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1 Numerical Models for the Cardiac Potential

At the macroscopic level, the myocardial tissue can be regarded as the superposition
of two continuous and anisotropic media, the intra-cellular and the extra-cellular
one. They coexist and are connected by a cell membrane, whose capacitance is
denoted by Cm. The tissue conductivity depends upon its cells orientation, and in
the most general case the associated tensor is anisotropic [1, 7, 14]. In any point
x 2 ˝ , where ˝ is the spatial domain under consideration, it is possible to identify
an orthonormal triplet of directions, al .x/, at .x/, an.x/, with al .x/ parallel to the
fibers direction, and we denote by �l

� , �t
� , and �n

� (� D i; e) the corresponding intra
and extracellular conductivity coefficients. The conductivity tensors are given by

D� .x/ D �l
� .x/al .x/aT

l .x/ C �t
� .x/at .x/aT

t .x/ C �n
� .x/an.x/aT

n .x/; � D i; e:

(1)

We assume that D� fulfill in ˝ a uniform elliptic condition.
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1.1 The Bidomain Model

The Bidomain model is a nonlinear reaction-diffusion system of parabolic type
describing the spatio-temporal dynamics of the intra and extracellular potentials,
denoted by ui and ue, while the cell membrane is regarded as dislocated in the
domain [2]. We rely in this paper on a non-symmetric formulation in terms of the
transmembrane potential u D ui � ue, and the extracellular one [5]. We denote by
u D .u; ue/

T the unknown, by V D H 1.˝/nfc W c 2 Rg and by letting

D D
"

�l
e Di

� l
i C�l

e

�l
e Di ��l

i De

�l
i C�l

e

Di Di C De

#
E1 D

�
1 0

0 0

�
e1 D

�
1

0

�

the Bidomain system reads as follows. Find u 2 L2.0; T I H 1.˝/ � V /, such that

�Cm E1

@u
@t

� r � D ru C � Iion.u/ e1 D Iapp; (2)

where � is the membrane area per tissue volume ratio, Iion.u/ is a nonlinear
function of the transmembrane potential u, specified by a ionic model, and where
Iapp represent the applied current stimuli. Several ionic models are available in
literature, from more phenomenological to more accurate ones, but the choice of
the nonlinear term Iion.u/ does not have any influence on the procedure highlighted
in what follows. The problem is completed by suitable initial conditions, and
by homogeneous Neumann boundary conditions on @˝ , modeling an insulated
myocardium. The transmembrane potential u is uniquely determined from (2), while
the extracellular potential ue is determined up to a function of time, and is usually
identified by imposing a zero average at each time (

R
˝

ue.x; t/ dx D 0, for all
t 2 .0; T / ).

1.2 The Monodomain Model

The Monodomain model is a simplified model for the propagation of the electrical
stimulus, based upon a proportionality assumption between the intracellular and
the extracellular conductivity tensors, namely assuming De D �Di , where �

is a constant to be properly chosen. We assume here � D �l
e=�l

i [6], and the
Monodomain model reads as follows. Find u 2 L2.0; T I H 1.˝//, such that

�Cm

@u

@t
� r � �l

e Di

� l
i C �l

e

ru C �Iion.u/ D I app: (3)

Also system (3) is coupled with suitable initial conditions, and homogeneous
Neumann boundary conditions on @˝ . Differently from the Bidomain, the
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Monodomain model features a unique solution and is cheaper to solve numerically.
In absence of applied currents, the Monodomain model is accurate enough to
catch the desired dynamics and effects of the action potential propagation [12].
However, the Bidomain model becomes necessary when current stimuli are
applied in the extracellular space. Also, the Monodomain is inadequate to simulate
defibrillation [16].

1.3 Numerical Approximation

1.3.1 Time Integration

For simplicity in presentation, we consider a fixed time step �t , and we denote with
superscript n the unknowns computed at time tn D n�t . Both the Bidomain (2) and
the Monodomain equations (3) are advanced in .0; T / by a semi-implicit scheme,
where the nonlinear term (the ionic current) is evaluated at the previous time step
[2, 5]. More precisely, moving from tn to tnC1 we solve in ˝

�Cm E1

unC1 � un

�t
� r � D runC1 D Iapp � � Iion.un/ e1 (4)

for the Bidomain system, and

�Cm

unC1 � un

�t
� r � �l

e Di

� l
i C �l

e

runC1 D Iapp � � Iion.un/ (5)

for the Monodomain one.

1.3.2 Space Discretization

Both Bidomain (4) and Monodomain (5) models are discretized in space by finite
elements [2,8,10,11,15]. When solving the Bidomain system, the unknowns of the
fully discrete problem are represented by the vector .uh; ue;h/T , storing the nodal
values of the transmembrane and extracellular potentials. The matrix associated with
the discrete Bidomain models is given by

B D
�

Buu Bue

Beu Bee

�
D

"
�Cm

�t
M C �l

e

�l
i C�l

e

Ki
� l

e

� l
i C�l

e

Ki � �l
i

� l
i C�l

e

Ke

Ki Ki C Ke

#
; (6)

where M is the mass matrix while Ki and Ke are the stiffness matrices associated
with the chosen finite elements space.

