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1 Introduction

Most computational work in Jacobi-Davidson [7], an iterative method for large
scale eigenvalue problems, is due to a so-called correction equation. For this, to
reduce wall clock time and local memory requirements, [3, 5] proposed a domain
decomposition strategy that was further improved in [4] (Sects. 2 and 3).

Here we investigate practical aspects for parallel performance of the strategy by
scaling experiments on supercomputers (Sect. 4). This is of interest for large scale
eigenvalue problems that need a massively parallel treatment.

2 Domain Decomposition

In [3, 5] a domain decomposition preconditioning technique for the (approximate)
solution of the correction equation was proposed. This technique is based on
a nonoverlapping additive Schwarz method with locally optimized coupling
parameters by Tan and Borsboom [8, 9] (belonging to the class of optimized
Schwarz methods [2]).

For some partial differential equation (PDE) defined on a domain ˝ with appro-
priate boundary conditions, ˝ is covered by a grid Ő and the PDE is discretized
accordingly, with unknowns defined on the grid points, yielding the linear system

B y D d: (1)

Now, the domain decomposition technique
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Fig. 1 Decomposition in one (left picture) and two dimensions (right picture)

1. Enhances the linear system (1) into BC y� D d0 with the following structure
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in case of a two subdomain decomposition (generalization is straightforward).
Here ˝ is decomposed in two nonoverlapping subdomains ˝1 and ˝2 with
interface (or internal boundary) � (see Fig. 1). The subdomains are covered
by subgrids Ő

1 and Ő
2 with additional grid points located just outside the

subdomain near the interface � (the open bullets “ı” in Fig. 1) such that no
splitting of the original discretized operator (or stencil) has to be made. For B, the
labels 1; 2; `; and r , respectively, refer to operations on data from/to subdomain
˝1, ˝2, and left, right from the interface � , respectively. For y and d, the labels
1; 2; `; and r , respectively, refer to data in subdomain ˝1, ˝2, and left, right from
the interface � , respectively. Here, subvector y` (yr respectively) contains those
unknowns on the left (right) from � that are coupled by the stencil both with
unknowns in ˝1 (˝2) and unknowns on the right (left) from � . Subvector Qyr ( Qy`

respectively) contains the unknowns at the additional grid points of the subgrid
for ˝1 (˝2) on the right (left) of � . For the unknowns on the additional grid
points additional equations are provided with the requirement that the submatrix
(the interface coupling matrix)

C �
�
C`` C`r

Cr` Crr

�
(3)

is nonsingular as for nonsingular C the solution y� of (2) is unique, Qy` D y`

and Qyr D yr , and the restriction of y� to y is the unique solution of the original
linear system (1) ([9, Theorem 1], [8, Theorem 1.2.1]).

2. Splits the matrix BC D MC � NC in a part MC , the boxed parts in (2) that do
not map elements from one subgrid to the other subgrid and a remaining part
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NC that couples the subgrids via the discretized interface with a relatively small
number of nonzero elements. (Therefore matrix vector multiplication with BC

can be implemented efficiently on distributed memory computers.)
3. Tunes the interface coupling matrix C defined in (3) such that error components

due to domain decomposition are damped in the Richardson iteration

y .iC1/� D y .i/� C M �1
C .d0 � BC y .i/� /: (4)

Note MC
�1BC D I � MC

�1NC , therefore error components are propagated by
MC

�1NC .
4. Computes a solution of the enhanced linear system from (4) or with a more

general Krylov method like GMRES [6] with Km.MC
�1 BC ; MC

�1 d0/ �
span.MC

�1 d0; MC
�1 BC MC

�1 d0; : : : ; .MC
�1 BC /m�1 MC

�1 d0/.

The key idea is to use the degrees of freedom, that we have created by the
introduction of additional unknowns near the interface, for damping the error
components. For this purpose, the spectral properties of M�1

C NC for the specific
underlying PDE are analyzed. With results of this analysis, optimal coupling
parameters can be estimated, i.e. the interface coupling matrix C defined in (3)
can be tuned. In this way error components due to the splitting are damped “as
much as possible”, optimal choices result in a coupling that annihilates the outflow
from one domain to another: absorbing boundary conditions. This leads effectively
to almost uncoupled subproblems at subdomains. As a consequence, the number
of iterations required for convergence is minimal with minimal communication
overhead (due to the explicit step with NC ) between subdomains: an ideal situation
for implementation on parallel computers and/or distributed memory.

3 Jacobi-Davidson

For a standard eigenvalue problem A x D � x each iteration Jacobi-Davidson [7]

1. Extracts an approximate eigenpair .�; u/ � .�; x/ from a search subspace V:
construct H � V�A V, solve H s D � s, compute u D V s.

