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Preface of DD21 Book of Proceedings

The proceedings of the 21st International Conference on Domain Decomposi-
tion Methods contain the definitive technical record of advances in the analysis,
algorithmic development, large-scale implementation, and application of domain
decomposition methods in science and engineering up to 2012. The conference was
hosted by the Inria Rennes center in France, June 25–29, 2012, and was organized
jointly by the team Sage of Inria at Rennes (Brittany) and the team LMNO at the
University of Caen (Normandy). It represents the largest meeting to this date, with
260 participants, mainly from Europe, but also from America, Asia, and Africa.

Background of the Conference Series

The International Conference on Domain Decomposition Methods has been held
in 13 countries throughout Asia, Europe, and North America, beginning in Paris in
1987. Held annually for the first 14 meetings, it is spaced out since DD15 at roughly
18-month intervals. A complete list of the past meetings appears below. The twenty-
first International Conference on Domain Decomposition Methods was the third one
held in France, after DD1 in Paris in 1987 and DD13 in Lyon in 2000.

The main technical content of the DD conference series has always been
mathematical, but the principal motivation is to make efficient use of distributed
memory computers for complex applications arising in science and engineering.
Thus, contributions from mathematicians, computer scientists, engineers, and sci-
entists have always been welcome. While domain decomposition methods are
nowadays very important for the efficient simulation of large-scale applications on
massively parallel processors, there are also many interesting applications of domain
decomposition that are not massively parallel. For example, connecting just two
subproblems to effectively exploit a different solver on each is also a core area of
research visible in this conference, and the same holds for coupling problems like
fluid structure interaction. Especially as multiprocessing becomes commonplace,
multiphysics modeling is in ascendancy, so the International Conference on Domain

v
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Decomposition Methods remains as relevant and as fundamentally interdisciplinary
as ever. While research in domain decomposition methods is presented at numerous
venues, the International Conference on Domain Decomposition Methods is the
only regularly occurring international forum dedicated to interdisciplinary technical
interactions between theoreticians and practitioners working in the creation, analy-
sis, software implementation, and application of domain decomposition methods.

International Conferences on Domain Decomposition Methods

1. Paris, France, January 7–9, 1987
2. Los Angeles, USA, January 14–16, 1988
3. Houston, USA, March 20–22, 1989
4. Moscow, USSR, May 21–25, 1990
5. Norfolk, USA, May 6–8, 1991
6. Como, Italy, June 15–19, 1992
7. University Park, Pennsylvania, USA, October 27–30, 1993
8. Beijing, China, May 16–19, 1995
9. Ullensvang, Norway, June 3–8, 1996

10. Boulder, USA, August 10–14, 1997
11. Greenwich, UK, July 20–24, 1998
12. Chiba, Japan, October 25–29, 1999
13. Lyon, France, October 9–12, 2000
14. Cocoyoc, Mexico, January 6–11, 2002
15. Berlin, Germany, July 21–15, 2003
16. New York, USA, January 12–15, 2005
17. St. Wolfgang-Strobl, July 3–7, Austria 2006
18. Jerusalem, Israel, January 12–17, 2008
19. Zhangjiajie, China, August 17–22, 2009
20. San Diego, California, February 7–11, 2011
21. Rennes, France, June 25–29, 2012

International Scientific Committee on Domain Decomposition
Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Martin Gander, University of Geneva, Switzerland
• Roland Glowinski, University of Houston, USA
• Laurence Halpern, University Paris 13, France
• Ronald Hoppe, Universities of Augsburg, Germany, and Houston, USA
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• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Alfio Quarteroni, EPFL, Switzerland
• Olof Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong

About the Twenty-First Conference

The conference, which was organized over an entire week, featured 237 presenta-
tions of three different types:

• 14 invited plenary talks: selected by the International Scientific Committee
from about three times this number of nominees by the International Scientific
Committee;

• 153 talks invited by minisymposia organizers, arranged around a special topic,
and grouped into 20 minisymposia;

• 70 contributed talks, grouped into 21 sessions.

The shear size of the 21st conference required for the first time four or five parallel
sessions, which, while being a huge success for the conference series, made it not
easy for the participants to attend all the talks they were interested in. All the
presentations are gathered in the book of abstracts, which is available online at
http://dd21.inria.fr/downloads/dd21-abstracts.pdf.

The present proceedings volume contains a selection of 94 papers, split into 11
plenary papers, 48 minisymposia papers, and 35 contribution papers.

Sponsoring Organizations

• Laboratoire de Mathématiques Nicolas Oresme (LMNO)
• University of Caen Basse Normandie (UCBN)
• CNRS, Fédération Normandie Mathématiques
• Inria
• University of Rennes 1
• IRMAR
• INSA Rennes
• RISC-E
• ERC
• Fondation Michel Métivier
• Rennes city council

http://dd21.inria.fr/downloads/dd21-abstracts.pdf
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• Rennes metropole council
• Brittany council
• Ministère de l’Enseignement Supérieur et de la Recherche
• Cerfacs
• Maison de la simulation
• Hutchinson

Cooperating Organizations

• IRISA
• ENS Rennes
• SMAI
• MICADO

Local Organizing Committee Members

• Jocelyne Erhel—Co-chair—Inria Rennes
• Taoufik Sassi—Co-chair—University of Caen
• Léonardo Baffico—University of Caen
• Alain Campbell—University of Caen
• Edouard Canot—IRISA, Rennes
• Christian Dogbe—University of Caen
• Caroline Japhet—University of Paris 13 and Inria Paris
• Géraldine Pichot—Inria Rennes
• Edith Blin—Project Manager—Inria Rennes
• Fabienne Cuyollaa—Assistant—Inria Rennes
• Nadir Soualem—Webmaster—Inria Rennes

Social events included a welcoming reception at the Rennes city hall and an
excursion to Mont-Saint-Michel, which is listed UNESCO World Heritage site, and
which is at the interface between Brittany and Normandy, concluded by a gala dinner
in Normandy. The plenary speakers were invited for dinner by the local organizing
committee.

The organizing committee would like to thank Inria staff for the practical help,
the French community of DD involved in the program committee, and the sponsors
for the financial support.
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Research Activity in Domain Decomposition According
to DD21 and Its Proceedings

We now take a look at the current research activities in domain decomposition
methods by taking a closer look at the content of the DD21 conference and the
present proceedings. The conference and the proceedings contain three parts: the
plenary presentations, the minisymposia presentations and the contributed talks.

Plenary Presentations

The plenary presentations are selected by the scientific committee, and thus reflect
in some sense the core interest of this committee. In DD21, there were 14 plenary
talks, and 11 speakers submitted a paper to the proceedings. Each paper covers quite
a different aspect of domain decomposition methods, and it is not easy to group
them.

There are three papers dealing with domain decomposition methods in the
presence of DG discretizations. One is focusing on non-overlapping Schwarz and
two main classes of space decompositions, the second on FETI-DP preconditioners
where jumps and non-conforming meshes are allowed only between subdomains,
and the last one on coupling between DG and finite volume methods in the context
of hydrocarbon transport in reservoirs.

There are also three papers with a focus more on a particular application: one
paper is dedicated to a new finite element discretization for particulate flow, which
has the advantage that only few modifications are needed in an existing Navier–
Stokes solver to simulate particle transport. The second one proposes the use of
mortar methods for discrete fracture networks in a BDD setting, and the last one
proposes an efficient MPI implementation of an auxiliary subspace preconditioner
for solving a black oil model.

Two papers address coarse spaces and multiscale problems: the first one presents
adaptive coarse spaces for FETI for nonlinear problems, and the second one, whose
main focus is on multiscale problems, shows that for FETI and TFETI standard
coarse spaces can be used, in contrast to Schwarz methods, which need sophisticated
coarse spaces in the presence of multiscale phenomena for robust convergence.

There is only one paper dedicated to time-dependent problems. Its focus is on
optimized Schwarz waveform relaxation methods for nonlinear parabolic problems.
Coefficients are optimized using asymptotic analysis for a linearized system of
advection reaction diffusion equations, and then tested in the nonlinear setting.

In one paper, a new domain decomposition method is proposed for integral
equations. It is based on a local multitrace formulation, for which well posedness
is shown under certain hypotheses, and also a relaxation is proposed based on
optimized Schwarz theory.
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Another paper is dedicated to domain decomposition methods for the Stokes
problem. A general framework is presented, in which primal and dual substructuring
formulations are analyzed, and condition number estimates are given.

Minisymposia

There were 20 minisymposia organized within DD21:

1. Finite element packages with domain decomposition solvers (Frederic Hecht,
Frederic Nataf and Christophe Prud’Homme)

2. Domain decomposition for porous media flow and transport (Caroline Japhet
and Michel Kern)

3. Finite elements for first-order system formulations of interface problems
(Gerhard Starke and Pavel Bochev)

4. On the origins of domain decomposition methods (Martin Gander)
5. Exotic coarse spaces for domain decomposition methods (Martin Gander,

Laurence Halpern and Kevin Santugini)
6. Heterogeneous domain decomposition methods (Marco Discacciati and Oliver

Sander)
7. Domain decomposition, preconditioning and solvers in Isogeometric Analysis

(Lourenco Beirao Da Veiga, Michel Bercovier and Simone Scacchi)
8. Domain decomposition techniques in practical flow applications (Menno

Genseberger, Mart Borsboom and Martin Gander)
9. Fast solvers for Helmholtz and Maxwell equations (Victorita Dolean, Ronan

Perrussel, Hui Zhang and Peng Zhen)
10. New developments of FETI, BDDC, and related domain decomposition meth-

ods (Xuemin Tu and Olof Widlund)
11. Decomposition strategies for Boltzmann’s equation (Heiko Berninger and

Jérôme Michaud)
12. Domain decomposition techniques in life science modeling and simulation

(Luca Gerardo Giorda and Victorita Dolean)
13. Robust multilevel methods for multiscale problems (Thomas Dufaud, Johannes

Kraus, Clemens Pechstein, Robert Scheichl and Jörg Willems)
14. 100% parallelizable algorithms for symmetric, indefinite and non-symmetric

problems (Ismael Herrera)
15. Space-time parallel methods (Martin Gander and Felix Kwok and Yvon Maday)
16. Domain decomposition with mortars (Yvon Maday and Caroline Japhet)
17. Domain decomposition methods based on Robin conditions for large and/or

nonlinear problems (Sebastien Loisel, Heiko Berninger and Oliver Sander)
18. Solvers for discontinuous Galerkin methods (Blanca Ayuso de Dios and

Susanne C. Brenner)
19. Domain decomposition in computational cardiology (Rolf Krause and Luca

Pavarino)
20. Domain decomposition and multiscale methods (Petter Bjørstad)
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We see that the minisymposia are focusing either on a particular application
(porous media, interface problems and heterogeneous DD methods, flow problems,
Helmholtz and Maxwell equations, Boltzmann, life science, multiscale problems,
cardiology), or on a particular domain decomposition or dicretization technique
(exotic coarse spaces, FETI and BDDC, time decomposition, mortar, optimized
transmission conditions, isogeometric methods, multilevel methods). There are two
special minisymposia as well, one on the history of domain decomposition methods,
and the other on FEM packages with DD solvers.

The papers submitted to the minisymposia part of the proceedings also reflect this
mix between application focused contributions and domain decomposition focused
contributions. Substantial new results can be found on coarse spaces, optimized
transmission conditions, in particular on Helmholtz and Maxwell problems, new
methods for evolution problems which solve directly in space time, and time parallel
methods. There are also two historical papers tracing in detail the invention of
the overlapping Schwarz method, and the invention of substructuring or Schur
complement methods.

Contributed Presentations

The proceedings part with contributed presentations is a real treasure trove for new
ideas in domain decomposition methods: there are many innovative techniques for
time decomposition methods and time parallelism, and various applications, ranging
from power systems and Coulomb friction, over image processing to gravimetry and
CAD-based domain decomposition. There are also several contributions on well-
established domain decomposition methods, like FETI and FETI DP, and optimized
Schwarz methods.

Domain Decomposition Methods in the Future

The present proceedings volume is a testimony that domain decomposition is a
vibrant, active field of research, even though it has become mature over the last
decade. There are three driving forces really that push this field forward:

1. The interest of mathematicians to develop and analyze new methods of domain
decomposition type.

2. The many fields of applications which use in addition to the two classical
principles of theory and physical experiment to drive science forward also the
computational experiment.

3. The ubiquitous availability of multicore computers, a trend which will only
continue to last.
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Space Decompositions and Solvers
for Discontinuous Galerkin Methods

Blanca Ayuso de Dios and Ludmil Zikatanov

1 Introduction

The design and the analysis of efficient preconditioners for discontinuous Galerkin
discretizations has been subject of intensive research in the last decade with efforts
focused mainly on elliptic problems.

A standard point of view when studying most of the preconditioning and iterative
solution strategies, in general, is associated with a particular space decomposition.
From the classical theory of Lions [25,30,34], we know that, the choice of the space
decomposition plays significant role in the construction and also in the convergence
properties of the resulting preconditioners. For nonconforming methods, domain
decomposition and multigrid preconditioners have been analyzed by establishing
connections with their respective conforming subspaces [10, 27]. In the case of
DG methods, the discontinuous nature of the DG finite element spaces allows to
introduce and study not only space splittings pertinent to the conforming methods
but also consider new splittings which give rise to new techniques and ideas.

In most of the earlier works, relevant space splittings of the DG finite element
space, were introduced via a domain decomposition. Overlapping additive Schwarz
methods have been studied following the classical Schwarz theory for different DG
schemes [9, 16, 21]. Contrary to the conforming case, additive (and multiplicative)
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Schwarz methods based on non-overlapping decomposition of the computational
domain have been constructed and proven to be convergent for DG methods. For
such type of preconditioners, novel features, which have no analog in the conform-
ing case, arise. For both overlapping and non-overlapping Schwarz methods, the
splittings are stable in the L2-norm by construction and can be shown to be stable
in the natural DG energy norm, with constants depending on the mesh sizes relative
to the coarse and fine subspaces.

More sophisticated substructuring preconditioners have been studied recently for
two dimensional elliptic Poisson problems. In [3, 18–20] non-overlapping BDDC,
N–N, FETI-DP and BPS domain decomposition preconditioners are introduced and
analyzed for a Nitsche-type approximation. BDDC preconditioners are studied in
[15, 29] for IP-spectral and IP-hybridized methods. Also there, several different
approaches have been considered and new theoretical tools have been introduced.
And of course, the space splitting in which the preconditioner rely, comes always
from domain decomposition. Starting directly with a splitting of the DG space,
dictated by a hierarchy of meshes, multigrid methods have been proposed and
analyzed in [11,22]. A different approach was taken in [17] and [13,14], to develop
respectively, two-level and multilevel preconditioners for the Interior Penalty (IP)
DG methods. A common idea behind these works is to use the fictitious/auxiliary
spaces for which one knows how do develop a preconditioner. Such preconditioning
techniques have already been applied in a wide range of problems in the conforming
case.

The aforementioned auxiliary space preconditioners use error corrections from
the conforming finite element space and they are certainly related to the a posteriori
theory for DG methods [24]. In fact, the stable projections given in [24] provide the
required tools for constructing and analyzing the convergence of these precondition-
ers including the case of non-conforming meshes.

A novel approach was taken in [5] where a natural decomposition of the
linear DG finite element space was introduced. The components of the space
decomposition are orthogonal in the inner product provided by the DG bilinear
form. Such a splitting allows to devise efficient multilevel methods and uniform
preconditioners and analyze these iterative schemes in a clean and transparent way.
This seems to be the only approach available till now, to prove convergence for
the solvers of the non-symmetric Interior Penalty methods. While the methodology
has been applied to the lowest order DG space and conforming meshes, it is valid
in two and three dimensions, and has already been adapted and extended to a
larger family of problems: elliptic with jump coefficients [7]; linear elasticity [6];
and convection dominated problems corresponding to drift-diffusion models for
transport of species [8].

We present here a brief overview of some of the domain and space decomposition
techniques that comprise a set of key tools used in developing and analyzing
solvers for DG methods. In Sect. 3 we focus on non-overlapping Schwarz domain
decomposition methods. In Sects. 4 and 5 we present the two main classes of space
decomposition methods commenting on their strengths and weaknesses.
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2 Discontinuous Galerkin Methods

We consider the model problem for given data f 2 L2.˝/:

��u� D f in ˝ u� D 0 on @˝ ; (1)

Here, ˝ � Rd , d D 2; 3 is a polygonal (polyhedral) domain. Let Th be a shape-
regular family of partitions of˝ into d -dimensional simplexes T (triangles if d D 2
and tetrahedrons if d D 3) and let h D maxT2Th hT with hT denoting the diameter
of T for each T 2 Th. We denote by E o

h and E @
h the sets of all interior faces and

boundary faces (edges in d D 2), respectively, and we set Eh D E o
h [ E @

h . Let V DG
h

denote the discontinuous finite element space defined by:

V DG
h D ˚u 2 L2.˝/ W ujT 2 P`.T / 8T 2 Th

�

; (2)

where P`.T / denotes the space of polynomials of degree at most ` on each T . We
also define the conforming finite element space as V conf

h D V DG
h \H1

0 .˝/.
We define the average and jump trace operators. Let TC and T � be two

neighboring elements, and nC, n� be their outward normal unit vectors, respectively
(n˙ D nT˙ ). Let �˙ and �˙ be the restriction of � and � to T˙. We set:

2f�g D .�C C ��/; ŒŒ � �� D �CnC C ��n� on E 2 E o
h ;

2f�g D .�C C ��/; ŒŒ� �� D �C � nC C �� � n� on E 2 E o
h ;

ŒŒ � �� D �n; f�g D � on E 2 E @
h : (3)

We will also use the notation

.u;w/Th D
X

T2Th

Z

T

uwdx hu;wiEh D
X

E2Eh

Z

E

uw 8 u;w;2 V DG
h :

The approximation to the solution of (1) reads:

Find u 2 V DG
h such that Ah.u;w/ D .f;w/Th ; 8w 2 V DG

h ; (4)

with Ah.�; �/ the bilinear form corresponding to the Interior Penalty (IP) method (see
[4]) defined by:

Ah.u;w/D.ru;rw/Th�hŒŒ u ��; frwgiEh� hfrug; ŒŒw ��iEhChShŒŒ u ��; ŒŒw ��iEh ; (5)

where Sh D ˛e`
2
eh
�1
e with ˛e � ˛� > 0 for all e 2 Eh, he denotes the length

of the edge e in d D 2 and the diameter of the face e in d D 3, and `e D
max

TC\T�De
f`TC ; `T�g, with `T˙ being the polynomial degree on T ˙. Following
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[12], the above IP-bilinear form can be re-written in terms of the weighed residual
formulation:

Ah.u;w/ D .��u;w/ThC hŒŒru ��; fwgiE oh C hŒŒ u ��; .ShŒŒw �� � frwg/iEh : (6)

Continuity and stability can be easily shown in the DG norm or in the induced k�kA -
norm, provided ˛e � ˛� > 0 is taken sufficiently large;

Continuity: Ah.u;w/ � cckukA kwkA 8 u;w 2 V DG
h

Coercivity: Ah.u; u/ � cskuk2A 8 u 2 V DG
h

(7)

3 Non-overlapping Domain Decomposition Schwarz methods

To define the non-overlapping preconditioners, we need to introduce some further
notation. We denote by TS the family of partitions of ˝ into N non-overlapping
subdomains˝ D [NiD1˝i . Together with TS , we let TH and Th be two families of
coarse and fine partitions, respectively, with mesh sizesH and h. The three families
of partitions are assumed to be shape-regular and nested:TS � TH � Th.

Similarly as we did for Th in Sect. 2, we define the skeleton and the corre-
sponding sets of internal and boundary edges relative to the subdomain partition.
In particular, for each subdomain ˝i 2 TS we define the sets of internal E o

i D
fe 2 Eh W e � ˝i g and boundary edges E @

i D fe 2 Eh W e � @˝i g, and we
set Ei D E o

i [ E @
i . Finally, we denote by � the collection of all interior edges that

belong to the skeleton of the subdomain partition;

� D
N
[

iD1
�i ; with �i D fe 2 E o

h W e � @˝i g:

The subdomain partition TS induces a natural space splitting of the V DG finite
element space. More precisely, we have a local finite element subspace associated
to each ˝i for each i D 1; : : : ; S , defined by

V i
h D fw 2 V DG W w � 0 in � ˝ X˝i g: (8)

Let I T
i W V i

h �! V DG
h be the prolongation operator, defined as the standard

inclusion operator that maps functions of V i
h into V DG

h . We denote by Ii the
corresponding restriction operators defined (for each i ) as the transpose of I T

i

with respect to the L2—inner product. For vector-valued functions I T
i and Ii are

defined componentwise. Then the following splitting holds (orthogonal with respect
to L2-inner product):

V DG
h D I T

1 V
1
h ˚I T

2 V
2
h ˚ : : :˚I T

N V
N
h : (9)
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3.1 Local Solvers

Two types of local solvers have been considered:

(a) Exact local solvers: Following [21], the local solvers are defined as the
restriction of the discrete bilinear form to the subspace Vi .

ai .ui ;wi / D Ah.I
T
i ui ;I

T
i wi / 8 ui ;wi 2 V i

h (10)

(b) Inexact local solvers: Following [1, 2] the local solvers are defined as the IP
approximation to the original problem (1) but restricted to the subdomain ˝i ;
i.e.,

��u�i D f j˝i in ˝i; u�i D 0 on @�i : (11)

Then, the bilinear form can be written as:

Oai .ui ;wi / D .��ui ;wi /Th\˝iChŒŒrui ��; fwi giE oi ChŒŒ ui ��; ShŒŒwi ���frwi giEi ;
(12)

where in the above definition, edges on E @
i are regarded as boundary edges (even

those e 2 E @
i X @˝i so that e 2 E o

h ) and therefore the trace operators on such
edges are defined as in (3).

Observe that, in a conforming framework, the definitions given in (a) and (b) would
have given rise to exactly the same local solvers. The difference in the DG context,
originates from the distinct definition of the trace operators on boundary and internal
edges and the fact that e 2 E @

i X @˝i is an interior edge for the global IP method
(and so for (10)), but a boundary edge for (12). See [1, 2] for further details.

Let now A be the matrix representation of the operator associated to the global IP
method (5), in some chosen basis (say nodal lagrange basis functions to fix ideas).
We denote by Ai and OAi the matrix representation (stiffness matrix) of the operators
associated to (10) and (12), respectively. At the algebraic level, a one-level Additive
Schwarz preconditioner is then defined by Bone

add D
PS

iD1 ITi S�1i Ii where Ii is the
matrix representation of the restriction operator and Si denotes here the matrix
representation of the local solver; and can be chosen to be either Ai or OAi . Notice
however, that only for the choice Si D Ai , the resulting one level additive Schwarz
method Bone

add corresponds to the standard block Jacobi preconditioner for the global
stiffness matrix A. This can be easily checked by noting that the definition (10)
gives at the algebraic level Ai D IiAI

T
i ; that is, the matrices Ai are the principal

submatrices of A. In contrast, the one level additive Schwarz based on the choice
Si D OAi cannot be obtained by starting directly from the algebraic structure of
the global matrix A; it would require further modifications of the prolongation and
restriction operators.

On the other hand, in view of the possibility of considering (at least) these two
definitions for the local solvers, a natural question arises. Namely, if the inexact
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local solvers (12) are approximating the original PDE restricted to the subdomain,
which continuous problem is approximated by the exact local solvers (10), if any. By
rewriting the bilinear form in the weighted residual formulation one easily obtains:

ai .ui ;wi / D .��ui ;wi /Th\˝iC hŒŒrui ��; fwi giE oi
ChŒŒ ui ��; .ShŒŒwi �� � frwi g/iE oi [.E @i \@˝/
Ch 1

2
rui � nC Shui ;wi i�i � hui ; 12rwi � ni�i

(13)

The terms on the first and second lines are easy to recognize, the first imposes the
PDE on each element; the second is the consistency term and the terms in the second
line ensure stability and symmetry. As regards those in the last line, the first term is
imposing the boundary condition on �i (the part of @˝i X @˝). The second term,
could be regarded as an artifact to ensure the symmetry of the method. Then, one
can write the continuous problem

8

ˆ

<

ˆ

:

��u�i D f j˝i in ˝i;

u�i D 0 on @�i \ @� ;
1
2

@u�
i

@ni
C Shu�i D 0 on �i :

(14)

This implies that the exact local solvers for the IP method (and in general for most
DG methods) are approximating the original problem but with transmission Robin
conditions. And as h ! 0 the method enforces u�i D 0 on �i . Whether such
interface boundary conditions are optimal or could be further tuned to improve the
convergence properties of the classical Schwarz methods is a subject of current
research. Optimization of the Schwarz methods with respect to the interface
boundary conditions has been recently studied in [23]. The final ingredient needed
to define the two-level Schwarz method is the coarse solver.

3.2 Coarse Solver

Let Vc WD V DG
H be the coarse space and let ac W Vc 	 Vc �! R be the coarse solver

defined by [1, 2, 21]:

ac.uc;wc/ D Ah.I
T
c uc;I

T
c wc/ 8 uc;wc 2 Vc (15)

where I T
c W Vc �! V DG

h is the prolongation operator, defined as the standard
inclusion. Notice that with this definition, the corresponding matrices do indeed
satisfy the Galerkin property: A D ITc AcIc , but should be noted that unlike
in a conforming framework ac.uc;wc/ ¤ AH.uc;wc/. A two level Schwarz
preconditioner can then be defined:
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Badd D
S
X

iD1
ITi S
�1
i Ii C ITc A

�1
c Ic (16)

It is also possible to define the coarse solver as IP approximation (with the partition
TH and the coarse space Vc) to the original problem (i.e., as AH.uc;wc/). However
with such definition, the Galerkin property is lost and in order to ensure scalability
of the resulting two level Schwarz preconditioner, more sophisticated prolongation
and restriction operators are required [9].

Let now B�1 denote the inverse operator associated to the two level precondi-
tioner (16). To analyze the convergence properties of the resulting preconditioner
one needs to characterize the dependence of the constants C1 and C0 in

C1Ah.w;w/ � .B�1w;w/ � C2
0Ah.w;w/ 8w 2 V DG

h (17)

The condition number of the preconditioned matrix BA is then C2
0 =C1. The proof

of (17) is often guided by Lions lemma (for a proof see [31, 32], [34, Lemma 2.4]),
which tells that the preconditioner can be written as

.B�1w;w/ WD inf
wi 2 V i

wc CPi wi D w

 

ac.wc ;wc/C
X

i

Ri .wi ;wi /

!

; (18)

where we have denoted by Ri .�; �/ the approximate (or exact) subspace solver on
V i .

4 Fictitious Space and Auxiliary Space Methods

Fictitious Space Lemma was originally introduced by Nepomnyaschikh in [26], and
further used for developing and analyzing multilevel preconditioners for noncon-
forming approximations in [27] and for conforming methods with nonconforming
meshes in [33]. There are two main ingredients to construct a fictitious space
preconditioner for the operator A W V DG

h �! V DG
h associated to the bilinear

form (5).

(1) A fictitious space V , and an symmetric positive definite operator A W V �! V

associated with some A .�; �/ W V 	 V �! R.
(2) A continuous, linear and surjective mapping˘ W V ! V DG

h

The fictitious space preconditionerB is then defined as

B D ˘ ı A�1 ı˘� W V DG
h ! V DG

h : (19)
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The convergence properties of the preconditioner B depend on the choice of the
fictitious space V and fictitious operator A. Typically, one chooses a fictitious
pair .V ; A/ for which it is simpler to construct a preconditioner. The analysis of
such methods is done via the Fictitious space lemma [26], which states that if ˘
has a bounded (in energy norm) right inverse and is stable in A norm, then B is
equivalent to A (in the sense that they satisfy a corresponding (17)) with constants
of equivalence (C1 and C2

0 ) depending on the stability and invertibility of ˘ . The
auxiliary space idea, comes from the observation (see [33]) that a surjective ˘ is
easy to construct for the choice V D V DG

h 	W for some space W (the factor V DG
h

in the product plays a crucial role).
One natural approach in constructing such preconditioners for DG discretizations

is via subspace splitting which uses the corresponding conforming space as the
componentW ; that is V D V DG

h 	V conf
Qh , withW WD V conf

Qh denoting the conforming

finite element space with Qh chosen Qh � h. This is natural because one expects
that the smooth error (with small energy) is in this space. Then, for the auxiliary

preconditionerA
�1

one can choose his/her favourite solver in V conf
Qh . Preconditioners

based on such splittings are found in [17] and [13], and more recently in [14, 15].
Two-level methods based on three different splittings of the DG space are given
in [17]. In [13], an auxiliary space preconditioner is proposed (and analyzed) for
IP discretizations with non-conforming meshes and hanging nodes. This auxiliary
space approach has been recently extended and used for designing multilevel
preconditioners in [14] for the IP method with arbitrary polynomial degree. The
results from [14] are further used for constructing a BDDC preconditioner for such
discretizations in [15].

We wish to point out that for the IP method such decompositions were already
known in the area of adaptivity and a posteriori error analysis for DG methods. The
following important decomposition is implicitly contained in the seminal work [24]:

V DG
h D V conf

h ˚ Eh; (20)

where Eh D .V conf
h /? refers to the complementary space of V conf

h in V DG

(orthogonal with respect to the corresponding energy inner product). In fact, an
explicit construction of an interpolation operator Ih W V DG

h �! V conf
h is provided,

on simplicial meshes, even in case of hanging nodes, which is stable in the energy
norm, and therefore can be used as a component in constructing a stable surjective
˘ in the design of an auxiliary space preconditioner.

The analysis of the auxiliary space preconditioners using the conforming method
as a component of the space decomposition is carried out in a standard fashion by
introducing stable and accurate interpolation operators (see e.g. [13] or [17] for such
constructions). Alternatively, at least for the h-version, one may adapt and use the
framework developed in [24] to analyse the properties of these preconditioners.
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5 Orthogonal Space Splittings in a Nutshell

The approach we present now has been developed in [5] for developing uniform
solvers for the family of IP discretizations, including non-symmetric schemes. It
could be seen as a clever change of basis which allows for special decompositions
of the DG space. The ideas work in dimensions d D 2; 3 and are based on a
natural splitting of the linear DG FE space on simplicial meshes with no-hanging
nodes. Therefore, in all what follows V DG stands for the linear approximation
space; i.e., ` D 1. Furthermore, to ease the presentation, we drop the subscript
h from the finite element space and the bilinear form, so A .�; �/ D Ah.�; �/. For
multilevel considerations see for instance [7]. To introduce the space splitting we
first introduce some notation.

Together with the IP bilinear form A .�; �/, we also consider the bilinear form
that results by computing all the integrals in (5) with the mid-point quadrature rule,
known as weakly penalized or IP-0 method:

A0.u;w/ D .��u;w/ThChŒŒru ��; fwgiE oh ChP0
E.ŒŒ u ��/; ShŒŒw ���frwgiEh ; (21)

where, for each e 2 Eh, let P0
e W L2.e/ �! P0.e/ is the L2-orthogonal projection

onto the constants on that edge defined by:

P0
e .u/ WD

1

jej
Z

e

u; 8 u 2 L2.e/: (22)

We define the following two subspaces of V DG

V CR WD fv 2 V DG W P0
e .ŒŒ v ��/ D 0 8 e 2 E o

h g (23)

Z WD fz 2 V DG W P0
e .fzg/ D 0 8 e 2 Ehg (24)

The first one is the well known lowest order Crouziex-Raviart finite element space.
The above subspaces can be seen to be complementary to each other, and in fact it
is easy to prove that

V DG D V CR ˚Z : (25)

Notice that the explicit characterization of the subspaces allows to provide basis for
both spaces (see Fig. 1).

A key property satisfied by the space decomposition (25) is that the two
subspaces are orthogonal in the energy norm defined by A0.�; �/. In fact it can be
easily shown using (21) and the definition of the spaces (23) and (24) that

A0.v; z/ D A0.z; v/ D 0 8 v 2 V CR ; z 2 Z : (26)
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Fig. 1 Basis functions (associated to an edge) for the Crouziex Raviart space (left figure) and the
Z space (right figure)

This already suggest that by performing a change of basis of the standard Lagrange
basis for V DG to the ones in V CR and Z , the stiffness matrix representation of A0
in the new basis have a block diagonal structure. Therefore, for the IP-0 method the
following algorithm is an exact solver:

Algorithm 1
Let u0 be a given initial guess. For k � 0, and given uk D zk C vk , the next iterate ukC1 D
zkC1 C vkC1 is defined via the two steps:

1. Solve A0.zkC1;  
z/ D .f;  z/Th 8 z 2 Z .

2. Solve A0.vkC1; '/D .f; '/Th 8 ' 2 V CR.

Notice that Algorithm 1 requires two solutions of smaller problems: one solution
in Z -space (step 1 of the Algorithm 1), and one solution in V CR-space (step 2 of
Algorithm 1). As we show next, the solution of the subproblems on Z and on V CR

can be done efficiently.

5.1 Solution in the Z -Space

The functions in Z have non-zero jump on every edge, which suggest the high
oscillatory nature of its functions. Using the definition of the space, the following
useful property (Poincare-type inequality) can be shown:

Lemma 1. Let Z be the space defined in (24).

h�2kzk20;Th . A0.z; z/ . h�2kzk20;Th ; 8 z 2 Z

By virtue of this lemma it follows that the condition number (denoted by 	) of the
block matrix associated to the restriction of A0.�; �/ to the subspace Z , say Azz

0 ,
satisfies 	.Azz

0 / D O.1/ and it is independent of the mesh size. Therefore, efficient
solver for the problem in Z is the Conjugate Gradient (CG) method with a simple
diagonal preconditioner.
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5.2 Solution in V CR

The restriction of A0.�; �/ to the V CR subspace gives the well-known Crouziex-
Raviart approximation method for (1);

A0.v; '/ D .rv;r'/Th D
X

T2Th
.rv;r'/T 8 v ; ' 2 V CR ; (27)

Therefore, it is enough to resort to any of the solvers that have been already
developed, for instance [10, 27, 28].

So far, an exact solver has been constructed in a simple and clean way for the
IP-0 method. A last ingredient is needed to provide uniformly convergent solvers
for the IP method (5) and it is formulated in next Lemma:

Lemma 2. Let A .�; �/ and A0.�; �/ be the bilinear forms of the IIPG method defined
in (5) and (21). Then, there exist c2 > 0 depending only on the shape regularity of
Th and c0 > 0 depending also on the penalty parameter ˛ such that

c2A0.u; u/ . A .u; u/ � c0A0.u; u/ 8u 2 V DG: (28)

The above result establishes the spectral equivalence between A0.�; �/ and A .�; �/.
Therefore, in terms of solution techniques, a uniform preconditioner for the IP-0
method, already provides a uniform preconditioner for the IP method.

These ideas and new framework, have been already extended and adapted for
designing and analyzing solvers for other problems:

• In [7] the case of second order elliptic problems with large jumps in the
diffusion coefficient is considered. In a first step, the space splitting (25) needs
to be modified to account for the jumps in the coefficient, while still being
orthogonal with respect to the corresponding A0.�; �/-induced norm. The choice
of a robust method for approximating the continuous problem (definition of the
relevant A .�; �/ bilinear form) allows to guarantee that the corresponding spectral
equivalence property (28) holds with constants c0; c2 independent of the mesh
size and the jumping coefficient.

• In [6] efficient solvers are analyzed for IP approximations of linear elasticity
problems, considering all cases: the pure displacement, the mixed and the traction
free problems. The last two cases pose some extra pitfalls in the analysis since
the spectral equivalence property (28) does not hold in those cases. In spite of
that, the ideas can still be used to construct block preconditioners (guided by
the algebraic structure of A0.�; �/ due to the orthogonality) and prove uniform
convergence.

• In [8] it is shown how to construct an efficient solver for the solution of the linear
system that arise from a DG discretization of a convection-diffusion problem,
in the convection dominated regime. The problem is relevant in semiconductor
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applications. In this case, the original method is a non-symmetric exponentially
fitted IP weakly-penalized.
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A Finite Element Method for Particulate Flow

Eberhard Bänsch and Rodolphe Prignitz

1 Introduction

Particulate flow, i.e. the flow of a carrier fluid loaded with particles, plays an
important role in many technical applications. Let us just mention reactors, fluidized
beds, production of nano particles and many more. There exists a hierarchy of
models how to describe the particulate phase and how to describe the interaction
between particles and fluid. For a comprehensive list of references we refer to the
articles of Esmaeeli and Tryggvason [6] and Hu [12].

For certain applications it is mandatory to describe the fluid–particle interaction
and also a possible particle-particle interaction in full detail without simplified
parametrizations. Computational methods based on such full models are called
direct numerical simulations.

One of the most important points in simulating particulate flow is the numerical
representation of the particles’ geometry. In Feng et al. [7] and Johnson and
Tezduyar [13] a remeshing technique was used to explicitly follow the geometry in
time; Wan and Turek [22] introduced a mesh deformation technique and Glowinski
et al. [9] used Lagrange multipliers on regular grids. Also immersed boundary
methods are very popular, for example LeVeque and Li [14] and Veeramani et al.
[20]. Distributed Lagrange multipliers to account for the stress boundary condition
are used in Bönisch & Heuveline [4] and Bönisch et al. [5]. In Maury [16]
a projection based method was already introduced, still following explicitly the
geometry, thus requiring remeshing.
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Analytical results regarding existence, uniqueness and qualitative behavior of
solutions can be found for instance in Galdi [8] and Serre [19].

The approach presented here is based on the one domain approach by Serre [19]
and Glowinski et al. [9], but differs from the above mentioned articles in one or
several aspects, since it

• does not require an explicit meshing of the particles’ domain;
• does not need an explicit evaluation of forces;
• uses a subspace projection method to account for the constraint of rigid body

motion within the particles, thus avoiding a saddle point problem for this
constraint;

• uses time dependent adaptively refined meshes to provide the necessary geomet-
ric resolution.

It turns out that this novel method is therefore easy to implement (only few
modules have to be added to an existing standard software) and rather efficient.
A more detailed presentation can be found in [17].

2 Mathematical Formulation

2.1 Model

In this section we introduce the mathematical model for particulate flows. For ease
of presentation we restrict ourselves to the case of a single particle. The extension to
more particles is straightforward, simply by adding an index. The model also holds
for the 2d -case, one just has to adapt the definition of the cross-product involved in
the equations.

Denote by ˝.t/ � R3 the time-dependent domain occupied by an incompress-
ible, Newtonian fluid with velocity u and pressure p. Its motion is described by
the incompressible Navier–Stokes equations. A homogeneous no-slip condition is
prescribed on the outer boundary �D .
P.t/ � R3 is the time-dependent domain of a rigid particle, with its center of

mass given by X D 1
jP.t/j

R

P.t/ x dx, while r D x � X is its relative coordinate.
The particle’s motion, being a rigid body motion, is governed by Newton’s law,
describing values for the translational and angular velocitiesU , !, respectively, and
the positionX . The orientation in space is given by a complete system of orthogonal
unit vectors who’s coordinates are denoted by 
. Since the particle is impermeable,
we assume˝.t/\P.t/ D ; for all times t > 0. Finally we assume (for simplicity)
that the whole volume ˝c D ˝.t/ [ P.t/ [ @P.t/ is time independent. See also
Fig. 1 for a sketch of the situation.

The motions of fluid and particle are coupled on one hand by the no-slip-
condition on the particle boundary Eq. (4) below and on the other hand by the stress
and pressure forces of the fluid acting on the particle (in the right hand sides of
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Fig. 1 Particle P.t/ of
arbitrary shape inside the
fluid domain ˝.t/

Eq. (5)). The mathematical model consists of a coupled system of partial differential
equations (PDE) for u; p and of ordinary differential equations (ODE) for U;!;X
and
 reading in non-dimensional form

@tuC .u � r/ u� r �
�

1

Re
DŒu� � pI

�

D 0 in ˝.t/; (1)

r � u D 0 in ˝.t/; (2)

u D 0 on �D; (3)

u D U C ! 	 r on @P.t/; (4)

M PU D F �
Z

@P.t/

� n ds; I P! C ! 	 .I!/ D �
Z

@P.t/

r 	 � n ds; (5)

PX D U; P
 D RŒ!� 
: (6)

The system has to be closed by appropriate initial conditions. Here, Re is the
Reynolds number, M and I the mass and inertia tensors, respectively; � WD
1

Re DŒu� � pI is the stress tensor, where DŒ�� is the deformation tensor DŒu�i;j D
@j uiC@iuj .F describes an external force acting on the particle like gravity, particle-
particle (in case of more than one particle) or particle-wall interaction. RŒ�� is the
cross-product operator.

2.2 Weak Formulation

Following the idea and presentation in [9] a weak formulation of the system
Eqs. (1)–(6) is presented. This formulation is instrumental for deriving our numeri-
cal method in the next section. Define

Hc.˝c/ D
�

.v; V; �/
ˇ

ˇ v 2 �H1.˝c/
�3
; V 2 R3; � 2 R3;

v D 0 on �D; v D V C � 	 r in P.t/

�

: (7)
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Note that by the above definition the velocity v in Hc.˝c/ is defined on the
combined domain ˝c and is restricted to the rigid body velocity V C � 	 r inside
the particle. For a shorter notation we introduce the bi- and trilinear forms

m.u; v/ D R
˝c

u � v dx; (8)

s.u; v/ D 1
2Re

R

˝c
DŒu� W DŒv� dx; (9)

k.wI u; v/ D R˝c .w � r/ u � v dx; (10)

b.q; v/ D R
˝c
qr � v dx; (11)

and the variable ˇ D 1 � ˛. Then Eqs. (1)–(6) can be compactly written as:

Find .u; p/ with u.t/ 2 Hc.˝c/, p.t/ 2 L20.˝c/ such that for all .v; q/ 2
�

Hc.˝c/ 	L20.˝c/
�

m.Pu; v/C k.uI v; u/C s.u; v/� b.p; v/C
ˇM PU � V C ˇ .I P! C ! 	 .I!// � � D F � V ; (12)

b.q; u/ D 0; (13)

PX D U; (14)

P
 D RŒ!�
: (15)

Equations (12) and (13) are called the combined Navier–Stokes equations. The
time dependence of ˝.t/ and P.t/ is now completely coded in the time dependent
definition of Hc.˝c/.

3 Numerical Method

The numerical scheme to solve the weak problem Eqs. (12)–(15) derived in the
previous section consists of the following six points:

1. splitting scheme to decouple the unknowns;
2. a pressure correction projection scheme based on a BDF2 method to efficiently

solve the combined Navier–Stokes equations;
3. subspace projection to incorporate the restrictions given by the function space
Hc.˝c/;

4. adaptivity in space;
5. preconditioning;
6. Barnes-Hut algorithm for particle-particle interaction.
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3.1 Splitting by Time Discretization

Predictor

Given F k , Xk and U k .

XkC1 WD Xk C U k C 2

2ˇM
F k; U kC 1

2 WD U k C 

2ˇM
F k: (16)

F kC1 D F.tkC1; XkC1/; MU WD U kC 1
2 C 

2ˇM
F kC1: (17)

Combined Navier Stokes

Step 1 (Momentum equation)
Given uk, uk�1, pk , �k , �k�1, MU , !k .
Set u? D 2uk � uk�1, !? D 2!k � !k�1.
Find ukC1 2 Hc.˝c/ such that for all v 2 Hc.˝c/

m.ukC1; v/ C�k.u?I ukC1; v/C �s.ukC1; v/C
2

3
ˇMUkC1 � V C 2

3
ˇI!kC1 � � C �

2
ˇ!? 	 �I!kC1� � � D

�b.pk; v/ Cm.4
3
uk � 1

3
uk�1; v/C �b. 4

3
�k � 1

3
�k�1; v/C

2

3
ˇM MU � V C 2

3
ˇI!k � � � �

2
ˇ!k 	 �I!k� � �: (18)

Step 2 (Computation of pressure correction)

Find �kC1 2 H1.˝c/ such that for all � 2 H1.˝c/

m.r�kC1;r�/ D 1

�
b.�; ukC1/: (19)

Step 3 (Pressure update in rotational form)

Find pkC1 2 L20.˝c/ such that for all q 2 L20.˝c/

m.pkC1; q/ D m.pk C �kC1; q/ � b.q; 2
Re

ukC1/: (20)
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Corrector

Given 
k , Xk , !k , !kC1, U k and U kC1.


kC1 D
	

I� 
2

R



!kC1
�

��1 	
IC 

2
R



!k
�

�


k: (21)

XkC1 D Xk C 

2

�

U k C U kC1� : (22)

The above technique is used to solve the highly coupled, highly nonlinear
system of equations. The presented algorithm decouples the position and the
orientation of the particles (X and
) from the combined Navier–Stokes equations
(u; U; ! and p). These are then further decoupled by a pressure correction projec-
tion method. Thus the philosophy here is to finally split the complex system into a
cascade of simple subproblems rather than using a (maybe more accurate but much
more expensive) monolithic approach.

To be more precise, in order to discretize in time, the time interval .0; T / is
subdivided by discrete time instants: 0 D t0 < t1 < � � � < tN D T . Denote by
kC1 WD tkC1 � tk . For simplicity a fixed time step size  is used: k D  for all
k D 1; : : : N . Moreover, define � D 2

3
 .

Then in each time step Eqs. (12)–(15) are split into three substeps. The first is a
predictor step for the new particle position and velocity, XkC1, MU , respectively. In
the second step values for ukC1, U kC1, !kC1 and pkC1 are computed based on a
BDF2 scheme. The last step is a corrector for XkC1, 
kC1.

The predictor step is a Velocity Verlet method, which is of second order [15, 21]
and the common tool in particle dynamics.

The combined Navier Stokes equations are discretized by a projection method
in rotation form, see [10, 11]. To this end, the time derivative @tu is replaced by a
BDF2 scheme having good stability properties, while the equations for PU and P! are
approximated by Crank-Nicolson differences, respectively.

The corrector uses the Crank-Nicolson scheme for time discretization.

3.2 Spatial Discretization

The core problem in solving the time discretized system are the combined Navier
Stokes equations and in particular Eq. (18). The crucial point in the spatial dis-
cretization is to define a discrete counterpart ofHc.˝c/ and, moreover, the concrete
realization of this non-standard finite element space. A brief description of how to
solve this problem is given in the sequel, a more comprehensive presentation can be
found in [17].

Let T be a triangulation of ˝ . Since we are using the Taylor–Hood element for
velocity and pressure, the basic finite element space for the velocity is given by the
space of piecewise quadratic elements:
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X.˝c/ D
�

.v; V; �/ j v 2 �C0.˝c/
�2
; v 2 �Pk.T /

�2 8T 2 T ;

V 2 R2; � 2 R; v D 0 on �D

�

:

A discrete subspace of Hc.˝c/ is now given by

Xc.˝c/ D
�

.vc; V; �/ 2 X.˝c/j vc D V C � 	 r in P.t/

�

:

For a given time step k the linear Eq. (18) may be rewritten with the bilinear form
a, the corresponding operator A , and the cumulative right hand side g: find u 2
Xc.˝c/ such that for all v 2 Xc.˝c/ it holds

a.u; v/ DW .A u; v/ D .g; v/: (23)

To circumvent the explicit representation of Hc.˝c/, a subspace projection � W
X ! Xc is used. With this operator (23) may be formulated in terms of the standard
finite element space X.˝c/: find Qu 2 X.˝c/ such that for all v 2 X.˝c/ it holds

.A � Qu; �v/ D .g; �v/: (24)

Note that the solution u is now easily found by taking u D � Qu, where Qu is a solution
of Eq. (24). The above system now leads to the linear system of equations for the
nodal vector QU of the form

˘TA˘ QU D ˘TG; (25)

where A is the system matrix corresponding to operator A and ˘ is a matrix
representation of � . We call this method subspace projection method. Note that,
when using iterative solvers, one can bypass to explicitly compute the modified
system matrix ˘TA˘ , but rather just needs to slightly modify the matrix vector
product, because one only has to take into account the action of˘TA˘ on a vector.
Because the matrix˘ is quite simple, its not necessary to store it explicitly. Instead,
a short routine can perform the multiplication of ˘ and ˘T with a vector v. The
following pseudo-code shows this computation.

! Multiplication (u,U,omega)=Pi*(v,V,xi)
subroutine Pmul(v,V,xi,u,U,omega)

! U, omega
do ii=1,npart ! Number of particles

U(:,ii) = V(:,ii)
omega(ii) = xi(ii)

end do
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Fig. 2 Adaptive refined
mesh around a particle. For
an accurate representation it
is useful to refine the mesh on
the particle boundary

! u = rigid body motion in the particle
do i=1,nk ! Number of DOFs

if( isparticle(i) ) then
ii= numpart(i)
r(:)= x(:,i) - xpart(:,ii)
u(1,i) = V(1,ii) - r(2)*xi(ii)
u(2,i) = V(2,ii) + r(1)*xi(ii)

else
u(:,i)= v(:,i)

end if
end do

end subroutine

3.3 Adaptivity

One of the most important issues in simulating particulate flow is the numerical
representation of the particle’s geometry.

In Hu [12] a remeshing technique was used to explicitly follow the geometry in
time, Wan and Turek [22] introduced a mesh deformation technique and Glowinski
et al. [9] used Lagrange multipliers. In contrast to these methods, we use time
dependent adaptively refined/coarsened grids based on the bisection method [1] to
sufficiently resolve the region around the particle (Fig. 2).

The overall algorithm was implemented in the finite element flow solver NAVIER,
for more details see [2].

3.4 Preconditioning

In general, the matrix˘TA˘ (if the kernel would be factored out) is ill conditioned
so that preconditioning is mandatory for an efficient solution strategy.

We developed a preconditioner based on inexact factorization that gave rather
satisfying results, see [18].
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Fig. 3 Sedimentation of
particles in 2D

3.5 Particle Interaction

Efficient evaluation of the particle-particle interactions in Eq. (17) is crucial. For a
large number of particles (more than, say, 1,000) a naive implementation requiring
O.n2/, n the number of dofs, would be prohibitive. Instead we use the Barnes-Hut
algorithm, which reduces the complexity to O.n log.n// with an acceptable loss of
accuracy, see [3].

The idea of the algorithm is to merge the forces created by a group of neighboring
particles into a single force of one pseudo-particle.

In addition to the long range Coulomb forces we also add short range repulsive
forces in order to model particle collisions and avoid mutual penetration of particles.
A similar approach is used for near particle-wall collision.

4 Computational Examples

In this section we present some applications of the method described above.
Quantitative validations can be found in [17]. Here we present further numerical
experiments.

Figure 3 shows a snapshot of a bunch of sedimenting particles (in 2D) under the
influence of gravity.

The next experiment considers the sedimentation of two spherical particles
in a cylindrical domain in 3D. The particles are initially aligned on the center
line, separated by a small distance of a few particle diameters in the starting
configuration. When gravity starts acting one can observe the following situations.

• Both particles start accelerating. There is no interaction between them.
• “Drafting”: after a while the slipstream of the first particle causes the second one

to accelerate a little more.
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Fig. 4 Velocities of two
particles traversing the phases
of
drafting—kissing—tumbling

Fig. 5 Lid driven cavity 3D
with 1,000 particles

• “Kissing”: a near impact is inevitable as the second particle has a higher velocity
than the first one. The slower particle is pushed by the faster one (the force is
transferred by the viscous fluid).

• “Tumbling”: the above situation is unstable. To solve this conflict the slower
particle moves aside, so that the faster particle can pass it. This can be interpreted
as tumbling, when observed in relative coordinates.

These four phases described are displayed in Fig. 4.
The last example is a snapshot of the lid driven cavity in 3D with 1,000 immersed

particles, Fig. 5.
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5 Discussion and Conclusion

A novel finite element method for the simulation of particulate flows was presented.
Its key ingredients are: one domain approach, splitting in time, subspace projection
method to account for the rigid body motion within the particles and time dependent
adaptively refined meshes. The advantages of the method are its easy implementa-
tion and its efficiency. Only few modifications are needed to extend an existing
Navier–Stokes code to simulate particulate flows by this method.
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08, which is gratefully acknowledged.
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Optimized Schwarz Waveform Relaxation
for Nonlinear Systems of Parabolic Type

Florian Häberlein and Laurence Halpern

1 Schwarz Waveform Relaxation Algorithms
for a Linear System

Let L be a partial differential operator, possibly acting on vector functions .x; t/ 7!
u.x; t/ 2 Rd , of the time variable t and the space variable x D .x1; x2/. The
equation to be solved in ˝ 	 .0; T / is

L u D F in ˝ 	 .0; T /; u.�; 0/ D u0 in ˝; Bu D g on @˝: (1)

The domain ˝ is split into subdomains ˝i with possible overlap. Fig. 1 on the left
shows the simplified case of a rectangle ˝ D .A;B/ 	 .E; F / divided into two
rectangles ˝1 D .A; C C L/ 	 .E; F / and ˝2 D .C;B/ 	 .E; F / with overlap
L, this example will be the model case in the paper. On the right is described the
parallel algorithm, via two transmission operators Bj on �j . Boundary conditions
are enforced on the other boundaries, of Dirichlet or Neumann type. A parallel
Schwarz algorithm for elliptic equations was introduced by Lions in [14], extending
the original Schwarz’s domain decomposition algorithm for the Laplace equation
in [16].

P.L. Lions also mentioned the possibility of using the algorithm for time
dependent problem. However, it was recognized and analyzed as a waveform
algorithm (see [13]) only in [7]. The authors defined the Schwarz waveform
relaxation algorithm, which uses as transmission operators Bj � Id, corresponding
to Dirichlet transmission conditions. The convergence was analyzed with various
tools, such as maximum principle, Laplace transform in time. This algorithm enjoys
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Ω1 Ω2

L

Γ1Γ2

t

Luk
1 = F in Ω1 × (0, T )

uk
1(·, 0) = u0 in Ω1, Buk

1 = g on ∂Ω1\Γ1

B1u
k
1 = B1u

k−1
2 on Γ1 × (0, T )

Luk
2 = F in Ω2 × (0, T )

uk
2(·, 0) = u0 in Ω2, Buk

2 = g on ∂Ω2\Γ2

B2u
k
2 = B2u

k−1
1 on Γ2 × (0, T )

Fig. 1 Domain decomposition and Schwarz waveform relaxation algorithm

superlinear convergence over small time intervals, linear convergence over large
time intervals. A more detailed historical account can be found in [10]. On large time
intervals, a Fourier analysis is useful. Considering a small overlap, the boundaries of
the domains can be rejected to infinity, and Fourier transform in the second variable
can be performed. This is the simplest way to proceed, but Fourier series on bounded
intervals can be used as well, though the objects are heavier, see [4] for an example
in structure mechanics. Numerical results show that the parameters obtained through
the analysis in an infinite domain are relevant.

Consider for instance the advection-diffusion reaction problem, with

L u WD @tuC a � ru � ��u: (2)

The algorithm for the error ekj is the same, with vanishing data F and u0. By Fourier
transform in time and x2, with dual variables  and �, the Fourier transforms are
explicitly given by

Oek1 .x1; �; / D �k1.�; /e
L�x
2� .a�f .z//; Oek2 .x1; �; / D �k2.�; /e

x
2� .aCf .z//;

with notations which will remain throughout the paper

z.�; / D i. C a2�/C ��2; f .z/ D
q

a21 C 4�z:

The coefficients �kj are obtained recursively, using the transmission relations. They
are governed by the convergence factor �D , and given in the parallel case by

�D.z; L/ WD e� L
2� f .z/; �kj D �D.z; L/k �0j :

�D is identically equal to 1 when L D 0, so the algorithm is not convergent. For
positive overlap, the high frequencies are damped exponentially. More precisely, for
the rectangle case in Fig. 1, suppose the initial boundary value problem is solved
by finite differences in time and space on a regular grid, with meshes �t and h D
�x1 D �x2. Suppose Dirichlet boundary conditions are enforced on @˝ . Then
the lowest frequency resolved by the grid on �j is �m D �

F�E , corresponding to a
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mode sin. �x2
F�E /, while the highest frequency is �M D �

h
, corresponding to a mode

sin.�x2
h
/. The highest and lowest frequencies in time are defined in the same way,

by m D �
2T
; M D �

�t
.

m D �

2T
; M D �

�t
; �m D �

F �E ; �M D
�

h
; K D z.Œm; M � 	 Œ�m; �M �/:

In this paper, we consider only implicit schemes, with �t and h are comparable.
Then the uniform convergence factor is given by

sup
K

j�D.z; L/j 
 1 � L

2�
Re f .�m; m/:

It tends linearly to 1 when the overlap tends to 0. For reasons of cost and memory,
the overlap is usually a few mesh points only, which implies that the convergence
factor is highly dependent of the mesh size. It is therefore useful to design algorithms
with a more robust convergence behavior.

Schwarz algorithms with Robin transmission conditions were proposed in [15],
together with nonoverlapping subdomains. Optimized Schwarz waveform relaxation
algorithms have afterwards been proposed, with or without overlap, to be able
to accelerate the convergence of the algorithm. They use approximations of the
Dirichlet-to Neumann operator, they are differential in time and in the boundary
variable, and take here the form

Bj u WD .nj /1.�@1u � a1
2

u/C p

2
uC q

2
.@tuC a2@2u � �@22u/: (3)

When q D 0, the operators are called Robin operators, while for q ¤ 0, they
are referred to as Ventcel operators. The coefficients p and q are calculated such
that they optimize the convergence factor of the algorithm in the Fourier variables.
Define a first degree polynomial s.z/ D p C qz 2 P1. The choice of p and q is
a particular case of the best approximation problem in the space Pn of complex
polynomials with degree lower than n:

�.z; s; L/D s.z/� f .z/
s.z/Cf .z/ e

� L
2� f .z/; j�.z�; s�; L/j D inf

s2Pn

sup
z2K
j�.z; s; L/j WD ı�n .L/:

(4)

The analysis of the best approximation problem for the advection-diffusion equation
in one dimension in the Robin case (n D 0) has been made “by hand” in [6]
for m D 0. Further general tools for well-posedness of the best approximation
problem (4) have been set in [1] for the Robin case, and applied to the one-
dimensional Ventcel-Schwarz algorithm. They are being extended in [2] to the 2-D
case with a complete analysis and explicit asymptotic formulae. Well-posedness
of the algorithm and convergence results, including variable coefficients and non
planar boundaries in the nonoverlapping case, can be found in [11].
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2 Optimized Coefficients for the Linear Reactive Transport
System

We introduce a simplified system which has been used as a model in F. Häberlein’s
thesis on CO2 sequestration. For the linearized system, we present optimized
coefficients in closed form, extending previous results in [2]. A proof is given in
the one-dimensional overlapping case, which is new. These coefficients will be used
in the nonlinear case in Sect. 3.

Consider the system of equations for u D .u; v/ in ˝ 	 .0; T /,

@t .�u/C r�.��ruC au/�R.u; v/ D 0; @t .�v/CR.u; v/ D 0; (5)

where ˝ is a bounded domain in Rd and u and v denote the concentration of the
mobile and fixed species, respectively. � > 0 is the porosity which is supposed to
be constant in time, � � 0 is the scalar diffusion-dispersion coefficient, a 2 Rd is
the Darcy velocity. All physical properties are supposed to be given and constant
in time. R.u; v/ is a nonlinear function representing the chemical coupling term.
The final goal is to be able to simulate general situations where the kinetic reaction
rate is fully nonlinear. We present in Sect. 3 a test case with a semilinear model
R.u; v/ D k.v � �.u//; where k > 0 represents the reactive surface and � is
a nonlinear function modeling an adsorption process, see Fig. 4, left. The domain
decomposition process relies on obtaining transmission conditions leading to a fast
convergence of the iterative approach. Therefore we consider first a linear coupling
term R.u; v/ D k.v � cu/ where k > 0 represents the reactive surface and c > 0

an equilibrium constant. The linear case models a chemical reaction that reaches its
equilibrium point at v D cu. By the same method of approximating the Dirichlet to
Neumann map, Ventcell transmission conditions can be obtained:

Bj � u WD ˙.�@1 � a1
2
/ uC p

2
uC q

2
.�@t C a2@2 � �@22 C kc/ u� q

2
kv: (6)

The convergence factor is still defined by (4), with z replaced by

Z.�; ; c/ D z.�; �/C kc
i�

i� C k : (7)

Z.�; ; c/ appears as a perturbation of the function z.�; �/ introduced previously,
and will be treated as a linear perturbation in the parameter c. The domain of
optimization is K.c/ D Z.Œm; M � 	 Œ�m; �M �; c/.

Warning: in this text, the proofs are based very often on asymptotic considera-
tions. To alleviate the notations, we introduce the notation Q w h or Q D _.h/ if
there exists C ¤ 0 such that Q 
 Ch. The analysis below is an extension of that
made in the case c D 0 described above. The formulas include the case c D 0. The
important theoretical results in [1, 2] apply here, to give
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1. Existence of solutions for the best approximation problem, overlap or not.
2. Uniqueness for small L;�t and h, in the Robin case n D 0.
3. Uniqueness for L D 0, small �t and h, in the Ventcel case n D 1.
4. For n D 0 and 1, consider the real function

F.s; L/ D sup
Z2K.c/\f<Z�0g

j�.Z; s.Z/;L/j : (8)

If it has a local minimum in Pn, it is the global minimum.

The last property will be decisive for the approximate computation of the best
parameters.

Shortcuts are defined in one dimension by fmDf .Z.0; m; c//; fM D
f .Z.0; M ; c//.

Theorem 1. For positive c, small h w �t , if L D 0 or L w h, the best approx-
imation problem (4) in K.c/ has a unique solution, whose coefficients are given
in the 1-D case asymptotically in terms of xm D <.f .m//, xM D <.f .M // 

q

2���

�t
:

Dimension Method Overlap Parameters .p�; q�/ ı� � 1� 2 xm
p�

1 n D 0, Robin L D 0 p�
0 .0/ D

q

xmjfM j2�xM jfmj2
xM�xm

1�_.�t 14 /
1 n D 0, Robin L > 0 p�

0 .L/ � p�
0 .0/ 1�_.�t 14 /

1 n D 0, Ventcel L � 0 p1.L/
� � x 3

4
mx

1
4

M ; q�
1 .L/ � 2�p�

xmxM
1�_.�t 18 /

In two dimensions, define, for ja2j�m > m, 0 as the largest real root of

�

�

1C c k2

k2 C 2�2
�

D ja2j�m;

the real function g1.s/ D k2

s C k2 ;

�1 D a2 .jaj
2 C 4�kc.1 � g1.�m///
8�2�m.1C cg1.�m//

�
p

.jaj2 C 4�kc.1 � g1.�m///2�C 16�2.�m/2.1C cg1.�m//2

8�2�m.1C cg1.�m//
;

Zw D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Z.�1; m/ if �m � j�1j � �M ;
Z.0;�sign.a2/�m/ if j�1j � �m

and <f .0;�sign.a2/�m/�<f .m;�sign.a2/�m/;

Z.m;�sign.a2/�m/ otherwise:
xw D <Zw:
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The best coefficients for the Robin-Schwarz algorithm (n D 0) are

Overlap Parameter p� ı� � 1� 2 xw
p�

L D 0 p�
0 .0/ �

q

2��xw�

�t
1�_.�t 12 /

L > 0 p�
0 .L/ � 3

q

�x2w
2L

1�_.L 1
3 /

Define the function

g.t/ D 2t �pt2 C 1
t2 C 1 ;

and for Q < Q0 � 0:36900, t2.Q/ is the only root of g.t/ D Q larger than

t0 D
p

54C 6p33=6 � 1:567618292,

P.Q/ D
8

<

:

q

1Cpt2.Q/2 C 1. 1p
t2.Q/2C1

CQ/ if Q < Q1 � 0:1735;
1CQ if Q > Q1:

(9)

Defining C D�t=h, the best coefficients for the Ventcel-Schwarz algorithm (nD 1)
are

Overlap p�
1 q�

1 ı� � 1� 2 xw
p�
1

L D 0 p�
1 .0/ �

8

ˆ

ˆ

<

ˆ

ˆ

:

4

q

�x3w�

h
if Cxw < 2,

4

r

8�xw�

hC .P. 2
Cxw

//2
if Cxw > 2,

q�
1 .0/ � 2p�

1 .0/�

hxw
1�_.h 1

4 /

L > 0 p�
1 .L/ � 5

q

�x4w
2L

q�
1 .L/ � 2�x2w

p�
1 .L/

3 1�_.L 1
5 /

Proof. It relies on the use of the explicit formulations in [2] for c D 0, together with
a continuation argument. We present in detail the analysis for the Robin transmission
condition with overlap. Define

R0.; s/ D
ˇ

ˇ

ˇ

ˇ

s � f .Z/
s C f .Z/

ˇ

ˇ

ˇ

ˇ

2

; R.; s; L/ D R0.; s/e�L<f .Z/=� : (10)

Lemma 1. In one dimension, for M � 1 and L 1 with L w ��M , the minmax
problem (4) in K.c/ with n D 0 has a unique solution .s�0 .L/; ı�0 .L//.

