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1 Introduction

We consider the following incompressible Stokes problem: Find .�!u ; p/ 2
ŒH 1

0 .˝/�d � L2
0.˝/ such that

�4�!u C rp D �!
f ;

r � �!u D 0;
(1)

where
�!
f 2 ŒL2.˝/�d and d is the dimension of the problem domain ˝ , i.e., d D 2

or 3. The domain ˝ is assumed to be polygonal/polyhedral. The space H 1
0 .˝/ is

the set of square integrable functions up to first weak derivatives with zero trace on
the boundary of ˝ and L2

0.˝/ is the set of square integrable functions with zero
average over the domain ˝ .

To find an approximate solution, a pair of inf-sup stable finite element spaces,
. OV ; OP0/, is introduced such that OV � ŒH 1

0 .˝/�d and OP0 � L2
0.˝/. In this work, we

assume that functions in the velocity space OV are continuous. On the other hand,
we can choose OP0 as discontinuous functions or as continuous functions across
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element boundaries. A general framework of domain decomposition algorithms will
be considered for both cases of pressure functions.

There have been considerable researches on domain decomposition methods for
the Stokes problem. Algorithms based on iterative substructuring methods have been
developed in Marini and Quarteroni [15], Bramble and Pasciak [1], Rønquist [17],
and Le Tallec and Patra [10]. Balancing Neumann–Neumann algorithms were
studied by Pavarino and Widlund [16] and Goldfeld [5]. Later FETI-DP and BDDC
methods were developed in the works by Li [11] and by Li and Widlund [13].
What’s common in all these previous studies is that the indefinite Stokes problem
is reduced to a positive definite system using the benign subspace approach. The
benign subspace approach requires a compatibility condition of the velocity on
the subdomain boundary as well as some primal pressure unknowns. Compared to
elliptic problems, nonoverlapping domain decomposition algorithms for the Stokes
problem needed careful and quite complicated construction of the coarse problem.

In recent works, more advanced algorithms were developed to address smaller
and more practical coarse problems. In the works by Kim et al. [7, 8], a coarse
problem with only primal velocity unknowns was applied to the Stokes problem
with a scalable condition number bound for both dual and primal forms of domain
decomposition methods. In that approach a lumped preconditioner is employed.
In the work by Sistek et al. [18], extensive numerical experiments were carried
out for the primal form of the Stokes problem with continuous pressure finite
element functions. Similarly to [7, 8], only primal velocity unknowns are employed
in their approaches. The dual form was further extended to the continuous pressure
functions with a scalable condition number bound in the work by Tu and Li [12].

In the following, we introduce a general framework of domain decomposition
methods for the Stokes problem and present both primal and dual domain decom-
position algorithms along with estimate of their condition numbers. Throughout the
paper, C is a generic positive constant independent of any mesh parameters and the
number of subdomains.

2 Domain Decomposition Algorithms

We consider the pair of finite element spaces . OV ; OP0/. Before we proceed the
construction of domain decomposition algorithms, we relax the average free
condition on the pressure functions and consider the pair . OV ; OP /, where the pressure
functions in OP are not necessarily average-free over the domain ˝ . By relaxing
the average-free condition on the pressure functions, the functions in OP are fully
decoupled across element boundaries when discontinuous pressure functions are
considered. For that case, we thus have no global pressure component but have one
null component on the resulting algebraic system.

We introduce a non-overlapping subdomain partition f˝ig and decompose the
function spaces into
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V D
NY

iD1

Vi ; P D
NY

iD1

Pi ;

where Vi and Pi are restrictions of OV and OP into ˝i , respectively. We note that when
the pressure functions in OP are discontinuous P is identical to OP . In the following,
we assume that the pressure functions in OP are discontinuous and we later consider
the case of continuous pressure functions.

