Overlapping Domain Decomposition Methods
with FreeFem++

Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe Prud’homme

1 Introduction

Developing an efficient and versatile framework for finite elements domain decom-
position methods can be a hard task because of the mathematical genericity of
finite element spaces, the complexity of handling arbitrary meshes and so on.
The purpose of this note is to present one way to implement such a framework
in the context of overlapping decompositions. In Sect. 2, the basics for one-level
overlapping methods is introduced, in Sect. 3, a second level is added to the original
framework to ensure scalability using a portable C++ library, and Sect.4 gathers
some numerical results. FreeFem++ will be used for the computations of finite
element matrices, right hand side and mesh generation, but the work here is also
applicable to other Domain-Specific (Embedded) Language such as deal.IT [3],
Feel++ [12], GetFem++....

P. Jolivet (><)
Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75005
Paris, France

Laboratoire Jean Kuntzmann, CNRS UMR 5224, Université Joseph Fourier, 51 rue des
Mathématiques, BP53, 38041 Grenoble Cedex 9, France
e-mail: jolivet@ann.jussieu.fr; jolivet @imag.fr

F. Hecht * F. Nataf

Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75005
Paris, France

e-mail: hecht@ann.jussieu.fr; nataf @ann.jussieu.fr

C. Prud’homme

Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Université de Strasbourg, 7 rue
René Descartes, 67084 Strasbourg Cedex, France

e-mail: prudhomme @unistra.fr

J. Erhel et al. (eds.), Domain Decomposition Methods in Science and Engineering XXI, 315
Lecture Notes in Computational Science and Engineering 98,

DOI 10.1007/978-3-319-05789-7_28,

© Springer International Publishing Switzerland 2014

mailto:jolivet@ann.jussieu.fr
mailto:jolivet@imag.fr
mailto:hecht@ann.jussieu.fr
mailto:nataf@ann.jussieu.fr
mailto:prudhomme@unistra.fr

316 P. Jolivet et al.
2 One-Level Methods

Let 2 Cc R? (d = 2 or 3) be a domain whose associated mesh can be
partitioned into N non-overlapping meshes {.7; }, <; <y Using graph partitioners such
as METIS [10] or SCOTCH [5]. Let V' be the finite element space spanned by the
finite set of n basis functions {¢; },<; <, defined on §2, and {V;}, <, <y be the local
finite element spaces defined on the domains associated to each {.7; }, <; <. Typical
finite element discretizations of a symmetric, coercive bilinear forma : V xV — R
yield the following system to solve :

Ax = b, ey

where (4;),¢; i<, = a(¢;. ¢, and (b;)i<i<, = (f. i), f being in the dual

space V*. Let an integer § be the level of overlap: {9,.8}1 <i<y s an overlapping

.. 8
decomposition and if we consider the restrictions {R; },<; <y from V to {Vl }1 <i<h?
the local finite element spaces on {ﬂl }1 <i<y> and a local partition of unity

{D;}<i<y such that

N
> RID;R; =1. 2)
j=1

Then a common one-level preconditioner for system (1) introduced in [4] is

N
PiAs =D RIDi(RART)'R; . 3)

i=1

The global matrix A is never assembled, instead, we build locally Af“ the stiffness
matrix yielded by the discretization of a on V,-8+1, and we remove the columns and
rows associated to degrees of freedom lying on elements of 2“1 \ 28 , this yields
A; = R; ART . The distributed sparse matrix-vector product Ax for x € R” can be
computed using point-to-point communications and the partition of unity without
having to store the global distributed matrix A. Indeed, using (2), if one looks at the
local components of Ax, thatis R; Ax, then one can write, introducing &; the set of

neighboring subdomains to i, i.e. {j AN ﬂjg # 0}:

N
RiAx =) R;ARD;R;x 4)
j=1
=A,'D,'R,'X+ ZR,‘R;AJ'D]'RJ'X. (5)

J€0;

Overlapping Domain Decomposition Methods with FreeFem++ 317

since it can be checked that
Vx €R". RiAR] D;jR;x = R;R]R;ARTD;R;x (©6)

The sparse matrix-sparse matrix products R; RJT are nothing else than point-to-point
communications from neighbors j to 7.