• If 0 < � < 3
4
, it is the unique solution of the equation

R.m; s; L/ D R.C; s; L/; (11)
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Fig. 2 Geometric
representation of the function
F defining K.c/, for
c D 1; k D 0 (magenta),
c D 1; k D 5 (blue),
c D 10; k D 5 (green). The
direction of increasing  is
indicated by the arrow (Color
figure online)

where C.s; L/ is the unique local maximum point of R.�; s; L/. It is asymptoti-
cally given by

s�0 .L/ 
 3

q

.<.f .m///2L
2�

ı�0 .L/ 
 1 � 2 3

q

<.f .m//L
2�

; (12)

• If 3
4
< � � 1, it is the unique solution of the equation

R.m; s; L/ D R.M ; s; L/: (13)

It is asymptotically given by

s�0 .L/ 
 s�0 ; ı�0 .L/ 
 ı�0 : (14)

Remark 1. Note that if � is close to 0, then ı�0 .L/ D 1 �_. 3
p
L/, which gives the

best behavior, independent of �t . For the Dirichlet case, we would have

sup
K

j�D.; L/j D 1 �_.L/:

If � D 1, which is the case if the overlap contains a few grid points, then the
overlap does not improve the convergence. We will see that it is not the case in
higher dimension.

Proof of the Lemma. Introduce the curve F W  2 RC 7! f ./ 2 C. The domain
K.c/ is F .Œm; M �/. The proof has four steps.

1. Study the graph of F , see Fig. 2.
2. Existence and uniqueness of a minmax reached at .s�0 .L/; ı�0 .L// follows from

the theoretical results above.
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3. Prove that if L is small, s is large, and Ls is small, the function  7! R.; s; L/

has a unique stationary point C 
 s=L� corresponding to a maximum.
4. Prove that for small L, there is a unique Ns�0 .L/ such that R.m; s; L/ D
R.C; s; L/ or R.M ; s; L/, and that it satisfies the assumptions in the previous
item.

5. Prove that Ns�0 .L/ is a strict real minimum point of F.�; L/.
6. Conclude by theoretical results that Ns�0 .L/ D s�0 .L/.

1. The real and imaginary parts of f , x./ and y./, are defined by:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

x2 � y2 D a21 C 4�
kc2�2

k2 C 2�2 ;

2xy D 4���1C k2c
k2C2�2

�

;

x � xm > 0; y � 0:

(15)

In the .x; y/ plane, the curve F lies between the real axis and the bisectrix .y D x/.
For further investigations, the derivatives of x and y are needed. To simplify the
notations, introduce

! D �; g1.s/ D k2

s C k2 ; g2.s/ D 1 � cg1.s/C 2cg1.s/
2;

and differentiate (15) to obtain the derivatives of x and y, in terms of x, y, g1, and
g2 as:

(

x2 � y2 D a21 C 4�kc.1 � g1.!2//
2xy D 4�!.1C cg1.!

2//
;

�

@x

@y

�

D 2��

x2 C y2

0

B

B

@

2c

k
!g21.!

2/x C g2.!2/y

�2c
k
!g21.!

2/y C g2.!2/x

1

C

C

A

: (16)

The zeros of @x exist only at points  with g2.!2/ < 0, which happens only if

c > 8 and g1.!2/ 2� Qg11; Qg21Œ��0; 1Œ, with Qg11 D c�pc2�8c
4c

and Qg21 D cCpc2�8c
4c

.
Accordingly @y vanishes only at points  with g2.!2/ > 0, which happens if
c > 8 and g1.!2/ ¤2� Qg11 ; Qg21Œ, or c < 8.

To solve @x D 0, it will be easier to rewrite it in terms of g1.!2/ < 0 only.
To do so, multiply the equation @x D 0 successively by x and by y, then replace
xy D 2�!.1C cg1/. In the resulting equation replace !2g1.!2/ D k2.1�g1.!2//,
and finally insert these values into the equation x2 � y2 D a21 C 4�kc.1 � g1.!2//,
to obtain that @x./ D 0 is equivalent to
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g1.!
2/ is a root of Q in . Qg11; Qg21/; with

Q.X/ D �4c2.c C 2b C 2/X4 C c2.3c C 4b C 8/X3 � c.3c C 4b C 4/X2

CcX � 1:

Computing the derivatives of Q, it is easy to see that Q has a maximum point in
.0; 1/. Since Q has alternate coefficients, it cannot have negative zeros. Compute
Q.0/ D �1, Q.1/ < 0. Q. Qgj1 / D 4c2. Qgj1 /3.1 � Qgj1 /.1 C c Qgj1 / > 0. This proves
thatQ has two roots in .0; 1/, outside . Qg11; Qg21/, which indeed correspond to zeros of
@y. This implies that x is an increasing function of  , y0 vanishes for two values of
 , and the curve has the behavior depicted in Fig. 2.

2. Rewrite the convergence factor R with L D 2�` as

R0.; s/ D .x � s/2 C y2
.x C s/2 C y2 ; R.; s; L/ D R0.; s/e�2`x

Compute for fixed s the derivative of R with respect to  .

@R.; p;L/ D .@R0.; s/ � 2`@xR0.; s//e�2`x D 2��S.; p; `/

jf j2jf C pj4

with

S.; s; `; c/ D �

4s.x2 � y2 � s2/ � 2`jf 2 � s2j2�
�

2c

k
!g21x C g2y

�

C8sxy
�

�2c
k
!g21y C g2x

�

:

Suppose ` small, s large, and `s small. For c D 0, S is a bi-quadratic polynomial in
the x variable

QS.x; s; `/ D �4`x4 C 4.`b2 C s/x2 � `b2.b2 � 2s2/C 2s.b2 � s2/:
QS has two positive roots, which behave asymptotically as x� 
 s and xC 


p

s=`,

corresponding to two values of  , � 
 s2

2��
 C 
 s

2�`�
. Since R tends to 0 at

infinity, � corresponds to a minimum, and C to a maximum of R.
We now extend the solution to positive c. A careful computation shows that

@cS.˙; s; `; c/ 
 16s�x˙ ¤ 0:

Therefore, by the implicit function theorem, in a neighborhood of 0, 0 � c � c0,
the root � (resp. C) continues in a minimum point �.c/, (resp. maximum point
C.c/) with ˙.0/ D ˙. They have the same asymptotic behavior C.c/ 
 s=2�`
(resp. �.c/ 
 s2=2�) independent of c, and one can iterate the argument, showing
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for any c the existence of a function C.c/ 
 s
2�`�

(resp. �.c/ 
 s2

2�
) with

S.˙.c/; s; `; c/ D 0. They remain indeed global maximal and minimal points:
suppose that there exists another root  of S , and examine its asymptotic behavior.
Since @x./ > 0, it cannot be at finite distance, since then we would have
S.; p; `; c/ 
 �4s3x0 < 0. Suppose now that  w `�� with � > 0. Then the
principal part of S is:

�4`.x.//4 C 4p.x.//2 � p3.p`C 2/

whose roots are equivalent to those of S , proving that there is no other extremal
point than ˙.c/. Then

sup
2K

R.; s; L/ D
(

max.R.m; s; L/;R.C; s; L// if C < M ;
max.R.m; s; L/;R.M ; s; L// if C > M ;

3. Compute now @sR.; s; L/ D .@sR.; s; 0//e
�`x . It is easy to see that

R.m; s; L/ is an increasing function of s, R.C; s; L/ a decreasing function of s,
and R.M ; s; L/ has a minimum reached for s D jf .M /j.

If � < 3
4
, asymptotic considerations show that there exists a Ns�0 such that

R.m; s; L/ �R.C; s; L/ D 0, and that

sup
2K

R.; s; L/ D
(

R.C; s; L/ for s < Ns�0 ;
R.m; s; L/ for s > Ns�0 :

The other case is similar.
4. To prove that it is a strict local minimum, proceed as in [2] and evaluate

asymptotically the sign of @pR.C; Ns�0 .L/; L/ 	 @pR.m; Ns�0 .L/; L/ < 0:

2.1 Performances of Different Transmission Conditions

In this test case in ˝ D .0; 1/ 	 .0; 1/, the diffusion parameter is � D 1, advection
is a D .1 � 10�2; 5 � 10�2/, the reactivity coefficient is set to k D 5 with an
equilibrium parameter of c D 10. The finite volumes method is described in [8].
The discretization parameters are �t D �x D �y D 2 � 10�2. The domain ˝
is split into ˝1 D Œ0; 0:5 C L� 	 Œ0; 1� and ˝2 D Œ0:5; 1� 	 Œ0; 1�. A minimal
overlap of size L D �x is used. A random initial guess is imposed on the interface
�1. The results are plotted in Fig. 3. The expected behavior takes place. The best
convergence behaviour is obtained with optimised Ventcel conditions with overlap
which reach the error precision of 10�10 in only six iterations.
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Fig. 3 Iterations versus error of the domain decomposition iterates

3 Newton-Schwarz Waveform Relaxation
for the Nonlinear System

The Schwarz waveform relaxation algorithm was used for the semilinear heat
equation @tu � c2.x/@xxuC f .u/ D 0 in [5] . Under the condition that f 0.x/ � a,
the same convergence behavior as in the linear case was exhibited and analyzed.
Optimized Schwarz waveform relaxation algorithm, with nonlinear transmission
conditions were first introduced in [11], for the semilinear wave equation. In [3], the
semilinear advection-diffusion reaction equation in two dimensions was considered,
@tu � ��u C f .u/ D 0, where f is constrained only to be in C2.R/, with
f .0/ D 0. Nonoverlapping Robin-Schwarz and Ventcell-Schwarz where proposed
and analyzed. The main difficulty in this case is that each iterate in Fig. 1 is
solution of a nonlinear problem, whose solution has to be defined properly, and
has its own time of existence T nj . The sequence .T nj /n is decreasing, and it must
be shown that there is a lower bound T� for these times. Then the convergence is
achieved inside .0; T�/. From a numerical point of view, a nonlinear system has to
be solved in each subdomain at every step, which has been implemented with P1
finite elements in space, and a linearly implicit Euler scheme in time. It turns out
that the requirement of small time interval given by the existence analysis is not
compelling (see also [11]). Furthermore nonlinear transmission condition where the
coefficients p and q depend on the iterates through the formulas of Sect. 1 were
successfully implemented.

For the nonlinear reactive transport system, with suitable assumptions on the
coefficients, the same methods apply, for the existence and convergence analysis.
However, acceleration must be obtained. This has been done in F. Häberlein’s thesis
[8], where several scenarii where studied. First, writing the Schwarz iteration in an
interface substructuring manner, it is seen as a fixed point iteration for the interface
problem, preconditioned by the domain decomposition with transmission conditions
given by the Bj . It will be called Classical approach. For steady elliptic problems,
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the resolution of the interface problem is accelerated by a Krylov algorithm (see
[17]). In this time-dependent non-linear frame, it is treated by a Newton-Krylov
algorithm (called Nested Iteration Approach). Each iteration requires the resolution
of smaller time-dependent nonlinear systems in the subdomains. This approach has
been successfully implemented and described in [9]. An interesting other approach
is called Common iteration approach. It is a Newton-Schwarz Krylov approach (see
[12]) with the Jacobian explicitly computed.

U kC1 D U k C h; @th � ��hC f 0.U k/h D �.@tU k � ��U k C f .U k//:

The linear problem above is solved by an optimized Ventcell-Schwarz domain
decomposition algorithm, accelerated by Krylov. The approach requires in every
iteration of the outer loop (indices in n) to set up a right hand side-vector
that demands to solve two linear problems in the subdomains. Moreover, in the
matrix-vector multiplication inside the Krylov-method, only linear problems in the
subdomains are evaluated. No nested nonlinear iterative method is needed. For this
reason and in contrast to the approach above, this approach was called “Common
Iteration Approach” (CIA) due to the common iterative approach of the nonlinear
character of the monodomain problem. The name “Newton-Schwarz-Krylov” can
be used in order to explain the order of application of the different numerical tools:
The global problem is first attacked by a Newton-type method. At every iteration,
the resulting linear problem is decomposed by a Schwarz-type algorithm where the
problem is reduced to the interface variables. The resulting linear system is then
solved by a Krylov-type method.

The next simulation shows nonoverlapping Robin-Schwarz simulations in
domain ˝ D Œ0; 1� 	 Œ0; 1� � R2 with the subdomains ˝1 D Œ0; 0:5� 	 Œ0; 1�
and ˝2 D Œ0:5; 1� 	 Œ0; 1�. The considered time window is t 2 Œ0; 1�. Physical
parameters are � D 1, � D 1:5, a D .5 � 10�2; 1 � 10�3/. The nonlinear coupling
term is defined by R.u; v/ D k.v � �.u// where

�.u/ D QsKLu

.1CKLu �KSu/.1�KSu/

is the BET isotherm law with k D 100, QS D 2, KS D 0:7 and KL D 100

(cf. Fig. 4, left). BET theory is a rule for the physical adsorption of gas molecules
on a solid surface and serves as the basis for an important analysis technique
for the measurement of the specific surface area of a material. One observes
the quadratic convergence of the new approaches since they are Newton-based,
the quadratic convergence is observed late in the history since the initial guess
(randomly chosen) is far from the exact solution. The classical approach shows only
a superlinear convergence, also in this case, the superlinear character appears late in
the convergence history.
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Domain Decomposition for Boundary Integral
Equations via Local Multi-Trace Formulations

Ralf Hiptmair, Carlos Jerez-Hanckes, Jin-Fa Lee, and Zhen Peng

1 Introduction

This article is devoted to a formal derivation and discussion of a class of boundary
integral equation (BIE) formulations that have recently been introduced for second-
order transmission problems. We chose to dub this class “local multi-trace BIE
formulations” (MTF), which is inspired by two key features of its members:

(i) The methods rely on at least two pairs of trace data as unknowns on interfaces.
The accounts for the attribute “multi-trace”.

(ii) Formally, they are constructed by taking into account transmission conditions
pointwise or, at least, on parts of sub-domain boundaries, which is indicated by
the “local” attribute.

Initially, the development of these new methods was pursued independently by
numerical analysts and in computational electrical engineering, driven by different
objectives. In numerical analysis, the focus was on composite structures, that is,
partial differential equations with piecewise constant coefficients. There, the main
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motivation was to find first-kind boundary integral formulations that, after Galerkin
boundary element discretization, are amenable to operator preconditioning, a
possibility not offered by classical approaches, see [3, Sect. 4]. In engineering,
researchers were guided by a domain decomposition paradigm, aiming to localize
boundary integral equations for electromagnetic wave propagation at artificial
interfaces for the sake of parallelization and block-preconditioning.

Both research efforts have been fairly successful: on the one hand, a comprehen-
sive theoretical understanding of the simplest representative of a local multi-trace
BIE formulations for Helmholtz transmission problem could be achieved in [8].
In a wider context the method is also covered in [3]. On the other hand, a host
of impressive applications of multi-trace methods is documented in computational
electromagnetism. A surface integral equation domain decomposition method based
on multi-trace formulation is presented in [13, 15] for time-harmonic electromag-
netic wave scatterings from homogeneous targets. The treatment of general bounded
composite targets is discussed in [14].

This article looks at MTF from a mathematical point of view, but, inspired
by the developments in the engineering community, adopts a different and more
general perspective compared to [8]. This work is mainly conceptual and does
not aim to pursue any comprehensive analysis. Rather it is meant to chart new
ideas and directions of research. We have not included any numerical results nor
are we going to discuss details of Galerkin discretization by means of boundary
elements. Detailed studies of convergence of multi-trace BIE for 2D acoustic
scattering discretized by means of low-order boundary elements (BEM) are reported
in [8, Sect. 5]. Concerning the application of multi-trace methods for solving
electromagnetic scattering problems, convergence studies can be found in [14] for
scattering at both single homogeneous objects and composite penetrable objects.
Several complex large-scale simulations are covered in [15] and demonstrate the
capability of these methods to model multi-scale electrically large targets.

2 Transmission Problems

Let ˝i � Rd , d D 2; 3, i D 0; : : : ; N ,
be disjoint open connected Lipschitz
“material sub-domains” that form a par-
tition in the sense that R3 D ˝0 [
� � � [ ˝N . Among them only ˝0 is
unbounded. Two adjacent sub-domains
˝i and ˝j are separated by their com-
mon interface �ij, whose union forms the
skeleton ˙ . For N > 1 the skeleton ˙
will usually not be orientable, nor be a
manifold.



Multi-Trace DD for BIE 45

Given diffusion coefficients �i > 0, i D 0; : : : ; N , we focus on the model
transmission problem that seeks Ui 2 H1

loc.˝i/, i D 0; : : : ; N , solving

LiUi WD � div.�i gradUi/C Ui D 0 in ˝i ; (1a)

Ui j�ij � Uj
ˇ

ˇ

�ij
D 0 ; �i

@Ui

@ni

ˇ

ˇ

ˇ

ˇ

�ij

C �j
@Uj

@nj

ˇ

ˇ

ˇ

ˇ

�ij

D 0 on �ij ; (1b)

plus suitable decay conditions at infinity for U � Uinc, where the “incident field”
Uinc is an entire solution of L0Uinc D 0 on ˝0 [11, Chap. 8]. The weak formulation
of (1) is posed on the Sobolev space H1.R3/.

The transmission conditions (1b) connect two kinds of canonical traces on both
sides of interfaces. These traces are the Dirichlet trace TD;i , and Neumann trace
TN;i , defined for smooth functions on˝i through

TD;i Ui WD Ui j@˝i ; TN;i Ui WD �i gradUi � ni j@˝i : (2)

They can be extended to continuous operators [16, Sects. 2.6 & 2.7] 1

TD;i W H1.˝i/! H
1
2 .@˝i / ; TN;i W H.�;˝i /! H�

1
2 .@˝i / : (3)

Then, (1b) can be recast as

�

TD;i
TN;i

�

Ui D
�

I 0

0 �I
��

TD;j
TN;j

�

Uj on �ij ; (4)

for which we embrace the compact notation Ti Ui D XTj Uj with obvious
meanings of the operators Ti and X.

Remark 1 (Scattering Transmission Problems). In fact, multi-trace boundary inte-
gral equations were first developed for acoustic and electromagnetic scattering
problems and we emphasize that the ideas of this article will naturally apply to
them, see [3].

3 Basic Multi-Trace Formulation

For the sake of lucidity, in this section we largely restrict ourselves to the situation
N D 2, as sketched in Fig. 1 for d D 2. For the purpose of presenting the local
multi-trace formulation this case is generic and completely captures the ideas and
essence of the methods.

1As usual, H.�;˝/ WD fU 2 H1.˝/ W �U 2 L2.˝/g.
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3.1 Preliminaries

The starting point for deriving multi-trace boundary integral equations is the
characterization of traces of local solutions of (1) as the range of a (compound)
boundary integral operator known as Calderón projector, see [3, Sect. 2.3], [16,
Sect. 3.6], and [9, Sect. 5.6]. For the Calderón projector associated with the PDE
LiUi D 0 on ˝i we write

Pi W H 1
2 .@˝i / 	H� 12 .@˝i /! H

1
2 .@˝i/ 	H� 12 .@˝i / ; (5)

and recall that Pi is connected to the four key boundary integral operators for
second-order scalar PDEs according to

Pi D Ai C 1
2
I ; Ai D

��Ki Vi
Wi K0i

�

; (6)

where we have adopted the notations Ki , Vi , Wi , K0i from [16, Sect. 3.1] for the
double layer, single layer, hypersingular, and adjoint double layer boundary integral
operators on @˝i , respectively. The Calderón projectors owe their importance to the
following fundamental theorem [3, Theorem 2.6].

Theorem 1. If and only if Ui solves LiUi D 0 in ˝i (and satisfies exponential
decay conditions at1 for i D 0), then .I � Pi /Ti Ui D 0.

Here, in the interest of compact notation, we relied on the total trace operator
Ti WD

�TD;i
TN;i

�

. Thus, if U is a solution of (1), we conclude from Theorem 1

��Ai C 1
2
I
�

Ti U D 0 ; i D 1; 2 ;
��A0C 1

2
I
�

T0.U � Uinc/ D 0 :
(7)

3.2 Derivation

The derivation of the basic MTF casts both (7) and the transmission conditions (4)
into weak form. To do so, we need bilinear pairings 2

Œui ; vi �@˝i WD hu; �i@˝i C hv; �i@˝i ; ui WD
 

u

�

!

; vi WD
 

v

�

!

2 T .@˝i / ; (8)

2Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neumann traces.
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Fig. 1 Geometric situation
“N D 2” in 2D for derivation
of multi-trace boundary
integral formulations. Black
lines indicate the sub-domain
boundaries, magenta lines
stand for Cauchy traces, of
which there are two on each
interface in the multi-trace
setting. Red dots mark
junction points (Color figure
online)

on the local Cauchy trace spaces3

T .@˝i / WD H 1
2 .@˝i / 	H� 12 .@˝i / : (9)

In (8), angle brackets designated the bi-linear duality product between H
1
2 .@˝i /

and H� 12 .@˝i /, which reduces to an L2-pairing for sufficiently regular functions.
Then (7) is equivalent to


��Ai C 1
2
I
�

Ti U ; vi
�

@˝i
D r.h.s. 8vi 2 T .@˝i / ; i D 0; 1; 2 ; (10)

with “r.h.s.”, here and below, representing a linear form on the trial space that
provides the excitation.

A possible weak form the transmission conditions (4) can sloppily be stated as

h

Ti U �XTj U ; vi j�ij
i

�ij
D 0 8 “vi 2 T .@˝i /” : (11)

The attribute “sloppy” and the quotation marks hint at fundamental problems
haunting (11) and those lurk in the failure of the bi-linear pairing Œ�; ���ij to be well
defined for restrictions of generic traces to �ij .

Temporarily sweeping these difficulties under the rug (and restricting ourselves
to the situation N D 2 illustrated in Fig. 1), we now combine (10) and (11) into

3By Cauchy trace spaces we mean combined Dirichlet and Neumann traces.
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�

A0� 12 I
�

T0 U ; v0
�

@˝0
� �01




T0 U �XT1 U ; v0j�01
�

�01

��02



T0 U � XT2 U ; v0j�02
�

�02
D r.h.s. 8 “v0 2 T .@˝0/” ;


�

A1� 12 I
�

T1 U ; v1
�

@˝1
� �10




T1 U �XT0 U ; v1j�10
�

�10

��12



T1 U � XT2 U ; v1j�12
�

�12
D r.h.s. 8 “v1 2 T .@˝1/” ;


�

A2� 12 I
�

T2 U ; v2
�

@˝2
� �21




T2 U �XT1 U ; v2j�21
�

�21

��20



T2 U � XT0 U ; v2j�20
�

�20
D r.h.s. 8 “v2 2 T .@˝2/” ;

(12)

where the �ij are non-zero weights. These are equations satisfied by the local
Cauchy traces Ti U , i D 0; 1; 2. Next, we treat these traces as unknowns and call
them u1, u2, and u3 which converts (12) into a system of (variational) boundary
integral equations. It deserves the label “multi-trace”, because the unknowns are
separate Cauchy traces for each sub-domain, which yields two pairs of unknown
traces on each interface, twice the number used in most other boundary integral
formulations, see Fig. 1. Adopting a compact notation, (for N D 2) the problem is
posed on the multi-trace space

MT .˙/ WD T .@˝0/ 	 T .@˝1/ 	T .@˝2/ : (13)

The special variant of (12) proposed in [8] is recovered by setting �ij D � 12 . To
see, why this is a special choice, note that, for instance,




u0; v0j�01
�

�01
C 
u0; v0j�02

�

�02
D Œu0; v0�@˝0 ; u; v 2 T .@˝0/ :

Thus, we achieve a massive cancellation of terms and arrive at the basic multi-trace
formulation: seek .u0; u1; u2/ 2MT .˙/ such that

ŒA0 u0; v0�@˝0 � 1
2




X u1j�01 ; v0j�01
�

�01
� 1

2




X u2j�02 ; v0j�02
�

�02
D r.h.s.

8 “v0 2 T .@˝0/” ;

ŒA1 u1; v1�@˝1 � 1
2




X u0j�10 ; v1j�10
�

�10
� 1

2




X u2j�12 ; v1j�12
�

�12
D r.h.s.

8 “v1 2 T .@˝1/” ;

ŒA2 u2; v2�@˝2 � 1
2




X u1j�21 ; v2j�21
�

�21
� 1

2




X u0j�20 ; v2j�20
�

�20
D r.h.s.

8 “v2 2 T .@˝2/” ;

(14)

where, again, the quotation marks acknowledge difficulties besetting the use of
generic traces as trial and test functions. The variational formulations for general
N can be found in [3, Sect. 6] and [8, Sect. 3.2.3].
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3.3 Analysis

Let us take a closer look at the coupling terms in (14). For ui 2 T .@˝i / and
vj 2 T .@˝j / we find

X ui j�ij ; vj
ˇ

ˇ

�ij
2 H 1

2 .�ij / 	H� 12 .�ij / :

Unfortunately,H
1
2 .�ij / and H� 1

2 .�ij / are not in duality with pivot space L2.�ij /.

More precisely, .ui ; vj / 7!
h

X ui j�ij ; vj
ˇ

ˇ

�ij

i

�ij
is not bounded on T .@˝i/ 	

T .@˝j /, which renders (14) meaningless without the quotation marks.
As a remedy, more regular test functions have to be used, namely functions whose

restrictions to �ij belong to the L2.�ij /-dual of H
1
2 .�ij / 	 H� 12 .�ij /, which is

known to coincide with QH 1
2 .�ij / 	 QH� 12 .�ij /, where the latter spaces are spaces

of functions, whose extensions by zero from �ij to @˝j are still valid functions in

H
1
2 .@˝j /	H� 12 .@˝j /. We remind that QH 1

2 .�ij /	 QH� 12 .�ij / is a dense subspace of

H
1
2 .�ij /	H� 1

2 .�ij / with strictly stronger norm, see [11, Chap. 3] and [8, Sect. 2].
Thus, proper test spaces in (14) are

QT .@˝j / D
O

i 6Dj
QH 1
2 .�ij / 	 QH� 1

2 .�ij / ; j D 0; 1; 2 ; (15)

since the bilinear form m associated with (14) turns out to be bounded as a mapping

m WMT .˙/ 	 gMT .˙/! R ;

where gMT .˙/ is defined in analogy to (13) this time based on QT .@˝j /.
A key observation concerns the block skew-symmetric structure of (14) due to

h

X ui j�ij ; vj
ˇ

ˇ

�ij

i

�ij
D �

h

X vj
ˇ

ˇ

�ij
; ui j�ij

i

�ij
;

ui 2 QT .@˝i/;

vj 2 QT .@˝j / :
(16)

In light of the well known ellipticity of the boundary integral operators [16,
Sect. 3.5.1]

9C > 0 W j 
Aj vj ; vj
�

@˝j
j � C vj





2

T .@˝j /
8vj 2 T .@˝j / ; (17)

(16) immediately implies the MT .˙/-ellipticity of m:

9C > 0 W jm.�!v ;�!v /j � C






�!
v






2

MT .˙/
8�!v 2 gMT .˙/ : (18)
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From (18) we conclude existence and uniqueness of solutions of (14) with trial
space gMT .˙/. Not straightforwardly, however, because the lack of continuity of
m on MT .˙/ 	 MT .˙/ bars us from appealing to the Riesz representation
theorem. Fortunately, as elaborated in [8, Sect. 3.2.8], we can rely a result by Lions
[10, Chap. III, Theorem 1.1] along with the density of gMT .˙/ in MT .˙/:

Theorem 2. The variational problem (14) on MT .˙/ 	 gMT .˙/ possesses a
unique solution in MT .˙/ that depends continuously on the right hand side.

Remark 2. The result of Theorem 2 crucially hinges on the ellipticity (18), which
can be taken for granted only for the choice �ij D � 12 . For general weights �ij
existence and uniqueness of solutions of (12) is an open problem.

Remark 3. For scattering problems the sesqui-linear form of (14) will be merely
coercive. In this case uniqueness of solutions has to be established by other
arguments, see [8, Sect. 3.2.6], and existence follows from Fredholm theory.

4 Transformed Multi-Trace Formulations

4.1 Optimal Transmission Conditions

An important motivation for the development of multi-trace BIE was the desire to
obtain linear systems of equations that readily lend themselves to additive Schwarz
(“block Jacobi”) preconditioning. On the level of the transmission problem (1),
this amounts to solving local boundary value problems on ˝i using Dirichlet or
Neumann boundary data from the previous iterates on the adjacent sub-domains.
However, the transmission conditions (1b) may not lead to satisfactory convergence.

To understand how alternative transmission conditions can boost an additive
Schwarz iteration, let us examine the very simple situation with N D 1,˙ D � WD
@˝0 D @˝1. There is a special transmission condition that effects convergence in
one step! To state it, we introduce the Dirichlet-to-Neumann (DtN) operators

DtN0;DtN1 W H 1
2 .� /! H�

1
2 .� / (19)

and their inverses, the Neumann-to-Dirichlet (NtD) operators

NtD0;NtD1 W H� 1
2 .� /! H

1
2 .� / ; NtDi D DtN�1i : (20)

The subscript indicates whether they are associated with a boundary value problem
LiU D 0 on ˝0 or ˝1, respectively. Recall that DtN operators, sometimes called
Steklov–Poincaré operators, return the Neumann trace of a solution of a boundary
value problem for prescribed Dirichlet data [11, Chap. 4]. The DtN operators
associated with bounded subdomains are linear, but DtN0 is merely affine due to



Multi-Trace DD for BIE 51

the “nonzero boundary condition at infinity” imposed through Uinc. In any case, the
linear parts of the operators DtNi and NtDi are symmetric and positive.

Based on these operators, we introduce modified transmission conditions across
� :

TD;1 U � NtD1.TN;1 U / D TD;0 U C NtD1.TN;0 U / ; (21a)

DtN0.TD;1 U /C TN;1 U D DtN0.TD;0 U / � TN;0 U : (21b)

These transmission conditions are perfectly symmetric with respect to ˝0 and ˝1,
since, thanks to NtDi D DtN�1i , we can rewrite (21) in the equivalent form

DtN1.TD;1 U /� TN;1 U D DtN1.TD;0 U /C TN;0 U ; (22a)

TD;1 U CNtD0.TN;1 U / D TD;0 U � NtD0.TN;0 U / : (22b)

Invertibility of the involved operators yields another equivalence

(21) , (22) ,
�

TD;1 U D TD;0 U ;

TN;1 U D �TN;0 U ;
(23)

which confirms that the original transmission conditions (4) are implied by our
modified versions.

Following the policy of Sect. 3.2, we aim for an MTF based on (21) and first cast
the transmission conditions into weak form

Œ.ICM/T1 U � .ICM/X.T0 U /; v�� D 0 8v 2 T .� / ; (24)

m
Œ.I �M/T0 U � .I �M/X.T1 U /; v�� D 0 8v 2 T .� / ; (25)

with an affine linear operator

M WD
�

0 �NtD1

DtN0 0

�

W T .� /! T .� / : (26)

Note that in the above manipulations, we have used XM D �MX. This yields the
generalized multi-trace formulation: seek u0; u1 2 T .� / such that


��A0C 1
2
I
�

u0; v
�

�
C �01 Œ.I�M/u0 � .I �M/X u1; v�� D 0 ; (27a)

�10 Œ.ICM/u1 � .ICM/X u0; v�� C

��A1C 1

2
I
�

u1; v
�

�
D 0 ; (27b)
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for all v 2 T .� /. Again, we may go after cancellation by setting �01 D �10 D � 12 ,
so that (27a) is simplified to: seek u0; u1 2 T .� / such that

� 
.A0� 12M/u0; v
�

�
C 1

2
Œ.I �M/X u1; v�� D 0 ; (28a)

1
2
Œ.ICM/X u0; v�� �




.A1C 1
2
M/u1; v

�

�
D 0 ; (28b)

for all v 2 T .� /. This linear variational problem may be solved by means of the
following (undamped) additive Schwarz method: given approximations u.k/0 ; u

.k/
1 2

T .� /, k D 0; 1; : : :, compute u.kC1/0 ; u
.kC1/
1 2 T .� / as solutions of

�
h

.A0� 12M/u.kC1/0 ; v
i

�
C 1

2

h

.I�M/X u
.k/
1 ; v

i

�
D 0 ;

1
2

h

.ICM/X u
.k/
0 ; v

i

�
�
h

.A1C 1
2
M/u

.kC1/
1 ; v

i

�
D 0 :

8v 2 T .� /

(29a)

(29b)

Lemma 1. Assuming unique solvability of the linear variational problem (29), and
u
.0/
0 D u

.0/
1 D 0, the iteration will become stationary after one step, with T0 U D

u
.1/
0 and T1 U D u

.1/
1 , where U is the solution of the transmission problem (1).

Proof. Consider the boundary value problem posed on ˝0:

� div.�0 gradU .kC1//C U .kC1/ D 0 in ˝0 ; (30a)

DtN1.TD;0 U .kC1//C TN;0 U .kC1/ D DtN1.TD;1 U .k//� TN;1 U .k/ on � ;

(30b)

DtN0.TD;0 U .kC1//� TN;0 U .kC1/ D DtN0.TD;1 U .k//C TN;1 U .k/ on � ;

(30c)

U .kC1/ � Uinc satisfies decay conditions at1 ; (30d)

and assume that it has a solution. Then, recalling Theorem 1 and the definition of M,
we find that with u

.k/
1 WD T1 U

.k/ the Cauchy traces u
.kC1/
0 WD T0 U

.kC1/ provide
a solution of (29a). However, in general (30) will fail to be a meaningful boundary
value problem, because too many boundary conditions are imposed on � . Yet, if
U .k/ D 0, then the boundary conditions (30b) and (30c) become

DtN1.TD;0 U .1//C TN;0 U .1/ D 0 on � ; (31a)

DtN0.TD;0 U .1// � TN;0 U .1/ D DtN0.0/ on � : (31b)

Notice that (31b) is redundant, satisfied by any solution of (30a) complying
with (30d). What remains in terms of effective boundary conditions on � is (31a),
which represents a well-posed impedance boundary condition and guarantees the
existence of a unique solution U .kC1/. The Cauchy trace u

.1/
0 WD T0 U

.k/ of that
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solution will satisfy

�
h

.A0� 12M/u.1/0 ; v
i

�
D 1

2

" 

0

DtN0.0/

!

; v

#

�

; (32)

which agrees with the variational problem (29a) to be solved in the first step of the
Schwarz iteration with initial guess u.0/1 D 0.

Similar considerations apply to (29b). Here we start from the boundary value
problem with redundant boundary conditions

� div.�1 gradU .kC1//C U .kC1/ D 0 in ˝1 ; (33a)

DtN0.TD;1 U .kC1//C TN;1 U .kC1/ D DtN0.TD;0 U .k// � TN;0 U .k/0 on � ;

(33b)

DtN1.TD;1 U .kC1// � TN;1 U .kC1/ D DtN1.TD;0 U .k//C TN;0 U .k/ on � :

(33c)

If this has a solution u.kC1/, its Cauchy trace u
.kC1/
1 WD T1 U

.kC1/ will solve (29b)

provided that u.k/0 WD T0 U
.k/. Again, if U .k/ D 0, the boundary conditions on �

are converted into

DtN0.TD;1 U .1//C TN;1 U .1/ D DtN0.0/ on � ; (34a)

DtN1.TD;1 U .1//� TN;1 U .1/ D 0 on � ; (34b)

and the second is always fulfilled and can be dropped. This results in a well posed
elliptic boundary value problem and the Cauchy trace u

.1/
1 WD T1 U

.kC1/ solves

h

.A1C 1
2
M/u

.1/
1 ; v

i

�
D 1

2

" 

0

DtN0.0/

!

; v

#

�

; (35)

which amounts to the second linear problem faced in the first step of the Schwarz
method (29) starting from zero.

By the definition of the Dirichlet-to-Neumann operators, the combined solutions
of the boundary value problems (30a), (31a), (30d) and (33a), (34a) provide a
solution of the transmission problem (1). Thus u.1/0 and u

.1/
1 from (32) and (35) are

the Cauchy traces of that solution. Here we rely on the assumption of the Lemma
that ensures uniqueness of u.1/0 and u

.1/
1 . Thus they are the desired final solutions and

the Schwarz iteration will become stationary after one step. �

As a consequence of this Lemma, the additive Schwarz iteration (29) converges
after two steps, thanks to the transmission conditions (21)/(22), which we call
“optimal” for this reason. Unfortunately, the “optimal transmission conditions”
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destroy positivity of the resulting multi-trace operator, which turned out a key
property in Sect. 3.3, see (18). We still find

Œ.I�M/X v1; v0�� D � Œ.ICM/X v0; v1�� 8v0; v1 2 T .@˝/ ;

but the ellipticity of the diagonal operators, e.g.,

A0� 12M D
� �K0 V0 C 1

2
NtD1

W0 � 1
2
DtN0 K00

�

; (36)

is lost. Hence, rigorous results about existence and uniqueness of solutions of (28)
are still missing even in the caseN D 1. This is an open problem for future research.

Moreover, the optimal transmission conditions (21) require the realization of
DtN and NtD operators. Their exact implementation is not an option for practical
schemes. Thus, in the next section we consider local approximations for the optimal
transmission conditions.

4.2 Local Impedance Transmission Conditions

The considerations of the previous section suggest that forN > 1 we use transmis-
sion conditions similar to (21) locally on the interface �ij , where DtNj ;DtNi etc.
are replaced by suitable approximations. The resulting so-called local impedance
transmission conditions across the interface �ij can be written in the form

Bij .TD;i U /C TN;i U D Bij .TD;j U / � TN;j U ; (37a)

Bj i .TD;i U /� TN;i U D Bj i .TD;j U /C TN;j U : (37b)

where Bij and Bj i are invertible (affine) linear operators of “DtN-type” mapping

H
1
2 .�ij / ontoH� 12 .�ij /. Parallel to the switch from (21) to (22), invertibility of the

involved operators yields another equivalence

TD;i U C Cij .TN;i U / D TD;j U � Cij .TN;j U / ; (38a)

TD;i U � Cj i .TN;i U / D TD;j U C Cj i .TN;j U / : (38b)

where Cij D B�1ij W H�
1
2 .�ij / ! H

1
2 .�ij / and Cj i D B�1j i W H�

1
2 .�ij / !

H
1
2 .�ij /. We can then write the weak form of the local impedance transmission

conditions as:




.IC Sij /Tj U � .IC Sij /X.Ti U /; v
�

�ij
D 0 8v 2 QT .�ij / ; (39)

m
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.I � Sij /Ti U � .I � Sij /X.Tj U /; v
�

�ij
D 0 8v 2 QT .�ij / ; (40)

with an affine linear operator

Sij WD
�

0 Cij

�Bj i 0

�

W T .�ij /! T .�ij / : (41)

Retracing the steps detailed in Sect. 3.2 based on (39), we end up with the local
multi-trace variational problem, here stated for N D 2: seek .u0; u1; u2/ 2
MT .˙/ such that

ŒA0 u0; v0�@˝0 C 1
2
ŒS01u0; v0��01 C 1

2
ŒS02u0; v0��02 �

1
2
Œ.IC S01/X u1; v0��01� 1

2
Œ.IC S02/X u2; v0��02 D 0 ;

ŒA1 u1; v1�@˝1 C 1
2
ŒS10u1; v1��01 C 1

2
ŒS12u1; v1��12 �

1
2
Œ.IC S10/X u0; v1��01� 1

2
Œ.IC S12/X u2; v1��12 D 0 ;

ŒA2 u2; v2�@˝2 C 1
2
ŒS20u2; v2��02 C 1

2
ŒS21u2; v2��12 �

1
2
Œ.IC S20/X u0; v2��02� 1

2
Œ.IC S21/X u1; v2��12 D 0 ;

(42)

for all .v1; v2; v3/ 2 gMT .˙/. Of course, local pairings on interfaces involve
restrictions onto those interfaces even if not apparent from the notation. As
explained in Sect. 3.3, this entails using the more regular test space gMT .˙/.

An additive Schwarz method analogous to (29) may be applied to (42) as an
iterative solver or preconditioner. The corresponding undamped iteration seeks
.u
.kC1/
0 ; u

.kC1/
1 ; u

.kC1/
2 / 2MT .˙/ such that
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for all .v1; v2; v3/ 2 gMT .˙/, where a superscript .k/ indicates the use of
approximations from the previous iteration. As is clear from the considerations of
Sect. 4.1 the choice of Bi , Bj will directly affect the convergence of the Schwarz
iteration applied to the multi-trace variational problem. A systematic study still has
to be conducted.

Remark 4. So far, the development and analysis of multi-trace methods have
focused on acoustic and electromagnetic wave propagation problems, see [3,
Sect. 1.2]. There the simplest choice for approximate local Dirichlet-to-Neumann
operators seems to be a first order complex Robin transmission condition (TC),
introduced in [4], where the operators are chosen in the form

Bij D Bj i D ��ij {	 ; �ij 2 R : (44)

This choice makes the Schwarz iteration converge quickly for propagating eigen-
modes, though the evanescent modes fail to converge. Further work has sought to
improve the Robin TCs to ensure convergence of both propagating and evanescent
modes [1, 2]. Of particular interest are the so-called optimized Schwarz methods,
where the coefficients used in the transmission conditions are obtained by solving
min-max optimization problems for half-space model problems. These include the
optimized Schwarz method with two-sided Robin TCs [7] and optimized second
order transmission conditions [6]. Schwarz methods with high order transmission
conditions have also been developed for high frequency time-harmonic Maxwell’s
Equations. We mention recent works [5, 12]. The former one is based on the
optimized Schwarz methods. The latter develops a true second order TC together
with a global plane wave deflation technique to further improve the convergence for
electrically large problems.
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Recent Advances in Domain Decomposition
Methods for the Stokes Problem

Hyea Hyun Kim, Chang-Ock Lee, and Eun-Hee Park

1 Introduction

We consider the following incompressible Stokes problem: Find .�!u ; p/ 2
ŒH1

0 .˝/�
d 	 L20.˝/ such that

�4�!u Crp D �!f ;
r � �!u D 0; (1)

where
�!
f 2 ŒL2.˝/�d and d is the dimension of the problem domain˝ , i.e., d D 2

or 3. The domain ˝ is assumed to be polygonal/polyhedral. The space H1
0 .˝/ is

the set of square integrable functions up to first weak derivatives with zero trace on
the boundary of ˝ and L20.˝/ is the set of square integrable functions with zero
average over the domain˝ .

To find an approximate solution, a pair of inf-sup stable finite element spaces,
. OV ; OP0/, is introduced such that OV � ŒH1

0 .˝/�
d and OP0 � L20.˝/. In this work, we

assume that functions in the velocity space OV are continuous. On the other hand,
we can choose OP0 as discontinuous functions or as continuous functions across
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element boundaries. A general framework of domain decomposition algorithms will
be considered for both cases of pressure functions.

There have been considerable researches on domain decomposition methods for
the Stokes problem. Algorithms based on iterative substructuring methods have been
developed in Marini and Quarteroni [15], Bramble and Pasciak [1], Rønquist [17],
and Le Tallec and Patra [10]. Balancing Neumann–Neumann algorithms were
studied by Pavarino and Widlund [16] and Goldfeld [5]. Later FETI-DP and BDDC
methods were developed in the works by Li [11] and by Li and Widlund [13].
What’s common in all these previous studies is that the indefinite Stokes problem
is reduced to a positive definite system using the benign subspace approach. The
benign subspace approach requires a compatibility condition of the velocity on
the subdomain boundary as well as some primal pressure unknowns. Compared to
elliptic problems, nonoverlapping domain decomposition algorithms for the Stokes
problem needed careful and quite complicated construction of the coarse problem.

In recent works, more advanced algorithms were developed to address smaller
and more practical coarse problems. In the works by Kim et al. [7, 8], a coarse
problem with only primal velocity unknowns was applied to the Stokes problem
with a scalable condition number bound for both dual and primal forms of domain
decomposition methods. In that approach a lumped preconditioner is employed.
In the work by Sistek et al. [18], extensive numerical experiments were carried
out for the primal form of the Stokes problem with continuous pressure finite
element functions. Similarly to [7, 8], only primal velocity unknowns are employed
in their approaches. The dual form was further extended to the continuous pressure
functions with a scalable condition number bound in the work by Tu and Li [12].

In the following, we introduce a general framework of domain decomposition
methods for the Stokes problem and present both primal and dual domain decom-
position algorithms along with estimate of their condition numbers. Throughout the
paper, C is a generic positive constant independent of any mesh parameters and the
number of subdomains.

2 Domain Decomposition Algorithms

We consider the pair of finite element spaces . OV ; OP0/. Before we proceed the
construction of domain decomposition algorithms, we relax the average free
condition on the pressure functions and consider the pair . OV ; OP /, where the pressure
functions in OP are not necessarily average-free over the domain ˝ . By relaxing
the average-free condition on the pressure functions, the functions in OP are fully
decoupled across element boundaries when discontinuous pressure functions are
considered. For that case, we thus have no global pressure component but have one
null component on the resulting algebraic system.

We introduce a non-overlapping subdomain partition f˝ig and decompose the
function spaces into
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V D
N
Y

iD1
Vi ; P D

N
Y

iD1
Pi ;

where Vi andPi are restrictions of OV and OP into˝i , respectively. We note that when
the pressure functions in OP are discontinuous P is identical to OP . In the following,
we assume that the pressure functions in OP are discontinuous and we later consider
the case of continuous pressure functions.

2.1 Dual Formulation

In this subsection, we will present dual formulation of the Stokes problem following
FETI-DP methods [3, 4]. After we decouple the functions in OV , we select some
primal unknowns among the velocity unknowns on the subdomain boundary
and enforce strong continuity on them. We use the notation �!u ˘ for the primal
unknowns and use the notation �!u � for the remaining decoupled unknowns on the
subdomain interface. We call �!u � dual unknowns. We denote by �!u I the velocity
unknowns interior to each subdomains. We denote the subspaces with unknowns�!u I , �!u �, and �!u ˘ by VI , V�, and V˘ , respectively and denote the subspace with
unknowns .�!u I ;

�!u �;
�!u ˘/ by QV , which has velocity unknowns that are partially

coupled across the subdomain interfaces. In the dual formulation, continuity on the

decoupled dual unknowns �!u � is enforced weakly using Lagrange multipliers
�!
�

and the following algebraic system will be solved:

Find .�!u I ;
�!u �; p;

�!u ˘;
�!
� / 2 .VI ; V�; V˘ ; P;�/ such that
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(2)

Here � is the space of Lagrange multipliers � and J� is the Boolean matrix
which implements weak continuity on the dual velocity unknowns �!u �. In the
above algebraic system, the unknowns .�!u I ;

�!u �; p/ are fully decoupled across
subdomain interfaces and can be eliminated by solving local Stokes problems and
the unknowns�!u ˘ then can be eliminated by solving a global coarse problem. After
the elimination process, we obtain the resulting equation on �:

Fd� D d: (3)
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Here we stress that our formulation uses only primal velocity unknowns in contrast
to the previous approaches [11,13] which required both velocity and pressure primal
unknowns satisfying a certain inf-sup stability.

The matrix Fd is symmetric and semi-positive definite on �. We note that Fd
has null components due to fully redundant Lagrange multipliers �full

J T� �full D 0

and relaxing the average-free condition on the pressure unknowns. The null
component �null caused by relaxing average-free condition can be calculated by
substituting .�!u I ;

�!u �; p;
�!u ˘; �/ D .0; 0; 1p; 0; �null/ into (2) to obtain

BT
�1p C J T� �null D 0

and by using J�D�J
T
� D I , �null is given by

�null D �J�D�B
T
�1p:

Here we note that D� is the diagonal matrix with its entries determined by

D�.x/ D 1

Nx

;

where Nx is the number of subdomains sharing the node x.
We introduce the subspace

�c D f� 2 � W � ? nul l.J T� /; �T �null D 0g;

where Fd is positive definite. In our dual formulation, the equation (3) is solved
on the subspace �c by the preconditioned conjugate gradient method with the
following lumped preconditioner

M�1d D J�D�K��D�J
T
� :

About the performance of the proposed preconditioner, we obtain the following
condition number estimate [6, 8, 9]:

Theorem 1. In 2D when �!u ˘ are selected as edge averages and in 3D when �!u ˘

are selected as face averages, we obtain that

	.M�1d Fd / � C H
h

and in 2D when �!u ˘ are selected as values at corners we obtain that
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	.M�1d Fd / � C H
h

log.1C H

h
/;

where H=h is the number of elements across each subdomain.

We note that the same bound was obtained for the elliptic problems with the lumped
preconditioner and the same set of primal unknowns, see [14].

2.2 Primal Formulation

We will now develop the primal counterpart to the dual formulation. We recall the
pair of finite element spaces in the dual formulation, . QV ;P /, where the velocity
functions in QV are partially coupled across the subdomain interfaces and the pressure
functions in P are fully decoupled across the subdomain interfaces. We use the
notations

QA WD
� QK QB
QBT 0

�

; QJ WD �J� 0
�

;

where QA is the matrix obtained from the Galerkin approximation of the Stokes
problem for the pair of finite element spaces . QV ;P / and QJ is the zero extension
of the operator J� on the pair . QV ;P /. Using these notations, the dual algebraic
system in (3) is written into

QJ QA�1 QJ T � D d:

For the primal counterpart to the dual formulation, we introduce the pair . OV ;P /
and obtain the algebraic equation in the primal form:

Find . O�!u ; p/ 2 . OV ;P / such that

� OK OB
OBT 0

�

 O�!u
p

!

D
 O�!
f

0

!

: (4)

By using the extension

QR W OV ! QV ;

we can express the primal form in terms of block matrices appeared in the dual
form,

� QRT 0
0 I

�� QK QB
QBT 0

�� QR 0

0 I

�

 O�!u
p

!

D
 O�!
f

0

!

: (5)
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We use the notation OA for the matrix in the primal form,

OA D
� OK OB
OBT 0

�

:

For the primal form, using the expression in (5) we design its preconditioner M�1p
so that M�1p OA and M�1d Fd have the same set of eigenvalues except zero and one.
The form of the preconditionerM�1p is obtained as

M�1p D
� QRTD 0

0 I

�� QK QB
QBT 0

��1 �
D QR 0

0 I

�

;

whereD is a diagonal matrix given by

D D
�

D� 0

0 0

�

:

We note that the null component in the primal form is . O�!u ; p/ D .0; 1/ and the
matrix OA is indefinite. The matrix equation (4) of the primal form is solved by
GMRES methods combined with the preconditioner M�1p on the subspace which

is orthogonal to the null component . O�!u ; p/ D .0; 1/. About the convergence of the
GMRES iteration, we proved the following results:

Theorem 2. The eigenvalues of M�1p OA and M�1d Fd are the same except zero and
one.

Theorem 3. The GMRES iteration applied to the primal form converges and its
convergence is determined by " and d , where

" D
p

�max=�min � 1
p

�max=�min C 1

and d is purple the dimension of invariant subspaces of eigenvalues ofM�1p OA.

By Theorem 2 and Theorem 1, all nonzero eigenvalues of M�1p OA is real and
positive. Application of M�1p to the primal form results in a two-level nonoverlap-
ping Schwarz method, which applies an indefinite preconditioner to an indefinite
problem in contrast to the dual form where a positive definite matrix is solved with
the preconditioned conjugate gradient method. Under the assumption thatM�1p OA is
diagonalizable, the error reduction factor in the GMRES iteration is determined by

kekk2 � C"kke0k2;

where " is defined in Theorem 3 and ek is the error in the k-th iterate.
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3 Application to Continuous Pressure Functions

Algorithms in the previous section were developed for the pair . OV ; OP/, where
pressure functions in P are discontinuous across element boundaries. We will apply
the algorithms to the case with continuous pressure functions. In contrast to the
case with discontinuous pressure functions, we have not yet obtained the bound
of eigenvalues. Instead we perform numerical experiments under various settings
to see promising features of our algorithms applied to the case with continuous
pressure functions.

We consider the pair . OV ; OP / where both velocity and pressure functions are
continuous. Here we again relax the average free condition on the pressure functions
as in the previous section. After we decompose the domain ˝ into nonoverlapping
subdomains f˝ig, we obtain the decoupled velocity and pressure spaces and denote
them V and P . Among those decoupled velocity unknowns on the subdomain
interfaces we select some primal unknowns and enforce strong continuity on them.
We denote the resulting partially coupled velocity space by QV . For the pressure
functions, we can do similarly and denote the partially coupled pressure space by
QP . About the pressure functions, we may not select the primal unknowns. For that

case, we still use the same notation QP , which is identical to P .
After introducing these functions spaces, we obtain algebraic system in the

primal form as

� OK OBT

OB 0

�

 O�!u
Op

!

D
 O�!
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0

!

and in the dual form as
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;

where �u and �p are Lagrange multipliers for implementing weak continuity on
decoupled velocity unknowns and decoupled pressure unknowns, respectively,

QJu
Q�!u D 0; QJp Qp D 0:

We introduce the following notations:

QA D
� QK QBT

QB 0

�

; QJ T D
 QJ Tu 0

0 QJ Tp

!

;

Qx D
� Qu
Qp
�

; Ox D
� Ou
Op
�

; � D
�

�u

�p

�

:
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In addition, We introduce an extension operator

QRT W OV 	 OP ! QV 	 QP :

The algebraic system in the primal form is then written as

QR QA QRT Ox D Of

and the algebraic system in the dual form after elimination process is written as

QJ QA�1 QJ T � D g:

For each algebraic system, we introduce preconditioners

M�1p D QRD QA�1D QRT ; M�1d D QJD QAD QJ T ;

whereD is a diagonal matrix with its entries defined similarly as before.
For the preconditioned matrices, M�1p QR QA QRT and M�1d QJ QA�1 QJ T , we can prove

the same result in Theorem 2. On the other hand, when the pressure functions are
discontinuous the resulting matrix QJ QA�1 QJ T of the dual form is indefinite. Analysis
of the condition number bound can not be done as in the previous section.

For the case with the continuous pressure functions, we can present the discrete
problem with the following block matrices
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:

For that case, an improvement can be done by reducing the discrete problem into
the problem on the interface unknowns .�!u � ; p� / and then by applying the dual and
primal algorithms to the reduced interface problem. The reduction on the interface
problem is called static condensation. We then observe that our dual form and primal
form applied to that interface problem are similar to a FETI-DP algorithm with
the Dirichlet preconditioner and a BDDC algorithm [2], respectively. Compared
to the work by Li and Tu [12], our formulation employs Lagrange multipliers ��
to enforce continuity on the decoupled pressure p� , while p� itself is treated as
Lagrange multipliers in their work. Compared to [18], our primal formulation is
identical to that approach when only primal velocity unknowns are selected.

In numerical experiments, we present performance of the primal and dual forms
regarding to the selection of primal unknowns and the static condensation.
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Table 1 2D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing H=h and a fixed subdomain partition Nd D 3 � 3, WOS
(without static condensation), WS (with static condensation)

vc vc C ve vc C veC pc
H=h (WOS/WS) (WOS/WS) (WOS/WS)

2 45/27 40/25 14/14
3 58/24 46/24 22/15
4 69/25 59/21 28/16
5 78/24 66/23 35/16
6 85/25 71/23 41/17
7 93/27 88/23 47/17
8 94/26 90/22 48/18

Table 2 2D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing Nd and a fixed local problem size H=h D 4, WOS (without
static condensation), WS (with static condensation)

vc vcC ve vc C veC pc
Nd (WOS/WS) (WOS/WS) (WOS/WS)

32 69/25 59/21 28/16
42 92/30 71/24 29/16
52 108/34 70/26 30/16
62 117/37 69/24 30/15
82 138/44 67/26 30/16
102 146/44 69/27 30/16
122 147/48 67/26 30/15

4 Numerical Results

We present numerical results when the algorithm for the primal form is applied
to the Stokes problem discretized with . OV ; OP /, where both the velocity and
pressure functions are continuous. We refer [6–9] for numerical experiments of the
algorithms in Sect. 2, when discontinuous pressure functions are considered.

In the following numerical experiments, we consider P2.h/ � P1.h/ for 2D
problems and Q2.h/ � Q1.h/ for 3D problems. The domain ˝ is square/cubic
and is decomposed into uniform square/cubic subdomains. In the GMRES iteration,
the stop condition is when the relative residual norm is reduced by a factor of
106. For primal unknowns, we denote by vc, ve, and vf the velocity unknowns
at corners, velocity averages over edges, velocity averages over faces, respectively,
and we denote by pc the pressure unknowns at corners.

In Tables 1 and 2, for the 2D Stokes problem we present iteration counts
depending on various sets of primal unknowns and the static condensation. As we
can see, the static condensation improves a lot the iteration counts with increasing
the local problem sizeH=h while adding more primal unknowns such as ve and pc
does not give much improvement. With increasing the number of subdomains, we
can observe scalability for the cases with larger set of primal unknowns, vcC ve or
vc C ve C pc.
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Table 3 3D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing H=h and a fixed subdomain partition Nd D 33, WOS (without
static condensation), WS (with static condensation)

vc vcC vf vc C vf C pc
H=h (WOS/WS) (WOS/WS) (WOS/WS)

2 16/73 56/55 40/35
3 79/75 70/55 60/40
4 98/76 77/51 73/43
5 118/74 97/52 94/43
6 134/73 120/53 117/44
7 143/75 146/54 142/45
8 149/77 171/55 167/47

Table 4 3D Stokes problem: iteration counts depending on the set of primal unknowns and the
static condensation with increasing Nd and a fixed local problem size H=h D 4, WOS (without
static condensation), WS (with static condensation)

vc vcC ve vc C veC pc
Nd (WOS/WS) (WOS/WS) (WOS/WS)

33 79/75 70/55 60/40
43 109/94 77/52 67/41
63 203/147 79/51 68/41
83 227/169 76/50 65/41
93 301/205 93/52 87/44
103 298/212 93/52 87/44
123 288/223 93/52 87/43

In Tables 3 and 4, for the 3D Stokes problem we present iteration counts
depending on various sets of primal unknowns and the static condensation. We
observe similar behaviors as in the 2D case. The static condensation seems to be
necessary to obtain good performance increasing the local problem size. About
the selection of primal unknowns, in 3D case the additional primal unknowns
vf improve the scalability on the number of subdomains much better than ve in
2D case. Adding pc does not give much improvement on the performance when
increasing the number of subdomains and when increasing the local problem size.

To analyze the performance of our method depending on the set of primal
unknowns and the static condensation, we plot eigenvalue distribution of the
preconditioned system matrix. In Fig. 1, the eigenvalue distributions in 2D case
are presented for various sets of primal unknowns and for the cases with and
without the static condensation. Among the cases without the static condensation,
we observe that all eigenvalues are real and positive for the set of primal unknowns
with vc C ve C pc. Adding ve, the eigenvalues become more clustered near one
while adding pc does not show much improvement. About the effect of the static
condensation, we see that the eigenvalues become less clustered near zero and more
clustered near one. For the cases with the static condensation, we stress that the
real part of most nonzero eigenvalues are positive numbers and away from zero.
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In Fig. 2, we plot the eigenvalue distributions for the 3D Stokes problem. We
observe similar behaviors as in the 2D case. To summarize, when pressure functions
in OP are continuous our algorithm with the set of primal unknowns vc C vf and
with the static condensation gives good performance for the 3D case and adding pc
seems to be not necessary to improve the performance.
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On an Adaptive Coarse Space and on Nonlinear
Domain Decomposition

Axel Klawonn, Martin Lanser, Patrick Radtke, and Oliver Rheinbach

1 Introduction

We consider two different aspects of FETI-DP domain decomposition methods [8,
23]. In the first part, we describe an adaptive construction of coarse spaces from
local eigenvalue problems for the solution of heterogeneous, e.g., multiscale,
problems. This strategy of constructing a coarse space is implemented using a
deflation approach. In the second part, we introduce new domain decomposition
approaches for nonlinear problems. These methods are based on a decomposition of
the nonlinear problem before linearization.

2 A Deflation Method

The coarse space of iterative substructuring methods such as FETI-DP or BDDC
methods [3, 8, 23] can be enhanced by additional constraints using projections;
see, e.g., [14]. The solution of a symmetric positive (semi-)definite system F� D
d using the deflation method [19] also known as projector preconditioning [6],
consists of the computation of � from
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A. Klawonn (�) • M. Lanser (�) • P. Radtke (�)
Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany
e-mail: axel.klawonn@uni-koeln.de; martin.lanser@uni-koeln.de; patrick.radtke@uni-koeln.de

O. Rheinbach (�)
Institut für Numerische Mathematik und Optimierung, Fakultät für Mathematik und Informatik,
Technische Universität Bergakademie Freiberg, Akademiestr. 6, 09596 Freiberg, Germany
e-mail: oliver.rheinbach@math.tu-freiberg.de

J. Erhel et al. (eds.), Domain Decomposition Methods in Science and Engineering XXI,
Lecture Notes in Computational Science and Engineering 98,
DOI 10.1007/978-3-319-05789-7__6,
© Springer International Publishing Switzerland 2014

71

mailto:oliver.rheinbach@math.tu-freiberg.de
mailto:patrick.radtke@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
mailto:axel.klawonn@uni-koeln.de


72 A. Klawonn et al.

by the conjugate gradient method using a projection of the form P D
U.U TFU/�1U TF and a preconditionerM�1. It is equivalent to solving F� D d by
conjugate gradients using the symmetric preconditionerM�1PP D .I � P/M�1.I �
P/T : With � WD PF�1d the solution �� of the original problem is then computed
as �� D �C �: If we include the computation of � into the iteration, we obtain the
balancing preconditioner [7,17]M�1BP D .I �P/M�1.I �P/T CU.U T FU/�1U T :

We then obtain the solution directly without an additional correction �.
For details on the deflation method or the balancing preconditioner applied to the

FETI-DP or BDDC method, see [14].
For a new coarse space for FETI-DP methods applied to almost incompressible

linear elasticity in 3D implemented by deflation, see [11].

3 Coarse Spaces from Local Eigenvalue Problems

Let ˝ � R2; be a bounded polyhedral domain, let @˝D � @˝ be a closed subset
of positive measure, and @˝N WD @˝ n @˝D be its complement. We impose
homogeneous Dirichlet and general Neumann boundary conditions on these two
subsets, respectively, and introduce the Sobolev space H1

0 .˝; @˝D/ WD fv 2
H1.˝/ W v D 0 on @˝Dg. We consider the piecewise linear conforming finite
element approximation of the scalar diffusion problem:

Find u 2 H1
0 .˝; @˝D/, such that a.u; v/ D f .v/ 8v 2 H1

0 .˝; @˝D/: Here,
we use a.u; v/ WD R

˝
�.x/ru � rv dx and f .v/ WD R

˝
f v dx C R

@˝N
gNv ds;

where gN is the boundary data defined on @˝N . We assume �.x/ > 0 for x 2 ˝
and that � is piecewise constant on ˝ . As a second model problem, we consider
the problem of linear elasticity. For the compressible case we use the standard
variational formulation to find a displacement u 2 .H1

0 .˝; @˝D//
2; such that

a.u; v/ D f .v/ 8v 2 .H1
0 .˝; @˝D//

2; where a.u; v/ WD R

˝
G.x/".u/ W ".v/ C

G.x/ˇ.x/div.u/div.v/dx: The material parameters G and ˇ will be expressed by
G D E

1C� and ˇ D �
1�2� ; using Young’s modulus E and Poisson’s ratio �: The

finite element space is denoted by V h. We decompose ˝ into N nonoverlapping
subdomains ˝i; i D 1; : : : ; N , where each ˝i is the union of shape-regular and
triangular finite elements with element nodes on the boundaries of neighboring
subdomains matching across the interface � WD .[NiD1@˝i / n @˝ . The diameter
of a subdomain˝i is Hi or genericallyH WD maxi Hi .

Our goal is to solve multiscale, heterogenous problems with coefficient distribu-
tions as shown in Fig. 1 efficiently using the FETI-DP or BDDC method. Here, we
have highly varying coefficients inside subdomains.

