A ⊂ ∏̂i∈IXi is called open, if it can be
written as a union of restricted open rectangles. Note that the intersection of two
restricted open rectangles is again a restricted open rectangle, since the sets Ki have
been assumed to be open.
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Lemma 13.3.1 (a) If I is finite, then
∏

i Xi = ∏̂iXi and the restricted product
topology is the usual product topology.

(b) For every disjoint decomposition of the index set I = A ·∪B one has a
homeomorphism

∏̂
i∈IXi

∼=
(∏̂

i∈AXi

)
×
(∏̂

i∈BXi

)
.

(c) The inclusion map
∏̂

iXi ↪→ ∏i Xi is continuous, but the restricted product
topology only equals the subspace topology, if Xi = Ki for almost all i ∈ I.

(d) If all the spaces Xi are locally compact, then so is X = ∏̂iXi.

Proof (a) is trivial. For (b) note that both sides of the equation describe the same
set. The definition of the restricted product topology implies that the left hand side
carries the product topology of the two factors on the right.

(c) For continuity we have to show that the pre-image of a set of the form
∏

i∈E Ui ×∏
i /∈E Xi is open in

∏̂
iXi , where E ⊂ I is a finite subset and every Ui ⊂ Xi is open.

This follows from (a) and (b). The second assertion is clear.

We finally show (d). Let x ∈ X. Then there exists a finite set E ⊂ I such that
xi ∈ Ki , if i /∈ E. For every i ∈ E choose a compact neighborhood Ui of xi . Then∏

i∈E Ui ×∏i /∈E Ki is a compact neighborhood of x, so X is locally compact. �

Adeles

By a place of Q we either mean a prime number or ∞, the latter we call the infinite
place. Write p < ∞, if p is a prime and p ≤ ∞ if p is an arbitrary place. This
manner of speaking comes from algebraic geometry, as these “places” behave in
many ways like points on a curve. We write Q∞ = R.

The set of finite adeles is the restricted product

Afin =
∏̂Zp

p<∞Qp.

The set of adeles is the set A = Afin × R. We also write A = ∏̂p≤∞Qp, although
this is not a restricted product, as there is no restriction at the infinite place. For an
arbitrary set of places S we write AS = ∏̂p∈SQp and A

S = ∏̂p/∈SQp. Note that
A = AS × A

S.

Theorem 13.3.2

(a) For every set of places S the ring AS is a locally compact topological ring.
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(b) The set Q, embedded diagonally into A, is a discrete subgroup and the quotient
of abelian groups A/Q is compact.

(c) Q is dense in Afin.

Proof The space AS is locally compact by Lemma 13.3.1. For (a) we have to show
that addition and multiplication are continuous maps from AS ×AS to AS . We only
show this for addition, as the proof for multiplication is analogous. Let a, b ∈ AS

and let U be an open neighborhood of a + b. We have to show that there are open
neighborhoods V ,W of a and b such that V +W ⊂ U . Choosing U smaller, we can
assume that U = ∏p∈E Up ×∏p∈S�E Zp for a finite set E ⊂ S. For given p ∈ E

the addition is continuous on Qp, so there are open neighborhoods Vp,Wp ⊂ Qp

of ap and bp, such that Vp + Wp ⊂ Up. Set V = ∏p∈E Vp × ∏p∈S�E Zp and
W =∏p∈E Wp ×∏p∈S�E Zp. Then V and W are open neighborhoods of a and b,
and one has V +W ⊂ U as claimed.

For part (b) let U = (− 1
2 , 1

2

) ×∏p<∞ Zp. The set U is an open neighborhood of
zero in A. For r ∈ Q ∩ U one has |r|p ≤ 1 for every p < ∞ and therefore r ∈ Z.
Further one has |r|∞ < 1

2 and so r = 0. We have thus found an open neighborhood
of zero with U ∩Q = {0}. As Q is a subgroup of the additive group A, it is discrete in
A. For compactness it suffices to show, that the compact set K = [0, 1]×∏p<∞ Zp

contains a set of representatives of A/Q, because then the projection P : K → A/Q

is surjective, so A/Q is the continuous image of a compact set, hence compact.

So let x ∈ A. There is a finite set E of places with ∞ ∈ E, such that p /∈ E ⇒ xp ∈
Zp. For p ∈ E with p < ∞ we write xp =∑∞

j=−N ajp
j . Then

xp −
−1∑

j=−N

ajp
j

︸ ︷︷ ︸
=r∈Q

∈ Zp.

For a prime q 
= p one has |r|q =
∣∣∣∑−1

j=−N ajp
j

∣∣∣
q
≤ max{|a jp

j|q} ≤ 1. We replace

x by x − r and thus reduce E to E�{p}. Repeating this argument, we end up with
E = {∞}, so xp ∈ Zp for every prime numberp. This means that x ∈ R×∏p<∞ Zp.
Modulo Z one can move x to [0, 1] ×∏p<∞ Zp = K .

Note that the above argument implies in particular that Afin = Q + Ẑ for Ẑ =∏
p<∞ Zp. Hence, for (c) it suffices to show that Z is dense in Ẑ. We have to show

that Z meets every open subset of Ẑ. Every such set is a union of sets of the form
U =∏p∈E Bp×∏p/∈E Zp, where E is a finite set of places and every Bp is an open
ball in Zp. This means that Bp is of the form Bp = np+pkpZp for some np ∈ Z and
some kp ∈ N0. We have to show that there is l ∈ Z, such that for every p ∈ E one
has l ∈ np + pkpZp, or l ≡ npmod pkp . The existence of such l is a consequence of
the Chinese Remainder Theorem. �
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The ring A is locally compact, so in particular a locally compact group with respect
to addition, so there is an additive Haar measure dx on A. To describe it, we need
the following definition.

Definition A simple function f on A is a function of the form f = ∏p≤∞ fp with
fp = 1Zp

for almost all p. Likewise, a simple function on Afin is a function of the
form f =∏p<∞ fp with fp = 1Zp

for almost all p.

Theorem 13.3.3 The Haar measure dx on (A,+) can be chosen such that for every
integrable simple function f =∏p fp one has the product formula

∫
A

f (x) dx =
∏
p

∫
Qp

fp(xp) dxp.

The Haar measure dxp on Qp is normalized such that vol(Zp) = 1 for p < ∞
and dx∞ equals the Lebesgue measure. The product is alway finite, i.e., almost all
factors are equal to 1,

This theorem also holds for AS for an arbitrary set of places S. In the sequel, we will
always use the normalization of the theorem.

Proof Since A = Afin × R, any Haar measure on A is a product of the Lebesgue
measure and some Haar measure on Afin. It therefore suffices to show that the Haar
measure on Afin can be normalized in a way that for every simple function f on Afin

one has ∫
Afin

f (x) dx =
∏
p

∫
Qp

fp(xp) dxp.

Lemma 13.3.4 Let f ∈ Cc(Afin) be a continuous function with compact support.
Then there is a compact subset K ⊆ Afin and a sequence of simple functions (fn) on
Afin with supports in K which converges uniformly to f.

Proof Let L be the support of f . Since f is uniformly continuous, we find a neigh-
borhood Un of zero of the form

∏
p<∞ Bp with Bp = pkpZp for all p < ∞ with

kp ∈ Z for all p and kp = 0 for almost all p such that |f (x + y) − f (x)| < 1
n

for all x ∈ Afin and y ∈ Un. Then Un is a compact open subgroup of Afin, so
L can be covered by a disjoint union of a finite number of translates of Un, so
L ⊂∐l

i=1 (xi +Un) for suitable xi ∈ K . Define gn(x) = f (xi) if x ∈ xi +Un. Then
supp gn ⊆ suppf +Un and ‖f − gn‖Afin ≤ 1

n
. Doing this construction for all n and

taking care that Un+1 ⊆ Un for all n, we obtain the desired sequence (gn). �

Proof of Theorem 13.3.3 If f ∈ Cc(Afin) choose a sequence (fn) of simple functions

as in the lemma. Then it is easy to check that
(∫

Afin
fn(x) dx

)
is a Cauchy sequence

in C, and that the limit
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∫
A

f (x) dx := lim
n

∫
A

fn(x) dx

does not depend on the chosen sequence. Then
∫

A
: Cc(A) → C is a positive

Radon integral which is left invariant, since it is left invariant on the set of simple
functions. �

We will finally show that A is self-dual as well. For this let χ be a character of the
LCA-group A. For p ≤ ∞, we define the character χp of Qp as the composition

Qp ↪→ A
χ−→T. If p is a prime, we say that χp is unramified, if χp(Zp) = 1.

Lemma 13.3.5 For almost all p, the character χp is unramified. For an adele a one
has χ (a) = ∏p≤∞ χp(ap), where the product is finite, i.e., almost all factors are
equal to one.

Proof As χ is continuous, there exists a unit-neighborhood U in A such that χ (U ) ⊂
{Re(z) > 0}. Then U contains a restricted open rectangle, therefore U contains Zp

for almost all p. The image χ (Zp) = χp(Zp) is a subgroup of T contained in
{Re(z) > 0}, hence trivial. So almost all χp are unramified. Finally, let a ∈ A and let
S be a finite set of places outside which ap ∈ Zp and χp is unramified. This implies
that outside S one has χp(ap) = 1. Let aS be the product of all ap with p ∈ S and
aS the product of all ap with p /∈ S. Then a = aSa

S and we have χ (aS) = 1 as well
as χ (aS) =∏p∈S χp(ap) as the product is finite. �

Definition We say that a character ω is nowhere trivial, if ωp 
= 1 for every p ≤ ∞.

Theorem 13.3.6 (Self-duality of adeles). There are characters ω of A which are
nowhere trivial. For any such, the map � : A → Â given by �(a) = ωa with
ωa(x) = ω(ax) is an isomorphism of locally compact groups.

Proof At each p ≤ ∞, fix a non-trivial character ωp in a way that ωp is unramified
for almost all p. One can, for instance, choose ωp to be the standard character used
in the proof of Theorem 13.2.3, which was called χ0 there. It is easy to verify that
the prescription

ω(a) =
∏
p≤∞

ωp(ap)

defines a nowhere trivial character.

As in the case of Qp in Theorem 13.2.3, we observe that� is a group homomorphism.
For injectivity, let a ∈ A with �(a) = 1. Then ω(ax) = 1 for every x ∈ A, which
implies ωp(apxp) = 1 for every xp ∈ Qp, hence ap = 0 and so a = 0.

To show surjectivity, let χ be a character. By the corresponding local result, for each
p ≤ ∞, there exists a unique ap ∈ Qp with χp(xp) = ωp(apxp) for every xp ∈ Qp.
At places p, where χ and ω are both unramified, we get ap ∈ Zp. Hence the ap are
the coordinates of an adele a and we have χ (x) = ω(ax) for all x ∈ A.
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Continuity and openness follows exactly as in the proof of the corresponding result
for Qp in Theorem 13.2.3. �

The ring of adeles A can be used to describe the dual group Q̂ of the discrete additive
group Q. For this recall that Q imbeds diagonally into A as a discrete subgroup. Thus
we obtain a short exact sequence

0 → Q
ι→ A

q→ A/Q → 0

which dualizes to the short exact sequence

0 → Q
⊥ → Â

res→ Q̂ → 0

For each p < ∞ let ep : Qp → T denote the standard character given by

ep

( ∞∑
k=−N

akp
k

)
= e2πi

∑−1
k=−N akp

k

and let e∞ : R → T be the character e∞(x) = e−2πix . Then the character
ω = ∏p≤∞ ep : A → T is nowhere trivial and by Theorem 13.3.6 we have an

isomorphism A ∼= Â given by a �→ ωa with ωa(x) = ω(xa). If we compose
this with the restriction map res : Â → Q̂ we obtain a surjective homomorphism
φ : A → Q̂ by a �→ ωa|Q.

Theorem 13.3.7 The kernel kerφ ⊆ A is precisely the image of Q under the diag-
onal embedding. Therefore φ factors through an isomorphism of topological groups
A/Q ∼= Q̂ given by a +Q �→ ωa|Q.

Proof An element a ∈ A lies in the kernel of φ if and only if aQ ⊆ ker ω with
ω = ∏p≤∞ ep as above. We first show that Q ⊆ ker ω, which then implies that
Q ⊆ ker φ. For this let x ∈ Q. Let E be the finite set of primes p such that |x|p > 1
and for p ∈ E let xp = ∑∞

k=−N akp
k denote the p-adic expansion of x and let

rp := ∑−1
k=−N akp

k ∈ Q. Then |rp|q ≤ maxk≤−1|akpk|q ≤ 1 for all q 
= p and
therefore rp ∈ ker eq for all primes q 
= p. It follows that

ω(x − rp) = ω(x)e∞
(−rp
)
ep
(−rp
) = ω(x)e−2πirp e2πirp = ω(x).

Thus, replacing x by x +∑p∈E rp, we may assume without loss of generality that
|xp|p ≤ 1 for all p < ∞. But this implies that x ∈ Z, hence xp ∈ ker ep for all
p ≤ ∞ and ω(x) = 1.

Assume now that a ∈ A such that ω(ax) = 1 for all x ∈ Q. We need to show that
a ∈ Q. Let E be the finite set of primes p with |ap|p = pkp > 1. By passing from
a to a′ = a ·∏p∈E pkp if necessary we may assume that E = ∅, hence |ap|p ≤ 1
for all p < ∞. It follows that ap ∈ kerep for all p ≤ ∞ and 1 = ω(a) = e∞(a∞),
hence a∞ ∈ Z. Writing a∞ = ±p

k1
1 · · ·pkl

l with k1, . . . , kl ≥ 0 and after passing to



13.3 Adeles and Ideles 263

a′′ = a·(±p
−k1
1 · · ·p−kl

l ) we may even assume that a∞ = 1. (Note that multiplication
of a with p

−ki
i only alters the norm of api

. But since 1 = e∞(a∞ · p−ki
i ) and 1 =

ω
(
a · p−ki

i

)
= e∞
(
a∞ · p−ki

i

)
·epi

(
ap · p−ki

i

)
we still have |api

·p−ki
i |pi

≤ 1, hence

|a′′p|p ≤ 1 for all p < ∞.)

After these reductions we need to show that ap = 1 for all p < ∞. To see this let
ap =∑∞

k=0 bkp
k . We need to show that b0 = 1 and bk = 0 for all k > 0. To see this

we consider for all l ∈ N

1 = ω
(
a · p−l

) = e∞
(
p−k
)
ep

(
l∑

k=0

bkp
k−l

)

= exp

(
2πi

pl

(
(b0 − 1) +

l−1∑
k=1

bkp
k

))

which is only possible if b0 = 1 and bk = 0 for all 1 ≤ k < l. Since l is arbitrary,
the result follows. �

Ideles

The group A
× of invertible elements of the adele ring A can be described as follows

A
× =
{
a ∈ A :

ap 
= 0 ∀p ≤ ∞
|ap|p = 1 for almost all p

}
.

Equipping A
× with the subspace topology makes the multiplication continuous, but

not the map x �→ x−1. In order to make A
× a topological group, we need more open

sets. We have to insist, that with each open setU , the setU−1 = {u−1 : u ∈ U} is open
as well. The topology of A is generated by all sets of the form

∏
p∈E Up×∏p/∈E Zp,

where E is a finite set of places and Up is open in Qp for every p ∈ E. The subspace
topology of A

× therefore is generated by all sets of the form

U =
{
a ∈ A

× :
ap ∈ Up, p ∈ E

|ap| ≤ 1,p /∈ E

}
,

where we can insist, that every Up lies in Q
×
p . So we have to ask that sets of the form

U−1 =
{
a ∈ A

× :
a−1
p ∈ Up, p ∈ E

|ap| ≥ 1,p /∈ E

}

be open as well. This implies that the intersection of sets of the form U and another
of the form (U ′)−1 be open. Such intersections are of the form

W =
{
a ∈ A

× :
ap ∈ Wp, p ∈ E

|ap| = 1,p /∈ E

}
,

where Wp is any open subset of Q
×
p . On the other hand, sets of the form U or U−1

above can be written as unions of sets of the form W .
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Lemma 13.3.8 The coarsest topology on A
×, which contains the subspace topology

of A and makes A
× a topological group is the topology generated by all sets of the

form W above with Wp any open set in Q
×
p . This topology is a restricted product

topology, i.e., one can write A
× as restricted product

A
× =
(∏̂Z

×
p

p<∞Q
×
p

)
× R

×.

With this topology, A
× is a locally compact group, called the idele group of Q. The

elements are referred to as ideles.

Proof This is clear by what we have said above. �

Definition The absolute value of an idele a ∈ A
× is defined as |a| =∏p |ap|p.This

product is well defined, since almost all factors are equal to 1. We extend the definition
to all of A by setting |a| = 0, if a ∈ A�A

×. Note that the identity |a| = ∏p |ap|p
also holds in this case, if one interprets the product as (|a∞|∞ limN→∞

∏
p≤N |ap|p).

Let
A

1 = {a ∈ A
× : |a| = 1}.

Proposition 13.1.4 says that Q
× ⊂ A

1. Recall that we write

Ẑ =
∏
p<∞

Zp.

Then Ẑ is a compact subring of Afin. Its unit group is Ẑ
× =∏p<∞ Z

×
p .

Theorem 13.3.9 The subgroup Q
× is discrete in A

×, it lies in the closed subgroup A
1,

and the quotient A
1/Q× is compact. More precisely, there is a canonical isomorphism

A
1/Q× ∼= Ẑ

×.

The absolute value induces an isomorphism of topological groups: A
× ∼= A

1×(0,∞)
given by x �→ (x̃, |x|∞), where x̃ ∈ A

1 is defined by

x̃p =
{
xp ifp < ∞,
x∞
|x| ifp = ∞.

Further one has A
1 ∼= A

×
fin × {±1}.

Proof Choose 0 < ε < 1 and set U = (1 − ε, 1 + ε) ×∏p<∞ Z
×
p . Then U is an

open unit neighborhood in A
×. With r ∈ Q ∩ U we get |r|p = 1 for every prime

number p, so r ∈ Z and r−1 ∈ Z. We have r ∈ (1 − ε, 1 + ε), so r = 1.

