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1 Introduction

We focus on the solution of a general linear system Au D f by a Krylov type
iterative method, where A 2 R

m�m is non-singular, u; f 2 R
m. The major

drawback of the GCR (Generalized Conjugate Residual) [6] and the GMRES
(General Minimum Residual) [7] methods is their convergence rate that depends
on the conditioning number �.A/ D kAk kA�1k.

The convergence rate of these techniques decreases while � increases and the
use of such methods needs preconditioning. In the following we consider left
preconditioning. The goal is to solve M �1Au D M �1f with M �1 such that
�.M �1A/ � �.A/.

Preconditioning can be enhanced by multilevel techniques. Multilevel techniques
are known to be robust for scalar elliptic Partial Differential Equations with
standard discretization and to enhance the scalability of domain decomposition
method such as Restricted Additive Schwarz preconditioning techniques. An issue
is their application to linear system encountered in industrial applications which
can be derived from non-elliptic PDEs. Moreover, the building of coarse levels
algebraically becomes an issue since the only known information is contained in
the operator to inverse.

One can consider a coarse space as a space to represent an approximated solution
of a smaller dimension than the leading dimension of the system. It is possible to
build a coarse level based on a coarse representation of the solution. Drawing our
inspiration from the Aitken-SVD methodology [8] dedicated to Schwarz methods,
we proposed to construct an approximation space by computing the Singular Value
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Decomposition of a set of iterated solutions of the Richardson process associated to
a given preconditioner.

From a preconditioner M �1 associated to a Richardson process:

uk D uk�1 C ˛M �1
�
f � Auk�1

�
with ˛ 2 R (1)

We propose to build a two-level additive preconditioner M �1
2L :

M �1
2L D M �1 C M �1

c (2)

where for a basis Uq 2 R
m�q , M �1

c D Uq.UT
q AUq/�1

U
T
q .

The plan of the paper is the following. Section 2 describes the methodology
to compute an algebraic coarse level from successive iterations of a Richardson
process. Numerical investigations with the RAS preconditioner built for real non-
symmetric indefinite operator, are performed in Sect. 3. Section 4 concludes the
study.

2 Methodology

The idea is to compute a coarse representation of the solution. In [8] a fully algebraic
computation of a coarse space is proposed to perform an Aitken acceleration of
vectorial sequence generated with an iterative domain decomposition method. In [5]
Aitken-SVD Schwarz algorithms were derived for the Aitken Restricted Additive
Schwarz preconditioning technique [4].

The choice of constructing the coarse space with the SVD is based on the
following properties. Let G 2 R

m�l . Assume that the values �k; 1 � k � l are
ordered in decreasing order and there exists a q such that �q > 0 while �q C 1 D 0.
Then G can be decomposed in a dyadic decomposition:

G D �1U1V
�

1 C �2U2V
�

2 C : : : C �qUqV �
q : (3)

This means that SVD provides a way to find optimal lower dimensional approxi-
mations of a given series of data. More precisely, it produces an orthonormal base
for representing the data series in a certain least squares optimal sense. This can be
summarized by the theorem of Schmidt-Eckart-Young-Mirsky:

Theorem 1. A non-unique minimizer X� of the problem minX;rankXDq kG �Xk2 D
�qC1.G/, provided that �q > �qC1, is obtained by truncating the dyadic decompo-
sition of 3 to contain the first q terms: X� D �1U1V

�
1 C �2U2V

�
2 C : : : C �qUqV �

q

Moreover, the SVD of a matrix is well-conditioned with respect to perturbations
of its entries. Consider the matrix G; B 2 R

m�l , the Fan inequalities write
�qCsC1.G C B/ � �qC1.G/ C �sC1.B/ with q; s � 0; q C s C 1 � l . Considering
the perturbation matrix E such that jjEjj D O.�/, then j�k.G C E/ � �k.G/j �
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Algorithm 1 Computation of M �1
2L with SVD of solutions of a Richardson process

Require: .uk/0�k�l�1 , l successive iterates satisfying ukC1 � u1 D �
I � ˛M �1A

� �
uk � u1

�

starting from any initial guess u0

1: Compute the Singular Value Decomposition of the snapshots G D �
u0; : : : ; ul�1

� D Ul ˙lV
T
l

2: Set the index q such that q D max0�i�l�1f˙.i; i/ > tolg, to define the full rank matrix
Uq D �

U0; U1; : : : ; Uq

�
{ex.: tol D 10�12.}

3: Define the coarse operator Ac 2 R
q�q such that Ac D U

T
q AUq

4: Define the two-level additive preconditioner M �1
2L D M �1 C UqA�1

c U
T
q

�1.E/ D kEk2; 8k. This property does not hold for eigenvalues decomposition
where small perturbations in the matrix entries can cause a large change in the
eigenvalues.