In the following, we will use a new approach to obtain independence of the
coefficient jumps by solving local eigenvalue problems and enriching the coarse
space with eigenvectors. For other approaches, designed for certain classes of
coefficients; see, e.g., [13, 22]. Similar approaches have been used for Schwarz
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Fig. 1 Microstructures obtained from electron backscatter diffraction (EBSD/FIB). Courtesy of
Prof. Dr.-Ing. Jörg Schröder, Essen, Germany, originating from a cooperation with ThyssenKrupp
Steel. We have set the coefficient E1 D 1 for white and E2 D 1eC 06 for black. An interpolated
value is used for the different shades of gray. Left: gray scale image. Right: binary image. See
Table 6 for the numerical results

methods in [4, 5, 9]. Another approach to create adaptive coarse spaces was
introduced in [18].

Let E ij be an edge between the subdomains ˝i and ˝j and let S.i/
E ij ;�

be the
Schur complement that results after eliminating all variables except of the dual
displacement degrees of freedom on the edge. Let s.i/

E ij ;�
.u; v/ WD uT S.i/Eij ;�

v be the

corresponding bilinear form and letmE ij ;�.u; v/ WD
R

E ij �u � v ds: In the case where
the Poincaré constant depends on a large jump in the coefficients, we solve the
following generalized eigenvalue problem on the edge: Find u 2 V h.E ij / such that

s
.i/

E ij ;�
.u; v/ D �mE ij ;�.u; v/ 8v 2 V h.E ij /: (1)

We do not need to solve this problem for all but only for the smallest eigenvalues and
corresponding eigenvectors. Let the eigenvalues 0 D �1 � : : : � �nEij

be sorted
in ascending order. For a given natural number L � nEij and for every subdomain,

we define the projection I .l/L v WD
PL

kD1 mE ij ;�.u
.l/

k ; v/u
.l/

k ; l D i; j; where u.l/k
are the eigenvectors of (1) corresponding to the eigenvalues �k . In our FETI-DP
algorithm and the corresponding condition number estimate, we need to force the
projected jumps across the interface to be zero to obtain I .i/L v

.i/ D I
.i/
L v

.j / and

I
.j /
L v.i/ D I

.j /
L v.j /. Let v.i/

E ij
be the restriction of v.i/ to the edge E ij . To guarantee

this equality, we enforce the constraintmE ij ;�.u
.l/

k ; v
.i/

E ij
�v.j /

E ij
/ D 0 for k D 1; : : : ; L

and l D i; j . We enrich our coarse space with the eigenvectors multiplied with the
mass matrix corresponding to mE ij ;� and extended by zero on the remaining part of
the interface as columns of U . We do this for each subdomain, for each edge of the
subdomain, and for each eigenvector of the generalized eigenvalue problem for that
edge with an eigenvalue smaller than a chosen tolerance Toleig.

The next theorem is proven in [15] under certain technical assumptions.
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Fig. 2 Domain decomposition in nine subdomains (left). The coefficient distribution is depicted
for one channel (middle) and three channels (right). Here, black corresponds to a high coefficient
and white corresponds to � D 1 (middle/right)

Theorem 1. The condition number for our FETI-DP method satisfies

	. OM�1F / � C
	

1C log
	�

h

��2
�

1C 1

��LC1

�

;

where OM�1 D M�1PP or OM�1 D M�1BP . Here, C > 0 is a constant independent of
H , h, and �.

Next, we present numerical results for certain exemplary coefficient distributions.
We use M�1BP choosing M�1 as the Dirichlet preconditioner. We subdivide the unit
square into square subdomains and consider a coefficient distribution with different
numbers of channels cutting through subdomain edges; see Fig. 2. We first present
our results for the scalar case followed by the results for linear elasticity with discon-
tinuous coefficients. At the end of this section, we also present our results obtained
for the linear elastic deformation of the microstructures shown in Fig. 1. In our
tables, we denote the FETI-DP algorithm using only vertices as primal constraints
as “Algorithm A”; see [23, p. 170]. When the coarse space is enhanced using eigen-
vectors obtained from local eigenvalue problems the corresponding columns are
denoted by “Adaptive”. The additional constraints are implemented using deflation
or balancing. They could also be implemented using a transformation of basis. Our
stopping criterion is the relative reduction of the preconditioned residual by 1e�10.

All experiments for the diffusion equation with heterogeneous coefficients inside
subdomains are carried out with homogeneous Dirichlet boundary conditions on @˝
and a constant right hand side f D 1=10. For one channel for each subdomain, we
have a quasi-monotone coefficient; cf. [21]. In this case, which is depicted in Fig. 2
(middle), on each interior edge, the eigenvector of the eigenvalue zero is added to
the coarse space. On interior edges which do not intersect a channel with a high
coefficient the resulting constraint is a standard edge average. On interior edges
intersected by a channel the constraint is a weighted edge average, cf. also [13], up
to a multiplicative constant. This results in eight adaptive constraints; see Table 1.
The case of three channels results in 20 adaptive constraints.

In Table 2, for three channels, we see that the condition number using the
enriched coarse space stays bounded if we change the contrast �2 2 f1; : : : ; 1eC06g.
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Table 1 Scalar diffusion, one and three channels for each subdomain, see Fig. 2 (right)

Algorithm A Adaptive method # Adaptive Size of
# Channels H=h Condition # its Condition # its constraints �

1 6 9:5532e C 04 7 1.0412 3 8 84
12 1:1969e C 05 7 1.1547 4 8 156
18 1:3335e C 05 7 1.2519 4 8 228
24 1:4416e C 05 8 1.3325 4 8 300
30 1:5197e C 05 8 1.4011 5 8 372

3 14 39:2087 6 1.0387 2 20 180
28 1:3431e C 05 10 1.1507 3 20 348
42 1:3884e C 05 11 1.2471 3 20 516
56 1:8408e C 05 14 1.3272 3 20 684
70 1:9298e C 05 13 1.3954 3 20 852

We have � D 1eC06 in the channel, and � D 1 elsewhere. The number of additional constraints is
clearly determined by the structure of the heterogeneity and independent of the mesh size. 1=H D
3. Toleig D 1

Table 2 Scalar diffusion, three channels for each subdomain, see Fig. 2 (right)

Algorithm A Adaptive method # Adaptive Size of
�2=�1 Condition # its Condition # its constraints �

1 3:2068 5 1.6467 5 4 348
10 5:5781 7 1.5697 7 4 348

1eC 02 19:9519 9 1.4604 7 8 348
1eC 03 1:5891e C 02 9 1.1506 4 20 348
1eC 04 1:5476e C 03 11 1.1507 3 20 348
1eC 05 1:5434e C 04 12 1.1507 3 20 348
1eC 06 1:3431e C 05 10 1.1507 3 20 348

We have � D �2 in the channels, and � D �1 D 1 elsewhere. H=h D 28. The
number of additional constraints is bounded for increasing contrast �2=�1. 1=H D 3.
Toleig D 1

Moreover, the number of adaptive constraints approaches a limit for growing
contrast.

In Table 3 we see that for an increasing number of subdomains and channels
the condition number remains bounded. The number of adaptive constraints grows
roughly in proportion to the number of subdomains and channels. Note that the
adaptive algorithm with Toleig D 1 chooses only constraints on subdomains, where
the Dirichlet boundary does not intersect the inclusions. On subdomains with
Dirichlet boundary conditions that do not intersect the channels, six constraints, and
on all inner subdomains, 8 constraints are chosen. Linearly dependent constraints
are detected using the modified Gram–Schmidt method and removed.

Next, we test our algorithm on linear elasticity problems with certain distribu-
tions of varying coefficients inside subdomains. We impose homogeneous Dirichlet
boundary conditions only on the lower edge, i.e., y D 0; and a constant volume
force f D .1=10; 1=10/T . First we consider the example above with three channels
and with jumps in E instead of �. Tables 4 and 5 show the numerical results for
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Table 3 Scalar diffusion, three channels for each subdomain; see Fig. 2 (right)

Algorithm A Adaptive method # Adaptive Size of
1=H Condition # its Condition # its constraints �

2 1:1507 4 1.1507 4 0 114
3 1:3431e C 05 10 1.1507 3 20 348
4 2:3766e C 05 16 1.1507 3 44 702
5 3:0209e C 05 45 1.1507 3 78 1,176
6 3:5451e C 05 51 1.1507 3 122 1,770

Increasing number of subdomains and channels. We have � D 1e C 06 in the
channel, and � D 1 elsewhere. H=h D 28. Toleig D 1

Table 4 Linear elasticity, three channels for each subdomain, see Fig. 2, with coefficient E D
1eC 06, outside the channels E D 1. Toleig D 1

Algorithm A Adaptive method # Adaptive Size of
# Channels H=h Condition # its Condition # its constraints �

3 14 6:8833e C 05 335 1.1517 8 123 372
28 9:3377e C 05 348 1.3351 10 123 708
42 1:0821e C 06 347 1.4993 10 123 1,044

The number of additional constraints is determined by the structure of the heterogeneity and
independent of the mesh size; 1=H D 3

Table 5 Linear elasticity, three channels for each subdomain, see Fig. 2,H=h D 28

Algorithm A Adaptive method # Adaptive Size of
E2=E1 Condition # its Condition # its constraints �

1 6:2497 22 1.9264 12 33 708
10 15:7940 27 1.8460 12 34 708

1eC 02 1:0256e C 02 39 1.9836 13 65 708
1eC 03 9:4413e C 02 61 1.3398 9 90 708
1eC 04 9:3490e C 03 117 1.3363 9 99 708
1eC 05 9:3373e C 04 191 1.3352 9 111 708
1eC 06 9:3377e C 05 348 1.3351 10 123 708

The number of additional constraints is bounded for increasing contrast E2=E1.
1=H D 3, Toleig D 1

Table 6 Results for linear elasticity using the coefficient distribution for the heterogenous
problem from the gray scale image in Fig. 1

Problem Coarse space H=h Condition # its # Adaptive constraints Size of �
Fig. 1 (left) Adaptive 50 21:6171 24 114 1,236

Algorithm A 50 > 3eC 05 > 250 0 1,236
Fig. 1 (right) Adaptive 50 10:2617 22 114 1,236

Algorithm A 50 > 1eC 06 > 250 0 1,236

a tolerance of one for the eigenvalues. Finally, we use a coefficient distribution
obtained from a steel microsection pattern with 150 	 150 pixels; see Fig. 1. We
discretize the problem withH=h D 50 and 1=H D 3; see Table 6 for the numerical
results, which show the effectiveness of the adaptive algorithm.
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4 Domain Decomposition Methods for Nonlinear Problems

The traditional domain decomposition approach to nonlinear problems can be
characterized by a geometric decomposition after linearization. Here, we solve a
given nonlinear, discretized problem

A.u/ D 0 (2)

by using a Newton-type method u.kC1/ D u.k/�˛.k/ıu.k/ with a suitable step length
˛.k/. In each iteration we have to solve the linearized system DA.u.k//ıu.k/ D
A.u.k//which can be done by overlapping or nonoverlapping domain decomposition
methods, e.g., FETI-1, FETI-DP, BDDC, or overlapping Schwarz. Such approaches
are typically named NK-DD (Newton-Krylov-Domain-Decomposition), i.e., NK-
FETI-DP, NK-Schwarz, etc.

Alternative approaches to the traditional DD approach can be characterized
by linearization after a geometric decomposition (here denoted as DD-NK, i.e.,
FETI-DP-NK). Such methods can be interpreted also in the context of nonlinear
preconditioning, as, e.g., performed in the ASPIN approach, see [1], which can
be viewed as solving a nonlinear equation G.A.u// D 0 by a Newton method
instead of (2). The nonlinear preconditioner G is constructed from a nonlinear
additive Schwarz (AS) method. The ASPIN approach can be classified as an AS-
NK method and has been shown to be more robust and highly scalable, e.g., even
for high Reynolds flow problems. Recently, the ASPIN approach has successfully
been applied in nonlinear structural mechanics [12].

In this paper, we will present new approaches for nonoverlapping, nonlinear DD
methods, i.e., versions of nonlinear FETI-DP methods. We will discuss two different
strategies of nonlinear dual primal FETI methods, named Nonlinear-FETI-DP-1
(Linearization first) and Nonlinear-FETI-DP-2 (Elimination first).

Nonlinear, nonoverlapping domain decomposition methods have been used, in
the special case of two subdomains, in multiphysics coupling, e.g., in fluid-structure
interaction; see [2]. Recently, a nonlinear FETI domain decomposition approach
for nonlinear problems from elasticity was suggested by Pebrel, Rey, and Gosselet
[20]. A simple linear/nonlinear strategy was used in [16] for brittle materials with
strongly localized nonlinearities.

Let˝i ; i D 1; : : : ; N , be a decomposition of our domain˝ into nonoverlapping
subdomains. We denote the associated local finite element spaces by Wi and the
product space by W D W1 	 : : : 	 WN . We define OW � W as the subspace
of functions from W which are continuous in all interface variables between
subdomains. We consider the minimization of a global nonlinear energy function
OJ , operating on OW ,

Ou D arg min
Ov2 OW
OJ . Ov/:
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Using our decomposition of˝ we can build local nonlinear energy functions Ji ; i D
1; : : : ; N , operating on Wi ; and equivalently solve

u D arg min
v2W

PN
iD1 Ji .vi /

under the linear continuity constraint Bu D 0. Here, B is a linear jump operator,
which enforces continuity in all interface variables. At this point using a variational
formulation and standard dualization technique, leads us to a nonlinear saddle point
problem

K.u/C BT � D f
Bu D 0;

whereK.u/T WD .K1.u1/T ; : : : ; KN .uN /T / and f T WD .f T
1 ; : : : ; f

T
N /.

Using the standard FETI-DP operator RT˘ , see [13] for the notation, to perform
the partial assembly in the primal variables, we formulate the nonlinear FETI-DP
master system

RT˘K.R˘ Qu/C BT � � Qf D 0

B Qu D 0;
(3)

where Qf WD RT˘f , Qu 2 QW ; and the Lagrange multipliers � 2 V . Here, B
enforces continuity in the dual unknowns. We can proceed in two different ways
in order to solve (3). We may linearize first and then reduce the result to Lagrange
multipliers (Nonlinear-FETI-DP-1), or, using the implicit function theorem, we can
use nonlinear elimination and then linearization of the reduced nonlinear system
(Nonlinear-FETI-DP-NK-2).

We now consider the first approach Nonlinear-FETI-DP-1 (Linearize first). With
given initial values Qu.0/ 2 QW and �.0/ 2 V , we can formulate the following Newton
iteration to solve problem (3),

� Qu.kC1/
�.kC1/

�

D
� Qu.k/
�.k/

�

� ˛.k/
�

ı Qu.k/
ı�.k/

�

;

with a suitable step length ˛.k/. In each iteration we need to solve

�

RT˘DK.R˘ Qu.k//R˘ BT

B 0

��

ı Qu.k/
ı�.k/

�

D
�

RT˘K.R˘ Qu.k//C BT �.k/ � Qf
B Qu.k/

�

: (4)

This system can be treated as in a standard FETI-DP framework, i.e., we can
reduce (4) to the Lagrange multipliers. The difference to the standard NK-FETI-
DP iteration can be found on the right hand side of (4). Note that, as a result of
Bı Qu.k/ D B Qu.k/; jumps in the Newton update will be present only if the initial value
has jumps.
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In this paper, we have chosen the initial value �.0/ D 0 and computed the initial
value Qu.0/ by solving the nonlinear problem

RT˘K.R˘ Qu.0//C BT �.0/ � Qf D 0;

by some Newton-type iteration. Note, that here we solve local nonlinear subdomain
problems which are only coupled in the primal unknowns.

Let us now consider the second approach Nonlinear-FETI-DP-2 (Eliminate first).
Instead of linearizing the nonlinear saddle point problem (3), we may perform a
nonlinear elimination of the variable Qu first. To simplify our notation, let us define
the nonlinear operator

QK.Qu/ D RT˘K.R˘ Qu/:

Under sufficient assumptions the first equation of (3) can be written as

Qu D QK�1. Qf � BT �/; (5)

where QK�1 is the inverse map of QK. Inserting (5) into the continuity condition in (3)
we obtain

F.�/ D B QK�1. Qf � BT �/ D 0: (6)

Again we use a Newton-type iteration to solve (6), and obtain the iteration

�.kC1/ D �.k/ � ˛.k/.D�F.�
.k///�1F.�.k//:

We can computeD�F.�/ using the chain rule, the inverse function theorem, and (5),

D�F.�/ D D�.B QK�1. Qf � BT �// D �B.D QK�1. Qf � BT �//BT

D �B.D QK.Qu//�1BT D �B.RT˘.DK.R˘ Qu/R˘/�1BT :

In each Newton step, we have to solve a nonlinear system with a FETI-DP-type
matrix on the left hand side and F.�.k// D B QK�1. Qf � BT �.k// on the right hand
side. On the right hand side nonlinear local problems have to be solved which are
only coupled in the primal variables.

In contrast to a standard Newton-Krylov-FETI-DP approach, in our nonlinear
FETI-DP methods weakly coupled nonlinear local problems are solved. We expect
to reduce communication and to obtain a significantly improved performance
especially for problems with localized nonlinearities.

Next, we introduce our nonlinear model problem and present numerical results
for our two nonlinear FETI-DP approaches. Let us define the p-Laplacian for p D 4
as

�4v D div.jrvj2rv/:
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Fig. 3 Domain ˝i with an
inclusion ˝i;I and � D H

8

We test our algorithms for nonlinear model problems with and without localized
nonlinearities. For our experiments, we consider the unit square˝ WD Œ0; 1�	 Œ0; 1�
in 2D decomposed into square subdomains ˝i; i D 1; : : : ; N . We have chosen
piecewise linear triangular elements to discretize the variational formulations of (7)
and (8).

First we solve the following equation for the p-Laplacian with p D 4 on the
complete domain, i.e.,

�4u D �1 in ˝
u D 0 on @˝:

(7)

In our second set of numerical experiments we consider the (linear) Laplace
equation with nonlinear inclusions inside subdomains; see Fig. 3. The inclusions
are surrounded by hulls of width �. This configuration can be seen as a nonlinear
analog to the problem of [10]. We denote the hull on subdomain ˝i by ˝i;� and
the inclusion by ˝i;I D ˝i n ˝i;�. Furthermore we define ˝I D SN

iD1 ˝i;I and
˝� DSN

iD1 ˝i;�.
We then solve

�4u D �1 in ˝I

�u D �1 in ˝�

u D 0 on @˝:
(8)

In our tests all vertices are primal and, additionally, we use primal edge con-
straints in our linear and nonlinear FETI-DP methods. We compare the traditional
NK-FETI-DP with our nonlinear FETI-DP variants. To perform a fair comparison of
the computational cost, we consider the number of Krylov space iterations and the
number of linearizations separately. Each linearization includes the assembly of the
local tangential matrices and their LU-decomposition. The results for problems (7)
and (8) can be found in Table 7. The computational costs for the new methods
are significantly lower for both problems, especially for the problem with local
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Table 7 p-Laplace is described in (7) and p-Laplace inclusions is described in (8)

p-Laplace inclusions p-Laplace
# Krylov max. min. # Krylov max. min.

N Solver It. # Lin. cond. cond. It. # Lin. cond. cond.

NK-FETI-DP 33 14 1.0048 1.0001 72 18 1.1352 1.0608
4 Nonlinear-FETI-DP-2 5 14 1.2813 1.0000 8 19 1.0644 1.0604

Nonlinear-FETI-DP-1 5 15 1.2805 1.0001 12 20 1.0644 1.0604
NK-FETI-DP 105 15 1.4719 1.2914 164 20 1.4605 1.4107

16 Nonlinear-FETI-DP-2 21 18 1.4240 1.4233 32 29 1.4208 1.4012
Nonlinear-FETI-DP-1 28 18 1.4240 1.4233 40 24 1.4208 1.4108

NK-FETI-DP 164 17 1.5680 1.4264 226 22 1.5302 1.4895
64 Nonlinear-FETI-DP-2 30 20 1.5255 1.5197 52 33 2.1258 1.4878

Nonlinear-FETI-DP-1 40 20 1.5254 1.5197 52 26 2.1258 1.4850
NK-FETI-DP 190 19 1.5852 1.5281 268 24 1.6846 1.5394

256 Nonlinear-FETI-DP-2 31 22 1.5643 1.5412 44 34 2.1523 1.5237
Nonlinear-FETI-DP-1 42 22 1.5654 1.5406 55 28 2.1523 1.5375

NK-FETI-DP 209 21 1.5786 1.4939 293 26 1.9809 1.5642
1,024 Nonlinear-FETI-DP-2 31 24 1.5827 1.5409 45 35 2.1669 1.4921

Nonlinear-FETI-DP-1 43 24 1.5852 1.5409 56 30 2.1669 1.5560
NK-FETI-DP 215 23 1.5784 1.4972 330 28 2.5309 1.5657

4,096 Nonlinear-FETI-DP-2 19 25 1.5768 1.5451 45 37 2.1743 1.4890
Nonlinear-FETI-DP-1 41 26 1.5938 1.5451 45 31 2.1743 1.5588

For p-Laplace inclusions, see also Fig. 3. In both problems, H
h
D 16; N is the number of

subdomains; # Krylov It. gives the sum of all Krylov-space iterations; # Lin. gives the sum of all
linearizations (computing local tangential matrices and their LU-decomposition); min./max. cond
give the maximal and minimal condition number of the FETI-DP systems

nonlinearities (p-Laplace inclusions). The number of global Krylov iterations is
reduced radically and therefore, in a parallel setting, also communication.

5 Conclusion

We have presented an approach for the construction of an adaptive coarse space in
FETI-DP algorithms by computing certain generalized eigenvalue problems. The
method is motivated directly from the theory, i.e., a Poincaré inequality needed in
the condition number estimate is now replaced by a computational bound.

We have also presented approaches to construct nonlinear versions of the FETI-
DP method. In these methods, the coarse space takes an important role since it
can influence not only the convergence of the Krylov method but also that of the
Newton iteration. In the future, the use of an adaptive coarse space may therefore be
of special interest in this context.
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On Iterative Substructuring Methods
for Multiscale Problems

Clemens Pechstein

1 Introduction

1.1 Model Problem

Let ˝ � R2 or R3 be a Lipschitz polytope with boundary @˝ D �D [ �N , where
�D \ �N D ;. We are interested in finding uh 2 V h

D.˝/ such that

Z

˝

˛ ruh � rvh dx D hf; vhi 8uh 2 V h
D.˝/: (1)

Above, V h
D.˝/ denotes the finite element space of continuous and piecewise linear

functions with respect to a mesh T h.˝/ that vanish on the Dirichlet boundary �D .
The functional f 2 V h

D.˝/
� is assumed to be composed of a volume integral over

˝ and a surface integral over �N .
The diffusion coefficient ˛ 2 L1.˝/ is assumed to be uniformly positive,

i.e., ess:infx2˝ ˛.x/ > 0. We allow ˛ to vary by several orders of magnitude in
an unstructured way throughout the domain ˝ . In particular, we allow ˛ to be
discontinuous and exhibit large jumps (high contrast). If the jumps occur at a scale
� diam.˝/, one speaks of a multiscale problem (cf. [1]).

Problem (1) is equivalent to the linear system

Kh;˛ uh D fh ; (2)
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where the stiffness matrix Kh;˛ and load vector fh are defined with respect to the

standard nodal basis of V h
D.˝/. For a quasi-uniform mesh, one easily shows that

	.Kh;˛/ � C ess:supx2˝ ˛.x/
ess:infx2˝ ˛.x/

h�2 :

Although in many cases, this might be a pessimistic bound, it is sharp in general.
Consequently, an ideal preconditioner for Kh;˛ should be robust in (1) the contrast
in ˛, (2) the mesh size h, (3) the scale � at which the coefficient varies, where here
we may assume that h � � � diam.˝/.

1.2 Spectral Properties and the Weighted Poincaré Inequality

To get an idea, how difficult it is to precondition System (2), we display the entire
spectrum of Kh;˛ for the pure Neumann problem (�D D ;) on the unit square
˝ D .0; 1/2 and for three coefficient distributions ˛ (see the top row of Fig. 1). The
smallest eigenvalue of Kh;˛ is always zero and not shown in the following plots.

The second row of Fig. 1 displays �.Kh;˛/. We see that compared to the reference
coefficient ˛ D 1, the spectrum is distorted in the two other cases ˛H , ˛L.

In the third and fourth row, we change the point of view, and display the spectrum
of diag.Kh;˛/

�1Kh;˛ and of M�1h;˛Kh;˛ , where Mh;˛ denotes the weighted mass
matrix corresponding to the inner product .v; w/L2.˝/;˛ WD

R

˝ ˛ v wdx. On a quasi-
uniform mesh, one can easily show that diag.Kh;˛/ and h�2 Mh;˛ are spectrally
equivalent with uniform constants. For this reason, the spectra in the third and fourth
row differ mainly by a simple shift. For coefficient ˛H , with 8 inclusions of large
values (plotted in black), we obtain 7 additional small eigenvalues compared to the
reference coefficient. This fact has been theoretically shown by Graham & Hagger
[10].

For coefficient ˛L, with 8 inclusions of small values (plotted in light grey), the
spectra are essentially the same as for the reference coefficient. The theoretical
explanation of this fact is the so-called weighted Poincaré inequality [16].

Definition 1. Let fDig be a finite partition of ˝ into polytopes, let ˛ be piecewise
constant w.r.t. fDi g with value ˛i on Di , and let `� be an index such that ˛`� D
maxi ˛i . Then ˛ is called quasi-monotone on ˝ iff for each i we can find a path
D`1 [D`2 [ : : : [D`n of subregions connected through proper faces with `1 D i ,
`n D `� such that ˛`1 � ˛`2 � : : : � ˛`n .

Definition 1 is independent of the choice of `�: if ˛ attains its maximum in more than
one subregion, then ˛ is either not quasi-monotone, or all the maximum subregions
are connected. In our example, ˛L is quasi-monotone, whereas ˛H is not.

Theorem 1. If ˛ (as in Definition 1) is quasi-monotone on ˝ , then there exists a
constant CP;˛.˝/ independent of the values ˛i and of diam.˝/ such that
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Fig. 1 Top row: three coefficient distributions ˛. Second row: spectra �.Kh;˛/ corresponding to
the three distributions. Third row: �.diag.Kh;˛/

�1Kh;˛/. Bottom row: �.M�1
h;˛ Kh;˛/. In each case

structured mesh with mesh size h D 1=32. The contrast for ˛H D ˛�1
L is 108

inf
c2R ku � ckL2.˝/;˛ � CP;˛.˝/ diam.˝/ jujH1.˝/;˛ 8u 2 H1.˝/;

where kvk2
L2.˝/;˛

WD R
˝
˛ v2 dx and jvjH1.˝/;˛ WD

R

˝
˛ jrvj2 dx.

For the geometrical dependence of CP;˛.˝/ on the partition fDi g (in our previous
example, the scale �), we refer to [16]. The infimum on the left hand side is attained
at the weighted average c D u˝;˛ WD R

˝
˛ u dx=

R

˝
˛ dx. Due to the fact that the

coefficient ˛L in Fig. 1 is quasi-monotone, �2.M�1h;˛Kh;˛/ � CP;˛.˝/�2 diam.˝/�2
and thus bounded from below independently of the contrast in ˛L.

1.3 Related Preconditioners

The simple examples in Fig. 1 show that it is not necessarily contrast alone, which
makes preconditioning difficult, but a special kind of contrast. The fact that a small
number of large inclusions leads to essentially well-conditioned problems has, e.g.,



88 C. Pechstein

been exploited in [22]. Overlapping Schwarz theory is given in [11] for coefficients
of type ˛H , and in [7,18] for locally quasi-monotone coefficients. Robustness theory
of FETI methods for locally quasi-monotone coefficients has been developed in [13–
15,17]. Achieving robustness in the general case requires a good coarse space (either
for overlapping Schwarz or FETI). Spectral techniques, in particular solving local
generalized eigenvalue problems to compute coarse basis functions, have come up in
[5,8,20] (see also the references therein). Very recently, this approach has been even
carried over to FETI methods by Spillane and Rixen [19]; see also Axel Klawonn’s
DD21 talk and proceedings contribution. Although the spectral approaches above
guarantee robust preconditioners, the dimension of the coarse space may be large,
therefore making the preconditioner inefficient. For analyzing the coarse space
dimension, tools like the weighted Poincaré inequality are quite useful, cf. [5].

1.4 Outline

In this paper, we shall

(i) review the available theoretical results of FETI methods for coefficients that
are—on each subdomain (or a part of it)—quasi-monotone (i.e., of type ˛L),

(ii) present novel theoretical robustness results of FETI methods for coefficients
which result from a large number of inclusions with large values (i.e., of
type ˛H far from quasi-monotone). In particular, we allow the inclusions
to cut through or touch certain interfaces of the (non-overlapping) domain
decomposition.

In both cases, the coarse space is the usual space of constants in each subdomain.
After fixing some notation in Sect. 2, we present our review (i) in Sect. 3. Section 4
deals with technical tools needed for the novel theory of (ii), which is contained in
Sect. 5. In the end, we draw some conclusions.

2 FETI and TFETI

2.1 FETI Basics

We briefly introduce classical and total FETI; for details see e.g., [13, 21]. The
domain ˝ is decomposed into non-overlapping subdomains f˝igsiD1, resolved by
the fine mesh T h.˝/. The interface is defined by � WD Ss

i¤jD1.@˝i \@˝j /n�D.
Let Ki denote the “Neumann” stiffness matrix corresponding to the local bilinear
form

R

˝i
˛ru � rv dx, and let Si be the Schur complement ofKi after eliminating

the interior degrees of freedom and those corresponding to non-coupling nodes on
the Neumann boundary. In the classical variant of FETI [6], the corresponding local
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spaces are chosen to be

Wi WD fv 2 V h.@˝i n �N / W vj�D D 0g:

In the case of the total FETI (TFETI) method [4], the Dirichlet boundary conditions
are not included into Ki , and correspondinglyWi WD V h.@˝i n �N /. We set W WD
Qs
iD1 Wi and S WD diag.Si /siD1. Let R be a block-diagonal full-rank matrix such

that ker.S/ D range.R/, and letB W W ! U be a jump operator such that ker.B/ D
OW , where OW � W is the space of functions being continuous across� and fulfilling

the homogeneous Dirichlet boundary conditions. The rows of B u D 0 are formed
by all (fully redundant) constraints ui .xh/�uj .xh/ D 0 for xh 2 @˝i\@˝j n�D . In
TFETI, there are further local constraints of the form ui .xh/ D 0 for xh 2 @˝i\�D .

Finally, System (2) is reformulated as

�

S B>
B 0

� �

u
�

�

D
�

f

0

�

, where f contains

the reduced local load vectors, and further reformulated by

find Q� 2 range.P / W P>F Q� D Qd WD P>B S�.f � B>�0/; (3)

where S� is a pseudo-inverse of S , F WD B S� B>, P WD I �QG.G>QG/�1G>,
G WD B R, �0 D QG.G>QG/�1R>f , and Q is yet to be specified. The solution
u can be recovered easily from � D �0 C Q� by using S� and .G>QG/�1.

2.2 Scaled Dirichlet Preconditioner

For each subdomain index j and each degree of freedom (i.e., node) xh 2 @˝j \� ,
we fix a weight �j .xh/ > 0 and define

ı
�
j .x

h/ WD �j .x
h/�

P

k2N
xh
�k.xh/�

2 Œ0; 1�;
X

j2N
xh

ı
�
j .x

h/ D 1:

Above, Nxh is the set of subdomain indices sharing node xh and � 2 Œ1=2; 1�
(the limit � ! 1 has to be carried out properly, cf. [13, Remark 2.27]). We stress
that in the presence of jumps in ˛, the choice of the weights �j .xh/ (or the scalings

ı
�
j .x

h/) is highly important for the robustness of the Dirichlet preconditioner and

will be discussed further below. Let us note that for any choice �j .xh/ above and
any exponent � 2 Œ1=2;1�, we have the elementary inequality

�i .x
h/ ı

�
j .x

h/2 � min.�i .x
h/; �j .x

h// 8i; j 2 Nxh: (4)

The weighted jump operatorBD is defined similarly toB , but each row ofBD w D 0
is of the form ı

�
j .x

h/wi .xh/ � ı�i .xh/wj .xh/ D 0 for xh 2 @˝i \ @˝j n �D. In



90 C. Pechstein

TFETI, there are further rows of the form wi .xh/ D 0 for xh 2 @˝i \ �D . The
preconditioned FETI system now reads

find Q� 2 range.P / W P M�1 P>F Q� D P M�1 Qd; (5)

where M�1 WD BD S B
>
D . Since P>F is SPD on range.P / up to ker.B>/, this

system can be solved by CG. Hence, one is interested in a bound on the condition
number 	FETI WD 	.P M�1P>Fjrange.P /= ker.B>//. In the sequel, we set Q D M�1.
To avoid complications, we exclude the case of TFETI with �D D @˝ , and the case
� D 1; otherwise GM�1G> may be singular. As the analysis in [13, Chap. 2],
[21], shows, the estimate

jPD wj2S � � jwj2S 8w 2 W ? ; (6)

implies 	FETI � 4�. Above, PD WD B>DB is a projection (due to the partition of

unity property of ı�j ),W ? D Qs
iD1 W ?i , and eachW ?i � Wi is any complementary

subspace such that the sum Wi D ker.Si / C W ?i is direct. Note that the same
estimate implies a bound of the related balancing Neumann–Neumann (BDD)
method.

2.3 Choice of Weights

Table 1 shows several choices for the weights �j .xh/. In each row, we display a
theoretical choice, which has been used in certain analyses, and then a practical
choice, which tries to mimic the theoretical one. Choices (a)–(c) in Table 1 are
not suitable for coefficients with jumps (see column problems). The theoretical
choice (d) will be used in the analyses below and leads to “good” condition number
bounds under suitable assumptions; however, it is practically infeasible. Under
suitable assumptions on the variation of ˛, the practical choice (d) can be shown to
be essentially equivalent to the theoretical one, if one sets � D 1. “Good” means
that the bounds are robust with respect to contrast in ˛. However, they depend on
the spatial scale � of the coefficient variation.

Remark 1. A further choice, named Schur scaling, has been suggested in [3], see
also [2]. There, for each subdomain vertex/edge/face G , the scalar values ı�j .x

h/ for

xh 2 G are replaced by the matrix .
P

k2NG
Sk;GG /

�1 Sj;GG , where Sk;GG denotes
the restriction of Sk to the nodes on the subdomain vertex/edge/face G . This choice
is the only known (practical) candidate that could allow for robustness also with
respect to the spatial scale �, but its analysis is still under development, cf. [2].
Nevertheless, it has been successfully analyzed in the context of BDDC methods

for the eddy current problem
��!
curl.˛

��!
curl �!u / C ˇ�!u D �!f , where ˛; ˇ > 0 are

constant in each subdomain [3].
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Table 1 Various choices for the weights �j .xh/

�j .x
h/ Theoretical Practical Problems

(a) 1 1 (multiplicity scaling) Jumps across interfaces

(b) ˛max
˝j

kKdiag
j k`1 Jumps within subdomains

(c) max
�˝j Wxh2

˛j K
diag
j .xh/ (stiffness scaling)

Oscillating coefficients,
unstructured meshes

(d) max
Y
.k/
j Wxh2Y .k/j

˛max

Y
.k/
j

(

1 if Kdiag
j .xh/ ' maxk2Nxh

K
diag
k .xh/

0 else
Small geometric scale �

Here, Kdiag
j denotes the diagonal of Kj , k � k`1 the maximum norm, Kdiag

j .xh/ the diagonal entry

of Kj corresponding to node xh, and fY .k/j gk is a partition of a neighborhood of @˝j \ � , as

coarse as possible, such that ˛ is constant or only mildly varying in each subregion Y .k/j , cf. [13,
Sect. 3.3]

3 Robustness Results for Locally Quasi-Monotone
Coefficients

In this section, we review robustness results of TFETI, developed originally in [14,
15] and further refined in [13, Chap. 3]. Because of space limitation, we do not
list the full set of assumptions, but refer to [13, Sects. 3.3.1 and 3.5]. The essential
assumption is that ˛ is piecewise constant with respect to a shape-regular mesh
T �.˝/, at least in the neighborhood of the interface � and the Dirichlet boundary
�D , and that this mesh resolves � [ �D . For simplicity of the presentation, we
assume further that each subdomain ˝i is the union of a few elements of a coarse
mesh T H.˝/, and that the three meshes T h.˝/, T �.˝/, and T H.˝/ are nested,
shape-regular, and globally quasi-uniform with mesh parameters h � � � H .

All the following results hold for the TFETI method as defined in Sect. 2 with
the theoretical choice (d) for �j .xh/ and with Q D M�1, where the regions Y .k/j

are unions of a few elements from T �.˝/. The general bound reads

	FETI � C
	H

�

�ˇ

.1C log.�=h//2 ; (7)

where C is independent of H , �, h, and ˛. The exponent ˇ is specified below in
each particular case.

Definition 2. For each subdomain index i , the boundary layer ˝i;� is the union of
those elements from T �.˝/ that lie in ˝i and touch � [ �D .

The following theorem is essentially [13, Theorem. 3.64] and shows that contrast
in the interior of subdomains is taken care of by TFETI (in form of the subdomain
solves), except that the geometrical scale shows up in the condition number bound.
The original result on classical FETI can be found in [14, Theorem. 3.3].
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Theorem 2 (Constant Coefficients in the Boundary Layers). If ˛ is constant in
each boundary layer ˝i;�, i D 1; : : : ; s, then (7) holds with ˇ D 2. The exponent
ˇ D 2 is sharp in general. If the values of ˛ in ˝i n ˝i;� do not fall below the
constant value in ˝i;� for each i D 1; : : : ; s, then (7) holds with ˇ D 1.

The next theorem (cf. [13, Sect. 3.5.2]) extends the above result to coefficients
that are quasi-monotone in each boundary layer.

Theorem 3 (Quasi-Monotone Coefficients in the Boundary Layers). If ˛ is
quasi-monotone in each boundary layer ˝i;�, i D 1; : : : ; s, then (7) holds with
ˇ D 2 if d D 2 and ˇ D 4 if d D 3. Under suitable additional assumptions on ˛ in
˝i;�, one can achieve ˇ D 2 for d D 3 as well.

In many cases, quasi-monotonicity may not hold in each boundary layer, but in
a certain sense on a larger domain. The following theorem summarizes essentially
[13, Sect. 3.5.3]. We note that the concept of an artificial coefficient in the context
of FETI goes back to [15].

Theorem 4 (Quasi-Monotone Artificial Coefficients). If for each i D 1; : : : ; s

there exists an auxiliary domain �i with ˝i;� � �i � ˝i and an artificial
coefficient ˛art such that

˛art D ˛ in ˝i;�;

˛art � ˛ in �i n˝i;�;

˛art quasi-monotone on�i ;

then (7) holds with C independent of ˛ and ˛art. The exponent ˇ depends on �i

and ˛art. If �i D ˝i then ˇ � 2 d . Under additional assumptions on ˛art, one can
achieve, e.g., ˇ � d C 1.

Remark 2. The proofs of Theorems 3 and 4 make heavy use of the weighted
Poincaré inequality (Theorem 1). We note that Theorems 3 and 4 can be generalized
to so-called type-m quasi-monotonicity (See [16]). Also, all the results of this
section can be generalized to (1) coefficients that vary mildly in each element
of T �.˝/ in the neighborhood of � [ �D , (2) to a certain extent to suitable
diagonal choices of the matrix Q, and (3) under suitable conditions to classical
FETI. However, we do not present these results here but refer to [13, Chap. 3] and
[14, 15] for the full theory.

4 Technical Tools

In this section, we present two technical tools needed for Sect. 5. The first tools is
an extension operator on so-called quasi-mirrors.
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Γ
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D2b
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^

^

^

^

Fig. 2 Illustration of Definition 3: a quasi-mirror in 2D

Definition 3. Let D1, D2 � Rd be two disjoint Lipschitz domains sharing a .d �
1/-dimensional manifold � . For i D 1; 2 let Dia and Dib be open and disjoint
Lipschitz domains such that Di D Dia [Dib . We say that .D2a;D2b/ is a quasi-
mirror of .D1a;D1b/ iff there exists a continuous and piecewise C1 bijection �
with kr�kL1 and kr��1kL1 bounded, such that Dia, Dib , � are mapped to ODia,
ODib , O� , respectively, where O� lies in the hyperplane xd D 0 and OD2a, OD2b are the

reflections through that hyperplane of OD1a, OD1b , respectively (for an illustration see
Fig. 2).

Lemma 1. Let .D2a;D2b/ be a quasi-mirror of .D1a;D1b/ as in Definition 3.
Then there exists a linear operator E W H1.D1/ ! H1.D2/ such that for all
v 2 H1.D1/, we have .Ev/j� D vj� and

jE vjH1.D2a/ � C jvjH1.D1a/; jE vjH1.D2b/
� C jvjH1.D1b/

;

kE vkL2.D2a/ � C kvkL2.D1a/; kE vkL2.D2b/ � C kvkL2.D1b/:

The constant C is dimensionless, but depends on the transformation � from
Definition 3.

The proof of the above and the next lemma can be found in [12, Sect. 4]. Our
second tool is a special Scott–Zhang quasi-interpolation operator.

Lemma 2. Let the domainD be composed from two disjoint Lipschitz regionsD D
D1 [ D2 with interface � D @D1 \ @D2, and let ˙ � @D be non-trivial. Let
T h.D/ be a shape-regular mesh resolving � and ˙ , and let V h.D/ denote the
corresponding space of continuous and piecewise linear finite element functions.
Then there exists a projection operator ˘h W H1.D/ ! V h.D/ such that (1) for
any v 2 H1.D/ that is piecewise linear on � and ˙ , .˘hv/� [˙ D vj�[˙ and (2)
for all v 2 H1.D/,

j˘hvjH1.Di / � C jvjH1.Di /; k˘hvkL2.Di / � C kvkL2.Di /; for i D 1; 2;

where the constant C only depends on the shape-regularity of the mesh.
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5 Novel Robustness Results for Inclusions

For this section, we adopt again the notations of Sects. 2 and 3. However, we restrict
ourselves to coefficients ˛ 2 L1.˝/, given by

˛.x/ D
�

˛k if x 2 Dk for some k D 1; : : : ; nH ;
˛L else,

(8)

where ˛k � ˛L are constants and the regionsDk � ˝ are pairwise disjoint (discon-
nected) Lipschitz polytopes that are contractible (i.e., topologically isomorphic to
the ball). Furthermore, we assume that the subdomains ˝i as well as the inclusion
regions Dk are resolved by a global mesh T �.˝/. For the sake of simplicity let
T h.˝/ and T �.˝/ be nested, shape-regular, and quasi-uniform with mesh sizes
h and �, respectively (h � �). Our main assumption concerns the location of the
inclusion regionsDk relative to the interface.

Assumption A1. Each regionDk , k D 1; : : : ; nH , is either

(a) an interior inclusion:Dk �� ˝i for some index i ,
(b) a docking inclusion: there is a unique index i withDk � ˝i andDk\@˝i ¤ ;,

or
(c) a (proper) face inclusion: there exists a subdomain face Fij (shared by only

two subdomains˝i , ˝j ) such that

• Dk \ � �� Fij ,
• @.Dk \˝i/\Fij D @.Dk \˝j / \Fij ,
• Dk \ � is simply connected,
• the neighborhood Uk constructed from Dk by adding one layer of elements

from T �.˝/ fulfillsDk �� Uk � ˝i [˝j .

Above, �� means compactly contained. Note that since the regions Dk are
disjoint and resolved by T �.˝/, in Case (c) above, it follows that ˛ D ˛L in
Uk n Dk . The second condition in (c) avoids that a part of Dk is only “docking”.
The third condition ensures that Dk passes through the face Fij only once.

Theorem 5. Let the above assumptions, in particular Assumption A1, be fulfilled.
For the case of classical FETI, assume that for d D 3 the intersection of a
subdomain with �D is either empty, or contains at least an edge of T �.˝/. For
the case of TFETI, assume that none of the docking inclusions in Assumption A1(b)
intersects the Dirichlet boundary. Then

	FETI � C.�/ .1C log.�=h//2 ;

where C.�/ is independent of h, the number of subdomains, and ˛k , ˛L.

The dependence of C.�/ on � can theoretically be made explicit but is ignored here.
In general, it is at least .H=�/2. Due to space limitations, we can only give a sketch
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of the proof for the case of classical FETI; the detailed proof can be found in [12].
To get the condition number bound, we show estimate (6). If ker.Si / D spanf1g, we
choose W ?i WD fw 2 Wi W w@˝i D 0g, and W ?i D Wi otherwise. Let w 2 W ? be
arbitrary but fixed. To estimate jPDwjS , we decompose the interface � into globs
g. These are vertices, edges, or faces of the mesh T �.˝/, with one exception: for
a face inclusion Dk , we combine all vertices/edges/faces of T �.˝/ contained in
Dk \� into a single glob g. Following [13, Lemma 3.21 and Lemma 3.27], we get

j.PD w/i j2Si � C
X

g�@˝i\�

X

j2Ngnfig
.ı
�

j jg/
2 jI h.#g. Qwg

i i � Qwg
ij //j2H1.Ui;g/;˛

„ ƒ‚ …

DW%i;g

; (9)

where #g 2 V h.˝/ is a cut-off function (yet to be specified) that equals one on all
the nodes on g and vanishes on all other nodes on � , I h is the nodal interpolation
operator, and Ui;g D supp.#g/ \˝i . The (generic) constant C above only depends
the shape regularity constant of T �.˝/ and is thus uniformly bounded. For j 2 Ng,
the function Qwg

ij 2 V h.Ui;g/ is an extension of wj (yet to be specified) in the sense

that Qwg
ij .x

h/ D wj .xh/ for all nodes xh on g. We treat two cases.

Case 1: g is not part of a face inclusion, i.e., for all k 2 f1; : : : ; nH g with Dk

being a face inclusion, Dk \ g D ;. We choose the cut-off function #g like in [21,
Sect. 4.6] (where the subdomains there are the elements of T �.˝/). Using that

.ı
�

j jg/
2 �i jg � min.�i jg; �j jg/ D ˛L 8j 2 Ng n fig; (10)

and the available techniques from [13, 15], one can show that

%i;g � C
X

j2Ng

˛L

	

!2 j Qwg
ij j2H1.Ui;g/

C !

�2
k Qwg

ij k2L2.Ui;g/
�

; (11)

where above and in the following, ! WD .1C log.�=h//.

Case 2: g is part of a face inclusion (see Assumption A1), i.e., there exists k with
g D Dk\� . Recall that in this case g can be the union of many vertices/edges/faces
of T �.˝/. We choose a special cut-off function#g supported in Ui;g WD Uk\˝i :

• #g.x
h/ D 1 for all nodes xh 2 Dk ,

• #g.x
h/ D 0 for all nodes xh 2 @Uk [ .Uk \ .� n g//,

• on the elements of the layer, i.e., those elements T 2 T �.˝/ with T � Uk nDk ,
we set #g to the sum of local cut-off functions (similar to Case 1).

By construction, #g D 1 on Dk , where ˛ D ˛k . On the remainder, Uk nDk , by the
assumptions on the coefficient, ˛ D ˛L. A careful analysis shows that

%i;g � C
X

j2Ng

	

!2 j Qwg
ij j2H1.Ui;g/;˛

C ˛L !
�2
k Qwg

ij k2L2.˝i\.UknDk//
�

: (12)
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Choice of Qwg
ij

in Case 1: We set Qwg
ij WDEh

j;gH
˛;h
j wj , where H ˛;h

j W Wj ! V h.˝j /

denotes the discrete extension operator such that jwj jSj D jH ˛;h
j wj jH1.˝j /;˛ and

Eh
j;g is a suitable transfer operator (see [13, Sect. 2.5.7] or [15, Lemma 5.5]). This

results in the estimates

j Qwg
ij jH1.Ui;g/ � C jH ˛;h

j wj jH1.U0
j;g/
; k Qwg

ij kL2.Ui;g/ � CkH ˛;h
j wj kL2.U0

j;g/
:

(13)
where U0j;g � ˝j is an element of T �.˝/ with g � U

0
j;g.

Choice of Qwg
ij

in Case 2: Recall that in this case we are dealing with a face
inclusion such that g is part of the face shared by˝i and˝j and we choose Ui;g D
Uk \ ˝j . To define the extension Qwg

ij 2 V h.Ui;g/, we shall combine the technical
tools from Sect. 4. Let U0j;g WD Uk \ ˝j . It can be seen from Assumption A1 that
.Ui;g nDk; Ui;g\Dk/ is a quasi-mirror of .U0j;g nDk; U0j;g\Dk/. We can therefore
set

Qwg
ij WD ˘h;˛

j;g E ˛
j;gH

˛;h
j wj ;

where ˘h;˛
j;g is the Scott–Zhang interpolator from Lemma 2, E ˛

j;g the extension

operator from Lemma 1, and H ˛;h
j is defined as above. It has now to be argued

that the transformation � in Definition 3 can be chosen such that E ˛
j;gH

˛;h
j wj is

still piecewise linear on the interface U 0j;g \ @Dk . This implies that Qwg
ij is indeed an

extension of wj . Due to the properties of the above operators, we obtain the total
stability estimates

j Qwg
ij jH1.Ui;g/;˛ � C jH ˛

j wj jH1.U0
j;g/;˛

; k Qwg
ij kL2.Ui;g/ � CkH ˛

j wj kL2.U0
j;g/

(14)

for all wj 2 V h.@˝j /, with C independent of ˛L and ˛k . Combining the local
estimates (11), (12), (13), and (14), using a finite overlap argument, as well as a
conventional Poincaré or Friedrichs inequality, one arrives at (6) with � D C !2.

6 Conclusions

Section 3 shows robustness of TFETI for (artificial) coefficients that are quasi-
monotone in boundary layers. Sect. 5 shows that these conditions are far from
necessary for the robustness of FETI or TFETI. Note that the assumptions and
robustness properties of Sect. 5 are similar to the theory in [11] for overlapping
Schwarz. Actually, several ideas from the latter theory have been reused in the
analysis of Sect. 5. However, the robustness for overlapping Schwarz requires a
sophisticated coarse space, whereas for FETI/TFETI, the usual coarse space can
be used, which simplifies the implementation a lot.
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A combination of the two theories (Sects. 3 and 5) is of course desirable.
However, the general case of ˛ remains open. The problematic cases in FETI/TFETI
are certainly (a) a multiple number of inclusions on vertices (or edges in 3D), and
(b) long channels that traverse through more than one face, or traverse a face more
than once; this is seen in numerical examples; see [12, Sect. 6].

Item (a) might be fixed using suitable FETI-DP/BDDC methods, and we hope
that novel analysis of Sect. 5 will have a positive impact here (the known theory of
FETI-DP/BDDC for multiscale coefficients is yet limited, cf. [9, 13, 17]). Item (b)
can only be addressed by a larger coarse space: either by FETI-DP/BDDC with
more sophisticated primal DOFs and/or by spectral techniques as suggested in [19].
Robustness in the spatial scale � is achieved neither in Sect. 3 nor Sect. 5. We believe
that the only possibility to gain robustness is a more sophisticated weight selection
(cf. Remark 1) and probably again a larger coarse space.

Acknowledgements The author would like to thank Robert Scheichl, Marcus Sarkis, and Clark
Dohrmann for the inspiring collaboration and discussions on this topic.
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A Mortar BDD Method for Solving Flow
in Stochastic Discrete Fracture Networks

Géraldine Pichot, Baptiste Poirriez, Jocelyne Erhel,
and Jean-Raynald de Dreuzy

1 Introduction

In geological media, the large variety and complex configurations of fractured
networks make it difficult to describe them precisely. A relevant approach is to
model them as Discrete Fracture Networks (DFN) [10,19], with statistical properties
in agreement with in situ experiments [13, 14, 16]. A DFN is a 3D domain made of
2D fractures intersecting each other. Steady state flow in DFN is considered, the rock
matrix is assumed impervious. Following a Monte-Carlo approach, a large number
of DFN has to be generated and for each, a flow problem has to be solved whatever
the complexity of the generated networks. Moreover time and memory costs for
each simulation should be as lower as possible.

A nonconforming discretization of DFN allows to reduce the number of
unknowns and facilitate mesh refinement. Sharp angles are managed by a staircase-
like discretizations of the fractures’ contours [34]. The non-matching feature at the
fractures’ intersections is handled via a Mortar method [1, 4, 5] developed for DFN
in [33, 34] for a mixed hybrid finite element formulation. It consists in defining, for
each intersection between fractures, master and slave sides. Due to the staircase-
like discretizations, a shared edge may be labeled several times with master and/or
slave properties, it is called in the paper a multi-labeled edge. Continuity conditions
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are enforced between the unknowns on both sides. The derived linear system has
only inner and master traces of hydraulic head as unknowns. The matrix A of this
system is a symmetric definite positive (SPD) arrow matrix in presence of Dirichlet
boundary conditions [34].

The challenge is to solve such linear systems with millions of unknowns [15].
Direct solvers (like Cholmod [11]) are very efficient for small systems but suffer
from a high need of RAM memory when the system size becomes too large.
Among iterative solvers, multigrid methods are very efficient for most networks
but for some, the convergence rate is very slow [15, 35]. Preconditioned Conjugate
Gradient (PCG) is efficient and robust for every network tested [35]. The natural
decomposition of the matrix A in subdomains encourages the use of domain
decomposition methods [7, 24, 31, 36]. The Schur complement of the matrix A is
SPD and yields an interface system with only master unknowns. This interface
system can be solved iteratively with PCG. The unknowns on inner edges are then
derived locally in each fracture plane by solving small local linear systems, with a
direct solver for example.

Among possible preconditioners, the balancing domain decomposition (BDD)
method is based on a Neumann–Neumann preconditioner coupled with a coarse
level solver, to improve the preconditioner as the number of subdomains increases
[27, 29, 30]. BDD method applied to mixed finite element is done in [12]. The
application to a nonconforming discretization is proposed in [18, 32]. Meanwhile,
an alternative method has been developed, the Balancing Domain Decomposition
by Constraints (BDDC) [17], later applied to mortar discretization for geometrically
nonconforming partitions in [26].

In this paper, we use the BDD algorithm proposed in [32, 35] to solve the linear
system arising from a nonconforming discretization of DFN. The coarse level is
defined following [37] and balancing is implemented as a preconditioning matrix
[20]. The algorithm is implemented in C++ in the parallel software SIDNUR [35].
For DFN, choosing one subdomain given by one fracture, instead of a set of fractures
has shown to be the most time saving decomposition [35].

The paper is organized in four sections. Section 2 describes the flow model.
Section 3 recalls the linear system derived from a nonconforming discretization
of the DFN. Section 4 is the main contribution of this paper and presents the
decomposition in local matrices. We apply the BDD method proposed in [32, 35]
for networks satisfying some hypotheses on the mesh. The last section illustrates
the application of the solver SIDNUR [35] on three stochastically generated DFN.

2 Flow Model

We consider flow in DFN assuming the rock matrix is impervious. In the entire
paper, an intersection is uniquely defined as the segment shared by two fractures.
We denote˙k the kth intersection, k D 1; : : : ; Ni .

Poiseuille’s law and mass conservation apply in each fracture plane, denoted˝f ,
f D 1; : : : ; Nf . We assume there is no longitudinal flux at the fracture intersections.
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The DFN is embedded in a cube of size L. Some fractures are truncated by the
cube faces. Classical permeameter boundary conditions apply on the cube faces. The
two opposite faces of the cube with Dirichlet boundary conditions (prescribed value
pD) are called �D (�D ¤ ;) and the lateral faces with homogeneous Neumann
boundary conditions are called �N . The boundary of the fracture f is called �f .
In the following, we assume there is only one cluster of fractures connected to the
Dirichlet boundary conditions and we consider only this cluster.

In each fracture plane, with x 2 R2, the following equations link the unknown
hydraulic head scalar function p.x/ and the flux per unit length function u.x/:

r � u.x/ D f .x/ for x 2 ˝f ; (1)

u.x/ D �T .x/rp.x/ for x 2 ˝f ; (2)

p.x/ D pD.x/ on �D \ �f ; (3)

u.x/:� D 0 on �N \ �f ; (4)

u.x/:� D 0 on �f nf.�f \ �D/[ .�f \ �N /g; (5)

where � (respectively �) denotes the outward normal unit vector of the borders with
respect to the fracture˝f . The parameter T .x/ is a given SPD transmissivity field
(unit Œm2:s�1�). The function f .x/ 2 L2.˝f / represents the sources/sinks.

Let Il be a segment shared by several incident fractures, l D 1; : : : ; Nl . It can
be the intersection itself or only a part of it if intersections overlap. Let Fl be the set
of fractures which contains Il . On each segment, continuity conditions are imposed
to ensure the continuity of hydraulic heads and the conservation of fluxes [21, 38]:

pf;l D pl on Il , 8f 2 Fl , (6)
X

f 2Fl
uf;l :nf;l D 0 on Il ; (7)

wherepf;l is the trace of hydraulic head on Il in the fracture˝f , pk is the unknown
hydraulic head on the segment Il and uf;l :nf;l is the normal flux through Il coming
from the fracture ˝f , with nf;l the outward normal unit vector of the segment Il

with respect to the fracture˝f .

3 A Mortar Method Applied to DFN

3.1 Mesh Generation

With a stochastic generation, fractures can cross in a very intricate way. We define
the contour of a fracture f as its border and all segments Il which belong to f . To
preserve a good mesh quality whatever the generated fractured networks, staircase
like discretizations of the contour are performed in each fracture plane.
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Fig. 1 Mesh generation—simple example with two fractures

Each fracture is meshed with its own mesh step:

(i) A temporary uniform grid is built that encompasses the fracture, with a grid
step chosen as input;

(ii) 1D staircase-like meshes of the contour are built using the centers of the grid
elements as discretization points;

(iii) From these 1D discretizations, a 2D triangle mesh of the fracture is built.

We call shared edges the edges of the triangles that discretize the segments Il ,
l D 1; : : : ; Nl within the different fractures in Fl . All other edges are called inner
edges. Notice a given segment Il may have different discretizations in the different
fractures in Fl as shown on Fig. 1. The total mesh is made of Nin inner edges and of
N˙ shared edges. In the following, we will use the subscript in to refer to the inner
edges and˙ to shared edges.

3.2 Derivation of the Linear System

The Mortar method applied to DFN is presented in [34]. It consists, for each
intersection ˙k , of choosing a master fracture m and a slave fracture s. We denote

Nm D
Ni
X

kD1
Nk;m, Ns D

Ni
X

kD1
Nk;s , with Nk;fm;sg the number of edges that discretize

the master (respectively slave) side of the intersection ˙k .
The traces of hydraulic head unknowns are �in on inner edges, �m and �s on

master and slave edges. Additionally, each shared edge has an unknown called�˙ .
The additional unknowns�˙ allow to deal with multi-labeled edges which belong
to several intersections. The unknowns�s and �˙ are derived from �m following
the relations (see [34]):
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�s D C�m; (8)

�˙ D Pm�m C Ps�s D .Pm C PsC /�m: (9)

The matrix C is an intersection block matrix of dimension NsxNm, with the block
Ck a matrix of size Nk;sxNk;m for the intersection ˙k that represents the L2-
projection from the master side to the slave side.

Let denote mE (respectively sE ) the number of times a shared edge E is labeled
with a master (respectively slave) property. Let nE D sE C mE . The values .i; j /

of the matrices Pm (respectively Ps) of size N˙xNm (respectively N˙xNs) is
1

nE
if the unknown�m.j / (respectively�s.j /) is associated to an edge with �˙.i/ as
shared unknown, and 0 otherwise.

At the network scale, the linear system reduces to a system with unknowns �in

and�m [34]:

A

�

�in

�m

�

D
�

Fin

Fm

�

: (10)

The second member is a vector of dimension Nin C Nm, which corresponds to the
source/sink function, to the imposed Dirichlet and Neumann boundary conditions.

The matrixA is SPD in presence of Dirichlet boundary conditions [34] and writes
as:

8

ˆ

ˆ

<

ˆ

ˆ

:

A D
�

Ain;in Ain;m

ATin;m Am;m

�

;

Ain;m D Ain;˙ .Pm C Ps C /;
Am;m D .Pm C Ps C /T A˙;˙ .Pm C Ps C /:

(11)

The matrix Ain;in is a block diagonal matrix of order Nin made of blocks Af;in;in
associated to the inner edges in the fracture˝f .

4 A Mortar BDD Method for DFN System

The arrow shape of the matrix A allows to reduce the linear system (10) to an
interface problem with only�m as unknowns:

S �m D Bm; (12)

S D Am;m �ATin;mA�1in;inAin;m; (13)

Bm D Fm � .P T
m C CTP T

s /A
T
in;˙A

�1
in;inFin: (14)

with S the Schur complement of size NmxNm.
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Since S is SPD, the linear system (12) can be solved iteratively via a PCG
method. To apply a balancing preconditioner, we need the local Schur complements
Sf , f D 1; : : : ; Nf .

4.1 Local Schur Complements

LetNf;m (respectivelyNf;s) be the number of master (respectively slave) unknowns
associated with master (respectively slave) edges in the fracture f . Let Nf;o be
the number of master unknowns associated with the slave edges in the fracture f
following the relations (8). Let Nf;˙ be the number of shared edges in the fracture
f . We define the local matrices .Pm C Ps C /f as:

.Pm C Ps C /f D
�

Pf;m Pf;sCf
�

(15)

with Pf;m of size Nf;˙xNf;m and Pf;s of size Nf;˙xNf;s . The matrix Cf of size
Nf;sxNf;o is a block matrix whose blocks Ck are extracted from the matrix C for
the intersections˙k in the fracture f .

The local problem in the fracture f writes as:

Af;˙ D
 

Af;in;in Af;in;˙
ATf;in;˙ Af;˙;˙

!

(16)

Its associated Schur complement writes as: Sf;˙ D Af;˙;˙�ATf;in;˙A�1f;in;inAf;in;˙ .
At the fracture scale, local matrices Af , of order .Nf;in CNf;m CNf;o/ are built

from Af;˙ :

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Af D
 

Af;in;in Af;in;m

ATf;in;m Af;m;m

!

;

Af;in;m D
�

Af;in;˙Pf;m Af;in;˙Pf;s Cf
�

;

Af;m;m D
 

PT
f;mA˙;˙Pf;m P T

f;mA˙;˙Pf;s Cf

.P T
f;mA˙;˙Pf;s Cf /

T .Pf;s Cf /
T A˙;˙ Pf;s Cf

!

:

(17)

The block Af;in;m is of size Nf;inx.Nf;m C Nf;o/ and the block Af;m;m is of size
.Nf;m CNf;o/x.Nf;m CNf;o/.

The local Schur complement Sf associated to the matrix Af (17) of the fracture
˝f writes:

Sf D Af;mm � ATf;in;m A�1f;in;in Af;in;m D .Pm C Ps C /Tf Sf;˙ .Pm C Ps C /f :
(18)
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As each intersection involves two fractures, one slave and one master, the Schur
complement S of size NmxNm is the sum of the local Schur complements:

S D
Nf
X

fD1
RTf Sf Rf ; (19)

where Rf is the restriction matrix from the network to the fracture f .

4.2 Neumann–Neumann Preconditioner

In the following, a subdomain ˝f is said to be floating if it does not contain any
Dirichlet boundary conditions, non floating otherwise.

The Neumann–Neumann preconditioner [9, 25, 28] writes as:

M�1NN D D
X

f

RTf S
�

f Rf D; (20)

where

S
�

f D
(

S�1f if Sf is non singular;

QS�1f otherwise, with QSf a non singular approximation of Sf :
(21)

The matrix D is a diagonal matrix of order Nm. With a nonconforming
discretization, a definition of one fracture as one subdomain and an homogeneous
transmissivity, D D 1

2
Id since each master unknown is defined for an intersection

between two subdomains.
From the definition of M�1NN , one needs to solve local subdomain problems with

the matrix Sf , like Sf zf D rf . However the kernel of Sf may not be trivial. If the
matrix .Pm C PsC /f is of full rank, the kernel of Sf is that of Sf;˙ : f0g for a non
floating subdomain, else fconstg. We assume that .PmCPsC /f is of full rank if the
following conditions are satisfied:

(H1) the master side of an intersection must have the smallest number of
discretization edges: Nk;m � Nk;s;8k 2 1; : : : ; Ni ;

(H2) There are no multi-labeled edges: nE D 1 for each shared edge E yielding:
N˙ D Nm CNs .

