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1 Introduction

Discontinuous Galerkin (DG) methods offer an enormous flexibility regarding
local grid refinement and variation of polynomial degrees rendering such concepts
powerful discretization tools which have proven to be well-suited for a variety of
different problem classes. While initially the main focus has been on transport
problems like hyperbolic conservation laws, interest has meanwhile shifted towards
diffusion problems. Specifically, we focus here on the efficient solution of the linear
systems of equations that arise from the Symmetric Interior Penalty DG method
applied to elliptic boundary value problems. [1] The principal objective is to develop
robust preconditioners for the full “DG-flexibility” which means to obtain uniformly
bounded condition numbers for locally refined meshes and arbitrarily (subject to
mild grading conditions) varying polynomial degrees at the expense of linearly
scaling computational work. A first step towards that goal has been made in [3]
treating the case of geometrically conforming meshes but arbitrarily large variable
polynomial degrees which already exposes major principal obstructions. In this
paper we complement this work by detailed studies of several issues arising in [3].

To our knowledge the only concept yielding full robustness with respect to
polynomial degrees is based on Legendre-Gauß-Lobatto (LGL) quadrature. Specif-
ically, in the framework of auxiliary space methods low order finite element
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discretizations on LGL-grids can be used to precondition high order polynomial
discretizations. However, when dealing with variable degrees the possible non-
matching of such grids at element interfaces turns out to severely obstruct in general
the design of efficient preconditioners. To overcome these difficulties we propose
in [3] a concatenation of auxiliary space preconditioners. In the first stage the
spectral DG formulation (SE-DG) is transferred to a spectral continuous Galerkin
formulation (SE-CG). In the second stage we proceed from here to a finite element
formulation on a specific dyadic grid (DFE-CG) which is associated with an LGL-
grid but belongs to a nested hierarchy. The latter problem can then be tackled by a
multilevel wavelet preconditioner presented in forthcoming work. The overall path
of our iterated auxiliary space preconditioner therefore is SE-DG ! SE-CG !
DFE-CG. It should be noted that a natural alternative is to combine the first
stage with a domain decomposition substructuring preconditioner as proposed in
[6] admitting a mild growth of condition numbers with respect to the polynomial
degree.

We are content here for most part of the paper with brief pointers to the detailed
analysis in [2–4] to an extent needed for the present discussion.

Section 2 introduces our model problem, the LGL technique is explained in
Sect. 3. The auxiliary space method is detailed in Sect. 4, while Sects. 5 and 6
consider stages 1 and 2 of our preconditioner. Finally in Sect. 7 we give some
numerical experiments that shed light on the constants that arise in four basic
inequalities used in the second stage.

2 Model Problem and Discontinuous Galerkin Formulation

Given a bounded Lipschitz domain ˝ � R
d with piecewise smooth boundary we

consider as a simple model problem the weak formulation: find u 2 H 1
0 .˝/ such

that

a.u; v/ WD
Z

˝

ru � rv dx D hf; vi ; v 2 H 1
0 .˝/

of Poisson’s equation ��u D f on ˝ with zero Dirichlet boundary conditions
u D 0 on @˝ . For simplicity, we assume that N̋ is the union of a collection R
of finitely many (hyper-)rectangles, which at most overlap with their boundaries.
More complex geometries can be handled by isoparametric mappings. By Fl .R/ we
denote the l-dimensional facets of a (hyper-)rectangle R and by Fl D [R2RFl .R/

the union of all these objects. Let Hk.R/ be the side length of R in the k-th
coordinate direction.

The polynomial degrees used in each cell R are defined as p D .pk/d
kD1,

where pk is the polynomial degree in the k-th coordinate direction. We introduce
the piecewise constant function ı D .H; p/ that collects the hp approximation
parameters. On ı we impose mild grading conditions, see [3] for the details.
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For the spectral discretization of our model problem, we choose the DG spectral
ansatz space Vı WD ˚

v 2 L2.˝/ W vjR 2 Qp.R/ for all R 2 R
�
, where Qp.R/ is

the tensor space of all polynomials of degree at most p on the (hyper-)rectangle R.
We employ the standard notation of DG methods for jumps and averages on

the mesh skeleton and on @˝ . The The Symmetric Interior Penalty Discontinuous
Galerkin method (SIPG) aı.u; v/ D hf; vi for all v 2 Vı is based on the SIPG
bilinear form

aı.uı; vı/ WD
X
R2R

.ruı; rvı/R C
X
F 2F

.�.fruıg ; Œvı�/F � .Œuı� ; frvıg/F /

C
X
F 2F

�!F .Œuı� ; Œvı�/F D .f; vı/˝; vı 2 Vı

with !F WD max
˚
!F;R� ; !F;RC

�
for internal faces F and !F;R˙

WD
pk.R˙/.pk.R˙/C1/

Hk.R˙/
. For boundary faces F � @˝ we set !F;R WD pk.R/.pk.R/C1/

Hk.R/
.