Consider the map η :
∏

p Z
×
p → A

1/Q× given by x �→ (x, 1)Q×. We claim that
η is an isomorphism of topological groups. The map η is a group homomorphism,
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and since the map
∏

p Z
×
p ↪→ A

× is continuous, η is continuous. The inverse map is
given by x = (xfin, x∞) �→ 1

x∞ xfin, where we note, that for x ∈ A
1 one has x∞ ∈ Q

×.

We leave it as an exercise to check that the map x �→ (x̃, |x|∞) gives an isomorphism
A
× ∼= A

1 × (0,∞). Finally, the map φ : A
×
fin × {±1} → A

1 given by φ(afin, ε) =
(afin, ε|afin|−1) is easily seen to be an isomorphism. �

Proposition 13.3.10 (a) The set A
×
fin is the disjoint union

A
×
fin =

∐
q∈Q

×
>0

qẐ
×.

The set Ẑ ∩ A
×
fin is the disjoint union

Ẑ ∩ A
×
fin =
∐
k∈N

kẐ
×.

(b) For every s ∈ C with Re(s) > 1 the integral
∫

Ẑ
|x|s d×x converges absolutely

and equals the Riemann zeta function ζ (s). Here d×x is the uniquely determined
Haar measure on A

×
fin, which gives the compact open subgroup Ẑ

× the measure 1.
We consider this measure also as a measure on Afin, which is zero outside A

×
fin.

Proof For given x ∈ A
×
fin the absolute value |x| lies in Q

×
>0. Consider the element

|x|x ∈ A
×
fin. Let p be a prime number. One has xp = pku for some k ∈ Z and

some u ∈ Z
×
p . So one has |x| = p−kr , where r ∈ Q is coprime to p. We infer that

||x|xp|p = 1, so |x|x ∈ Ẑ
×. With q = |x|−1 we have x ∈ qẐ

×. If x ∈ Ẑ we have
kp ≥ 0 for all p, which implies that q ∈ Z. This concludes the proof of (a).

We use (a) to show (b) as follows∫
Ẑ

|x|s d×x =
∑
k∈N

∫
kẐ

×
|x|s d×x

=
∑
k∈N

∫
Ẑ
×
|kx|s d×x =

∑
k∈N

k−s

∫
Ẑ
×
|x|s d×x.

︸ ︷︷ ︸
=1

The convergence follows from the convergence of the Dirichlet series ζ (s). �

13.4 Exercises

Exercise 13.1 For a ∈ Qp and r > 0 let Br (a) be the open ball Br (a) = {x ∈ Qp :
|a − x|p < r}. Show:

(a) If b ∈ Br (a), then Br (a) = Br (b).

(b) Two open balls are either disjoint or one is contained in the other.
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Exercise 13.2 Show that there is a canonical ring isomorphism Qp
∼= Q⊗Z Zp.

Exercise 13.3 Show that
∑∞

j=−N ajp
j �→ ∑∞

j=−N ajp
−j , 0 ≤ aj < p, defines a

continuous map Qp → R. Is this a ring homomorphism? Describe its image.

Exercise 13.4 Let T = {z ∈ C : |z| = 1} denote the circle group and letχ : Zp → T

be a continuous group homomorphism, i.e., χ (a + b) = χ (a)χ (b).

Show that there exists k ∈ N with χ (pk
Zp) = 1. It follows that χ factors through

the finite group Zp/p
k
Zp

∼= Z/pk
Z, so the image of χ is finite.

(Hint: Let U = {z ∈ T : Re(z) > 0}. Then U is an open neighborhood of the unit,
so χ−1(U ) is an open neighborhood of zero.)

Exercise 13.5 Let ep : Qp → T be defined by

ep

⎛
⎝ ∞∑

j=−N

ajp
j

⎞
⎠ = exp

⎛
⎝2πi

−1∑
j=−N

ajp
j

⎞
⎠ ,

where aj ∈ Z with 0 ≤ aj < p. Show that ep is a continuous group homomorphism.

Exercise 13.6 (For this exercise it helps to have some familiarity with number
theory.) Let p be a prime number and let O be the polynomial ring Fp[t]. As one
can perform division with remainder, the ring O is a factorial principal domain. The
prime ideals of O are the principal ideals of the form 0 or (η), where η 
= 0 is an
irreducible polynomial in O.

(a) For such η let vη : O → N0 ∪ {∞} be defined by vη(f ) = sup{k : f ∈ (ηk)}.
Show that |f |η = p− deg (η)vη(f ) defines an absolute value on the ring O.

(b) Let v∞(f ) = − deg (f ). Show that |f |∞ = p−v∞(f ) is an absolute value.

(c) Prove the product formula
∏

η≤∞ |f |η = 1.

Exercise 13.7 (a) Show that the family (NẐ)N∈N is a neighborhood basis of zero
in Afin. That is, show that every NẐ is a neighborhood of zero and that every zero
neighborhood contains a set of the form NẐ for some N .

(b) Show that the sets of the form (1+NẐ)∩ Ẑ
×, N ∈ N are a neighborhood basis

of the unit 1 in A
×
fin.

Exercise 13.8 Let p be a prime number, n ∈ N and let dx be the additive Haar
measure on Mn(Qp), so

∫
Mn(Qp)

f (x) dx =
∫

Qp

· · ·
∫

Qp

f (xi,j ) dx1,1 · · · dxn,n.
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(a) Show that dx
|detx|n is a left- and right-invariant Haar measure on the group GLn(Qp).

Conclude that the group GLn(Qp) is unimodular.

(b) Show that the group GLn(A) is unimodular.

Exercise 13.9 Let n,N ∈ N and let KN be the set of all invertible n× n matrices g

with entries in Ẑ such that g ≡ I mod N . Show

• KN is a compact open subgroup of GLn(Ẑ),

• KN ⊂ Kd if d|N ,

• the KN form a neighborhood basis of the unit in GLn(Ẑ).

Exercise 13.10 Let U be a compact open subgroup of the locally compact group G.
Show that for every g ∈ G the set UgU/U is finite.

Exercise 13.11 Let G be a totally disconnected locally compact group. For a com-
pact open subgroup U and a compact set K let L(U ,K) be the set of all functions
f : G → C with

• suppf ⊂ K and

• f (ux) = f (x) for every x ∈ G and every u ∈ U .

Further let R(U ,K) be the set of all functions f : G → C with

• suppf ⊂ K and

• f (xu) = f (x) for every x ∈ G and every u ∈ U .

Show that in general one has L(U ,K) 
= R(U ,K), but

⋃
U ,K

L(U ,K) =
⋃
U ,K

R(U ,K).



Appendix A
Topology

In the appendix, we have collected notions and results from topology, measure
theory, and functional analysis, which are used in the body of the book. With a
few exceptions, we have included proofs, so that the appendix can be read as an
independent introduction into the named topics.

We will use standard notations of set theoretic topology. For the convenience of the
reader, we will recall a few here. To name a reference, we give [Gaa64].

First recall the definition of a topology and a topological space. A topology on a
set X is a system of subsets O ⊂ P(X), which contains ∅ and X, and is closed
under finite intersections and arbitrary unions. A topological space is a pair (X, O)
consisting of a set X and a topology O on X. The sets in O are called open sets; their
complements are closed sets. For every set A ⊂ X there is a smallest closed subset
A that contains A, it is called the closure of A, and its existence is secured by the
fact that the intersection of all closed sets that contain A is a closed set.

There are two immediate examples, firstly the set P(X) of all subsets of X is a
topology on X for every set X, called the discrete topology on X. Secondly, every
set X carries the trivial topology {∅,X}. Our standard example of a topological
space is the real line R where open sets are the unions of open intervals, or more
generally a metric space (X, d) where the open sets are arbitrary unions of open balls
Br (x) = {y ∈ X : d(x, y) < r}, r ≥ 0.

Let x ∈ X be a point. Any open set U ⊂ X, which contains x, is called an open
neighborhood of x. A neighborhood V of x is a subset of X, which contains an open
neighborhood of x.

Lemma A.0.1 Let A be a subset of the topological space X. A point x ∈ X belongs
to the closure of A if and only if A ∩ U 
= ∅ for every neighborhood U of x.

Proof The claim is equivalent to saying that x /∈ A if and only if there exists a
neighborhood U of x with A ∩ U = ∅. We may assume U to be open.

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 269
DOI 10.1007/978-3-319-05792-7, © Springer International Publishing Switzerland 2014
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If U is an open neighborhood of x with A ∩U = ∅, then A is a subset of the closed
set X�U , so x /∈ A. Conversely, assume x /∈ A. Then U = X�A is an open
neighborhood of x with A ∩ U = ∅. �

A.1 Generators and Countability

For a given system of subsets E ⊂ P(X) there exists a smallest topology containing
E given by

OE =
⋂
O⊃E

O topology

O.

One calls OE the topology generated by E .

Lemma A.1.1 Let E ⊂ P(X), and let S ⊂ P(X) be the system of all sets

A1 ∩ · · · ∩ An,

where A1, . . . ,An ∈ E . Next let T ′ be the system of all sets of the form

⋃
i∈I

Si ,

where Si ∈ S for every i ∈ I . Finally, let T = T ′ ∪ {∅,X}. Then OE = T .

Proof Every topology containing E must contain S and T , so T ⊂ OE . On the
other hand one verifies that T is a topology containing E , so T ⊃ OE . �

Definition For a point x ∈ X a neighborhood base is a family (Ui)i∈I of neighbor-
hoods of x such that every neighborhood of x contains one of them, i.e., for every
neighborhood U there exists an index i ∈ I with Ui ⊂ U . If moreover every Ui

is open, then the family (Ui) is called an open neighborhood base. For example,
an open neighborhood base of zero in R is given by the family of open intervals
(−1/n, 1/n), where the index n runs in N.

A topological space X is called first countable if every point x ∈ X possesses a
countable neighborhood base.

Examples A.1.2

• Let (X, d) be a metric space. Then for any x ∈ X the family of balls (B1/n(x))n∈N

forms a neighborhood base for x. It follows that every metric space is first
countable.
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• A product
∏

i∈I Xi is not first countable, provided all Xi have non-trivial
topologies, and the index set I is uncountable.

Definition A topology base is a family (Ui)i∈I of open sets such that every open set
U ⊂ X can be written as a union of members Ui of the family. For example, the
family of open intervals (a, b), where a and b are rational numbers with a < b forms
a topology base for R.

A topological space X is called second countable if it possesses a countable topology
base. Every second countable space is first countable. It is a direct consequence of
Lemma A.1.1 above that a space is second countable if and only if its topology
possesses a countable generating set.

A.2 Continuity

A map f : X → Y between topological spaces X and Y is called continuous if
f −1(U ) is open in X for every open set U ⊂ Y . This is equivalent to the condition
that f −1(C) is closed in X for every closed C ⊂ Y .

From the definition it is clear that a composition f ◦ g is continuous if f and g are.

In this book we shall always equip the complex numbers C with the topology given
by the metric d(z, w) = |z − w|. So continuity for a function f : X → C is always
understood with respect to this topology on C. Similar holds for real functions
f : X → R on X.

A map f : X → Y between topological spaces X and Y is called open if f (U ) ⊂ Y

is open in Y for all open sets U in X and f is called closed if f (C) is closed in Y

for all closed C ⊂ X. If f is bijective, then both conditions coincide, but in general
an open map doesn’t have to be closed and vice versa.

A bijective map f : X → Y is called a homeomorphism if it is continuous and
open. It is clear that openness of f is equivalent to the continuity of the inverse map
f −1 : Y → X. In particular, f −1 : Y → X is also a homeomorphism. We say that
X and Y are homeomorphic if a homeomorphism f : X → Y exists.

In topology one often identifies two topological spaces X and Y if they are homeo-
morphic, since they both carry the same topological information. But in Analysis it
is usually necessary to keep track of the given homeomorphism if one wants identify
two spaces, since other structures, like differentiability are not carried over in general
by homeomorphisms.

Examples A.2.1

• Every nonempty open interval (a, b) ⊂ R is homeomorphic to the real line R

when both are equipped with the usual topology.
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• Every solid rectangle [a, b]× [c, d] ⊂ R
2 with a < b, c < d is homeomorphic to

the solid ball B1(0) = {(x, y) ∈ R
2 : x2 + y2 ≤ 1}. We leave it as an interesting

exercise to construct explicit homeomorphisms.

A.3 Compact Spaces

Recall that a topological space X is called compact if every open covering contains a
finite sub-cover. In other words, X is compact if for any family (Ui)i∈I of open sets in
X, which satisfy X =⋃i∈I Ui , there exists a finite subset F ⊂ I with X =⋃i∈F Ui .
Switching to the complements, this can be reformulated to

Lemma A.3.1 A topological space X is compact if and only if for every family
(Ai)i∈I of closed sets in X with

⋂
i∈F Ai 
= ∅ for every finite subset F ⊂ I , one has

⋂
i∈I

Ai 
= ∅.

This property of compact spaces is called the finite intersection property.

Proof This is a straightforward reformulation of the compactness property obtained
by switching to complements. �

We now state some important facts for compact spaces, which are used throughout
this book without further reference.

Lemma A.3.2 Let X be a topological space. Then

(a) If X is compact and C ⊂ X is closed, then C is compact.

(b) If X is Hausdorff and C ⊂ X is compact, then C is closed.

(c) If f : X → Y is continuous and C ⊂ X is compact, then so is f (C) ⊂ Y.

Proof For (a) let (Ui)i∈I be an open cover of C. Then (Ui)i∈I ∪ {X�C} is an open
cover of X. Thus there exist indices i1, . . . , il such that X ⊂ X�C ∪ ⋃l

j=1 Uij ,

which implies C ⊂⋃l
j=1 Uij .

For (b) we have to show that for any x ∈ X�C there exists an open neighborhood
U of x with U ∩ C = ∅. Since X is Hausdorff we can find for every y ∈ C open
neighborhoods Vy of y and Uy of x with Vy ∩ Uy = ∅. Since (Vy)y∈C is an open
covering of C we find y1, . . . , yl ∈ C with C ⊆ ⋃l

j=1 Vyj . Then U = ⋂l
j=1 Uyj is

an open neighborhood of x with U ∩ C = ∅.
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Finally, for (c) let (Ui)i∈I be an open cover of the set f (C). Then (f −1(Ui))i∈I is an
open cover of C and there exist i1, . . . , il with C ⊂ ⋃l

j=1 f
−1(Uij ), which implies

that f (C) ⊂⋃l
j=1 Uij . �

Definition In this book, a space X is called locally compact if every point x ∈ X

possesses a compact neighborhood. For instance R is locally compact with its usual
topology.

A.4 Hausdorff Spaces

A topological space X is called a Hausdorff space, if any two different points can be
separated by disjoint neighborhoods, i.e., if for any two x 
= y in X there are open
sets U ,V ⊂ X with x ∈ U and y ∈ V and U ∩ V = ∅.

Examples A.4.1

• Any metric space is Hausdorff.

• The discrete topology P(X) is Hausdorff for every X but the trivial topology
{∅,X} is not Hausdorff if X has more than one element.

• Let X be an infinite set. A subset A ⊂ X is called cofinite if its complement X�A

is finite. On X we install the cofinite topology, which consists of the empty set
and all cofinite sets. With this topology, X is not Hausdorff.

Definition For any two topological spaces X,Y one defines the product space X×Y

to be the cartesian product of the sets X and Y , equipped with the product topology,
where every open set is a union of sets of the form U ×W for open sets U ⊂ X and
W ⊂ Y . If X = Y one has the diagonal 	 ⊂ X×X, which is the set of all elements
of the form (x, x) for x ∈ X.

Lemma A.4.2 A topological space X is a Hausdorff space if and only if the diagonal
	 is closed in X ×X.

Proof Suppose X is Hausdorff, and let (x, y) be in (X×X)�	, that means x 
= y.
Then there exist open neighborhoods U  x and V  y with U ∩ V = ∅. The latter
condition means that U × V ∩ 	 = ∅, i.e., U × V is an open neighborhood of
(x, y) contained in (X ×X)�	, the latter set therefore is open, so 	 is closed. The
converse direction is similar. �

Definition A Hausdorff space is also called a T2-space, or a separated space. A
topological space X is called a T1-space if for any two elements x, y ∈ X there are
open sets U ,V with x ∈ U and y ∈ V such that x /∈ V and y /∈ U . A space is T1 if
and only if all singletons {x}, x ∈ X, are closed subsets. Every Hausdorff space is
also T1.
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A.5 Initial- and Final-Topologies

Let X be a set, and let fi : X → Yi be a family of maps into topological spaces Yi .
The initial topology on X given by the family fi is the smallest topology such that
all fi are continuous, so it is the topology generated by the inverse images f −1

i (U )
of open sets U ⊂ Yi .

Let X be a set, and let gi : Wi → X be a family of maps from topological spaces
Wi . The final-topology on X given by the gi is the biggest topology on X that makes
all gi continuous. A set U ⊂ X is open in this topology if and only if its inverse
image g−1

i (U ) ⊂ Wi is open for every i ∈ I . A special case of a final-topology is
the quotient topology on the set E/ ∼ of classes of an equivalence relation ∼ on a
topological space E. It is the final-topology given by the single map E → E/ ∼.

Examples A.5.1

• Let A ⊂ X be a subset of the topological space X. The topology on A induced
by the inclusion map i : A ↪→ X is called the subspace topology on A. The open
sets in A are precisely the sets of the form A ∩ U , where U is open in X.

• Let G be a topological group and H a subgroup. Then one equips the coset space
G/H with the quotient topology, i.e., the final topology of the projection map
G → G/H .

• Let (Xi)i∈I be a family of topological spaces, and letX =∏i∈I Xi be the cartesian
product of the Xi . Then the product topology on X is the initial topology induced
by all projections pi : X → Xi .