If the subdomain is floating, in order to get a SPD approximation QSf , we add one
arbitrary Dirichlet condition, since the kernel is of dimension 1 [35].



106 G. Pichot et al.

4.3 Balancing Preconditioner

As the number of subdomains increases, the efficiency of the Neumann–Neumann
preconditioner decreases [27] and one has to couple it with a coarse level solver
[29, 30]. We use the following balancing preconditioner:

M�1b D PT M�1NN ; (22)

as in [20, 35, 37] where the projection matrix P , of order Nm, is defined as:

P D I � S Z S�1c ZT : (23)

The matrix Z is a Nmx Nc subspace matrix with full rank, Nc < Nm, and Sc D
ZT S Z is the invertible matrix corresponding to the coarse problem.

This formulation is based on the PCG initial value:

�m;0 D Z S�1c ZT Bm; (24)

such that, for all iterations it of PCG, the residuals ritDS�m;it�Bm satisfy
ZT ritD 0 and PritD rit [35]. Thus applying (22) is equivalent to apply
PT M�1NN P CZ S�1c ZT [35, 37].

A possible choice for the full rank matrix Z is to use a subdomain deflation as
defined in [22, 35]. Here Nc � Nf and Z is sparse.

5 Numerical Experiments

We present preliminary numerical experiments on three random DFN that satisfy
hypotheses .H1/–.H2/, generated with the software MP_FRAC of the H2OLab
platform http://h2olab.inria.fr/. We checked there is only one connected cluster. We
build the local matrices Af and use the software SIDNUR which implements the
BDD method [35].

5.1 Geometry and Boundary Conditions

The position of the fractures is taken as uniform in the domain. Their orientation is
uniform and their length follows a power law distribution of exponent 2:7 [8]. We
take pD D 1m on the cube face at y D L=2 and pD D 20m on the cube face at
y D �L=2. The transmissivity tensor is homogeneous and equal to T D T Id, with
T D 8:2e � 7 m2:s�1. We consider three networks:

• L6_NF28: L D 6 and Nf D 28;
• L10_NF18: L D 10 and Nf D 18;
• L10_NF24: L D 10 and Nf D 24.

http://h2olab.inria.fr/
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Table 1 Comparison between a mesh with step � for all fractures and a mesh with step � for
fractures with an output flux above 5 % of the total output flux and 2 �� otherwise

Simulation
name

� Fine mesh—step � Coarser mesh—step � or 2�
Number
of edges Min(QK ) Mean(QK )

Number
of edges Min(QK) Mean(QK )

L6_NF28 0.05 122,306 0.43 0.95 90,533 0.23 0.95
L10_NF18 0.1 62,409 0.45 0.95 57,462 0.19 0.95
L10_NF24 0.1 78,652 0.51 0.95 67,765 0.25 0.95

5.2 Mesh Procedure and Basic Optimization

The nonconforming mesh is generated according to the mesh procedure described in
Sect. 3.1. With this approach, adaptive mesh refinement can be done at the fracture
level [2, 3, 6, 39].

A basic mesh coarsening consists in meshing finely only the fractures that take
part significantly in the flow. Let us run a first simulation with a coarse mesh step
2 ��. The output flux for each fracture is computed, as well as the total output flux
on the output cubic face. We choose to refine, with a mesh step �, the fractures that
have an output flux above 5 % of the total output flux. The simulation is performed
again on this refined mesh.

In Table 1, we compare the mesh obtained with this basic mesh coarsening, so-
called coarser mesh, with a mesh where the step is � for all fractures, so-called fine
mesh. The min and mean of the quality mesh criterion QK 2 Œ0I 1� is also given,
whereQK is defined for each triangle K as [23]:

QK D 4
p
3
SK

h2s
; (25)

with SK the surface of the triangle K and hs D
q

P3
iD1 h2i , with hi the length of

the edge i of the triangleK . The closerQK is to 1, the better the triangle quality is.
Table 1 shows that this basic mesh coarsening reduces the number of edges from

7:93 to 25:96% at the price of somehow lower mesh quality. Indeed the length
of some fractures is too small compared with 2�, yielding too few discretization
points. As future work, we could define a minimal mesh step per fracture according
to its length.

5.3 Solution with SIDNUR

Using the coarser mesh, we solve the linear system (12) with the BDD method.
We checked these networks satisfy hypotheses .H1/–.H2/. From the computed
values of �m, we derive the unknowns�s and �˙ according to (8)–(9). The inner
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Fig. 2 L6_NF28—mean head—SIDNUR

Fig. 3 L10_NF18—mean head—SIDNUR

unknowns �in are derived locally in each fracture plane by solving small linear
systems (see (10)). From these traces of hydraulic head unknowns, one can derive
the mean head values and the fluxes [34]. Figures 2, 3 and 4 give the mean head
values on the three DFN. Figure 5 displays the mean head values for the DFN
L10_NF24 obtained by solving the linear system (12) with CHOLMOD to illustrate
the good agreement of the results obtained with the two methods.

Table 2 gives the numbers Nin, Nm and Ns with N˙ D Nm C Ns (hypothesis
.H2/). This table also provides the number of PCG iterations, the final L2-norm of
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Fig. 4 L10_NF24—mean head—SIDNUR

Fig. 5 L10_NF24—mean head—CHOLMOD

Table 2 Solution with SIDNUR. Comparison with CHOLMOD

Simulation
name Nin Nm Ns # PCG it. PCG final residual

Comparison with
CHOLMOD

L6_NF28 89,732 365 436 13 6.02e�17 4.15e�12
L10_NF18 56,939 247 276 15 2.47e�18 9.56e�13
L10_NF24 66,899 412 454 18 8.71e�19 1.47e�12
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the residual and theL2-norm of the relative difference between the solutions

�

�in

�m

�

computed with SIDNUR and with the direct solver CHOLMOD [11].
On such small linear systems with very small CPU times, the solver SIDNUR is

not competitive with respect to a direct solver. However this preliminary test phase
demonstrates the possibility of solving linear system arising from a nonconforming
discretization of networks satisfying hypotheses .H1/–.H2/with the BDD method.
Using SIDNUR relies on a suitable decomposition of the local matrices. Moreover
SIDNUR requires less RAM memory than a direct solver and is parallel.

6 Conclusion

This paper describes a Balancing Domain Decomposition method, implemented in
the so-called SIDNUR solver, to simulate flow in DFN with a nonconforming mesh.
DFN and local matrices are generated with the so-called MP_FRAC software. Our
current work is to extend the method to more general discretizations, which do not
satisfy hypotheses .H1/–.H2/, in the perspective of solving linear systems with
several millions of unknowns. The parallelism of SIDNUR will be very helpful
to reduce the time and memory costs. Moreover the very basic technic we use to
coarsen the mesh could be improved by defining suitable a posteriori estimators.
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A Domain-Based Multinumeric Method
for the Steady-State Convection-Diffusion
Equation

Beatrice Riviere and Xin Yang

1 Introduction

In the simulation of flow and transport of hydrocarbons in reservoirs, locally mass
conservative methods are preferred. Methods that do not satisfy this property, will
produce numerical mass errors that accumulate and will yield an unstable solution.
Currently, finite volume methods are popular numerical methods in the oil industry.
While they are computationally efficient, they are only of first order. Convergence
of cell-centered finite volume solutions is theoretically obtained on specially
constructed grids (such as Voronoi meshes) and for problems with no mixed second
derivatives [3, 4, 6, 8, 12]. Discontinuous Galerkin methods also belong to the class
of locally mass conservative methods. In addition, their flexibility allows for the use
of complicated geometries, unstructured meshes, varying polynomial degrees and
discontinuous coefficients. Discontinuous Galerkin solutions are accurate but their
cost can be large as it is proportional to the number of mesh elements (also called
cells). In this paper, discontinuous Galerkin methods are used in certain parts of the
domain whereas the cell-centered finite volume method is used in other parts. The
model problem is a convection-diffusion problem in a bounded domain ˝ � Rd ,
d D 2; 3.

� r � .Kru� ˇu/ D f; in ˝; (1)

u D g; on @˝: (2)
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The spatially dependent coefficient K is bounded below and above by positive
constants k0 and k1 respectively. The convective vector ˇ is assumed to be
divergence-free:r � ˇ D 0.

The computational domain is partitioned into several subdomains. On each
subdomain, either a discontinuous Galerkin method is used or a cell-centered finite
volume is used. The advantage of a multinumeric approach lies in the ability
of choosing a particular scheme for a particular subdomain. The discontinuous
Galerkin method can yield accurate solutions in parts of the domain where the
permeability of the porous medium varies over several orders of magnitude or
in parts of the domain where anisotropy is important. In this work, the coupling
of the two discretizations is done weakly by interface conditions. Two equivalent
formulations are presented: a monolithic approach and an hybridized approach with
Lagrange multipliers. This paper extends the result of [2] where the elliptic problem
is analyzed. In [11], we apply the method to a transport equation. The idea of using
different discretizations in different subdomains is well studied in the literature. For
instance, the reader can refer to [1, 5, 7, 10].

An outline of the paper is the following. Section 2 defines first the discontinuous
Galerkin and finite volume discretizations in each subdomain, then the coupling
of the subdomains. Section 3 states the convergence of the method. Conclusions
follow.

2 A Multinumeric Approach

The domain˝ is subdivided into non-overlapping subdomains˝i
FV and˝i

DG . Our
proposed multinumerics scheme uses a finite volume method (FV) on the union of
˝i
FV , denoted by ˝F , and a discontinuous Galerkin (DG) method on the union of

˝i
DG , denoted by ˝D. Let E h

D (resp. E h
F ) be a subdivision of ˝D (resp. ˝F ) made

of cells V (Voronoi cells in ˝F and either triangles/tetrahedra/hexaedra or Voronoi
cells in ˝D). We also denote by hF (resp. hD) the maximum diameter over all cells
in ˝F (resp. ˝D) and we let h D max.hF ; hD/. We assume that the meshes match
at the interface �DF defined as:

�DF D [i .@˝i
DG \ @˝i

FV /

The definition of the mesh E h
F requires further notation. It is assumed that E h

F is an
admissible finite volume mesh, in the following sense:

(i) There is a family of nodes fxV W V 2 E h
F g such that xV belongs to V and if a

face � is shared by two neighboring cells V and W , it is assumed that xW and
xV are distinct, and that the straight line going through xV and xW is orthogonal
to � .

(ii) For any boundary face � D @V \ @˝ for some V in E h
F , it is assumed that xV

does not lie on � . However this condition can be relaxed.
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We denote by � h;I
F the set of faces that belong to the interior of˝F and by � h;@

F
the set of boundary faces that belong to [i .@˝i

FV \ @˝/. Similarly, the sets of
interior and boundary faces of ˝D are denoted by � h;I

D and � h;@
D respectively.

We also define � h
F D �

h;I
F [ � h;@

F and � h
D D �

h;I
D [ � h;@

D . There remains
the set of faces that belong to the interface �DF; this particular set will be
denoted by � h

DF. We further decompose the boundary of ˝ into inflow and
outflow boundaries. The unit normal vector outward of ˝ is denoted by n.

�
h;@�

D D fx 2 � h;@
D ; ˇ � n � 0g; �

h;@C
D D � h;@

D n � h;@�
D :

� h;@�
F D fx 2 � h;@

F ; ˇ � n � 0g; � h;@C
F D � h;@

F n � h;@�
F :

We now define a parameter d� that is associated to each face � in � h
F [ � h

DF. If
the face � is an interior face shared by two cells V and W in E h

F , the parameter d�
is the Euclidean distance between the nodes xV and xW : d� D d.xV ; xW /. If the
face � is a boundary face (� � @V \ @˝), the parameter d� is the distance between
the node xV and the face � , in other words d� D d.xV ; y� /, where y� denotes the
non-empty intersection between the straight line going through xV and orthogonal
to � . Finally, if the face � lies on the interface �DF and is shared by a cell V in E h

F

and a cell W in E h
D, the parameter d� is defined to be the distance between the node

xV and the edge � . As in the boundary case, we can denote by y� the intersection
between the straight line going through xV and perpendicular to � . Then, we have
d� D d.xV ; y� /.

An admissible mesh in the finite volume regions is such that there is some
positive number � > 0 such that

d� � � max.hV ; hW /; 8� 2 � h;I
F ; � D @V \ @W;

d� � �hV ; 8� 2 � h;@
F ; � D @V \ @˝;

d� � �hV ; 8� 2 � h
DF; � D @V \ @W; V 2 E h

F ; W 2 E h
D:

A standard harmonic average of the diffusion coefficientK is now defined:

K� D d�
ˇ

ˇ

ˇ

ˇ

Z xW

xV

ds

K.s/

ˇ

ˇ

ˇ

ˇ

�1
; 8� 2 � h;I

F ; � D @V \ @W;

K� D d�
ˇ

ˇ

ˇ

ˇ

Z y�

xV

ds

K.s/

ˇ

ˇ

ˇ

ˇ

�1
; 8� 2 � h;@

F ; � D @V \ @˝;

K� D d�
ˇ

ˇ

ˇ

ˇ

Z y�

xV

ds

K.s/

ˇ

ˇ

ˇ

ˇ

�1
; 8� 2 � h

DF; � D @V \ @W; V 2 E h
F ; W 2 E h

D:

It is easy to see that K� is bounded above and below by k1 and k0 respectively. We
denote by j� j the measure of the face � .
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Let XDG be the space of discontinuous piecewise polynomials of degree r � 1
in the DG subdomains. Let XFV be the space of piecewise constants in the FV
subdomains. The restriction of the numerical solution to the DG subdomains (resp.
FV subdomains) is denoted by uDG (resp. uFV ).

2.1 Bilinear Forms

The differential operators are discretized by an interior penalty discontinuous
Galerkin method in some subdomains and by a cell-centered finite volume method
in other subdomains.

First, we define the jump of any discontinuous piecewise polynomial function.
For any face � , we fix a unit normal vector n� to � . If � is a boundary face, then n�
is the outward normal to ˝ . If � belongs to the interface � h

DF, then the vector n� is
chosen to point from the DG region into the FV region. In the definition of the jump
Œv� of a function v given below, we assume that the face � is shared by two cells V
and W , and that the normal vector n� points from V into W . For the interior faces,
we define

Œv�j� D vjV � vjW ; � 2 � h;I
F [ � h;I

D ; � D @V \ @W

For the boundary faces, we define

Œv�j� D vjV ; � 2 � h;@
F [ � h;@

D ; � D @V \ @˝:

In the definitions above, it is understood that vjW D v.xW / if W is a cell in the FV
subdomains.

The average of a discontinuous function v on a face is denoted by fvg and defined
below:

fvgj� D 1

2
.vjV C vjW /; 8� D @V \ @W;
fvgj� D vjV ; 8� D @V \ @˝:

Finally we define the upwind v" on the faces. For a given face � in � h
D[� h

F [� h
DF

shared by cells V and W such that n� points from V into W , we have

v" D
�

vjV if ˇ � n� � 0;
vjW if ˇ � n� < 0:

In what follows, we derive the bilinear forms corresponding to each subdomain.
First, we multiply (1) by a function v 2 XDG , integrate over one DG cell V :
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Z

V

.Kru� ˇu/ � rv �
Z

@V

.Kru� ˇu/ � nV v D
Z

V

f v

We sum over all the cells in all the DG subdomains, use the definition of the normal
vector n� and the regularity of the exact solution to obtain:

X

V2E hD

Z

V

.Kru � ˇu/ � rv �
X

�2� h;ID

Z

�

.fKrug � ˇu"/ � n� Œv�

�
X

�2� h;@D [� hDF

Z

�

.Kru� ˇu/ � n�v D
X

V 2E hD

Z

V

f v

Stabilization terms are added for the interior penalty discontinuous Galerkin
method. The penalty parameter is denoted by � > 0 and the symmetrization
parameter by " 2 f�1;C1g. The penalty parameter is assumed to be large enough if
" D �1 and is taken equal to 1 if " D C1. The parameter h� denotes the maximum
diameter of the neighboring cells V andW , that share the face � .

X

V 2E hD

Z

V

.Kru� ˇu/ � rv �
X

�2� hD

Z

�

�fKru � n�gŒv� � "fKrv � n� gŒu�
�

C
X

�2� hD
�h�1�

Z

�

Œu�Œv�C
X

�2� h;ID

Z

�

ˇ � n�u"Œv�C
X

�2� h;@D

Z

�

ˇ � n�uv

�
X

�2� hDF

Z

�

.Kru � ˇu/ � n�v D
X

V 2E hD

Z

V

f v C "
X

�2� h;@D

Z

�

fKrv � n�gg

C
X

�2� h;@D

�h�1�
Z

�

gv

From this derivation, we define the bilinear form for the DG subdomains as:

aDG.u; v/ D
X

V2E hD

Z

V

.Kru�ˇu/ � rv�
X

�2� hD

Z

�

�fKru � n� gŒv� � "fKrv � n�gŒu�
�

C
X

�2� hD
�h�1�

Z

�

Œu�Œv�C
X

�2� h;ID

Z

�

ˇ � n�u"Œv�C
X

�2� h;@CD

Z

�

ˇ � n�uv

C
X

�2� hDF

j� j
d�
K�u.y� /v.y� /C

X

�2� hDF

Z

�C
ˇ � n�uv
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In the last term, the subset of a face � on which ˇ � n� is non-negative is denoted by
�C. This corresponds to the outflow part of the face. The inflow part is denoted by
��.

Second, we multiply (1) by a function v 2 XFV , that is piecewise constant,
integrate over one FV cell V :

�
Z

@V

.Kru � ˇu/ � nV v D
Z

V

f v

We sum over all the FV cells and use the regularity of the exact solution:

X

�2� h;IF

Z

�

.�Kru � n� C ˇ � n�u"/Œv�C
X

�2� h;@F

Z

�

.�Kru � n� C ˇ � n�u/v

C
X

�2� hDF

Z

�

.Kru� ˇu/ � n�v D
X

V 2E hF

Z

V

f v

A cell-centered finite difference approximation is used to approximate the flux
across the faces. Therefore we define the bilinear form in the FV regions as:

aFV.u; v/ D
X

�2� hF

j� j
d�
K�Œu�Œv�C

X

�2� h;IF

Z

�

ˇ � n�u"Œv�C
X

�2� h;@CF

Z

�

ˇ � n�uv

C
X

�2� hDF

j� j
d�
K�uv �

X

�2� hDF

Z

��
ˇ � n�uv

Finally the source function f and the boundary conditions are handled by the
following bilinear forms:

`DG.v/ D
Z

˝D

f vC"
X

�2� h;@D

Z

�

Krv � n�gC
X

�2� h;@D

�h�1�
Z

�

gv�
X

�2� h;@�D

Z

�

ˇ � n�gv

`FV .v/ D
Z

˝F

f v C
X

�2� h;@F

j� j
d�
K�g.y� /v �

X

�2� h;@�F

Z

�

ˇ � n�gv:

2.2 A Monolithic Formulation

The definition of the multinumeric scheme, without Lagrange multipliers, is given
in this section. Existence and uniqueness of the solution is shown.

The numerical method is as follows: find uDG 2 XDG , uFV 2 XFV such that
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aDG.uDG; vDG/ D `DG.vDG/C
X

�2� hDF

j� j
d�
K�uFV vDG.y� /

�
X

�2� hDF

Z

��
ˇ � n�uFV vDG; (3)

aFV .uFV ; vFV / D `FV .vFV /C
X

�2� hDF

j� j
d�
K�uDG.y�/vFV

C
X

�2� hDF

Z

�C
ˇ � n�uDGvFV ; (4)

for all vDG 2 XDG and all vFV 2 XFV .

Lemma 1. There exists a unique solution .uDG; uFV /, satisfying (3)–(4).

Proof. Let us assume that f D g D 0 and take vDG D uDG and vFV D uFV
in (3)–(4). We have

aDG.uDG; uDG/C aFV .uFV ; uFV / D 2
X

�2� hDF

j� j
d�
K�uFV uDG.y�/

C
X

�2� hDF

Z

�

jˇ � n� juDGuFV :

We expand the DG form:

aDG.uDG; uDG/ D
X

V2E hD
kK1=2ruDGk2L2.V / C

X

�2� hD
�h�1� kŒuDG�k2L2.�/

C
X

�2� hDF

j� j
d�
K�uDG.y� /

2�.1�"/
X

�2� hD

Z

�

fKruDG � n� gŒuDG��
X

V2E hD

Z

V

ˇuDG � ruDG

C
X

�2� h;ID

Z

�

ˇ � n�u"DGŒuDG�C
X

�2� h;@CD

Z

�

ˇ � n�u2DG C
X

�2� hDF

Z

�C
ˇ � n�u2DG

Using standard techniques to DG methods [9], one can show that

�
X

V2E hD

Z

V

ˇuDG � ruDG C
X

�2� h;ID

Z

�

ˇ � n�u"DGŒuDG�C
X

�2� h;@CD

Z

�

ˇ � n�u2DG
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D 1

2

X

�2� hD
kjˇ � n� j1=2ŒuDG�k2L2.�/ �

1

2

X

�2� hDF

Z

�

ˇ � n�u2DG

In addition, we can show that there is a constantM > 0 independent of h such that

X

V2E hD

kK1=2ruDGk2L2.V / C
X

�2� hD
�h�1

� kŒuDG�k2L2.�/ � .1� "/
X

�2� hD

Z

�

fKruDG � n�gŒuDG�

�M
0

@

X

V2E hD

kK1=2ruDGk2L2.V / C
X

�2� hD
�h�1

� kŒuDG�k2L2.�/
1

A

For the FV bilinear form, we have

aFV.uF V ; uFV / D
X

�2� hF

j� j
d�
K� ŒuFV �

2 C X

�2� h;IF

Z

�

ˇ � n�u"
FV ŒuFV �C

X

�2� h;@CF

Z

�

ˇ � n�u2FV

C X

�2� hDF

j� j
d�
K�u2F V �

X

�2� hDF

Z

��
ˇ � n�u2FV

We observe that, if u#FV denotes the downwind value of uFV , we have

X

�2� h;IF

Z

�

ˇ � n�u"FV ŒuFV � D
1

2

X

�2� h;IF

kjˇ � n� j1=2ŒuFV �k2L2.�/

C1
2

X

�2� h;IF

Z

�

jˇ � n� j..u"FV /2 � .u#FV /2/

Since ˇ is divergence-free, we obtain

X

�2� h;IF

Z

�

ˇ � n�u"FV ŒuFV � D
1

2

X

�2� h;IF

kjˇ � n� j1=2ŒuFV �k2L2.�/

�1
2

X

�2� h;@F

Z

�

ˇ � n�u2FV C
1

2

X

�2� hDF

Z

�

ˇ � n�u2FV

Combining the results above yields

M
X

V2E hD

kK1=2ruDGk2L2.V / CM
X

�2� hD
�h�1

� kŒuDG�k2L2.�/ C
1

2

X

�2� hD
kjˇ � n� j1=2ŒuDG�kL2.�/

CX

�2� hF

j� j
d�
K� ŒuFV �

2 C 1

2

X

�2� h;IF

kjˇ � n� j1=2ŒuFV �k2L2.�/ C
1

2

X

�2� h;@F

Z

�

jˇ � n� ju2F V
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C X

�2� hDF

j� j
d�
K� .uDG.y� /� uFV /

2 C 1

2

X

�2� hDF

Z

�

jˇ � n� j.uDG � uFV /
2 	 0

The inequality above immediately implies that uDG and uFV are zero everywhere.
Thus, we have proved uniqueness of the solution. Since the finite-dimensional
problem is linear, this is equivalent to showing existence of the solution.

2.3 Formulation with Lagrange Multipliers

In this section, we rewrite the method (3)–(4) in a hybridized form for the elliptic
problem. Lagrange multipliers are defined on the interface between the subdomains.

Let �0
h � L2.�12/ be the finite dimensional space of piecewise constants on the

partition of �12. Assume that the convection vector ˇ is zero. The hybridized DG-
FV scheme becomes: solve for uDG 2 XDG, uFV 2 XFV, �DG 2 �0

h, �FV 2 �0
h

satisfying

aDG.uDG; vDG/ D `DG.vDG/C
X

�2� hDF

j� j
d�
K��FV vDG.y�/; 8v 2 XDG (5)

aFV .uFV ; vFV / D `FV .vFV /C
X

�2� hDF

j� j
d�
K��DGvFV ; 8v 2 XFV (6)

X

�2� hDF

Z

�

.�DG � uDG.y�//� D 0; 8� 2 �0
h (7)

X

�2� hDF

Z

�

.�FV � uFV /� D 0; 8� 2 �0
h (8)

Lemma 2. There exists a unique solution to (5)–(8)

Proof. To show uniqueness of the solution, we assume that f D g D 0 and take
vDG D uDG and vFV D uFV in (5) and (6). We observe that (7) and (8) imply that

�DG j� D uDG.y� /; �FV j� D uFV ; 8� 2 � h
DF

The rest of the proof follows the proof of Lemma 1.
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3 Error Analysis

In this section, convergence of the multinumeric approach is shown under some
regularity assumptions of the exact solution.

Assume that the relative gradient of the exact solution near the interfaces with
respect to the gradient in the DG subdomains is small. In particular, given a face
� 2 � h

DF that belongs to a DG cell denoted by V� , assume that there is a constant C
independent of hD such that

.
X

� 2 � h
DF

kruk2
L2.V� /

/1=2 � ChD.
X

V2E hD
kruk2

L2.V /
/1=2 (9)

This assumption is an indicator on how to choose the interface. We want to place
the interface where the exact solution does not vary as much as it does in the interior
of the discontinuous Galerkin domain. In the simple case where the exact solution
is linear and its gradient is uniformly constant, this assumption is not satisfied (see
Remark 1).

We recall that by convention, the jump Œu � uFV � on an edge that belongs to � h
F

is the difference between u.xV / � uFV .xV / and u.xW / � uFV .xW / if the edge is
shared by the Voronoi cells V and W .

Theorem 1. Assume that u belongs toH2.˝/ and that uj˝D belongs toHrC1.E h
D/,

for r � 1. Under the assumption (9), there exists a constantC independent of h such
that

X

V 2E hD
kK1=2r.u�uDG/k2L2.V /C

X

�2� hD
�h�1� kŒu�uDG�k2L2.�/ C

X

�2� hF

�

d�
K� Œu � uFV �

2

C
X

�2� hD
kjˇ � n� j1=2Œu � uDG�k2L2.�/ C

X

�2� hF
kjˇ � n� j1=2Œu � uDG�k2L2.�/

C
X

�2� hDF

j� j
d�
K�.uDG.y�/ � uFV /

2 � C.h2D C h2F /

Proof. An outline of the proof is given. First we observe that the scheme (3)–(4)
is not consistent because of the use of finite difference approximations in the FV
subdomains and on the interfaces between the subdomains. We introduce an optimal
approximation, Qu, of the exact solution such that Quj˝D (resp. Quj˝F ) belongs to XDG

(resp. XFV ). We define

�DG D uDG � Quj˝D ; �FV D uFV � Quj˝F ; � D u � Qu

An error equation can be obtained:



A Domain-Based Multinumeric Method 123

aDG.�DG; vDG/C aFV .�FV ; vFV /C
X

�2� hDF

Z

��
ˇ � n��FV vDG

�
X

�2� hDF

j� j
d�
K��FV vDG.y�/ �

X

�2� hDF

Z

�C
ˇ � n��DGvFV

�
X

�2� hDF

j� j
d�
K��DG.y� /vFV D aDG.�DG; vDG/C aFV .�FV ; vFV /

C
X

�2� hDF

Z

��
ˇ � n��j˝F vDG �

X

�2� hDF

j� j
d�
K��j˝F vDG.y� /�

X

�2� hDF

Z

�C
ˇ � n��j˝DvFV

�
X

�2� hDF

j� j
d�
K��j˝D .y�/vFV CR;

where R is a residual term resulting from the consistency error. An expression for
R is:

R D
X

�2� hF
R�.u/ŒvFV �C

X

�2� hDF

Z

�

Kru � n�.vDG � vDG.y�//

C
X

�2� hDF

Z

�

R�.u/.vDG.y� /� vFV / (10)

The residual quantitiesR�.u/ are defined on the interior faces of the FV subdomains
as

R�.u/ D �
Z

�

Kru �n�� j� j
d�
K�.u.xV /�u.xW //; 8� D @V \@W 8� 2 � h;I

F

This expression is slightly modified for the exterior boundary faces of the FV
subdomains:

R�.u/ D �
Z

�

Kru � n� � j� j
d�
K�.u.xV /� g.y� //; 8� D @V; 8� 2 � h;@

F

For the interfaces between the FV and DG subdomains, the residual term is defined
as

R�.u/ D �Kru � n� � K�

d�
.u.y� /� u.xW //; 8� 2 @W; W 2 E h

F ; 8� 2 � h
DF
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Next, we choose vDG D �DG and vFV D �FV in the error equation. The
error estimate follows by using trace inequalities, approximation results, and the
following bounds on the residuals, that involve the Hessian matrix H.u/ (see [3]):

jR�.u/j2 � C h
2
F j� j
d�

Z

V�

jH.u/j2; 8� 2 � h
F

�

Z

�

jR�.u/j
�2

� C h
2
F j� j
d�

Z

V�

jH.u/j2; 8� 2 � h
DF

The Hessian is integrated over the region V� defined by

V� D VW;� [ VV;� ; 8� D @V \ @W

with

VW;� D ftxW C .1 � t/x W x 2 �; t 2 Œ0; 1�g

Remark 1. If the assumption (9) is removed, the multinumeric approach converges
suboptimally. Indeed, there is a loss of h1=2D in the bound of the last term in the
definition of the residual in (10).

4 Conclusions

Cell-centered finite volume methods use Voronoi cells for unstructured meshes. Dis-
continuous Galerkin methods converge on general mesh elements including Voronoi
grids. In addition, for two-dimensional problems, Voronoi cells can naturally and
easily be partitioned into triangles by using the underlying Delaunay triangulation.
In this work, we formulate and analyze a method that couples DG and FV methods
via mesh interfaces. One appealing feature of the method is that, once a Voronoi
grid is built, the decomposition of the domain into DG regions and FV regions is
done easily and this decomposition can vary with each simulation.
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3-D FETI-DP Preconditioners for Composite
Finite Element-Discontinuous Galerkin Methods

Maksymilian Dryja and Marcus Sarkis

1 Introduction

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG)
method for an elliptic three-dimensional problem with discontinuous coefficients
is considered. The problem is posed on a polyhedral region ˝ which is a union
of N disjoint polyhedral subdomains ˝i of diameter O.Hi/ and we assume that
this partition is geometrically conforming. Inside each subdomain, a conforming
finite element space on a quasiuniform triangulation with mesh size O.hi / is
introduced. Large discontinuities on the coefficients and nonmatching meshes are
allowed to occur only across @˝i . In order to deal with the nonconformity of the
FE spaces across subdomain interfaces, a discrete problem is formulated using
the symmetric interior penalty DG method only on the subdomain interfaces. For
solving the resulting discrete system, FETI-DP type of methods are designed and
fully analyzed. This paper extends the 2-D results in [2] to 3-D problems.
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2 Differential and Discrete Problems

Consider the following problem: Find u�ex 2 H1
0 .˝/ such that

a.u�ex; v/ D f .v/ for all v 2 H1
0 .˝/; (1)

where

a.u; v/ WD
N
X

iD1

Z

˝i

�i .x/ru � rv dx and f .v/ WD
Z

˝

f v dx:

To simplify the presentation, we assume that �i .x/ is equal to positive constant �i .
We now consider the discrete problem associated to (1). Let Xi.˝i/ be the

regular finite element (FE) space of piecewise linear and continuous functions in
˝i and define

X.˝/ D
N
Y

iD1
Xi .˝i/ � X1.˝1/ 	X2.˝2/ 	 � � � 	XN.˝N /:

We note that we do not assume that the functions in Xi.˝i/ vanish on @˝i \ @˝ .
Let us denote NFij WD @˝i\@˝j as a face of @˝i and NFji WD @˝j \@˝i as a face

of @˝j . In spite of the common face Fij and Fji being geometrically the same, they
will be treated separately since we consider different triangulations on NFij � @˝i

with a mesh parameter hi and on NFji � @˝j with a mesh parameter hj . We denote
the interior hi -nodes of Fij and the hj -nodes of Fji by Fijh and Fjih, respectively.

Let us denote by F 0
i the set of indices j of˝j which has a common faceFji with

˝i . To take into account also of these faces of˝i which belong to @˝ , we introduce
a set of indices F @

i to refer theses faces. The set of indices of all faces of ˝i is
denoted by Fi WD F 0

i [F @
i . A discrete problem is obtained by a composite FE/DG

method, see [1], is of the form: Find u� D fu�i gNiD1 2 X.˝/ where ui 2 Xi.˝i /,
such that

ah.u
�; v/ D f .v/ for all v D fvigNiD1 2 X.˝/; (2)

where

ah.u; v/ WD
N
X

iD1
a0i .u; v/; f .v/ WD

N
X

iD1

Z

˝i

f vi dx;

a0i .u; v/ WD fai .u; v/C pi .u; v/g C si .u; v/ � fdi .u; v/g C si .u; v/; (3)

where



3D FETI-DP DG 129

ai .u; v/ WD
Z

˝i

�irui � rvi dx;

pi .u; v/ WD
X

j2Fi

Z

Fij

ı

lij

�i

hij
.uj � ui /.vj � vi / ds;

and

si .u; v/ WD
X

j2Fi

Z

Fij

1

lij

�

�i
@ui
@n
.vj � vi /C �i @vi

@n
.uj � ui /

�

ds:

Here, when j 2 F 0
i , we set lij D 2 and let hij WD 2hihj =.hi C hj /, i.e., the

harmonic average of hi and hj . When j 2 F @
i , we denote the boundary faces

Fij � @˝i by Fi@ and set li@ D 1 and hi@ D hi , and on the artificial face Fji � F@i ,
we set u@ D 0 and v@ D 0. The partial derivative @

@n
denotes the outward normal

derivative on @˝i and ı is the sufficiently large penalty parameter. For details on
accuracy and well-posedness, see [1, 2] and references there in. In particular, we
show that exists positive constants �0 and �1, which do not depend on the �i , hi and
Hi , such that

�0ah.u; u/ �
N
X

iD1
di .u; u/ � �1ah.u; u/ for all u 2 X.˝/:

3 Schur Complement Systems and Discrete Harmonic
Extensions

This section is similar to Sect. 3 in [2] with a few natural changes when passing
from the 2-D to the 3-D case, and we refer to that for more details.

• Define the sets ˝ 0i , �i , � 0i , Ii , � , � 0, I and ˝ 0 by

˝ 0i D ˝i

[

f[j2F 0
i

NFjig; �i D @˝in@˝; � 0i D �i
[

f[j2F 0
i

NFjig;

� D
N
[

iD1
�i ; � 0 D

N
Y

iD1
� 0i ; Ii D ˝ 0in� 0i ; I D

N
Y

iD1
Ii and ˝ 0 D

N
Y

iD1
˝ 0i :

• Define the space Wi.˝
0
i / by

Wi.˝
0
i / D Xi.˝i / 	

Y

j2F 0
i

Xi . NFji /; where Xi. NFji / D Xj .˝j /j NFji :
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A function ui 2 Wi.˝
0
i / will be represented as

ui D f.ui /i ; f.ui /j gj2F 0
i
g;

where .ui /i WD ui j˝i
(ui restricted to ˝i ) and .ui /j WD ui j NFji (ui restricted to

NFji ).
• For the definition of the discrete harmonic extension operators H 0

i and Hi

(elimination of Ii variables) with respect to the bilinear forms a0i and ai , see
[2].

• The matrices A0i and S 0i are defined by

a0
i .ui ; vi / D hA0

iui ; vi i ui ; vi 2 Wi.˝
0
i /; a0

i .ui ; vi / D hS 0
i ui ; vi i ui ; vi 2 Wi .�

0
i /:

• Wi.�
0
i / � Wi.˝

0
i / denotes the H 0

i -discrete harmonic functions.
• Define W.˝ 0/ D QN

iD1 Wi .˝
0
i / and W.� 0/ D QN

iD1 Wi .�
0
i /.

• Let the subspace OW .˝ 0/ � W.˝ 0/ consist of functions u D fuigNiD1 2 W.˝ 0/
which are continuous on � , that is, for all 1 � i � N satisfy

.ui /i .x/ D .uj /i .x/ for all x 2 NFij for all j 2 F 0
i

and

.ui /j .x/ D .uj /j .x/ for all x 2 NFji for all j 2 F 0
i :

We note that OW .˝ 0/ can be identified to X.˝/.
• OW .� 0/ denotes the subspace of OW .˝ 0/ of H 0

i -discrete harmonic functions.
• The rest of Sect. 3 in [2] remains the same for 3-D problems. In particular, by

eliminating the interior variables I from the system (2), we obtain

OSu�� D g� : (4)

We note that OS can be assembled from S 0i , i.e., OS DPN
iD1 RT� 0

i
S 0iR� 0

i
, whereR� 0

i

is the restriction operator from � to � 0i .

4 FETI-DP with Corners, Average Edges and Faces
Constraints

We now design a FETI-DP method for solving (4). We follow to the abstract
approach described in pages 160–167 in [3].

Let us define the set of indices E 0
i of pairs .j; k/ of ˝j and ˝k , j ¤ k, for

which NEijk WD @Fij \ @Fik , for j; k 2 F 0
i , is an edge of @˝i . In spite of the

common edges Eijk , Ejik, and Ekij being geometrically the same, we treat them
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separately since we consider different triangulations on Eijk � @˝i with a mesh
parameter hi , Ejik � @˝j with a mesh parameter hj and Ekij � @˝k with a mesh
parameter hk . We denote the interior edge nodes of these triangulations by Eijkh,
Ejikh and Ekijh, respectively.

Let us introduce the nodal points associated to the corner unknowns by

Vi WD f[.j;k/2E 0i @Eijkg and V 0i WD fVi
[

f[.j;k/2E 0i @Ej ik [ @Ekij gg:

We say that u D fuigNiD1 2 W.˝ 0/ is continuous at the corners Vi if

.ui /i .x/ D .uj /i .x/ D .uk/i .x/ at all x 2 Vi :

Definition 1 (Subspaces QW .˝ 0/ and QW .� 0/). The QW .˝ 0/ consists of functions
u D fuigNiD1 2 W.˝ 0/ for which, for all 1 � i � N , the following conditions are
satisfied:

• At all corners Vi , u is continuous.
• On all edges Eijk for .j; k/ 2 E 0

i

.Nui /i;Eijk D .Nuj /i;Eijk D .Nuk/i;Eijk :

• On all faces Fij for j 2 F 0
i

.Nui /i;Fij D .Nuj /i;Fij ;

where

.Nui /i;Eijk D
1

jEijkj
Z

Eijk

.ui /ids; .Nuj /i;Fij D
1

jFij j
Z

Fij

.uj /ids:

The QW .� 0/ denotes the subspace of QW .˝ 0/ of functions which are discrete
harmonic in the sense of H 0

i . It is easy to see that OW .� 0/ � QW .� 0/ � W.� 0/.
Let QA be the stiffness matrix which is obtained by assembling the matricesA0i for

1 � i � N , from W.˝ 0/ to QW .˝ 0/. We represent u 2 QW .˝ 0/ as u D .uI ; u˘; u4/
where the subscript I refers to the interior degrees of freedom at the nodal points
on I , the ˘ refers to the degrees of freedom at the corners fVigNiD1 and edges and
faces averages, and the4 refers to the remaining degrees of freedom, i.e., the nodal
values on f� 0i nV 0i gNiD1 with edges and faces average equal to zero. For details on QA,
see (4.5) in [2], and its Schur complement QS (after eliminating the I and˘ degrees
of freedom from QA), see (4.6) in [2].

A vector u 2 QW .� 0/ can uniquely be represented by u D .u˘; u4/, therefore,
we can represent

QW .� 0/ D OW˘.�
0/ 	W4.� 0/;
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where OW˘.�
0/ refers to the ˘ -degrees of freedom of QW .� 0/ while W4.� 0/ to the

4-degrees of freedom of QW .� 0/. The vector spaceW4.� 0/ can be decomposed as

W4.� 0/ D
N
Y

iD1
Wi;4.� 0i /;

where the local space Wi;4.� 0i / refers to the degrees of freedom associated to the
nodes of � 0i nV 0i for 1 � i � N with zero averages on Fij and Fji , for i 2 F 0

i , and
on Eijk , Ejik and Ekij , for .j; k/ 2 E 0

i .
The jump operator B4 W W4.� 0/! Ur

B4 D .B.1/

4 ; B
.2/

4 ; � � � ; B.N/

4 /

is defined as follows. Each B.i/

4 maps W4.� 0/ to Ui;r (jumps on edges and faces),
where vi D B.i/u4 is defined by:

• For each face Fij for j 2 F 0
i , let

vi .x/ D .ui;4/i .x/ � .uj;4/i .x/ for all x 2 Fijh:

• For each edge Eijk for .j; k/ 2 E 0
i , let vi D fvi;1; vi;2g, where

vi;1.x/ D .ui;4/i .x/ � .uj;4/i .x/ for all x 2 Eijkh;

vi;2.x/ D .ui;4/i .x/ � .uk;4/i .x/ for all x 2 Eijkh:

Let Ur D .U1;r ; � � � ; UN;r / where Ui;r is the range of B.i/

4 , and note that the Ui;r
also has zero average on edges and faces. The space Ur will also be denoted as the
space of Lagrange multipliers. We note that by setting B.i/

4 u4 D 0, we have one
constraint for each node on Fijh and two constraints for each node on Eijkh. The
saddle point problem is defined as in [2], except that here we replace OW4 by Ur ,
and the problem (4) is reduced to: Find u�4 2 W4.� 0/ and �� 2 Ur such that

� QSu�4 C BT4�� D Qg4
B4u�4 D 0:

Hence, it reduces to

F�� D g; (5)

where

F WD B4 QS�1BT4; g WD B4 QS�1 Qg4:
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4.1 Dirichlet Preconditioner

We now define the FETI-DP preconditioner for F , see (5). Let S 0i;4 be the
Schur complement of S 0i restricted to Wi;4.� 0i / � Wi.�

0
i /, and define S 04 D

diagfS 0i;4gNiD1.
Let us introduce diagonal scaling matrices Di W Ui;r ! Ui;r , for 1 � i � N as

follows. For ˇ 2 Œ1=2;1/, define the diagonal entry of Di by:

• For each face Fij for j 2 F 0
i , let

Di.x/ D �ˇj .�ˇi C �ˇj /�1 DW �j i for all x 2 Fijh:

• For each edge Eijk for .j; k/ 2 E 0
i , let Di D fDi;1;Di;2g, where

Di;1.x/ D �ˇj .�ˇi C �ˇj C �ˇk /�1 DW �j ik for all x 2 Eijkh;
Di;2.x/ D �ˇk .�ˇi C �ˇj C �ˇk /�1 DW �kij for all x 2 Eijkh:

We now introduce BD;4 W Ur ! Ur by BD;4 D .D1B
.1/

4 ; � � � ;DNB
.N/

4 / and
the operator P4 W W4.� 0/! W4.� 0/ by P4 WD BT

D;4B4. We can check that for
u4 D fui;4gNiD1 2 W4.� 0/, that v4 WD P4u4 satisfies:

.vi;4/i D �j i Œ.ui;4/i � .uj;4/i � on Fijh; (6)

.vj;4/i D �ij Œ.uj;4/i � .ui;4/i � on Fijh; (7)

.vi;4/i D �j ikŒ.ui;4/i � .uj;4/i �C �kij Œ.ui;4/i � .uk;4/i � on Eijkh; (8)

.vj;4/i D �ijkŒ.uj;4/i � .ui;4/i �C �kij Œ.uj;4/i � .uk;4/i � on Eijkh; (9)

.vk;4/i D �ijkŒ.uk;4/i � .ui;4/i �C �j ikŒ.uk;4/i � .uj;4/i � on Eijkh: (10)

We note from [(6)–(7)] that on Fijh it holds

Œ.vi;4/i � .vj;4/i � D Œ.ui;4/i � .uj;4/i �;

and from [(8)–(9)] + [(8)–(10)] that on Eijkh it holds

Œ.vi;4/i � .vj;4/i �C Œ.vi;4/i � .vk;4/i � D Œ.ui;4/i � .uj;4/i �C Œ.ui;4/i � .uk;4/i �;

and it follows that B4P4 D B4 and P2
4 D P4.
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In the FETI-DP method, the preconditionerM�1 is defined as follows:

M�1 D BDS 04BT
D D

N
X

iD1
DiB

.i/

4 S
0
i;4.B

.i/

4 /
TDi :

The main result of this paper is the following:

Theorem 1. For any � 2 Ur , it holds that

hM�;�i � hF�; �i � C.1C log
H

h
/2hM�;�i;

where C is a positive constant independent of hi , Hi , � and the jumps of �i . Here
and below, log.H

h
/ WD maxNiD1 log.Hi

hi
/.

Proof. Using the same algebraic arguments as in [2], it reduces to Lemma 1. The
proof of Lemma 1 for the 3-D case is new and given with details below.

Lemma 1. For any u4 2 W4.� 0/, it holds that

kP4u4k2S 0
4
� C.1C log

H

h
/2ku4k2QS ; (11)

where C is a positive constant independent of hi , Hi , u4 and the jumps of �i .

Proof. Given u4 2 W4.� 0/, let u D .u˘; u4/ 2 QW .� 0/ be the solution of

h QSu4; u4i D minhS 0w;wi DW hS 0u; ui; (12)

where the minimum is taken over w D .w˘;w4/ 2 QW .� 0/ such that w˘ 2 OW˘.�
0/

and w4 D u4. Hence, we can replace ku4k QS in (11) by kukS 0 .
Let us represent the u defined above as fuigNiD1 2 W.� 0/where ui 2 Wi.�

0
i /. Let

v 2 QW .� 0/ be equal to P4u4 at the4-nodes and equal to zero at the˘ -nodes, i.e.,
v D 0 on V 0i for 1 � i � N and zero average on faces and edges. Let us represent
v as fvigNiD1 2 W.� 0/, where vi 2 Wi.�

0
i /. We have

kP4u4k2S 0
4
D kvk2S 0 D

N
X

iD1
kvik2S 0

i

in view of the definition of S 0i;4 and S4, see (4.18), (3.5) and (4.6) in [2]. Hence, to
prove the lemma it remains to show that

N
X

iD1
kvik2S 0

i
� C.1C log

H

h
/2kuk2S 0
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since by (12) we obtain (11). By Corollary 3.2 in [2] we need to show

N
X

iD1
Qdi .vi ; vi / � C.1C log

H

h
/2

N
X

iD1
Qdi.ui ; ui /;

where, see (2.9) in [2], Qdi .vi ; vi / D di .Hi vi ;Hi vi / and

Qdi .vi ; vi / D �i k r.Hi vi /i k2L2.˝i / C
X

j2Fi

�i ı

lij hij
k .vi /i � .vi /j k2L2.Fij / : (13)

Here, .vi /i D .Hi vi /i and .ui /i D .Hiui /i inside of the subdomains˝i .
To estimate the terms of the right-hand side (RHS) of (13) we represent .vi /i as

.vi /i D
X

Fij�.@˝in@˝/
�Fij .vi /i C

X

Eijk�@˝i
�Eijk .vi /i (14)

and Hi is discrete harmonic on ˝i . Here, �Fij .vi /i WD I hi .#Fij .vi /i / and
�Eijk .vi /i WD I hi .#Eijk .vi /i /, where #Fij and #Eijk are the standard face and edge
cutoff functions and I hi the finite element interpolator. We note that we do not have
any vertex terms in (14) since .vi /i D 0 on Vi . From now on, we denote r.H`w`/`
by r.w`/` for ` D i; j; k and w D v; u. Hence, using (14), we have

kr.vi /ik2L2.˝i / � C f
X

j2F 0
i

k�Fij .vi /ik2H1=2
00 .Fij /

C
X

.j;k/2E 0i
k�Eijk .vi /ik2L2.Eijk/g (15)

by well-known estimates, see [3]. Note that (15) is also valid for substructures
˝i which intersect @˝ by using the same arguments as for the 2-D case; see [2].
Using (6), .Nui /i;Fij D .Nuj /i;Fij and Lemma 4.26 in [3], we obtain

�i k �Fij .vi /i k2H1=2
00 .Fij /

D �i�2j i k �Fij Œ.ui /i � .uj /i � k2H1=2
00 .Fij /

(16)

� C�i�2j i .1C log
Hi

hi
/2j.ui /i � .uj /i j2H1=2.Fij /

:

LetQi;Fij be theL2-projection ontoXi.Fij /, the restriction ofXi.˝i/ on NFij . Using
the triangle and inverse inequalities, and the H1=2- and L2-stability of the Qi;Fij

projection, we have

j.ui /i � .uj /i j2H1=2.Fij /
(17)

� C fjQi;Fij Œ.ui /i � .uj /j �j2H1=2.Fij /
C jQi;Fij Œ.uj /j � .uj /i �j2H1=2.Fij /

� C fj.ui /i j2H1.˝i /
C j.uj /j j2H1.˝j /

C 1

hi
k.uj /j � .uj /ik2L2.Fij /g:
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Substituting (17) into (16) and using �i�2j i � minf�i ; �j g if ˇ 2 Œ1=2;1/, we
obtain

�ik�Fij .vi /ik2H1=2
00 .Fij /

� (18)

� C.1C log
Hi

hi
/2f�i j.ui /i j2H1.˝i /

C �j j.uj /j j2H1.˝j /
C �j

hi
k.uj /j � .uj /ik2L2.Fij /g

� C.1C log
Hi

hi
/2f Qdi.ui ; ui /C Qdj .uj ; uj /g:

We now estimate the second term of (15). Using (8), we have

�ik�Eijk .vi /ik2L2.Eijk/ � 2�if�2j ikk.ui /i � .uj /ik2L2.Eijk/ C �2kij k.ui /i � .uk/ik2L2.Eijk/g:

Using .Nui /i;Eijk D .Nuj /i;Eijk and Lemma 4.17 in [3], and the same arguments given
in (17), and �i�2j ik � minf�i ; �j g for ˇ 2 Œ1=2;1/, we obtain

�i�
2
j ikk.ui /i � .uj /ik2L2.Eijk/ � C.1C log

Hi

hi
/�i�

2
j ik j.ui /i � .uj /i j2H1=2.Fij /

(19)

� C.1C log
Hi

hi
/f�i j.ui /i j2H1.˝i /

C �j j.uj /j j2H1.˝i /
C �j

hi
k.uj /j � .uj /ik2L2.Fij /g

� C.1C log
Hi

hi
/f Qdi .ui ; ui /C Qdj .uj ; uj /g

and similarly

�i�
2
kij k.ui /i � .uk/ik2L2.Eijk/ � C.1C log

Hi

hi
/f Qdi.ui ; ui /C Qdk.uk; uk/g: (20)

Hence, by adding (19) and (20), we obtain

�ik�Eijk .vi /ik2L2.Eijk/ � C.1Clog
Hi

hi
/f Qdi.ui ; ui /C Qdj .uj ; uj /C Qdk.uk; uk/g: (21)

Substituting (18) and (21) into (15), we get

�ikr.vi /ik2L2.˝i / � C.1C log
Hi

hi
/2f Qdi.ui ; ui /C Qdj .uj ; uj /C Qdk.uk; uk/g: (22)

We now estimate the second term of the RHS of (13). Note that .vi /i and .vi /j are
defined on different meshes. In addition, the nodal values of .vi /i .x/, are defined by
different formulas if a node x belongs to Fijh or toEijkh � @Fij , see (6) and (8). The
same holds for .vi /j .x/. These issues must be taken into account when estimating
the second terms of the RHS of (13). We have
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k.vi /i � .vi /j k2L2.Fij / � 2fk.vi /i �Qi;Fij .vi /j k2L2.Fij / C k.vi /j �Qi;Fij .vi /j k2L2.Fij /g
� 2fI C II g: (23)

Using (14) and that wi D �Fij wi C �@Fij wi for wi 2 Xi.˝i/j NFij , we have

I � C fk�Fij Œ.vi /i �Qi;Fij .vi /j �k2L2.Fij / C k�@Fij Œ.vi /i �Qi;Fij .vi /j �k2L2.Fij /g
� C fIFij C I@Fij g: (24)

To estimate IFij , we first represent .vi /j D �Fji .vi /j C �@Fji .vi /j to obtain

IFij � 2fk�Fij f.vi /i �Qi;Fij �Fji .vi /j g/k2L2.Fij / C k�Fij Qi;Fij �@Fj i .vi /j /k2L2.Fij /g

� 2fI .1/F ij C I .2/F ij g: (25)

Using (6) and (7), we have

I
.1/
F ij � C�2j ik�Fij fŒ.ui /i � .uj /i � �Qi;Fij �Fji Œ.ui /j � .uj /j �gk2L2.Fij /

and by adding and subtracting �Fij Qi;Fij �@Fj i Œ.ui /j � .uj /j �, we obtain

I
.1/
F ij � C�2j ifk�Fij fŒ.ui /i � .uj /i � �Qi;Fij Œ.ui /j � .uj /j �/gk2L2.Fij / C
C k�Fij Qi;Fij �@Fj i Œ.ui /j � .uj /j �/gk2L2.Fij /g
� C�2j ifk.ui /i �Qi;Fij .ui /jk2L2.Fij / C k.uj /i �Qi;Fij .uj /j k2L2.Fij / C

C
X

Ejik�@Fj i
hj k.ui /j � .uj /jk2L2.Ejik/g � C�2j ifk.ui /i � .ui /jk2L2.Fij / C

C k.uj /i � .uj /j k2L2.Fij / C hj .1C log
Hj

hj
/j.ui /j � .uj /j j2H1=2.Fj i /

g

� C�2j ifk.ui /i � .ui /j k2L2.Fij / C k.uj /i � .uj /j k2L2.Fij / C (26)

C .1C log
Hj

hj
/.hj j.ui /i j2H1.˝i /

C hj j.uj /j j2H1.˝j /
C k.ui /i � .ui /jk2L2.Fij /g;

where we have used the L2-stability of Qi;Fij and �Fji , the constraint .Nui /j;Ej ik D
.Nuj /j;Ej ik and Lemma 4.17 in [3]. For the last inequality of (26), we have used a
similar argument as in (17).

To estimate I .2/Fij
, first note that

I
.2/
Fij
� Chjk.vi /j k2L2.@Fj i / � Chj

X

Ejik�@Fj i
k.vi /jk2L2.Ejik/ (27)
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and using the definition of .vj /i , see (9), we have

k.vi /j k2L2.Ejik/ � 2f�2j ikk.ui /j � .uj /jk2L2.Ejik/ C �2kijk.ui /j � .uk/j k2L2.Ejik/g:
(28)

The first term of the RHS of (28) is estimated as in (19) while the second term as

hj k.ui /j � .uk/j k2L2.Ejik/ � 2hj fk.ui /j � .uj /j k
2
L2.Ejik/

C k.uj /j � .uk/j k2L2.Ejik/g

� C.1C log
Hj

hj
/fhj j.ui /i j2H1.˝i /

C hj j.uj /j j2H1.˝j /
C k.ui /j � .ui /ik2L2.Fj i /

C hj j.uk/k j2H1.˝j /
C k.uk/j � .uk/kk2L2.Fjk/g: (29)

Substituting (28) and (29) into (27) and adding with (26), see (25), we obtain

�i ı

lij hij
IFij � C.1Clog

H

h
/f hj
hij
Qdi.ui ; ui /C hj

hij
Qdj .uj ; uj /C

X

Eijk�@Fij

hj

hij
Qdk.uk; uk/g:

We now estimate I@Fij , see (24). Note that . Nvi/j;Fj i D 0 implies a zero average
of Qi;Fij .vi /j on Fij . We also have . Nvj /i;Fij D 0. Using previous arguments, we
obtain

I@Fij � Chik.vi /i �Qi;Fij .vi /j k2L2.@Fij /
� Chi fk.vi /ik2L2.@Fij / C kQi;Fij �Fji .vi /j k2L2.@Fij / C kQi;Fij �@Fj i .vi /jk2L2.@Fij /g

� C
X

Eijk�@Fij
fhik.vi /ik2L2.Eijk/ C hikQi;Fij �Fji .vi /jk2L2.Eijk/ C hjk.vi /j k2L2.Ejik/g

� C
X

Eijk�@Fij
fI .1/Eijk

C I .2/Eijk
C I .3/Eijk

g: (30)

It is not hard to see, using the same argument as previously, that

I
.1/
Eijk
D hik�j ikŒ.ui /i � .uj /i �C �kij Œ.ui /i � .uk/i �k2L2.Eijk/ (31)

� C.1C log
Hi

hi
/f�2j ik.hi j.ui /i j2H1.˝i /

Chi j.uj /j j2H1.˝j /
Ck.uj /j � .uj /ik2L2.Fij //

C �2kij .hi j.ui /i j2H1.˝i /
C hi j.uk/kj2H1.˝k/

C k.uk/k � .uk/ik2L2.Fik//g;

I
.2/
Eijk
	 Chi�2j ikQi;Fij �Fji Œ.uj /j � .ui /j �k2L2.Eijk / (32)

	 Chi�2j ifkQi;Fij Œ.uj /j � .ui /j �k2L2.Eijk / C kQi;Fij �@Fji Œ.uj /j � .ui /j �k2L2.Eijk /g
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	 C�2j i fhi .1C log
Hi

hi
/j.uj /j � .ui /jk2H1=2.Fji /

C hj k.uj /j � .ui /jk2L2.Eijk /g

	 C�2j i .hi C hj /.1C log
H

h
/j.uj /j � .ui /j j2H1=2.Fji /

	 C�2j i .hi C hj /.1C log
H

h
/fj.ui /i j2H1.˝i /

C j.uj /j j2H1.˝j /
C 1

hi
k.ui /i � .ui /jk2L2.Fij /g;

I
.3/
Eijk
� Chj k.�jikŒ.ui /j � .uj /j �C �kij Œ.ui /j � .uk/j �/k2L2.Ejik/ � C.1C log

Hj

hj
/�

f.�2j ik C �2j ik/.hj j.ui /i j2H1.˝i /
C hj j.uj /j j2H1.˝j /

C k.ui /i � .ui /j k2L2.Fij //
C �2kij .hj j.ui /i j2H1.˝i /

C hj j.uk/k j2H1.˝k/
C k.uk/k � .uk/j k2L2.Fjk//g: (33)

Substituting (31)–(33) into (30), we obtain

�i ı

lij hij
I@Fij � C.1C log

H

h
/fhi C hi

hij
. Qdi .ui ; ui /

C Qdj .uj ; uj //C
X

Eijk�@Fij

hjk

hij
Qdk.uk; uk/g:

It remains to estimate II in (23). Using a L2-projection property, we have

II � Chi j.vi /j j2H1=2.Fj i /
� C fhi j�Fji .vi /j j2H1=2.Fj i /

C hi j�@Fji .vi /j j2H1=2.Fj i /
g

� C fIIFji C II @Fji g: (34)

Using similar arguments as above, we obtain

IIFji � Chi .1C log
Hj

hj
/2�2j i j.ui /j � .uj /j j2H1=2.Fj i /

(35)

� C.1C log
Hj

hj
/2�2j i fhi j.ui /i j2H1.˝i /

C hi j.uj /j j2H1.˝j /

C hi

hj
k.ui /i � .ui /jk2L2.Fij /g;

II@Fji � C
hi

hj
k�@Fji .vi /jk2L2.Fj i / � Chi

X

Ejik�@Fj i
k.vi /j k2L2.Ejik/; (36)
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and

hik.vi /j k2L2.Ejik/ � C.1C log
Hj

hj
/f.�j ik C �kij / � (37)

.hi j.ui /i j2H1.˝i /
C hi j.uj /j j2H1.˝j /

C hi

hj
k.ui /j � .ui /ik2L2.Fj i //

C�kij .hi j.uk/kj2H1.˝k/
C hi j.uj /j j2H1.˝j /

C hi

hj
k.uk/j � .uk/kk2L2.Fjk//g:

Substituting (37) into (36) and adding (35), see (34), we obtain

�i ı

lij hij
II � C.1C log

Hj

hj
/.
hi

hij
Qdi .ui ; ui /C hi

hij
Qdj .uj ; uj /

C
X

Eijk�@Fij

hjk

hij

hi

hj
Qdk.uk; uk/g:

The proof is complete.

Remark 1. The proof of Lemma 1 also works with minor modifications when NFij D
@˝i \ @˝j is an union of faces, also, for FETI-DP with corner and average face
constraints only, or with corner and edge constraints only.
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A Multi-Stage Preconditioner for the Black Oil
Model and Its OpenMP Implementation

Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang

1 Introduction

A significant portion of our energy needs is met using oil and gas, and mathematical
models of flow through porous media play an important role in developing and
managing oil and gas reservoirs. Highly sophisticated mathematical and compu-
tational methods that describe compressible multi-phase multi-component fluid
flow in reservoirs are crucial for optimizing oil reservoir development. Numerical
solutions of these highly nonlinear coupled partial differential equations (PDEs)
require moderate to sophisticated algorithms and computing platforms.

When a reservoir’s pressure drops below bubble-point pressure, the hydrocarbon
phase splits into a liquid (oil) phase and a gaseous (gas) phase at the thermodynami-
cal equilibrium. Under these conditions, the flow in the porous media is of the black
oil type: the water phase does not exchange mass with the other phases, and the
liquid and gaseous phases exchange mass with each other. This model is referred to
as the black oil model and is often applied in primary and secondary oil recovery.
In this paper, we will consider a numerical solution of the black oil model, although
the methods discussed here can be extended to other models.
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We propose an algorithm for solving the Jacobian system Ax D b arising from
the fully implicit method, which is the most popular method for the black oil model
(see [8]). The proposed method constructs an efficient preconditioner using the
framework in [14]. We will focus on the multithread implementation of this method
in modern multicore computer environments. In order to facilitate the discussion
and emphasize the main points, we will use a simplified version of the algorithm.

Obtaining a solution of a large-scale reservoir simulation is challenging. The
Jacobian system resulting from the Newton linearization is usually large, sparse,
highly nonsymmetric, and ill-conditioned. However, the Krylov subspace methods,
such as BiCGstab and GMRes, are efficient iterative methods for these linear
systems (see [21]). In order to solve a linear algebraic system of equations
efficiently, a preconditioner is often necessary to accelerate a Krylov subspace
method. A preconditioner is an approximation to A�1, and its action on a vector
should be easy to compute. The preconditioners used in reservoir simulators mainly
fall into two categories: (1) purely algebraic preconditioners and (2) preconditioners
based on the different properties of the variables.

Category (1) includes block incomplete lower-upper factorization (BILU) meth-
ods [10,17], nest factorization [3,4], and SVD-reduction methods [24]. Category (2),
on the other hand, includes methods based on the understanding that pressure vari-
ables and saturation variables differ from each other in regard to analytic properties;
representative examples are the combinative method [6], the constrained pressure
residual (CPR) method [23], and several multi-stage methods [2,15,16,22]. As a key
component of these preconditioners, algebraic multigrid (AMG) methods [7,12,20]
have also been applied.

There is a trend toward using multicore processors, which helps CPU designers
to avoid the high power-consumption problem that comes with increasing chip
frequency. As CPU speeds rise into the 3–4 GHz range, the amount of electrical
power required is prohibitive. Hence, the trend toward multicore processors started
and will continue into the foreseeable future. OpenMP is an application program
interface that can be used to explicitly direct multicore (shared memory) parallelism.
It is a specification for a set of compiler directives, library routines, and environment
variables that can be used to specify shared memory parallelism in Fortran and
C/C++ programs.

Several difficulties can arise when using multithread implementation for pre-
conditioned Krylov subspace methods: (1) Some preconditioners use sequential
algorithms, like Gauss-Seidel; (2) OpenMP programs sometimes require more
memory space than their corresponding sequential versions do. When a numerical
algorithm is implemented in OpenMP or any other multithread computer language,
it is important to maintain the convergence rate of the corresponding sequential
algorithm. However, this is not always possible as many numerical algorithms are
sequential in nature. When working with sparse matrices in compressed formats,
like the Compressed Sparse Row format, we sometimes need to introduce auxiliary
memory space. This becomes an increasingly heavy burden as the number of threads
increases. We will analyze the parallel interpolation and coarse-grid operators in the
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setup phase of AMG based on the fact that the coefficient matrices A we consider
are banded. Our results will offer a basis for reducing memory costs.