3 Legendre-Gauß-Lobatto (LGL) Grids

Denoting by .�i /
p�1
iD1 the zeros of the first derivative of the p-th Legendre polynomial

Lp , in ascending order, and setting �0 D �1 and �p D 1, Gp D .�i /0�i�p is
the Legendre-Gauß-Lobatto (LGL) grid of degree p on the reference interval OI D
Œ�1; 1�, see e.g. [5]. In combination with appropriate LGL weights .wi /0�i�p the
LGL points of order p can be interpreted as quadrature points of a quadrature rule
of exactness 2p � 1. In [4] we prove quasi-uniformity of the LGL-grids .Gp/p2N,

i.e., hiC1;p

hi ;p
, for 1 � i � p � 1, remains uniformly bounded independent of p, where

hi D j�i � �i�1j.
The particular relevance of tensor product LGL-grids for preconditioners for

spectral element discretizations lies in the two norm equivalences (see [5])

��'
��

H i .R/
Å
��I R

h;p'
��

H i .R/
for all ' 2 Qp.R/; i 2 f0; 1g; (1)

which hold uniformly for any d -dimensional hypercube R D �d
kD1 Ik where I R

h;p

is the piecewise multi-linear interpolant on the tensor product LGL-grid.

4 Abstract Theory: Auxiliary Space Method

The auxiliary space method (ASM) [9–11] is a powerful concept for the construction
of preconditioners that can be derived from the fictitious space lemma [7–9].
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Given a problem a.u; v/ D f .v/ for all v 2 V on the linear space V equipped
with a bilinear form a.�; �/ W V � V ! R, we seek an auxiliary space QV with an
auxiliary form Qa.�; �/ W QV � QV ! R that is in some sense close to the original one but
easier to solve. Note that we neither require V � QV nor QV � V which is important
in the context of non-conforming discretizations. Therefore on the sum OV D V C QV
we need in general another version Oa.�; �/ W OV � OV ! R as well as a second form
b.�; �/ W OV � OV ! R which dominates a on V and plays the role of a smoother.
The required closeness of the spaces V and QV is described with the aid of two linear
operators Q W QV ! V and QQ W V ! QV . Specifically, these operators have to satisfy
certain direct estimates involving the above bilinear forms. For the details on the
ASM conditions see [9].

Lemma 1 (Stable Splitting [9]). Under the assumptions of the ASM, we have the
following stable splitting

a.v; v/ � inf
w2V;Qv2 QV W vDwCQQv

.b.w; w/ C Qa. Qv; Qv// for all v 2 V:

The main result of the ASM is given in the following theorem [9].

Theorem 1 (Auxiliary Space Method). Let CB and C QA be symmetric precondi-
tioners for B and QA, respectively. Let S be the representation of Q W QV ! V . Then
CA WD CB C SC QAST is a symmetric preconditioner for A. Moreover, there exists a
uniform constant C such that the spectral condition number of CAA satisfies

�.CAA/ � C �.CBB/�.C QA QA/:

For a given practical application it remains to identify a suitable auxiliary space
QV , the bilinear forms Qa W QV � QV ! R and Oa; b W OV � OV ! R, as well as the

two linear operators Q and QQ, such that ASM conditions are satisfied. In addition
efficient preconditioners for the “easier” auxiliary problems C QA and CB need to be
devised. Of course, the rationale is that the complexity to apply C QA and CB should
be much lower than solving the original problem.

Note that the operator QQ need not be implemented but enters only the analysis.

5 Stage 1: ASM DG-SEM ! CG-SEM

In the first stage, we choose the largest conforming subspace QV WD Vı \ H 1
0 .˝/ of

V WD Vı as auxiliary space so that Q can be taken as the canonical injection. The
definition of the operator QQ can be found in [3].