2. Corrects the approximate eigenvector u with a correction t ? u that is computed
from the correction equation:

P B P t D r where P � I � u u�

u�u
; B � A � � I; and r � �B u: (5)

3. Expands the search subspace with the correction t: Vnew D ŒV j t?� where t??V.

The linear system described by the correction equation (5) may be highly
indefinite and is given in an unusual manner so that the application of the domain
decomposition technique needed further development and special attention.
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Similar to the enhancements (1) of the linear system (2) in Sect. 2, the following
components of the correction equation are enhanced: the matrix B � A � � I to
BC , the correction vector t to t� and the vectors u and r to u0 and r0. With these
enhancements, a correction t� ? u0 is computed from the following enhanced
correction equation [3, Sect. 3.3.2]:

P BC P t� D r0 with P � I � u0u�
0

u�
0 u0

: (6)

The preconditioner MC for BC is constructed in the same way as the ordinary
linear system case shown by the boxed parts in (2). However, because of the
indefiniteness, for the correction equation the matrices BC and MC are accompanied
by projections. Both for left and right preconditioning the projection is as follows:

P0 � I � M�1
C u0 u�

0

u�
0 M�1

C u0

: (7)

In case of left preconditioning (for right preconditioning see [3, Sect. 3.3.3]) we
compute approximate solutions to the correction equation from

P0 M�1
C BC P0 t� D P0 M�1

C r0: (8)

However, there is more to gain. For approximate solutions of the correction
equation with a preconditioned Krylov method, the Jacobi-Davidson method is an
accelerated inexact Newton method that consists of two nested iterative solvers. In
the innerloop of Jacobi-Davidson a search subspace for the (approximate) solution
of the correction equation is built up by powers of M�1

C . A � � I / for fixed � . In
the outerloop a search subspace for the (approximate) solution of the eigenvalue
problem is built up by powers of M�1

C . A � � I / for variable � . As � varies slightly
in succeeding outer iterations, one may take advantage of the nesting by applying
the domain decomposition technique to the outer loop as was the subject of [4]. This
effectively leaded to two different processes:

• Jacobi-Davidson with enhanced inner loop, enhancement at intermediate level
with enhanced correction equation (6) and

• Jacobi-Davidson with enhanced outer loop, enhancement at highest level with a
slightly different correction equation

P BC P t� D r� with P � I � u0u�
0

u�
0 u0

: (9)

The amount of work for both processes per outer iteration is almost the same.
However, Jacobi-Davidson with enhanced outer loop turned out to be faster as it
damps remaining error components from the previous outer iteration in the next
one.
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4 Scaling Experiments

For the two processes, in [4, Sect. 5.1] different eigenvalue problems have been
considered including variable coefficients and large jumps. Here, to investigate
practical aspects for parallel performance, we consider the eigenvalue problem for
the Laplace operator as results for different numbers of subdomains show more
regular behavior (see for instance Fig. 3 in [4]). Except for the first experiment
about different decompositions, in all experiments we take for the domain ˝ the
unit square, decompose ˝ in p square subdomains, and cover each subdomain by a
256�256 subgrid. Jacobi-Davidson is started with a parabolic shaped vector x . 1 �
x / y . 1 � y / for 0 � x � 1 and 0 � y � 1 (see also [3, Sect. 3.5.1]) to compute
the most global eigenvector (for which the corresponding eigenvalue is the closest
one to zero) of the two-dimensional Laplace operator on ˝ until the residual norm
of the approximate eigenpair is less than 10�9. We apply right preconditioning in
the enhanced correction equation for exact solves with the preconditioner (i.e. exact
subdomain solves) to enable a Schur complement approach. The preconditioner MC

is constructed only once, at the first Jacobi-Davidson outer iteration. The remaining
linear system is solved with GMRES [6].

Implementation is in Fortran77 with calls to BLAS, LAPACK, and MPI. Note,
however, that Fortran compiler, BLAS, LAPACK, and MPI versions differ on the
specific hardware which is of influence on the (parallel) performance. Scaling
experiments are performed on the following hardware:

• Curie linux-cluster (2 Intel eight 2.7 GHz core E5-2680 node, InfiniBand QDR,
Intel Fortran 12, BLAS/LAPACK from MKL, Bull X MPI),

• H4+ linux-cluster (1 Intel quad 3.4 GHz core i7-2600 node, 1 GB/s Gigabit
Ethernet, Intel Fortran 11, MPICH2),

• IBM POWER5+ system Huygens (16 IBM single 1.9 GHz core Power5+ node,
1.2 GB/s InfiniBand, XL Fortran 10, BLAS from ESSL, MPI from IBM PE),