The rest of the paper is organized as follows: In Sect. 2, we describe the
widely used black oil model and its fully implicit discretization. In Sect. 3, we
introduce a simplified version of the preconditioner studied in [14] for the black
oil model and show how this method relates to a few well-known methods such
as the CPR method. In Sect. 4, we give the implementation details of the proposed
preconditioner in the shared-memory architecture using OpenMP. Finally, in Sect. 5,
we report the results of some numerical experiments conducted in a typical
multicore computing environment.

2 The Black Oil Model

The black oil model is developed based on the assumptions that (1) the reservoir is
isothermal, (2) the flow in porous media has three phases (liquid, gaseous, water)
and three components (oil, gas, water), (3) mass transfer occurs between the oil
and gas phase, and (4) no mass transfer occurs between the water phase and either
the gas or the oil phases. We use lower- and upper-case subscripts to indicate
three phases—water, oil (the liquid phase), and gas (the gaseous phase)—and the
component of each—water, oil, and gas, respectively.

Let � and k denote the porosity and permeability, respectively, of the porous
medium˝ � R3. For the ˛-phase (˛ D w; o; g), let S˛ , �˛ , p˛, u˛, B˛ , �˛ , and kr˛
be the saturation, viscosity, pressure, volumetric velocity, formation volume factor
(FVF), density, and relative permeability, respectively. Moreover, we use Rso to
denote the gas solubility, and we useQWs ,QOs, andQGs

1 to denote the volumetric
production rate of water, oil, and gas, respectively. The mass conservation equations
of the black oil model can be written as follows:

@

@t

�

�
Sw

Bw

�

Cr �
�

1

Bw
uw

�

D QWs

Bw
; (1)

@

@t

�

�
So

Bo

�

Cr �
�

1

Bo
uo

�

D QOs

Bo
; (2)

@

@t

�

�

�

Sg

Bg
C RsoSo

Bo

��

Cr �
�

1

Bg
ug C Rso

Bo
uo

�

D QGs

Bg
C RsoQOs

Bo
; (3)

1The subscript s indicates that these variables are at the standard conditions instead of reservoir
conditions.
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where

u˛ D �kkr˛
�˛

	

rP˛ � �˛grz
�

; ˛ D w; o; g (4)

Sw C So C Sg D 1: (5)

Equations (1)–(3) describe the mass conservation of the water, oil, and gas
components, respectively; (4) is the Darcy’s law for porous media; and (5) represents
the phase saturation balance. Throughout this paper, we assume that the capillary
pressure between each phase is zero, i.e., Pw D Po D Pg D P .

Among the many possible discretization methods for the above model, we
consider only the Fully Implicit method (FIM) [11] in which the Newton lin-
earization is combined with first-order upstream-weighting finite difference spatial
discretization; for details, see [8, Chap. 8]. For the sake of simplicity and clarity, we
make two more assumptions:

• All three phases are present during the whole simulation period of the black oil
model; i.e., the transition between the two-phase and the three-phase regions is
ignored.

• The well flow rate constraints are modeled by the Peaceman model (see [19]),
and they are treated explicitly; i.e., the well constraints do not contribute to the
Jacobian system.

Remark 1 (Phase Transition and Implicit Wells). We note that these two assump-
tions are made only so that we can the main ideas of the method as clearly as
possible. In practical implementation, none of these assumptions is applicable:
(1) When only two phases are present in a reservoir grid-cell, we add another
primary variable—the gas solubility Rso or the bubble-point pressure Pb—besides
oil pressure and saturation as many other simulators do. (2) Treating well constraints
implicitly is important to obtain accurate simulation results in a more stable fashion.
When implicit well constraints are present, we get a bordered coefficient matrix;
details on how to treat them can be found in [14].

We eliminate Sg from (1)–(4) using (5) and plug (4) into (1)–(3). Moreover, we
choose the increments ıP , ıSw, and ıSo as the main solution variables2 and give
the rest of the variables in terms of these main solution variables. In each Newton
iteration, this discretization method gives a Jacobian system of the following type:

A D
2

4

A1P A1Sw

A2P A2Sw A2So
A3P A3Sw A3So

3

5 ; (6)

2We denote the solution variable as x WD ŒıP; ıSw; ıSo�
T .
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where A1P is the pressure block of the water mass conservation equation; the block
matrix

�

A2Sw A2So
A3Sw A3So

�

is the saturation block; and A1Sw , A2P , and A3P are the blocks that couple the
pressure with the non-pressure variables.

The coefficient matrix A of the Jacobian system is often large and sparse, and
it is stored in the block compressed sparse row (BCSR)3 format. From this point
on, NP is used to refer to the total number of pressure unknowns and NSw and NSo
are the numbers of the water and oil saturation unknowns, respectively. We further
define NS D NSw CNSo and N D NP CNS .

Remark 2 (Decoupling Strategies). The decoupling technique is a preprocessing
step designed to weaken the coupling between different unknowns. There are many
possible options for decoupling, such as Householder transformations, the IMPES-
type method, and the BSD method based on the least square method. Details
regarding the performance of each and a comparison between them can be found
in [2, 15], for example. For the present study, we apply the alternative block
factorization (ABF) strategy introduced by Bank et al. [5] due to its simplicity
and reasonable decoupling effects. Investigating efficient and robust decoupling
strategies is beyond the scope of this paper.

3 A Multi-Stage Preconditioner for FIM

It is natural to introduce auxiliary or fictitious problems for different physical
unknowns and use them to construct a multi-stage (multiplicative) preconditioner.
Assume that we have the transfer operators ˘P and ˘S from x to the pressure
variable P and the saturations, respectively. Let R be a relaxation or smoother for
A. A multi-stage preconditioner can be defined in Algorithm 1.

It is easy to see that this algorithm defines a preconditioner B such that

I � BA D .I � RA/.I �˘PBP˘
T
P A/.I �˘SBS˘

T
S A/: (7)

The choice of auxiliary problems and their corresponding solvers is crucial to
the overall performance of the preconditioner B . The auxiliary problems should
preserve the property of the governing equations of each unknown. We expect A1P
to preserve the ellipticity of the pressure equation, and we expect multilevel solvers
like AMG to solve this auxiliary problem efficiently.

3This data structure is similar to the compressed sparse row (CSR) format, but each nonzero entry
is a 3� 3 sub-matrix in BCSR.
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Algorithm 1 A multiplicative preconditioner for the black oil model
Step 0. Given an initial guess x
Step 1. x x C˘SBS˘

T
S .b � Ax/

Step 2. x x C˘PBP˘
T
P .b � Ax/

Step 3. x x CR.b � Ax/

To facilitate our discussion on OpenMP implementation in the next section, we
will use a simple version of Algorithm 1, in which we define

˘P D
�

IP
0

�

2 RN�NP and ˘S D
�

0

IS

�

2 RN�NS ;

where IP 2 RNP�NP and IS 2 RNS�NS are identity matrices corresponding
to the pressure variables and the saturation variables, respectively. We use one
classical AMG V-cycle [20] as the subspace solver BP , and we apply the block
Gauss-Seidel (GS) method as the subspace solver BS and the relaxation R. For the
multithreaded version, the usual GS method is replaced by the hybrid GS method.4

This preconditioner is referred to as BMSP in the rest of this paper.

Remark 3 (CPR Preconditioner). One well-known special case of Algorithm 1 is
the constrained pressure residual (CPR) preconditioner [23], which can be presented
in the following algebraic form:

BCPR D R.I �AM/CM; (8)

where

M D
�

BP 0

0 0

�

2 Rn�N and BP � A�11P is constructed using AMG.

The smoother R is usually defined by the Line SOR smoother or the Incomplete
Factorization methods. BP can often be replaced by one or more AMG cycles. If
we choose ˘P D ŒIP ; 0; 0�T , then we can rewrite the CPR preconditioner as

I � BCPRA D .I � RA/
	

I �˘PBP˘
T
P A

�

; (9)

which has the exact same form of (7) as for A.

Remark 4 (Block Triangular Preconditioner). Another simple way to construct
an efficient preconditioner is to choose R D 0 in (7). In this case, the
resulting preconditioner BTRIG can be viewed as a block upper triangular

4The standard GS sweep is applied in each thread, and parallel (simultaneous) updating is used
across multiple threads.
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preconditioned with BP as an approximated A�11P and BS as an approximation
of ŒA2Sw ; A2So IA3Sw ; A3So �

�1. The preconditioner, therefore, is an inexact version
of the block GS method.

4 Implementation Details in OpenMP

In this section, we discuss an OpenMP implementation of the proposed auxiliary
space preconditioner in Algorithm 1. Using a shared-memory paradigm can greatly
simplify the programming task compared to message-passing implementations.
OpenMP parallel programs are relatively easy to implement, as each processor
has a global view of the entire memory. Parallelism can be achieved by inserting
compiler directives into the code to distribute loop iterations among the processors.
However, performance may suffer from the poor spatial locality of physically
distributed shared data [18].

In this paper, we will not discuss general tasks such as sparse-matrix multiplica-
tions for OpenMP. Interested readers are referred to Oliker et al. [18] and references
therein for related discussions. We will focus on one part of our algorithm, namely
the setup stage of the classical AMG method and propose a simple but efficient
algorithm for constructing standard prolongation and coarse-level operators using
OpenMP. We show that if the bandwidth of the sparse coefficient matrix A is
relatively small, then much less memory is needed.

Suppose A 2 Rn�n is symmetric. Let GA.V;E/ denote the graph of the matrix
A where V is the set of vertices (i.e., unknowns), and let E be the set of edges
(i.e., connections that correspond to nonzero matrix entries). Suppose the index set
of vertices V is split into a set C of coarse-level vertices and a set F of fine-level
vertices, such that

V D C [ F and C \ F D ¿;

and we denote nc as the cardinality of C , i.e., the number of C -vertices. Assume
that FC is the map from F-vertices to C-vertices.

We define Ni WD fj 2 V W Aij ¤ 0; j ¤ ig, and for � 2 Œ0; 1/ we denote

Si.�/ WD
�

j 2 Ni W �Aij � � �max
k¤i

.�Aik/
�

:

Let DF;s
i WD Si.�/ \ F , DC;s

i WD Si .�/ \ C and Dw
i WD Ni n

�

D
C;s
i [DF;s

i

�

. We
can now define

Fi WD
n

j 2 DF;s
i W i and j without the same depended C -vertices

o

:
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MP

bl

br

Ai1i1Ai1j1

Ai3i3Ai3j3

Ai2i2 Ai2j2

Ai4i4 Ai4j4

t-th

M t
u(P )M t

l (P ) M̃P

An×n

Fig. 1 Construction of the
prolongation operator P for
the banded sparse matrix A.
Here, Mt

l .P / and Mt
u .P / are

the lower and upper column
indices, respectively, of the
non-zero entries in A of the
t -th OpenMP thread

Let OAij WD 0 if AiiAij > 0, and let OAij WD Aij otherwise. We denote P D .Pijc / 2
Rn�nc as the standard prolongation matrix where entry

PijcD

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1
AiiC P

k2Dw
i [Fi

Aik

 

AijC P

k2DF;s
i nFi

Aik OAkj
P

m2DC;si

OAkm

!

; i 2 F; j 2 DC;s
i ; jcDF C Œj �;

1:0; i 2 C; jc D F C Œi �;

0:0; otherwise:

As the matrix P is sparse and stored in the CSR format, we need to use an
auxiliary integer marker calledMP to quickly locate the column index of each non-
zero entry (see for example in BoomerAMG of hypre [1]). In fact, to generate the
i -th row of P , we define that, for 0 � j � n � 1,

MP Œj � WD

8

ˆ

<

ˆ

:

Jjc ; j 2 DC;s
i ; jc D FC Œj �;

�2 � i; j 2 DF;s
i n Fi ;

�1; otherwise;

(10)

where Jjc is the position of Pijc entry in the column index array of the CSR storage
of P . In the OpenMP implementation, we have to allocate the marker MP for all
OpenMP threads. The length of each MP is n, and the total length of MP for all
threads is thenNT 	n whereNT is the total number of OpenMP threads. When NT
is large, the memory cost for MP is considerable.

Assume that bn D bl C br is the bandwidth of A, where bl and br are the left
and right bandwidths for matrix A, respectively. When the parallel partition of V
is continuously distributed in a balanced fashion to each OpenMP thread (i.e., the
size difference between each thread does not exceed one), we can easily see that
the length of MP that is actually used is much smaller than n (Fig. 1). Taking into
account that the matrix is banded, we can get the following estimates of the length
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P T
l1l1P T

l1k1

P T
l2l2 P T

l2,k2

t-th

Ak1k1Ak1m1

Ak2k2 Ak2m2

MA

M t
l (A) M t

u(A)M̃A

Pm1m1Pm1n1

Pm2m2 Pm2n2

M t
l (P ) M t

u(P )M̃P

MP

P T
nc×n

An×n Pn×nc

Fig. 2 Construction of the Galerkin coarse-level operator Ac D PT AP . Here,Mt
l .A/ andMt

u .A/

are the lower and upper column indices of the non-zero entries in A of the t -th OpenMP thread

LtP and the minimal offsetMt
l .P /[13]:

LtP � min.n;
n

NT
C 2bn/ and Mt

l .P / � max
�

0;
n

NT
.t � 1/� 2bn

�

: (11)

The coarse grid operator for the multigrid method can be built using the Galerkin
relation Ac D .Acij /nc�nc WD PTAP , where

Acij D
X

k1

X

l1

Pk1iAk1l1Pl1j ; i; j D 1; � � � ; nc : (12)

Similar to the implementation of the prolongation operator, we need to allocate two
auxiliary arrays calledMA andMP (Fig. 2). The length ofMA is n and the length of
MP is nc . By taking into account the characteristic of the banded sparse matrices of
the coarse operator, we can get the estimation formula for MA and MP . The actual
length LtA and the offset Mt

l .A/ can be calculated using

LtA � min.n;
n

NT
C 2bn/ and Mt

l .A/ �
n

NT
t � bn: (13)

Remark 5 (How Much Memory Can We Save?). If we do not consider the possi-
bility that the bandwidth of A can be much smaller than n, then we will need two
auxiliary arrays with length nNT . However, as noted above, we only need two arrays
of length nC 2bnNT . When n� bn andNT is relatively large, we can save a lot of
memory by using these improved estimates. In fact, this will reduce not only storage
cost but also the time needed to allocate and initialize memory.
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5 Numerical Experiments

In this section, we design several numerical experiments and analyze the perfor-
mance of OpenMP implementation of the preconditioner proposed in Sect. 3. We
use a HP desktop PC equipped with two Intel Xeon X5676 (3.07 GHz, 12 cores)
and 96 GB RAM. The experimental environment is Cent OS 6.2 and GCC 4.4.6
(with an “–O2” optimization parameter).

Our example is adapted from the second data set of the Tenth SPE Compar-
ative Solution Project [9], which is designed to compare the ability of upscaling
approaches used by various participants to predict the performance of water-
flooding in a simple but highly heterogeneous black oil reservoir described by a
fine-scale (60 	 220 	 85) regular Cartesian geological model. This model has
a simple geometry, with no top structure or faults. The model dimensions are
1200 	 2200 	 170 (ft). The top 70 ft (35 layers) represents the Tarbert formation,
and the bottom 100 ft (50 layers) represents the Upper Ness formation. There is
one injector in the center of the field and a producer located at each of the four
corners. The total simulation time is 2,000 days. The purpose of this benchmark is
to compare the models in regard to accuracy and computational cost.

For our purpose, we modify the SPE10 example as a three-phase black oil test
by changing the properties of the fluid. Hence, the total number of unknowns of
each Jacobian system is N D 3:3M and the size of the pressure equation is n D
NP D 1:1M. We employ the GMRes method as our iterative solver for solving
linear Jacobian systems. The stopping criteria is that the relative residual in the
Euclidian norm is less than 10�4. In Table 1, we summarize the performance of our
simulator, in which #Timesteps is the total number of time steps, #Newton is the
total number of Newton iterations, #Linear is the total number of linear iterations,
Solver Time is the total wall-time for the linear solution steps, Aver. Newton is the
average number of Newton iterations in each time step, and Aver. Linear Iter is the
average number of linear iterations in each Newton iteration.

In order to further demonstrate the performance of the proposed preconditioner,
we select four typical Jacobian linear systems from different periods of the 2,000
days of simulation. They are all from the first Newton iteration in different time
levels and the time step sizes are the same (each is five days). Using these examples,
we test the performance of the three different preconditioners, BMSP, BCPR, and
BTRIG, given in Sect. 3. The proposed preconditioner in Algorithm 1 results in
various preconditioners depending on the different choices of auxiliary problem
solvers/smoothers. In this section, we only compare the performance of these three
simple choices.

The total number of iterations and the wall-time in seconds for each of these
methods is reported in Tables 2, 3 and 4, in which NT is the total number of
OpenMP threads. Moreover, the respective OpenMP speedup for these methods
are listed along with the wall-times. We observe that these three methods are very
robust for the test problems and that their OpenMP versions can deliver about three
times speedup compared with the corresponding serial versions. Furthermore, the
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Table 1 Performance of preconditioned GMRES for solving the three-phase SPE10 problem

Solver Aver. Aver. linear
Preconditioner #Timesteps #Newton #Linear time (h) Newton iter

BMSP 736 997 32,829 6.60 1.35 32.92
BCPR 796 1,253 57,723 20.15 1.57 41.50
BTRIG 805 2,045 103,249 17.47 2.54 46.34

Table 2 Number of iterations, wall-times (seconds), and OpenMP speedups of BMSP

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 32 31.34 – 34 32.79 – 34 32.77 – 32 31.49 –
2 32 17.72 1.77 34 18.48 1.77 34 18.46 1.78 32 17.68 1.78
4 32 13.44 2.33 34 13.19 2.49 34 13.14 2.49 32 12.60 2.50
8 33 11.02 2.84 34 11.20 2.93 34 11.18 2.93 32 10.80 2.91

12 33 10.99 2.85 34 11.27 2.91 34 10.84 3.02 32 10.77 2.92

Table 3 Number of iterations, wall-times (seconds), and OpenMP speedups of BCPR

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 45 39.01 – 45 38.90 – 43 37.36 – 42 36.56 –
2 45 21.95 1.78 45 21.90 1.78 43 21.00 1.78 42 20.67 1.77
4 45 15.42 2.53 45 15.44 2.52 44 15.19 2.46 42 14.56 2.51
8 45 13.12 2.97 45 13.09 2.97 44 12.86 2.90 42 12.35 2.96

12 45 13.19 2.96 45 13.18 2.95 43 12.66 2.95 42 11.93 3.07

Table 4 Number of iterations, wall-times (seconds), and OpenMP speedups of BTRIG

1st 2nd 3nd 4nd
NT #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup #Iter Time Speedup
1 49 41.69 – 49 41.48 – 48 40.96 – 44 37.75 –
2 49 23.42 1.78 48 22.93 1.81 48 22.87 1.79 44 21.25 1.78
4 49 16.67 2.50 49 16.62 2.50 48 16.30 2.51 44 15.37 2.46
8 49 14.30 2.91 48 13.94 2.98 48 13.91 2.95 44 12.92 2.92

12 48 14.00 2.98 48 13.99 2.97 47 13.58 3.02 44 12.99 2.91

numerical tests show that each component, BS , BP , and R, plays a role such that
dropping any of them would result in at least 20 to 30% performance lost in CPU
time. And, for more difficult problems, this drop is expected to be more severe.

Finally, we test the memory cost for the AMG setup stage, which is crucial in
constructingBP . As discussed in Sect. 4, the auxiliary arrays introduced to assist in
assembling the sparse matrix could waste a lot of precious memory resources during
the AMG setup stage. And, by using the improved bounds given in (11) and (13),
we are able to use much shorter auxiliary arrays than the standard implementation
in [1] and this can save a lot memory, especially when the bandwidth of the sparse
matrix A is small or the number of OpenMP threads is large. Let Length.MP / be
the total length of MP , and let Length.MA/ be the total length of MA. We compare



152 C. Feng et al.

Table 5 Auxiliary memory storage on the finest level of the AMG setup for the pressure equation

Length.MP / Length.MA/

NT NT � n LP Saving (%) NT � n LA Saving (%)
2 2,188,844 1,200,022 45.1 2,188,844 1,147,222 47.6
4 4,377,688 1,305,622 70.2 4,377,688 1,252,822 71.3
6 6,566,532 1,411,222 78.5 6,566,532 1,358,422 79.3
8 8,755,376 1,516,822 82.7 6,566,532 1,464,022 83.3

12 13,133,064 1,728,022 86.8 13,133,064 1,675,222 87.2

these two auxiliary arrays (MA andMP ) on the finest level as an example in Table 5.
Numerical results show that this simple improvement can save about 87% storage
when 12 threads are used on the finest level.
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A FETI-DP Algorithm for Incompressible
Stokes Equations with Continuous Pressures

Xuemin Tu and Jing Li

1 Introduction

The FETI-DP algorithm was first extended to solving incompressible Stokes equa-
tions by Li [3], where a Dirichlet preconditioner was considered and the subdomain
average pressure degrees of freedoms were selected as a primal constraint, in
addition to the coarse level primal velocity constraints. The resulting coarse problem
is a saddle point problem. The condition number bound is independent of the
number of subdomains and grows only polylogarithmically with the size of the
individual subdomain problems.

Recently, Kim et al. [2] introduced a different FETI-DP formulation for this
problem, where no pressure variables are selected as coarse level primal variables
and the resulting coarse level problem is symmetric positive definite. Only the
lumped preconditioner is considered in their paper.

Both approaches mentioned above are valid only for discretizations with a
discontinuous pressure. Discontinuous pressures have also been used in domain
decomposition algorithms for similar type saddle-point problems; see for example
[1, 5, 7].

In this paper, we propose a FETI-DP algorithm for incompressible Stokes
using either a lumped or a Dirichlet preconditioner with continuous pressure
discretization; see also [4, 8] for more details. Our coarse problem includes no
pressure variables and is symmetric positive definite.
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2 Discretization and Domain Decomposition

The weak solution of the incompressible Stokes problem, on a bounded, two-
dimensional polygonal domain˝ with a zero Dirichlet boundary condition, is given
by: find u� 2 �H1

0 .˝/
�2 D fv 2 .H1.˝//2

ˇ

ˇ v D 0 on @˝g and p� 2 L2.˝/, such
that

(

a.u�; v/C b.v; p�/ D .f; v/; 8v 2 �H1
0 .˝/

�2
;

b.u�; q/ D 0; 8q 2 L2.˝/ ,
(1)

where

a.u�; v/ D
Z

˝

ru� � rv; b.u�; q/ D �
Z

˝

.r � u�/q; .f; v/ D
Z

˝

f � v:

We note that the solution of (1) is not unique, with the pressure p� determined only
up to an additive constant.

AQ2-Q1 Taylor-Hood mixed finite element is used in this paper to solve (1). The
domain ˝ is partitioned into shape-regular rectangular elements of characteristic
size h. The pressure finite element space, Q � L2.˝/, is taken as the space of
continuous piecewise bilinear functions while the velocity finite element space, W 2
�

H1
0 .˝/

�2
, is formed by the continuous piecewise biquadratic functions.

The finite element solution .u; p/ 2W
L

Q of (1) satisfies

�

A BT

B 0

� �

u
p

�

D
�

f
0

�

; (2)

where A, B , and f represent, respectively, the restrictions of a.�; �/, b.�; �/ and
.f; �/ to the finite-dimensional spaces W and Q. We use the same notation in this
paper to represent both a finite element function and the vector of its nodal values.
The solution of (2) always exists and is uniquely determined when the pressure
is considered in the quotient space Q=Ker.BT /, where Ker.BT / represents the
kernel of BT and is the space of constant pressures in Q. In this paper, when
q 2 Q=Ker.BT /, q always has a zero average.

The Taylor-Hood mixed finite element space W	Q is inf-sup stable in the sense
that there exists a positive constant ˇ, independent of h, such that, in matrix/vector
form,

sup
w2W

hq;Bwi2
hw; Awi � ˇ

2 hq;Zqi ; 8q 2 Q=Ker.BT /: (3)

Here, as elsewhere in this paper, h�; �i represents the inner product of two vectors.
The matrixZ represents the mass matrix defined on the pressure finite element space
Q, i.e., for any q 2 Q, kqk2

L2
D hq;Zqi. It is easy to see, cf. [6, Lemma B.31], that



FETI-DP for Stokes 159

Z is spectrally equivalent to h2I for two-dimensional problems, where I represents
the identity matrix of the same dimension, i.e., there exist positive constants c and
C , such that

ch2I � Z � Ch2I: (4)

Here, as in other places of this paper, c and C represent generic positive constants
which are independent of the mesh size h and the subdomain diameterH (discussed
below).

The domain ˝ is decomposed into N non-overlapping polygonal subdomains
˝i , i D 1; 2; : : : ; N . Each subdomain is the union of a bounded number of
elements, with the diameter of the subdomain on the order of H . The nodes on
the interface of neighboring subdomains match across the subdomain boundaries
� D .[@˝i/n@˝ . � is composed of subdomain edges, which are regarded as open
subsets of � , and of the subdomain vertices, which are end points of edges.

The velocity and pressure finite element spaces W and Q are decomposed
into W D WI

L

W� , Q D QI

L

Q� , where WI and QI are direct sums of
independent subdomain interior velocity spaces W.i/

I , and interior pressure spaces

Q
.i/
I , respectively. W� and Q� are subdomain boundary velocity and pressure

spaces, respectively. All functions in W� and Q� are continuous across the
subdomain boundaries � ; their degrees of freedom are shared by neighboring
subdomains.

To formulate our algorithm, we introduce a partially sub-assembled subdomain
boundary velocity space QW� ,

QW� DW˘

M

W� DW˘

M

 

N
M

iD1
W.i/

�

!

:

Here W˘ is the continuous primal velocity space which forms the coarse level
problem of the proposed algorithm. In this paper, we consider two choices of
W˘ . The first choice is with that W˘ is spanned by all the subdomain corner
velocity nodal basis functions. In the second choice, W˘ is spanned by both
subdomain corner velocity nodal basis functions and edge-average finite element
basis functions. We note that the appropriate choice of W˘ depends on the
preconditioner used in the algorithm. The first choice is sufficient for using the
lumped preconditioner, but for the Dirichlet preconditioner the second one has to
be used.

The space W� is the direct sum of subdomain dual interface velocity spaces W.i/
� .

The functions w� in W� are in general not continuous across � . In order to enforce
their continuity, we construct a matrix B� from f0; 1;�1g such that for any w� in
W�, each row of B�w� D 0 implies that the two independent degrees of freedom
from the neighboring subdomains be the same. The range of B� applied on W� is
denoted by�, the vector space of the Lagrange multipliers. A positive scaling factor
ı�.x/ for each node x on the subdomain boundary � is defined as ı�.x/ D 1=Nx,
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where Nx represents the number of subdomains sharing x. Multiplying the entries
on each row of B� by the corresponding scaling factor ı�.x/ gives us B�;D .

The original linear system (2) is equivalent to: find .uI ; pI ; u�; u˘; p� ; �/ 2
WI

L

QI

L

W�

L

W˘

L

Q�

L

�, such that

2
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6

6

6

6
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AII BT
II AI� AI˘ BT

�I 0

BII 0 BI� BI˘ 0 0

A�I B
T
I� A�� A�˘ BT

�� B
T
�

A˘I B
T
I˘ A˘� A˘˘ B

T
� ˘ 0

B�I 0 B�� B�˘ 0 0

0 0 B� 0 0 0
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7

7

7

7

7
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5
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7

7

7
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D
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6

6

6

4

fI
0

f�
f˘
0

0

3

7

7

7

7

7

7

7

5

, (5)

where the sub-blocks in the coefficient matrix represent the restrictions of A and
B of (2) to appropriate subspaces. The leading three-by-three block can be ordered
to become block diagonal with each diagonal block representing one independent
subdomain problem.

Corresponding to the one-dimensional null space of (2), a basis of the one-
dimensional null space of (5) has the form

�

0; 1pI ; 0; 0; 1p� ; �B�;DŒBT
I� BT

���

�

1pI
1p�

��

; (6)

where 1pI 2 QI and 1p� 2 Q� represent vectors with each entry equal to 1.

3 A Reduced Symmetric Positive Semi-definite System

The system (5) can be reduced to a Schur complement problem for the variables
.p� ; �/. The leading four-by-four block of the coefficient matrix in (5) is invertible
and the variables .uI ; pI ; u�; u˘/ can be eliminated and we obtain

G

�

p�

�

�

D g; (7)

where

G D
�

B�I 0 B�� B�˘
0 0 B� 0

�

2

6

6

4

AII BT
II AI� AI˘

BII 0 BI� BI˘
A�I B

T
I� A�� A�˘

A˘I B
T
I˘ A˘� A˘˘

3

7

7

5

�12

6

6

4

BT
�I 0

0 0

BT
�� B

T
�

BT
�˘ 0

3

7

7

5

; (8)

and
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g D
�

B�I 0 B�� B�˘

0 0 B� 0

�

2

6

6

4

AII BT
II AI� AI˘

BII 0 BI� BI˘

A�I B
T
I� A�� A�˘

A˘I B
T
I˘ A˘� A˘˘

3

7

7

5

�12

6

6

4

fI
0

f�
f˘

3

7

7

5

: (9)

We denote

QA D

2

6

6

4

AII BT
II AI� AI˘

BII 0 BI� BI˘

A�I B
T
I� A�� A�˘

A˘I B
T
I˘ A˘� A˘˘

3

7

7

5

and BC D
�

B�I 0 B�� B�˘

0 0 B� 0

�

: (10)

It is easy to see that�G is the Schur complement of the coefficient matrix of (5) with
respect to the last two row blocks. By the Sylvester law of inertia, G is symmetric
positive semi-definite. The null space ofG can be derived from the null space of the
original coefficient matrix of (5), and its basis has the form, cf. (6),

�

1p� ; �B�;DŒBT
I� BT

���

�

1pI
1p�

��

:

Let X D Q�

L

�. The range ofG, denoted byRG , is the subspace ofX , which
is orthogonal to the null space of G and has the form

RG D
��

gp�
g�

�

2 X
ˇ

ˇ

ˇ

gTp� 1p� � gT�
�

B�;DŒB
T
I� BT

���

�

1pI
1p�

��

D 0
�

: (11)

The restriction of G to its range RG is positive definite.
The main operation in the implementation of multiplying G by a vector is the

product of QA�1 with a vector, cf. (8) and (9). We denote

Arr D
2

4

AII B
T
II AI�

BII 0 BI�
A�I B

T
I� A��

3

5 ; A˘r D ATr˘ D



A˘I BT
I˘ A˘�

�

; fr D
2

4

fI
0

f�

3

5 ;

and define the Schur complement

S˘ D A˘˘ � A˘rA�1rr Ar˘ :

By the Sylvester law of inertia, S˘ is symmetric positive definite and defines the
coarse level problem in the algorithm. The product
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II AI� AI˘
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fI
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f�
f˘
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7

5

can then be represented by

�

A�1rr fr
0

�

C
��A�1rr Ar˘

I˘

�

S�1˘
�

f˘ � A˘rA�1rr fr
�

;

which requires solving the coarse level problem once and independent subdomain
Stokes problems with Neumann type boundary conditions twice.

4 Preconditioners and Condition Number Bounds

Both the lumped and the Dirichlet preconditioners are proposed here for solving (7).
We define

QV DWI

M

QI

M

W�

M

W˘;

and its subspace

QV0 D
˚

w D .wI ; pI ; w�; w˘/ 2 QV W BIIwI C BI�w� C BI˘w˘ D 0
�

:

We note that h�; �i QA defines an inner product on QV0. We denote the restriction operator
from QV onto W� by QR� such that for any v D .wI ; pI ; w�; w˘/ 2 QV , QR�v D
w�.

The lumped preconditioner is given by

M�1L D
"

1
h2
Ip�

M�1L;�

#

;

where Ip� is the identity matrix of the same length as p� and M�1L;� D
B�;D QR� QA QRT�BT

�;D:

Let M�1D;� D B�;DH�B
T
�;D . Then the Dirichlet preconditioner is defined as

M�1D D
"

1
h2
Ip�

M�1D;�

#

;

whereH� is the direct sum of the discrete subdomain harmonic extension operators.
The following lemma is used for obtaining the upper bound estimate in Theo-

rem 1, and it is valid for both preconditioners, denoted here by M�1.
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Lemma 1. For any v 2 QV0,
˝

M�1BC v;BC v
˛ � ˚.H; h/

˝ QAv; v˛. Here, for the
lumped preconditioner, ˚.H; h/ D C.H=h/.1 C log .H=h// with only corner
variables in the coarse space; ˚.H=h/ D C.H=h/ with both corner and edge-
average variables. For the Dirichlet preconditioner,˚.H; h/ D C.1C log .H=h//2

with both corner and edge-average coarse variables.

The second lemma is used for the lower bound estimate. For the lumped
preconditioner, the corner primal constraints are sufficient for the coarse space to
prove this lemma. However, for the Dirichlet preconditioner, both corner and edge-
average constraints have to be included in the coarse space.

Lemma 2. For any given y D .gp� ; g�/ 2 RG , there exits v 2 QV0, such that
BCv D y, and

˝ QAv; v˛ � C
ˇ2

˝

M�1y; y
˛

.

Theorem 1. For all x D .p� ; �/ 2 RM�1G ,

cˇ2 hMx; xi � hGx; xi � ˚.H; h/ hMx; xi ;

where ˚.H; h/ is as defined in Lemma 1 and ˇ is the inf-sup constant of (3).

5 Numerical Experiments

We solve the incompressible Stokes problem in the square domain ˝ D Œ0; 1� 	
Œ0; 1�. Zero Dirichlet boundary conditions are used. The right-hand side function f
is chosen such that the exact solution is

u D
�

sin3.�x/ sin2.�y/ cos.�y/
� sin2.�x/ sin3.�y/ cos.�x/

�

and p D x2 � y2:

The Q2-Q1 Taylor-Hood mixed finite element is used for the finite element
solution. The preconditioned system is solved by a CG iteration; the iteration is
stopped when the L2�norm of the residual is reduced by a factor of 10�6.

Table 1 shows the minimum and maximum eigenvalues of the iteration matrix
M�1L G, and the iteration counts. Two different coarse level spaces are tested in the
experiments: the coarse space spanned by only the subdomain corner velocities, and
the coarse space spanned by both the subdomain corner and the subdomain edge-
average velocities. The additional edge-average velocity components in the coarse
level problem improve the convergence rate even though they are not necessary for
the analysis.

Table 2 shows the performance of our algorithm for solving the same problem
with the Dirichlet preconditioner. For this case, the additional edge-average velocity
components included in the coarse level space are necessary, which is consistent
with our theory.
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Table 1 Performance with
the lumped preconditioner
M�1
L

Vertex Vertex and edge
H=h #sub �min �max iter �min �max iter

8 4� 4 0.31 32.28 31 0.31 4.30 19
8� 8 0.31 37.25 46 0.31 4.50 20
16� 16 0.31 38.40 51 0.31 4.53 21
24� 24 0.31 38.62 51 0.31 4.55 21
32� 32 0.31 38.68 51 0.31 4.55 21

#sub H=h �min �max iter �min �max iter

8� 8 4 0.30 15.92 34 0.30 3.21 18
8 0.31 37.25 46 0.30 4.50 20

12 0.31 60.62 56 0.31 6.65 24
16 0.31 85.32 62 0.31 8.87 27
24 0.31 137.49 73 0.31 13.40 32

Table 2 Performance with
the Dirichlet preconditioner
M�1
D

Vertex Vertex and edge
H=h #sub �min �max iter �min �max iter

8 4� 4 0.30 4.40 18 0.30 3.04 17
8� 8 0.29 5.03 24 0.30 3.50 18
16� 16 0.26 5.28 25 0.30 3.92 19
24� 24 0.24 5.33 25 0.30 4.10 19
32� 32 0.23 5.36 25 0.30 4.18 19

#sub H=h �min �max iter �min �max iter

8� 8 4 0.27 4.15 21 0.30 3.15 17
8 0.29 5.03 24 0.30 3.50 18
12 0.29 5.60 25 0.30 3.92 18
16 0.30 6.04 25 0.30 4.24 18
24 0.30 6.70 26 0.30 4.71 19
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Generating Equidistributed Meshes
in 2D via Domain Decomposition

Ronald D. Haynes and Alexander J.M. Howse

1 Introduction

There are many occasions when the use of a uniform spatial grid would be
prohibitively expensive for the numerical solution of partial differential equations
(PDEs). In such situations, a popular strategy is to generate an adaptive mesh by
either varying the number of mesh points, the order of the numerical method, or the
location of mesh points throughout the domain, in order to best resolve the solution.
It is the latter of these options, known as moving mesh methods, which is our focus.
In this case the physical PDE of interest is coupled with equations which adjust the
position of mesh points to best “equidistribute” a particular measure of numerical
error. This coupled system of equations is solved to generate the solution and the
corresponding mesh simultaneously, see [7] for a recent overview.

A simple method for adaptive grid generation in two spatial dimensions is
outlined in [8] by Huang and Sloan, in which a finite difference two dimen-
sional adaptive mesh method is developed by applying a variation of de Boor’s
equidistribution principle (EP) [1, 2]. The equidistribution principle states that an
appropriately chosen mesh should equally distribute some measure of the solution
variation or computational error over the entire domain. Mackenzie [9] extends upon
the work of [8] by presenting a finite volume discretization of the mesh equations,
as well as an efficient iterative approach for solving these equations, referred to as
“an alternating line Gauss-Seidel relaxation approach”.

In this paper, we propose a parallel domain decomposition (DD) solution of
the 2D adaptive method of [8]. In Sect. 2 we review the derivation of the mesh
PDEs of [8] and discuss possible boundary conditions. In Sects. 3 and 4 we present
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classical and optimized Schwarz methods for the generation of 2D equidistributed
meshes, and in Sect. 5 we describe the numerical implementation of this approach
and provide numerical results.

2 2D Mesh Generation

To begin, we review the derivation of the equations which govern mesh equidistri-
bution in two spatial dimensions from [8], defining a mesh in the physical variables
.x; y/ which best resolves a given function u.x; y/. Let x D Œx; y�T be the spatial
coordinates of a mesh in a 2D physical domain, ˝p . We introduce the coordinate
transformation x D x.�/, where � D Œ�; ��T denotes the spatial coordinates on
the computational domain, ˝c D Œ0; 1� 	 Œ0; 1�. Here we determine a mesh which
equidistributes the arc-length of u.x; y/ over˝p . The scaled arc-length variation of
u along the arc element from x to xC dx can be expressed as

ds D Œa2.du/2 C dxT dx�1=2 D ŒdxTMdx�1=2; (1)

where M D a2ru �ruT CI and a 2 Œ0; 1� is a user specified relaxation parameter.
The extreme cases are a D 0, which produces a uniform mesh, and a D 1, which
produces a mesh equidistributing the arc-length monitor function. Making use of
the mesh transformation x D x.�/, (1) can be expressed as

ds D Œd�T J T M J d��1=2; (2)

where J is the Jacobian of the transformation.
The equidistribution principle follows from (2): if u.x.�// is to have the same

value ds along any arc element in the computational domain with fixed length
Œd�T d��1=2, then (2) must be independent of the coordinate �. This implies that
J TMJ should be independent of �, or

Œd�T J T M J d��1=2 D Œd�T QM d��1=2; (3)

where QM is a constant and hence �-independent matrix. If a coordinate transforma-
tion can be found which satisfies (3), u will have the same variation at any point in
˝p along any arc of length

�

	

@x
@�
d� C @x

@�
d�
�T 	

@x
@�
d� C @x

@�
d�
�

�1=2

:

A transformation satisfying (3) for some matrix QM will be called an equidistribu-
tion, and (3) an equidistribution principle.
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Usually (3) cannot be satisfied by the coordinate transformation on the whole
computational domain. However, if (3) is weakened so that the transformation is
only required to satisfy (3) locally; that is, we only require QM to be constant along
a given coordinate line, it is possible to find a local equidistribution on ˝p. In 2D
this leads to the system:

2

4

 

@x
@�
@y

@�

!T

M

 

@x
@�
@y

@�

!

3

5

1=2

D c1.�/;
2
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@x
@�
@y

@�

!T

M

 

@x
@�
@y

@�

!

3

5

1=2

D c2.�/; (4)

where c1.�/ and c2.�/ are constant in the � and � directions respectively. These
constants are eliminated by numerical differencing.

Instead of using the scaled arc-length matrix M , in practice we modify M as
M D kru � ruT C I , where k D a2=.1C bruTru/. The parameter b � 0 is used
to prevent problems where extremely small mesh spacing or mesh tangling could
occur, that is when jruj is very large.

System (4) will determine the internal mesh points. In [8] a combination of
Dirichlet and Neumann conditions are used along @˝c :

x.0; �/ D y.�; 0/ D 0; x.1; �/ D y.�; 1/ D 1; (5)

@x

@�
.�; 0/ D @x

@�
.�; 1/ D @y

@�
.0; �/ D @y

@�
.1; �/ D 0; (6)

where �; � 2 Œ0; 1�. The Dirichlet conditions are consistent with the requirement that
there are mesh points on the boundary of the domain. The Neumann orthogonality
conditions are arbitrary, and in fact can cause smoothness issues near the domain
boundaries. As an alternative, we follow [9] and apply the 1D EP,

.M.x/x�/� D 0; x.0/ D 0; x.1/ D 1; (7)

to determine x.�; 0/, x.�; 1/, y.0; �/ and y.1; �/. The 1D analog of the system (4),
given in (7), has previously been solved by DD methods in [4–6].

3 Classical Schwarz Domain Decomposition

For the two dimensional mesh adaptation problem, the computational domain
˝c D Œ0; 1� 	 Œ0; 1�, can either be decomposed in just the � or just the � directions,
or in both directions. This results in “strip” or “block” configurations of subdomains
respectively. Here we discuss DD applied in the � direction only. That is, we
decompose the � interval Œ0; 1� into subintervals Œ˛i� ; ˇ

i
� �, i D 1; : : : ; S , where

˛1� D 0, ˇS� D 1, and we assume the subintervals satisfy the overlap conditions:

˛i� < ˛
iC1
� < ˇi� < ˇ

iC1
� :
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ξ

η

α β 10

1

Ω1 Ω2

Fig. 1 DD in � using in two
subdomains

The resulting decomposition has S subdomains, denoted by ˝i D Œ˛i� ; ˇ
i
� � 	 Œ0; 1�

for i D 1; : : : ; S . The boundary conditions (5)–(6) or (7) are used along the ends
of each strip and transmission conditions are specified along the newly created
interfaces.

Consider the 2D adaptive mesh system, (4), for the S D 2 case. We split ˝c into
subdomains ˝1 and ˝2 as in Fig. 1. Let xni denote the subdomain solution on ˝i ,
for i D 1; 2. We consider the following DD iteration: for n D 1; 2; : : :, solve
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1=2

D c2.�/; (9)

for i D 1; 2 and � 2 ˝i . The classical Schwarz method uses the transmission
conditions

xn1 .ˇ; �/ D xn�12 .ˇ; �/; yn1 .ˇ; �/ D yn�12 .ˇ; �/; (10)

xn2 .˛; �/ D xn�11 .˛; �/; yn2 .˛; �/ D yn�11 .˛; �/: (11)

On @.˝c \ ˝i/ the boundary conditions (5) are used, along with the 1D EP to
determine x.�; 0/, x.�; 1/, y.0; �/ and y.1; �/.

Each DD iteration requires a pair of PDEs to be solved, each a “smaller” version
of the local EP (4). These problems are solved in an iterative manner: given initial
approximations to be used along interfaces, the PDEs (8)–(9) are solved, and then
solution information along the interfaces is exchanged between subdomains. The
PDEs are then solved again, now with updated boundary data, and the process
repeats. By iterating, the subdomain solutions converge to the desired solution x
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on their respective subdomains. As is well known, classical Schwarz requires the
subdomains to overlap [3].

4 Optimized Boundary Conditions

Classical Schwarz is known to converge slowly. As a way to remedy this, we
propose the use of higher order, Robin type, transmission conditions along the
artificial interfaces. As before, we decompose˝c D Œ0; 1� 	 Œ0; 1� into subdomains
˝1 D Œ0; ˇ� 	 Œ0; 1� and ˝2 D Œ˛; 1� 	 Œ0; 1�, where ˛ � ˇ.

We define, for any differentiable functions x.�; �/ and y.�; �/, the operators

B1.x/ D x� C px; B2.x/ D x� � px;

B3.x; y/ D S1.x; y/C px; B4.x; y/ D S1.x; y/ � px;

where

S1.x; y/ D
v

u

u

t

�

x�
y�

�T

M

�

x�
y�

�

; M D a2w � wT
1C bwT � w C I

and

w D 1

x�y� � x�y�



u�y� � u�y� ;�u�x� C u�x�
�T
:

We propose two possible sets of transmission conditions. The first are simple linear
Robin conditions using the derivative normal to the artificial boundaries:

B1.x
n
1 .ˇ; �// D B1.xn�12 .ˇ; �//; B1.y

n
1 .ˇ; �// D B1.yn�12 .ˇ; �//

B2.x
n
2 .˛; �// D B2.xn�11 .˛; �//; B2.y

n
2 .˛; �// D B2.yn�11 .˛; �//:

(12)

The second set are of nonlinear Robin type, similar to those used in an optimized
Schwarz algorithm for 1D mesh generation in [4]. We replace the x equations of
(12) by

B3.x
n
1 .ˇ; �/; y

n
1 .ˇ; �// D B3.xn�12 .ˇ; �/yn�12 .ˇ; �//

B4.x
n
2 .˛; �/; y

n
2 .˛; �// D B4.xn�11 .˛; �/; yn�11 .˛; �//:

(13)

Note, the mesh PDE (8) indicates that the nonlinear term S1 in the operator B3 is
constant across the � D ˛ and � D ˇ interfaces. Furthermore, as the system of
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equations resulting from (8) to (9) are already nonlinear, the nonlinear transmission
conditions will not have a large impact on the cost of solving the system.

5 Numerical Implementation and Results

The local EP (4), the physical boundary conditions on ˝c , and the transmission
conditions (10), (11), (12) or (13), are discretized using standard finite differences
on a uniform grid in the computational .�; �/ variables. Second order centered
differences are used, using the ghost value technique as needed at the boundaries to
ensure the scheme is second order. The nonlinear transmission conditions require
nonlinear, rather than linear, equations to be solved at the interface. This is not
onerous as the whole system is solved with a Newton iteration.

In the examples we use the test function u.x; y/ D 


1 � e15.x�1/� sin.�y/: The
function is shown, along with its locally equidistributed mesh, in Figs. 2 and 3. The
physical mesh .x; y/ is generated by solving (4) using a grid of 18 	 18 uniformly
spaced mesh points in˝c. For this example, we use an optimized Schwarz iteration,
with transmission conditions (12), on two subdomains with four points of overlap in
the � direction. Here the number of points of overlap refers to the number of shared
grid points, the overlap width is approximately half of this number times ��. We
choose the parameters a D 0:7, b D 0:05 and p D 2:3. The mesh on subdomain 1
is shown in red, on subdomain 2 in blue, and the overlap region in purple. In general,
the meshes obtained by the different methods will be visually indistinguishable
from one another at convergence. To compare the DD methods we will plot their
convergence histories.

In Fig. 4 we plot the maximum error between the subdomain and single domain
solutions for each of xn1 , xn2 , yn1 , and yn2 obtained using classical Schwarz. These
are obtained over a 12 by 12 grid with 4 points of overlap in � and parameters
a D 0:7 and b D 0:05. As can be seen, each component of the solution converges
at approximately the same rate, so we simplify our discussion by comparing the
convergence of only xn1 in the remaining figures.

In Fig. 5 we compare the classical Schwarz algorithm for varying amounts of
overlap, using 2, 4, 6 and 8 points of overlap in the � direction. As expected, the rate
of convergence improves as the overlap increases.

For the two possible optimized Schwarz iterations, we examine the effect of
varying the parameter p in Figs. 6 and 7. To generate these results we use a 12 by
12 mesh with two points of overlap in the � direction and parameters a D 0:7 and
b D 0:05. For both types of transmission conditions, the best performance observed
occurs for pD 2. Comparing the linear Robin condition (Fig. 6) and nonlinear
Robin condition (Fig. 7), we see that the convergence histories for a general p
are very similar. To examine these similarities, we plot the convergence histories
for both optimized iterations for pD 1; 2; 3 on the same set of axes in Fig. 8.
We see that while the variations in this particular case are small, the nonlinear
transmission conditions consistently outperform the linear Robin conditions. This
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Fig. 3 The test function plotted using an adaptive mesh

is also observed in the results of Fig. 9, in which we plot convergence histories
for all three proposed DD algorithms. For this example we use a 12 by 12 mesh
decomposed into two subdomains, with two points of overlap in � and parameters
a D 0:7 and b D 0:05. In this example we see that both optimized Schwarz methods
vastly outperform classical Schwarz, with the nonlinear transmission conditions
slightly outperforming the linear Robin conditions.

Another way to assess the meshes obtained from a DD iteration is to compute
a mesh quality measure. An equidistribution quality measure for each element K
of the grid, Qeq.K/, is presented in [7]. The maximum of Qeq over all elements
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Fig. 5 Classical Schwarz convergence histories for varying amounts of overlap

is 1 if and only if the equidistribution condition is satisfied exactly. The larger the
value of maxKQeq.K/ the farther the mesh is from equidistributing M . In Table 1
we compute the maxKQeq.K/ for the first five iterations of each proposed Schwarz
algorithm. The zero column gives the mesh quality measure for the initial uniform
12 	 12 mesh and the 1 column gives the mesh quality measure for the mesh
obtained by solving system (4) over a single domain. Note, local equidistribution
will not give a value of 1 for the mesh quality measure. We see that the meshes
obtained by the optimized Schwarz algorithms rapidly give good meshes.
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Fig. 7 Convergence histories for the Schwarz iteration using nonlinear Robin conditions for
varying p

Table 1 Mesh quality measures for the grids obtained by the proposed Schwarz iterations

Iterations 0 1 2 3 4 5 1
Classical 1.6375 1.3630 1.3629 1.3178 1.3136 1.2795 1.1979

Linear Robin 1.6375 2.0076 1.1979 1.1979 1.1979 1.1979 1.1979
Nonlinear Robin 1.6375 2.0114 1.1979 1.1979 1.1979 1.1979 1.1979
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6 Conclusion

In summary, we have proposed three different Schwarz DD iterations for obtaining
2D adaptive meshes defined by a local equidistribution principle. The numerical
results show that the optimized methods provide a significant improvement over the
slow convergence of classical Schwarz, with the nonlinear transmission conditions
inspired by the work of Gander and Haynes [4] exhibiting the best results. Ongoing
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work includes the theoretical analysis of these DD approaches for 2D mesh
generation and coupling the DD mesh generation with a DD solver for the physical
PDE of interest.
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MPI–OpenMP Algorithms for the Parallel
Space–Time Solution of Time Dependent PDEs

Ronald D. Haynes and Benjamin W. Ong

1 Introduction

Modern high performance computers offer hundreds of thousands of processors that
can be leveraged, in parallel, to compute numerical solutions to time dependent
partial differential equations (PDEs). For grid-based solutions to these PDEs,
domain decomposition (DD) is often employed to add spatial parallelism [19].

Parallelism in the time variable is more difficult to exploit due to the inherent
causality. Recently, researchers have explored this issue as a means to improve the
scalability of existing parallel spatial solvers applied to time dependent problems.
There are several general approaches to combine temporal parallelism with spatial
parallelism. Waveform relaxation [14] is an example of a “parallel across the
problem” method. The “parallel across the time domain” approaches include the
parareal method [12, 15, 16]. The parareal method decomposes a time domain into
smaller temporal subdomains and alternates between applying a coarse (relatively
fast) sequential solver to compute an approximate (not very accurate) solution,
and applying a fine (expensive) solver on each temporal subdomain in parallel.
Alternatively, one can consider “parallel across the step” methods. Examples of such
approaches include the computation of intermediate Runge–Kutta stage values in
parallel [18], and Revisionist Integral Deferred Correction (RIDC) methods, which
are the family of parallel time integrators considered in this paper. Parallel across
the step methods allow for “small scale” parallelism in time. Specifically, we will
show that if a DD implementation scales to Nx processors, a RIDC–DD parallelism
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will scale to Nt 	 Nx processors, where Nt < 12 in practice. This contrasts with
parallel across the time domain approaches, which can potentially utilize Nt � 12.

This paper discusses the implementation details and profiling results of the par-
allel space–time RIDC–DD algorithm described in [7]. Two hybrid OpenMP–MPI
frameworks are discussed: (1) a more traditional fork-join approach of combining
threads before doing MPI communications, and (2) a threaded MPI communications
framework. The latter framework is highly desirable because existing (spatially
parallel) legacy software can be easily integrated with the parallel time integrator.
Numerical experiments measure the communication overhead of both frameworks,
and demonstrate that the fork-join approach scales well in space and time. Our
results indicate that one should strongly consider temporal parallelization for the
solution of time dependent PDEs.

2 Review

This paper is interested in parallel space–time solutions to the linear heat equation.
We describe the application of our method to the linear heat equation in one spatial
dimension x 2 Œ0; 1� and t 2 Œ0; T �,

ut D uxx; u.t; 0/ D g0.t/; u.t; 1/ D g1.t/; u.0; x/ D u0.x/: (1)

The actual numerical results in Sect. 4 are presented for the 2D heat equation.

2.1 RIDC

RIDC methods [4, 6] are a family of parallel time integrators that can be broadly
classified as predictor corrector algorithms [1,9]. The basic idea is to simultaneously
compute solutions to the PDE of interest and associated error PDEs using a
low-order time integrator. We first review the derivation of the error equation.

Suppose v.t; x/ is an approximate solution to (1), and u.t; x/ is the (unknown)
exact solution. The error in the approximate solution is e.t; x/ D u.t; x/ � v.t; x/.
We define the residual as ".t; x/ D vt .t; x/ � vxx.t; x/. Then the time derivative of
the error satisfies et D ut � vt D uxx � .vxx C "/. The integral form of the error
equation,

�

e C
Z t

0

".; x/ d

�

t

D .v C e/xx � vxx; (2)

can then be solved for e.t; x/ using the initial condition e.0; x/ D 0. The correction
e.t; x/ is combined with the approximate solution v.t; x/ to form an improved
solution. This improved solution can be fed back in to the error equation (2) and the
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process repeated until a sufficiently accurate solution is obtained. It has been shown
that each application of the error equation improves the order of the overall method,
provided the integral is approximated with sufficient accuracy using quadrature [5].

We introduce some notation to identify the sequence of corrected approxima-
tions. Denote vŒp�.t; x/ as the approximate solution which has error eŒp�.t; x/, which
is obtained by solving

�

eŒp� C
Z t

0

"Œp�.; x/ d

�

t

D .vŒp� C eŒp�/xx � vŒp�xx ; (3)

where vŒ0�.t; x/ denotes the initial approximate solution obtained by solving the
physical PDE (1) using a low-order integrator. In general, the error from the pth
correction equation is used to construct the .pC1/st approximation, vŒpC1�.t; x/ D
vŒp�.t; x/C eŒp�.t; x/: Hence, Eq. (3) can be expressed as

�

vŒpC1� �
Z t

0

vŒp�xx .; x/ d

�

t

D vŒpC1�xx � vŒp�xx : (4)

We compute a low-order prediction, vŒ0�;nC1, for the solution of (1) at time tnC1
using a first-order backward Euler discretization (in time):

vŒ0�;nC1 ��t vŒ0�;nC1xx D vŒ0�;n; vŒ0�;nC1.a/ D g0.tnC1/; vŒ0�;nC1.b/ D g1.tnC1/;
(5)

with vŒ0�;0.x/ D u0.x/. With some algebra, a first-order backward Euler discretiza-
tion of Eq. (4) gives the update, vŒpC1�;nC1, as

vŒpC1�;nC1 ��t vŒpC1�;nC1xx D vŒpC1�;n ��t vŒp�;nC1xx C
Z tnC1

tn
vŒp�xx .; x/ d; (6)

with vŒpC1�;nC1.a/ D g0.t
nC1/ and vŒpC1�;nC1.b/ D g1.t

nC1/: The integral in
Eq. (6) is approximated using a sufficiently high-order quadrature rule [5].

Parallelism in time is possible because the PDE of interest (1) and the error
PDEs (4) can be solved simultaneously, after initial startup costs. The idea is to
fill out the memory footprint, which is needed so that the integral in Eq. (6) can be
approximated by high-order quadrature, before marching solutions to (5) and (6) in
a pipe-line fashion. See Fig. 1 for a graphical example, and [6] for more details.

2.2 RIDC–DD

The RIDC–DD algorithm solves the predictor (5) and corrections (6) using DD
algorithms in space. The key observation is that (5) and (6) are both elliptic PDEs
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Original PDE for v[0](t, x)

Error PDE for v[1](t, x)

Error PDE for v[2](t, x)

Error PDE for v[3](t, x)

1st correction

2nd correction

3rd correction

tn−3 tn−2 tn−1 tn tn+1. . . . . .

Fig. 1 The black dots represent the memory footprint that must be stored before the white dots
can be computed in a pipe. In this figure, vŒ0�;nC2.x/, vŒ1�;nC1.x/, vŒ2�;n.x/ and vŒ3�;n�1.x/ are
computed simultaneously

of the form .1��t @xx/z D f .x/. The function f .x/ is known from the solution at
the previous time step and previously computed lower-order approximations. DD
algorithms for solving elliptic PDEs are well known [2, 3]. The general idea is
to replace the PDE by a coupled system of PDEs over some partitioning of the
spatial domain using overlapping or non-overlapping subdomains. The coupling is
provided by necessary transmission conditions at the subdomain boundaries. These
transmission conditions are chosen to ensure the DD algorithm converges and to
optimize the convergence rate. In [7], as a proof of principle, (5)–(6) are solved
using a classical parallel Schwarz algorithm, with overlapping subdomains and
Dirichlet transmission conditions. Optimized RIDC–DD variants are possible using
an optimized Schwarz DD method [8, 10, 11], to solve (5)–(6). The solution from
the previous time step can be used as initial subdomain solutions at the interfaces.
We will use RIDCp–DD to refer to a pth-order solution obtained using p�1 RIDC
corrections in time and DD in space.

3 Implementation Details

We view the parallel time integrator reviewed in Sect. 2.1 as a simple yet powerful
tool to add further scalability to a legacy MPI or modern MPI–CUDA code, while
improving the accuracy of numerical solution. The RIDC integrators benefit from
access to shared memory because solving the correction PDE (6) requires both
the solution from the previous time step and previously computed lower-order
subdomain solution. Consequently, we propose two MPI–OpenMP hybrid imple-
mentations which map well to multi-core, multi-node compute resources. In the
upcoming MPI 3.0 standard [17], shared memory access within the MPI library will
provide alternative implementations.



MPI–OpenMP Parallel Space–Time Method 183

3.1 Implementation #1

The RIDC–DD algorithm can be implemented using a traditional fork join approach,
as illustrated in Program 1. After boundary information is exchanged, each MPI
task spawns OpenMP threads to perform the linear solve. The threads are merged
back together before MPI communication is used to check for convergence. The
drawback to this fork-join implementation, is that the parallel space–time algorithm
becomes tightly integrated, making it difficult to leverage an existing spatially
parallel DD implementation.

1. MPI Initialization
2. ...
3. for each time step
4. for each Schwarz iteration
5. MPI Comm (exchange boundary info)
6. OMP Parallel for each prediction/correction
7. linear solve
8. end parallel
9. MPI Comm (check for convergence)
10. end
11. end
12. ...
13. MPI Finalize

Program 1: RIDC–DD implementation using a fork-join approach. The time parallelism occurs
within each Schwarz iteration, requiring a tight integration with an existing spatially parallel DD
implementation

3.2 Implementation #2

To leverage an existing spatially parallel DD implementation, a non-traditional
hybrid approach must be considered. By changing the order of the loops, the
Schwarz iterations for the prediction and the correction loops can be evaluated
independently of each other. This is realized by spawning individual OpenMP
threads to solve the prediction and correction loops on each sub-domain; the
Schwarz iterations for the prediction/correction step run independently of each other
until convergence. This implementation (Program 2) has several consequences:
(1) a thread safe version of MPI supporting MPI_THREAD_MULTIPLE is
required. (2) In addition, we required a thread-safe, thread-independent version of
MPI_BARRIER, MPI_BROADCAST and MPI_GATHER. To achieve this, we
wrote our own wrapper library using the thread safe MPI_SEND, MPI_RECV
and MPI_SENDRECV provided by (1).
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1. MPI Initialization
2. ...
3. for each time step
4. OMP Parallel for each prediction/correction level
5. for each Schwarz iteration
6. MPI Comm (exchange boundary info)
7. linear solve
8. MPI Comm (check for convergence)
9. end
10. end parallel
11. end
12. ...
13. MPI Finalize

Program 2: RIDC–DD implementation using a non-traditional hybrid approach. Notice that
lines 5–9 are the Schwarz iterations that one would find in an existing spatially parallel DD
implementation. Hence, provided the DD implementation is thread-safe, one could wrap the time
parallelization around an existing parallel DD implementation

4 Numerical Experiments

We show first that RIDC–DD methods converge with the designed orders in space
and time. Then, we profile communication costs using TAU [13]. Finally, we show
strong scaling studies for the RIDC–DD algorithm. We compute solutions to the
heat equation in R2, where centered finite differences are used to approximate the
second derivative operator. Errors are computed using the known analytic solution.
The computations are performed at the High Performance Computing Center at
Michigan State University, where nodes (consisting of two quad core Intel Westmere
processors) are interconnected using infiniband and a high speed Lustre file system.

4.1 Convergence Studies and Profile Analysis

In Fig. 2, the convergence plots show that our classical Schwarz RIDC–DD algo-
rithm converges as expected in space and time. In general, one would balance the
orders of the errors in space and time appropriately for efficiency. Here we pick
RIDC4 since it mapped well to our available four core sockets and to demonstrate
the scalability of our algorithm in time. We could, of course, used a fourth order
method in space. The Schwarz iterations are iterated until a tolerance of 10�12 is
reached for the predictors and correctors (which explains why the error in the fourth-
order approximation levels out as the time step becomes small).

The communication costs for our two implementations of RIDC4-DD are
profiled using TAU [13]. We see in Fig. 3, communication costs are minimal for
implementation #1, and scales nicely as the number of nodes is increased, but the
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Fig. 2 (a) Classical Schwarz RIDCp–DD algorithms, p D 1; 2; 3; 4, converge to the reference
solution with the designed orders of accuracy. Here �x is fixed while �t is varied. (b) Second-
order convergence in space is demonstrated for the fourth-order RIDC–DD algorithm. Here, �t is
fixed while�x is varied

Fig. 3 Profile of the RIDC4-DD algorithm using both implementations. Overhead and com-
munication costs are reasonable for implementation #1, but are high for implementation #2.
(a) Implementation #1 3� 3 domain. (b) Implementation #1 6� 6 domain. (c) Implementation #2
3� 3 domain. (d) Implementation #2 6� 6 domain

communication cost is significant for implementation #2. In Fig. 3a, c, the domain
is discretized into 180 	 180 grid nodes, which are split into a 3 	 3 configuration
of subdomains. In Fig. 3b, d, the domain is discretized into 360 	 360 grid nodes,
which are split into a 6 	 6 configuration of subdomains. This keeps the number
of grid points per subdomain constant so that the computation time for the matrix
factorization and linear solve are the same.

4.2 Characterizing Parallel Performance

Due to the better communication profile, we use framework #1 for our experiments.
We fix �xD 1

180
, �yD 1

180
, �t D 1

1000
, and TOLD 10�12 (the Schwarz iteration

tolerance). We consider three configurations of subdomains: 2 	 2, 4 	 4 and
6	6. For each configuration we illustrate the speedup and efficiency due to the time
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Fig. 4 Scaling study (in time) for a RIDC4-DD algorithm

parallelism in Fig. 4. We choose to fix the ratio between the overlap and subdomain
size to ensure the number of unknowns on each subdomain scales appropriately as
the number of subdomains is increased.

In Fig. 4 we show three curves corresponding to a 2 	 2, 4 	 4 and a 6 	 6
configuration of subdomains. For each configuration we compute a fourth order
solution in time using 1; 2 and 4 threads. The 6 	 6 configuration of subdomains
with 4 threads uses a total of 144 cores. We plot the efficiency (with respect to
the one thread run) as a function of the number of threads. Speedup is evident as
temporal parallelization is improved, however, efficiency decreases as the number
of subdomains increases.