These properties allow us to search an approximation of the solution in the
base linked to the SVD of a sequence of vectors obtained by iterating a linearly
convergent iterative process.

Here, we propose a general framework which enables to compute algebraically
a two-level additive preconditioner from any preconditioner that can be used in a
Richardson iterative process. Algorithm 1 shows the steps to compute M �1

2L that
way. In step 1, we compute the SVD of l successive iterations stored in a matrix
G 2 R

m�l of a Richardson process (1) having a linear convergence, i.e. we compute
a dyadic decomposition of G, as G D Ul˙lV

T
l , with Ul 2 R

m�l ˙l 2 R
l�l and

Vl 2 R
m�l . In step 2, Uq is made of the first q columns of Ul with respect to

the decreasing of the singular values ˙i;i , such that Uq is full rank. This selection
is done according to Theorem 1 where Xq 2 R

m�q is a non-unique minimizer of
the problem minX;rankXDq kG � Xk2 D �qC1.G/, such that Xq D Uq˙qV

T
q and

rk.Uq/ D q, with Uq 2 R
m�q , ˙q 2 R

q�q and Vq 2 R
m�q . Once this basis of the

coarse space is defined, one can compute the coarse operator (step 3) and solve the
coarse problem (step 4).
It is possible to see this approach as a way to approximate a Krylov subspace.
Basically, the solution of the linear system Au D f defined in Sect. 1 consists
on minimizing F.uk/ D �

f � Auk; f � Auk
�

on a Krylov space Kl

�
A; r0

� D
fr0; Ar0; : : : ; Al�1r0g D fd 0; : : : ; d l�1g, where from an arbitrary initial solution
u0 2 R

m, r0 D f � Au0.
Let choose u0 D 0. Each iterate uk of the Richardson process can be written in a

Krylov subspace:

uk D
kX

iD0

ˇi

�
M �1A

�i
M �1f , ˇi ¤ 0

Following Algorithm 1, we can write that

span
�
U0; : : : ; Uq�1

� � span .U0; : : : ; Ul�1/
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Then the solution of the coarse problem is an approximation of a solution in
span.Kl.M

�1A; M �1f //.
This link enable us to choose a good initial guess for the Krylov method pre-

conditioned by this two-level preconditioning approach by computing the solution
uc 2 R

q of the coarse linear system: Acuc D fc; with fc D Uqf .
Then we can set the initial guess for the Krylov method such that,

u0 D Uquc

3 Numerical Experiments

In this section we propose to apply the methodology for a RAS preconditioner for
the solution of CFD problems. The considered matrices A are real, non-symmetric,
indefinite and possibly not positive.

The Additive Schwarz (AS) preconditioning is built from the adjacency graph
G D .W; E/ of A, where W D f1; 2; : : : ; mg and E D f.i; j / W aij ¤ 0g are the
edges and vertices of G. Starting with a non-overlapping partition W D [p

iD1Wi;0

and ı � 0 given, the overlapping partition fWi;ıg is obtained defining p partitions
Wi;ı � Wi;ı�1 by including all the immediate neighbouring vertices of the vertices
in the partition Wi;ı�1. Then the restriction operator Ri;ı W W ! Wi;ı defines the
local operator Ai;ı D Ri;ıART

i;ı; Ai;ı 2 R
mi;ı�mi;ı on Wi;ı. The AS preconditioning

writes: M �1
AS;ı D

pX

iD1

RT
i;ıA

�1
i;ı Ri;ı. Introducing QRi;ı the restriction matrix on a

non-overlapping subdomain Wi;0, the Restricted Additive Schwarz (RAS) iterative
process [2] writes:

uk D uk�1 C M �1
RAS;ı

�
f � Auk�1

�
; with M �1

RAS;ı D
pX

iD1

QRT
i;ıA

�1
i;ı Ri;ı (4)

When the number of subdomains increases the convergence rate of RAS decreases.
When it is applied to linear problems, the RAS has a pure linear rate of convergence.

First we study the robustness and scalability of the preconditioner on a 2D driven
cavity problem. Second we propose a test of the quality of our coarse space on an
2D industrial problem.

3.1 Robustness

Here, we want to study the numerical scalability of the method for the domain
decomposition preconditioner chosen. We fix the number of Richardson iteration
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to perform while decreasing the convergence rate of the preconditioner, i.e. we set a
coarse space size l and increases the number of partitions p.

We consider a test case called e30r2000 coming from modeling 2D fluid flow in
a driven cavity proposed in the Matrix Market data collection [3] referenced under
the name DRIVCAV. The flow is modeled using the incompressible Navier Stokes
equations discretized using Finite Element Method and linearized using Newton’s
method. The unit square on what the problem is solved is dicretized by 30 elements
on the edges. The Reynolds number is set to 2000.