In FreeFem++, stiffness matrices such as Af“ and right-hand sides are assembled
as follows (a simple 2D Laplacian is considered here):

mesh Th; // Th is a local 2D mesh (for example 25“)
fespace Vh(Th, Pk); // Vh is a local finite element space
varf a(u, v) = int2d(dx(u) * dx(v) + dy(u) = dy(v))

+ int2d(f = v) + BC;
matrix A = a(Vh, Vh); //Aisasparse matrix stored in the CSR format
Vh rhs; /I rhs is a function lying in the FE space Vh
rhs([] = a(0, Vh); // Its values are set to solve Ax = rhs

The mesh Th can either be created on the fly by FreeFem++, or it can be
loaded from a file generated offline by Gmsh [6], for example when dealing with
complex geometries. By default, FreeFem++ handles continuous piecewise linear,
quadratic, cubic, quartic finite elements, and other traditional FE like Raviart-
Thomas 1, Morley, etc. The boundary conditions depend on the label set on the
mesh. For example, if one wants to impose penalized homogeneous Dirichlet
boundary conditions on the label 1 of the boundary of Th, then one just has
toadd + on(1l, u = 0) in the definition of the varf. For a more detailed
introduction to FreeFem++ with abundant examples, interested readers should
visit http://www.freefem.org/ff++ or see [9].

The partition of unity D; is built using a continuous piecewise linear approximation
of

Xi
Xi = — — , (7
Xi + Z)(jizﬁmyja
J€0;
where y; is defined as
~ 1 on all vertices of .7,
A== % on all vertices of 7" \ 7™~ Vm € [1;4]. ®)

3 Two-Level Methods

It is well known that one-level domain decomposition methods as depicted in Sect. 2
do suffer from poor conditioning when used with many subdomains, [16]. In this
section, we present a new C++ library, independent of the finite element backend

http://www.freefem.org/ff++

318 P. Jolivet et al.

used, that assembles efficiently a coarse operator that will be used in Sect.4 to
ensure scalability of our framework. The theoretical foundations for the construction
of the coarse operator are presented in [14]. From a practical point of view, after
building each local solver A;, three dependent operators are needed:

(i) the deflation matrix Z,
(ii) the coarse operator £ = Z TAZ,
(iii) the actual preconditioner 2y Lpry = Pris(I — AZET'ZT) + ZET'ZT,
thoroughly studied in [15].

In [14], the deflation matrix is defined as :
Z =[R"W, RTW, --- RhWwy] € R" x REML vi ©
where

{m = [D,-A,-1 DiA;, - DiA,,_] eR" xR“f} (10)
i I<i<N

v; is a threshold criterion used to select the eigenvectors A; associated to the

smallest eigenvalues in magnitude of the following local generalized eigenvalue

problem:

AJA; = 2:Di R} R; 0 A} D; A

where A? is the matrix yielded by the discretization of a on V,.‘S, and R; is the

restriction operator from 7% to the overlap 7% N (U jeo; 9]5) In FreeFem++,

sparse eigenvalue problems are solved either with SLEPc [8] or ARPACK [11]. The
latter seems to yield better performance in our simulations. Given, for each MPI
process, the local matrix A;, the local partition of unity D;, the set of eigenvalues
{Ai‘/. }1 <j<v and the set of neighboring subdomains &}, our library assembles E

without having to assemble 4 and to store Z, and computes its LU or LDLT
factorization using either MUMPS [1, 2], PARDISO [13] or PaStiX [7]. Moreover,
all linear algebra related computations (e.g. sparse matrix-vector products) within
our library are performed using Intel MKL, or can use user-supplied functions,
for example those from within the finite element Domain-Specific (Embedded)
Language. Assembling E is done in two steps: local computations and then
renumbering.

» first, compute local vector-sparse matrix-vector triple products which will be
used to assemble the diagonal blocks of E. For a given row in E, off-diagonal
values are computed using local sparse matrix-vector products coupled with
point-to-point communications with the neighboring subdomains: the sparsity
pattern of the coarse operator is similar to the dual graph of the mesh partitioning
(hence it is denser in 3D than in 2D),

* then, renumber the local entries computed previously in the distributed matrix E.

Overlapping Domain Decomposition Methods with FreeFem++ 319

Only few processes are in charge of renumbering entries into E. Those processes
will be referred to in the rest of this note as master processes. Any non master
process has to send the rows it has previously computed to a specific master process.
The master processes are then able to place the entries received at the right row and
column indices. To allow an easy incremental matrix construction, E is assembled
using the COO format. If need be, it is converted afterwards to the CSR format.
Note here that MUMPS only supports the COO format while PARDISO and PaStiX
work with the CSR format.