2.1 Dual Formulation

In this subsection, we will present dual formulation of the Stokes problem following
FETI-DP methods [3, 4]. After we decouple the functions in OV , we select some
primal unknowns among the velocity unknowns on the subdomain boundary
and enforce strong continuity on them. We use the notation �!u ˘ for the primal
unknowns and use the notation �!u � for the remaining decoupled unknowns on the
subdomain interface. We call �!u � dual unknowns. We denote by �!u I the velocity
unknowns interior to each subdomains. We denote the subspaces with unknowns�!u I , �!u �, and �!u ˘ by VI , V�, and V˘ , respectively and denote the subspace with
unknowns .�!u I ; �!u �; �!u ˘ / by QV , which has velocity unknowns that are partially
coupled across the subdomain interfaces. In the dual formulation, continuity on the

decoupled dual unknowns �!u � is enforced weakly using Lagrange multipliers
�!
�

and the following algebraic system will be solved:

Find .�!u I ; �!u �; p; �!u ˘ ;
�!
� / 2 .VI ; V�; V˘ ; P; �/ such that

0

BBBBB@

KII KI� BT
I KI˘ 0

KT
I� K�� BT

� K�˘ J T
�

BI B� 0 B˘ 0

KT
I˘ KT

I� BT
˘ K˘˘ 0

0 J� 0 0 0

1

CCCCCA

0

BBBBB@

�!u I�!u �

p�!u ˘

�

1

CCCCCA
D

0

BBBBBB@

�!
f I�!
f �

0�!
f ˘

0

1

CCCCCCA
(2)

Here � is the space of Lagrange multipliers � and J� is the Boolean matrix
which implements weak continuity on the dual velocity unknowns �!u �. In the
above algebraic system, the unknowns .�!u I ; �!u �; p/ are fully decoupled across
subdomain interfaces and can be eliminated by solving local Stokes problems and
the unknowns �!u ˘ then can be eliminated by solving a global coarse problem. After
the elimination process, we obtain the resulting equation on �:

Fd � D d: (3)
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Here we stress that our formulation uses only primal velocity unknowns in contrast
to the previous approaches [11,13] which required both velocity and pressure primal
unknowns satisfying a certain inf-sup stability.

The matrix Fd is symmetric and semi-positive definite on �. We note that Fd

has null components due to fully redundant Lagrange multipliers �full

J T
� �full D 0

and relaxing the average-free condition on the pressure unknowns. The null
component �null caused by relaxing average-free condition can be calculated by
substituting .�!u I ; �!u �; p; �!u ˘ ; �/ D .0; 0; 1p; 0; �null/ into (2) to obtain

BT
� 1p C J T

� �null D 0

and by using J�D�J T
� D I , �null is given by

�null D �J�D�BT
�1p:

Here we note that D� is the diagonal matrix with its entries determined by

D�.x/ D 1

Nx

;

where Nx is the number of subdomains sharing the node x.
We introduce the subspace

�c D f� 2 � W � ? nul l.J T
� /; �T �null D 0g;

where Fd is positive definite. In our dual formulation, the equation (3) is solved
on the subspace �c by the preconditioned conjugate gradient method with the
following lumped preconditioner

M �1
d D J�D�K��D�J T

� :

About the performance of the proposed preconditioner, we obtain the following
condition number estimate [6, 8, 9]:

Theorem 1. In 2D when �!u ˘ are selected as edge averages and in 3D when �!u ˘

are selected as face averages, we obtain that

�.M �1
d Fd / � C

H

h

and in 2D when �!u ˘ are selected as values at corners we obtain that
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�.M �1
d Fd / � C

H

h
log.1 C H

h
/;

where H=h is the number of elements across each subdomain.

We note that the same bound was obtained for the elliptic problems with the lumped
preconditioner and the same set of primal unknowns, see [14].