When solving the Monodomain system, the unknown of the fully discrete
problem is uh, and the associated matrix is simply block Buu of the matrix B in (6).
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2 A Model Adaptive Strategy

In Fig. 1 (from [6]) we report the differences of the transmembrane potential
computed with the Bi- and Monodomain models respectively at different instants.
The figure pinpoints that the differences are mainly concentrated around the
wavefront. From these results, we argue that the Monodomain provides an accurate
approximation of the potential in most of the region of interest. The model adaptive
strategy consists then in solving the Bidomain only when actually needed. In a first
implementation of this approach [9] a suitable a posteriori model estimator was
introduced. A hybrid model called Hybridomain was advocated. The latter assem-
bles the block Bue only in correspondence with the nodes identified as Bidomain
ones by the model estimator, while the second equation stays untouched. This
simplifies significantly the implementation, however the computational advantage
is limited, since also in the Monodomain regions an extended problem with the
same size of the Bidomain one is solved. An alternative procedure consists of a
genuine heterogeneous coupling by splitting the domains where the two models
are solved. This coupling raises non trivial issues when matching the two models,
featuring a different size. This has been considered in [6], where the Optimized
Schwarz method has been advocated for the heterogeneous coupling, addressing
the matching conditions at the interface between two different domains. Here, we
focus on practical issues when using this approach in realistic problems. A first idea
would be to trivially use the a posteriori error estimator for detecting the regions
where to solve the Bidomain problem and then to couple these subdomains with the
Monodomain regions. However, this approach is barely doable. As a matter of fact.
the Robin-type interface conditions in the Optimized Schwarz setting require the
assembly of mass matrices on the interfaces. As a consequence, every time the Bido-
main region changes, one should identify the new interfaces and then recompute
the matrices, with an additional computational cost that is anticipated to reduce the
advantage of the Optimized Schwarz coupling. The model adaptive strategy we pro-
pose here relies instead on a a priori subdivision of ˝ into smaller subdomains ˝j .
The model error estimator will associate runtime each subdomain with either the
Bidomain or the Monodomain problem. In this way, the interfaces matrices needed
for the coupling can be computed once at the beginning of the time loop. Notice that
the non-symmetric formulation of the Bidomain system ensures that the matrices for
the Monodomain model are available after assembling the Bidomain ones.

2.1 Coupling Conditions and Optimized Schwarz Methods

We outline here the coupling conditions for the three different types of interfaces. If
the subdomains involved have the same characteristic (Bido/Bido and Mono/Mono)
the corresponding solutions are labeled by subscript 1 and 2, while if the subdomains
have different characteristics (Bido/Mono) the corresponding solutions are labeled
with subscript B and M .
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Fig. 1 Differences in the propagation of the membrane potential between Bidomain (uBido) and
Monodomain (uMono) simulation: uBido � uMono, with fibers oriented along the x axis (from [6])

2.1.1 Bidomain/Bidomain Interface

The coupling conditions on the Bidomain/Bidomain interface have been introduced
in [4], and are given by

nT
1 D ru1 C ˛1 ˙ u1 D nT

1 D ru2 C ˛1 ˙ u2

nT
2 D ru2 C ˛2 ˙ u2 D nT

2 D ru1 C ˛2 ˙ u1; where ˙ D
2
4 �l

e

�l
i C�l

e

0

1
�l

i C�l
e

�l
i

3
5 :

(7)

The convergence of the Optimized Schwarz Algorithm based on the interface
conditions (7) was analyzed in [4], where also optimal parameters have been
identified by means of Fourier analysis.

2.1.2 Bidomain/Monodomain Interface

Due to a dimensional mismatch between the two models, two interface conditions
are needed on the Bidomain side of the interface, and one on the Monodomain
side [6]. Possible coupling conditions are

nT
B

�l
e Di

� l
i C�l

e

.ruB C rue;B / � nT
B

�l
i De

�l
i C�l

e

rue;B C �l
e ˛

�l
i C�l

e

uB D nT
B

�l
e Di

� l
i C�l

e

ruM C �l
e ˛

�l
i C�l

e

uB

nT
B Di .ruB C rue;B/ C nT

BDerue;B C ˛uB C �l
i C�l

e

�l
i

˛ue;B D ˛urest

(8)

for the Bidomain subproblem, and
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(9)

for the Monodomain one. To cope with the mismatch, the second condition in (8)
is a transparent boundary condition, designed to avoid spurious reflexions off the
interface for the extracellular potential wave. The convergence of the Optimized
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Schwarz Algorithm based on the interface conditions (8)–(9) was analyzed in [6],
where also optimal parameters has been identified by means of Fourier analysis.