After renumbering, the master processes are also the one in charge of computing
the factorization of the coarse operator. The number of master processes is a
runtime constant, and our library is in charge of creating the corresponding MPI
communicators. Even with “large” coarse operators of sizes of around 100,000 x
100,000, less than few tens of master processes usually perform the job quite well:
computing all entries, renumbering and performing numerical factorization take
around 15 s when dealing with thousands of slave processes.

A routine is then callable to solve the equation Ex = y for an arbitrary
y € RYi=1 v , which in our case is used at each iteration of our Krylov method
preconditioned by BZX_}DEF 1- Once again, the deflation matrix Z is not stored as the

products Z7x € RE=1v and Z y € R”" can be computed explicitly with a global
matrix-free method (we only use the local W; plus point-to-point communications
with neighboring subdomains).

4 Numerical Results

Results in this section were obtained on Curie, a Tier-O system for PRACE
composed of 5,040 nodes made of 2 eight-core Intel Sandy Bridge processors
clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree network.
We want here to assess the capability of our framework to scale:

(i) strongly: for a given global mesh, the number of subdomains increases while
local mesh sizes are kept constant (i.e. local problems get smaller and smaller),

(i1)) weakly: for a given global mesh, the number of subdomains increases while
local mesh sizes are refined (i.e. local problems have a constant size).

We don’t time the generation of the mesh and partition of unity. Assembly and
factorization of the local stiffness matrices, resolution of the generalized eigenvalue
problems, construction of the coarse operator and time elapsed for the convergence
of the Krylov method are the important procedures here. The Krylov method used
is the GMRES, it is stopped when the relative residual error is inferior to & = 107°
in 2D, and 107% in 3D. All the following results where obtained using a LDL”
factorization of the local solvers A? and the coarse operator £ using MUMPS (with
a MPI communicator set to respectively MPI COMM_SELF or the communicator
created by our library binding master processes).

320 P. Jolivet et al.

First, the system of linear elasticity with highly heterogeneous elastic moduli
is solved with a minimal geometric overlap of one mesh element. Its variational
formulation reads:

//\V-MV~U+2ue(u)Ts(v)+/f-v—i—/ g-v (11
2 2 F¥?)

where

E
e A and pu are the Lamé parameters such that y = —— and A =
2(1+v)
Ev

m (E being Young’s modulus and v Poisson’s ratio). They are

chosen to vary between two sets of values, (Ej,v;) = (2 - 10“,0.25), and
(Ez, 1)2) = (108,0.4).

* ¢ is the linearized strain tensor and f the volumetric forces (here, we just
consider gravity).

Because of the overlap and the duplication of unknowns, increasing the number of
subdomains means that the number of unknowns increases also slightly, even though
the number of mesh elements (triangles or tetrahedra in the case of FreeFem++)
is the same. In 2D, we use piecewise cubic basis functions on an unstructured
global mesh made of 110 million elements, and in 3D, piecewise quadratic basis
functions on an unstructured global mesh made of 20 million elements. This yields
a symmetric system of roughly 1 billion unknowns in 2D and 80 million unknowns
in 3D. The geometry is a simple [0; 1]¢ x [0; 10] beam (d = 1 or 2) partitioned with
METIS.

Solving the 2D problem initially on 1,024 processes takes 227s, on §,192
processes, it takes 31s (quasioptimal speedup). With that many subdomains, the
coarse operator E is of size 121,935 x 121,935. It is assembled and factorized in
7s by 12 master processes. For the 3D problem, it takes initially 373s. At peak
performance, near 6,144 processes, it takes 35 s (superoptimal speedup). This time,
the coarse operator is of size 92,160 x 92,160 and is assembled and factorized by
16 master processes in 11s (Fig. 1).

Moving on to the weak scaling properties of our framework, the problem we
now solve is a scalar equation of diffusivity with highly heterogeneous coefficients
(varying from 1 to 10%) on [0; 1]¢ (d = 2 or 3). Its variational formulation reads:

/KVM-VU+/f~U (12)
Q Q2

The targeted number of unknowns per subdomains is kept constant at approximately
800 thousands in 2D, and 120 thousands in 3D (once again with P; and PP, finite
elements respectively) (Fig. 2).