2.2 Primal Formulation

We will now develop the primal counterpart to the dual formulation. We recall the
pair of finite element spaces in the dual formulation, . QV ; P /, where the velocity
functions in QV are partially coupled across the subdomain interfaces and the pressure
functions in P are fully decoupled across the subdomain interfaces. We use the
notations

QA WD
� QK QB

QBT 0

�
; QJ WD �

J� 0
�

;

where QA is the matrix obtained from the Galerkin approximation of the Stokes
problem for the pair of finite element spaces . QV ; P / and QJ is the zero extension
of the operator J� on the pair . QV ; P /. Using these notations, the dual algebraic
system in (3) is written into

QJ QA�1 QJ T � D d:

For the primal counterpart to the dual formulation, we introduce the pair . OV ; P /

and obtain the algebraic equation in the primal form:

Find . O�!u ; p/ 2 . OV ; P / such that

� OK OB
OBT 0

� O�!u
p

!
D
 O�!

f

0

!
: (4)

By using the extension

QR W OV ! QV ;

we can express the primal form in terms of block matrices appeared in the dual
form,

� QRT 0

0 I

�� QK QB
QBT 0

�� QR 0

0 I

� O�!u
p

!
D
 O�!

f

0

!
: (5)
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We use the notation OA for the matrix in the primal form,

OA D
� OK OB

OBT 0

�
:

For the primal form, using the expression in (5) we design its preconditioner M �1
p

so that M �1
p

OA and M �1
d Fd have the same set of eigenvalues except zero and one.

The form of the preconditioner M �1
p is obtained as

M �1
p D

� QRT D 0

0 I

�� QK QB
QBT 0

��1 �
D QR 0

0 I

�
;

where D is a diagonal matrix given by

D D
�

D� 0

0 0

�
:

We note that the null component in the primal form is . O�!u ; p/ D .0; 1/ and the
matrix OA is indefinite. The matrix equation (4) of the primal form is solved by
GMRES methods combined with the preconditioner M �1

p on the subspace which

is orthogonal to the null component . O�!u ; p/ D .0; 1/. About the convergence of the
GMRES iteration, we proved the following results:

Theorem 2. The eigenvalues of M �1
p

OA and M �1
d Fd are the same except zero and

one.

Theorem 3. The GMRES iteration applied to the primal form converges and its
convergence is determined by � and d , where

� D
p

�max=�min � 1
p

�max=�min C 1

and d is purple the dimension of invariant subspaces of eigenvalues of M �1
p

OA.

By Theorem 2 and Theorem 1, all nonzero eigenvalues of M �1
p

OA is real and
positive. Application of M �1

p to the primal form results in a two-level nonoverlap-
ping Schwarz method, which applies an indefinite preconditioner to an indefinite
problem in contrast to the dual form where a positive definite matrix is solved with
the preconditioned conjugate gradient method. Under the assumption that M �1

p
OA is

diagonalizable, the error reduction factor in the GMRES iteration is determined by

kekk2 � C�kke0k2;

where � is defined in Theorem 3 and ek is the error in the k-th iterate.
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3 Application to Continuous Pressure Functions

Algorithms in the previous section were developed for the pair . OV ; OP /, where
pressure functions in P are discontinuous across element boundaries. We will apply
the algorithms to the case with continuous pressure functions. In contrast to the
case with discontinuous pressure functions, we have not yet obtained the bound
of eigenvalues. Instead we perform numerical experiments under various settings
to see promising features of our algorithms applied to the case with continuous
pressure functions.

We consider the pair . OV ; OP / where both velocity and pressure functions are
continuous. Here we again relax the average free condition on the pressure functions
as in the previous section. After we decompose the domain ˝ into nonoverlapping
subdomains f˝ig, we obtain the decoupled velocity and pressure spaces and denote
them V and P . Among those decoupled velocity unknowns on the subdomain
interfaces we select some primal unknowns and enforce strong continuity on them.
We denote the resulting partially coupled velocity space by QV . For the pressure
functions, we can do similarly and denote the partially coupled pressure space by
QP . About the pressure functions, we may not select the primal unknowns. For that

case, we still use the same notation QP , which is identical to P .
After introducing these functions spaces, we obtain algebraic system in the

primal form as

� OK OBT

OB 0

� O�!u
Op

!
D
 O�!