5 Conclusions

This paper has presented the implementation details and first reported profiling
results for a newly proposed space–time parallel algorithm for time dependent
PDEs. The RIDC–DD method combines traditional domain decomposition in space
with a new family of deferred correction methods designed to allow parallelism
in time. Two possible implementations are described and profiled. The first, a
traditional hybrid OpenMP–MPI implementation, requires potentially difficult mod-
ifications of an existing parallel spatial solver. Numerical experiments verify that
the algorithm achieves its designed order of accuracy and scales well. The second
strategy allows a relatively easy reuse of an existing parallel spatial solver by using
OpenMP to spawn threads for the simultaneous prediction and correction steps. This
non-traditional hybrid use of OpenMP and MPI currently requires writing of custom
thread-safe and thread-independent MPI routines. Profile analysis shows that our
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non-traditional use of OpenMP–MPI suffers from higher communication costs than
the standard use of OpenMP–MPI. An inspection of the prediction and correction
equations indicates that optimized Schwarz variants of the algorithm are possible
and will enjoy nice load balancing. This work is ongoing.

Acknowledgements This work was supported by the Institute for Cyber-Enabled Research
(iCER) at MSU, NSERC Discovery Grant 311796, and AFOSR Grant FA9550-12-1-0455.

References

1. Böhmer, K., Stetter, H.: Defect Correction Methods. Theory and Applications. Computing
Supplementum, vol. 5. Springer (1984)

2. Cai, X.C.: Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer.
Math. 60(1), 41–61 (1991)

3. Cai, X.C.: Multiplicative Schwarz methods for parabolic problems. SIAM J. Sci. Comput.
15(3), 587–603 (1994)

4. Christlieb, A., Ong, B.: Implicit parallel time integrators. J. Sci. Comput. 49(2), 167–179
(2011)

5. Christlieb, A., Ong, B., Qiu, J.M.: Comments on high order integrators embedded within
integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4(1), 27–56 (2009)

6. Christlieb, A., Macdonald, C., Ong, B.: Parallel high-order integrators. SIAM J. Sci. Comput.
32(2), 818–835 (2010)

7. Christlieb, A., Haynes, R., Ong, B.: A parallel space-time algorithm. SIAM J. Sci. Comput.
34(5), 233–248 (2012)

8. Dubois, O., Gander, M., Loisel, S., St-Cyr, A., Szyld, D.: The optimized Schwarz method with
a coarse grid correction. SIAM J. Sci. Comput. 34(1), A421–A458 (2012)

9. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary
differential equations. BIT 40(2), 241–266 (2000)

10. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
11. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection

reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)
12. Gander, M., Vandewalle, S.: On the superlinear and linear convergence of the parareal

algorithm. Domain decomposition methods in science and engineering XVI. Lecture Notes
in Computational Science and Engineering, vol. 55. Springer p. 291 (2007)

13. Koehler, S., Curreri, J., George, A.: Performance analysis challenges and framework for high-
performance reconfigurable computing. Parallel Comput. 34(4), 217–230 (2008)

14. Lelarasmee, E., Ruehli, A.E., Sangiovanni-Vincentelli, A.L.: The waveform relaxation method
for time-domain analysis of large scale integrated circuits. IEEE Trans. CAD IC Syst. 1, 131–
145 (1982)

15. Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. Acad. Sci.
Ser. I Math. 332(7), 661–668 (2001)

16. Minion, M., Williams, S.: Parareal and spectral deferred corrections. In: Numerical Analysis
and Applied Mathematics: International Conference on Numerical Analysis and Applied
Mathematics 2008. AIP Conference Proceedings, vol. 1048, pp. 388–391 (2008)

17. Mpi 3.0 standardization effort. http://meetings.mpi-forum.org/MPI_3.0_main_page.php.
Accessed 25 Oct 2012

18. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Commun. ACM
7(12), 731–733 (1964)

19. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer
Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

http://meetings.mpi-forum.org/MPI_3.0_main_page.php


Neumann–Neumann Waveform Relaxation
for the Time-Dependent Heat Equation

Felix Kwok

1 Introduction

The goal of this paper is to introduce and analyze a new variant of waveform
relaxation (WR) methods based on Neumann–Neumann iterations. Originally
introduced by [13] for ODE systems, WR methods have first been used to solve
time-dependent PDEs in [8,12]. When applying a WR method for a given domain˝
and a decomposition into subdomains f˝i gNiD1, [i˝i D ˝, each iteration consists
of solving independent subproblems on˝i	Œ0; T �, i.e., over the whole time window
Œ0; T �, before exchanging information across the interfaces; in other words, the
information exchanged consists of interface traces over the time window Œ0; T �. This
is in contrast with the classical approach, in which one fixes a time stepping strategy
for the whole domain ˝ and uses domain decomposition to solve the resulting
spatial problem at each time step. One advantage of the WR framework is that it
allows the use of different spatial and time discretizations for each subdomain; this
is especially useful for problems with large coefficient jumps [9] or with different
models for different parts of the domain [10]. In addition, since communication
between subdomains are less frequent than for the standard approach, there is a
reduction in communication costs, particularly for networks with high latency.

Typically, WR methods can be derived from methods for elliptic PDEs. For
example, one can extend the parallel Schwarz method with classical transmission
conditions [14] to obtain the parallel Schwarz WR method; this has been analyzed
in [8, 12]. WR extensions based on optimized Schwarz methods [6] have also been
proposed. Substructuring methods form another class of methods for elliptic PDEs:
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examples include the Neumann–Neumann method [2,4], as well as the FETI method
[5] and its variants. However, to the best of our knowledge, no substructuring-type
analogue of WR has been proposed, despite substructuring methods having many
attractive properties for elliptic problems, such as mesh independence in the two-
subdomain case. Thus, our first aim is to define the Neumann–Neumann waveform
relaxation (NNWR) method, which generalizes the elliptic Neumann–Neumann
method in a natural way. This is done in Sect. 2.

Our second goal is to understand the convergence of the proposed algorithm
for parabolic problems. For systems of ODEs, a Picard–Lindelöf type argument
shows that convergence is superlinear on bounded time intervals Œ0; T �, with an error
estimate of the form .CT/k=kŠ after k iterations [16]. For overlapping Schwarz WR
methods applied to the advection-diffusion equation, the estimate can be improved
to e�.kL/2=T , whereL is the size of the overlap [12]; this bound is possible because of
the diffusivity of the problem. However, for unbounded time intervals, only linear
convergence can be expected [8]. Similar conclusions hold for Schwarz WR with
optimized transmission conditions, with or without overlap [1, 7, 15]. Using the
1D heat equation as the model problem, we show that the NNWR method also
converges superlinearly for finite time intervals; this is done in Sect. 3, with some
numerical experiments confirming the results in Sect. 4. We also derive a linear
bound that is valid for unbounded time intervals. We have chosen to analyze the
method in the continuous setting because it allows us to understand the asymptotic
behaviour of the algorithm for very fine grids, without requiring explicit knowledge
of how each subdomain problem is discretized. For ease of presentation, we prove
our results for two subdomains in one spatial dimension; [11] contains further
results, some of which are mentioned at the end of Sect. 4.

2 The NNWR Algorithm

Suppose we want to solve the 1D heat equation

@tu � @2xu D f; x 2 ˝ D .�b; a/; t 2 .0; T �;

with initial conditions u.x; 0/ D v.x/ and Dirichlet boundary conditions u.�b; t/ D
uL.t/, u.a; t/ D uR.t/. We consider a decomposition into two non-overlapping
subdomains ˝1 D .�b; 0/ and ˝2 D .0; a/. On the interface � D f0g, we are
given the initial guess g0.t/, t 2 Œ0; T �. Then the NNWR algorithm is given by the
following iteration: for k D 1; 2; : : :, do
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(i) Dirichlet step:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@tu
k
1 � @2xuk1 D f .x; t/ on .�b; 0/,
uk1 .�b; t/ D uL.t/;

uk1 .0; t/ D gk�1.t/;
uk1 .x; 0/ D v.x/ on .�b; 0/,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@tu
k
2 � @2xuk2 D f .x; t/ on .0; a/,

uk2 .0; t/ D gk�1.t/;
uk2 .a; t/ D uR.t/;

uk2 .x; 0/ D v.x/ on .0; a/.

(ii) Neumann step:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t 
k
1 � @2x k1 D 0 on .�b; 0/,
 k1 .�b; t/ D 0;

@n1 
k
1 D @n1uk1 C @n2uk2 on � ,

 k1 .x; 0/ D 0 on .�b; 0/,

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@t 
k
2 � @2x k2 D 0 on .0; a/,

@n2 
k
2 D @n1uk1 C @n2uk2 on � ,

 k2 .a; t/ D 0;
 k2 .x; 0/ D 0; on .0; a/.

(iii) Update step:

gk.t/ D gk�1.t/ � �Œ k1 .0; t/C  k2 .0; t/�:

The relaxation parameter � 2 .0; 1� is chosen to obtain fast convergence.
Note that this algorithm can be generalized in a straightforward way to handle
decompositions into many subdomains and in higher dimensions, see [11]. This is
because, unlike for the elliptic case, the Neumann step is always well-posed for the
heat equation, even for “floating” subdomains that do not share an edge with @˝ .

2.1 Analysis by Laplace Transforms

Our convergence analysis is based on the Laplace transform method. The Laplace
transform of a function u.x; t/ with respect to time is defined as

Ou.x; s/ WD L fu.x; t/g D
Z 1

0

u.x; t/e�st dt:

In the remainder of the paper, hats will denote the Laplace transform of a function
in time, and s will denote the Laplace variable. Since we are interested in the error
gk.t/�u.0; t/ of the method, it suffices to assume that v.x/; f .x; t/; uL.t/ and uR.t/
all vanish and study how gk.t/ tends to zero as k ! 1. In this case, the NNWR
algorithm can be written in Laplace space as follows: for k D 1; 2; : : :, do
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(i) Dirichlet step:

8

ˆ

ˆ

<

ˆ

ˆ

:

.s � @2x/Ouk1 D 0 on .�b; 0/,
Ouk1.�b; s/ D 0;
Ouk1.0; s/ D Ogk�1.s/;

8

ˆ

ˆ

<

ˆ

ˆ

:

.s � @2x/Ouk2 D 0 on .0; a/,

Ouk2.0; s/ D Ogk�1.s/;
Ouk2.a; t/ D 0:

(ii) Neumann step:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.s � @2x/ O k1 D 0 on .�b; 0/,
O k1 .�b; s/ D 0;

@x O k1 D @x Ouk1 � @x Ouk2 on � ,

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

.s � @2x/ O k2 D 0 on .0; a/,

�@x O k2 D @x Ouk1 � @x Ouk2 on � ,

O k2 .a; s/ D 0:

(iii) Update step:

Ogk.s/ D Ogk�1.s/� �Œ O k1 .0; s/C O k2 .0; s/�:

Solving the two-point boundary value problems in the Dirichlet step yields

Ouk1.x; s/ D Ogk�1.s/
sinh..x C b/ps/

sinh.b
p
s/

; Ouk2.x; s/ D Ogk�1.s/
sinh..a � x/ps/

sinh.a
p
s/

:

(1)

The Neumann step can be solved similarly by letting Ork.s/ WD @x Ouk1.0; s/ �
@x Ouk2.0; s/:

O k1 .x; s/ D Ork.s/
sinh..x C b/ps/p
s cosh.b

p
s/

; O k2 .x; s/ D Ork.s/
sinh..a � x/ps/p
s cosh.a

p
s/
:

(2)

Then the update step becomes

Ogk.s/ D Ogk�1.s/� �Œ k1 .0; s/C  k2 .0; s/�

D Ogk�1.s/� � Or
k.s/p
s
Œtanh.b

p
s/C tanh.a

p
s/�:

But

Ork.s/ D @xuk1.0; s/� @xuk2.0; s/ D
p
s Ogk�1.s/

�

cosh.b
p
s/

sinh.b
p
s/
C cosh.a

p
s/

sinh.a
p
s/

�

:
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So we obtain

Ogk.s/ D Ogk�1.s/
�

1 � �
�

2C tanh.a
p
s/

tanh.b
p
s/
C tanh.b

p
s/

tanh.a
p
s/

��

: (3)

Note that if a D b, then Ogk.s/ D Ogk�1.s/.1 � 4�/; which means the method
converges to the exact solution in one iteration for � D 1=4. Thus, the classical
result for elliptic problems also holds for the time-dependent case. The main result
of our paper concerns the case when the subdomains are unequal, i.e., when a ¤ b.

Theorem 1 (Convergence of NNWR). Let � D 1=4. Then the error of the NNWR
method for two subdomains satisfies

kgk.�/� u.0; �/kL1.0;1/ �
�

.a � b/2
4ab

�k

kg0.�/� u.0; �/kL1.0;1/: (4)

Moreover, for every finite time interval .0; T /, NNWR converges superlinearly with
the estimate

kgk.�/� u.0; �/kL1.0;T / � e�k2m2=T
�

.a � b/2
ab

�k

kg0.�/� u.0; �/kL1.0;T /; (5)

where m D minfa; bg.

3 Convergence Analysis

Since (3) is symmetric with respect to a and b, we will assume without loss of
generality that a > b in the remainder of the paper. For � D 1=4, the recurrence (3)
simplifies to give

Ogk.s/ D � Ogk�1.s/ � sinh2..a � b/ps/
sinh.2a

p
s/ sinh.2b

p
s/
DW �Y.s/ Ogk�1.s/; (6)

which implies Ogk.s/ D .�1/kY k.s/ Og0.s/. Note that for Re.s/ > 0, we have Y.s/ D
O.e�4bjsj1=2 / as jsj ! 1, i.e., Y.s/ decays exponentially as jsj ! 1. Thus, by [3,
p. 183], Y.s/ is the Laplace transform of a regular function y1.t/. If we now define
yk.t/ D L �1fY k.s/g, then for t 2 .0; T /, we have

jgk.t/j D
ˇ

ˇ

ˇ

ˇ

Z t

0

g0.t � /yk./ d
ˇ

ˇ

ˇ

ˇ

� kg0kL1.0;T /

Z T

0

jyk./j d: (7)

Thus, to obtain L1 convergence estimates, we need bounds on
R T

0 jyk./j d . Our
first step is to show that yk.t/ � 0, for t > 0, which makes bounding its integral
much easier. We start by stating a few elementary properties of positive functions
and their Laplace transforms; their proofs follow easily from the definitions.
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Lemma 1. Let f and g be positive functions, i.e., f .t/ � 0 and g.t/ � 0 for t > 0,
and let F.s/ D L ff .t/g: Then

(i) For all T > 0,
Z T

0

jf ./j d �
Z 1

0

f ./ d D lim
s!0 F.s/:

(ii) .f � g/.t/ D
Z t

0

f .t � /g./ d � 0 for all t > 0.

(iii) kf � gkL1.0;T / � kf kL1.0;T / � kgkL1.0;T /:
Lemma 2. For ˇ > ˛ � 0, let

Q1.s/ D sinh.˛
p
s/

sinh.ˇ
p
s/
; Q2.s/ D cosh.˛

p
s/

cosh.ˇ
p
s/
:

Then q1.t/ D L �1fQ1.s/g and q2.t/ D L �1fQ2.s/g are positive functions.

Proof. For n D 1; 2; : : : ; let un.x; t/ and vn.x; t/ be the solutions of the following
two boundary value problems:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@tun � @2xun D 0 on .0; ˇ/,

un.0; t/ D 0;
un.ˇ; t/ D fn.t/;
un.x; 0/ D 0;

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

@twn � @2xwn D 0 on .�ˇ; ˇ/,
wn.�ˇ; t/ D fn.t/;

wn.ˇ; t/ D fn.t/;
wn.x; 0/ D 0:

A calculation similar to that in Sect. 2 shows that L fun.˛; t/g D Q1.s/ Ofn.s/ and
L fwn.˛; t/g D Q2.s/ Ofn.s/. Moreover, if fn.t/ � 0 for all t , then by the maximum
principle, we have un.˛; t/ � 0. We now choose a sequence .fn/ of positive
functions that converges weakly to ı.t/; then since each un.˛; t/ is positive, we
have un.˛; t/! q1.t/ � 0. A similar argument shows that wn.˛; t/! q2.t/ � 0.

ut
We now analyze the kernel y1.t/, with Laplace transform Y.s/, as defined in (6).

Lemma 3. Let m � 1 be the unique integer such that mb < a � .mC 1/b. Then
Y.s/ D V.s/H.s/, with V.s/ D 1= cosh2.b

p
s/ and lims!0 H.s/ D .a � b/2=4ab.

Moreover, h.t/ D L �1fH.s/g is positive, so that y1.t/ D .v � h/.t/ � 0 for all
t > 0.

Proof. For k < m, we have the identity

sinh2..a � kb/
p
s/� sinh2..a � .k C 1/b/ps/

D 1

2




cosh.2.a � kb/
p
s/ � 1 � cosh.2.a � .k C 1/b/ps/C 1�

D sinh..2a � .2k C 1/b/ps/ sinh.b
p
s/:
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Since k < m, we have 0 < 2a � .2k C 1/b < 2a, which gives

sinh2..a � kb/
p
s/

sinh.2a
p
s/ sinh.2b

p
s/
D sinh..2a � .2k C 1/b/ps/

sinh.2a
p
s/

� sinh.b
p
s/

sinh.2b
p
s/

Csinh2..a � .k C 1/b/ps/
sinh.2a

p
s/ sinh.2b

p
s/
:

Applying this identity repeatedly for k D 1; : : : ; m � 1 gives

Y.s/ D sinh2..a � b/ps/
sinh.2a

p
s/ sinh.2b

p
s/

D sinh2..a �mb/
p
s/

sinh.2a
p
s/ sinh.2b

p
s/
C

m�1
X

kD1

sinh..2a � .2k C 1/b/ps/
sinh.2a

p
s/

� sinh.b
p
s/

sinh.2b
p
s/

D 1

2 cosh2.b
p
s/

"

sinh2..a � mb/
p
s/ cosh.b

p
s/

sinh.2a
p
s/ sinh.b

p
s/

C
m�1
X

kD1

sinh..2a � .2k C 1/b/ps/ cosh.b
p
s/

sinh.2a
p
s/

#

D 1

4 cosh2.b
p
s/

�

sinh..a � mb/
p
s/

sinh.a
p
s/

� sinh..a � mb/
p
s/

sinh.b
p
s/

� cosh.b
p
s/

cosh.a
p
s/
C

m�1
X

kD1

�

sinh..2a � 2kb/
p
s/

sinh.2a
p
s/

C sinh..2a � 2.k C 1/b/ps/
sinh.2a

p
s/

��

Let V.s/ D 1= cosh2.b
p
s/ and H.s/ be the rest. Then since 0 < a � mb � b < a,

we see that H.s/ consists of a sum of products of functions of the form Q1.s/ and
Q2.s/ in Lemma 2. Thus, its inverse Laplace transform h.t/ is positive. Moreover,
since v.t/ D L �1fV.s/g is also positive by Lemma 2, we see that y.t/ D .v�h/.t/
is positive. Finally, since lims!0 V .s/ D 1, we have

lim
s!0H.s/ D lim

s!0 Y.s/ D lim
s!0

sinh2..a � b/ps/
sinh.2a

p
s/ sinh.2b

p
s/
D .a � b/2

4ab
: ut

We are finally ready to prove our main result.

Proof (Theorem 1). According to (7), it suffices to bound
R T

0
jyk./j d for finite

T > 0 and for T D 1, where yk.t/ D L �1fY k.s/g. Since y1.t/ is positive by
Lemma 3, so is yk.t/, so by Lemma 1(i), we have

Z 1

0

jyk./j d D lim
s!0 Y

k.s/ D
	 .a � b/2

4ab

�k

;
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which shows the linear bound (4). For T < 1, let vk.t/ D L �1fV k.s/g
and hk.t/ D L �1fHk.s/g: Then since

R1
0 hk.t/ dt D lims!0 Hk.s/ D

.lims!0 H.s//k , we have

kykkL1.0;T / � kvkkL1.0;T / � khkkL1.0;T / �
	 .a � b/2

4ab

�k
Z T

0

vk./ d: (8)

To bound the remaining integral, let D.s/ D 4ke�2kb
p
s � V k.s/. We will show that

d.t/ D L �1fD.s/g � 0. We have

D.s/ D 4ke�2kb
p
s � 22k

.eb
p
s C e�bps/2k D 4

k � .1C e
�2bps/2k � 1

.eb
p
s C e�bps/2k

D 4k
2k
X

mD1

 

2k

m

!

e�2bm
p
sV k.s/:

From [17], we know that L �1fe�2bm
p
sg D bmp

�t3
e�b2m2=t is a positive function for

m � 1. Since vk.t/ D L �1fV k.s/g is also positive, we see that d.t/ is in fact a sum
of convolutions of positive functions. Hence d.t/ � 0, as claimed. Thus, we have

Z T

0

vk./ d �
Z T

0

.vk./C d.// d D
Z T

0

4k
kbp
�3

e�k2b2= d

D 4kerfc

�

bkp
T

�

:

But erfc.x/ � e�x2 for all x � 0; introducing this into (8) gives the estimate

kykkL1.0;T / �
	 .a � b/2

ab

�k

erfc

�

bkp
T

�

�
	 .a � b/2

ab

�k

e�k2b2=T ;

which tends to zero as k !1.

4 Numerical Experiments

Figure 1 shows the convergence of NNWR for a mildly asymmetric case (a D 0:7,
b D 0:3) and a strongly asymmetric case (a D 0:9, b D 0:1) when applied
to a finite-difference Crank–Nicolson discretization. We see that the bounds in
Theorem 1, while not necessarily sharp, does capture the superlinear convergence
of the method. As the length of the time window T increases, the error curve
approaches the linear bound, which can be increasing for highly asymmetric
problems. In this case, the error can grow substantially before decreasing to zero



NNWR Method for Heat Equation 197

0 10 20 30 40

10
−10

10
0

10
10

10
20

Iterations

E
rr

or

Linear
T=0.1
T=0.5
T=1
T=5

0 5 10 15 20

10
−15

10
−10

10
−5

10
0

Iterations

E
rr

or

 

 

Linear
T=0.1
T=0.5
T=1
T=5

ba

Fig. 1 Convergence curves and their respective bounds for (a) a D 0:7, b D 0:3 and (b) a D 0:9,
b D 0:1. The solid curves (with markers) denote the L1 error after k iterations for the final time
T indicated, and dotted lines of the same color show the superlinear bound (5) for the same T . The
linear bound (4) is shown as a solid black line (no markers)

superlinearly. Thus, one should divide up the problem into several small time
windows before using NNWR.

Convergence estimates for more general decompositions can also be obtained.
For the 1D heat equation with N subdomains, we have

max
1	i	N ke

k
i kL1.0;T / �

	

p
6

1 � e�.2kC1/=
�2k

e�k2= max
1	i	N ke

0
i kL1.0;T /; (9)

where eki is the error along the i th interface at iteration k and  D T=h2, with h
being the smallest subdomain size. The estimate (9) is also valid for the 2D heat
equation on a rectangular domain decomposed into N strips. For the proofs of
these and other results, see [11]. Note that as N increases, the subdomain size h
necessarily decreases, and the bound (9) shows that the error can increase before
superlinear convergence kicks in, just like in the asymmetric case above. To remedy
this, we recommend using a coarse grid correction, which is the subject of a future
paper.

References

1. Bennequin, D., Gander, M., Halpern, L.: A homographic best approximation problem with
application to optimized Schwarz waveform relaxation. Math. Comput. 78(265), 185–223
(2009)

2. Bourgat, J.F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational formulation and algorithm
for trace operator in domain decomposition calculations. In: Second International Symposium
on Domain Decomposition Methods, pp. 3–16 (1989)

3. Churchill, R.V.: Operational Mathematics, 2nd edn. McGraw-Hill, New York (1958)



198 F. Kwok

4. De Roeck, Y.H., Le Tallec, P.: Analysis and test of a local domain decomposition precondi-
tioner. In: Fourth International Symposium on Domain Decomposition Methods for Partial
Differential Equations, pp. 112–128 (1991)

5. Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel
solution algorithm. Int. J. Numer. Methods Eng. 32, 1205–1227 (1991)

6. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–732 (2006)
7. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction

diffusion problems. SIAM J. Numer. Anal. 45, 666–697 (2007)
8. Gander, M.J., Stuart, A.: Space-time continuous analysis of waveform relaxation for the heat

equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998)
9. Gander, M.J., Halpern, L., Nataf, F.: Optimized Schwarz waveform relaxation for the one

dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003)
10. Gander, M.J., Halpern, L., Japhet, C., Martin, V.: Advection diffusion problems with pure

advection approximation in subregions. In: Domain Decomposition Methods in Science and
Engineering XVI. Lecture Notes in Computer Science and Engineering, vol. 55, pp. 239–246.
Springer, Berlin (2007)

11. Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet–Neumann and Neumann–Neumann wave-
form relaxation methods for parabolic problems. (submitted), arXiv:1311.2709

12. Giladi, E., Keller, H.B.: Space-time domain decomposition for parabolic problems. Numer.
Math. 93, 279–313 (2002)

13. Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for
time-domain analysis of large scale integrated circuits. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 1(3), 131–145 (1982)

14. Lions, P.L.: On the Schwarz alternating method. I. In: First International Symposium on
Domain Decomposition Methods for Partial Differential Equations (1989)

15. Martin, V.: An optimized Schwarz waveform relaxation method for the unsteady convection
diffusion equation in two dimensions. Appl. Numer. Math. 52(4), 401–428 (2005)

16. Miekkala, U., Nevanlinna, O.: Convergence of dynamic iteration methods for initial value
problems. SIAM J. Sci. Stat. Comput. 8, 459–482 (1987)

17. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, Berlin (1973)



GPU-Based Parallel Reservoir Simulators

Zhangxin Chen, Hui Liu, Song Yu, Ben Hsieh, and Lei Shao

1 Introduction

Nowadays reservoir simulators are indispensable tools to reservoir engineers. They
are widely used in the optimization and prediction of oil and gas production.
However, for large-scale reservoir simulation, computational time is usually too
long. A case with over one million grid blocks may run weeks or even months. High
performance processors and well-designed software are demanded. Though today’s
CPUs (Central Processing Unit) are much more powerful than before, performance
of single CPU tends to slow down due to material and energy consumption and heat
dissipation issues. Processor vendors have begun to move to multiple processing
units, which form two major directions: multi-core CPUs and many-core GPUs [11].

In reservoir simulation, numerical methods like the finite difference and finite
volume methods [7] are often used to discretize the mathematical models. Linear
and nonlinear systems arising from the discretized models by those methods are
sparse, which are usually time-consuming and difficult to solve. Krylov subspace
solvers [1, 18] are general methods to solve these linear systems, and for large-
scale reservoir simulation with over one million grid blocks, a reservoir simulator
may take 90 % or even more time on the solution of the linear systems. Fast and
accurate linear and nonlinear solvers are essential to reservoir simulators. Saad et
al. developed the GMRES solver for general unsymmetric linear systems [1, 18]
and Vinsome designed the ORTHOMIN solver, which was originally developed for
reservoir simulators [19]. PCG, BICGSTAB, algebraic multigrid and direct linear
solvers were also proposed. Commonly used preconditioners were also developed,
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such as Incomplete LU (ILU) factorization, domain decomposition, algebraic
multigrid, and multi-stage preconditioners [1,18]. GPUs (Graphics Processing Unit)
are usually used for display. Since each pixel can be processed simultaneously,
GPUs are designed in such a way that they can manipulate data in parallel. Their
float point performance and memory speed are very high [15, 16]. In general,
GPUs are ten times faster than general CPUs [15, 16], which makes them powerful
devices for parallel computing. Since GPUs are designed for graphics processing
and not for general tasks, their architectures are different from those of CPUs.
Hence new algorithms for GPUs should be developed to utilize GPUs’ performance.
NVIDIA developed a hybrid matrix format, the corresponding sparse matrix-vector
multiplication kernel and a GPU-based linear solver package CUSP [2–4]. Bell et
al. from NVIDIA also investigated fine-grained parallelism of AMG solvers using
a single GPU [5]. Saad et al. developed a sparse matrix-vector multiplication kernel
for JAD matrix format and the GMRES solver [11]. Chen et al. designed a new
matrix format, HEC, a new matrix-vector multiplication kernel, Krylov subspace
solvers, algebraic multigrid solvers and several preconditioners [12–14, 20]. Haase
et al. developed a parallel AMG solver for a GPU cluster [10]. In this paper, we
will introduce our work on developing a GPU-based parallel iterative linear solver
package and applying it to reservoir simulation.

The framework is as follows: in Sect. 2.1, GPU computing, our parallel linear
solvers and GPU-based reservoir simulators are introduced. In Sect. 3, numerical
experiments are presented.

2 Parallel Reservoir Simulator

In this section, we will propose GPU-based parallel linear solvers and precondition-
ers, and apply these solvers to reservoir simulation.

2.1 GPU Computing

The NVIDIA Fermi GPU, Tesla C2070, has 14 SMs (Streaming Multi-processors),
and each SM has 32 SPs (Streaming Processors). That’s 448 streaming processors
in total while a normal CPU has only 2, 4, 6 or 8 cores. The GPU architectures are
being developed rapidly. Each SM of the new Tesla Kepler GPUs has 192 SPs, much
more than Fermi GPUs. The Tesla Kepler K20X has 2,688 processors in total. At
this moment we are using Fermi GPUs. The NVIDIA Fermi GPU, Tesla C2070, has
a peak performance of 1030G FLOPS in single precision and a peak performance
of 515G FLOPS in double precision, which are around 10 times faster than that of
CPUs. The Tesla Kepler K20X GPU has a peak performance of 1310G FLOPS in
double precision and a peak performance of 3950G FLOPS in single precision [17].
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ELL CSR
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Aj Ax

Fig. 1 HEC matrix format

Each SM has its own L1 cache, shared memory and register. They share L2 cache,
constant memory, texture memory and global memory. The global memory stores
most of data, and is used to communicate with CPUs. The NVIDIA Tesla C2070
has 6 GB memory. Its memory speed is around 144 GB/s while the memory speed
of CPUs is around 15 GB/s. The GPU memory is also about 10 times faster than the
CPU memory. The Tesla Kepler K20X GPU has a memory speed of 250 GB/s [17].
NVIDIA provides CUDA Toolkit [15, 16] to help users develop high performance
programs.

2.2 Parallel Linear Solvers

GPUs have different architectures from general purpose CPUs. The NVIDIA GPUs
access global memory in a coalesced way, which means that if the memory access
is arranged well, threads in a grid block can fetch data in one or a few rounds. In
this case, the memory access speed is the highest and codes are efficient. GPUs
are emerging parallel devices. However, algorithms that work well on CPUs may
not work effectively on GPUs [12]. We develop a new matrix format and the
corresponding sparse matrix-vector multiplication kernel (SPMV) to accelerate
iterative linear solvers. The new matrix format, HEC (Hybrid of ELL and CSR
format), is shown in Fig. 1. A HEC matrix has two submatrices, ELL matrix and
CSR matrix. The ELL submatrix stores the regular part of a given matrix and the
CSR submatrix stores the irregular part of the given matrix. The ELL submatrix is
stored in column-major manner. The main advantage of HEC is that it is friendly to
ILU-related preconditioners. When we store a lower triangular matrix, it’s clear that
the last element in ELL or CSR part is a diagonal element and elements before the
diagonal one are easy to recognize. If we use HYB, which is efficient for SPMV,
the irregular part is stored in a COO matrix, we don’t know which element is the
diagonal one or elements before it. The second advantage is that SPMV algorithm
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Algorithm 1 Sparse Matrix-Vector Multiplication, y D Ax
for i = 1: n do

the i -th thread calculate the i -th row of ELL matrix; {ELL part, use one thread for each row}
end for

for i = 1: n do
the i -th thread calculate the i -th row of CSR matrix; {CSR part, use one thread for each row}

end for

Algorithm 2 BLAS 1 subroutine, y D ˛x C ˇy
for i = 1: n do
yŒi � D ˛xŒi �C ˇyŒi �; {Use one GPU kernel to deal with this loop}

end for

for HEC is simple and implementation is straightforward. The pseudo-codes for
SPMV operation is listed in Algorithm 1. Algorithm 1 is for calculating y D Ax.
Other related BLAS 2 operations are similar. We also develop BLAS 1 operations.
A typical operation y D ˛x C ˇy is shown in Algorithm 2.

We consider the following linear system:

Ax D b; (1)

whereA is a nonsingular n	nmatrix, b is the right-hand side and x is the solution to
be solved for. Krylov subspace solvers are general purpose methods for the solution
of linear systems. Based on BLAS 1 and BLAS 2 subroutines we have implemented
several Krylov subspace solvers and algebraic multigrid (AMG) solvers, including
GMRES, CG, BICGSTAB, ORTHOMIN, classical AMG and smoothed aggregation
AMG solvers.

In practice, an equivalent linear system of Eq. (1) is solved:

M�1Ax D M�1b; (2)

where M is a nonsingular n 	 n matrix, called a preconditioner or left-
preconditioner. When we choose a preconditioner M , a general principle is that
M is an good approximation of A and in this case, it means that the product of
M�1 and A approximates the unit matrix I well. The condition number of M�1A
is much smaller than that of A and the preconditioned linear system (2) is much
easier to solve compared to the original Eq. (1). Meanwhile, M should also be
easy to construct and be easy to solve. We have implemented ILU(k) [18], block
ILU(k) [18], ILUT(tol, p) [18], block ILUT(tol, p) [18], domain decomposition,
approximate inverse, polynomial and algebraic multigrid preconditioners. For many
preconditioners, an upper triangular linear system and a lower triangular linear
system are required to solve. GPU-based parallel triangular solvers are developed
to speed the solving of triangular linear systems. Details can be read in [13].
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2.3 Reservoir Simulator

The reservoir simulator generates a Jacobian matrix in each Newton iteration. As
mentioned above, the solution of linear systems in each Newton iteration may
dominate the whole simulation time. For a large-scale black oil simulator, the linear
solvers take over 90 % of the running time. It is necessary for us to apply high
performance linear solvers. We replace CPU-based linear solvers with GPU-based
parallel linear solvers. The linearized systems are transferred to GPUs, and then
GPUs solve the linear system using hundreds of microprocessors in parallel and
transfer the solution back to the simulator. By applying GPU-based linear solvers,
reservoir simulators run much faster and it is possible for personal computers to run
larger cases.

3 Numerical Experiments

Numerical experiments are performed on our workstation with Intel Xeon X5570
CPUs and NVIDIA Tesla C2050/C2070 GPUs. The operating system is CentOS
6.3 X86_64 with CUDA Toolkit 5.1 and GCC 4.4. All CPU codes are compiled
with -O3 option and in this paper only one CPU core is employed. The type of float
point number is double and blocks mean the number of sub-domains in this section.

Example 1. Several different SPMV algorithms [2, 4] are compared using matrices
from the University of Florida sparse matrix collection [9]. Performance data [14]
is collected in Table 1 and numbers in the table mean speedup of GPU-based
algorithms.

In Table 1, the first column stands for matrix and others mean speedup using
different SPMV algorithms. We can see that algorithms using HYB and HEC matrix
formats are always efficient and the performance of our HEC matrix format is better
than that of HYB.

Example 2. The matrix used here is from SPE10 [7, 8]. The SPE10 problem is a
standard benchmark for the black oil simulator. The problem is highly heterogenous
and it is designed to solve hard. The grid size for SPE10 is 60 	 220 	 85. The
number of unknowns is 2,188,851 and the number of non-zeros is 29,915,573.
The linear solver employed is GMRES(20), and block ILU(k), block ILUT(tol, p)
and domain decomposition preconditioners are applied as preconditioners. Here
RAS (Restricted Additive Schwarz) a domain decomposition method developed by
Cai[6]. Performance data is collected in Table 2. For this example, loading time is
always less than 1 s.

In Table 2, the first column stands for preconditioners. The second column stands
for parameters used for each preconditioner and they are the number of sub-domains
and overlap respectively. The others are for setup time, running time and speedup,
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Table 1 Example 1:
performance of SPMV

Matrix CSR ELL HYB HEC
msc23052 0.71 1.55 2.29 2.50
cfd2 1.41 8.06 6.86 11.61
ESOC 1.06 11.56 11.56 11.61
cage13 1.25 7.56 9.42 11.04
af_shell8 1.17 8.66 9.63 11.12
parabolic_fem 4.36 9.97 7.56 10.00
Emilia_923 0.97 6.64 8.36 8.65
atmosmodd 2.94 14.54 14.50 14.57
Serena 0.98 1.79 7.26 7.29
SPE10 1.13 1.24 11.15 10.27

Table 2 Example 2: performance of SPE10

Preconditioner Parameters Setup (s) CPU (s) GPU (s) Speedup
BILU(0) (1, 0) 4.23 76.65 12.42 6.16
BILU(0) (16, 0) 2.04 92.80 12.78 7.25
BILU(0) (128, 0) 1.76 86.22 12.05 7.14
BILU(0) (512, 0) 1.63 92.82 12.87 7.20
BILUT (1, 0) 4.76 23.50 9.03 2.60
BILUT (16, 0) 2.49 32.00 7.17 4.46
BILUT (128, 0) 1.94 42.51 7.82 5.42
BILUT (512, 0) 1.81 47.44 8.80 5.37
RAS (256, 1) 9.28 106.61 14.36 7.41
RAS (1,024, 1) 11.91 110.36 16.36 6.73
RAS (256, 2) 10.99 107.89 17.28 6.23
RAS (1,024, 2) 15.28 138.60 20.93 6.61

respectively. From the table, we can speed ILU(0) 6.2 times faster. The speedup can
be higher if we increase the number of blocks. The average speedup of BILU(0) is
about 7. In this example, BILUT is the most effective preconditioner. It always takes
the least running time. However, due to its irregular non-zero pattern, its speedup is
lower than that of the other two preconditioners. Since there is not enough memory
on GPU, the maximum number of blocks for RAS in this case is 1,024. The average
speedup of RAS is 6.5.

Example 3. The matrix used here is also from SPE10, which has the same size with
the one we use in Example 2. Its pressure part has a dimension of 1,094,421 and
has 7,478,141 non-zeros. Here we solve pressure matrix using algebraic multigrid
solver and the entire matrix is solved by GMRES (40) with CPR-AMG (Constrained
Pressure Residual) preconditioner [7]. To compare, the entire matrix is also solved
using GMRES(40) with ILU(0) preconditioner. Classical AMG solver is applied
here. The standard interpolator and damped Jacobi smoother are applied. V-cycle
is used for solving phase and the coarsest level is solved using GMRES. The AMG
solver has eight levels. The termination criterium is 1e-6. Performance data is shown
in Table 3.
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Table 3 Example 3: performance of AMG

Solver Preconditioner Setup (s) CPU (s) GPU (s) Speedup Residual Iterations
AMG 3.96 6.86 1.04 6.49 4.88e�7 11
GMRES(40) CPR-AMG 8.43 185.42 27.51 6.74 3.91e�7 9
GMRES(40) ILU(0) 4.3 1,037.26 195.96 5.29 9.42e�4 100

Table 4 Example 4: performance of black oil simulator

Preconditioner Blocks CPU (s) GPU (s) Speedup
BILU(0) 1 49,610.28 7,721.09 6.43
BILU(0) 4 53,350.63 8,524.31 6.26
BILU(0) 8 54,286.07 8,720.25 6.23
BILUT 1 19,533.45 9,008.22 2.17
BILUT 4 23,187.85 8,670.53 2.67
BILUT 8 21,718.45 7,908.42 2.75

The speedup of AMG is 6.49 when solving pressure matrix. When CPR-AMG
is used as a preconditioner, the GMRES(40) converges quickly. CPR-AMG is much
more efficient than ILU(0). And a speedup of 6.74 is obtained. From Table 3, we
can also see that the setup phase takes too much time, which should be optimized in
future.

Example 4. This example is to test the speedup of our GPU solver in the whole
black oil simulator. The case is SPE10 simulation in 100 days. The grid size for
SPE10 is 60 	 220 	 85. The solver is GMRES(20). Performance data is shown in
Table 4.

As shown in Table 4, the block ILU(0) preconditioner achieves a speedup of 6.2
while the speedup of block ILUT is much lower. The reason is that the non-zero
pattern of ILUT is irregular and the ILU factorization takes too much time.

4 Conclusion

We have developed a GPU-based parallel linear solver package. When solving
matrices from reservoir simulation, the parallel solvers are much more efficient than
CPU-based linear solvers. However, efforts should be made to improve the setup
phase of domain decomposition, the factorization of ILUT and parallelism of block
ILUT preconditioner.
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Optimized Schwarz Methods with Overlap
for the Helmholtz Equation

Martin J. Gander and Hui Zhang

1 Introduction

For the Helmholtz equation, simple absorbing conditions of the form @n � i! were
proposed as transmission condition (TC) in Schwarz methods first without overlap
in [4], and later also with overlap, see [3,12]. More advanced TCs can also be used,
see e.g. [2, 11, 14]. Furthermore, parameters can be introduced into TCs and then
optimized for rapid convergence, which led to the so called optimized Schwarz
methods, see e.g. [6, 13] for elliptic equations. Without overlap, the parameters
involved in some zero- and second-order TCs for the Helmholtz equation have been
optimized in [9, 10]. With overlap, preliminary numerical studies of the parameters
have been presented in [5, 7]. In this paper, we present the asymptotic solutions of
the corresponding optimization problems with small overlap. We also compare the
optimized parameters with other choices based on convergence factors and actual
iteration numbers. We finally test for the first time Taylor second-order absorbing
conditions for domain decomposition with overlap in the Helmholtz case.

2 Schwarz Methods with Overlap

As a model problem, we consider the Helmholtz equation in free space,

.!2 C�/u D f .x; y/; .x; y/ 2 R 	 Rd�1;
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equipped with the Sommerfeld radiation condition

lim
r!1 r

d�1
2 .
@u

@r
� i!/ D 0; r D

v

u

u

tx2 C
d�1
X

jD1
y2j :

We decompose the domain into two overlapping subdomains˝1 D .�1; L/	Rd�1
and˝2 D .0;1/	 Rd�1 with the overlap size L > 0. The Schwarz iteration reads

!2unC11 C�unC11 D f .x; y/; .x; y/ 2 ˝1;

.@x CS1/.u
nC1
1 /.L; y/ D .@x CS1/.un2/.L; y/; y 2 Rd�1;

and

!2unC12 C�unC12 D f .x; y/; .x; y/ 2 ˝2;

.�@x CS2/.u
nC1
2 /.0; y/ D .�@x CS2/.un1/.0; y/; y 2 Rd�1;

where Sj , j D 1; 2 are two linear operators in some trace spaces along fLg	Rd�1
and f0g 	Rd�1, respectively. For the analysis it suffices to consider by linearity the
case f .x; y/ D 0 and to analyze convergence to the zero solution. We take a Fourier
transform in the y direction to obtain

.!2 � jkj2/OunC11 C @2xx OunC11 D 0; x 2 .�1; L/;
.@x C s1/.OunC11 /.L; k/ D .@x C s1/.Oun2/.L; k/;

and

.!2 � jkj2/OunC12 C @2xx OunC12 D 0; x 2 .0;1/;
.�@x C s2/.OunC12 /.0; k/ D .�@x C s2/.Oun1/.0; k/;

where k is the Fourier variable of y and sj denotes the symbol of Sj . Since the
Sommerfeld radiation condition excludes growing solutions as well as incoming
modes at infinity we obtain the solutions

OunC11 .x; k/ D OunC11 .L; k/e�.k/.x�L/;
OunC12 .x; k/ D OunC12 .0; k/e��.k/x;

where �.k/ denotes the root of the characteristic equation �2 C .!2 � jkj2/ D 0

with positive real part or negative imaginary part,

�.k/ WD
(

pjkj2 � !2 for jkj > !,
�ip!2 � jkj2 for jkj < !.

(1)
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Substitution of the solutions into the transmission conditions yields

OunC11 .L; k/ D s1.k/��.k/
s1.k/C�.k/e

��.k/L Oun2.0; k/;
OunC12 .0; k/ D s2.k/��.k/

s2.k/C�.k/e
��.k/L Oun1.L; k/:

By recursion we have OunC11 .L; k/ D �.k/Oun�11 .L; k/ and OunC12 .0; k/ D
�.k/Oun�12 .0; k/, where the convergence factor � for a double iteration is defined by

�.k/ D s1.k/� �.k/
s1.k/C �.k/ �

s2.k/ � �.k/
s2.k/C �.k/e

�2�.k/L: (2)

Setting the two complex parameters s1 D p1 � iq1 and s2 D p2 � iq2, with
pj ; qj 2 R, and inserting s1, s2 and (1) into the convergence factor (2), we find
after simplifying

j�.p1; q1; p2; q2; k/j2D

8

ˆ

<

ˆ

:

p21C.q1�
p
!2�jkj2/2

p21C.q1C
p
!2�jkj2/2

p22C.q2�
p
!2�jkj2/2

p22C.q2C
p
!2�jkj2/2 ; jkj2 < !2;

q21C.p1�
p
jkj2�!2/2

q21C.p1C
p
jkj2�!2/2

q22C.p2�
p
jkj2�!2/2

q22C.p2C
p
jkj2�!2/2 e

�4�.k/L; jkj2 > !2:
(3)

As long as jkj ¤ ! and pj ; qj > 0, we have j�j < 1.

Remark 1. It was shown in [6] that the two-sided operators Sj D sj 2 C can be
transformed into the second-order operators

QS1 D QS2 D r1 � r2 r2y; with r1 D �!
2 C s1s2
s1 C s2 ; r2 D 1

s1 C s2 ; (4)

and the associated convergence factor for a single iteration is then given by

Q�.k/ D s1.k/� �.k/
s1.k/C �.k/ �

s2.k/ � �.k/
s2.k/C �.k/e

��.k/L; (5)

which is just (2) with L replaced by L=2.

3 Optimized Transmission Conditions

For simplicity, we consider p1 D q1, p2 D q2: Our goal is to find good parameters
p1, p2 such that the modulus of the squared convergence factor (3) is as small
as possible over a range of frequencies jkj 2 Œkmin; k�� [ ŒkC; kmax�, where
k� < ! < kC. We require jkj to be away from ! because j�j D 1 when jkj D !,
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independently of what one chooses for the parameters pj and qj . Since in general
we do not know how the Fourier coefficients of the initial error are distributed over
the frequencies, we minimize j�j for the worst case, that is, we solve the min–max
problem

argmin.p1;p2/2P
�

max
jkj2Œkmin;k��[ŒkC;kmax�

j�.p1; p1; p2; p2; k/j2
�

; (6)

where P is a certain search domain of the parameters. For well-posedness of the
subdomain problems, we should choose P � Œ0;1/2: The best approximation
problem (6) is difficult to solve, and we only give asymptotic formulas for the
parameters such that the convergence factor is as small as possible in different
limiting processes in the mesh size h and the wave number !.

The proofs of the following theorems are beyond the scope of this short paper
and will appear in [8].

Theorem 1. Let L D CLh, kmax 2 ŒC=h;1�, CL;C; kmin; k�; kC and ! be
positive and independent of h, kmin < k� < !, kmax > kC > ! and P D
f.p1; p2/ j 0 � p1 � p2 <1g: Suppose h is small and jkj 2 Œkmin; k��[ŒkC; kmax�:

If we set

p1 D p�1 D C2=5
! .4L/�1=5=2C o.h�1=5/;

p2 D p�2 D C1=5
! .4L/�3=5 C o.h�3=5/; (7)

where C! D min
˚

!2 � k2�; k2C � !2
�

, then (3) is bounded by 1� 4 .4LpC!/1=5C
o.h1=5/. Moreover, any solution of (6) must satisfy (7).

Theorem 2. Let L D CLh, h D Ch=!� , � � 1, kmax 2 ŒC=h;1�, ı! D minf! �
k�; kC�!g with CL;Ch; C; k� and kC positive constants independent of !, kmin <

k� < !, kmax > kC > ! and P D f.p1; p2/ j 0 � p1 � p2 < 1g: Suppose ! is
large and jkj 2 Œkmin; k�� [ ŒkC; kmax�. Then, for 1 � � < 9=8 any solution of (6)
satisfies

p�1 D ı3=8! .!=2/5=8 C o.!5=8/;
p�2 D .2ı!/1=8 !7=8 C o.!7=8/;

for which (3) is bounded by 1 � 4 � 21=8 ı1=8! !�1=8 C o.!�1=8/. For � > 9=8, any
solution of (6) satisfies

p�1 D .ı! !/2=5 L�1=5=2C o.!2=5C�=5/;
p�2 D .ı! !/1=5 L�3=5=2C o.!1=5C3�=5/;

and (3) is bounded by 1 � 4p2 .ChCL/1=5 ı1=10! !1=10��=5 C o.!1=10��=5/. Finally,
for � D 9=8, any solution of (6) satisfies
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p�1 D .ChCLı!/1=3 !5=8 C o.!5=8/;
p�2 D ChCL !7=8 C o.!7=8/;

and (3) is bounded by

(

1 � 16ChCL !�1=8 C o.!�1=8/; if 2�15=8ı1=8! � ChCL;
1 � 2p2 ı1=6! C

�1=3
h C

�1=3
L !�1=8 C o.!�1=8/; if 2�15=8ı1=8! � ChCL:

Remark 2. In the particular case � D 9=8; the constant in front of the leading term
of p�1 can be an arbitrary number in the interval Œ

p
2 ı!=.8 ChCL/; 32 C

3
hC

3
L� in

order to solve (6). But the choice in the above theorem is the best in the sense that it
simultaneously minimizes the maximum of the other local but not global maxima.

Remark 3. In practice, we use only the leading order terms of the optimized
parameters. But it is also possible to extract higher order terms.

Figure 1 shows the convergence factors of different Schwarz methods, obtained
for the model problem in R2, with ! D 20� and h D 1=100. The maximum
of the convergence factors for double iterations over the chosen interval k 2
Œ�; ! � �� [ Œ! C �; �=h� are 1:0, for the classical Schwarz method and Després’
method without overlap [4], 0:4376 for Després’ method with overlap [3,12], 0:1548
for the optimized Schwarz methods without overlap [10], and 0:0764 for the same
method with overlap. The overlap size we chose is 2h, and we used the second-order
formulation (4), (5) for the optimized methods.
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Table 1 Iteration numbers for the open cavity problem on the left and for the free space problem
on the right, top half for ! D 9:5� , and below for ! D 10�

1=h Stationary GMRES Stationary GMRES
TO0 TO2 OO2 Cl. TO0 TO2 OO2 TO0 TO2 OO2 Cl. TO0 TO2 OO2

50 34 35 14 25 16 15 12 23 24 17 25 17 15 13
100 74 84 17 30 22 22 13 33 41 21 28 21 21 14
200 166 172 20 38 27 32 14 51 73 22 33 27 30 15
400 343 345 20 49 33 41 14 85 135 23 42 33 40 15
800 662 717 21 67 40 50 16 144 249 24 58 42 49 16

50 67 70 19 26 15 14 14 22 23 17 26 16 15 13
100 227 222 31 30 21 22 15 32 40 20 27 21 21 14
200 469 371 44 38 28 32 15 50 71 22 33 27 30 15
400 681 455 51 51 34 42 15 83 130 22 43 34 40 15
800 864 504 55 68 41 52 17 136 241 23 55 42 49 15

4 Numerical Experiments

We used the ORAS formulation described in [13] for our implementation. As an
alternative, one could also use a substructured formulation, see e.g. [7]. We imple-
mented the second-order transmission conditions as indicated in Remark 1. We
always solve the homogeneous equation with the zero solution and use a random
initial guess to stimulate all frequencies. We use the domain decomposition ˝1 D
.0; 1

2
C h/ 	 .0; 1/, ˝2 D . 1

2
� h; 1/ 	 .0; 1/, and iterate until the relative

residual is less than 10�8. We compare the overlapping Schwarz methods with
optimized second-order transmission condition denoted by OO2 to those with the
classical Dirichlet condition denoted by Cl, simple absorbing conditions of the form
@n � i! (i.e. Després’ method with overlap, c.f. [3,12]) denoted by TO0, because it
corresponds to a Taylor expansion of zero order of the symbol of the DtN operator,
and the second-order low frequency absorbing condition, which is denoted by TO2.
Since the Schwarz methods can be used as a stationary iterative solver, or as a
preconditioner for GMRES, both cases are tested, except for the classical Schwarz
stationary iteration, which can not converge.

We consider the open cavity problem with homogeneous Dirichlet boundary
conditions on the top and the bottom of the unit square and the TO2 second-
order absorbing conditions [1] on the left and the right sides, and also the free
space problem truncated to the unit square with the TO2 second-order absorbing
conditions at the boundary.

First, we fix ! D 9:5� (or ! D 10�) which are away from (or on) the sine
frequencies at the continuous level in the y-direction. The corresponding iteration
numbers are listed in Table 1. We can see that the minimum distance from ! to
the frequencies at the discrete level in the y-direction plays an important role in all
the stationary iterations while in the GMRES iterations this effect is only moderate.
Figure 2 shows the asymptotic behavior of the different Schwarz methods as h! 0,
for the open cavity problem, and confirms our Fourier analysis results in Theorem 1.
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Fig. 2 Asymptotic behavior of the Schwarz methods for the open cavity, ! D 9:5�

Table 2 Iteration numbers for the open cavity problem on the left and for the free space problem
on the right, top half for h! D �=5, and below for h!3=2 
 3:52

1=h Stationary GMRES Stationary GMRES
TO0 TO2 OO2 Cl. TO0 TO2 OO2 TO0 TO2 OO2 Cl. TO0 TO2 OO2

100 86 67 35 38 20 19 16 27 27 18 35 20 18 15
200 – 110 – 48 25 22 19 33 30 19 43 25 21 16
400 280 150 72 69 38 32 20 43 37 19 53 28 25 17
800 178 139 44 76 42 35 25 56 45 19 65 32 30 17

100 80 87 15 34 22 20 14 29 31 19 30 21 18 14
200 – 2948 – 43 27 27 19 42 39 19 34 27 24 15
400 266 279 26 49 33 32 18 56 50 20 41 35 30 16
800 208 218 21 70 46 41 18 78 65 20 47 43 37 16

Now we fix h! or h!3=2 constant to see how the Schwarz methods behave for
higher and higher wave numbers, which corresponds to Theorem 2. The iteration
numbers are listed in Table 2. We see that the optimized method still converges faster
than the others when used as a preconditioner for GMRES, while the stationary
iterations are again greatly affected by the discrete frequencies close to the wave
number. The bars in the tables represent divergence.

Next, we test the various Schwarz methods for an increasing number of
subdomains. Since in most cases the stationary iterations diverge, we only show
the GMRES iteration numbers in Table 3, where we use a bar to represent iteration
numbers larger than 3000. We can see, neglecting the numbers in the parentheses
for the moment, that all the methods deteriorate rapidly and the overlapping TO2
method outperforms the others eventually. Clearly the optimization of the two
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Table 3 Iteration numbers of GMRES, h D 1=256, ! D 51:2� , overlap 2h

Sub. Open cavity Free space
Cl. TO0 TO2 OO2 Cl. TO0 TO2 OO2

2� 1 52 28 24 18 48 25 23 16
4� 1 396 68 46 68 (45 40) 163 29 24 45 (30 22)
8� 1 – 160 102 162 (91 88) – 44 33 108 (50 36)
16� 1 – 682 221 492 (183 188) – 88 65 258 (82 67)

2� 2 118 66 63 61 49 27 25 20
4� 4 2192 184 172 183 (177 166) 372 38 33 49 (42 35)
8� 8 – 789 618 734 (638 601) – 69 65 104 (82 70)

16� 16 – 2047 1473 2268 (1859 1514) – 123 127 184 (168 136)

subdomain convergence factor does not predict well the optimal choice in the case
of many subdomains for the Helmholtz equation.

To partially improve the OO2 method, we introduce now two heuristics. First,
we take ı! D N�=2 instead of ı! D � in the former experiments, where N
denotes the number of subdomains in the x-direction. Second, since the real parts of
the parameters slow down the convergence for propagating modes, which becomes
worse when the number of subdomains increases, we use sj D .2=N � i/ pj
(j D 1; 2) instead of sj D .1� i/ pj . The new results are shown in the parentheses
of Table 3, where the first numbers are obtained by using the two heuristics and the
second numbers are from numerically optimized parameters based on a new many-
subdomain Fourier analysis. But still, the low frequency Taylor conditions perform
best in these experiments. Our on-going work is to take a closer look at the multi-
domain case and to seek better choices of parameters if it is possible.
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China (2010DFA14700).

References

1. Bamberger, A., Joly, P., Roberts, J.E.: Second-order absorbing boundary conditions for the
wave equation: a solution for the corner problem. SIAM J. Numer. Anal. 27, 323–352 (1990)

2. Boubendir, Y., Antoine, X., Geuzaine, C.: A quasi-optimal non-overlapping domain decompo-
sition algorithm for the Helmholtz equation. J. Comput. Phys. 231, 262–280 (2012)

3. Cai, X.C., Casarin, M.A., Elliott Jr., F.W., Widlund, O.B.: Overlapping Schwarz algorithms
for solving Helmholtz’s equation. In: Mandel, J., Farhat, C., Cai, X.C. (eds.) Domain
Decomposition Methods 10, Boulder. Contemporary Mathematics, vol. 218, pp. 437–445.
AMS, Providence (1998)

4. Després, B.: Domain decomposition method and the Helmholtz problem. In: Cohen, G.C.,
Halpern, L., Joly, P. (eds.) Mathematical and Numerical Aspects of Wave Propagation
Phenomena, Strasbourg, pp. 44–52. SIAM, Philadelphia (1991)

5. Gander, M.J.: Optimized Schwarz methods for Helmholtz problems. In: Debit, N., Garbey,
M., Hoppe, R.H.W., et al. (eds.) Domain Decomposition Methods in Science and Engineering.



Optimized Schwarz Methods with Overlap for the Helmholtz Equation 215

13th International Conference on Domain Decomposition Methods, Barcelona, pp. 247–254.
CIMNE, Barcelona (2002)

6. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)
7. Gander, M.J., Zhang, H.: Domain decomposition methods for the Helmholtz equation: a

numerical investigation. In: Bank, R., Holst, M., Xu, J. (eds.) Domain Decomposition Methods
in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, San
Diego, pp. 215–222. Springer, Berlin (2012)

8. Gander, M.J., Zhang, H.: Optimized Schwarz methods with overlap for the Helmholtz equation
(2014, in preparation)

9. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the
Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

10. Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided Robin
transmission conditions for the Helmholtz equation. Int. J. Numer. Math. Fluids 55, 163–175
(2007)

11. Ghanemi, S.: A domain decomposition method for Helmholtz scattering problems. In:
Bjorstad, P.E., Espedal, M.S., Keyes, D.E. (eds.) Proceedings of the 9th International Con-
ference on Domain Decomposition Methods, Ullensvang, pp. 105–112 (1998). ddm.org

12. Kimn, J.H., Sarkis, M.: Restricted overlapping balancing domain decomposition methods and
restricted coarse problems for the Helmholtz problem. Comput. Methods Appl. Mech. Eng.
196, 1507–1514 (2007)

13. St-Cyr, A., Gander, M.J., Thomas, S.J.: Optimized multiplicative, additive, and restricted
additive Schwarz preconditioning. SIAM J. Sci. Comput. 29, 2402–2425 (2007)

14. Stupfel, B.: Improved transmission conditions for a one-dimensional domain decomposition
method applied to the solution of the Helmholtz equation. J. Comput. Phys. 229, 851–874
(2010)



DG Discretization of Optimized Schwarz
Methods for Maxwell’s Equations

Mohamed El Bouajaji, Victorita Dolean, Martin J. Gander, Stéphane Lanteri,
and Ronan Perrussel

1 Introduction

In the last decades, Discontinuous Galerkin (DG) methods have seen rapid growth
and are widely used in various application domains (see [13] for an historical
introduction). This is due to their main advantage of combining the best of finite
element and finite volume methods. For the time-harmonic Maxwell equations,
once the problem is discretized with a DG method, finding robust solvers is a
difficult task since one has to deal with indefinite problems. From the pioneering
work of Després [5] where the first provably convergent domain decomposition
(DD) algorithm for the Helmholtz equation was proposed and then extended to
Maxwell’s equations in [6], other studies followed. Preliminary attempts to obtain
better algorithms for this kind of equations were given in [3, 4, 12], where the
first ideas of optimized Schwarz methods can be found. Then, the advantage of
the optimization process was used for the second order Maxwell system in [1].
Later on, an entire hierarchy of optimized transmission conditions for the first
order Maxwell’s equations was proposed in [9, 11] . For the second order or curl-
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curl Maxwell’s equations second order optimized transmission conditions can be
found in [14–17]. We study here optimized Schwarz DD methods for the time-
harmonic Maxwell equations discretized by a DG method. Due to the particularity
of the latter, DG discretization applied to more sophisticated Schwarz methods
is not straightforward. In this work we show a strategy of discretization and
prove the equivalence between multi-domain and single-domain solutions. The
proposed discrete framework is then illustrated by some numerical results in the
two-dimensional case.

We consider time-harmonic Maxwell’s equations in a homogeneous medium
written as a first order system (see [8] for more details)

G0WCGx@xWCGy@yWCGz@zW D 0; (1)

where

W D
�

E
H

�

; G0 D
�

.� C i!/I3�3 03�3
03�3 i!I3�3

�

with E, H the complex-valued electric and magnetic fields, ! the angular frequency
of the time-harmonic wave, � the electric conductivity. For a general vector n D
�

nx ny nz

�

, we also define the matrices

Gn D
�

03�3 Nn

NT
n 03�3

�

and Nn D
0

@

0 nz �ny
�nz 0 nx
ny �nx 0

1

A :

Then, for l 2 fx; y; zg, we have that Nl D Nel and Gl D Gel , where el ; l D 1; 2; 3
are the canonical basis vectors. Our goal is to solve the boundary-value problem

G0WCGx@xWCGy@yWCGz@zW D 0 in ˝;
.M�m �Gn/W D 0 on �m and .M�a �Gn/.W�Winc/ D 0 on �a;

(2)

where Winc is a given incident field, whileM�m andM�a are trace operators defined
on the metallic and absorbing boundaries �m and �a (see [8] for more details)

M�m D
�

03�3 Nn

�NT
n 03�3

�

and M�a D jGnj D
�

NnN
T
n 03�3

03�3 N T
n Nn

�

:

The matrices GCn and G�n are the positive and negative parts of Gn based on its
diagonalization and we have that jGnj D GCn �G�n .
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2 Continuous Classical and Optimized Schwarz Algorithms

We now decompose the domain ˝ into two non-overlapping subdomains ˝1 and
˝2, and denote by ˙ the interface between ˝1 and ˝2, by Wj the restriction of
W to ˝j and by n the unit outward normal vector to ˙ directed from ˝1 to ˝2.
Schwarz algorithms consist in computing iteratively WnC1

j from Wn
j , for j D 1; 2

G0WnC1
1 CGx@xWnC1

1 CGy@yWnC1
1 CGz@zWnC1

1 D 0; in ˝1;

.G�n C S1GCn /WnC1
1 D .G�n C S1GCn /Wn

2; on ˙;

G0WnC1
2 CGx@xWnC1

2 CGy@yWnC1
2 CGz@zWnC1

2 D 0; in ˝2;

.GCn C S2G�n /WnC1
2 D .GCn C S2G�n /Wn

1; on ˙;
(3)

where S1 and S2 are differential operators. When S1 D S2 D 06�6, the interface
conditions become the positive and negative flux operators GCn and G�n , and the
classical Schwarz algorithm is obtained. ApplyingGCn (respectivelyG�n ) to a vector
W means to select the characteristic variables associated to out-going (respectively
in-coming) waves, which is very natural considering the hyperbolic nature of the
problem, see [9, Sect. 3.1]. We note that

G�n D
��NnN

T
n Nn

NT
n �NT

n Nn

�

D
�

I3�3
�NT

n

�

��NnN
T
n Nn

�

;

GCn D
�

NnN
T
n Nn

NT
n NT

n Nn

�

D
�

I3�3
N T

n

�

�

NnN
T
n Nn

�

:

(4)

Thus the classical transmission conditions are equivalent to impedance conditions,

G�n WnC1
1 D G�n Wn

2 , Bn.EnC11 ;HnC1
1 / DBn.En2;H

n
2/;

GCn WnC1
2 D GCn Wn

1 , B�n.EnC12 ;HnC1
2 / DB�n.En1;H

n
1/:

(5)

with Bn.E;H/ D NT
n E�NT

n NnH. For˝2 we have used the fact thatGCn D �G��n.
The classical Schwarz algorithm is adopted in [8] together with low order DG
methods in the 3D case. Along the lines of (5), we have the equivalences

.G�n C S1GCn /WnC1
1 D .G�n C S1GCn /Wn

2

, .Bn C QS1B�n/.EnC11 ;HnC1
1 / D .Bn C QS1B�n/.En2;H

n
2/;

.GCn C S2G�n /WnC1
2 D .GCn C S2G�n /Wn

1

, .B�n C QS2Bn/.EnC12 ;HnC1
2 / D .B�n C QS2Bn/.En1;H

n
1/;

(6)

where QS1 and QS2 denote differential operators which are approximations of the
transparent operators. From these transparent operators we can obtain a hierarchy
of optimized algorithms with appropriate choices for QS1 and QS2 [11]. The operators
S1 and S2 are eventually defined to guarantee the equivalences in (6).
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Table 1 Five different choices for the symbols of the operators in the transmission
conditions (6) leading to five different optimized Schwarz algorithms

Algorithm 1 2 3 4 5

F . QSj / 0 � s�i!
sCi!