• Let X be a locally compact Hausdorff space, and let Cc(X) denote the set of all
continuous complex valued functions on X with compact supports. The space
Cc(X) can be equipped with the inductive limit topology defined as follows. For
a compact subset K let CK (X) be the set of all continuous functions on X with
support in K , then Cc(X) is the union of all CK (X) as K varies. We equip CK (X)
with the topology given by the supremum-norm

‖f ‖K = sup
x∈K

|f (x)|

and giveCc(X) the final topology induced by all inclusions iK : CK (X) ↪→ Cc(X).

Proposition A.5.2

(a) Let X be a set equipped with the initial topology given by the family fi : X → Yi .
Then a map α : W → X from a topological space W is continuous if and only
if fi ◦ α is continuous for every index i.

(b) Likewise, let X be equipped with the final topology given by gi : Wi → X, then
a map β : X → Y is continuous if and only if β ◦ gi is continuous for every i.
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Proof For (a), let α be continuous then fi ◦ α is continuous as a composition of
continuous maps. Conversely, assume that fi ◦ α is continuous for every i. Let E be
the system of subsets of X of the form f −1

i (U ) where U is an open subset of Yi . Then
E generates the topology O on X. Let Oα be the biggest topology on X that makes
α continuous, then, as fi ◦ α is continuous, it follows E ⊂ Oα; therefore O ⊂ Oα ,
so α is continuous. Part (b) is proved along the same lines. �

Examples A.5.3

• Let X = ∏i∈I Xi be the direct product of the topological spaces Xi equipped
with the product topology. Let pi : X → Xi be the projections. Then a map
f : W → X is continuous if and only if all maps pi ◦ f : W → Xi are
continuous. This implies, for instance, that for two topological spaces X, Y and
y0 ∈ Y the map X → X × Y that maps x to (x, y0) is continuous.

• Let H be a closed subgroup of the topological group G. Then a map f : G/H →
C is continuous if and only if q ◦f : G → C is continuous, where g : G → G/H

denotes the quotient map.

• In the case of the inductive limit topology on the space Cc(X) for a locally
compact Hausdorff space this means, for instance, that the restriction TK :
C(K) ∩ Cc(X) → C is continuous for every compact set K ⊆ X. In terms
of sequences, this means that a map T : Cc(X) → C is continuous if and only
if for every compact set K ⊂ X and every sequence (fi)i∈N of functions in
Cc(X) with support in K , which converges uniformly to f ∈ Cc(X), one has
limi→∞ T (fi) = T (f ).

A.6 Nets

Every student of mathematics is taught convergence of sequences in R or more
generally, in metric spaces. When dealing with more general topological spaces,
which naturally arise in analysis, sequences are insufficient, because a point can
have “too many” open neighborhoods. In this book, we use the concept of nets,
which generalizes the concept of sequences in a way sufficient for all needs. In the
beginning, it takes a little practice to get used to the notion of nets. They then reveal
their beauty and utility in the applications. Once having understood the differences to
sequences, which mainly lie in the possible uncountability of a net, one can basically
use nets just like sequences. Before starting seriously on the definition of nets, a word
of caution is required here, as just the possible uncountability of nets renders them
useless for measure-theoretic conclusions. For example, the Theorem of monotonic
convergence is false for nets.

Let I be a set. Recall a partial order on I is a relation ≤ which is

• reflexive: x ≤ x,
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• anti-symmetric: x ≤ y and y ≤ x ⇒ x = y,

• transitive: x ≤ y and y ≤ z ⇒ x ≤ z.

Examples A.6.1

• The natural order ≤ on R.

• Let X be a set. On the set P(X) of all subsets of X one has a natural order by
inclusion, so for A,B ⊂ X,

A ≤ B ⇔ A ⊂ B.

A partially ordered set (I ,≤ ) is called a directed set if for any two elements there
is an upper bound, i.e., for any two elements x, y ∈ I there exists z ∈ I such that
x ≤ z and y ≤ z. By induction it follows that every finite set has an upper bound if
I is directed.

A net in a topological space X is a map

α : I → X,

where I is a directed set. It is a convention to write the images as αi , i ∈ I , instead
of α(i).

We say that a net converges to a point x ∈ X if for every neighborhood U of x there
exists an index i0 ∈ I such that

i ≥ i0 ⇒ αi ∈ U.

In the special case of a sequence, I = N, this notion coincides with the notion of
convergence of a sequence.

Note that a net can converge to more than one point. The extreme case is the trivial
topology, in which every net converges to every point. Indeed, the uniqueness of
limits is equivalent to the Hausdorff property, as the following lemma shows.

Proposition A.6.2 A topological space X is a Hausdorff space if and only if limits
are unique, i.e., if any net has at most one limit.

Proof Suppose X is Hausdorff and (xi) is a convergent net. Assume it converges
to x and y with x 
= y. By the Hausdorff property, there are open sets U  x and
V  y such that U ∩V = ∅. As (xi) converges to x and y there exists an index i such
that xi ∈ U and xi ∈ V , a contradiction. This means that the limit of a convergent
net indeed is unique.

For the converse assume uniqueness of limits and let x 
= y be in X. Let S be the
system of pairs (U ,V ) such that U ,V are open subsets of X with U  x and V  y.
The set S is partially ordered by inverse inclusion, i.e., (U ,V ) ≤ (U ′,V ′) if and
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only if U ⊃ U ′ and V ⊃ V ′. The set is directed, as one can take intersections. We
show the Hausdorff property by contradiction, so assume that U ∩ V 
= ∅ for every
(U ,V ) ∈ S. Choose an element zUV in U ∩ V for each (U ,V ) ∈ S. Then the zUV

form a net with index set S. As zUV lies in U and V , it follows that this net converges
to x and y. The uniqueness of limits then implies x = y, a contradiction. �

To get used to the concept of nets, we will prove the following proposition.

Proposition A.6.3 Let X be a topological space, and let A ⊂ X, then the closure A

coincides with the set of all limits of nets in A. In other words, a point x ∈ X lies in
A if and only if there exists a net (αi)i∈I in A which converges to x.

Proof The closureA is the set of all x ∈ X such thatA intersects every neighborhood
of x. So let x ∈ A and U a neighborhood of x. Then the intersection A ∩ U is non-
empty. Choose an element αU in A ∩ U . Let I be the set of all neighborhoods of x
with the partial order

U ≤ U ′ ⇔ U ⊃ U ′.

The set I is directed as the intersection of two neighborhoods of x is a neighborhood
of x. The net (αU )U∈I converges by construction to x. This proves the ‘only if’ part.

For the converse direction let x ∈ X and αi ∈ A, i ∈ I a net converging to x. For
any given neighborhood U of x there exists i ∈ I with αi ∈ U . Since αi also lies in
A, it follows that A∩U is non-empty. As U was arbitrary, it follows that x ∈ A. �

Proposition A.6.4 Let f : X → Y be a map between topological spaces. The map
f is continuous if and only if for every net (xj ) in X, which converges to, say, x ∈ X,
the net f (xj ) converges to f (x).

Proof Observe that the following proof is almost verbatim the same as in the case
of maps on R, where sequences can be used. Let f be continuous and let (xi)i∈I be
a net in X convergent to x ∈ X. We have to show f (xi) → f (x). For this let U be
an open neighborhood of f (x) in Y , then V = f −1(U ) is an open neighborhood of
x. As xi → x, there exists i0 such that xi ∈ V for every i ≥ i0 and so f (xi) ∈ U for
every i ≥ i0.

For the converse direction assume that f satisfies the convergence condition. Let
A ⊂ Y be closed and let B ⊂ X be the inverse image of A. We have to show that B
is closed in X. For this let bi be a net in B, convergent to x ∈ X. As f (bi) converges
to f (x), which therefore lies in A, it follows that x lies in B = f −1(A), so B indeed
is closed. �

Example A.6.5 Let G be a group with a topology. Then G is a topological group
if and only if for any two nets xi and yi , which converge to x resp. y ∈ G, the net
xiy

−1
i converges to xy−1. This is a consequence of the last proposition.
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Definition A map φ : J → I between two directed sets is called strictly cofinal if
for every i0 ∈ I there exists a j0 ∈ J such that j ≥ j0 implies φ(j ) ≥ i0. This means
that the map φ is allowed to jump back and forth, but “in the limit” it is monotonically
increasing and “exhausts” the set I .

Definition Let α : I → X be a net. A subnet is a net β : J → X together with a
factorization

J
φ−−−→I

� |
β � |α↘↓

X

such that the map φ is strictly cofinal. In other words, subnets of α can be identified
with strictly cofinal maps to I . If α converges to x ∈ X, then every subnet converges
to x ∈ X.

Proposition A.6.6 A topological space X is compact if and only if every net in X
has a convergent subnet.

Proof Let X be compact and let (xi)i∈I be a net in X. For each i ∈ I let Ai be
the closure of the set {xj : j ≥ i}. Any finite intersection of the Ai is nonempty,
so by the finite intersection property, there exists x ∈ X which lies in every Ai .
That means, that to every neighborhood U of x and every i ∈ I , one can choose
an index i ′ = φ(U , i) ∈ I such that i ′ ≥ i and xi′ = xφ(U , i) ∈ U . Let J be the
directed set of all pairs (U , i), where U is a neighborhood of x and i ∈ I . We order
J as follows: (U , i) ≤ (U ′, i ′

)
if U ⊃ U ′ and i ≤ i ′. We have constructed a map

φ : J → I of which we claim that it is strictly cofinal. For this let i ∈ I and in J

choose any element of the form j = (U , i) with i as the second component. Then
by construction, φ(j ′) ≥ i for every j ′ ≥ j , so φ is indeed strictly cofinal. We claim
that the induced subnet φ : J → X converges. For this let U be a neighborhood of
x and choose an element j0 = (U , i). Then for every j ≥ j0 one has φ(j ) ∈ U , so
indeed (xi) has a convergent subnet.

For the converse assume that every net in X has a convergent subnet. Let A be a
collection of closed subsets such that every finite intersection of members of A is
non-empty. We need to show that the intersection of the elements in A is non-empty,
too. For this let B denote the set of all finite intersections of elements in A. Then B is
a directed set via B1 ≥ B2 ⇔ B1 ⊂ B2. Choose xB ∈ B for all B ∈ B. Then (xB)B∈B
is a net in X and by assumption there exists a subnet (xBj

)j∈J which converges to
some x ∈ X. But then x ∈ B for all B ∈ B, for if B is fixed we can choose j0 such
that Bj ⊂ B for all j ≥ j0. But this implies that xBj

∈ B for all j ≥ j0. Since B is
closed, the limit x of (xBj

) also lies in B. �
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A.7 Tychonov’s Theorem

Let I be an index set, and for each i ∈ I let Xi be a topological space. As men-
tioned above, one equips the product X = ∏i∈I Xi with the initial topology of the
projections pi : X → Xi . This topology is generated by all sets of the form

Ui ×
∏
j 
=i

Xj ,

where Ui is an open subset of Xi . Let’s call such a set a simple set. Recall that
this means that every open set is a union of finite intersections of simple open sets.
Dually, every closed set is an intersection of finite unions of simple closed sets.

Theorem A.7.1 (Tychonov). Assume the space X =∏i∈I Xi to be non-empty. Then
X is compact if and only if each factor Xi is a compact space.

Proof The projections pi : X → Xi being continuous, the Xi are all compact,
if X is. The difficult part is the converse. So assume that every Xi is compact.
Let F = (Fν)ν∈N be a family of closed subsets in X satisfying the finite intersection
property. Then there exists a maximal family F∗ = (Fν)ν∈N∗ of subsets with F∗ ⊃ F
having the finite intersection property. This is easily seen by means of Zorn’s lemma.

(A) If F1, . . . ,Fn∈F∗, then F1∩ · · · ∩Fn is in F∗, as is clear by maximality of F∗.

(B) If S ⊂ X is any subset with the property that S ∩ Fν 
= ∅ for every Fν ∈ F∗,
then S ∈ F∗, as follows from maximality again.

Let i ∈ I . The family of closed sets (pi(Fν))ν∈N∗ has the finite intersection property,
so there exists an element zi in their intersection. Let

U = Ui1 × · · · × Uin ×
∏

i 
=i1,...,in

Xi

be an open neighborhood of the element z = (zi)i∈I in X. Let k ∈ {1, . . . , n}. For
every Fν ∈ F∗ there is an f ∈ Fν with pik (f ) ∈ Uik , so with Sk = p−1

ik

(
Uik

)
we have

Sk ∩Fν 
= ∅. By (B) the set Sk is in F∗. By (A) we have U = S1 ∩ · · · ∩ Sn ∈ F∗. In
particular, U has non-empty intersection with every F ∈ F∗, so with every F ∈ F .
Since these sets form a neighborhood base, the point z lies in the closure of Fν so in
Fν for every ν ∈ N . We infer that

⋂
n∈N Fn is non-empty and X is compact. �

A.8 The Lemma of Urysohn

Recall that a Hausdorff space is called locally compact if every point has a compact
neighborhood, and a subset S ⊂ X is called relatively compact if its closure S ⊂ X

is compact.
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Lemma A.8.1 (Lemma of Urysohn). Let X be a locally compact Hausdorff space.
Let K ⊂ X be compact and A ⊂ X closed with K ∩ A = ∅.

(i) There exists a relatively compact open neighborhood U of K such that K ⊂
U ⊂ U ⊂ X�A.

(ii) There exists a continuous function of compact support f : X → [0, 1] with
f ≡ 1 on K and f ≡ 0 on A.

(iii) Let B ⊂ X be closed, and let h : B → [0,∞) be in C0(B) and suppose
h(x) ≥ 1 for every x ∈ K ∩B. Then there exists a continuous function f as in
(ii) with the additional property that f (b) ≤ h(b) for every b ∈ B.

This lemma is of fundamental importance, we will give the proof.

Proof To prove the first assertion, let a ∈ A. Then for every k ∈ K there is an open,
relatively compact neighborhood Uk of k that is disjoint from some neighborhood
Uk,a of a. The family (Uk) forms an open covering of K . As K is compact, finitely
many suffice. Let V be their union and W be the intersection of the corresponding
Uk,a . Then V and W are open disjoint neighborhoods of K and a, and V is relatively
compact. Repeating this argument with K in the role of a and V ∩A in the role of K
one gets open disjoint neighborhoods U ′ of K and W ′ of V ∩A, respectively. Then
the set U = U ′ ∩ V does the trick.

For (ii), choose U as in the first part and replace A with A ∪ (X�U ). One sees
that it suffices to prove the claim without f having compact support. So again let
U be as in the first part and rename this open set to U 1

2
. Next there is a relatively

compact neighborhood U 1
4

of K such that U 1
2
⊂ U 1

2
⊂ U 1

4
. Let R be the set of all

numbers of the form k
2n in the interval [0, 1). Formally set U0 = X�A. Iterating the

above construction we get open sets Ur , r ∈ R, with K ⊂ Ur ⊂ Ur ⊂ Us ⊂ X�A

for all r > s in R. We now define f . For x ∈ A set f (x) = 0 and otherwise set
f (x) = sup{r ∈ R : x ∈ Ur}. Then f ≡ 1 on K . For r > s in R one gets

f −1(s, r) =
⋃

s<s′<s′′<r

Us′ � Us′′ ,

which is open. Similarly, f −1([0, s)) and f −1((r , 1]) are open. Since the intervals of
the form (r , s), [0, s), and (r , 1] generate the topology on [0, 1] it follows that f is
continuous.

The proof of (iii) is an obvious variant of the last proof, where at each step
of the construction of the Ur one applies part (i) with A replaced by A ∪ {b ∈
B : h(b) ≤ r}. �

Corollary A.8.2 In a locally compact Hausdorff space, every point possesses a
neighborhood base consisting of compact sets.
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Proof Let X be a locally compact Hausdorff space, and let x ∈ X. We have to show
that every open neighborhoodV of x contains a compact neighborhood. LetK = {x},
then K is a compact subset of X. Let A be the closed set X�V . Then K ∩ A = ∅
and by Lemma A.8.1 (i) there exists a relatively compact open neighborhood U of x
with U ⊂ V . �

TheoremA.8.3 (Tietze’s Extension Theorem). Let X be a locally compact Hausdorff
space, and let B ⊂ X be a closed subset. Then the restriction C0(X) → C0(B) is
surjective.

Proof Let h ∈ C0(B). Decomposing h into real and imaginary parts we see that it
suffices to assume that h is real valued. Writing h = h+ − h− for positive functions
h±, we restrict to the case h ≥ 0. Scaling h, we can assume 0 ≤ h ≤ 1.

Let K = {b ∈ B : h(b) ≥ 1
2 }. Then K is compact in X and the Lemma of Urysohn

gives a function 0 ≤ f ≤ 1 in Cc(U ) with f ≡ 1 on K and f (b) ≤ 2 h(b) for every
b ∈ B. So the function g1 = 1

2f is equal to 1
2 on K and satisfies 0 ≤ g1 ≤ 1

2 as well
as g1 ≤ h1 = h. Set h2 = h1 − g1. Then 0 ≤ h2 ≤ 1

2 . By repeating the argument we
get g2 ∈ Cc(X) with 0 ≤ g2 ≤ 1

4 and g2 ≤ h2. Set h3 = h2 − g2. Iteration gives a
sequence gn ∈ Cc(X) such that 0 ≤ gn ≤ 2−n. The function

g(x) =
∞∑
n=1

gn(x)

is continuous, vanishes at infinity, and satisfies g(b) = h(b) for every b ∈ B. �

A.9 Baire Spaces

A subset D of a topological space X is dense in X if D = X. This is equivalent
to saying that U ∩ D 
= ∅ for every open U ⊂ X. In this section we show that
every locally compact topological space X is a Baire space, i.e., whenever we have
a countable family (Un)n∈N of open and dense subsets of X, then the intersection
D = ⋂n∈N

Un is also dense in X. Equivalently, X is a Baire space if, whenever X

can be written as a countable union X = ⋃n∈N
An with An closed in X, then there

exists at least one n0 ∈ N such that An0 has nonempty interior.

Proposition A.9.1 Every locally compact Hausdorff space and every complete
metric space is a Baire space.