In 2D, the initial extended system (with the duplication of unknowns) is made of
800 million unknowns and is solved in 141 s. Scaling up to 12,288 processes yields

Overlapping Domain Decomposition Methods with FreeFem++ 321

3
4 8
3
s 6 2 2%
3 ’ 2
= 4 4 2
2 20 20 £
o k:
= *
= 2 2 x
= 15 15
o
: 1 — Linear speedup || 10 1 —— Linear speedup | | 10

{ 2, G; & Lp 2, Gy &

%4 Ozg Y09 T, 9, 024 Y45 095 14,29,

f processes ffprocesses

Fig. 1 Linear elasticity test cases. 2D on the left, 3D on the right. Strong scaling

8
#
g
£ 100% 10176 100% 1051
)
— 80% 80 %
Z 60% 60% £
T 40% 10% =
T 20% 20% +
-
2 844 130
= 0% 0%
] 4. 2, Yoe 01,85, {5, 14, 2, 7, Gy, &

%2y Yag Y "ty {00 S, %2y Yag Gop "4y o

#f processes # processes

Fig. 2 Diffusion equation test cases. 2D on the left, 3D on the right. Weak scaling

a system of 10 billion unknowns solved in 172 s, hence an efficiency of % ~ 82 %.
In 3D, the initial system is made of 130 million unknowns and is solved in 127s.
Scaling up to 8,192 processes yields a system of 1 billion unknowns solved in 152 s,

: 127
hence an efficiency of {5 ~ 83 %.

5 Conclusion

This note clearly shows that our framework scales on very large architectures for
solving linear positive definite systems using overlapping decompositions with
many subdomains. It is currently being extended to support nonlinear problems
(namely in the field of nonlinear elasticity) and we should be able to provide
similar functionalities for non-overlapping decompositions. It should be noted that
the heavy use of threaded (sparse) BLAS and LAPACK routines (via Intel MKL,
PARDISO, and the Reverse Communication Interface of ARPACK) has already

322 P. Jolivet et al.

helped us to get a quick glance at how the framework performs using hybrid
parallelism. We are confident that using this novel paradigm, we can still improve
our scaling results in the near future by switching the value of OMP_NUM_THREADS
to a value greater than 1.

Acknowledgements This work has been supported in part by ANR through COSINUS program
(project PETALh no. ANR-10-COSI-0013 and projet HAMM no. ANR-10-COSI-0009). It was
granted access to the HPC resources of TGCC@CEA made available within the Distributed Euro-
pean Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-283493.

References

1. Amestoy, P., Duff, 1., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15-41 (2001)

2. Amestoy, P, Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel
solution of linear systems. Parallel Comput. 32(2), 136-156 (2006)

3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.Il—a general-purpose object-oriented finite
element library. ACM Trans. Math. Softw. 33(4), 24-27 (2007)

4. Cai, X.C., Sarkis, M.: Restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput. 21(2), 792-797 (1999)

5. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel
Comput. 34(6), 318-331 (2008)

6. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and
post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309-1331 (2009)

7. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high performance parallel direct solver for sparse
symmetric positive definite systems. Parallel Comput. 28(2), 301-321 (2002)

8. Hernandez, V., Roman, J., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of
eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351-362 (2005)

9. Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance
domain decomposition methods on massively parallel architectures with FreeFem++. J. Numer.
Math. 20(4), 287-302 (2012)

10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1998)

11. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. Society for Industrial
and Applied Mathematics, Philadelphia (1998)

12. Prud’homme, C., Chabannes, V., Doyeux, V., Ismail, M., Samake, A., Pena, G.: Feel++: a
computational framework for Galerkin methods and advanced numerical methods. In: ESAIM:
Proceedings, vol. 38, pp. 429-455 (2012)

13. Schenk, O., Girtner, K.: Solving unsymmetric sparse systems of linear equations with
PARDISO. Future Gener. Comput. Syst. 20(3), 475-487 (2004)

14. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level
domain decomposition preconditioner for systems of PDEs. C. R. Math. 349(23), 1255-1259
(2011)

15. Tang, J., Nabben, R., Vuik, C., Erlangga, Y.: Comparison of two-level preconditioners derived
from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39(3), 340-370
(2009)

16. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Series in
Computational Mathematics, vol. 34. Springer, Berlin (2005)

	Overlapping Domain Decomposition Methods with FreeFem++
	1 Introduction
	2 One-Level Methods
	3 Two-Level Methods
	4 Numerical Results
	5 Conclusion
	References