� k2Ci!�
k2�2!2Ci!�C2i!s

� sj�i!

sjCi!
� k2Ci!�
k2�2!2Ci!�C2i!sj

If we consider the TM formulation of Maxwell’s equations, that is with E D
. 0 0 Ez /

T and H D .Hx Hy 0 /
T , then W D .Ez Hx Hy /

T , Nn D . ny �nx /T ,
and

G0 D
�

� C i! 01�2
02�1 i!I2�2

�

; Gx D
�

0 Nex

N T
ex 0

�

and Gy D
 

0 Ney

N T
ey 0

!

:

We give in Table 1 the symbols F . QSj / of QSj in the 2d case for conductive media for
five different Schwarz algorithms, where the parameters s D p.1C i/, s1 D p1.1C
i/ and s2 D p2.1C i/ are solutions of some min-max problems, as explained in [11,
Sect. 5, Table 5.1]. Note that the Fourier symbols of the operators in Algorithms 1,
2 and 4 are constants, therefore they have the same expression as in the physical
space. In this case (6) can be written in the 2d situation considered here as

EnC1
1 �NnHnC1

1 C QS1.EnC1
1 CNnHnC1

1 / D En
2 �NnHn

2 C QS1.En
2 CNnHn

2/;

EnC1
2 CNnHnC1

2 C QS2.EnC1
2 �NnHnC1

2 / D En
1 CNnHn

1 C QS2.En
1 �NnHn

1/:
(7)

This is not the case for Algorithms 3 and 5 which involved second order transmis-
sion conditions. Here, the QSj are operators whose Fourier symbols have the form

F . QSj / D qj .k/

rj .k/
with qj .k/ D �.k2Ci!�/ and rj .k/ D k2�2!2Ci!�C2i!sj :

where the Fourier variable k corresponds to a transform with respect to the
tangential direction  along the interface, assuming a two-subdomain decomposition
with a straight interface. In that case, F�1.qj / and F�1.rj / are partial differential
operators in the  variable,

F�1.qj / D @ � i!�; F�1.rj / D �@ � 2!2 C i!� C 2i!sj ; sj 2 C;

and (7) can be re-written as

F�1
�

r1.E
nC1
1 �NnHnC1

1 /
� C F�1

�

q1.E
nC1
1 CNnHnC1

1 /
�

D F�1
�

r1.E
n
2 �NnHn

2/
�CF�1

�

q1.E
n
2CNnHn

2/
�

;

F�1
�

r2.E
nC1
2 CNnHnC1

2 /
� C F�1

�

q2.E
nC1
2 �NnHnC1

2 /
�

D F�1
�

r2.E
n
1 CNnHn

1/
�CF�1

�

q2.E
n
1�NnHn

1/
�

:
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3 Discontinuous Galerkin Approximation

Let Th be a discretization of ˝ and � 0, � m and � a be the sets of purely internal,
metallic and absorbing faces of Th. We denote by K an element of Th and by
F D K \ QK the face shared by two neighboring elements K and QK. On this face
F , we define the average by fWg D 1

2
.WK CW QK/ and the tangential trace jump

by ŒŒW�� D GnKWKCGn QKW QK . For two vector functions U and V in .L2.D//6, we

denote .U;V/D D
R

D
U � V dx, if D is a domain of R3 and hU;ViF D

R

F
U � V ds

if F is a face of R2. For sake of simplicity, we will skip some subscripts, that is
.�; �/ D .�; �/Th D

P

K2Th.�; �/K . On the boundaries we define

MF;K D
8

<

:

�

�FNnKN
T
nK NnK

�NT
nK 03�3

�

with �F ¤ 0; if F belongs to � m,

jGnK j if F belongs to � a.

Using these notations, the weak formulation of the problem is

.G0W;V/ C
0

@

X

l2fx;y;zg
Gl@lW;V

1

A �
X

F2� 0
hŒŒW��; fVgiF C

X

F2� 0

�

1

2
ŒŒW��; fVg

�

F

C
X

F2� m[� a

�

1

2
.MF;K �GnK /W;V

�

F

D
X

F2� a

�

1

2
.MF;K �GnK /Winc;V

�

F

:

Note that we have implicitly adopted an upwind scheme for the calculation of the
boundary integral over an internal face F 2 � 0. An alternative choice is that of
a centered scheme. Both of these options are discussed and compared in [7]. Let
Pp.D/ denote the space of polynomial functions of degree at most p on a domain
D. For any elementK 2 Th, let Dp.K/ � .Pp.K//6. The vectors W and V will be
taken in the space Dp

h D
˚

V 2 .L2.˝//6 j VjK 2 Dp.K/; 8K 2 Th

�

.
For the discretization of optimized transmission conditions, let �˙ be the set of

faces on ˙ , � j
0 be the set of interior faces of ˝j and � j

b be the set of faces of ˝j

lying on @˝ . Then the weak form in the two-subdomain case can be written as

L .W1;V1/C
X

� 10

˘ C
X

� 1b

˘ C
X

F2�˙

�

1

2
.jGnK j �GnK / .W1 �W2/;V1

�

F

D 0;

L .W2;V2/C
X

� 20

˘ C
X

� 2b

˘ C
X

F2�˙

�

1

2

�jGn QK j �Gn QK
�

.W2 �W1/;V2

�

F

D 0;

(8)

where L .Wj ;Vj / �
�

G0Wj ;Vj

� C �

P

l Gl@lWj ;Vj

�

and, for simplicity, we
have replaced some terms on the faces that are not important for the presentation by
a ˘. For any face F D K\ QK on˙ , if n denotes the normal on˙ directed from˝1

towards ˝2, and K and QK are elements of ˝1 and ˝2, we have nK D n D �n QK .
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In order to simplify the notation, we make use of G�n D 1
2
.Gn � jGnj/ and GCn D

1
2
.GnCjGnj/. Then, starting from initial guesses W0

1 and W0
2, the classical Schwarz

algorithm computes the iterates WnC1
j from Wn

j by solving on ˝1 and ˝2 the
subproblems

L .WnC1
1 ;V1/C

X

� 10

˘ C
X

� 1b

˘ �
X

F2�˙

˝

G�n .W
nC1
1 �Wn

2/;V1

˛

F
D 0;

L .WnC1
2 ;V2/C

X

� 20

˘ C
X

� 2b

˘ C
X

F2�˙

˝

GCn .WnC1
2 �Wn

1/;V2

˛

F
D 0: (9)

In order to introduce optimized transmission conditions (3) into the DG discretiza-
tion, we first want to show explicitly what transmission conditions the classical
relaxation in (9) corresponds to. To do so, the subdomain problems solved in (9)
are not allowed to depend on variables of the other subdomain anymore, since the
coupling will be performed with the transmission conditions, and we thus need to
introduce additional unknowns, namely WnC1

2;˝1
on ˝1 and WnC1

1;˝2
on ˝2, in order to

write the classical Schwarz iteration with local variables only, i.e.

L .WnC1
1 ;V1/C

X

� 10

˘ C
X

� 1b

˘ �
X

F2�˙

˝

G�n .W
nC1
1 �WnC1

2;˝1
/;V1

˛

F
D 0;

L .WnC1
2 ;V2/C

X

� 20

˘ C
X

� 2b

˘ C
X

F2�˙

˝

GCn .WnC1
2 �WnC1

1;˝2
/;V2

˛

F
D 0: (10)

Comparing with the classical Schwarz algorithm (9), we see that in order to obtain
the same algorithm, the transmission conditions for (10) need to be chosen as
G�n WnC1

2;˝1
D G�n Wn

2 and GCn WnC1
1;˝2
D GCn Wn

1 , which implies that at the limit, when
the algorithm converges, we must verify the coupling conditions

G�n W2;˝1 D G�n W2; GCn W1;˝2 D GCn W1; (11)

where we dropped the iteration index to denote the limit quantities. The Schwarz
algorithm (10) can however also be used with optimized transmission conditions (3),
which have to be the DG discretization of the strong relations

G�n WnC1
2;˝1
C S1GCn WnC1

1 D G�n Wn
2 C S1GCn Wn

1;˝2
;

GCn WnC1
1;˝2
C S2G�n WnC1

2 D GCn Wn
1 C S2G�n Wn

2;˝1
:

(12)

Then, we want to show the equivalence between (11) and the DG discretization
we adopt for the transmission conditions (12) at convergence in a 2d case. First,
from (4) note that relation (11) is equivalent to

NnN
T
n E2;˝1 �NnH2;˝1 D NnN

T
n E2 �NnH2;

NnN
T
n E1;˝2 CNnH1;˝2 D NnN

T
n E1 CNnH1:

(13)
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We translate these relations using auxiliary variables �2;˝1 WD E2;˝1 � NnH2;˝1 ,
�2 WD E2�NnH2,�1;˝2 WD E1;˝2CNnH1;˝2 and�1 WD E1CNnH1 belonging to
the trace space Mp

h D
˚

� 2 L2.˙/ j �jF 2 Pp.F /; 8F 2 ˙
�

. Then (13) becomes

�2;˝1 D �2 and �1;˝2 D �1: (14)

From (12) and (14), we have to find for optimized transmission conditions a suitable
DG discretization of the relations

�2;˝1 C QS1�1 D �2 C QS1�1;˝2 and �1;˝2 C QS2�2 D �1 C QS2�2;˝1 : (15)

We focus on the case of second order transmission conditions and (15) becomes

.�@2 C i!� � 2!2 C 2i!s1/.�2;˝1 ��2/C .�@2 C i!�/.�1;˝2 ��1/ D 0;

.�@2 C i!� � 2!2 C 2i!s2/.�1;˝2 ��1/C .�@2 C i!�/.�2;˝1 ��2/ D 0:
(16)

Let .�j /j be a basis of Mp

h . We define the discrete matricesM˙ andK˙ by

.M˙/i;j D
X

F2˙
h�i ; �j iF ;

.K˙/i;j D
X

F2˙
h@�i ; @�j iF C

X

n2˙0

˛nh
�1ŒŒŒŒ�i ����nŒŒŒŒ�j ����n

�
X

n2˙0

ff@�i ggn ŒŒŒŒ�j ����n � ŒŒŒŒ�i ����n
˚˚

@�j
��

n
;

where positiveness is guaranteed for sufficiently large ˛n, ˙0 denotes the set of
interior nodes of ˙ , ŒŒŒŒ�����n and ff�ggn denotes the jump and the average at a node
n between values of the neighboring segments. The matrix K˙ comes from the
discretization of �@2 using a symmetric interior penalty approach [2]. If we denote
by A˙ D .K˙ C i!�M˙/, the DG discretization of (16) we consider is

�

A˙ � 2.!2 � i!s1/M˙ A˙

A˙ A˙ � 2.!2 � i!s2/M˙

��

�2;˝1 ��2

�1;˝2 ��1

�

D 0: (17)

Theorem 1. If s1 and s2 are defined as given in [11, Sect. 5, Table 5.1] then
relations (14) and (17) are equivalent.

The proof is based on the invertibility of the matrix of (17) and can be found in [10].

4 Numerical Results

In order to illustrate numerically the proposed discrete versions of the optimized
Schwarz algorithms, we consider the propagation of a plane wave in a homogeneous
conductive medium with ˝ D Œ0; 1�2 and � D 0:5. We use DG with several
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Fig. 1 Wave propagation in a homogeneous medium. Iteration count vs. h

orders of polynomial interpolation, denoted by DG-Pk with k D 1; 2; 3; 4; and
impose on @˝ D �a an incident wave Winc D . ky

!
�kx
!
1 /T e�ik�x; and k D

. kx ky /
T D .!p1 � i �

!
0 /T . The domain˝ is decomposed into two subdomains

˝1 D Œ0; 0:5�	Œ0; 1� and˝2 D Œ0:5; 1�	Œ0; 1�. The aim is to retrieve numerically the
asymptotic behavior of the convergence factors of the optimized Schwarz methods.
It has been proved that these factors behave like 1�O.h˛i /, i D 2; 3; 4; 5. We show
here that numerically they behave like 1�O.hˇi /, i D 2; 3; 4; 5, with ˇi � ˛i . The
performance of these algorithms is summarized in Fig. 1.
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Simulations of Micro Channel Gas Flows
with Domain Decomposition Technique
for Kinetic and Fluid Dynamics Equations

Sudarshan Tiwari, Axel Klar, and Steffen Hardt

1 Introduction

In the last 20 years many research papers have been reported about the development
of domain decompositions for the kinetic and the fluid dynamic equations, see for
example [7, 8, 10–12, 14, 15, 17]. From large to small scale geometries one may
experience different degrees of rarefaction of a gas. The degrees of rarefaction of
a gas can be measured by the Knudsen number Kn D �=L, where � is the mean
free path and L is the characteristic length, for example the channel width. For
Kn < 0:001, the flow is in the continuum regime, the compressible Navier–Stokes
equations with no-slip boundary conditions are solved. For 0:001 < Kn < 0:1, the
flow is in the slip regime, where the Navier–Stokes equations with velocity-slip and
temperature jump conditions are solved [1]. For Kn > 0:1 a kinetic type approach,
based on the Boltzmann equation is required. We note that the kinetic approach is
valid in the whole range of rarefaction of a gas. At standard conditions the mean free
path of a gas in a micro- or nano channel is of the order L or larger, so the Knudsen
number is no longer small. Therefore, the fluid dynamic equations, the compressible
Euler or Navier–Stokes equations, cannot predict the flows correctly in a small scale
geometry [9].

In this paper we present stationary solutions of a Poiseuille flow in a micro
channel. We have considered the large range of Knudsen numbers. We use the
domain decomposition of the Boltzmann and the compressible Navier–Stokes
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equations. We have coupled a meshfree particle method for the compressible
Navier–Stokes equations and a DSMC type of particle method for the Boltzmann
equation. We have first observed the discrepancy in the Boltzmann and Navier–
Stokes solutions. Then we have defined boundary layers and solved the Boltzmann
equations in the boundary layers and the Navier–Stokes equations in the rest of the
channel. We have used the standard interface boundary conditions between both
domains, see [15, 17]. Alternatively, we have solved the Navier–Stokes equations
until steady state has been reached. It gives quite diffusive solutions, however,
this is the good candidate to initialize the Boltzmann solver. One can apply a
breakdown criterion to the stationary Navier–Stokes equations and then decompose
the Boltzmann and Navier–Stokes domains.

The paper is organized as follows. In Sect. 2 we present the mathematical models
and numerical methods. In Sect. 3 we discuss the numerical solutions and the
domain decompositions.

2 Governing Equations and Numerical Methods

In this section we introduce the Boltzmann equation, the Navier–Stokes equations as
its hydrodynamic limit, numerical methods and domain decomposition strategies.

2.1 The Boltzmann Equation and Its Hydrodynamic Limits

The Boltzmann equation describes the time evolution of a distribution function
f .t; x; v/ for particles of velocity v 2 <3 at x 2 D � <3.s D 1; 2; 3/ and time
t 2 <C. It is given by

@f

@t
C v � rxf D Q.f; f /; (1)

where

Q.f; f / D
Z

<3

Z

S2
ˇ.jv � wj; �/Œf .v0

/f .w
0
/� f .v/f .w/�d!.�/dw

with

v
0 D Tv;w.�/ D v � � < �; v � w >; w

0 D Tw;v.�/:

Here, ˇ denotes the collision cross section, � is the unit normal vector on the sphere,
d!.�/ is the solid-angle element in the direction of � and<;> is the scalar product.
For the sake of simplicity, we have not used any bold letters for vector quantities,
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like x; v;w, etc. Writing the equations in dimensionless form one observes that Q
is of the order O. 1

Kn
/. The local mean free path � D �.x; t/ is given by

� D kTp
2�pd2

; (2)

where k is the Boltzmann constant, T D T .x; t/ the temperature, p D p.x; t/ the
pressure and d is the diameter of molecules. For more details we refer to [6]. For
Kn tending to zero one can show that the Boltzmann distribution function f tends
to the local Maxwellian [5]

fM .t; x; v/ D �

.2�RT /3=2
e�

jv�U j2
2RT ; (3)

where � D �.x; t/ is the density, U D U.x; t/ the mean velocity and R is the gas
constant. The parameters of the Maxwellian �; U; T solve the compressible Euler
equations. This can be verified from the asymptotic expansion of f in Kn, where
the zeroth order approximation gives the local Maxwellian distribution and the first
order approximation [3] gives the Chapman–Enskog distribution

fCE.t; x; v/ D fM .t; x; v/ Œ1C �.t; x; v/� ; (4)

with

�.t; x; v/ D 2

5

q � c
�.RT /2

� jcj2
2RT

� 5
2

�

� 1
2

 W c ˝ c
�.RT /2

; (5)

where c D v � U . Here, � D O.Kn/ and the parameters �; U; T; q;  satisfy the
compressible Navier–Stokes equations

@�

@t
Cr � .�U / D 0

@.�U /

@t
Cr � .�U ˝ U C pI � / D 0 (6)

@.�E/

@t
Cr � Œ.�E C p/U �  � U � q� D 0;

where E D jU j2=2 C e is the total energy and e is the internal energy. The stress
tensor  and heat flux vector q are of orderKn and given by

ij D �
�

@Ui

@xj
C @Uj

@xi
� 2
3
r � U ıij

�

; q D �	rT: (7)
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The dynamic viscosity � D �.x; t/ and the heat conductivity 	 D 	.x; t/ for a
monatomic gas of hard sphere molecules are of orderKn. They are given, see [4], by

� D 5

16d2

r

mkT

�
; 	 D 15k

4m
�; (8)

where m is the molecular mass. In this paper we have considered a monatomic gas
of hard spheres.

2.2 Numerical Methods

We apply Lagrangian particle methods of different characters for both types of
equations. The Boltzmann equation is solved by a DSMC type Monte Carlo method,
whereas the Navier–Stokes equations are treated with a meshfree particle method,
which is called the Finite Pointset Method (FPM).

2.2.1 Particle Method for the Boltzmann Equation

For solving the Boltzmann equation we have used a variant of the DSMC method
[4], developed in [2,13]. The method is based on the time splitting of the Boltzmann
equation. Introducing fractional steps one solves first the free transport equation
(the collisionless Boltzmann equation) for one time step. During the free flow,
boundary and interface conditions are taken into account. In a second step (the
collision step) the spatially homogeneous Boltzmann equation without the transport
term is solved. To simulate this equation by a particle method an explicit Euler
step is performed. The result is then used in the next time step as the new initial
condition for the free flow. To solve the homogeneous Boltzmann equation the
key point is to find an efficient particle approximation of the product distribution
functions in the Boltzmann collision operator given only an approximation of
the distribution function itself. To guarantee positivity of the distribution function
during the collision step a restriction of the time step proportional to the Knudsen
number is needed. That means that the method becomes exceedingly expensive for
small Knudsen numbers.

2.2.2 Meshfree Particle Method for the Navier–Stokes Equations

We solve the Navier–Stokes equations by a meshfree Lagrangian particle method.
We approximate the spatial derivatives at an arbitrary particle from its surrounding
clouds of points with the help of the least squares method. We express the compress-
ible Navier–Stokes equations in primitive variables according to the Lagrangian
form. We first fill a computational domain by a finite number of particles and assign
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all fluid quantities to them. Then we approximate the spatial derivatives at every
particle position. The resulting equations reduce to a time dependent system of
ordinary differential equations. This system can be solved by a simple integration
scheme. One can use the explicit Euler scheme, but this requires a very small time
step. Here a two step Runge–Kutta method is used which is sufficient for the test
cases considered in this paper. Due to space limitations, we do not present the
meshfree method, we refer to our earlier reports, see [16, 17].

2.2.3 Coupling Particle Methods for the Boltzmann and the Compressible
Navier–Stokes Equations

The DSMC method is a mesh-based method since gas molecules have to be sorted
into cells for the intermolecular collisions. As already described, the compressible
Navier–Stokes equations are solved by a meshfree method. Therefore, we need to
couple the mesh-based and the meshfree particle methods. We decompose a domain
into Boltzmann and Navier–Stokes domains, then we have to prescribe the interface
boundary conditions from one domain into another domain.

In order to apply the interface boundary conditions for the Boltzmann equation,
we have to define the boundary cells (or interface cells) in the Navier–Stokes
domain. On these buffer cells we generate gas molecules according to a Maxwellian
distribution, where the parameters are approximated from the Navier–Stokes equa-
tions. If the gas molecules leave the Boltzmann domain and enter to Navier–Stokes
one, we delete them.

The interface boundary conditions for the Navier–Stokes equations are applied as
follows. In the Boltzmann domain we sample and store the macroscopic quantities
at the cell centers. Near the interface there may be several Boltzmann cell centers,
which are the neighbor of a Navier–Stokes particle. In this case we consider all
neighboring Boltzmann cells and approximate the spatial derivatives from the least
squares method. Instead of using the Dirichlet boundary condition at the Boltzmann
interface cell, we find this approach is sufficient. When the Navier–Stokes particles
leave the Navier–Stokes domain, we delete them. If they thinned out the domain,
we add new particles and interpolate the data from its neighboring particle values.

It is well known that in all DSMC type solvers there are some statistical
fluctuations in the solutions of the Boltzmann equation. These fluctuating data
destabilize the Navier–Stokes solver. Therefore, we need a smoothing operator, see
[15, 17] for details.

3 Numerical Results

We consider a micro channel of size Œ0; 5 � H� 	 Œ0; H� with H D 1 � 10�6m
as shown in Fig. 1b. The left and right walls are inflow and outflow boundaries,
respectively and the upper and lower are solid wall boundaries. While solving the



232 S. Tiwari et al.

 0

 50

 100

 150

 200

 250

 0  2e-07  4e-07  6e-07  8e-07  1e-06

X
-v

el
oc

ity
 c

om
po

ne
nt

Y

Navier-Stokes
Boltzmann

 0

 2e-07

 4e-07

 6e-07

 8e-07

 1e-06

 1.2e-06

 0  1e-06  2e-06  3e-06  4e-06  5e-06

Navier-Stokes domain
Boltzmann domain

a b

Fig. 1 (a) x component of velocity along the y axis at 2/3rd of the channel length for
Kn D 0:01101 to 0:03303 from Boltzmann and Navier–Stokes solvers. (b) A priori domain
decomposition: “grey” or “C”D Navier–Stokes domain, “dark” or “x”D Boltzmann domain

Navier–Stokes equations, we prescribe a temperature Tin and a pressure pin on the
inflow boundary. Similarly, we prescribe a pressure pout on the outflow boundary.
We use the Neumann boundary conditions for the velocity and temperature, on the
in- and outflow boundaries. Furthermore, zero velocity and T D T0 are considered
on the upper and lower boundaries, where T0 is the initial temperature of the gas. We
choose Argon as a gas with a molecular mass m D 6:63 � 10�26kg. The Boltzmann
constant k D 1:38 � 10�23JK�1, the molecular diameter d D 3:68 � 10�10m, the
ratio of specific heats � D 5=3 enter as parameters. These parameters give the gas
constant R D 208JkgK�1. The dynamic viscosity and thermal conductivity in the
compressible Navier–Stokes equations are assumed to be constant and are evaluated
with the initial temperature according to (8). The initial velocity is zero. The initial
pressure is .pin C pout /=2 and the initial density is determined from the ideal gas
law.

When we solve the Boltzmann equation we initialize the gas according to the
Maxwellian distribution in each cell with the initial parameters as described for
the Navier–Stokes solver. We generate the molecules according to the Maxwellian
distribution at the inflow boundary, where the density is determined from the
given pressure and the temperature using the ideal gas law. The mean velocity is
extrapolated from the interior of the Boltzmann cells. Similarly, we also generate the
molecules according to the Maxwellian distribution at the outflow boundary, where
we extrapolate the mean velocity and the temperature from the interior cell values
and the pressure is given. If the molecules leave the inflow or outflow boundary
we delete them. On the upper and lower walls we use the diffuse reflection with
thermal accommodation. We choose 200	40 cells for the Boltzmann solver and the
meshfree particles for the Navier–Stokes solver of the same order. For the Navier–
Stokes solver we choose the time step�t equal to 3�10�11 s and 0:5��x=p.2RT0/,
where�x is the cell size. In all cases we compute up to the final time t D 1 � 10�6 s.

In the first test case, we consider pin D 624;000Pa, pout D 208;000Pa and
T0 D 300K. This gives the Knudsen number on the left of 0:01101 and on the
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Fig. 2 x component of velocity along the y axis at 2/3rd of the channel length. (a) for Kn D
0:01101 to 0:03303. (b) for KnD 0:0408 to 0:12

right of 0:03303. We are now in the slip regime, where we expect the Navier–Stokes
solutions with no slip boundary conditions do not match with the Boltzmann ones.
In Fig. 1a the x component of velocities from both solvers at 2/3rd of the channel
length along the y axis are plotted. We observe that there is a discrepancy between
the solutions of both equations. It is required to use slip boundary conditions for the
Navier–Stokes equations on the solid boundaries. Instead of that we define boundary
layers, 5 cells adjacent to the top and bottom walls as the Boltzmann domain and
the rest is the Navier–Stokes one, see Fig. 1b. After the domain decomposition the
coupled solutions of the Boltzmann and Navier–Stokes equations match perfectly,
see Fig. 2a for this small range of the Knudsen number.

In the second test case, we increase the Knudsen number by changing different
inlet and outlet pressures 168;480Pa and 56;160Pa, respectively. This corresponds
the Knudsen number varying 0:0408 to 0:12 from left to right boundaries. For this
range of Knudsen numbers, we decrease the time step �t to 2 � 10�11 s for the
Navier–Stokes solver. We are still in the slip regime and close to it, however, for
this range of Knudsen numbers defining the boundary layers like in Fig. 1b does
not provide the correct coupled solutions as shown in Fig. 2b. Here, we observe
that the coupled solution is close to the Navier–Stokes solution. In this case one
may increase the size of boundary layers, but it is not clear how much one has to
increase. So, we use the alternative strategy.

The efficient way is to use a breakdown criterion to decompose the domains
as suggested in [15] for steady problems. The idea is to solve first the Navier–
Stokes equations everywhere until the steady state is reached. As we have seen
in Fig. 2b, the Navier–Stokes solutions do not match with the Boltzmann solutions
in this regime, however, they are somehow near to the Boltzmann ones. Then we
apply the breakdown criterion k�k suggested in [14] and decompose the domain. We
assume, for example, if the value of k�k at a cell is less than 0:01 the cell is defined
as a Navier–Stokes cell, otherwise a Boltzmann one. In Fig. 3 the time evolution
of the domain decompositions for the Knudsen numbers ranging from 0:01103

to 0:03303 at different times are plotted. One can solve the Boltzmann and the
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Fig. 3 Domain decomposition: “grey” or “C” D Navier–Stokes domain and “dark” or “x” D
Boltzmann domain after application of the breakdown criterion to solutions of the Navier–Stokes
equations for the rangeKn D 0:01101 to 0:03303. Top rows are for t D 3�10�9 s and t D 6�10�9 s
and the bottom rows are for t D 9 � 10�9 s and t D 3 � 10�8 s

Navier–Stokes equations in the corresponding domains. However, for the stationary
solutions, it is sufficient to solve the Navier–Stokes equations until they reach the
steady state and then to further use the domain decomposition and coupling method.
After t D 3 �10�8 s we reach the steady state of the Navier–Stokes equations and the
domain decomposition does not change. After t D 3�10�8 s we solve both equations
in their domains of validity until the final time. When we compare the Figs. 1b and 3
at time t D 3 � 10�8 s, we see the Boltzmann domain is bigger in the latter figure.
There is no unique values for this breakdown quantity. It depends upon the problem
considered.

Now, for higher Knudsen numbers ranging from 0:0408 to 0:12 we observed
that in the steady state the Navier–Stokes domain becomes smaller for the same
criterion, see Fig. 4. Here the above coupling algorithm will not be the optimal one
since we have a very small Navier–Stokes domain and we need additional effort to
use the interface boundary conditions. Therefore, it is convenient to consider the
entire domain as Boltzmann one with the initial conditions as stationary solutions
of the Navier–Stokes equations. Then, we run for few more iterations and then start
sampling the data.
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Fig. 4 Domain decomposition: “grey” or “C” D Navier–Stokes domain and “dark” or “x” D
Boltzmann domain after application of the breakdown criterion to stationary solutions of the
Navier–Stokes equations for the range Kn D 0:0408 to 0:12. Top rows are for t D 2 � 10�9 s
an t D 4 � 10�9 s and the bottom rows are for t D 6 � 10�9 s and t D 2 � 10�8 s

The above results show that the coupling method may be relevant for regimes
where the Knudsen number is less than 0:03.
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Multiscale Finite Elements for Linear Elasticity:
Oscillatory Boundary Conditions

Marco Buck, Oleg Iliev, and Heiko Andrä

1 Introduction

Multiscale finite element methods (MsFEMs) have been widely used when solving
elliptic PDEs with highly oscillating coefficients on multiple scales. Beyond their
application in the upscaling framework [2, 7–9], they are often utilized for the
construction of robust coarse spaces in the context of two-level overlapping domain
decomposition preconditioners.

In [3, 4, 15] coarse basis functions are constructed by solving local generalized
eigenvalue problems. The scalar multiscale finite element basis is used as a
partition of unity to setup the spectral problems and allows the dimension of the
resulting coarse space to be sufficiently low. The method guarantees robustness for
various elliptic PDEs with respect to arbitrary coefficient variations. Another recent
approach where generalized eigenvalue problems are solved in overlapping regions
of local subdomains is presented in [13]. It provides applications to isotropic linear
elasticity problems with robustness properties similar to them in [3, 4, 15].

For scalar elliptic PDEs it is shown in [5, 6] that oscillatory multiscale finite
element coarse spaces ensure robustness for a large class of coefficient variations.
This includes variations in the interior of coarse elements, but allows coefficient
jumps also across coarse element boundaries when high contrast regions can be
characterized as a union of disjoint islands.

A first application of the multiscale finite element method with (vector-valued)
linear boundary conditions to linear elasticity (see also the adaptive method in
[11]) is given in [1]. If material jumps occur only in the interior of coarse grid
elements, uniform condition number bounds which do not depend on the contrast
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in the Young’s modulus are obtained. However, the method fails to be robust when
stiff inclusions touch coarse element boundaries. This motivates the construction
of boundary conditions for the multiscale finite element basis which adapt to the
heterogeneities in the PDE coefficients.

The outline of the paper is as follows. In Sect. 2 we state the equations
of linear elasticity and briefly describe their discretization with vector-valued
piecewise linear finite elements. The abstract two-level additive Schwarz method is
summarized in Sect. 3. Section 4 contains the detailed introduction of the oscillatory
multiscale finite element basis. Numerical results are presented in Sect. 5 and final
conclusions are given in Sect. 6.

2 Finite Element Discretization in Linear Elasticity

Let ˝ � Rd be a bounded, polyhedral (d D 3) or polygonal (d D 2) Lipschitz
domain. The displacement field u D .u1; : : : ; ud /> of a solid body in ˝ , deformed
under the action of a volume force f and a traction force t , is governed by the mixed
BVP

� div �.u/ D f in ˝; (1)

�.u/ D C W ".u/ in ˝;

where � is the stress tensor, " is the strain tensor and C.x/ is the fourth order
elasticity tensor. The system in (1) is subject to the boundary conditions

u D 0 on �D; �.u/n D t on �N ;

where n is the unit outer normal vector on @˝ D �D [ � N with meas.�D/ > 0.
Let Th be a tetrahedral (d D 3) or triangular (d D 2) mesh and let ˙h. N̋ /

denote the set of vertices in N̋ . We introduce a finite element discretization uh of
displacements u on the space V h WD span

˚

'
j;h
k W N̋ ! Rd ; xj 2 ˙h. N̋ /; k D

1; : : : ; d
�

of continuous piecewise linear vector-valued functions on Th. Assuming
enough regularity, the discretization leads to a symmetric positive definite linear
system Au D f (see e.g. [10] for more details).

3 Overlapping Domain Decomposition Preconditioners

We are interested in constructing two-level overlapping domain decomposition
preconditioners for the linear system which are robust w.r.t. mesh parameters and
variations in the PDE coefficients. They combine local solves on overlapping
subdomains f˝i; i D 1; : : : ; N g (with overlap-width ı > 0) and a global solve
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on a coarse grid TH . Let V 0 � V h
0 be a coarse space defined on TH and let

V i D V h.˝i/ be the space of vector-valued linear basis functions on Th which
are supported in ˝i; i D 1; : : : ; N . The action of the two-level additive Schwarz
preconditioner is defined implicitly by

M�1AS D R>0 A�10 R0 C
N
X

iD1
R>i A�1i Ri ;

where Ri ; i D 0; : : : ; N is the restriction operator from V h to V i and Ai D
RiAR

>
i is the corresponding submatrix of A (cf. [14]). We assume here that TH

also consists of tetrahedra (d D 3) or triangles (d D 2), each of which consists of
a union of fine elements  2 Th. For any D � N̋ , we denote by ˙H.D/ the set of
nodes of TH in D and NH.D/ is the corresponding index-set of coarse nodes.

4 Multiscale Finite Elements for Linear Elasticity

Multiscale basis functions with oscillatory boundary conditions are introduced for
scalar elliptic PDEs in [7] to reflect the heterogeneities in the PDE coefficients
also across coarse element boundaries. In this section we present the extension
to linear elasticity. We define the multiscale basis and introduce suitable coordi-
nate transformations that allow the derivation of the equations which govern the
boundary data of the oscillatory multiscale basis on general meshes. On composites
with isotropic constituents, we present the construction in detail. We denote by
N!p WD fT 2 TH W p 2 NH.T /g the union of coarse elements which share the node
xp 2 ˙H. N̋ /. For any p 2 NH. N̋ / and m 2 f1; : : : ; d g, the oscillatory multiscale
basis function V h 3 �p;MsO

m W !p ! Rd , is defined such that for T � N!p ,

div.C W ".�p;MsO
m // D 0 in T;

�p;MsO
m D �p;Tm on @T; (2)

where the oscillatory boundary data �p;Tm W @T ! Rd are continuous and

compatible, i.e. �p;Tm D �
p;T 0
m on @T \ @T 0 � N̋ for T; T 0 2 TH . We impose

the vector-valued nodal constraints

�
p;T

mk .x
q/ D ıpqımk; xq 2 NH.T /; k 2 f1; : : : ; d g (3)

and show how �
p;T
m D .�p;Tm1 ; : : : ; �p;Tmd /> is derived in Sects. 4.2 and 4.3.
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4.1 Coordinate Transformation

The boundary data �p;Tm in (2) are extracted by solving a restricted version of
the PDE (1) to the coarse element boundary which implies that �p;MsO

m j@T
is independent of the coordinate in the direction normal to @T . To make the
construction applicable to edges and faces of T 2 TH which are not aligned
with or perpendicular to one of the coordinate axis, we apply a suitable coordinate
transformation of the Cartesian coordinate system with basis fe1; : : : ; ed g to a (right
handed) coordinate system with orthonormal basis f Oe1; : : : ; Oed g. W.l.o.g., for any

edge E : we introduce the rotated coordinate system such that Oe1 is parallel to E
face F : we introduce the rotated coordinate system such that the normal vector n

on F is parallel to one of the coordinate axis, i.e. Oe3 D n.

Let Ox1; : : : ; Oxd be the coordinates of x D .x1; : : : ; xd /> w.r.t. the transformed basis.
The coordinate transformation can be described by a linear map 
 W T ! Rd ,
Ox D 
x with �ij D Oei � ej , 1 � i; j � d . The elasticity coefficients of the
stiffness tensor OC transform under the rotation of the coordinate system to Ocijkl D
Pd

p;q;r;sD1 �ip �jq �kr �ls cpqrs (cf. [12]).

4.2 Equations Governing the Oscillatory Boundary Data

Using the rotated coordinate system in Sect. 4.1, we derive the reduced problems on
a face F of T 2 TH for the system of anisotropic linear elasticity. The components
of the elasticity operator in (1) read

d
X

jD1
@j �ij .u/ D

d
X

jD1
@j

	

d
X

k;lD1
cijkl "kl .u/

�

: (4)

Forcing that O�p;MsO
m D O�p;Tm . Ox1; : : : ; Oxd�1/ is independent of Oxd on F and using

the symmetry Ocijkl D Ocijlk of the stiffness tensor, we obtain by using O"kl .Ou/ D
1
2
.O@k Oul C O@l Ouk/ in the rotated coordinate system

d
X

jD1
O@j O�ij . O�p;Tm / D

d�1
X

jD1
O@j
� d
X

k;lD1
Ocijkl O"kl . O�p;Tm /

�

D
d�1
X

jD1
O@j
� d�1
X

k;lD1
Ocijkl O"kl. O�p;Tm /C 2

d�1
X

kD1
Ocijkd O"kd . O�p;Tm /

�
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D
d�1
X

jD1
O@j
� d�1
X

k;lD1
Ocijkl O"kl . O�p;Tm /

�

(5)

C
d�1
X

jD1
O@j
� d�1
X

kD1
Ocijkd O@k O�p;Tmd

�

: (6)

While (5) affects exclusively the first two components of O�p;Tm , (6) acts only on the
third component of the oscillatory boundary data on F . For an anisotropic stiffness
tensor, a reduced system needs to be solved on F in which the three components
of O�p;Tm2 are coupled. Having a deeper look at the entries of the stiffness tensor,
the systems in (5) and (6) are fully decoupled for an orthotropic material whose
symmetry axes are normal to Oe1; : : : ; Oed . Particularly, the components O�p;Tm1 and O�p;Tm2
on F are then governed by a 2D system of linear elasticity (see (5)), while the
component O�p;Tmd normal to F is governed by a scalar second order elliptic PDE

(see (6)). Analogously, on an edge E , we can deduce that the boundary data O�p;Tm . Ox1/
are governed by scalar second order PDEs in each particular component which may,
again, be coupled in the anisotropic case.

4.3 Oscillatory Boundary Conditions for Isotropic Linear
Elasticity

Given the formulation of the reduced problems in a suitable coordinate system, we
summarize the procedure of computing boundary data �p;Tm on the faces and edges
of T , assuming that the stiffness tensor is isotropic. Its components are given by
cijkl D �ıij ıkl C �.ıikıjl C ıilıjk/, where � > 0 and � � � 2

3
� are the Lamé

coefficients of the material (see e.g. [10]) which we assume here to be piecewise
constant in  2 Th. Note that the material coefficients are not uniquely determined
on @T , a proper averaging (e.g. by taking their maximum values) in the adjacent
elements  2 Th is required.

From (5) and (6), together with O�p;Tm D O�p;Tm . Ox1/ along the edge E , the reduced
problem in rotated coordinates reads

O@1
	

.�C 2�/ O@1 O�p;Tm1
�

D 0 on E ;

O@1
	

� O@1 O�p;Tmk
�

D 0 on E ; k D 2; 3: (7)

It needs to be equipped with the boundary conditions defined in (3). Let us assume
that E D Ep1p2 connects the two nodes xp1 D xp; xp2 2 ˙H. N̋ /, then we impose
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O�p;Tm . Oxp1/ D 
em;
O�p;Tm . Oxp2/ D .0; 0; 0/>: (8)

In order to grasp immediately that the boundary data on a face F are governed by a
reduced elasticity system in the first two components and a scalar elliptic problem in
the component normal to F , we state the equations governing the reduced problem
under the assumption that � and � are piecewise constant on F . This allows to
simplify the notation of the reduced system without affecting its weak formulation.
According to (5) and (6), the reduced system reads

� .O@11 O�p;Tm1 C O@22 O�p;Tm1 /C .�C �/.O@11 O�p;Tm1 C O@12 O�p;Tm2 / D 0 a.e. on F ;

� .O@11 O�p;Tm2 C O@22 O�p;Tm2 /C .�C �/.O@21 O�p;Tm1 C O@22 O�p;Tm2 / D 0 a.e. on F ; (9)

� .O@11 O�p;Tm3 C O@22 O�p;Tm3 / D 0 a.e. on F :

Let F D Fp1p2p3 contain the coarse nodes xp1 ; xp2 and xp3 . Then the three edges
Ep1p2 , Ep1p3 and Ep2p3 form the 2D boundary of the face F . The system in (9) is
subject to the boundary conditions

O�p;Fm jEpkplD O�
p;Epkpl
m 1 � k < l � 3;

where O�Epkpl
m is the solution of the BVP in (7) and (8) on the edge Epkpl in the

coordinate system w.r.t. F and O�p;Dm denotes the restriction of O�p;Tm to D � @T .
Note that the rotated coordinate systems differ for any face and edge. Once the
boundary data are computed on and edge or a face, they should be transformed to
the original coordinate system.

4.4 Properties of the Oscillatory Multiscale Basis

As shown in [1], the multiscale basis with vector-valued linear boundary data
(MsL) recovers all rigid body modes. If no material jumps occur on the boundaries
of coarse elements, it can be shown that �p;MsO

m D �p;MsL
m . Prescribing homogeneous

material parameters, both multiscale bases coincide with the vector-valued linear
coarse basis. Furthermore, the construction of the oscillatory multiscale basis
guarantees that the rigid body translations are contained in the coarse space. In
general, not all the rigid body rotations are preserved exactly on the coarse element
boundaries. The complexity of computing �p;MsO

m is of the same asymptotic order
O
�

d.H
h
/d
�

as for �p;MsL
m , with a small additional cost that is one order of H

h
cheaper.
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Fig. 1 Binary composite;
matrix material (grey) and
inclusions (red);
discretization in 14� 14� 7
voxels (left); 2D-projection
onto the .X1; X2/-plane with
position of the inclusion
(right); each coarse block is
decomposed in five tetrahedra
(Color figure online)

5 Numerical Results

In this section we present numerical examples on a binary composite. We apply
different coarsening strategies for the two-level additive Schwarz preconditioner,
including a vector-valued linear coarse space as well as multiscale coarse spaces
with linear and oscillatory boundary conditions. We perform the simulations on a
domain N̋ D Œ0; 1� 	 Œ0; 1� 	 Œ0; L�; L > 0, using regular fine and coarse triangular
meshes Th and TH of equal structure with uniform mesh size h andH , respectively.
Both meshes are constructed from an initial voxel geometry by decomposing each
voxel into five tetrahedra. In the experiments we show condition numbers as well as
iteration numbers of the PCG algorithm. The stopping criterion is set to reduce the
preconditioned initial residual by 6 orders of magnitude.

The medium consists of an isotropic matrix material with coefficients (�mat D 1,
�mat D 1) and contains inclusions (�inc; �inc) which are positioned equally in each
coarse block of sizeH	H	H as shown in Fig. 1. The distribution of the inclusions
as well as the boundaries of the coarse tetrahedra are shown in more detail in
Fig. 2. At each slice in the plane normal to X1 and X2 the position of the inclusions
above and below this level are indicated in dark and shaded red, respectively. Each
inclusion touches or crosses coarse element boundaries while one inclusion in the
center is isolated in the interior of a coarse element. Table 1 shows the condition
and iteration numbers for the three coarsening strategies under the variation of
the material contrast �E WD �inc=�mat D �inc=�mat. For �E > 1, condition and
iteration numbers for vector-valued linear and multiscale coarse space with linear
boundary conditions grow with the contrast in the material coefficients, where the
latter does not perform noticeably better than the linear coarse space. The multiscale
coarse basis functions with oscillatory boundary conditions are bounded in energy
and show coefficient-independent bounds of the condition number. For �E < 1,
each coarse space performs well.
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Fig. 2 2D-slices (at
X3 D l h; l 2 f1; : : : ; 6g) of
a coarse block of 7� 7� 7
voxels of the medium in
Fig. 1; boundaries of coarse
tetrahedral elements (black),
matrix material (grey) and
1� 1� 1 inclusions (red);
inclusions touch the slice
from below (shaded red) or
top (dark red); inclusions
touch coarse element
boundaries (Color figure
online)

Table 1 Condition numbers 	 and iteration numbers (#it) of precond.
matrix for H D 7h, ı D 2h

�E Lin MsL MsO

10�9 26 .28/ 26 .28/ 26 .28/

10�6 26 .28/ 26 .28/ 26 .28/

10�3 26 .28/ 26 .28/ 26 .28/

100 25 .27/ 25 .27/ 25 .27/

103 426 .91/ 233 .76/ 25 .27/

106 965 .102/ 955 .104/ 25 .27/

109 970 .102/ 955 .104/ 25 .27/

6 Conclusions

In this study, we extended the oscillatory multiscale finite element method as
introduced in [7] to the PDE system of anisotropic linear elasticity. We derived
the reduced system which governs the oscillatory boundary data in a general
setting which allows their construction on triangular, tetrahedral, quadrilateral and
hexahedral coarse meshes. We applied the coarse basis in the context of two-
level additive Schwarz domain decomposition preconditioners. Numerical results
are presented on a tetrahedral mesh for isotropic composites where inclusions
touch the coarse element boundaries. We observed condition number bounds of the
preconditioned linear system which are independent of the contrast in the Young’s
modulus in the inclusions.

It is easy to verify (see [1]) that the computation of a multiscale finite element
basis is more costly on quadrilateral and hexahedral coarse meshes than on their
triangular and tetrahedral counterparts (by a factor of 4

3
in 2D and a factor of 2 in

3D). However, we may point out that, especially for applications in three spatial
dimensions, using hexahedral coarse meshes may be beneficial for the robustness
of the overall method as it reduces the amount of element boundaries which are
introduced when tetrahedral coarse meshes are used.
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Inexact BDDC Methods for the Cardiac
Bidomain Model

Stefano Zampini

1 Introduction

The cardiac Bidomain model consists in a reaction-diffusion system of PDEs for
the intra- and extra-cellular cardiac potentials coupled with a nonlinear system of
ODEs accounting for the cellular model of ionic currents. Fully implicit methods
in time have been considered in a few studies, see e.g. [16] and references therein.
As in most of previous work (see [18] for a review), in this study we consider an
Implicit–Explicit operator splitting technique in order to separate the part of the
system of PDEs describing diffusion of cardiac potentials from the large and stiff
nonlinear system of ODEs accounting for the reaction terms. The resulting space–
time discretization of the so-called parabolic–parabolic Bidomain operator leads to a
large, sparse, symmetric positive semidefinite linear system which must be solved at
each time step of a cardiac beat simulation using a Krylov subspace method. Given
a component by component finite element discretization of the cardiac potentials,
the coefficient matrix of the linear system to be solved is

OK D
�

Ai 0

0 Ae

�

C �

ıt

�

M �M
�M M

�

(1)

where ıt is the value of the time step and � the membrane capacitance per unit
volume;M and Ai;e are the mass and stiffness matrices with entries

fM grs D
Z

˝

�rh�
s
h; fAi;egrs D

Z

˝

Di;er�rh � r�sh;
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where for sake of simplicity the same finite element basis f�jh g is considered for
each cardiac potential. Anisotropic conductivity tensors Di.x/ and De.x/ model
propagation of electrical signals with orthotropic anisotropy

Di;e.x/ D
3
X

jD1
�i;ej .x/aj .x/aj .x/

T ;

with �
i;e
j .x/ > 0 the conductivity coefficient of the intra- and extra-cellular

media measured along the orthonormal triplet faj .x/g3jD1 describing cardiac fiber
rotation [9]. For additional details on the operator splitting technique adopted and
the diffusion tensors, see [5].

Many different preconditioners have been already proposed for the efficient
iterative solution of the Bidomain model in its parabolic–parabolic formulation (1).
Among them, we mention block Jacobi preconditioners [5], algebraic multigrid [13,
14], multilevel Schwarz preconditioners [11, 12, 15] and balancing Neumann–
Neumann methods [19]. An exact BDDC algorithm and a FETI-DP method have
been constructed, analyzed and experimentally validated by the Author in [20].

2 Inexact BDDC Preconditioner

Following the framework of substructuring algorithms [17], the cardiac domain ˝
is decomposed into N non-overlapping open Lipschitz subdomains˝j of diameter
Hj , forming a coarse conforming finite element partition of ˝ and naturally
defining the interface, i.e.

˝ D
N
[

iDj
˝j ; � D

[

j¤k
@˝j \ @˝k; �j D @˝j \ �:

A triangulation is introduced in each subdomain with matching finite element nodes
on the boundaries of adjacent subdomains across the interface. As usual in non-
overlapping literature, the finite elements space defined on ˝j will be denoted by
W.j / and it is further split into its interior (labeled by I ) and interface (� ) parts; the
following spaces should then be introduced

W.j / DW.j /
I

M

W.j /
� ; W D

N
Y

jD1
W.j /; WI D

N
Y

jD1
W.j /

I ;

together with the subspace OW � W of continuous functions. Within the non-
overlapping framework, a global matrix is never assembled explicitly; instead a
Bidomain linear matrixK.j / is assembled on each subdomain and reordered as
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"

K
.j /
II K

.j /
I�

K
.j /T

I� K
.j /
� �

#

:

The unassembled global matrix defined on W can thus be defined as K D
diag.K.j //; similarly,KII D diag.K.j /

II /.
The exact BDDC preconditioner for matrix OK can be formulated as (see [7, 10])

M�1BDDC D M�1I C .I �M�1I OK/M�1� .I � OKM�1I /;

where

M�1I D RTI K�1II RI ; M�1� D RTD .Pcoarse C Plocal/ RD;

withRI the restriction operator from OW to W andRD the scaled restriction operator
from OW to W built using a suitable partition of unity [20]. The coarse term of the
preconditioner can be defined by

Pcoarse D �K�1c �T ; Kc D �TK�;

with the coarse primal basis function matrix given by the solution of the following
minimization problem posed on W

� D arg min wTKw; s.t. Cw D I;

where I is the identity matrix and C is the block diagonal matrix of BDDC
constraints which ensures the continuity of coarse basis functions at primal degrees
of freedom. The action of the local term of the preconditioner is given by

�

K CT

C 0

� �

Plocal g

�

�

D
�

g

0

�

:

The application of the BDDC preconditioner requires the solution of the block
diagonal Dirichlet and Neumann problems given by the matrices KII and Krr

respectively, where Krr is obtained from K by removing the matrix entries related
to the subdomain vertices belonging to the coarse primal space [7].

It is well known that the local problems defined by the BDDC preconditioner
can be bottlenecks in three dimensions, since direct factorizations require too much
time and memory if the number of degrees of freedom in any subdomain is large;
also, backward and forward substitution algorithms do not map well on modern
architectures and accelerators. A possible solution consists in using multigrid
preconditioners as black-box inexact solvers for the local Dirichlet and Neumann
problems as proposed by Dohrmann [7]; the approach preserves scalability and
quasi-optimality of the exact BDDC method provided a sufficient quality of the
inexact solvers.
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An approximate BDDC preconditioner can be constructed as follows: let OK[ be
the matrix which is equal to OK except for the coupling of the interior degrees of
freedom and let K] be the matrix equal to K except for the blocks related to the
Neumann problem of the BDDC preconditioner, i.e.

OK[ D
�

K[
II KI�

KT
I� K� �

�

; K] D
"

K
]
rr Krv

KT
rv Kvv

#

:

In practice, matrices K[
II and K]

rr are not explicitly known, since they represent an
approximation of the exact matrices through the multigrid process.

Inexact solvers can be obtained in such a way that K[ and K] will be spectrally
equivalent to the exact matrices

�1g
T OKg � gT OK[g � �2gT OKg 8g 2 OW; (2)

˛1g
TKg � gTK]g � ˛2gTKg 8g 2W: (3)

where 0 < �1 � �2 and 0 < ˛1 � ˛2 are constants independent on h and
H D maxj Hj . A priori estimates for the latter constants are not required for
the implementation, but they can be estimated by conjugate gradient iterations. In
addition, if the matrix OK is singular as for the Bidomain model, matricesK[ andK]

should satisfy the so called null space property

ker. OK[/ D ker. OK/; ker.K]/ D ker.K/:

Given a candidate preconditioner P�1II for K[�1
II , the following correction was

proposed in [7] to satisfy the null space property

K[�1
II D NI .NT

I KIINI /
�1N T

I C ET
I P
�1
II EI ; (4)

where

EI D I �KIINI .N
T
I KIINI /

�1N T
I ;

with I the identity matrix and NI the restriction of ker. OK/ to the interior degrees of
freedom. The same argument holds true for the Neumann problem, thus

K]�1
rr D Nr.NT

r KrrNr/
�1N T

r C ET
r P
�1
rr Er ; (5)

where

Er D I �KrrNr.N
T
r KrrNr/

�1N T
r ;

with P�1rr a candidate preconditioner forK]�1
rr .
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The action of the approximate BDDC preconditioner can then be defined as

QM�1BDDC D M[�1
I C .I �M[�1

I
OK[/M

]�1
� .I � OK[M[�1

I /;

where the superscript [ (respectively ]) denote quantities obtained by replacing the
matrix OK (resp. K) by K[ (resp. K]) in the construction of the BDDC operator. In
other words,

M[�1
I D RTI K[�1

II RI ; M
]�1
� D RTD

h

P ]
coarse C P ]

local

i

RD;

with

P ]
coarse D �]K]�1

c � ]T ; K]
c D �]T K]�];

and the block saddle point matrix is modified as

�

K] CT

C 0

�

:

For further details on the inexact approach considered, see [7].

The following theorem holds (see [7] for the proof).

Theorem 1. The condition number of the approximate BDDC preconditioner can
be bounded from above by the condition number of the exact BDDC preconditioner
as

	2. QM�1BDDC OK/ � C
˛2�

3
2

˛1�
3
1

	2.M
�1
BDDC

OK/;

where �1 and �2 are given by (2), ˛1 and ˛2 by (3) andC is a constant independent of
the parameters of the spatial discretization h andH and the number of subdomains
N . Moreover, if the coarse problem A

]
c is solved inexactly by the action of a

preconditionerA]]
�1

c satisfying

ˇ1g
T A]

�1
c g � gT A]]�1c g � ˇ2gTA]�1c g;

with 0 < ˇ1 � ˇ2, it will hold

	2. QM�1BDDC OK/ � C
maxf1; ˇ2g˛2�32
minf1; ˇ1g˛1�31

	2.M
�1
BDDC

OK/:

A quasi-optimal bound for the condition number of the exact BDDC method for
the Bidomain model in the parabolic–parabolic form has been proved in [20].
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Theorem 2. Let the BDDC coarse primal space be spanned by the vertex nodal
finite element functions and the edge cut-off functions. Then, for the three-
dimensional Bidomain model, it will hold

	2.M
�1
BDDC

OK/ � C.1C log.H=h//2;

with H D maxj Hj and C a constant independent of h, H , N and possible jumps

in conductivity coefficients �.i;e/k of the Bidomain operator aligned with � .

3 Numerical Results

In this section parallel numerical experiments are presented for a parallelepipedal
domain˝ subdivided into N D Nx 	Ny 	Nz subdomains. Each˝j is discretized
by low-order Q1 finite elements, i.e. conforming hexahedral shape-regular isopara-
metric tri-linear finite elements of characteristic diameter h. The linear system (1) is
solved by the preconditioned conjugate gradient (PCG) algorithm with a zero initial
guess and stopping criterion krkk2=kr0k2 � 10�6, where rk is the preconditioned
residual at the kth iterate. The right-hand side is always random and uniformly
distributed. Extreme eigenvalues of the preconditioned operators, denoted by �m
and �M in the following, are estimated using the well-known recursive formula
for Lanczos iterations; the experimental condition number is computed as 	2 D
�M=�m.

The parallel code used to obtain the numerical results has been developed in
Fortran and C; the Message Passing Interface (MPI) library has been used for
parallelization, assigning one subdomain to one MPI process. The BDDC precon-
ditioner has been developed using the Portable Extensible Toolkit for Scientific
Computation [2] (PETSc) and it is available for download within the development
version of the library (see https://bitbucket.org/petsc/petsc). Whenever the BDDC
algorithm is exactly applied, local problems are solved using the Unsymmetric
Multifrontal sparse LU factorization package [6] (UMFPACK), while the algebraic
multigrid (AMG) method boomerAMG provided by the HYPRE library [8] is used
as a black-box solver within the inexact BDDC algorithm. The interested reader
is referred to [13, 14] where the AMG method has been successfully applied to
the serial and parallel solution of the Bidomain linear system. The BDDC coarse
problem is solved in parallel either with the MUltifrontal Massively Parallel sparse
direct Solver [1] (MUMPS) or inexactly with the parallel boomerAMG method. For
all test cases considered, the coarse space is spanned by subdomain vertices and
edge averages for both cardiac potentials; unless otherwise stated, the conductivity
coefficients used are reported in [5]. One V1;1-cycle with Gauss–Seidel smoothing
is always used for the AMG method in order to preserve symmetry of the resulting
operator.

https://bitbucket.org/petsc/petsc
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Table 1 Comparison between exact and inexact BDDC method for different
values of H=h

M�1
BDDC

OK QM�1
BDDC

OK
H
h

�m �M 	2 it �m �M 	2 it

5 1.00 1.45 1.45 6 0.88 1.42 1.61 7
10 1.00 2.28 1.28 9 0.88 2.14 2.45 10
15 1.00 2.98 2.98 11 0.87 2.66 3.06 11
20 1.00 3.49 3.49 13 0.87 3.17 3.71 13
25 1.00 4.02 4.02 13 0.85 3.56 4.18 14
30 Out of memory 0.76 3.91 5.14 15
35 Out of memory 0.75 4.23 5.60 16
40 Out of memory 0.70 4.43 6.27 16

For each run, extreme eigenvalues, condition number and number of iterations
are shown. Test case with h D 1E-2 and 3� 3� 3 subdomains

Table 2 Weak scalability test for the inexact BDDC method

N subd dofs 	2. QM�1
BDDC

OK/ it time/it (s)

8 2� 2� 2 410.758 5.79 13 0.96
64 4� 4� 4 3.203.226 5.79 13 0.94
512 8� 8� 8 25.298.674 9.81 15 1.01
4,096 16�16�16 201.089.250 11.12 16 1.12

For each run, number of subdomains and domain decomposition, number of degrees of
freedom (dofs), condition number, number of PCG iterations (it) and solving time per
iteration are shown. Test case with hD1E-2 and H=hD30

Table 1 contains results of a quasi-optimality test obtained on the x86_64 Linux
cluster Matrix of CASPUR [3], where each core is equipped with 2GB memory. In
this test case,˝ is divided in 3	3	3 subdomains, hD1E-2, ıtD1E-2 and increasing
values of H are considered; thus, the volume of ˝ increases as H=h increases.
Inexact solvers are used for both sets of local problems whereas the coarse problem
is solved exactly with a parallel factorization. AMG based local solvers does not
make the performances of the BDDC deteriorate with respect toH=h and they allow
us to manage larger local problems, since the memory requirements for a multigrid
preconditioner are linear in the local size. Quasi-optimality is thus preserved by the
inexact BDDC algorithm for the Bidomain model.

Table 2 contains experimental results of a weak scalability test for the inexact
BDDC algorithm on the BlueGene/Q FERMI of CINECA [4]; total number of
degrees of freedom (dofs), condition number, number of PCG iterations and solving
time per iteration (time/it) in seconds are reported. In the test case, hD1E-2,
H=hD30, ıtD1E-2 and the number of subdomains N grows in each dimension as
reported in the first two columns. Thus, the volume of ˝ increases as N increases.
Inexact solvers for both local problems and, in parallel, for the coarse problem are
used. Results are scalable in the number of iterations and solving time per iteration
up to 4K cores and 200 millions degrees of freedom.
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Table 3 Condition number dependence of inexact BDDC
method with coefficient jumps

A B

p 	2. QM�1
BDDC

OK/ Ratio 	2. QM�1
BDDC

OK/ Ratio

1 10.47 (20) 1.47 10.47 (20) 1.47
1E1 12.41 (22) 1.46 12.12 (21) 1.49
1E2 12.54 (22) 1.46 13.70 (24) 1.60
1E3 13.75 (23) 1.57 15.13 (24) 1.78

For each run, condition number and number of iterations in
round brackets are shown together with the ratio between
condition numbers of the exact and inexact BDDC. Test case
with hD1E-2, H=hD15 and 3� 3� 3 subdomains

Finally, we report on a test case with coefficients with jumps aligned with � ,
obtained on the x86_64 Linux cluster Matrix of CASPUR [3]. As test case, we
consider a 3	 3	 3 decomposition of˝ , hD1E-2,H=hD15 and ıtD1E-2; inexact
solvers are used for both local problems, instead the coarse problem is solved exactly
with a parallel factorization. Two different checkerboard patterns of discontinuities
in the conductivity coefficients are considered; conductivity coefficients are initially
set to �i;e1 D 10, �i;e2 D 1 and �i;e3 D 0:1, then the following cases are built given a
factor p > 0:

A Each conductivity coefficient, either intra- or extra-cellular, is multiplied by p
in the black subdomains and by 1=p in the white subdomains.

B Intra-cellular coefficients are multiplied by p in the black subdomains and by
1=p in white subdomains; conversely, extra-cellular coefficients are multiplied
by 1=p in the black subdomains and by p in white subdomains.

Numerical results are summarized in Table 3, with columns labeled according to the
previous classification. The condition number and the number of iterations (listed
in round brackets) of the inexact BDDC algorithm remain almost constant when we
vary the factor p largely in both test cases considered; the ratio between inexact
and exact condition number is also shown to highlight the quality of the inexact
approach.
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Parallel Coupled and Uncoupled Multilevel
Solvers for the Bidomain Model
of Electrocardiology

Piero Colli Franzone, Luca F. Pavarino, and Simone Scacchi

1 Introduction

The Bidomain model describes the spread of electrical excitation in the anisotropic
cardiac tissue in terms of the evolution of the transmembrane and extracellular
electric potentials, v and ue respectively. This model consists of a non-linear
parabolic reaction-diffusion partial differential equation (PDE) for v, coupled with
an elliptic linear PDE for ue. The evolution equation is coupled through the
non-linear reaction term with a stiff system of ordinary differential equations
(ODEs), the so-called membrane model, describing the ionic currents through the
cellular membrane. The different space and time scales involved make the solution
of the Bidomain system a very challenging computational problem, because its
discretization in three-dimensional ventricular geometries of realistic size requires
the solution of large scale (often exceeding O.107/ unknowns) and ill-conditioned
linear systems at each time step.

Several approaches have been developed in order to reduce the high computa-
tional costs of the Bidomain model. Fully implicit methods in time, requiring the
solution of non-linear systems at each time step, have been considered in e.g. [9,10].
Alternatively, most previous works have considered IMEX time discretizations
and/or operator splitting schemes, where the reaction and diffusion terms are treated
separately, see e.g. [2, 3, 17, 19, 22]. The advantage of IMEX and operator splitting
schemes is that they only require the solution of a linear system for the parabolic and
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elliptic PDEs at each time step. A further splitting approach consists in uncoupling
the parabolic PDE from the elliptic one, see e.g. [4, 22].

Many different preconditioners have been proposed in order to obtain efficient
iterative solvers for the linear systems deriving from both splitting and uncoupling
techniques: block diagonal or triangular [2, 5, 12, 13, 21], optimized Schwarz
[6], multigrid [12, 13, 15, 18, 23], multilevel Schwarz [11], Balancing Neumann–
Neumann [24] and BDDC [25] preconditioners.