Proof LetX be either a locally compact Hausdorff space or a complete metric space.
Suppose V1,V2, . . . are dense open subsets of X. We define a sequence B0,B1, . . .
of open sets as follows. Let B0 be an arbitrary nonempty open set in X. Inductively,
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assume n ≥ 1 and an open set Bn−1 
= ∅ has been chosen, then, as Vn is dense, there
is an open set Bn 
= ∅ with

Bn ⊂ Vn ∩ Bn−1.

If X is a locally compact Hausdorff space, one can choose Bn to be compact. If
X is a complete metric space, Bn may be taken to be a ball of radius < 1/n. Set
K = ⋂∞

n=1 Bn. If X is a locally compact Hausdorff space, then K 
= ∅ by the finite
intersection property. If X is a complete metric space, then the centers of the balls
Bn form a Cauchy sequence that converges to some point of K , so K 
= ∅ in either
case. One has K ⊂ B0 and K ⊂ Vn for each n, so B0 ∩⋂n Vn 
= ∅. �

A.10 The Stone-Weierstraß Theorem

For a locally compact Hausdorff space X it is very often necessary to decide whether
a given subalgebra of the algebra C0(X) is dense with respect to sup-norm ‖·‖X. The
Stone-Weierstraß Theorem gives an easy criterion that applies in many situation.

Theorem A.10.1 (Stone-Weierstraß Theorem). Let X be a locally compact Haus-
dorff space and suppose that A ⊂ C0(X) is a subalgebra of C0(X) such
that

(a) A separates the points, i.e., for x 
= y in X there exists f ∈ A with f (x) 
= f (y),

(b) for every x ∈ X there is f ∈ A such that f (x) 
= 0, and

(c) A is closed under complex conjugation.

Then A is dense in C0(X).

The above complex version is a consequence of the following real version, in which
CR

0 (X) denotes the real Banach algebra consisting of all real continuous functions
on X which vanish at infinity equipped with ‖·‖X.

Theorem A.10.2 (Stone-Weierstraß Theorem over R). Let X be a locally compact
Hausdorff space and suppose that the set A ⊂ CR

0 (X) is a (real) subalgebra of
CR

0 (X) such that

(a) A separates the points, and

(b) for every x ∈ X there is f ∈ A such that f (x) 
= 0.

Then A is dense in CR

0 (X).

We first show how the complex version follows from the real version: For this suppose
that A ⊂ C0(X) is as in Theorem A.10.1. Then A = AR + iAR, where AR =
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A∩CR

0 (X). This follows from the decomposition f = Re(f )+iIm(f ) with Re(f ) =
1
2 (f + f̄ ) and Im(f ) = 1

2i (f − f̄ ) in AR. If A satisfies the conditions of Theorem
A.10.1 one easily checks that AR satisfies the conditions of Theorem A.10.2. But
then AR = CR

0 (X) and A = AR + iAR = C0(X).

So we only have to show the real version. We need two lemmas.

Lemma A.10.3 (Dini’s Theorem). Let X be a compact topological space, and let
(fn)n∈N be a monotonically increasing sequence of continuous functions fn : X →
R that converges point-wise to the continuous function f : X → R. Then (fn)
converges uniformly to f.

Proof Let ε > 0 be given. For every x ∈ X there exists nx ∈ N with f (x) − ε <

fn(x) ≤ f (x) for every n ≥ nx . Let Ux := {y ∈ K : f (y) − ε < fnx
(y)}. Then

{Ux : x ∈ X} is an open cover of X. Since X is compact, we find x1, . . . , xl ∈ X

with X =⋃l
j=1 Uxj . Then ‖f −fn‖X < ε for ever n ≥ N = max{nt1 , . . . , ntl }. �

LemmaA.10.4 Let A be a subalgebra of CR

0 (X). If f ∈ A, then |f | ∈ A. Moreover,
if f , g ∈ A, then also max(f , g), min(f , g) ∈ A.

Proof Let 0 
= f ∈ A. By passing to 1
‖f ‖X f we may assume that f (X) ⊂ [− 1, 1],

and therefore f (x)2 ∈ [0, 1] for every x ∈ X. We define inductively a sequence (pn)
of polynomials on [0, 1] such that p1 ≡ 0 and

pn+1(t) = pn(t) − 1

2
(pn(t)2 − t), t ∈ [0, 1].

We claim that (pn(t)) is a monotonically increasing sequence that converges to
√
t

for every t ∈ [0, 1]. Indeed, we show first by induction that 0 ≤ pn(t) ≤ √
t and

pn(0) = 0 for every n ∈ N. This is clear for n = 1 and if it is shown for n the result
for n+ 1 follows from

pn+1(t) −√
t =
(
pn(t) −√

t
)
− 1

2

(
pn(t) −√

t
) (

pn(t) +√
t
)

=
(
pn(t) −√

t
)(

1 − 1

2

(
pn(t) +√

t
))

≤ 0,

since pn(t) −√
t ≤ 0 and pn(t) +√

t ≤ 2
√
t ≤ 2. Thus, since pn+1(t) − pn(t) =

1
2 (t −pn(t)2) ≥ 0, the sequence (pn(t)) is monotonically increasing and bounded by√
t . It therefore converges to some 0 ≤ g(t) ≤ √

t . We then get

0 = g(t) − g(t) = lim
n

(pn+1(t) − pn(t)) = lim
n

1

2

(
t − pn(t)2

) = 1

2

(
t − g(t)2

)
,

from which it follows that g(t) = √
t .
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Since g is continuous, it follows from Dini’s Theorem that (pn) converges uniformly
to g on [0, 1]. Define fn(x) = pn(f (x)2) for every x ∈ X. Then (fn) converges
uniformly to

√
f 2 = |f | on X. Since fn is a linear combination of powers of f it

lies in A for every n ∈ N. Thus |f | ∈ A.

The final assertion now follows from the fact that A is a real algebra and max f , g =
1
2 (f + g + |f − g|) and min(f , g) = 1

2 (f + g − |f − g|). �

Proof of Theorem A.10.2 We first show that for all pairs x, y ∈ X with x 
= y there
exists a g ∈ A with g(x) 
= g(y) and g(x), g(y) 
= 0. Assume that this is not the case
for the given pair x, y. Choose g1 ∈ Awith g1(x) 
= g1(y) and assume that g1(y) 
= 0.
Then g1(x) = 0. Choose g2 ∈ A with g2(x) 
= 0. Then g2(x) = g2(y) or g2(y) = 0.
If g2(x) = g2(y) define g = g1 + g2 and if g2(y) = 0 put g = g1 +μg2 with μ ∈ R

such that g1(y) 
= μg2(x) 
= 0. In both cases one checks that 0 
= g(x) 
= g(y) 
= 0,
a contradiction.

In the next step we show that for all pairs x, y ∈ X with x 
= y and any given
α,β ∈ R there exists a function f ∈ A with f (x) = α and f (y) = β. For this
choose g as above. We make the Ansatz f = λg + μg2 for λ,μ ∈ R. Then
f (x) = α, f (y) = β is equivalent to

(
g(x) g(x)2

g(y) g(y)2

)(
λ

μ

)
=
(
α

β

)
.

But since 0 
= g(x) 
= g(y) 
= 0 one computes det

(
g(x) g(x)2

g(y) g(y)2

)
= g(x)g(y)

(g(y) − g(x)) 
= 0, and the above linear equation has a unique solution.

Now let h ∈ CR

0 (X) be given, and let ε > 0. We need to show that there exists some
f ∈ A with ‖h− f ‖X < ε. For each pair x, y ∈ X with x 
= y we choose gx,y ∈ A

with h(x) = gx,y(x) and h(y) = gx,y(y). For fixed y we define

Ux := {z ∈ X : h(z) < gx,y(z) + ε}.
Then Ux is an open neighborhood of x and x�Ux = {z ∈ X : (h − gx,y)(z) ≥ ε}
is compact, since h − gx,y vanishes at infinity. Thus, if we fix x1 ∈ X, then there
exist x2, . . . , xl ∈ X�Ux1 with X�Ux1 ⊂ ⋃l

j=2 Uxj , from which it follows that

X ⊂⋃l
j=1 Uxj . Set

fy = max
(
gx1,y , . . . , gxl ,y

)
.

It lies in A by Lemma A.10.4 and by the construction it follows that h(z)−fy(z) < ε

for every z ∈ X, since if z ∈ Uxj , then h(z) < gxj ,y(z) + ε ≤ fy(z) + ε.

Now, for y ∈ X define

Vy = {z ∈ X : fy(z) < h(z) + ε}.
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Since fy(y) = h(y), this is an open neighborhood of y, and similarly as above we
can show that there exist y1, . . . , yk ∈ X such that X ⊂⋃k

j=1 Vyj . Put

f = min(fy1 , . . . , fyk ).

Then f ∈ A and one easily checks that f (z)− ε < h(z) < f (z)+ ε for every z ∈ X.
This finishes the proof.



Appendix B
Measure and Integration

In this Appendix we want to review some basic facts on integration theory, following
mainly the approach given in Rudin’s beautiful book [Rud87]. In the first section we
recall the basic definitions of measure spaces, measurable functions and integration
of functions with respect to positive measures. In the second section we review the
Riesz Representation Theorem, which, for any locally compact Hausdorff space
X, gives a one-to-one correspondence between Borel measure spaces with certain
regularity properties and positive linear functionals I : Cc(X) → C, called Radon
integrals on X. In further sections we review some basic facts on Lp-spaces and give
a proof of the Radon Nikodym Theorem.

B.1 Measurable Functions and Integration

Let X be a set. A σ -algebra in X is a set A of subsets of X, which satisfies the
following axioms:

• ∅ ∈ A, and if A ∈ A then so is its complement X�A,

• A is closed under countable unions.

It follows immediately from the above axioms that a σ -algebra is closed under
countable intersections and that A�B ∈ A for all A,B ∈ A.

The set P(X) of all subsets of X is a σ -algebra, and since the intersection of two (or
infinitely many) σ -algebras is again a σ -algebra, we see that for every given set S
of subsets of X there exists a smallest σ -algebra A that contains S. We then say that
S generates A. If X is a topological space, then B = B(X) denotes the σ -algebra
generated by the topology on X. It is called the Borel σ -algebra, its elements are
called the Borel sets in X. If A is a σ -algebra in X, then we call the pair (X, A) a
measurable space. In particular, for each topological space we obtain the measurable
space (X, B).

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 287
DOI 10.1007/978-3-319-05792-7, © Springer International Publishing Switzerland 2014
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A map f : X → Y between two measurable spaces (X, AX) and (Y , AY ) is called
a measurable map if f −1(A) ∈ AX, whenever A ∈ AY . The composition of two
measurable maps is measurable.

We consider the real line R furnished with its Borel σ -algebra. We now list some
basic facts on measurable functions, which are easy to prove and will be used without
further mention.

Lemma B.1.1 Let (X, A) be a measurable space.

(a) A Function f : X → R is measurable if and only if f −1((a,∞)) ∈ A for every
a ∈ R.

(b) A function f : X → C is measurable if and only if Ref and Imf are
measurable.

(c) If f , g : X → C are measurable, then so are f + g, f · g, and |f |p for every
p > 0.

(d) If f , g : X → R are measurable, then so are max(f , g) and min(f , g).

(e) If fn : X → C is measurable for every n ∈ N and (fn)n∈N converges point-wise
to f : X → C, then f is measurable

Proof For the proof of the first assertion, we only have to show that S =
{(a,∞) : a ∈ R} generates B(R). But since [b,∞) = ⋂n∈N

(b − 1
n

,∞) and
(a, b) = (a,∞)�[b,∞) we see that the σ -algebra generated by S must contain
all open intervals in R. Thus S generates B(R).

The other assertions are easy, except for the last one. For this, we first con-
sider the case where (fn)n∈N is monotonically increasing. Then f −1((a,∞]) =⋃∞

n=1 f
−1
n ((a,∞]) ∈ A, hence f is measurable. A similar argument applies if

(fn)n∈N is decreasing. For the general case we can first use (b) to restrict to the
case of real functions, and then we can write f as the limit of the decreasing se-
quence (gk)k∈N with gk = sup{fn : n ≥ k}, which itself is a limit of the increasing
sequence of measurable functions hn = max{fk , . . . , fk+n}. �

In what follows, it is sometimes useful to consider functions f : X → [0,∞],
where we equip [0,∞] with the obvious topology. As in the lemma, such a function
is measurable if and only if f −1((a,∞]) ∈ A for every a ∈ R. Assertions (c), (d)
and (e) of the lemma remain valid for functions f : X → [0,∞].

Definition. A measureμon a measurable space (X, A) is a functionμ : A → [0,∞]
that satisfies μ(∅) = 0 and

• μ
(⋃∞

n=1 An

) = ∑∞
n=1 μ(An) for any sequence (An)n∈N of pairwise disjoint

elements An ∈ A.
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From this condition one can derive the following facts

• μ(A ∪ B) = μ(A) + μ(B) − μ(A ∩ B) for all A,B ∈ A.

• If (An)n∈N is a sequence in A such that An ⊆ An+1 for every n ∈ N, then
μ(An) → μ(A) for A =⋃∞

n=1 An.

• If (An)n∈N is a sequence in A such that An ⊇ An+1 for every n ∈ N and μ(A1) <

∞, then μ(An) → μ(A) for A =⋂∞
n=1 An.

If μ : A → [0,∞] is a measure on (X, A) we call (X, A,μ) a measure space.

If (X, A,μ) is a measure space, then a step function g : X → C is a function of
the form g = ∑m

i=1 ai1Ai
with ai ∈ C and Ai ∈ A with μ(Ai) < ∞ for every

1 ≤ i ≤ m. For such step function g we define

∫
X

g dμ
def=

m∑
i=1

aiμ(Ai) ∈ C.

For a positive measurable function f : X → [0,∞] we define
∫
X

f dμ = sup

{∫
X

g dμ : g ≤ f , g a positive step function

}
.

We say that f is integrable if
∫
X
f dμ < ∞. A measurable function f : X → R is

integrable if and only if f + = max(f , 0) and f − = −min(f , 0) are integrable, and
then we put

∫
X
f dμ = ∫

X
f + dμ− ∫

X
f − dμ. Similarly, we define the integral of

complex measurable functions via its real and imaginary part in the obvious way.

The set L1(X) of integrable complex valued functions on X is a complex vector space
such that the integral f �→ ∫

X
f dμ is a positive functional on L1(X) in the sense

that f ≥ 0 implies
∫
X
f dμ ≥ 0. We shall frequently use the following proposition.

Proposition B.1.2 Let (X, A,μ) be a measure space. Then a measurable function
f : X → C is integrable if and only if |f | is integrable and then we have∣∣∣∣

∫
X

f dμ

∣∣∣∣ ≤ ‖f ‖1
def=
∫
X

|f | dμ.

As a consequence, if f , g : X → C are measurable with |f | ≤ |g| and g is
integrable, then so is f.

Proof It follows from the definition of the integral that the positive measurable
function dominated by an integrable function must be integrable. If f is real, then
|f | = f + + f − is integrable if f is, and if f is complex, we can use the equation
|f | ≤ |Re f |+|Im(f )| to see that |f | is integrable if f is. The equation

∣∣∫
X
f dμ
∣∣ ≤∫

X
|f | dμ follows by replacingf by zf if z ∈ C with |z| = 1 such that z

∫
X
f dμ ≥ 0,

which then implies that
∫
X
f dμ = ∫

X
Ref dμ ≤ ∫

X
|f | dμ. �
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Remark B.1.3 If f : X → [0,∞] is an integrable function, the value ∞ can only
occur on a null-set, i.e., a set N with μ(N ) = 0. Indeed, if N = {x ∈ X : f (x) = ∞}
has measure a ≥ 0, then n · a = ∫

X
n1A dμ ≤ ∫

X
f dμ < ∞ for every n ∈ N,

which implies a = 0.

Similarly, if f is integrable, then A = {x ∈ X : f (x) 
= 0} is always σ -finite, since
A = ⋃∞

n=1 An with An = {x ∈ X : f (x) ≥ 1
n
} and μ(An) ≤ n

∫
X
f dμ < ∞. (A

set A ∈ A is called σ -finite if it can be covered by a countable collection of sets with
finite measure).

The following two theorems are used frequently.

Theorem B.1.4 (Monotone Convergence Theorem). Let (fn)n∈N be a point-wise
monotonically increasing sequence of positive integrable functions. For x ∈ X let
f (x) = limn fn(x) (with possible value ∞). Then f is measurable and one has

∫
X

f dμ = lim
n

∫
X

fn dμ.

Proof See [Rud87, Theorem 1.26]. �

Theorem B.1.5 (Dominated Convergence Theorem). If the sequence of measur-
able functions (fn)n∈N converges point-wise to some function f, and there exists an
integrable function g such that |fn| ≤ |g| for every n ∈ N, then f is integrable and

∫
X

f dμ = lim
n

∫
X

fn dμ.

Proof (See [Rud87], Theorem 1.34). �

A measure space (X, A,μ) is called complete if A is closed under taking subsets of
sets of measure zero, i.e., if A ∈ A with μ(A) = 0 and B ⊆ A, then B ∈ A (and
then it follows automatically that μ(B) = 0).

Given an arbitrary measure space (X, A,μ), one can always pass to its completion
(X, Â, μ̂), which is obtained by adding all subsets of null-sets in A with the obvious
extension μ̂ of μ. A function is integrable with respect to μ̂ if and only if it differs
only on a null-set from a μ-integrable function, and then the two integrals coincide.
So passing to the completion does not change the theory substantially, but it gives
more freedom in dealing with measurable and integrable functions.

Thus we will always consider measurable functions and their integrals with respect
to the completion (X, Â, μ̂), without further mention.
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B.2 The Riesz Representation Theorem

LetX be a locally compact Hausdorff space. By a Radon integral onX we understand
a positive linear functional I : Cc(X) → C, i.e., I is linear, and I (φ) ≥ 0 if φ ≥ 0.
In this section we want to associate to each Radon integral I a certain Borel measure
μ : B → [0,∞] such that the functional I can be recovered via integration of
functions with respect to μ. Recall the notion of an outer Radon measure from
Sect. 1.3.