The main issue in this stage is the choice of the auxiliary form b.�; �/. Using LGL-
quadrature combined with an inverse estimate for the partial derivatives in the form
a.�; �/ we arrive at
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b.u; v/ WD
X
R2R

X
�2Gp.R/

u.�/ v.�/ c�W�; W� WD
 

dX
kD1

w�2
�;k

!
w�;k:

Here the weights c� � 1 are chosen as

c� WD
�

ˇ1.c
2
1 C ��1!F wF;R=W�/; � 2 Gp.F; R/; F 2 Fd�1.R/; R 2 R;

ˇ1c
2
1 ; else;

where wF;R˙

is the LGL quadrature weight on F seen as a face of R˙ and the
parameters ˇ; �1 can be used to “tune” the scheme. The resulting matrix B is
diagonal so that the application of CB WD B�1 requires only O.N / operations.
It is shown in [3] that all ASM conditions are satisfied for this choice of b.�; �/.
Numerical experiments show that the parameters ˇ1 and �1 can by and large be
optimized independently of the polynomial degrees.

6 Stage 2: CG-SEM ! CG-DFEM

The second stage involves three major ingredients, namely

(1) the choice of spaces of piecewise multi-linear finite elements on hierarchies of
nested anisotropic dyadic grids, to permit a subsequent application of efficient
multilevel preconditioners,

(2) the construction of the operators Q and QQ, and
(3) the construction of the auxiliary bilinear form b.�; �/.
As for (1), the non-matching of LGL-grids for different degrees p at interfaces
prevents us from taking low order finite element spaces as auxiliary space for
the high order conforming problem resulting from the first stage. Instead, with
each LGL-grid Gp we associate a dyadic grid GD;p , which is roughly generated
as follows: starting with the boundary points f�1; 1g as initial guess we adaptively
refine the grid. A subinterval in the grid is bisected into two parts of equal size, if
the smallest of the overlapping LGL-subintervals is longer than ˛ times its length.
The parameter ˛ therefore controls the mesh size of the dyadic grid. However, for
input LGL-grids of different polynomial degrees the resulting dyadic grids are not
necessarily nested yet. How to ensure nestedness while keeping the grid size under
control is shown in [3, 4]. The key quality of the associated dyadic grids GD;p is
that mutual low order piecewise multi-linear interpolation between the low order
finite element spaces on Gp.R/;GD;p.R/ is uniformly H 1-stable, see [3] for the
proofs. Denoting by Vh;D;p.R/ the space of piecewise multi-linear conforming finite
elements on GD;p.R/, we now take V WD Vı \ H 1

0 .˝/ and QV WD Vh;D \ H 1
0 .˝/,

where Vh;D D fv 2 C 0.˝/ W 8R 2 R ; vjR WD vR 2 Vh;D;p.R/g.
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Concerning (2), the operator Q is defined element-wise as follows. For a given
element vertex z 2 F0.R/ let p� denote the polynomial degree vector whose
kth entry is the minimum of the kth entries of all degree vectors associated with
elements R0 sharing z as a vertex. Here a grading of the degrees is important. Let
˚z 2 Q1.R/ the multi-linear shape function on R satisfying conditions ˚z.y/ D ıy;z

for all y 2 F0.R/. Then, we define

Qv�
z WD I R

h;D;p�

z
.˚z QvR/ 2 Vh;D;p�

z
.R/ and v�

z D I R
p�

z
Qv�

z 2 Qp�

z
.R/ ; (2)

where I R
h;D;p�

z
;I R

p�

z
are the dyadic piecewise multilinear and high order LGL-

interpolants on the respective grids. Summing-up over the vertices of R, we define

Qv�
R WD

X
z2F0.R/

Qv�
z 2 Vh;D;p.R/ and QR QvR WD v�

R WD
X

z2F0.R/

v�
z 2 Qp.R/ :

(3)

The operator QQ is defined analogously with the roles of dyadic and LGL-grids
exchanged, see [3].

To finally address (3), for the structure of the form b.�; �/ from the first stage the
direct estimates in the ASM conditions are no longer valid. It has to be suitably
relaxed along the following lines. We make an ansatz of the form

b.v; w/ WD
X
R2R

dX
kD1

� X
S`2T0;k .R/

b0
R;k;S`

.v; w/ C
X

S`2T1;k .R/

b1
R;k;S`

.v; w/
�
; (4)

whereT0;k.R/ is the collection of those LGL-subcells S`, ` 2 �d
kD1f1; : : : ; pk.R/g,

with side lengths h
.`l /

l in the LGL-gridGp.R/ that are strongly anisotropic according

to .maxl¤k h
.`l /

l /=h
.`k/

k > Caspect for a fixed constant Caspect > 0, while T1;k.R/

is comprised of the remaining “isotropic” cells. On the isotropic cells in T1;k.R/

we use an inverse estimate applied to piecewise multi-linear LGL-interpolants of
v and w. On the remaining anisotropic cells we retain integrals over the variable
involving the partial derivative and use quadrature in the remaining variables. For
this auxiliary form b.�; �/ and the above operators Q and QQ we can verify all ASM
conditions, see [3]. Note that the Gramian B is no longer diagonal and we refer to
[3] for efficient realizations of CB.