• IBM POWER6 system Huygens (16 IBM dual 4.7 GHz core Power6 node,
160 GB/s InfiniBand, XL Fortran 12, BLAS from ESSL, MPI from IBM PE),

• Lisa 2008 linux-cluster (1 Intel Xeon 3.4E GHz core node, 800 MB/s InfiniBand,
GFortran, MPICH2),

• Lisa 2012 linux-cluster (2 Intel eight 1.8 GHz core Xeon E5-2650L node, Intel
Fortran 12, BLAS/LAPACK from MKL, OpenMPI),

On the H4+ and Lisa 2008 linux-clusters one subdomain is assigned to one node.
On the other hardware one subdomain is assigned to one core. Results presented
here are averages of three measured wall-clock times.

First we study different decompositions for a fixed number of subdomains for
the same (discretized) eigenvalue problem. We keep the overall grid fixed to a size
of 1024�1024 gridpoints and consider configurations with a 1�16, 2�8, 4� 4,
8�2, and 16�1 decomposition, respectively (resulting in subgrids of size 1024�64,
512�128, 256�256, 128�512, and 64�1024, respectively). So the number of
subdomains is 16 with 65,536 unknowns per subdomain in all configurations, but
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Fig. 2 Residual norm of the approximate eigenpair as a function of the Jacobi-Davidson outer
iteration for the different decompositions with GMRES(8) (top) and GMRES(4) (bottom)

the subdomains differ in shape. Figure 2 shows the residual norm of the approximate
eigenpair as a function of the Jacobi-Davidson outer iteration for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for a
fixed number of 8 (top) and 4 (bottom) inner iterations with GMRES. As expected,
the convergence histories for configurations which are mirrored (for instance 2�8
and 8�2) coincide. Decomposition in only one direction needs the least number
of outer iterations for convergence. For the tuning of the coupling between the
subdomains we only took into consideration the one dimensional character of the
error modes. For decompositions in two directions error modes will have a two
dimensional character and are therefore harder to damp. Figure 3 shows the residual
norm of the approximate eigenpair as a function of wall clock time for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for
the Lisa 2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations
with GMRES. By comparing the mirrored configurations it can be observed that
the grid ordening may significantly lower the performance. This is mainly in the
construction of the preconditioner with LAPACK (initial horizontal lines in the
figure). Although processors of the H4+ linux-cluster are faster, use of the MKL
implementation of LAPACK resulted in a faster construction of the preconditioner at
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Fig. 3 Residual norm of the approximate eigenpair as a function of the wall clock time for the
different decompositions. Shown are both enhanced innerloop and enhanced outerloop for the Lisa
2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with GMRES

the Lisa 2012 linux-cluster. After the construction of the preconditioner, the process
at the H4+ linux-cluster goes faster than the Lisa 2012 linux-cluster. At the H4+
linux-cluster communication is between 16 nodes over a relatively slow network, at
the Lisa 2012 linux-cluster communication is fast inside a 16 core node with shared
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Fig. 4 Massively parallel behavior on different hardware

memory. So, we may conclude that the process is dominated by computational work.
This confirms the remarks at the end of Sect. 2 about the minimal communication
overhead.

For the massively parallel behavior, we first extend Fig. 6 from [4] with results
from (weak) scaling experiments on more recent hardware (IBM POWER6 system
Huygens, Curie, and H4+). In Fig. 4 it can be observed that the trend holds, but now
for lower wall clock times as processor speed has increased further for the more
recent hardware.

To further investigate the weak scaling we start with a decomposition in 16
subdomains (on 1 node with 16 cores) on the Curie linux-cluster and increase
everytime the number of subdomains in both directions with a factor 2. From 16,
64, 256, 1,024, 4,096 to 16,384 subdomains (cores), resulting in up to more than
109 unknowns. For an efficient overall method, we will now use (see [1, Sect. 4])

kr.i/k2 < 2�j kr.0/k2 (10)

as a stopping criterion for the inner iterations (GMRES) at the j th Jacobi-Davidson
outer iteration. Here r.0/ is the residual at the start of the inner iterations and r.i/ the
residual at the i th inner iteration. Figure 5 shows the results for Jacobi-Davidson with
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Fig. 5 Massively parallel behavior on the Curie linux-cluster (quadratic scaling of the x-axis)

enhanced outerloop. Note that in this figure we choose the scaling of the x-axis to be
quadratic to have a better impression. The figure indicates that for a large number
of subdomains the wall clock doubles when the number of subdomains increases
in both directions with a factor 2. This can be explained from the local behavior
of the error modes due to domain decomposition: mainly one dimensional near the
interface. The additional work to damp these error modes effectively depends on
this local behavior.
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