2.1.3 Monodomain/Monodomain Interface

The Optimized Schwarz coupling is significantly simpler on the interface between
two Monodomain regions. The semi-implicit temporal integration scheme reduces
the problem at each time step to a linear steady reaction-diffusion problem, whose
solution by means of Optimized Schwarz Methods has been widely studied, and an
optimal parameter has been identified [3]. The coupling on the interface is given by

nT
1

�l
e Di

� l
i C�l

e

ru1 C ˛optu1 D nT
1

�l
e Di

� l
i C�l

e

rup
2 C ˛optup

2

nT
2

�l
e Di

� l
i C�l

e

ru2 C ˛optu2 D nT
2

�l
e Di

� l
i C�l

e

ru1 C ˛optu1:

(10)

2.2 The Model Error Estimator

The a posteriori error estimator for choosing between a Bidomain or Monodomain
simulation in each subdomain introduced in [9] is based on the extracellular poten-
tial computed from a suitable extension of the Monodomain model. More precisely,

we let D" D De � �l
e

�l
i

Di . The model estimator is computed at the subdomain level as

�2
j D

Z
˝j

ruM

�l
i D"

�l
i C �l

e

�
D�1

i C D�1
e

� �l
i D"

�l
i C �l

e

ruM dx: (11)

The value �2
j is an upper bound for the error in ˝j between the two models in

a H 1.˝j /-type seminorm depending on Di and De. The Bidomain model is then
activated in ˝j whenever �2

j exceeds a given threshold �j , depending on the size
of the subdomain. Computing �2

j requires one matrix-vector and one scalar product,
and we denote by K" the stiffness matrix associated with (11). More details on this
estimator, that we do not report for the sake of space, can be found in [9].

2.3 The Model Adaptive Algorithm

Preprocessing

(i) Split the computational domain into non-overlapping subregions ˝j (j D 1;

::; N ).
(ii) Identify the interfaces �ij between subdomains ˝i and ˝j .



Optimized Schwarz Methods and Model Adaptivity in Electrocardiology 373

(iii) Assemble the local matrices Bj
uu, Bj

ue, Bj
eu, Bj

ee, and Kj
" .

(iv) Assemble the interface mass matrices M�ij .

(v) Compute the incomplete ILU factorization of the local Bj
uu and Bj

ee matrices.

Runtime (time step tn ! tnC1)

(i) Run a Monodomain simulation at time tnC1 over the whole domain ˝ .
(ii) Evaluate the model estimator and compute the local indicator �2

j D .uj
M /T

Kj
" uj

M .
(iii) For all ˝j (j D 1; ::; N ) such that �2

j > �j , activate Bidomain.
(iv) Run the Optimized Schwarz Algorithm using the solution computed in Step 1

as initial guess. A few iterations are usually enough.
(v) Advance to time tnC1.

3 Preliminary Numerical Results

Numerical results in this section have the purpose to show the effectiveness of
the model adaptive method: for this reason we consider here only 2D simulations.
The numerical tests are run in Matlab R� 7.5. The Bidomain problems are solved
by a flexible GMRES (f-GMRES) right preconditioned by the Block-triangular
preconditioner introduced in [5], while the Monodomain problems are solved by
a CG preconditioned by an ILU factorization.

We consider the strip ˝ D Œ0; 3	�Œ0; 1	 subdivided into the three nonoverlapping
subdomains ˝i D Œi � 1; i 	 � Œ0; 1	, i D 1; 2; 3. The fibers are oriented with the
principal direction perpendicular to the interfaces, and we impose a stimulus on the
whole left boundary of ˝1. The well known Rogers-McCulloch ionic model [13] is
used.

We plot in Fig. 2 the wavefront position at different times (top row), and the
activated subdomains (bottom row) during depolarization. The advantage of the
model adaptive approach resides in solving only cheap Monodomain problems
for the large majority of time steps (in a genuine Monodomain setting, without
extensions that were needed by the Hybrodomain approach). In Table 1 we report the
relative CPU gain over a whole heartbeat duration (450 ms) for the model adaptive
strategy with respect to the Optimized Schwarz algorithm introduced in [4].

A more detailed presentation of the method will be the subject of a forthcoming
work. Further work needs to be done to identify the proper trade-off between
the number of subdomains, and the size of the Bidomain region surrounding
the wavefront, and to properly handle the processors load balance in a parallel
architecture. Also, dynamical allocation of tasks is under investigation to properly
balance, in real problems, the load of each processor in the parallel solver.
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Fig. 2 Propagation of the membrane potential (in red the excited region, top row), and the
activated Bidomain region (in green and marked by “B”, bottom row) (Color figure online)

Table 1 Relative CPU time: uOSB and uMA

computed with two Schwarz iterations

uOSB uMA

CPU time 1.000 0.37
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