7 Numerical Experiments: Constants in the Basic
Interpolation Inequalities

A fundamental role in the proof of the ASM-conditions in the second stage
SE-CG ! DFE-CG is played by four basic interpolation estimates. In particular,
knowing the size of the constants arising in these inequalities and their dependence
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on the polynomial degrees helps understanding the quantitative effects observed in
more complex situations later on.

As before, let ˚z denote the affine shape function now on the reference interval
OI D Œ�1; 1� � R satisfying ˚z.x/ D ıx;z for x; z 2 f�1; 1g. By Iq we denote
the polynomial interpolation operator on the LGL-grid Gq for polynomial degree q

and by Ih;D;q the piecewise affine interpolation operator on the dyadic grid GD;q

associated with Gq .
A major tool for proving the ASM conditions is given by the following theorem.

Theorem 2. Assume that cp � q � p for some fixed constant c > 0. Then we have

jIq.˚zv/jH m. OI / . kvkH m. OI / for all v 2 Qp. OI /; z 2 f�1; 1g; m 2 f0; 1g; (5)

and

jIh;D;q.˚z Qv/jH m. OI / . k QvkH m. OI / for all Qv 2 Vh;D;p. OI /; z 2 f�1; 1g; m 2 f0; 1g:
(6)

We determine next numerically the smallest constants that fulfill the inequali-
ties (5) and (6). This can be obtained by solving generalized eigenvalue problems
for the largest generalized eigenvalue. For all dyadic grids we choose the grid
generation parameter ˛ D 1:2, which balances two effects: on the one hand, the
generated auxiliary space is rich enough for a good approximation while on the other
hand, to keep the solution of the auxiliary space feasible, the dyadic grid does not
have too many degrees of freedom. Figure 1 shows the dependence of the smallest
possible constants on the polynomial degrees p and q in the range 1 � p; q � 64.

We observe that the constants in (5) and (6) become large for m D 0 when the
quotient p=q increases, but eventually stay bounded as long as cp � q � p for
a fixed c > 0. For m D 1 we find uniform moderate constants in (5) and (6) for
arbitrary choices of p and q. While the nodes in the LGL-grids move gradually with
increasing degree the associated dyadic grids change more abruptly which explains
the jumps in the graph in Fig. 1c.

We are particularly interested in the behavior of the constants when the quotient
of p and q is fixed, i.e., we restrict ourselves to a cross section through the three-
dimensional plots along a line in the pq-plane. As an example, we choose p D 2q

representing strongly varying degrees on adjacent elements. The smallest constants
in the inequalities for polynomial degrees q up to 128 are displayed in Fig. 2.

While for m D 0 the constants quickly approach an asymptotic value for both (5)
and for (6), this is not true for (5) and m D 1. In this case we observe a very
slow monotonic convergence to its asymptotic limit. Thus for moderate polynomial
degrees one still observes a significant growth. Since this estimate is relevant for the
ASM conditions on the operator QQ in the second stage, this leads to some growth
of the condition number of the preconditioned problem for moderate polynomial
degrees and significant inter-element jumps, although it eventually stays uniformly
bounded independent of the polynomial degree q.
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Fig. 1 Dependance of the constants in (5) and (6) on p and q. (a) (5), m D 0, (b) (5), m D 1,
(c) (6), m D 0, (d) (6), m D 1
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Fig. 2 Constants in the basic interpolation inequalities for p D 2q (dashed line: (5), solid
line: (6)). (a) m D 0, (b) m D 1

8 Summary and Outlook

In this paper we sketch a preconditioner for the spectral symmetric interior penalty
discontinuous Galerkin method that, under mild grading conditions, is robust in
variably arbitrarily large polynomial degrees, announcing detailed results given in
[3]. The concept is based on the LGL-techniques for spectral methods combined



Robust Preconditioners for Spectral DG 545

with judiciously chosen nested dyadic grids through an iterated application of the
auxiliary space method. A detailed exposition of a multiwavelet preconditioner for
the dyadic grid problem, an extension to locally refined grids with hanging nodes,
strategies for parallel implementations, and the treatment of jumping coefficients
will be presented in forthcoming work.
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