Lemma B.2.1 For an outer Radon measureμ onX and every measurable set A ⊂ X

with μ(A) < ∞ one has
μ(A) = sup

K⊂A
Kcompact

μ(K).

Proof First let A be a subset of a compact set L and set T = L�A. For any given
δ > 0 there exists an open set W ⊃ T with μ(W�T ) < δ. The set K = L�W is
closed in L, hence compact, and we have

K = L�W ⊂ L�T = L�(L�A) = A

and

μ(A�K) = μ(A�(L�W )) ≤ μ(W�(L�A)) = μ(W�T ) < δ.

Let now A be arbitrary with μ(A) < ∞ and ε > 0. By outer regularity there exists
an open set U ⊃ A of finite measure. As U is inner regular, there is a compact
set L ⊂ U such that μ(U�L) < ε/2. Then μ(A) = μ(A ∩ L) + μ(A�L) and
μ(A�L) ≤ μ(U�L) < ε/2. Set B = A∩L. By the first part there is a compact set
K ⊂ B with μ(B�K) < ε/2 and we conclude

μ(A�K) = μ(B�K) + μ(A�L) < ε/2 + ε/2 = ε. �

Theorem B.2.2 (Riesz Representation Theorem). Let I : Cc(X) → C be a positive
linear functional. Then there exists a unique outer Radon measure μ : B → [0,∞]
such that

I (φ) =
∫
X

φ dμ

for every φ ∈ Cc(X).

Proof Using Lemma B.2.1 the conditions of outer regularity imply the conditions
given in [Rud87, Theorem 2.14], where a proof of the theorem is given. �

In the literature one will find the notion Radon measure sometimes attached to what
we call an inner Radon measure. A locally finite Borel measure μ on B is called an
inner Radon measure if
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• μ(A) = supK⊂A μ(K) holds for every A ∈ B. Here the supremum is extended
over all subsets K of A that are compact in the space X.

there is a representation theorem of the above type for inner Radon measures as well,
so for every positive linear functional I on Cc(X) there exists a unique inner Radon
measure μinn such that

I (f ) =
∫
X

f dμinn

holds for every f ∈ Cc(X). Thus the two representation theorems give a bijection
μ �→ μinn from the set of all outer Radon measures to the set of all inner Radon
measures on X. This map can be made explicit, as for a given outer Radon measure
μ one can describe the corresponding inner Radon measure μinn by

μinn(A) = sup
K⊂A

K compact

μ(K).

Remark B.2.3 A topological space X is called σ -compact if X is a countable union
of compact sets. If μ is an outer Radon measure on the σ -compact space X, then
every measurable set A ⊂ X is σ -finite, from which it follows that the equation
μ(A) = supK⊂A μ(K) holds for every measurable set A ⊂ X. Thus for σ -compact
spaces the two notions of Radon measures coincide.

This is not true in general. As an example one can look at the space X = R × Rd ,
where the second factor is equipped with the discrete topology. On compact sets
K ⊂ X we define μ(K) = ∑y∈Rd

λ(Ky) with Ky = {x ∈ R : (x, y) ∈ K} and
λ denotes Lebesgue measure on R. With the obvious extension formulas we obtain
outer and inner Radon measures μ and μinn on X, both given on compact sets as
above. Let 	 = {(x, x) : x ∈ R} ⊂ X. Then every open set containing 	 has infinite
measure with respect to μ, since it is a union of uncountably many disjoint open sets
with strictly positive measure. On the other hand, every compact subset of 	 is finite
and has measure zero. It follows that μ(	) = ∞ while μinn(	) = 0.

B.3 Fubini’s Theorem

If (X, A,μ) and (Y , C, ν) are σ -finite measure spaces, then there is a unique product
measure μ · ν : A ⊗ C → [0,∞] on the σ -algebra A ⊗ C generated by {A × C :
A ∈ A,C ∈ C} such that the following theorem holds:

Theorem B.3.1 (Fubini’s Theorem). Let (X,μ) and (Y , ν) be two σ -finite measure
spaces, and let f be a measurable function on X × Y .
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(a) If f ≥ 0, then the two partial integrals
∫
X
f (x, y) dx and

∫
Y
f (x, y) dy define

measurable functions and the Fubini formula
∫
X×Y

f (x, y)dμ · ν(x, y) =
∫
X

∫
Y

f (x, y) dy dx

=
∫
Y

∫
X

f (x, y) dx dy

holds.

(b) If f is complex valued and one of the iterated integrals
∫
X

∫
Y

|f (x, y)| dy dx or
∫
Y

∫
X

|f (x, y)| dx dy

is finite, then f is integrable and the Fubini formula holds.

Proof ([Rud87], Theorem 7.8). �

Unfortunately, the Haar measures we use in this book fail to be σ -finite in general,
so the above theorem cannot be applied in all situations. In order to fix this, we shall
prove a version of Fubini’s Theorem that works for all outer Radon measures on
locally compact spaces. As preparation we need.

Lemma B.3.2 Let μ be an outer Radon measure on X, and let F be any subset of
Cc(X) consisting of functions φ ≥ 0 such that for φ,ψ ∈ F there exists a function
η ∈ F with η ≥ φ,ψ . Then

sup
φ∈F

∫
X

φ(x) dx =
∫
X

sup
φ∈F

φ(x) dμ(x).

It is part of the assertion that the integrand on the right is a measurable function.

Proof We first show that the function g(x) = supφ∈F φ(x) is measurable. As the
Borel σ -algebra on R is generated by the intervals (a,∞) for a ∈ R it suffices to
show that g−1(a,∞) is measurable for every a ∈ R. Then

g−1(a,∞) =
⋃
φ∈F

φ−1(a,∞)

is a union of open sets, hence open and thus measurable.

For the integral formula, note that the estimate “≤” is trivially satisfied. Let s =∑m
i=1 ai1Ai

be a step function with s ≤ g. By the definition of step functions,
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μ(Ai) < ∞ for every i. So we can find compact sets Ki ⊂ Ai such that for a given
ε > 0 one has ∫

X

s dμ <

m∑
i=1

aiμ(Ki) + ε.

Let K = ⋃m
i=1 Ki and write s0 = ∑m

i=1 ai1Ki
. For given 0 < δ < 1 one

has (1 − δ)s0(x) < g(x) for every x ∈ K . This implies that for every
x ∈ K there exists φx ∈ F such that (1 − δ)s0(x) < φx(x). The open sets
Ux = {y : (1 − δ)s0(y) < φx(y)} form an open covering of the compact set K ,
so there are x1, . . . , xn such that K ⊂ Ux1 ∪ · · · ∪ Uxn . By assumption, there exists
φ ∈ F with φ(x) ≥ φx1 (x), . . . ,φxn (x) for every x ∈ X. Then φ > (1− δ)s0, so that

∫
X

s dx <

∫
X

s0 dx + ε <
1

1 − δ

∫
X

φ dx + ε.

Varying first φ, then s, this implies
∫
X

g dx ≤ 1

1 − δ
sup
φ∈F

∫
X

φ dx + ε.

Letting ε and δ tend to zero, we get the claim. �

Theorem B.3.3 (Fubini’s Theorem for Radon measures). Let μ and ν be outer
Radon measures on the Borel sets of the locally compact spaces X and Y, respectively.
Then there exists a unique outer Radon measure μ · ν on X × Y such that

(a) If f : X × Y → C is μ · ν-integrable, then the partial integrals
∫
X
f (x, y) dx

and
∫
Y
f (x, y) dy define integrable functions such that Fubini’s formula holds:

∫
X×Y

f (x, y) d(x, y) =
∫
X

∫
Y

f (x, y) dy dx =
∫
Y

∫
X

f (x, y) dx dy.

(b) If f is measurable such that A = {(x, y) ∈ X× Y : f (x, y) 
= 0} is σ -finite, and
if one of the iterated integrals

∫
X

∫
Y

|f (x, y)| dy dx or
∫
Y

∫
X

|f (x, y)| dx dy

is finite, then f is integrable and the Fubini formula holds.

Proof Uniqueness is an immediate consequence of the Riesz Representation
Theorem, since Fubini’s formula determines the values of the integral on Cc(X×Y ).

To show existence of μ · ν we first observe that by the classical Fubini theorem for
each compact set K = K1 × K2 there is a unique product measure (μ · ν)K on K

such that integration with respect to (μ · ν)K is given by integration in parts. Since
(μ · ν)L restricts to (μ · ν)K whenever K ⊆ L with L = L1 ×L2 compact, it follows
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that integrating a continuous function with compact support in K with respect to
(μ ·ν)K determines a well defined positive functional on Cc(X×Y ). Let μ ·ν denote
the corresponding outer Radon measure, as in Riesz’s Representation Theorem.

To show that Fubini’s formula holds for all integrable functions f : X × Y → C,
we may assume, by linearity, that f ≥ 0. Then, approximating f point-wise by an
increasing sequence of step functions, it follows from the Monotone Convergence
Theorem that it suffices to prove the theorem for step functions. By linearity, we may
assume that f = 1A for some measurable set A ⊂ X × Y with finite measure.

If A = U is open, we use Lemma B.3.2 several times to get
∫
X

∫
Y

1U (x, y) dy dx =
∫
X

∫
Y

sup
0≤φ≤1U

φ(x, y) dy dx

= sup
0≤φ≤1U

∫
X

∫
Y

φ(x, y) dy dx

= sup
0≤φ≤1U

∫
X×Y

φ(x, y) d(x, y)

=
∫
X×Y

sup
0≤φ≤1U

φ(x, y) d(x, y)

=
∫
X×Y

1U (x, y) d(x, y).

If A = K is a compact set, then let V be a relatively compact open neighborhood
of K . Then 1K = 1V − 1V�K . The claim follows for A = K . Using the Monotone
Convergence Theorem, the claim follows for A being an arbitrary σ -compact set.

Every measurable set A with finite measure is a disjoint union of a σ -compact set
A′ and a null-set N . To see this, note first that by Lemma B.2.1 we have μ(A) =
sup{μ(K) : K ⊂ A,K compact}. Choose an increasing sequence of compact sets
Kn such that μ(Kn) → μ(A). Then A′ =⋃n∈N

Kn is σ -compact with N = A�A′ a
null-set. It therefore remains to show the result for a null-set N ⊂ X×Y . Let ε > 0,
and let U ⊃ N be an open set of measure < ε. Then

∫
X

∫
Y

1N dy dx ≤
∫
X

∫
Y

1U dy dx =
∫
X×Y

1U < ε.

Letting ε tend to zero, the first assertion of the theorem follows.

For the second assertion let f : X × Y → C be given such that the partial inte-
gral
∫
Y

∫
X
|f (x, y)| dx dy exists. It suffices to show that |f | is integrable. Choose

a sequence (An)n∈N of measurable sets in X × Y with finite measure such that
A =⋃∞

n=1 An and define fn : X× Y → C by fn = min(|f |1An
, n). Then (fn)n∈N is
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an increasing sequence of integrable functions, which converges point-wise to |f |.
It follows from the first part of this theorem that

∫
X×Y

fn(x, y) d(x, y) =
∫
Y

∫
X

fn(x, y) dx dy ≤
∫
Y

∫
X

|f (x, y)| dx dy

for every n ∈ N. The result follows now from the Monotone Convergence
Theorem. �

Remark B.3.4 We should note that the analogue of the above theorem does not
hold for the inner Radon measures. Indeed, if 	 ⊂ R × Rd is as in Remark
B.2.3, then 	 is a null-set with respect to the inner Radon measure on R × R

d

corresponding to Lebesgue measure on R and counting measure on Rd . But∫
R

(∑
y∈Rd

1	(x, y)
)
dx=∞.

B.4 Lp-Spaces and the Riesz-Fischer Theorem

Let (X, A,μ) be a measure space. For 1 ≤ p < ∞ let Lp(X) be the set of all
measurable functions f : X → C such that

‖f ‖p def=
(∫

X

|f |p dμ

) 1
p

< ∞.

A function in L2(X) is also called a square integrable function. Further, let L∞(X)
be the set of measurable functions f : X → C such that there is a null-set N , on the
complement of which f is bounded. For such f let

‖f ‖∞ def= inf{c > 0 : ∃ null − set N with |f (X�N )| ≤ c}.
Note that ‖·‖∞ might differ from the sup-norm ‖·‖X defined by ‖f ‖X = sup{|f (x)| :
x ∈ X}. A function f ∈ L∞(X) might even be unbounded. It is easily seen that ‖·‖∞
is a semi-norm on L∞(X), but it takes a bit of work to see that this is also true for
‖·‖p for 1 ≤ p < ∞. For this we first need

Proposition B.4.1 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ be such that 1
p
+ 1

q
= 1

(we set q = ∞ if p = 1). Then f · g ∈ L1(X) for every f ∈ Lp(X) and g ∈ Lq(X)
and

‖f · g‖1 ≤ ‖f ‖p‖g‖q .

Proof In case p = 1 and q = ∞we have f ·g : X → C a measurable function with
|f · g| < |f |‖g‖∞ almost everywhere. Thus ‖f · g‖1 ≤ ‖f ‖1‖g‖∞ by Proposition
B.1.2.

So let 1 < p < ∞. We may assume that ‖f ‖p 
= 0 
= ‖g‖q since otherwise f ·g = 0
almost everywhere and hence ‖fg‖1 = 0.
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We first show that ab ≤ ap

p
+ bq

q
for all a, b ≥ 0. To see this, consider the function

φ : (0,∞) → R,φ(t) = t1/p− 1
p
t . It has a global maximum at t = 1, since φ′(t) = 0

if and only if t = 1 and φ′′(t) < 0 for every t . This implies that

1

q
= 1 − 1

p
= φ(1) ≥ φ

(
apb−q

) = ab−q/p − 1

p
apb−q .

Multiplying this with bq gives

1

q
bq + 1

p
ap ≥ abq−q/p = ab.

If we apply this inequality to a = |f |
‖f ‖p and b = |g|

‖g‖q we get

|f · g|
‖f ‖p‖g‖q ≤

|f |p
p‖f ‖pp +

|g|q
p‖g‖qq .

The integral of the function on the right hand side exists by assumption, which then
implies by Proposition B.1.2 that the integral of the function on the left hand side
exists, too. Integrating both sides we get

1

‖f ‖p‖g‖q
∫
X

|f · g| dμ ≤ 1

p‖f ‖pp
∫
X

|f |p dx + 1

p‖g‖qq
∫
X

|g|q dμ

= 1

p
+ 1

q
= 1.

This finishes the proof. �

Proposition B.4.2 (Minkowski’s inequality). Let p ∈ [1,∞].
Then for all f , g ∈ Lp(X) we have f + g ∈ Lp(X) with

‖f + g‖p ≤ ‖f ‖p + ‖g‖p.
Thus ‖·‖p is a semi-norm on Lp(X) for every 1 ≤ p ≤ ∞.

Proof The result is clear for p = 1 or p = ∞, so let 1 < p < ∞. By Hölder’s
inequality for C

2 we get

|a + b| ≤ |a| · 1 + |b| · 1 ≤ (|a|p + |b|p)1/p 21/q

for a, b ∈ C and q = p

p−1 . We therefore get

|f + g|p ≤ 2p/q
(|f |p + |g|q) .

Since the right hand side is integrable, the same is true for the left hand side, which
shows that f + g ∈ Lp(X). Since p = (p − 1)q we have |f + g|p−1 ∈ Lq(X).
Applying Hölder we get
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‖f + g‖pp =
∫
X

|f + g| · |f + g|p−1dμ

≤
∫
X

|f | · |f + g|p−1dμ+
∫
X

|g| · |f + g|p−1dμ

≤ (‖f ‖p + ‖g‖p)
(∫

X

|f + g|(p−1)qdμ

)1/q

=(‖f ‖p + ‖g‖p)‖f + g‖p/q
p ,

where the last equation follows from p = (p − 1)q. Dividing both sides by ‖f +
g‖p/q

p and using p − p

q
= 1 gives the result. �

Definition A measurable function f is a null function if there exists a null-set N
with f (X�N ) = {0}. Since integrals don’t see null-sets, it follows that for every
p ∈ [1,∞] the set N of null functions is a sub vector space of Lp(X) such that

f ∈ N ⇔ ‖f ‖p = 0.

Set
Lp(X)

def=Lp(X)/N .

Then ‖·‖p factorizes to give a norm on Lp(X) for every 1 ≤ p ≤ ∞. We need to
know that (Lp(X), ‖·‖p) is a Banach space for every p ∈ [1,∞]. This is easy for
p = ∞ since for any Cauchy sequence (fn)n∈N in L∞(X) we can choose a null-set
N ⊆ X such that (fn)n∈N is Cauchy with respect to ‖·‖X�N , and hence converges
uniformly to a bounded function f : X�N → C. If we trivially extend f to X we
obtain a limit f ∈ L∞(X) of the sequence (fn)n∈N. Note that f is measurable as a
point-wise limit of measurable functions. The cases 1 ≤ p < ∞ require a bit more
work.

Theorem B.4.3 (Riesz-Fischer). Let 1 ≤ p < ∞ and suppose that (fn) is a se-
quence in Lp(X) that is a Cauchy sequence with respect to ‖·‖p. Then there exists a
function f ∈ Lp(X) such that

(a) ‖fn − f ‖p → 0.

(b) There exists a subsequence (fnk
)k∈N of (fn)n∈N such that fnk

(x) converges to
f (x) for every x outside a set of measure zero.