f

0

!

and in the dual form as

0
BB@

QK QBT QJ T
u 0

QB 0 0 QJ T
pQJu 0 0 0

0 QJp 0 0

1
CCA

0

BBB@

Q�!u
Qp

�u

�p

1

CCCA D

0

BBB@

Q�!
f

0

0

0

1

CCCA ;

where �u and �p are Lagrange multipliers for implementing weak continuity on
decoupled velocity unknowns and decoupled pressure unknowns, respectively,

QJu
Q�!u D 0; QJp Qp D 0:

We introduce the following notations:

QA D
� QK QBT

QB 0

�
; QJ T D

 QJ T
u 0

0 QJ T
p

!
;

Qx D
� Qu

Qp
�

; Ox D
� Ou

Op
�

; � D
�

�u

�p

�
:
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In addition, We introduce an extension operator

QRT W OV � OP ! QV � QP :

The algebraic system in the primal form is then written as

QR QA QRT Ox D Of

and the algebraic system in the dual form after elimination process is written as

QJ QA�1 QJ T � D g:

For each algebraic system, we introduce preconditioners

M �1
p D QRD QA�1D QRT ; M �1

d D QJ D QAD QJ T ;

where D is a diagonal matrix with its entries defined similarly as before.
For the preconditioned matrices, M �1

p
QR QA QRT and M �1

d
QJ QA�1 QJ T , we can prove

the same result in Theorem 2. On the other hand, when the pressure functions are
discontinuous the resulting matrix QJ QA�1 QJ T of the dual form is indefinite. Analysis
of the condition number bound can not be done as in the previous section.

For the case with the continuous pressure functions, we can present the discrete
problem with the following block matrices

0
BB@

KII BT
II KI� BT

� I

BII 0 BI� 0

K� I BT
I� K� � BT

� �

B� I 0 B� � 0

1
CCA

0
BB@

uI

pI

u�

p�

1
CCA D

0
BB@

fI

0

f�

0

1
CCA :

For that case, an improvement can be done by reducing the discrete problem into
the problem on the interface unknowns .�!u � ; p� / and then by applying the dual and
primal algorithms to the reduced interface problem. The reduction on the interface
problem is called static condensation. We then observe that our dual form and primal
form applied to that interface problem are similar to a FETI-DP algorithm with
the Dirichlet preconditioner and a BDDC algorithm [2], respectively. Compared
to the work by Li and Tu [12], our formulation employs Lagrange multipliers ��

to enforce continuity on the decoupled pressure p� , while p� itself is treated as
Lagrange multipliers in their work. Compared to [18], our primal formulation is
identical to that approach when only primal velocity unknowns are selected.

In numerical experiments, we present performance of the primal and dual forms
regarding to the selection of primal unknowns and the static condensation.
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Table 1 2D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing H=h and a fixed subdomain partition Nd D 3 � 3, WOS
(without static condensation), WS (with static condensation)

vc vc C ve vc C ve C pc

H=h (WOS/WS) (WOS/WS) (WOS/WS)

2 45/27 40/25 14/14
3 58/24 46/24 22/15
4 69/25 59/21 28/16
5 78/24 66/23 35/16
6 85/25 71/23 41/17
7 93/27 88/23 47/17
8 94/26 90/22 48/18

Table 2 2D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing Nd and a fixed local problem size H=h D 4, WOS (without
static condensation), WS (with static condensation)

vc vc C ve vc C ve C pc

Nd (WOS/WS) (WOS/WS) (WOS/WS)

32 69/25 59/21 28/16
42 92/30 71/24 29/16
52 108/34 70/26 30/16
62 117/37 69/24 30/15
82 138/44 67/26 30/16
102 146/44 69/27 30/16
122 147/48 67/26 30/15

4 Numerical Results

We present numerical results when the algorithm for the primal form is applied
to the Stokes problem discretized with . OV ; OP /, where both the velocity and
pressure functions are continuous. We refer [6–9] for numerical experiments of the
algorithms in Sect. 2, when discontinuous pressure functions are considered.