The matrix A is real, non-symmetric and indefinite of size m D 9;661 and has
306;356 entries. The estimated condition number given by the condest function of
MATLAB is �1.A/ D 6:77 e C 11.

We partition the operator with the METIS software for partitioning graphs with a
multilevel recursive-bisection algorithm, in p D f4; 8; 12g partitions. We compute
l D 60 iterations of a RAS iterative process starting from an initial guess u0 D 0,
and perform the SVD of the corresponding sequence of vectors.

Figure 1 (top) shows the singular values profile. When p increases the spectrum
coverage decreases which implies a decreasing of the quality of the solution on the
coarse space.

Figure 1 (bottom) shows the convergence to the solution of a GCR method
preconditioned by a RAS preconditioning technique on the left and enhanced by
the given algebraic two-level approach with initialisation of the Krylov method by
the solution of the coarse system written on R

m. The convergence rate of the RAS
method is reduced for each choice of partitioning. For p D 4 and p D 8 the
initialization by the coarse solution is efficient and we observe an enhancement
about 8 and 2 orders of convergence at the initialization respectively. For all
partitioning the accuracy is better than for the RAS, i.e. the GCR reaches greater
convergences and, although there is still a plateau due to the bad conditioning of the
system, the convergence to the solution for p D 12 can reach 10�7 instead of 10�5.

3.2 Quality

Here, we want to observe the influence of the quality of the coarse space on the
convergence rate of the preconditioned solution method.

We apply our technique on the case GT01R proposed by a CFD company
called FLUOREM, on [1], which deals with steady flow parametrization. From a
steady RANS simulation (compressible Navier–Stokes equations) on a reference
configuration they obtain linear systems with real, square and indefinite matrices.
Those matrices, generated through automatic differentiation of the flow solver
around a steady state, correspond to the Jacobian with respect to the conservative
fluid variables of the discretized governing equations (finite-volume discretization).
The right hand side represents the derivative of the equations with respect to a
parameter (of operation or shape).
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Fig. 1 Solving 2D driven cavity, Re D 2000, n D 9,661, with GCR preconditioned by RAS (left)
and ML_RAS_svd(60) (right). Singular values of RAS solutions to compute M �1

c for p D 4, 8, 12
(top)

The CASE_004 GT01 operator comes from a 2D inviscid case in the context
of a linear cascade turbine. The solution of the discrete system is defined over five
variables per node. The discretisation is done among 1;596 nodes, describing one
inter-blade channel. The stencil involved by the convective scheme uses nine nodes.
Thus, there are nine non-zero blocks for each node in the matrix. The peculiarity
is that the computational domain is periodic, which introduces some non-zero
elements far away from the diagonal. The resulting matrix is real, non-symmetric
and not positive definite, of size m D 7;980.

Figure 2 shows the singular values (left) obtained after 20, 40 or 60 iterations of
a RAS iterative process with p D 8. For l D 60, � covers 15 orders of magnitude,
while it covers 10 orders of magnitude for l D 40 and 5 for l D 20. For each we
choose l D q. As expected, the convergence of the GMRES (right) is better when
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Fig. 2 Solving 2D case, GT01, n D 7,814, with GMRES preconditioned by RAS and
ML_RAS_svd(q), p D 8 (right), Singular values of RAS solutions to compute M �1

c (left)

Table 1 Coarse solution accuracy for the GT01 case, com-
pared to a solution given using LU factorization

Modes 20 40 60
kuex � U

T
q uck 7.23 e�01 5.99 e�02 8.39 e�03

q increases. Nevertheless, the convergence plots for 20 and 40 singular values kept
are similar.

Table 1 shows the coarse solution accuracy compared to a solution given using
LU factorization. The greater the number of iterations of a Richardson process is,
the better the coarse solution accuracy is.

Those results shows that, although the quality of the coarse space is increasing
with the number of Richardson iterations, it is not necessary to compute a lot of
singular values to enhance the convergence with this technique.

4 Conclusion

As in [8] and [5] the principle of using the SVD of successive solutions of an
iterative process enables to compute a coarse solution without the knowledge of
the underlying equations but it not used to accelerate a sequence of vectors but to
construct a Krylov subspace. Then it can also be used to construct algebraic coarse
levels for a two-level preconditioning technique based on any preconditioner which
can be used in an iterative Richardson process.

Numerical results have been shown for the RAS preconditioning technique
on two fluid flow problems. The algebraic framework enables to deal with real,
non-symmetric and not positive definite operators. The two-level preconditioners
produced are numerically scalable for domain decomposition technique such as
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RAS and the coarse space enables to compute an approximation of the solution
which is used to initialize the chosen Krylov method.

Further work concerns the study of the non-singularity of the coarse operators
built with this approach. Moreover, a discussion about the choice of the SVD
algorithms and the quality of the coarse space produced should be studied.
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