Proof Choose indices n1 < n2 < n3 < · · · so that ‖fnk+1 − fnk
‖p < 1

2k and
put gk = fnk+1 − fnk

. Let g = ∑∞
k=1 |gk|. By Minkowski’s inequality we have(∑m

k=1 |gk|
)p

integrable with integrals bounded above by
(∑∞

k=1 ‖gk‖p
)p ≤ 1. It

then follows from the Monotone Convergence Theorem that gp is integrable, hence
g ∈ Lp(X). But then it follows from Remark B.1.3 that g(x) 
= ∞ outside a null-set
N ⊆ X and the series

∑∞
k=1 gk(x) converges absolutely to some function h(x) for
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every x /∈ N . We trivially extend h to all of X. Then h is measurable as a point-wise
limit of measurable functions, and since |h(x)| ≤ g(x) for every x ∈ X we have
h ∈ Lp(X). Put f = h+ fn1 . Then

f (x) = fn1 (x) + lim
m→∞

m∑
k=1

(fnk+1 − fnk
)

= lim
m→∞ fnm

(x)

for every x /∈ N , which proves assertion (b) of the theorem. To see (a) observe that

‖f − fnm
‖p =
∥∥∥∥∥

∞∑
k=m

(fnk+1 − fnk
)

∥∥∥∥∥
p

≤
∞∑

k=m

1

2k
→ 0,

which implies that (fnk
)k∈N converges to f with respect to ‖·‖p. Since (fn)n∈N is

Cauchy we also get ‖f − fn‖p → 0. �

Corollary B.4.4 The spaces
(
Lp(X), ‖·‖p

)
are Banach spaces for every 1≤p≤∞.

An important special case is the case p = 2, in which it follows from Hölder and the
Riesz-Fischer theorem that L2(X) is a Hilbert space with respect to the inner product

〈f , g〉 =
∫
X

f (x)g(x) dμ(x).

Another direct corollary of the Riesz-Fischer Theorem is

Corollary B.4.5 Suppose that fn → f in Lp(X). Then there exists a subsequence
(fnk

)k∈N that converges point-wise almost everywhere to f.

We should point out that in general one cannot expect point-wise almost everywhere
convergence of the original sequence (fn)n∈N, as can be seen from

Example B.4.6 Consider X = [0, 1] with the Lebesgue integral. Define a sequence
fn : [0, 1] → R of integrable functions as follows: Put f1 = 1, f2 = 1[0, 1

2 ],
f3 = 1[ 1

2 ,1], f4 = 1[0, 1
4 ], f5 = 1[ 1

4 , 1
2 ], f6 = 1[ 1

2 , 3
4 ], f7 = 1[ 3

4 ,1], f8 = 1[1, 1
8 ], and so on.

It is then clear that ‖fn‖1 → 0 but fn(x) 
→ 0 for every x ∈ [0, 1].

Remark B.4.7 It follows from Hölder’s inequality that for 1 ≤ p, q ≤ ∞ with
1
p
+ 1

q
= 1 every function g ∈ Lq(X) determines a continuous linear functional

Tg : Lp(X) → C by

Tg(f ) =
∫
X

f · g dμ

such that ‖Tg‖ ≤ ‖g‖q for every g ∈ Lq(X). If 1 < q < ∞, it is an important result
in Functional Analysis that g �→ Tg actually gives an isometric isomorphism from
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Lq(X) onto the space Lp(X)′ of all bounded linear functionals on X, equipped with
the operator norm. The same holds for q = ∞ and p = 1 if X is σ -finite. However,
the duality L1(X) ∼= L∞(X)′ almost never holds. (See [Rud87, Theorem 6.16]). For
Radon integrals on locally compact spaces the duality L1(X)′ = L∞(X) holds, but
with L∞(X) constructed with respect to a slightly different norm (See [Ped89, 6.4.5
and 6.5.11]).

Definition A topological space is called separable, if it has a countable dense subset.

Examples B.4.8

• The space R
n is separable as Q

n is a countable dense subset.

• A discrete space is separable if and only if it is countable.

Recall that a topological space is called second countable if its topology admits a
countable base. The following Lemma on separability will be needed in the text.

Lemma B.4.9 (a) A Hilbert space is separable if and only if it has a countable
orthonormal basis.

(b) If X is a second countable compact Hausdorff space with a Radon measure μ,
then the Hilbert space L2(X,μ) is separable.

Proof (a) Let the Hilbert space H be separable. Then there exists a family (rj )j∈N

which is dense in H . The procedure of orthonormalization produces a countable
orthonormal basis of H consisting of linear combinations of the rj , hence H has
a countable orthonormal basis. The other way round, let (ej )j∈N be a countable
orthonormal basis. Then the C-span of the ej is dense in H . As the countable field
Q(i) = Q ⊕ Qi is dense in C the countable set of all Q(i)-linear combinations of
the ei is dense in H .

(b) As X is second countable, there exists a countable set C of open sets such
that every open set in X is the union of some elements of C. As the set of all
finite intersections of the elements of C is countable again, we can extend C and
assume that all finite intersections of elements of C lie in C. For U ,V ∈ C we
have 1U∪V = 1U + 1V − 1U∩V and therefore the space H spanned by all linear
combinations of the functions 1U , U ∈ C contains all functions 1U∪V for U ,V ∈ C.
A straightforward generalization of this argument implies that H contains 1A for
any finite union A of elements of C. Let now U be an arbitrary open subset of X.
By the countability of C the set U can be written as the union of a family (Uj )j∈N

where Uj ∈ C for every j ∈ N. So the sequence of functions
(
1U1∪···∪Uj

)
converges

monotonically to 1U and so it converges in L2(X,μ). It follows that the closure
of H contains all functions 1U for open sets U . By the Radon property the latter
span a space which contains all simple functions, hence is dense in L2(X,μ), which
therefore is separable. �
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B.5 The Radon-Nikodym Theorem

Recall that a measure μ on a set X is called σ -finite if there exists a sequence An ⊂ X

of measurable sets such that X =⋃n An and μ(An) < ∞ for every n ∈ N.

Theorem B.5.1 (Radon-Nikodym Theorem). Given two σ -finite measures λ,μ on
a σ -algebra A over a set X. Suppose that every λ-null-set is a μ-null-set. Then
there exist a measurable function h ≥ 0 such that for every measurable function
φ : X → C we have φ is μ-integrable if and only if φh is λ-integrable, and
then
∫
X
φ dλ = ∫

X
φh dμ. In particular, μ(A) = ∫

A
h dλ for every measurable set

A ⊂ X.

The function h is called the Radon-Nikodym derivative of μ with respect to λ. It is
unique up to changes on λ-null-sets. One also writes this as dμ = hdλ.

Proof As both measures are σ -finite, there is a pairwise disjoint decomposition X =⋃∞
j=1 Xj into measurable sets Xj , on which both measures are finite. Suppose there

exist Radon-Nikodym derivatives on each Xj . Then these can be patched together to
give a Radon-Nikodym derivative on the whole of X. Therefore it suffices to prove
the theorem under the condition that both measures be finite.

Assume μ and λ are finite and set τ = λ+ μ. For every τ -integrable function φ we
have by the Cauchy-Schwarz inequality,

∣∣∣∣
∫
X

φ dμ

∣∣∣∣ ≤
∫
X

|φ| dμ ≤
∫
X

|φ| dτ ≤
(∫

|φ|2 dτ
) 1

2

(τ (X))
1
2 .

Therefore the map φ �→ ∫
X
φ dμ is a continuous linear map on L2(X, τ ). The same

is true for the map φ �→ ∫
X
φ dλ. By the completeness of the Hilbert space L2(X, τ )

there are unique (up to addition of null functions) measurable, τ -square integrable
functions f and g such that

∫
X
φ dμ = ∫

X
f φ dτ and

∫
X
φ dλ = ∫

X
gφ dτ . Ap-

proximating a positive measurable function φ by an increasing sequence (φn)n∈N of
positive step functions and using the Monotone Convergence Theorem on both sides
of the equation

∫
X
φn dλ = ∫

X
φng dτ shows that the function φ is λ-integrable if

and only if φg is τ -integrable. A similar result holds for μ and τ .

Let N be the set {x ∈ X : g(x) = 0}. Then λ(N ) = 0 and so also μ(N ) = 0. Let
h(x) = f (x)/g(x) if x ∈ X�N and h(x) = 0 for x ∈ N . Since null-sets can be
neglected for integration it follows for any measurable function φ : X → C that φ is
μ-integrable if and only if φf = φgh is τ -integrable if and only if φh is λ-integrable,
and then ∫

X

φ dμ =
∫
X

φgh dτ =
∫
X

φh dλ. �
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B.6 Vector-Valued Integrals

In this section we introduce the vector-valued integral, also known as the Bochner
integral. For a Banach space valued function f : X → V one wants to define an
integral

∫
X
f dμ ∈ V , such that for every continuous linear functional α on V the

formula

α

(∫
X

f dμ

)
=
∫
X

α(f ) dμ

holds.

To be precise, let (V , ‖·‖) be a Banach space, and let (X, A,μ) be a measure space.
A simple function is a function s : X → V , that can be written as

s =
n∑

j=1

1Aj
bj ,

where A1, . . . ,An are pairwise disjoint measurable sets of finite measure μ(Aj ) <

∞, and bj ∈ V . We define the integral of the simple function s as

∫
X

s dμ
def=

n∑
j=1

μ(Aj )bj ∈ V.

Note that ‖∫
X
s dμ‖ ≤ ∫

X
‖s‖ dμ and that for every linear functional α : V → C

one has α(
∫
X
s dμ) = ∫

X
α(s) dμ.

We equip V with the Borel σ -algebra. A measurable function f : X → V is called
integrable if there exists a sequence sn of simple functions such that

lim
n→∞

∫
X

‖f − sn‖ dμ = 0.

In this case we call (sn) an approximating sequence. The following proposition will
justify the terminology.

Proposition B.6.1 (a) If f is integrable and (sn) an approximating sequence, then
the sequence of vectors

∫
X
sn dμ converges. Its limit does not depend on the choice

of the approximating sequence.

One defines the integral of f to be this limit:
∫
X

f dμ
def= lim

n→∞

∫
X

sn dμ.

(b) For every integrable function f one has
∥∥∥∥
∫
X

f dμ

∥∥∥∥ ≤
∫
X

‖f ‖ dμ < ∞.
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(c) Let f be integrable. For every continuous linear operator T : V → W to a
Banach space W one has

T

(∫
X

f dμ

)
=
∫
X

T (f ) dμ.

(d) If V = C, then the Bochner integral coincides with the usual integral.

Proof It suffices to show that for every approximating sequence (sn) the sequence∫
X
sn dμ converges, for if (tn) is another approximating sequence, then the sequence

(rn) with r2n = sn and r2n−1 = tn also is an approximating sequence. As
∫
X
rn dμ

must converge, the limits of
∫
X
sn dμ and

∫
X
tn dμ coincide.

To show the convergence, it suffices to show that the sequence of vectors
∫
X
sn dμ

is a Cauchy-sequence. For m, n ∈ N consider
∥∥∥∥
∫
X

sm dμ−
∫
X

sn dμ

∥∥∥∥ =
∥∥∥∥
∫
X

sm − sn dμ

∥∥∥∥
≤
∫
X

‖sm − sn‖ dμ

≤
∫
X

‖sm − f ‖ dμ+
∫
X

‖f − sn‖ dμ

and the latter tends to zero as m, n → ∞. Therefore,
∫
X
sn dμ indeed is a Cauchy-

sequence. This proves (a).

To prove (b) note that the | inequality |‖f ‖ − ‖sn‖ ≤ ‖f − sn‖ implies that the
C-valued function ‖f ‖ is integrable and that ‖sn‖ converges to ‖f ‖ in L1(X). It
follows that∥∥∥∥

∫
X

f dμ

∥∥∥∥ = lim
n

∥∥∥∥
∫
X

sn dμ

∥∥∥∥ ≤ lim
n

∫
X

‖sn‖ dμ =
∫
X

‖f ‖ dμ.

Finally for part (c). The continuity and linearity of T implies that

T

(∫
X

f dμ

)
= lim

n

∫
X

T (sn) dμ.

We want to show that the right hand side equals
∫
X
T (f ) dμ. Since T is continuous,

there exists C > 0 such that |T (v)| ≤ C‖v‖ holds for every v ∈ V . In particular one
has ‖T (f )‖ ≤ C‖f ‖ and so T (f ) is an integrable function. We can estimate
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∥∥∥∥
∫
X

T (f ) dμ−
∫
X

T (sn) dμ

∥∥∥∥ ≤
∫
X

‖T (f ) − T (sn)‖ dμ

=
∫
X

‖T (f − sn)‖ dμ

≤ C

∫
X

‖f − sn‖ dμ.

As the latter tends to zero, the claim follows. Finally, (d) follows from the last estimate
applied to the identity operator. �

Definition A function f : X → V is called a separable function if there exists a
countable set C ⊂ V such that the image f (X) is contained in the closure C of C.
Recall that the Banach space V is called separable if it contains a countable dense set.
So if V is separable, then every function f : X → V is separable. In applications
we will, however, encounter non-separable Banach spaces, which is why we need
the notion of separable functions.

A function f : X → V is called essentially separable if there exists a measurable
set N ⊂ X of measure zero such that f is separable on X�N . This means that f is
separable up to a negligible alteration.

Lemma B.6.2 Let X be a topological space and f : X → V a continuous function
of σ -compact support. Then f is separable.

Proof The image f (X) is a σ -compact set. So we have to show that every σ -compact
subset K ⊂ V has a dense countable subset. It suffices to assume that K is compact.
By compactness it follows that for every n ∈ N there are elements kn

1 , . . . , kn
r(n) ∈ K

such that

K ⊂
r(n)⋃
ν=1

B1/n(kν),

where for r > 0 and a ∈ V we denote by Br (a) the open ball around a of radius
r , i.e., the set of all x ∈ V with ‖x − a‖ < r . The set of all kn

ν for n ∈ N and
1 ≤ ν ≤ r(n) then is a countable dense subset of K . �

Proposition B.6.3 For a measurable function f : X → V the following are
equivalent:

• f is integrable.

• f is essentially separable and
∫
X
‖f ‖ dμ < ∞.

Proof If f is integrable, then by Proposition B.6.1 (b) the function ‖f ‖ is inte-
grable as well. We need to show that it is essentially separable. So let (sn) be an
approximating sequence. As each sn has finite image, the Banach space E generated
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by all the images sn(X), n = 1, 2, . . . is separable. The set N = f −1(V�E) is a
countable union N = ⋃n Nn, where Nn = {x ∈ X : ‖f (x) − e‖ ≥ 1

n
∀e ∈ E}.

Since
∫
X
‖f − sn‖ dμ tends to zero, the set Nn is a set of measure zero for every

n ∈ N. hence N is a null-set and so f is essentially separable.

For the converse direction assume that f is essentially separable and satisfies∫
X
‖f ‖ dμ < ∞. After altering f on a set of measure zero, we assume f is separa-

ble. Let C = {cn : n ∈ N} be a countable subset of V with f (X) ⊂ C. For n ∈ N

and δ > 0 let Aδ
n be the set of all x ∈ X such that ‖f (x)‖ ≥ δ and ‖f (x) − cn‖ < δ.

As f is measurable, this is a measurable set. To have a sequence of pairwise disjoint
sets, we define

Dδ
n

def=Aδ
n �

⋃
k<n

Aδ
k.

Then the set
⋃

n∈N
Aδ

n =
⋃

n∈N
Dδ

n equals f −1(f (X)�Bδ(0)), as C is dense in f (X).
As f is integrable, the set

⋃
n∈N

Dδ
n is of finite measure. Let sn = ∑n

j=1 1
D

1/n
j

cj .

Then sn is a simple function. We show that the sequence (sn) converges to f point-
wise. Let x ∈ X. If f (x) = 0, then sn(x) = 0 for every n. So suppose f (x) 
= 0.
Then ‖f (x)‖ ≥ 1

n
for some n ∈ N. For every m ≥ n one has x ∈ ⋃ν∈N

D
1/m
ν , so

that for each m ≥ n there exists a unique ν0 with x ∈ D
1/m
ν0 , hence sm(x) = cν0 and

‖f (x) − cν0‖ < 1
m

, which implies sn → f as claimed. We also see that ‖sn‖ ≤ 2‖f ‖
by construction. So we get ‖f − sn‖ → 0 point-wise and ‖f − sn‖ ≤ ‖f ‖+‖sn‖ ≤
3‖f ‖, so by dominated convergence,∫

X

‖f − sn‖ dμ → 0. �

Corollary B.6.4 Suppose that X is a locally compact topological space and μ is a
Radon measure. Then every continuous function f : X → V with compact support
is integrable.

Proof As the C-valued function ‖f ‖ is again continuous of compact support, it is in-
tegrable. Thus the corollary follows immediately from Lemma B.6.2 and Proposition
B.6.3. �

An important case of a Bochner integral is given by the convolution f ∗ g in L1(G)
for a locally compact group G.

Lemma B.6.5 Let G be a locally compact group. If f ∈ Cc(G) and g ∈ L1(G),
then the Bochner integral

∫
G
f (x)Lxg dx exists in the Banach space L1(G) and

equals the convolution product f ∗ g.

Proof Consider the function φ : G → L1(G) given by φ(x) = f (x)Lxg. It is
continuous by Lemma 1.4.2 and it has compact support as f has compact support.
So it follows that φ is continuous of compact support, hence integrable by Corollary
B.6.4.
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It follows, that the Bochner integral
∫
G
φ(x) dx exists in the Banach space L1(G). We

want to show that it coincides with f ∗g. If we can show h∗ ∫
G
φ(x) dx = h∗f ∗g

for every h ∈ Cc(G), the claim follows, as h might run through a Dirac net (See
Lemma 1.6.6).

Let h ∈ Cc(G). For φ ∈ L1(G) the convolution product h ∗ φ is continuous, as
follows from the Theorem of Dominated Convergence. So it makes sense to evaluate
this function at some given y ∈ G. One has

|h ∗ φ(y)| ≤
∫
G

|h(z)||φ(z−1y)| dz

=
∫
G

	(z−1)|h(yz−1)||φ(z)| dz

≤ C‖φ‖1,

with C ≥ 0 an upper bound for the function z �→ 	(z−1)|h(yz−1)|. This implies that
the linear functional α : φ �→ h ∗ φ(y) is continuous. For φ = ∫

G
f (x)Lxg dx it

follows

h ∗ φ(y) = α(φ) = α

(∫
G

f (x)Lxg dx

)

=
∫
G

f (x)α(Lxg) dx

=
∫
G

∫
G

f (x)h(z)g
(
x−1z−1y

)
dz dx

= h ∗ f ∗ g(y).