In the following numerical experiments, we consider P2.h/ � P1.h/ for 2D

problems and Q2.h/ � Q1.h/ for 3D problems. The domain ˝ is square/cubic
and is decomposed into uniform square/cubic subdomains. In the GMRES iteration,
the stop condition is when the relative residual norm is reduced by a factor of
106. For primal unknowns, we denote by vc, ve, and vf the velocity unknowns
at corners, velocity averages over edges, velocity averages over faces, respectively,
and we denote by pc the pressure unknowns at corners.

In Tables 1 and 2, for the 2D Stokes problem we present iteration counts
depending on various sets of primal unknowns and the static condensation. As we
can see, the static condensation improves a lot the iteration counts with increasing
the local problem size H=h while adding more primal unknowns such as ve and pc

does not give much improvement. With increasing the number of subdomains, we
can observe scalability for the cases with larger set of primal unknowns, vc C ve or
vc C ve C pc.
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Table 3 3D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing H=h and a fixed subdomain partition Nd D 33, WOS (without
static condensation), WS (with static condensation)

vc vc C vf vc C vf C pc

H=h (WOS/WS) (WOS/WS) (WOS/WS)

2 16/73 56/55 40/35
3 79/75 70/55 60/40
4 98/76 77/51 73/43
5 118/74 97/52 94/43
6 134/73 120/53 117/44
7 143/75 146/54 142/45
8 149/77 171/55 167/47

Table 4 3D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing Nd and a fixed local problem size H=h D 4, WOS (without
static condensation), WS (with static condensation)

vc vc C ve vc C ve C pc

Nd (WOS/WS) (WOS/WS) (WOS/WS)

33 79/75 70/55 60/40
43 109/94 77/52 67/41
63 203/147 79/51 68/41
83 227/169 76/50 65/41
93 301/205 93/52 87/44
103 298/212 93/52 87/44
123 288/223 93/52 87/43

In Tables 3 and 4, for the 3D Stokes problem we present iteration counts
depending on various sets of primal unknowns and the static condensation. We
observe similar behaviors as in the 2D case. The static condensation seems to be
necessary to obtain good performance increasing the local problem size. About
the selection of primal unknowns, in 3D case the additional primal unknowns
vf improve the scalability on the number of subdomains much better than ve in
2D case. Adding pc does not give much improvement on the performance when
increasing the number of subdomains and when increasing the local problem size.

To analyze the performance of our method depending on the set of primal
unknowns and the static condensation, we plot eigenvalue distribution of the
preconditioned system matrix. In Fig. 1, the eigenvalue distributions in 2D case
are presented for various sets of primal unknowns and for the cases with and
without the static condensation. Among the cases without the static condensation,
we observe that all eigenvalues are real and positive for the set of primal unknowns
with vc C ve C pc. Adding ve, the eigenvalues become more clustered near one
while adding pc does not show much improvement. About the effect of the static
condensation, we see that the eigenvalues become less clustered near zero and more
clustered near one. For the cases with the static condensation, we stress that the
real part of most nonzero eigenvalues are positive numbers and away from zero.
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Fig. 1 2D Stokes problem:
Eigenvalue distribution
depending on the choice of
primal unknowns and the
static condensation, left
column (without the static
condensation) and right
column (with the static
condensation)
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Fig. 2 3D Stokes problem:
Eigenvalue distribution
depending on the choice of
primal unknowns and the
static condensation, left
column (without the static
condensation) and right
column (with the static
condensation)

In Fig. 2, we plot the eigenvalue distributions for the 3D Stokes problem. We
observe similar behaviors as in the 2D case. To summarize, when pressure functions
in OP are continuous our algorithm with the set of primal unknowns vc C vf and
with the static condensation gives good performance for the 3D case and adding pc

seems to be not necessary to improve the performance.
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