So it follows that
∫
G
f (x)Lxg dx = f ∗ g as claimed. �

Definition As an application of the Bochner integral, we will now prove the Cauchy
Integral Formula for Banach space valued functions. Let D ⊂ C be an open set, and
let f : D → V be holomorphic (Sect. 2.2), and let γ : [0, 1] → D be continuously
differentiable. The path integral is then defined as

∫
γ

f (z) dz
def=
∫

[0,1]
γ ′(t)f (γ (t)) dt.

Let a ∈ D, and let B = Br (a) be a disk whose closure is contained in the set D.
We write

∫
∂B

f (z) dz for the integral over the positive oriented boundary of B, i.e.,∫
∂B

f (z) dz = ∫
γ
f (z) dz, where γ : [0, 1] → D is given by γ (t) = a + re2πit .
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Theorem B.6.6 (Cauchy’s Integral Formula). Let D ⊂ C be an open set and f :
D → V be holomorphic, where V is a Banach space. Let B ⊂ C be an open disk
with B ⊂ D. Then for every z ∈ B we have

f (z) = 1

2πi

∫
∂B

f (ξ )

ξ − z
dξ.

Proof Let α : V → C be a continuous linear functional, then

α

(
1

2πi

∫
∂B

f (ξ )

ξ − z
dξ

)
= 1

2πi

∫
∂B

α(f (ξ ))

ξ − z
dξ = α(f (z))

according to Cauchy’s integral formula for holomorphic functions. So the two sides
of our claimed equality coincide after the application of any continuous linear
functional. By Corollary C.1.4, the claim follows. �

Corollary B.6.7 Let the situation be as in the theorem, and let B be an open ball
around zero such that B ⊂ D. Then there are vn ∈ V such that

f (z) =
∞∑
n=0

znvn

holds for every z ∈ B, where the sum converges uniformly on every closed subset
of B.

Proof If z ∈ B and ξ ∈ ∂B, then |z/ξ | < 1, which means that the geometric series

∞∑
n=0

(z/ξ )n = 1

1 − z/ξ

converges uniformly for (z, ξ ) in a given closed subset of B×∂B. We apply Cauchy’s
formula to get

f (z) = 1

2πi

∫
∂B

f (ξ )

ξ − z
dξ = 1

2πi

∫
∂B

1

ξ

f (ξ )

1 − z/ξ
dξ

= 1

2πi

∫
∂B

f (ξ )

ξ

∞∑
n=0

(z/ξ )n dξ = 1

2πi

∞∑
n=0

zn
∫
∂B

f (ξ )

ξn+1
dξ.

The last step is justified by uniform convergence. The claim follows. �



Appendix C
Functional Analysis

C.1 Basic Concepts

A topological vector space is a complex vector space V together with a topology
such that the additive group (V ,+) is a topological group and such that the scalar
multiplication map C× V → V , which maps (λ, v) to λv, is continuous. A Banach
space is a special case of a topological vector space, in which the topology is in-
duced by a norm such that the corresponding metric space is complete. Most spaces
considered here are Banach spaces, but an important example of a topological vector
space, which is not a Banach space is given by the space S(R) of Schwartz functions
on R. The topology is generated by all sets of the form f +Bm,n,C , where f ∈ S(R)
and Bm,n,C is the set of all g ∈ S(R) with |g(m)(x)xn| < C for every x ∈ R. For
a topological vector space V we denote by V ′ the continuous dual space, i.e., the
space of all continuous linear functionals α : V → C. In most cases this is a proper
subspace of the algebraic dual space V ∗ consisting of all linear functionals on V .
We say that V ′ separates points in V if for any two v 
= w in V there exists α ∈ V ′
with α(v) 
= α(w).

In this book we generally deal with vector spaces over C. Sometimes it is convenient,
however, to use vector spaces over R instead. Every complex vector spaces naturally
is a vector space over the reals. We will now show that in this case every real linear
functional is the real part of a complex linear functional.

Lemma C.1.1 Let W be a complex vector space and W ∗ be its dual space. The map
� : α �→ Re(α) is a bijection of W ∗ to W ∗

R
= HomR(W , R).

Proof The map � is real linear. Let α be in its kernel. This implies that α takes
only purely imaginary values. Since α(iv) = iα(v) this implies that α = 0. Now
let u : W → R be real linear. Set α(x) = u(x) − iu(ix). Then α is C-linear and
u = Re(α). �

A. Deitmar, S. Echterhoff, Principles of Harmonic Analysis, Universitext, 309
DOI 10.1007/978-3-319-05792-7, © Springer International Publishing Switzerland 2014
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Recall that for a linear operator T : V → W on normed spaces V ,W the operator
norm is defined by

‖T ‖ = ‖T ‖op
def= sup

v 
=0

‖T v‖
‖v‖ = sup

‖v‖=1
‖T v‖,

and that T is called a bounded operator if ‖T ‖ < ∞. For every vector v we have
‖T v‖ ≤ ‖T ‖‖v‖.

Lemma C.1.2 A linear operator T is bounded if and only if it is continuous as a
map from V → W .

Proof Let T be bounded, and let vj → v be a convergent sequence in V . Then
‖T vj − T v‖ = ‖T (vj − v)‖ ≤ ‖T ‖‖vj − v‖ tends to zero, which means that T vj

tends to T v, so T is continuous.

For the converse direction assume that T is continuous, but ‖T ‖ = ∞. Then there
is a sequence (vj ) of vectors in V of norm one such that ‖T vj‖ tends to infinity. It
follows that the sequence 1

‖T vj ‖vj tends to zero. As T is continuous, the sequence

T

(
1

‖T vj‖vj

)
= 1

‖T vj‖T vj

also tends to zero, but this is a sequence of vectors of norm one. A contradiction. �

Theorem C.1.3 (Hahn-Banach Theorem). Let M be a subspace of a Banach space
V , and let α : M → C be linear with |α(x)| ≤ ‖x‖ for every x ∈ M . Then α extends
to a linear functional V → C such that |α(x)| ≤ ‖x‖ holds for every x ∈ V .

Proof Let u = Re(α). Suppose we can show that u extends to a real linear functional
with |u(x)| ≤ ‖x‖, then α extends to a complex linear functional whose real part
is u. For given x ∈ V there exists θ ∈ R such that eiθα(x) is real. So, |α(x)| =
|eiθα(x)| = |α(eiθx)| = |u(eiθx)| ≤ ‖eiθx‖ = ‖x‖.

So it remains to show that u extends to V . What we really show is this: Let M be any
real vector subspace of V , and let u : M → R be real linear with |u(x)| ≤ ‖x‖ for
every x ∈ M , then u can be extended to a linear map from V to R with |u(x)| ≤ ‖x‖
for every x ∈ V . Assume M 
= V , and let v1 ∈ V�M . Let M1 = M ⊕ Rv1. Then
the inequality

u(x) + u(y) = u(x + y) ≤ ‖x + y‖ ≤ ‖x − v1‖ + ‖v1 + y‖
implies

u(x) − ‖x − v1‖ ≤ ‖y + v1‖ − u(y)

for x, y ∈ M . Let α ∈ R be any value between the least upper bound of the left
hand side as x ranges over M , and the largest lower bound of the right hand side as
y ranges over M . Then
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u(x) − α ≤ ‖x − v1‖
and

u(y) + α ≤ ‖y + v1‖
holds for all x, y ∈ M . Define u1(x + tv1) = u(x) + tα for x ∈ M and t ∈ R. Then
u1 extends u to M1 and is linear. Further, for t 
= 0,

|u1(x + tv1)| = |u(x) + tα| = |u(
1

t
x) + α||t |

≤
∥∥∥∥1

t
x + v1

∥∥∥∥ |t | = ‖x + tv1‖.

This implies that u extends to M1 satisfying the norm bound. The lemma of Zorn
implies that there is a maximal subspace M of V , to which u can be extended
satisfying the norm bound and what we just have seen implies that then M must be
equal to V . �

Corollary C.1.4 Every continuous linear functional α on a subspace E of the Banach
space V extends to a continuous linear functional α1 on V such that ‖α1‖ = ‖α‖.

The continuous linear functionals on V separate points, so if v, w ∈ V with α(v) =
α(w) for every α ∈ V ′, then v = w.

Proof Let α 
= 0 be a continuous linear functional on E. This means that ‖α‖ =
supe∈E�{0} |α(e)|/‖e‖ is finite. Then β = 1

‖α‖α satisfies ‖β‖=1, so, by the Hahn-
Banach Theorem, β extends to a linear functional β1 on V with ||β1||=1. Hence
α = ‖α‖β extends to α1 = ‖α‖β1 with ‖α1‖ = ‖α‖.

If v 
= w, then there exists a linear functional α on the space E spanned by v and w
such that α(v) 
= α(w). As α extends to an element of V ′, the claim follows. �

Theorem C.1.5 (Open Mapping Theorem). Let T : E → F be a continuous
surjective linear map between Banach spaces. Then T is an open mapping, i.e.,
T (U ) is open in F for every open U ⊂ E.

In particular, if T : E → F is continuous and bijective, then T : F → E is a
topological isomorphism.

Proof Let U ⊂ E be an open neighborhood of 0. We have to show that T (U )
contains an open neighborhood of 0. There exists ε > 0 such that U contains the ball
U1 = Bε(0) around zero of radius ε. Let Un = 1

2n U1, then Un+1 + Un+1 ⊂ Un for
every n. We will show the existence of an open neighborhood W of 0 in F such that

W ⊂ T (U1) ⊂ T (U ).

As F = T (E) = ⋃∞
k=1kT (U2), and F is a Baire space, one of the spaces kT (U2)

has non-empty interior, and as the map x �→ kx is a homeomorphism on F , the set
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T (U2) has non-empty interior, which implies the existence of an open W1 ⊂ T (U2).
Then W2 = −W1 ⊂ T (U2) as well, and W = W1 +W2 is an open neighborhood of
0 contained in T (U1). It remains to show T (U1) ⊂ T (U ). For this let y1 ∈ T (U1).
Assume that n ≥ 1 and yk ∈ T (Uk) has been chosen for all 1 ≤ k ≤ n. In the same
way as for U1 it follows that T (Un+1) contains a neighborhood of 0. Hence

(
yn + T (Un+1)

) ∩ T (Un) 
= ∅,

so there exists xn ∈ Un such that T (xn) ∈ yn + T (Un+1). Put yn+1 = yn − T (xn).
Then yn+1 ∈ T (Un+1) and we iterate the inductive construction. Note that by the
continuity of T we have yn → 0. As ‖xn‖ < ε

2n the sum x =∑∞
n=1 xn converges in

E and lies in U1 ⊂ U . Now

T (x) = lim
N

T

(
N∑

n=1

xn

)
= lim

N

N∑
n=1

(yn − yn+1) = lim
N

(y1 − yN+1) = y1.

We conclude that T (x) = y1 and so y1 ∈ T (U ) as claimed. �

In the following we equip the direct product V ×W of two Banach spaces V and W

with the norm ‖(v, w)‖ = ‖v‖+‖w‖. With this norm V ×W is also a Banach space.

Theorem C.1.6 (Closed Graph Theorem). Suppose that the map T : V → W is a
linear map between Banach spaces, such that the graph G(T ) = {(v, T v) : v ∈ V }
is a closed subset of V ×W . Then T is bounded.

Proof As T is linear, its graph is a linear subspace of V ×W . As V ×W is a Banach
space, so is its closed subspace G(T ). Let π : G(T ) → V be the projection onto
the first factor. Then π is continuous and bijective, so its inverse π−1 is continuous
by the Open Mapping Theorem C.1.5. Now T is the composition of π−1 with the
projection onto the second factor, hence T is continuous. �

Proposition C.1.7 Let F be a closed subspace of the normed space E. Then the
quotient space E/F becomes a normed space with respect to the quotient norm

‖v + F‖q def= inf
u∈F ‖v + u‖.

If E is a Banach space, then so is E/F.

Proof We leave it as an exercise to show that ‖ · ‖q is well-defined and strictly
positive, and that it satisfies |λ|‖v+ F‖q = ‖λv+ F‖q for every λ ∈ C. To see that
it satisfies the triangle inequality, let v1, v2 ∈ E and ε > 0. Then we find w1, w2 ∈ F

such that ‖vi + wi‖ < ‖vi + F‖q + ε for i = 1, 2, and then we get

‖v1 + v2 + F‖q ≤ ‖v1 + v2 + w1 + w2‖
≤ ‖v1 + F‖q + ‖v2 + F‖q + 2ε.
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Since ε > 0 was arbitrary, the triangle equation follows.

Assume now thatE is a Banach space. To show completeness ofE/F , let (vn+F )n∈N

be a Cauchy sequence in E/F . By passing to a subsequence, we may assume that∑∞
n=1 ‖vn+1 − vn + F‖q < ∞, so that

∑∞
n=1 (vn+1 − vn + F) converges absolutely

in E/F . If it has a limit, say v + F , then v + F is clearly a limit for the original
sequence (vn+F )n∈N. Thus it suffices to show that every series

∑∞
n=1 wn+F , which

converges absolutely in E/F , converges in E/F . But given such series, we may
choose for each n ∈ N some un ∈ F such that ‖wn + un‖ < ‖wn + F‖q + 1

2n .
Then
∑∞

n=1 ‖wn + un‖ < ∞ and since E is complete, there exists w ∈ E such that
w = ∑∞

n=1 (wn + un). Since the quotient map v �→ v + F is norm-decreasing, it
follows that

∑∞
n=1 wn+F =∑∞

n=1 (wn+ un)+F converges to w+F in E/F . �

Corollary C.1.8 Suppose that T : E → F is a continuous surjective linear map
between Banach spaces. Then the linear map T̃ : E/kerT → F defined by T̃ (v +
kerT ) = T (v) is a topological isomorphism with ‖T̃ ‖ = ‖T ‖.

Proof We only have to show the equation ‖T̃ ‖ = ‖T ‖. All other assertions will then
follow from the Open Mapping Theorem and Proposition C.1.7. Since T = T̃ ◦ q,
where q : E → E/kerT denotes the quotient map, and since ‖q‖ ≤ 1, it follows
that ‖T ‖ ≤ ‖T̃ ‖. On the other hand, if ε > 0 is given, we can choose a unit vector
v + kerT ∈ E/kerT with ‖T̃ ‖ < ‖T̃ (v + kerT )‖ + ε and we can choose the vector
v ∈ E such that ‖v‖ < 1 + ε. Then

‖T̃ ‖ < ‖T̃ (v + kerT )‖ + ε = ‖T v‖ + ε ≤ ‖T ‖‖v‖ + ε < ‖T ‖(1 + ε) + ε.

As ε > 0 is arbitrary, we get ‖T̃ ‖ ≤ ‖T ‖. �

A subspace F of a vector space E is said to have finite codimension if E/F is finite
dimensional. We close this section with

Lemma C.1.9 Suppose that F is a closed subspace of the normed vector space E
with finite codimension. If F is complete, then so is E.

Proof By induction it suffices to assume that E/F is one-dimensional. Choose
v0 ∈ E � F and fix the isomorphism E/F ∼= C given by λ(v0 + F ) �→ λ. Then
the quotient map q : E → E/F ∼= C is a continuous linear functional on E.
We claim that � : F ⊕ C → E given by �(w, λ) = w + λv0 is a topological
isomorphism. It is clearly continuous. To see continuity of the inverse assume that
(wn + λnv0) → (w + λv0). Then λn → λ by the continuity of the quotient map,
which then also implies that wn → w. The result now follows from completeness of
F ⊕ C. �
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C.2 Seminorms

Occasionally, one wants to consider spaces more general than Banach spaces. Here
we introduce topological vector spaces whose topology is induced by a family of
seminorms. Let V be a complex vector spaces. A seminorm on V is a map N : V →
[0,∞) such that for v, w ∈ V and λ ∈ C one has

• N (λv) = |λ|N (v), and

• N (v + w) ≤ N (v) +N (w).

The second condition is the triangle inequality.

Let (Ni)i∈I be a family of seminorms on V . Then the family of open balls

Bi
r (v) = {w ∈ V : Ni(v − w) < r},

where r > 0, i ∈ I , v ∈ V , generates a topology on V that makes V a topological
vector space. It is an easy exercise for the reader to check that a net (vj ) converges
to v with respect to this topology, if and only if Ni(vj − j ) → 0 for all i ∈ I .

Examples C.2.1

• Consider the Schwartz space S(R) of all infinitely differentiable complex
functions on R such that x �→ |xmf n(x)| is bounded for all n,m ∈ R. Then

Nm,n(f ) = sup
x∈R

|xmf (n)(x)|.

defines a family of seminorms on S(R), which induces a topology on S(R).

• Let V be a vector space over the field of complex numbers, and let E ⊂ V ∗ be
a subset of the dual space of V . Then every α ∈ E defines a seminorm Nα on
V by Nα(v) = |α(v)| for every v ∈ V . This means that every subset E ⊂ V ∗
determines a topology on V . If V is a normed space and V ′ its topological dual
space, then the topology on V generated by V ′ ⊂ V ∗ is called the weak topology
on V . Similarly (and more important for this book) the weak-* topology on V ′ is
generated by V viewed as a subspace of (V ′)∗: each v ∈ V determines a seminorm
Nv : V ′ → [0,∞) by Nv(α) = |α(v)|. It follows that a net (αj ) in V converges
to α in the weak-∗ topology if and only if αj (v) → α(v) for all v ∈ V , i.e., the
weak-∗ topology is the topology of pointwise convergence.

C.3 Hilbert Spaces

Recall that a Hilbert space is a complex vector space V with an inner product 〈·, ·〉 :
V × V → C, such that V is complete in the ensuing norm

‖v‖ = √〈v, v〉.
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For basics on Hilbert spaces see Chap. 2 of [Dei05]. The following is often used.

Proposition C.3.1 Let V be a Hilbert space. Choose an orthonormal basis (ei). The
continuous dual V′ is a Hilbert space with the inner product

〈α,β〉 def=
∑
i

α(ei)β(ei),

which does not depend on the choice of the orthonormal basis.

For a given continuous linear map α : V → C there exists a unique vector wα ∈ V

such that α(v) = 〈v, wα〉 holds for every v ∈ V . One has ‖α‖ = ‖wα‖, so the map
α → wα is an antilinear norm-preserving isomorphism V ′ → V .

Proof The properties of an inner product are easily verified. Let (fk) be another
orthonormal basis, then there are numbers aik such that ei = ∑k aikfk and these
satisfy

∑
k aikajk = δij as well as

∑
k akiakj = δij . Then

∑
i

α(ei)β(ei) =
∑
i,k,l

aikailα(fk)β(fl) =
∑
k

α(fk)β(fk).

The fact that this inner product gives the norm on V ′ follows from the second part.
If α = 0, then set w = 0. Otherwise, let U be the kernel of α. Then U is closed
and so V = U ⊕ U⊥. The map α induces an isomorphism U⊥ → C, so U⊥ is
one-dimensional. Let v0 ∈ U⊥ of norm one and set w = α(v0)v0. A given v ∈ V can
be written uniquely as v = u + λv0 for u ∈ U and λ ∈ C. Then

〈v, w〉 = 〈λv0,α(v0)v0
〉 = λα(v0) = α(v).

The uniqueness of w is clear. Finally, ‖α‖ = sup‖v‖=1 |λ(v)| = α(v0) = ‖w‖. �

It is a bit disturbing that the canonical isomorphism V ′ → V is antilinear. It is
possible to give linear isomorphisms, but not a canonical one. For this choose an
orthonormal basis (ei) of V and define ψ : V ′ → V by ψ(α) = ∑I α(ei)ei . It is
easy to see that this indeed is an isomorphism.

Definition. Let I be an index set and for each i ∈ I fix a Hilbert space Vi . The
algebraic direct sum

⊕
i∈I Vi has a natural inner product

〈v, w〉 def=
∑
i∈I

〈vi , wi〉,

for v = (vi), w = (wi). If Vi 
= 0 for infinitely many i ∈ I , then this space will not
be complete. We denote by V = ⊕̂i∈IVi its completion, called the Hilbert direct
sum of the spaces Vi . In practice, when no confusion can arise, it is convenient to
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leave out the hat, i.e., to write
⊕

i∈I Vi for the completed direct sum as well. One
can identify this space with the set of all v ∈∏i∈I Vi such that

∑
i∈I

‖vi‖2 < ∞,

where the inner product is given by the same formula as above, only now with
possibly infinitely many non-zero summands. One can show that the sum defining
the inner product always converges.

Likewise, the algebraic tensor product V ⊗W of two Hilbert spaces has a natural
inner product, given on simple tensors by

〈
v ⊗ w, v′ ⊗ w′〉 def=〈v, v′

〉〈
w, w′〉.

If both spaces are infinite dimensional, then this pre-Hilbert space will not be com-
plete. We denote its completion by V ⊗̂W and call it the Hilbert tensor product of
the spaces V and W . If (ei) is an orthonormal basis of V , and (fj ) is an orthonormal
basis of W , then the family (ei ⊗ fj )i,j is an orthonormal basis of V ⊗̂W .

If S : V → V ′ and T : W → W are bounded linear operators on Hilbert spaces,
then they give rise to a natural bounded linear operator

S ⊗ T : V ⊗W → V ′ ⊗W ′,

which on simple tensors is given by

S ⊗ T (v ⊗ w) = S(v) ⊗ T (w).

Lemma C.3.2 Let T : V → W be a bounded linear operator between Hilbert
spaces. Then there exists a bounded linear operator T ∗ : W → V such that
〈T v, w〉 = 〈v, T ∗w〉 holds for every v ∈ V and every w ∈ W . We have (T ∗)∗ = T

and ‖T ∗‖ = ‖T ‖.

Proof For given w ∈ W consider the linear functional v �→ 〈T v, w〉. As T is
continuous, this functional is, and so there exists a unique vector T ∗w ∈ V such
that 〈T v, w〉 = 〈v, T ∗w〉 holds for every v ∈ V . The map T ∗ is easily seen to be
linear. For w ∈ W we can apply this to v = T ∗w and, using the Cauchy-Schwarz
inequality we get ‖T ∗w‖2 = |〈T T ∗w, w〉| ≤ ‖w‖‖T ‖T ∗w‖. Dividing by ‖T ∗w‖
shows that ‖T ∗w‖ ≤ ‖T ‖‖w‖, so T ∗ is indeed bounded with ‖T ∗‖ ≤ ‖T ‖. Since
〈T ∗w, v〉 = 〈v, T ∗w〉 = 〈T v, w〉 = 〈w, T v〉 for all w ∈ W , v ∈ V we have (T ∗)∗ = T

and then ‖T ‖ = ‖(T ∗)∗‖ ≤ ‖T ∗‖. �

Recall that a bounded operator T : V → V is normal if T ∗T = T T ∗.
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Lemma C.3.3 Suppose that v ∈ V is an eigenvector for the eigenvalue λ ∈ C of
the normal operator T ∈ B(V ). Then v is an eigenvector for the eigenvalue λ of
the operator T ∗. Moreover, if λ 
= μ are two eigenvalues of T, then Eig(T , λ) ⊥
Eig(T ,μ).

Proof Since (T − λ1)v = 0 we have

‖(T ∗ − λ1)v‖2 = 〈(T ∗ − λ1)v, (T ∗ − λ1)v
〉

= 〈v, (T − λ1)(T ∗ − λ1)v
〉

= 〈v, (T ∗ − λ1)(T − λ1)v
〉

= ‖(T − λ1)v‖2 = 0,

from which the first assertion follows. For the second assertion let v ∈ Eig(T , λ) and
w ∈ Eig(T ,μ). Then

λ〈v, w〉 = 〈T v, w〉 = 〈v, T ∗w
〉 = 〈v,μw〉 = μ〈v, w〉.

Since λ 
= μ it follows that 〈v, w〉 = 0. �

Definition A bounded operator P on a Hilbert space V is called a projection if
P = P 2. The operator is called an orthogonal projection if P is a projection, which
is self-adjoint.

Lemma C.3.4 A bounded operator P on a Hilbert space V is an orthogonal projec-
tion if and only if the space V is a direct orthogonal sum V = U ⊕W , where U and
W are closed subspaces and for every u + w ∈ V with u ∈ U and w ∈ W one has
P (u + w) = u.

Proof Let P be an orthogonal projection. If x lies in the image of P , say x = P (y),
then P (x) = P 2(y) = P (y) = x. By continuity, the identity x = P (x) extends to
the closure U of Im(P ). This however means that U = P (U ) equals the image of
P . Let W be its orthogonal complement. For w ∈ W one has 〈P (w),P (w)〉 = 0, so
W lies in the kernel of P . As clearly V = U ⊕W , the claim follows. The converse
is trivial. �

Definition In general, if W ⊂ V is any closed subspace of V , there is a unique
orthogonal projection PW ∈ B(V ) such that PW (V ) = W . Just write V = U ⊕W

with U = W⊥ and define PW (u + w) = w. We call this the orthogonal projection
onto W . Thus there is a one-to-one correspondence between orthogonal projections
in B(V ) and closed subspaces of V .

If v is a unit vector in the Hilbert space V , then the orthogonal projection Pv onto
Cv is given by Pv(u) = 〈u, v〉v. More general, if W is a closed subspace of V and
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{ei : i ∈ I } is an orthonormal basis for W , then the orthogonal projection PW onto
W is given by

PW (v) =
∑
i∈I

〈v, ei〉ei .

C.4 Unbounded Operators

In this section we give some background on unbounded operators on Hilbert spaces.
The content of this section is needed in our study of continuous wavelet transforms.
We shall only restrict to those topics we need in this book, so the content of this
section cannot be regarded as a full introduction to the theory. In particular, we will
not touch on spectral theory of unbounded operators, which can be found in any
good text book on Functional Analysis.

Let V and W be Hilbert spaces. If D ⊂ V is a linear subspace and if T : D → W

is a linear map, we say that T is a linear operator from V → W with domain D. A
linear operator T : D ⊂ V → W is densely defined if D is dense in V .

The operator T : D ⊂ V → W is closed if the graph

G(T ) = {(v, T v) : v ∈ D}
is closed in V ⊕W . It follows from the closed graph theorem, that a densely defined
closed operator T : D ⊂ V → W is bounded if and only if D = V . Since the map
D → G(T ) given by v �→ (v, T v) is clearly a bijection, it follows that T is closed
if and only if D becomes a Hilbert space when equipped with the modified inner
product

〈〈v, w〉〉 def=〈v, w〉 + 〈T v, T w〉.
If T : D ⊂ V → W is a densely defined linear operator, then the adjoint operator
T ∗ : D∗ ⊂ W → V is defined as follows: The domain D∗ of T ∗ consists of
all vectors w ∈ W such that v �→ 〈T v, w〉 is a continuos linear form on D, and
hence extends uniquely to a continuous linear functional on all of V . By the Riesz
representation theorem, there exists therefore a unique vector, which we call T ∗w,
in V such that

〈T v, w〉 = 〈v, T ∗w
〉

for every v ∈ D. It is straightforward to check that T ∗ : D∗ ⊂ W → V is a linear
operator. Although we don’t need it here, we mention the following fact

Proposition C.4.1 Suppose that T : D ⊂ V → W is a densely defined closed
operator. Then T ∗ : D∗ ⊂ W → V is also a densely defined closed operator and
we have T = T ∗∗.
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For a proof of this and many other useful results on unbounded operators we refer to
[RS80]. The following easy observation will be used frequently in this section. We
leave the straightforward proof as an exercise

Lemma C.4.2 Suppose that T : D ⊂ V → W is a closed densely defined operator.
Then T (D)⊥ = ker(T ∗) ⊂ D∗.

A densely defined operator T : D ⊂ V → V is called self-adjoint if D = D∗ and
T = T ∗. Note that in general this is not the same as being symmetric, which means
that

〈T v, w〉 = 〈v, T w〉
for all v, w ∈ D, since one can construct symmetric operators such that the domain
D∗ of T ∗ is strictly larger than D (See [RS80, p 258] for an example of a symmetric
densely defined closed operator, which is not self-adjoint). So an operator T is self-
adjoint if and only if T is symmetric and D = D∗. We shall also need the following
criterion for self-adjointness:

Proposition C.4.3 Suppose that T : D ⊂ V → V is a closed, densely defined,
symmetric operator. Then the following are equivalent:

(a) T is self-adjoint.

(b) ker(T ± iId) = {0}.
(c) (T ± iId)(D) = V.

Proof If T is self-adjoint then it follows easily from the symmetry of T that i and
−i cannot be eigenvalues for T = T ∗, which proves (a) ⇒ (b). The assertion (c) ⇒
(b) follows from Lemma C.4.2 after checking that (T + λId)∗ = T ∗ + λId for every
λ ∈ C, which we leave as an exercise for the reader.

Also by Lemma C.4.2 we see that (b) implies that (T ± iId)(D) is dense in V . So, in
order to get (b) ⇒ (c) we only have to check that (T ± iId)(D) is closed in V if (b)
holds. For this we restrict our attention to the operator T − iId. Suppose that (vn)n∈N

is a sequence in D such that T vn − ivn → w for some w in V . Using the equation

‖T v − iv‖2 = ‖T v‖2 + ‖v‖2

for every v ∈ D, we observe that (T vn)n∈N and (vn)n∈N are Cauchy sequences and
there exist v, u ∈ V such that vn → v and T vn → u. Since T is closed, it follows
that v ∈ D and T v = u, and then w = (T − iId)v ∈ (T − iId)(D).

To show (c) ⇒ (a) let w ∈ D∗. Then it follows from (c) that there exists v ∈ D with
(T ∗ − iId)w = (T − iId)v. Since D ⊂ D∗, we see that w − v ∈ ker(T ∗ − iId), and
the latter is zero by (c) ⇒ (b). So D∗ = D and T ∗ = T . �
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A self-adjoint operator T : D ⊂ V → V is called positive if 〈T v, v〉 ≥ 0 for every
v ∈ D, and it is called positive definite if, in addition,

〈T v, v〉 = 0 ⇒ v = 0.

We shall need the following observations:

Lemma C.4.4 If T : D ⊂ V → V is self-adjoint and injective, then T (D) is dense
in V and T −1 : T (D) ⊂ V → V is also self-adjoint. In particular, if T : D ⊂ V →
V is positive definite, then T is injective and T −1 : T (D) ⊂ V → V is also positive
definite.

Proof It follows from Lemma C.4.2 that a selfadjoint operator has dense image if
and only if it is injective. Since G(T ) = G(T −1), it follows that T −1 is also closed,
and it is clearly symmetric. To see that it is self-adjoint, we simply use Proposition
C.4.3 to see that

(
T −1 − iId

)
(T (D)) = −i(iId + T )(D) = V

since T is self-adjoint, and similarly
(
T −1 + iId

)
(D) = V . Thus T −1 is self-adjoint

by Proposition C.4.3. �

We are now ready for the proof of the main technical result of this section. We first
recall the well-known result that any continuous positive (definite) hermitian form
B : V × V → C on a Hilbert space V is induced by a positive (definite) operator
T : V → V in the sense that

B(v, w) = 〈T v, w〉
for every v, w ∈ V . Indeed, the proof of this fact simply uses the Riesz representation
theorem: If we fix w ∈ V , then v �→ B(v, w) is a positive linear functional on V , and
therefore there exists a unique element, which we call T w, in V such that

B(v, w) = 〈v, T w〉.
It is quite straightforward to check that T is a bounded linear self-adjoint operator,
which is positive (definite) since B is positive (definite). Using the spectral theorem,
we may also consider the square-route C = T 1/2 of T , which is also a positive
operator that satisfies the equation

B(v, w) = 〈Cv,Cw〉
for every v, w ∈ V .
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We now want to extend these results to certain unbounded hermitian forms. Suppose
that D is a dense linear subspace of the Hilbert space V . A hermitian form

B : D ×D → C

is called closed if, whenever (vn)n∈N is a sequence in D, which converges to some
v ∈ V and such that

B(vn − vm, vn − vm) → 0

for n,m →∞, then v ∈ D and B(vn − v, vn − v) → 0 for n →∞.

Theorem C.4.5 Suppose that D is a dense linear subspace of the Hilbert space V
and that

B : D ×D → C

is a positive semi-definite closed hermitian form on D. Then there exists a closed
operator C : D ⊂ V → V such that

B(v, w) = 〈Cv,Cw〉
for all v, w ∈ D. If B is positive definite, then C is injective.

Proof We equip D with the inner product

〈〈v, w〉〉 = 〈v, w〉 + B(v, w)

and claim that D is complete with respect to this inner product. Indeed, if (vn)n∈N is
a sequence in D, which is Cauchy with respect to 〈·, ·〉, then it follows that (vn)∈N is
Cauchy in V , hence converges to some v ∈ V , and that B(vn − vm, vn − vm) → 0
for n,m →∞. Since B is closed we get v ∈ D and vn → v with respect to 〈·, ·〉.
We first regard the restriction of the inner product on V to D as a positive definite
hermitian form on (D, 〈〈·, ·〉〉). This is clearly bounded, and we obtain a positive
definite operator C1 : D → D such that

〈v, w〉 = 〈C1v,C1w〉 + B(C1v,C1w)

for all v, w ∈ D. Since C1 is positive definite, it is injective and has dense image in
D with respect to 〈〈·, ·〉〉, and then certainly with respect to the given inner product
on V . Let C−1

1 : C1(D) → D denote the inverse of C1. It then satisfies〈
C−1

1 v,C−1
1 w
〉 = 〈v, w〉 + B(v, w)

for all v, w ∈ C1(D).

Consider now the hermitian form B : D × D → C. Since it is continuous with
respect to 〈〈·, ·〉〉 there exists a positive operator C2 : D → D with

B(v, w) = 〈C2v,C2w〉 + B(C2v,C2w)

for all v, w ∈ D.
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Put D̃ = C−1
2 (C1(D)). We want to define C : D → V as the composition C−1

1 ◦C2.
A priori, this operator is only defined on the dense subset D̃ ⊂ D, so we have to
show that it extends to a positive (and in particular self adjoint) operator on D. We
first observe that we have the equation

B(v, w) = 〈Cv,Cw〉

for all v, w ∈ D̃. Thus, if we regard C as a map from (D, 〈〈·, ·〉〉) to (V , 〈·, ·〉), we see
that C becomes bounded, and therefore extends uniquely to all of D, and it follows
then from continuity that B(v, w) = 〈Cv,Cw〉 holds for all v, w ∈ D. If we now
regard C : D ⊂ V → V as a densely defined operator on V with respect to 〈·, ·〉,
then C is closed since D is complete with respect to the inner product

〈v, w〉 + 〈Cv,Cw〉 = 〈〈v, w〉〉. �

Remark C.4.6 Let C be as in the above theorem. Using functional calculus
for unbounded operators (see [Rud91, Chap. 13]) we may consider the operator

|C| def=√C∗C. Then |C| is a positive self-adjoint operator such that

〈|C|v, |C|w〉 = 〈|C|2v, w
〉 = 〈C∗Cv, w

〉 = 〈Cv,Cw〉
for all v, w ∈ D. Thus the operator C in the above theorem can always be chosen to
be positive or even positive definite if B(·, ·) is positive definite. Indeed there exists
a unique positive operator C : D ⊂ V → V such that B(v, w) = 〈Cv,Cw〉, for if S
would be another such operator, then

〈(
C2 − S2

)
v, w
〉 = 〈C2v, w

〉− 〈S2v, w
〉 = 0

for all v, w ∈ D, from which it follows that C2 = S2, and hence C = S.
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