The aim of the present work is to apply the Multilevel Additive Schwarz
preconditioners of [11] to both a coupled and an uncoupled time discretization of
the Bidomain system and to compare their parallel performance. Three-dimensional
parallel numerical tests on a BlueGene cluster, reported in Sect. 4, show that the
uncoupled technique is as scalable as the coupled one. Moreover, the conjugate
gradient method preconditioned by Multilevel Additive Schwarz preconditioners
converges faster for the uncoupled system than for the coupled one. Finally, in all
parallel numerical tests considered, the uncoupled technique proposed is always
about 1.5 times faster than the coupled approach.

2 The Anisotropic Bidomain Model

The macroscopic Bidomain representation of the cardiac tissue volume ˝ is
obtained by considering the superposition of two anisotropic continuous media,
the intra- (i) and extra- (e) cellular media, coexisting at every point of the tissue
and separated by a distributed continuous cellular membrane; see e.g. [14] for
a derivation of the Bidomain model from homogenization of cellular models.
We recall that the cardiac tissue consists of an arrangement of fibers that rotate
counterclockwise from epi- to endocardium, and that have a laminar organization
modeled as a set of muscle sheets running radially from epi- to endocardium, see [7].
The anisotropy of the intra- and extracellular media is described by the orthotropic
conductivity tensorsDi.x/ and De.x/, see e.g. [2].

We denote by ˝ � R3 the bounded physical region occupied by the cardiac
tissue and introduce a parabolic-elliptic formulation of the Bidomain system. Given
an applied extracellular current per unit volume I eapp W ˝ 	 .0; T / ! R, we seek
the transmembrane potential v W ˝ 	 .0; T / ! R, extracellular potentials ue W
˝ 	 .0; T /! R, gating variables w W ˝ 	 .0; T /! RNw and ionic concentrations
c W ˝ 	 .0; T /! RNc such that

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

cm
@v

@t
� div.Di .x/rv/� div.Di .x/rue/C Iion.v;w; c/ D 0 in ˝ 	 .0; T /

�div.Di .x/rv/� div..Di .x/CDe.x//rue/ D I eapp in ˝ 	 .0; T /
@w

@t
� R.v;w/ D 0; @c

@t
� S.v;w; c/ D 0; in ˝ 	 .0; T /

(1)
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with insulating boundary conditions, suitable initial conditions on v;w; c and where
cm is the membrane capacitance per unit volume. The non-linear reaction term Iion

and the ODE system for the gating variables w and the ionic concentrations c are
given by the chosen ionic membrane model. Here we will consider the Luo-Rudy I
(LR1) membrane model [8].

3 Discretization and Numerical Methods

Space discretization. The variational formulation of system (1) is first discretized
in space by the finite element method. In this work, we will consider isoparametric
trilinear finite elements on hexahedral meshes. In the following, we denote by Ai;e
the symmetric intra- and extracellular stiffness matrices and by M the mass matrix.
We define the block mass and stiffness matrices as

M D
�

M 0

0 0

�

; A D
�

Ai Ai
Ai Ai C Ae

�

:

Time discretization. We consider two implicit-explicit (IMEX) strategies, both
based on decoupling the ODEs from the PDEs and on treating the linear diffusion
terms implicitly and the non-linear reaction terms explicitly.

• Coupled method. The equations arising from the discretization of the PDEs are
solved as a coupled system. Given wn; cn; vn; une at the generic time step n:

– we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variables wnC1 and the new ionic concentrations cnC1,

– then we solve the PDEs system, obtaining the new potentials vnC1 and unC1e .
Summarizing in formulae, given wn; cn; vn;une , the scheme is

wnC1 ��t R.vn;wnC1/ D wn

cnC1 D cn C�t S.vn;wnC1; cn/
	 cm

�t
MC A

�

�

vnC1
unC1e

�

D cm

�t
M

�

vn

une

�

C
"

�M Iion.vn;wnC1; cnC1/
M Ie;nC1app

# :

As a consequence, at each time step, we solve one linear system with unknowns
.vnC1;unC1e /. Because the iteration matrix is symmetric positive semi-definite,
the iterative method employed is the preconditioned conjugate gradient (PCG)
method. Due to the ill-conditioning of the iteration matrix and the large number
of unknowns required by realistic simulations of cardiac excitation in three-
dimensional domains, a scalable and efficient preconditioner is required. We
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adopt here the 4-level Multilevel Additive Schwarz (MAS(4)) preconditioner,
see [11, 20].

• Uncoupled method. The two equations arising from the discretization of the
PDEs are uncoupled by introducing the following scheme. Given wn; cn; vn; une
at the generic time step n:

– we first solve the ODEs system using the Implicit Euler method for the gating
variables and the Explicit Euler method for the ionic concentrations, obtaining
the new gating variables wnC1 and the new ionic concentrations cnC1,

– then we solve the elliptic equation, obtaining une ,
– and finally we update the transmembrane potential vnC1 by solving again the

parabolic equation.

Summarizing in formulae, given wn; cn; vn;une , the uncoupled scheme is

wnC1 ��t R.vn;wnC1/ D wn

cnC1 D cn C�t S.vn;wnC1; cn/
.Ai C Ae/une D �Aivn CM Ie;napp
	 cm

�t
M C Ai

�

vnC1 D cm

�t
M vn �Aiune �M Iion.vn;wnC1; cnC1/:

As a consequence, at each time step we solve first the linear system with matrix
AiCAe deriving from the elliptic equation and afterwards the linear system with
matrix cm

�t
M C Ai deriving from the parabolic equation. Both linear systems are

solved by the PCG method, since the matrices are symmetric positive definite in
the parabolic case and semi-definite in the elliptic case. The preconditioner used
for the parabolic system is Block Jacobi (BJ), because the related matrix is well-
conditioned, while the preconditioner used for the ill-conditioned elliptic system
is the MAS(4) preconditioner, described below.

Multilevel Additive Schwarz preconditioners. Let ˝k , for k D 0; : : : ; ` � 1,
be a family of ` nested triangulations of ˝ , coarsening from ` � 1 to 0, A`�1 D A

in the coupled method and A`�1 D Ai C Ae in the uncoupled method, and Rk

the restriction operators from ˝`�1 to ˝k . Define the matrices on each grid as
Ak D RkA`�1RkT for k D 0; : : : ; ` � 2. We then decompose each grid ˝k ,
for k D 1; : : : ; ` � 1, into N overlapping subgrids ˝k

m for m D 1; : : : ; N and
define the local restriction operators Rkm from ˝`�1 to ˝k

m and the local matrices
Akm D RkmA

`�1RkTm . The Multilevel Additive Schwarz (MAS(`)) preconditioner is
given by

B�1MAS D R0
T

A0
�1
R0 C

`�1
X

kD1

N
X

mD1
Rk

T

m A
k�1
m Rkm:

The condition number of the resulting preconditioner operator TMAS D B�1MASA
`�1

is bounded by
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	2.TMAS/ � C max
kD1;:::;`�1

�

1C hk�1
ık

�

;

where hk is the mesh size of ˝k grid, ık is the overlap size on level k and C is a
constant independent of hk , ık , N and `; see [11] and for hybrid variants [16].

4 Numerical Results

In this section, we present the results of parallel numerical experiments performed
on the BlueGene Cluster BG/Q of the Cineca Consortium (www.cineca.it). Our
FORTRAN code is based on the parallel library PETSc [1], from the Argonne
National Laboratory.

4.1 Test 1: Weak Scaling on Ellipsoidal Domains, Structured
Mesh

The coupled and uncoupled linear solvers are compared here in a scaled speedup test
on ellipsoidal deformed domains, discretized by structuredQ1 finite element grids.
The number of subdomains (and processors) is increased from 64 to 32,768, forming
increasing ellipsoidal domains ˝ . The fine mesh is chosen so as to keep the local
mesh size on each subdomain fixed at 32	32	32. With these choices, the global size
of the discrete Bidomain system increases from about 4 million dof for the smallest
domain with 64 subdomains to more than 2 billion dof for the largest domain with
32,768 subdomains. The physical dimensions of the increasing cartesian slabs are
chosen so that the fine mesh size h is kept fixed to the value h D 0:01 cm. The
simulation is run for 10 time steps of 0:05ms during the depolarization phase, which
is the most intense computationally.

The results reported in Table 1 clearly show that, since the MAS(4) precon-
ditioner is employed, both the coupled and uncoupled methods are scalable. In
fact, all mathematical quantities (condition number, extreme eigenvalues, PCG
iteration count) seem to approach constant values when increasing the number of
subdomains. Also the CPU times scale quite well, because they only increase of
about a factor 3–4 from 64 to 32,768 processors, with a very small and slow increase
after 4,096, while the global problem increases by a factor 512.

www.cineca.it
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Table 1 Test 1. Weak scaling for coupled and uncoupled MAS(4) solvers on
ellipsoidal structured meshes

procs dof Coupled Uncoupled
it time it time

64 4,319,890 43 5.65 29 1:82C 1:07D 2:89
128 8,553,474 39 5.57 28 2:02C 1:03D 3:05
256 17,040,642 40 5.70 28 1:92C 1:05D 2:97
512 33,949,186 36 5.48 28 1:98C 0:99D 2:97

1,024 67,766,274 36 5.69 28 2:17C 1:04D 3:21
2,048 135,268,866 34 8.50 27 2:93C 1:72D 4:65
4,096 270,274,050 34 16.39 27 5:58C 3:63D 9:21
8,192 540,021,250 32 16.51 26 5:93C 3:75D 9:68

16,384 1,079,515,650 32 17.39 26 6:24C 3:83D 10:07
32,768 2,159,978,114 26 6:90C 3:94D 10:84

Average condition number (	2), extreme eigenvalues (�M , �m), PCG iteration
count (it) and CPU time in seconds (time) per time step. The CPU times in the
uncoupled column are expressed as the sum of the elliptic plus the parabolic
solver. The run with 32K cores in the case of coupled solver failed because of
RAM limitations

Table 2 Test 2. Comparison of coupled and uncoupled solvers on a
whole heartbeat simulation, with 28,755,650 dof, 1,024 processors

Method it Tit time Ttime
Coupled 22 82,861 2.43 9.29eC3

Uncoupled 27 92,157 1.72 5.87eC3

Average PCG iteration count (it) and CPU time (time) per time step,
total PCG iteration count (Tit) and CPU time (Ttime). The CPU
times are expressed in seconds

4.2 Test 2: Comparison Between Coupled and Uncoupled
Methods on a Complete Cardiac Cycle Simulation

We now compare the coupled and uncoupled solvers on a complete heartbeat
(500 ms) in a portion of an ellipsoid, modeling half of the left ventricle, discretized
by aQ1 structured finite element grid of 384	384	96 elements (28;755;650 dof ).
The MAS(4) preconditioner is employed in the coupled solver and for the elliptic
linear system in the uncoupled solver, while the BJ preconditioner is employed for
the parabolic linear system in the uncoupled solver. The simulations are run on 1,024
cores. The time step size is changed according to the adaptive strategy described
in [2].

The results reported in Table 2 show that the uncoupled method is about 1.5 times
faster than the coupled one, because at each time step one solves two linear system
of half size, the parabolic one being well conditioned and cheap to solve. Figure 1
reports the epicardial transmembrane and extracellular potential distributions at
t D 26ms after an electric stimulus has been applied during the systolic phase of
the heart beat at the center of the epicardial surface.
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Fig. 1 Test 2. Epicardial transmembrane (left) and extracellular (right) potential distributions at
t D 26ms after an electric stimulus applied during the systolic phase of the heart beat

5 Conclusion

We have applied Multilevel Additive Schwarz preconditioners to both coupled and
uncoupled time discretizations of the Bidomain model of the cardiac bioelectric
activity and we have compared their parallel performance. Three-dimensional
parallel numerical tests on a BlueGene/Q cluster up to 32K cores have shown that
the uncoupled technique is as scalable as the coupled one. Moreover, the conjugate
gradient method preconditioned by Multilevel Additive Schwarz preconditioners
converges faster for the uncoupled system than for the coupled one. Finally, in all
parallel numerical tests considered, the uncoupled technique proposed was always
about 1.5 times faster than the coupled approach.
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Fuzzy Domain Decomposition:
A New Perspective on Heterogeneous
DD Methods

Martin J. Gander and Jérôme Michaud

1 Motivation

In a wide variety of physical problems, the complexity of the physics involved is
such that it is necessary to develop approximations, because the complete physical
model is simply too costly. Sometimes however the complete model is essential
to capture all the physics, and often this is only in part of the domain of interest.
One can then use heterogeneous domain decomposition techniques: if we know a
priori where an approximation is valid, we can divide the computational domain
into subdomains in which a particular approximation is valid and the topic of
heterogeneous domain decomposition methods is to find the corresponding coupling
conditions to insure that the overall coupled solution is a good approximation of the
solution of the complete physical model. For an overview of such techniques, see
[9,10] and references therein. However, there are many physical problems where it is
not a priori known where which approximation is valid. In such problems, one needs
to track the domain of validity of a particular approximation, and this is usually not
an easy task. An example of such a method is the �-method, see [1, 4].

In this contribution, we introduce a new formalism for heterogeneous domain
decomposition, which is not based on a sharp decomposition into subdomains where
different models are valid. The main idea relies on the notion of Fuzzy Sets intro-
duced by Zadeh [12] in 1965. The Fuzzy Set Theory relaxes the notion of belonging
to a set through membership functions to (fuzzy) sets that account for partially
belonging to a set. In the context of heterogeneous domain decomposition, this could
be useful if one assumes that the computational domain can be decomposed into
fuzzy sets that form a partition of the domain in a sense that needs to be specified.
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Once such a partition is given, one can compute the solution of the coupled problem
using the membership functions. Note that the membership functions can depend on
space and time and therefore can take into account a change in the validity domain
of a particular approximation. We show here that this technique leads to an excellent
coupling strategy for the 1D advection dominated diffusion problem. Such a domain
decomposition method would be able, in principle, to take into account part of the
domain where none of the available approximations are valid under the assumption
that a combination of them is a good enough approximation there.

On the assumption u D u1Cu2: The idea to use fuzzy set theory came from an
assumption that arose in some specific coupling methods (see below). We formulate
it here for a generic partial differential equation of the form

L .u/ D g; (1)

where L is a linear differential operator.

Assumption 1 (u D u1 C u2). We assume that the solution u of Eq. (1) can be
written as a sum, u D u1Cu2, and that one can derive a coupled system for the new
unknowns u1 and u2. The derivation of the coupled system might then use relevant
approximations for one or both components.

This assumption has been used at least in two different series of papers: the first one
is in physics for the approximation of neutrino radiative transfer in core-collapse
supernovae [2,3,11], and the second one is in mathematics for the coupling between
the kinetic equation and approximations of it (diffusion, Euler, Navier–Stokes: : :)
[5–8].

In the following, we will see how this assumption can be linked with fuzzy sets.
This will lead us to introduce fuzzy domain decomposition methods.

2 Fuzzy Sets and Fuzzy Domain Decomposition Methods

Let X be a set in the classical sense of generic elements x, such that X D fxg.
Definition 1 (Fuzzy Set). A fuzzy set A of X is characterized by a membership
function hA.x/ that associates to every point of X a real number in Œ0; 1�. The value
of hA.x/ represents the grade of membership of x in A. The support Supp.A/ of a
fuzzy set A is the classical subset ofX defined by Supp.A/ D fx 2 X jhA.x/ ¤ 0g.
Remark 1. If the membership function is a characteristic function, then we recover
the classical notion of sets.

We next list a few useful properties of fuzzy sets:

Definition 2 (Complementary Set). The complementary set Ac of a fuzzy setA is
defined by its membership function hAc D 1 � hA.
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Definition 3 (Union of Fuzzy Sets). The union of two fuzzy sets A and B of
membership function hA.x/ and hB.x/ is the fuzzy set C , denoted by C D A[ B .
It is characterized by its membership function hC .x/ linked with those of A and B
by hC .x/ D max.hA.x/; hB.x//, 8x 2 X .

Remark 2. The union of a fuzzy set with its complementary set is not equal to
the initial set, unless the membership functions are characteristic functions: A [
Ac   X .

Definition 4 (Algebraic Sum of Fuzzy Sets). The algebraic sum of A and B is
denoted by A C B and is defined by the membership function hACB D hA C hB .
This definition has a meaning only if hA.x/C hB.x/ � 1, 8x 2 X .

Remark 3. Note that the algebraic sum has the property that AC Ac D X .

Let˝ be the computational domain of the problem we want to solve. We use the
algebraical sum of fuzzy sets to obtain a decomposition of the domain:

Definition 5 (Fuzzy Domain Decomposition (FDD)). A fuzzy domain decompo-
sition is given by the fuzzy sets ˝i , i D 1; : : : ; n defined by their membership
functions hi such that their algebraic sum equals the domain˝:˝ D ˝1C: : :C˝n.
In terms of membership functions, this condition reads

Pn
iD1 hi .x/ D 1, 8x 2 ˝ .

Definition 6. Let u be a function from˝ to R. We define the restriction of u to the
fuzzy set A of ˝ by uA D hAu, where hA is the membership function of A.

Proposition 1. Let u be a function from ˝ to R, let f˝igniD1 be a fuzzy domain
decomposition of ˝ and let ui be the restriction of u to ˝i . Then

u D
n
X

iD1
ui and u0 D

n
X

iD1
u0i : (2)

Proof. This is a direct consequence of Definition 6 of the restriction of u to fuzzy
sets, and the linearity of derivatives. ut
Definition 7 (FDDM, eFDDM, iFDDM). A FDD method (FDDM), is a numerical
method based on an FDD of the domain. We will say that an FDDM is explicit
(eFDDM) if the membership functions hi are explicitly known, and implicit
otherwise (iFDDM).

Remark 4. The relation (Eq. (2)) shows that if the Assumption 1 is used, it is natural
to interpret the resulting method as an FDDM. The methods of Degond et al. [5–8]
belong to the eFDDM class, but the IDSA [2, 3, 11] is an example of an iFDDM.

If we want to obtain an heterogeneous DDM, we need two ingredients. The
first one is a coupling methodology between the two approximations (one of them
may be exact), and the second one is a criterion to decide where an approximation
is valid. The advantage of an eFDDM is that the hi functions are used both for
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implementing the coupling and the criterion. As the partition is explicitly known, we
can change it to test various criteria for the validity of the different approximations.

We now show the coupling procedure for a decomposition into two fuzzy
domains. Assume that we want to solve an approximation of Problem (1) and that
we have two approximations L1 and L2 of the linear operator L valid in a fuzzy
sense in ˝1 and ˝2 respectively. Then, we can decompose Problem (1) as

L .u�/ D g , h1L .u�/C h2L .u�/ D g Ý h1L1.u/C h2L2.u/ D g;
(3)

where we have introduced in the last formulation the approximated operators. Here,
u� stands for the exact solution and u for the approximate solution. The symbol Ý
means “is approximated by”. In order to obtain a FDDM, we will use Assumption 1,
and to obtain an explicit method in the sense of Definition 7, we require

ui D hiu; u0i D h0iuC hiu0; u00i D h00i uC 2h0iu0 C hiu00; i D 1; 2; (4)

where we used the product rule for hi sufficiently smooth.
As g D h1gC h2g, we can rewrite Eq. (3)3 as a system

�

h1L1.u/ D h1g on ˝;
h2L2.u/ D h2g on ˝;

Ý
� QL1.u1/ D h1g CL12.u2/ on Supp.˝1/;
QL2.u2/ D h2g CL21.u1/ on Supp.˝2/:

(5)

The second system is obtained by using Assumption 1 and Eq. (4). The use of the
product rule to handle the fact that the hi do not commute with Li leads to the
operators QLi and Li;3�i that are linked by the relation

QLi D Li �Li;3�i ; i D 1; 2: (6)

The change in support simply reflects the fact that Eq. (5)1 is non-trivial only in
Supp.˝i/. Equation (5)2 is an eFDDM for Problem (3)3.

Remark 5. The boundary conditions of an eFDDM can be easily defined by
transferring the boundary conditions on u to ui using Eq. (4).

3 An Example: Advection Dominated Diffusion

As an example, we consider for �; a > 0 the 1D advection diffusion equation

L .u�/ D �u�00 C au�0 D 0 on .0; 1/; u�.0/ D 0; u�.1/ D 1; (7)

whose closed form solution is given by u�.x/ D e�ax=��1
e�a=��1 : For �

a
 1, the diffusion

term is only important close to 0 where a boundary layer forms. We can define the
operators
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L1 WD L D �@xx C a@x; and L2 WD a@x; (8)

and, as before, using Assumption 1 and Eq. (4) we have

L12 WD �.h001 C 2h01@x/C ah01 and L21 WD ah02: (9)

The eFDDM method we get with the operators from Eqs. (8) and (9), using Eq. (6)
to define QLi , with g D 0, is

�u001 C .a � 2�h01/u01 � .�h001 C ah01/u1 D 2�h01u02 C .�h001 C ah01/u2; on Supp.˝1/;

au02 � ah02u2 D ah02u1; on Supp.˝2/:

(10)

Under Assumption 1 and Eqs. (4), (5)2 and (3)3 are equivalent.
The problem we are solving is then equivalent, by Eq. (3)3, to

h1�u00 C au0 D 0; on .0; 1/; u.0/ D 0; u.1/ D 1; (11)

whose analytical solution, provided that Supp.˝1/ is connected, is given by

u.x/ D
R x

0
.e
� R y0 a

�h1.z/
dz
/dy

R

Supp.˝1/
.e
� R y0 a

�h1.z/
dz
/dy

; if x 2 Supp.˝1/; u.x/ D 1; otherwise: (12)

We now study the approximation quality of this method as �
a
! 0 for a

decreasing twice continuously differentiable membership function h1 of the form

h1.x/ WD 1; if 0�x� c1; h1.x/ WD h.x/; if c1 < x <c2; h1.x/ WD 0; if c2� x� 1;
(13)

where 0 < h.x/ � 1, so that Supp.˝1/ in Eq. (12) is Supp.˝1/ D Œ0; c2/. We define
ı WD c2 � c1 to be the width of the coupling region.

Theorem 1. For h1 as in Eq. (13), the relative error errApp.
�
a
/ WD ku�u�kL2.0;1/

ku�kL2.0;1/
satisfies when �

a
! 0 the estimates:

c1 D cst.; c1 D 	
�

�
a

�1�"
; c1 D 	 �a ln. a

�
/; c1 D 	 �a ;

ı D cst. ı D 	0 � �
a

�1�"
ı D 	0 �

a
ı D 	0 �

a

errApp.
�
a
/ O.e�

ac1
� / O

�

e�	. a� /"
�

O.ln. a
�
/0:5. �

a
/	C0:5/ O.. �

a
/0:5/

(14)

Here, 	 > 0, 	0 � 0 are constants, and 0 < " � 1.

Proof. The proof of this result is divided into 3 steps. Step 1 finds two functions Qu�1
and Qu�2 that satisfy Qu�1 � u � Qu�2 . With such functions, we always have the bound
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ku � u�kL2.0;1/
ku�kL2.0;1/

� max
iD1;2 ei ; ei WD

kQu�i � u�kL2.0;1/
ku�kL2.0;1/

: (15)

Step 2 estimates maxiD1;2 e2i and step 3 handles the 4 cases in Eq. (14).

Step 1: With h1 as in Eq. (13), we can express the function u as

u.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1�e� ax
�

1�e� ac1
�

�

1� a�
R c2
c1
e

� a
�

R y
c1
h�1.z/dzdy

� ; if 0 � x � c1;

1�e� ac1
�

�

1� a�
R x
c1
e

� a
�

R y
c1
h�1.z/dzdy

�

1�e� ac1
�

�

1� a�
R c2
c1
e

� a
�

R y
c1
h�1.z/dzdy

� ; if c1 < x < c2;

1; if c2 � x � 1:

Using the fact that 0 < h.z/ � 1, we have the estimate

1�e� ac1
� < 1�e� ac1

�

�

1� a
�

Z x

c1

e� a
�

R y
c1
h�1.z/dzdy

�

	 1�e� ax
� ; c1 < x < c2:

Using this estimate, we define Qu�i , i D 1; 2 as

if 0	 x	 c1; 1�e� ax
�

1�e� ac2
�

if c1 < x <c2; 1�e
� ac1

�

1�e� ac2
�

if c2	 x	 1; 1

9

>

>

=

>

>

;

DW Qu�
1 .x/	u.x/	 Qu�

2 .x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1�e� ax
�

1�e� ac1
�

if 0	x	 c1;
1�en� ax

�

1�e� ac1
�

if c1 < x < c2;

1 if c2	 x	 1:

Step 2: We now compute the relative L2-errors for Qu�i , i D 1; 2. Using Eq. (15),
we have

e21 D I1.1; 2/C I2 C I3 and e22 D I1.2; 1/C I3;

where the different terms are integrals of the form
R

.
Qu�
i

u � 1/2dx,

I1.i; j / WD
Z ci

0

 

1 � e� a�
1 � e� acj�

� 1
!2

dx D ci
 

1 � e� a�
1 � e� acj

�

� 1
!2

D O

�

ci .
�

a
/e�

2acj .
�
a /

�

�

; (16)

I2 WD
Z c2

c1

"

.1 � e� ac1
� /.1 � e� a� /

.1 � e� ac2
� /.1 � e� ax� /

� 1
#2

dx
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Table 1 Table of the order of the different integrals Ij

c1 D cst., c1 D 	
�

�
a

�1�"
, c1 D 	 �

a
ln. a

�
/, c1 D 	 �

a
,

ı D cst. ı D 	0 � �
a

�1�"
ı D 	0 �

a
ı D 	0 �

a

I1.1; 2/ O.e� 2ac2
� / O

�

e�2.	C	0/. a� /"
�

O.ln. a
�
/. �
a
/2	C1/ O. �

a
/

I1.2; 1/ O.e� 2ac1
� / O

�

e�2	. a� /
"�

O.ln. a
�
/. �
a
/2	C1/ O. �

a
/

I2 O.e� 2ac1
� / O

�

e�2	. a� /
"�

O.. �
a
/2	C1/ O. �

a
/

I3 O.e� 2ac2
� / O

�

e�2.	C	0/. a� /"
�

O.. �
a
/2	C1/ O. �

a
/

e21 O.e� 2ac1
� / O

�

e�2	. a� /
"�

O.ln. a
�
/. �
a
/2	C1/ O. �

a
/

e22 O.e� 2ac1
� / O

�

e�2	. a� /
"�

O.ln. a
�
/. �
a
/2	C1/ O. �

a
/

� ı max
iD1;2

0

@

"

.1 � e� ac1
� /.1� e� a� /

.1 � e� ac2� /.1 � e� aci� /
� 1
#2
1

A

D O

�

ı.
�

a
/e�

2ac1.
�
a /

�

�

; (17)

I3 WD
Z 1

c2

 

1 � e� a
�

1 � e� ax� � 1
!2

dx D
Z 1

c2

"1
X

kD1
e�

kax
� .1 � e� a

� /�e� a�
#2

dx

D O

�

�

a
e�

2ac2.
�
a /

�

�

: (18)

As e�
aci
� < 1 and e� ax

� < 1, we can use geometric series to obtain
estimates of the different integrals. Taking only the leading term gives the
result for I1.i; j / and I3. For I3, the leading term under the integration
is e� ax

� , because x � 1. For I2 we also used the monotonicity of the
exponential to obtain the bound and then, use once again a geometric
series to conclude. In the order notation, we have specified the possible
dependence of ci and ı on the parameter �

a
.

Step 3: We now need to distinguish the different cases in order to complete the
proof. Using Eqs. (16)–(18), we can compute the results shown in Table 1.
Finally, we use relation (Eq. (15)) to obtain Eq. (14).

ut
This theorem shows that the approximation quality of the method is similar to the
best known coupling methods for this kind of problem, namely the one based on the
factorization of the operator, see [10].

Numerical experiment: We now show a numerical experiment, where we solve
Eq. (10) with the membership function h1 as in Eq. (13), with

h.x/ D ı�3.2x3 � 3.c1 C c2/x2 C 6c1c2x � c22.3c1 � c2//;
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Fig. 1 Results for the cases 2 and 3 of Theorem 1 where we refined the grid keeping n� constant.
We see that the curves follow the theoretical predictions. (a) Case 2: c1 D k �

a
1�", ı D �

a
1�",

with a D 1, " D 0:5 and k D 1; 1:5; 2. (b) Case 3: c1 D k �
a

ln. a
�
/, ı D �

a
, with a D 1 and

k D 1; 2; 3; 4

and h2 WD 1 � h1. With this decomposition, we solve the advection-diffusion
problem if x � c1, the purely advective model if x � c2, and the mixed model
in-between. The coupling is done with a spline. We introduce a set of equidistant
points xi D i � �x with i D 0; : : : ; nC 1 and �x D 1=.nC 1/. We discretize the
problem (Eq. (10)) with an upwind 3-point finite difference scheme. This gives us a
system of 2n coupled equations. For each component uj , j D 1; 2, we remove from
the system all the irrelevant equations, those for which hj .xi / D 0; this corresponds
to the restriction to Supp.˝j /.

In order to illustrate the behavior of the method, we have chosen the cases
2 and 3 in Theorem 1. In both cases, the observed behavior is in very good
agreement with the predictions, see Fig. 1 where we computed the relative error
ErrA between the numerical advection-diffusion solution and its approximation for
different parameters. In the two cases shown, the coupling region is moving towards
zero when � is decreasing and we see that the approximation quality depends on
how the coupling region is moved, accordingly to Theorem 1. We kept n� constant
in order to capture the boundary layer that forms when � ! 0.

4 Conclusion

We presented a new heterogeneous domain decomposition method based on
Fuzzy Set Theory. We have shown a concise analysis for a simple, but relevant,
model problem which showed that this type of coupling leads to a very efficient
heterogeneous domain decomposition method. This method can be viewed as a
formalization of a coupling technique for very complex problems, see for example
[7, 8] for the coupling between kinetic and hydrodynamic equations. In such a
coupling, the partition between the different fuzzy domains can evolve with time
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and can even adapt automatically to the local conditions using some local criterion,
see [8].

We think that such methods have a great potential in various coupling problems
and in particular for problems in which the partition into different domains of
validity of concurrent approximations is not a priori clear, because they permit to try
different criteria by changing only the way the membership functions are defined.

We are currently interested in such a method for the coupling of the diffusion
limit of the relativistic Boltzmann equation with a stationary free streaming limit of
it. This would be an alternative to the current version of the IDSA, which still has
some mathematical issues that need to be fixed, see [2, 3] for more details.
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A New Coarse Grid Correction for RAS/AS

Martin J. Gander, Laurence Halpern, and Kévin Santugini Repiquet

1 Introduction

It is well known that for elliptic problems, domain decomposition methods need a
coarse grid in order to be scalable. One talks about strong scalability of an algorithm,
if it permits to solve a problem of fixed size faster in the same proportion that one
adds processors. For example if on one processor, a strongly scalable algorithm
needs 10 s to solve the problem, it would need 1 s using 10 processors. Strong
scalability is difficult to achieve already from a theoretical point of view, the limit
as the number of processors goes to infinity leads to zero work per processor for a
problem of fixed size. One therefore also talks about weak scalability, which means
that one can solve a larger and larger problem with more and more processors
in a fixed time. For example if a weakly scalable algorithm solves a problem
with 100,000 unknowns in 10 s using 1 processor, it should be able to solve a
problem with 1,000,000 unknowns in the same 10 s using 10 processors. Domain
decomposition methods with coarse grids attempt to reach this goal.

The most fundamental result for the two level additive Schwarz method is then
precisely that the condition number of the preconditioned elliptic problem satisfies
the estimate
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Fig. 1 Decomposition into many subdomains for the one dimensional model problem

K .M�1AS A/ � C.1C
H

ı
/; (1)

where ı denotes the size of the overlap, andH the diameter of the coarse mesh, see
the seminal technical report [2], or also the book [11] for a complete and detailed
treatment. This result indicates that if one keeps the ratio of the coarse mesh cells to
the overlap in a two level additive Schwarz method constant, the method is weakly
scalable (as long as the coarse grid solve remains negligible).

Similarly, for substructuring methods, to which the FETI and Balancing
Neumann–Neumann methods belong, there is a condition number estimate of
the preconditioned system of the form

K .M�1subA/ � C.1C ln.
H

h
//2; (2)

where now h denotes the mesh size. This theoretical result has been established for
the Balancing Neumann–Neumann algorithm in [3, 9], and for the FETI method in
[10]; for a complete treatment, see again the book [11]. In overlapping methods,
the mesh size h is often related to the overlap parameter ı, since the overlap is in
general just one or a few mesh cells, and this permits us to compare (1) and (2).

It is also very easily possible to understand intuitively why such a coarse level
correction is necessary, if one wants to obtain a scalable method. For the simple
model problem,

.�� @xx/u D 0; u.0/ and u.1/ given; (3)

we consider the parallel Schwarz method introduced by Lions [8] for the decompo-
sition shown in Fig. 1,

.�� @xx/uni D 0 in ˝i ;

uni .˛i / D un�1i�1 .˛i /; uni .ˇi / D un�1iC1.ˇi /;
(4)

which is a one level method, and is equivalent to RAS (restricted additive Schwarz
[1]), see [4, 5] for a proof of equivalence. We show in Fig. 2 the first few iterations
of algorithm (4): in the top row, for the case of two subdomains, we clearly see that
both iterates on the left and right subdomain start to converge with the first iterations
toward the solution, which is a straight line in this example with � D 0, whereas
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Fig. 2 First iterations of Lions parallel Schwarz methods (equivalent to RAS) for two subdomains
in the top row, and sixteen subdomains in the bottom row, � D 0

with 16 subdomains in the bottom row, the subdomains on the left remain at 0, since
communication in this algorithm is only local between the subdomains.

2 Geometric Investigation of the Coarse Grid Correction

In order to obtain a scalable algorithm, one can introduce a second level solve like in
multigrid: one simply introduces for the fine discretization Au D f of (3) a coarse
grid, and then, after each iteration of algorithm (4), performs the correction

rn D f � Aun I
rc D Rrn I
uc D A�1c rc I
un D un CEuc I

(5)

using standard components. In our example, we use for the extension E linear
interpolation, for the restriction R the extension transposed and normalized, and
for the coarse matrix the Galerkin projection Ac D RAE. A classical choice for
the coarse grid is to put one grid point into the center of each subdomain as shown
by the empty square in Fig. 3. This leads for our example to the convergence result
shown in Fig. 7 on the left. We clearly see that without coarse grid, the convergence
slows down as we add subdomains, whereas with the coarse grid, the convergence
curves remain the same, the algorithm is scalable.

In order to see geometrically how the coarse grid correction (5) works, we now
visualize in each iteration step how it operates: we show in Fig. 4 for the case of four
subdomains the iterates before the coarse grid correction, then the residual, the best
coarse correction possible and the one actually computed, and finally the iterates
after the coarse grid correction. We clearly see that the coarse grid correction is
effective: after one coarse grid correction, in the top row, the approximate solution is
already very close for all subdomains to the solution sought. We see however also a
very unnatural kink appearing in the corrected approximation on the right. Looking
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αi

αi+1βi−1

βiΩi

Ωi−1 Ωi+1

x

Fig. 3 Various choices to place coarse grid nodes: center of subdomains (empty squares), center
of overlaps (empty circles), in the overlap to the left and right of the RAS discontinuity (filled
circles) and an equal number of coarse grid points within the subdomains for a fair comparison
(filled squares)

at the middle picture of the top row, we see that the residual is concentrated in the
center of the overlaps. This is because in RAS, subdomain solutions are composed
piecewise, and subdomain solutions satisfy the equations in the subdomains (one
says they are harmonic), and thus have zero residual there. The coarse correction
computed with grid points in the center of each subdomain are not suitable to
correct such a residual support well, as one can see in the middle figure in each
row: the residual is smeared out into the subdomains, instead of being corrected in
the overlap.

This indicates that coarse grid degrees of freedom in our example should be
placed in the overlap, in order to avoid the smearing of the residual into the
subdomains, and ideally one should have one degree of freedom on each side of
the non-zero residual location, in order to capture the ‘jump’ in the ideal correction
shown in the middle column, see the filled circles in Fig. 3. The best coarse space
must have as a range such types of corrections. We show in Fig. 5 for the same
example what happens with this new coarse grid correction. The result is striking:
we obtain convergence of the Schwarz algorithm with this coarse grid correction in
two iterations, independently of the number of subdomains. Under the conditions

(i) The coarse grid nodes are in the overlap and can capture the discontinuity from
RAS,

(ii) The coarse grid functions satisfy the homogeneous equation,

one obtains a direct solver! In order to illustrate that it is important for the coarse
grid shape functions to be harmonic, we show in Fig. 6 what happens when we
solve a problem with � D 10, and still use piecewise linear coarse shape functions.
We clearly do not obtain the solution any more after two iterations, but still a very
rapidly converging method, note the different scaling in the residual plot on the left
of Fig. 6! In order to finally compare with a classical two level additive Schwarz
method (AS), and measure the influence of using a Krylov method to accelerate
the iteration, we present in Fig. 7 on the right the convergence histories for this
example. It is well known that AS does not converge without Krylov acceleration,
which explains the plateau observed in Fig. 7. But even with Krylov acceleration,
the method is much slower than RAS with the new coarse grid placement. We
also notice that RAS now does basically not need Krylov acceleration any more,
convergence with and without Krylov is very similar.

The key question is: can we learn anything from this simple one dimensional
example for a problem in higher dimensions? According to the design rule 1. above,
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Fig. 4 On each line the iterates before the coarse correction (left), residual, best possible coarse
correction and coarse correction actually computed (middle), and iterates after the coarse correction
(right) for the first few iterations of the Lions parallel Schwarz method with coarse correction

the coarse grid needs to have nodes in the overlap, and enough to capture an arbitrary
residual located there, as shown in Fig. 8 on the left. Then one can prove that we still
get a direct solver, provided design rule 2. above is also satisfied. It is interesting
at this point to indicate a relation of this coarse grid correction and the optimal
transmission operator introduced in [6], which leads to convergence of an optimized
Schwarz method in two iterations, independently of the number of subdomains and
subdomain configuration, even with crosspoints! The transmission operator also
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Fig. 5 Residual, best possible coarse grid correction and coarse correction actually computed with
good placement of coarse grid nodes (left), iterate after the new coarse grid correction (middle),
and iterate after the Schwarz correction (right) starting with the same initial configuration as shown
on the top left in Fig. 4

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

iteration 1 coarse grid correction

x

residual
coarse grid correction
real correction needed

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
iteration number 1 after coarse grid correction

x

iterates
exact solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
iteration 2 before coarse grid correction

x

iterates
exact solution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

−3 iteration 2 coarse grid correction

x

residual
coarse grid correction
real correction needed

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
iteration number 2 after coarse grid correction

x

iterates
exact solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
iteration 3 before coarse grid correction

x

iterates
exact solution

Fig. 6 Example with � D 10, but otherwise the same configuration as in Fig. 5

contains a coarse grid component there, and it needs precisely the same traces as our
presently proposed coarse grid, and one can find a complete proof at the algebraic
level on convergence in two iterations in [6]. Similarly, for a banded matrix, there is
also an optimal transmission operator in [7], which again involves the same global
traces. Naturally, these methods are related, but the precise relation is non-trivial
and will be developed elsewhere.

The coarse space indicated in Fig. 8 on the left is however very expensive, it
requires many degrees of freedom, and also a solve for each in order to obtain
harmonic shape functions. A much cheaper alternative is indicated in Fig. 8 on
the right: one simply places four coarse grid nodes around the cross point of the
decomposition. One can then again use Q1 coarse shape element functions, which
are harmonic. We show in Fig. 9 the convergence histories we obtain for the Laplace
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Fig. 8 Optimal coarse grid in two dimensions, and a simple approximation, extending the 1d
optimal placement in tensor form

0 10 20 30 40 50 60
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

classical Q1
Q1 in overlap
Q1 fair
optimized Q1

iteration

m
ax

im
um

er
ro

r

0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

classical Q1
Q1 in overlap
Q1 fair
optimized Q1

iteration

m
ax

im
um

er
ro

r

Fig. 9 Convergence histories for two level RAS with various coarse grid node placements on the
left and overlap 3h, and on the right for AS (additive Schwarz) with overlap h
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equation on the unit square, decomposed into 16	 16 subdomains, using 256	 256
gridpoints. On the left we used the Lions Schwarz method with a coarse grid
(equivalent to two level RAS) with overlap 3h. We show the result for the

• classical placement of one coarse grid node in the center of each subdomain
(classical Q1, empty square in the 1d Fig. 3),

• one node at each crosspoint (Q1 in overlap, empty circle in the 1d Fig. 3), in order
to illustrate that really one node is not enough for the jumps in RAS,

• four nodes per subdomain equally spaced (Q1 fair, filled square in the 1d Fig. 3)
with the same number of coarse grid points as the optimized coarse grid for a fair
comparison, and

• four nodes around the crosspoints (optimized Q1, filled circle in the 1d Fig. 3),
with the same number of coarse grid points as Q1 fair.

Clearly the optimized placement of the coarse grid nodes leads to a substantially
faster method than all the other choices.

In Fig. 9 on the right we show the corresponding result for AS with minimal
overlap h. It is interesting to note that for minimal overlap, the influence of the
placement of the coarse nodes is even more important, and one obtains a much
faster method than with any of the other coarse grid node placements in this two
dimensional example.

3 Conclusions

We explained geometrically the interplay between Schwarz iterations and coarse
grid corrections. Our example in one dimension revealed that in addition to
having harmonic coarse space shape functions, it is also very important where
the coarse grid nodes are placed. Optimal placement in one dimension is in the
overlap, which leads to a method that converges in two iterations, independently
of the number of subdomains. In higher spatial dimensions, it is still possible to
construct such a coarse grid correction, but one has to use a number of degrees
of freedom proportional to the skeleton of the decomposition. Using however a
simple approximation, placing only few degrees of freedom around the crosspoints,
leads already to a much faster iterative method than placing coarse nodes as it is
done traditionally somewhere within the subdomains. Several theoretical results are
already available, though in the different context of transmission conditions, see [6]
and [7], and we are currently working on a rigorous error analysis of this new idea.
It is also an open question how such an optimized coarse grid would have to look
like for a general decomposition of a general domain, our examples here having
been simple squares.
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Aggregation-Based Aggressive Coarsening
with Polynomial Smoothing

James Brannick

1 Introduction

This paper concerns the development of an algebraic multigrid (AMG) method for
solving the (graph) Laplacian problem. The corresponding linear system is defined
in terms of the following bilinear form:

.Au; v/ D
X

e2E
weıeuıev C

X

i2Sb
diui vi D .f; v/; (1)

where G D .V ;E / denotes an unweighted connected graph, V and E denote the
set of vertices and edges of G , respectively, and ıeu D .ui �uj / for e D .i; j / 2 E .
Note that the lower-order terms, diui vi ; i 2 Sb , are included to account for various
types of boundary conditions for problems originating from discretization of partial
differential equations (PDEs). If the lower-order terms are omitted and the weights
we D 1, then the variational problem reduces to the graph Laplacian for a graph
G that we focus on here. The graph Laplacian, A, is then a symmetric and positive
semi-definite matrix and its kernel is the space spanned by the constant vector.

The main aim of the paper is to study the use of polynomial smoothing together
with aggressive unsmoothed aggregation-based algebraic multigrid (UA-AMG)
coarsening in developing an AMLI-cycle or k-cycle preconditioner [2] for the
graph Laplacian system. We consider the recently proposed polynomial based on
the best approximation to x�1 in the uniform norm [10] in formulating the proposed
UA-AMG algorithm. A multilevel smoothed aggregation (SA) AMG algorithm
using polynomial smoothers based on Chebychev approximations and its V -cycle
convergence analysis are found in [13]. We note that, these results are also used
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in [10] to derive an SA two-level preconditioner with polynomial smoothing for
diffusion problems. In both methods, the polynomial approximation is used to
form (1) a smoother for the interpolation operator and (2) a relaxation scheme
for the solver. These preconditioners yield uniformly convergent methods provided
polynomials of sufficiently large degree are used in both steps. Further development
and analysis of polynomial smoothers are found in [1] and [3, 8].

Here, we consider an approach in which the polynomial smoother is used as
the relaxation scheme in the AMG solver and interpolation is based on UA-AMG
framework. We show that using such plain aggregation based aggressive coarsening
with a polynomial smoother in a AMLI cycle or k-cycle leads to a uniformly
convergent method. Generally, the use of unsmoothed (or plain) aggregation to
construct the coarse space without the use of interpolation smoothing has been
observed to result in slow convergence of a V -cycle multilevel iterative solver.
We note that recently it has been shown that plain aggregation-based coarsening
approaches can lead to effective solvers for a variety of problems provided AMLI
or k-cycles are used, e.g, such approaches have been developed and analyzed for
the graph Laplacian in [11], for more general M matrices in [6, 12], and for
problems in quantum dynamics in [4]. Generally, the use of AMLI cycles and
UA-AMG typically leads to low grid and operator complexities, limited fill-in
in the coarse level operators, and reduces the arithmetic complexity in the setup
phase substantially. The gains in the solve phase are often less pronounced since
AMLI- and NAMLI-cycles use additional coarse-level corrections to accelerate
convergence of the UA-AMG method.

In Sect. 2, we introduce a graph partitioning algorithm for constructing the coarse
space. Then, in Sect. 3, we establish an approximation property for such piecewise
constant coarse spaces, which together with the stability estimates for such methods
found in [6], gives a spectral equivalence result that holds for the corresponding two-
level method applied to graph Laplacian on general graphs. The resulting estimate
depends on the degree of the polynomial smoother and the coarsening ratio, i.e.,
the cardinality of the aggregates, and thus provides a way to adjust the polynomial
degree to compensate for aggressive coarsening. We note that the result is a special
case of the general result found in [10]. In the last section, we provide numerical
experiments of the proposed multigrid approach applied to the graph Laplacian
and show that the coarsening can be quite aggressive and still only a low degree
polynomial is needed to obtain a scalable AMLI or k-cycle preconditioner.

2 Subspaces by Graph Partitioning and Graph Matching

We define a graph partitioning of G D .V ;E / as a set of connected subgraphs
Gi D .Vi ;Ei / such that [iVi D V ; Vi \ Vj D ;; i ¤ j . In this paper, all
subgraphs are assumed to be non empty and connected. The simplest non trivial
example of such a graph partitioning is a matching, i.e, a collection (subset M ) of
edges in E such that no two edges in M are incident. For a given graph partitioning,
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subspaces of V D RjV j are defined as

VH D fv 2 V j v D constant on each Vi g: (2)

Note that each vertex in G corresponds to a connected subgraph Gi of G and every
vertex of G belongs to exactly one such component. The vectors from VH are
constants on these connected subgraphs. The `2 orthogonal projection on VH , which
is denoted byQ, is defined as follows:

.Qv/i D 1

jVkj
X

j2Vk
vj ; 8i 2 Vk: (3)

Given a graph partitioning, the coarse graph GH D fVH;EH g is defined by assuming
that all vertices in a subgraph form an equivalence class and that VH and EH are the
quotient set of V and E under this equivalence relation. That is, any vertex in VH
corresponds to a subgraph in the partitioning, and the edge .i; j / exists in EH if and
only if the i -th and j -th subgraphs are connected in the graph G .

The algorithm we use in forming a graph partitioning is a variant of the approach
we developed and tested for graphics processing units in [7]. The procedure
iteratively applies the following two steps:

(A) Construct a set S which contains coarse vertices by applying a maximal
independent set algorithm to the graph of Ak .

(B) Construct a subgraph for each vertex in S by collecting vertices and edges of
the neighbors of vertices in S .

3 Two-Level Preconditioner with Polynomial Smoothing
for the Graph Laplacian

A variational two-level method with one post smoothing step is defined as follows.
Given an approximation w 2 V to the solution u of the graph Laplacian system, an
update v 2 V is computed in two steps

(i) y D wC PA�HPT .f � Aw/; AH D PTAP .
(ii) v D y CR.f �Ay/.
We use � to denote the pseudo inverse of a matrix. The corresponding error
propagation operator of the two-level method is given by

ETL D .I �RA/.I � �A/; �A D PA�HPT A:

Here, ETL is nonsymmetric and, thus, we consider the following symmetrization
to form the two-level preconditioner: B D .I � ETLE�TL/A�; with � denoting the
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adjoint with respect to the energy inner product .�; �/A. We note that jETLj2A D
�.I �BA/, where �.X/ is the spectral radius of the matrixX . Further, if NR satisfies
�

I � NRA� D .I �RA/2 so that NR D 2R � RAR, then using that �A is an A-
orthogonal projection on range.P /, it follows by direct computation that B D NRC
.I � RA/PA�HPT .I � AR/ :

In [10], a spectral equivalence result for the preconditionerB using a polynomial
smoother based on the best approximation to x�1 on a finite interval Œ�0; �1�, 0 <
�0 < �1, in the uniform norm ( k � k1) is derived. Here, �0 > 0 is any lower bound
on the spectrum of A and �1 D kAk`1 is an approximation to �.A/. The unique
solution to the minimization problem

qm.x/ D arg minfk 1
x
� pk1;Œ�0;�1�; p 2Pmg; (4)

determines the polynomial approximation of degreem. For details on the three-term
recurrence used in its construction we refer to [10]. Define

Em WD max
x2Œ�0;�1�

j1 � xqm.x/j D max
x2Œ�0;�1�

x �
ˇ

ˇ

ˇ

ˇ

1

x
� qm.x/

ˇ

ˇ

ˇ

ˇ

:

Then, since �1 is a point of Chebyshev alternance from [10, Theorem 2.1 and
Eq. (2.2)] for the error of approximationEm we have

Em D �1
ˇ

ˇ

ˇ

ˇ

1

�1
� qm.�1/

ˇ

ˇ

ˇ

ˇ

D
�

2�1

�1 � �0
�

�
�

ım

a2 � 1
�

D 2	ım

.	 � 1/.a2 � 1/ :

Here, we have denoted 	 D �1
�0

, ı D
p
	�1p
	C1 , and a D 	C1

	�1 . Computing the error Em
then gives

Em D ım.	 � 1/
2

:

A restriction on the degree m is given by the requirement that qm.�1/ > 0.
A sufficient condition for the positivity of this polynomial (and also necessary
condition in many cases) is that 1

�1
� Em > 0. Thus, we need to find the smallest

m such that both Em < � and qm.�1/ > 0. We then have that the polynomial is
positive if

ım.	 � 1/
2

� 1

�1
) ım � 2

�1.	 � 1/ :

We note that from this it follows that R D qm.A/ and hence NR are symmetric
and positive definite, implying that the smoother in convergent in A-norm. Also, to
guarantee a damping factor less than � on the interval Œ�0; �1�, we have
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ım.	 � 1/
2

� � ) ım � 2�

	 � 1:

Thus, the minimalm that guarantees both properties are satisfied is given by

m � 1

j log ıj max

�

ˇ

ˇ

ˇ

ˇ

log
2�

	 � 1
ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

log
2

�1.	 � 1/
ˇ

ˇ

ˇ

ˇ

�

: (5)

The spectral equivalence result that we adopt to analyze a two-level method based
on plain aggregation with this polynomial smoother follows from this smoothing
estimate and the assumptions of stability and an approximation property of the
coarse space VH : for any v 2 Vh,

c�1p kv �Qvk2 C jv �Qvj2A � c1jvj2A; (6)

where j � jA denotes the A semi norm. Recall that in this paperQ is the `2 projection
on the span of f1lgnHlD1 (p.w. constant projection) and, thus, this inequality holds also
in the case that v is in the kernel of A, since then, all the terms are equal to zero.

Assume that VH is such that the above approximation and stability assumptions
hold and the polynomial qm is chosen such that (5) holds for a fixed value �0. Then,
the following spectral equivalence holds

vTAv � vT B�v � KTG v
T Av; KTG D 8C 8c1




cnzcpcs C 1
�

: (7)

This result is a special case of Theorem 4.6 in [10], refined for unsmoothed
aggregation applied to the graph Laplacian. Here, cnz is a constant that depends
on the number of nonzeros per row of A, the constant c1 involves the stability of Q
in A-norm and the constant cp arises from the weak approximation property, and as
we show below, depends on the cardinality and the diameter of the subgraphs in the
graph partitioning. The constant cs D ln2 m

m2
, wherem is the degree of the polynomial.

Thus, given a partitioning of the fine-level graph into subgraphs, G D [nHlD1Gl , it is
possible to choose the degree of the polynomial m sufficiently large to control the
constant cp and hence KTG in the above spectral equivalence estimate. This result
is derived from the following estimate (see Corollary 4.4 in [10])

vT B�v � 4 inf
vh2VH

�

jvH j2A C �cskv � vHk2 C jv � vH j2A
�

: (8)

A similar result for smoothed aggregation based on Chebyshev polynomial approx-
imations is found in [8].

Next, we establish the approximation property for the p.w. constant coarse space
VH as defined in (2) for the graph Laplacian. Suppose that V D f1; : : : ; ng is
partitioned into nonoverlapping subsets: V D [nHlD1Vl ; nl D jVl j: Each set of
vertices defines a subgraph G` whose vertex set is Vl and whose edges El are a
subset of E , where .i; j / 2 El if and only if both i and j are in Vl . Denote the
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graph Laplacian associated with the subgraph Gl by Al . Let 1 denote the constant
vector on V and 1l the constant vector on Vl extended by 0 outside Vl . Let �l be
the smallest positive eigenvalue of the graph Laplacian on Gl , namely, �l is defined

as �l D min
vW .v;1l /D0

.Alv; v/

kvk2 : Here, the minimum is taken over all v 2 Rnl . Given

v 2 Rn define kvk2Gl D
P

j2V l v2j , which is the `2 norm on the subgraph Gl . Now,
since ..v �Qv/; 1l/ D 0, we have kv �Qvk2Gl � ��1l

P

e2El .ıev/
2: Thus,

kv�Qvk2 D
nc
X

lD1
kv�Qvk2Gl�

nc
X

lD1
��1l

X

e2El
.ıev/

2 � cp
X

e2E
.ıev/

2 D cp.Av; v/: (9)

The last step follows from the definition of cp and the observation that since[lE` �
E ,we have that for any v 2 Rn,

PnH
lD1

P

e2El .ıev/
2 � P

e2E .ıev/2 D .Av; v/:

Note that this latter result holds since the second sum is over a larger set. For shape
regular subgraphs, Gl , the local constants ��1l can be bounded in terms of jVl j �
diam.Gl / using Cheeger’s inequality [9]. Here, diam.Gl / denotes the diameter of
the longest path in the l th subgraph. A similar technique is considered in [12], in
which the constants ��1` are computed by solving local eigenvalue problems.

In [5], commuting relations involving a certain projection, ˘ , the p.w. constant
projection Q, the discrete gradient operator, B , and BT on the graph, G , are
introduced and are then used to derive a stability estimate of the form

jQj2A D sup
vW .v;1/D0

jQvj2A
jvj2A

� k˘k2 � c0 ;

where c0 is a constant that depends on the shape and alignment of the subgraphs,
but not on the dimension, jV j, of the graph Laplacian, A. It is noteworthy that this
bound holds for general graphs with few assumptions and, further, that, since ˘ is
constructed one row at a time, this estimate allows local energy estimates that can be
used in forming the graph partitioning. A similar approach was considered in [11].

Given the above approximation and stability estimates and using that jvH jA �
c0jvjA, vH D Qv, it follows that the inequality in (6) holds with c1 D 2c0 C 3
and cp given in (9). This, in turn, implies the spectral equivalence of the two-
level preconditioner based on a p.w. constant coarse space VH for the graph
Laplacian. We remark that the Galerkin coarse-level operator AH D PTAP is
generally a weighted graph Laplacian of the form AH D BT

HDBH , where D
is a diagonal weight matrix with strictly positive entries and BH is the discrete
gradient operator defined on the coarse graph GH.VH ;EH/. Similar stability and
approximation properties of piece-wise constant coarse spaces can be established in
this more general setting as well and, then, a similar proof of the spectral equivalence
result follows with minor modifications. Alternatively, it is possible to replace the
weighted graph Laplacian with an unweighted one on the same graph and derive a
spectral equivalence result between the two. The latter result, in turn, again can be
used to establish a spectral equivalence result for this modified two-level method.
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4 Numerical Results

We apply the proposed aggregation based preconditioner to graph Laplacians
resulting from finite element discretizations of the scalar Laplace problem. We
consider both stationary AMLI-cycle and N-AMLI-cycle (k-cycle) preconditioners.
For details on the theory and the implementation of the AMLI and N-AMLI methods
we refer to [2]. In the AMLI approach, we use the polynomial based on the best
approximation to x�1 in the uniform norm to form a the preconditioner between any
two successive levels of the multilevel hierarchy, see [10]. In the N-AMLI-cycle,
a nonlinear PCG (NPCG) method is applied recursively to solve the coarse-level
equations. The AMLI-cycle is used as a preconditioner for the CG method on the
finest level and the N-AMLI-cycle is applied as a preconditioner to the NPCG
iteration. To limit the memory requirements of the nonlinear scheme we restart the
outer fine-level NPCG method every five iterations.

In all tests, the maximal independent set algorithm used in the aggregation
process for constructing the coarse spaces is applied to the graph of A4, yielding
a coarsening factor of roughly n=nH D 30 between any two successive levels. The
problem is coarsened until the size of the coarsest level is less than 100. As the
relaxation method in the multilevel solver we use the polynomial smoother based
on the best approximation to x�1 on the interval Œ�0; �1�, where the estimate of
the largest eigenvalue is computed as �1 D kAk`1 and we set �0 D �1=10. Thus,
taking the degree as m D 4 in the polynomial smoother ensures the inequality (5)
holds. We test W -cycle AMLI and N-AMLI preconditioners with such smoother.
The stopping criteria for the flexible preconditioned conjugate gradient iteration
is set to a 10�8 reduction in the relative A norm of the error and the number of
iterations needed to reach this tolerance in the different tests are reported.

In Table 1, we report results of the proposed method for graph Laplacians arising
from discretizing the Poisson problem on structured and unstructured meshes. We
compare the performance of a stationary AMLI with a N-AMLI, both using the same
multilevel hierarchy obtained by applying the aggregation algorithm to the same
Poisson problem with Neumann boundary conditions discretized using standard
linear Finite Elements. For the structured meshes we consider a 2d unit square
domain with n2 unknowns (left) and a 3d unit cube domain with n3 unknowns
(middle). Results for more general graphs (right), coming from unstructured meshes
resulting from triangulations of the 3d unit cube, are also included. The unstructured
mesh is formed by adding a random vector of length h=2, where h is the grid length,
to each vertex of a structured triangulation, followed by a Delaunay triangulation.
The (AMLI) N-AMLI method yields a (nearly) scalable solver with low grid and

operator complexities—in all tests the grid complexities
PJ
jD0 nj

n0
were less than 1.03

and the operator complexities
PJ
jD0 nnz.Aj /

nnnz.A0/
were less than 1.04.
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Table 1 Results of W.1; 1/ AMLI and nonlinear AMLI preconditioners with degree m D 4

polynomial smoother for the Poisson problem
2d struct.

n AMLI N-AMLI
5122 20 19
10242 22 20
20482 23 21
40962 24 21

3d struct.
n AMLI N-AMLI
323 22 20
643 23 22
1283 23 22
2563 25 22

3d unstruct.
n AMLI N-AMLI
323 24 21
643 25 23
1283 27 24
2563 28 24

5 Conclusion

An algebraic graph partitioning algorithm for aggressive coarsening is developed
and a two-level convergence theory of the resulting solver with polynomial smoother
is developed. It is shown numerically that the resulting N-AMLI approach with
polynomial smoother yields an efficient solver for graph Laplacian problems
coming from Finite Element discretizations of the Poisson problem. The graph
partitioning algorithm, intended for unweighted graphs, is designed to select shape
regular aggregates of arbitrary size and, thus, can be used to obtain predefined
coarsening factors. The use of an unsmoothed aggregation form of aggressive
coarsening results in low overall grid and operator complexities and limited fill-
in in the coarse-level operators. It further significantly simplifies the triple matrix
product to simple summations of entries of the fine-level matrix.
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Space–Time Domain Decomposition for Mixed
Formulations of Diffusion Equations
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1 Introduction

Flow and transport problems in porous media are well-known for their high com-
putational cost. In the far field simulation of an underground nuclear waste disposal
site, one has to work with extremely different length and time scales, and highly
variable coefficients while satisfying strict accuracy requirements. One strategy
for tackling these difficulties is to apply a non-overlapping domain decomposition
method which allows local adaptation in both space and time and makes possible
the use of parallel algorithms. The substructuring method with a Steklov Poincaré
operator, which is widely used by engineers for steady problems with strong
heterogeneities, is a promising option. The optimized Schwarz waveform relaxation
(OSWR) method, which has been developed over the last decade for finite element
and finite volume methods, is another potential choice.

The objective of this paper is twofold. Firstly, we propose the time-dependent
Steklov Poincaré operator and introduce the Neumann–Neumann preconditioner [2]
as well as the weight matrices [13] to improve the convergence speed and handle
the heterogeneities. Secondly, we extend the OSWR approach [8] to the case of
mixed finite elements [3] with their local mass-conservation property. Numerical
experiments in 2D are presented to illustrate the performance of the two methods
for a simplified ANDRA test case.
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For an open, bounded subset ˝ of Rd .d D 2; 3/ with Lipschitz boundary @˝
and some fixed time T > 0, we consider the following time-dependent diffusion
problem

!@t c Cr � .�Drc/ D f in ˝ 	 .0; T / ; (1)

c D 0 on @˝ 	 .0; T /; (2)

c.0; �/ D c0 in ˝; (3)

where c is the concentration of a contaminant, ! the porosity and D a symmetric,
positive definite diffusion tensor.

We now rewrite (1) in an equivalent mixed form by introducing the vector field
r WD �Drc. This yields

!@tc Cr � r D f in ˝ 	 .0; T / ;
D�1rCrc D 0 in ˝ 	 .0; T / ; (4)

along with boundary and initial conditions (2)–(3). Henceforth, unless otherwise
specified, we implicitly assume boundary condition (2) on @˝ .

Theorem 1 (Well-Posedness and Regularity). Suppose that the diffusion tensor
D is in W 1;1.˝/d2: If f 2 L2.0; T IL2.˝// and c0 2 H1

0 .˝/, then problem (4)
has a unique weak solution .c; r/ such that

c 2 H1.0; T IL2.˝// and r 2 L2.0; T IH.div;˝//\ L1.0; T IL2.˝/d/:

Moreover, if f 2 H1.0; T IL2.˝// and c0 2 H2.˝/\H1
0 .˝/ then

c 2 W 1;1.0; T IL2.˝// and r 2 L1.0; T IH.div;˝//\H1.0; T IL2.˝/d /:

The proof is based on energy estimates and Galerkin’s method (see [9, 12]).

2 Two Space–Time Domain Decomposition Methods

Our work relies on the decomposition of ˝ into non-overlapping subdomains. For
simplicity, we describe the methods in case of two non-overlapping subdomains˝1

and˝2 with � D @˝1 \ @˝2 \˝ (the results can be extended to the case of many
subdomains as we shall see in the numerical experiments).

Let fci ; rig be the restriction to ˝i ; i D 1; 2; of fc; rg, the solution to (4).
Problem (4) can be reformulated in the equivalent multi-domain form by solving
the same problem (globally in space and time) in each subdomain:
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!i@t ci Cr � ri D f in ˝i 	 .0; T /
D�1i ri Crci D 0 in ˝i 	 .0; T /

ci .0/ D c0 in ˝i

for i D 1; 2; (5)

along with the physical transmission conditions on the space–time interface

c1 D c2
r1 � n1 C r2 � n2 D 0 on � 	 .0; T / : (6)

where ni is the outward unit normal vector on @˝i .

2.1 Method 1: Time-Dependent Steklov–Poincaré Operator
Approach

This method is the continuous counterpart of the Schur complement method, but
extended to the time-dependent problem.

For f and c0 as before and � 2 L2.0; T IH 1
2 .� //, we define the extension

operators

Di W .�; f; c0/ 7! .ci .�; f; c0/; ri .�; f; c0// ;

where .ci .�; f; c0/; ri .�; f; c0// ; i D 1; 2; is the solution to the problem

!i@t ci Cr � ri D f in ˝i 	 .0; T / ;
D�1i ri Crci D 0 in ˝i 	 .0; T / ;

ci D � on � 	 .0; T / ;
ci .0/ D c0 in ˝i:

(7)

Comparing with (5), (6), .ci .�; f; c0/ ; ri .�; f; c0// satisfies (5)–(6) if and only if

r1 .�; f; c0/ � n1 C r2 .�; f; c0/ � n2 D 0 on � 	 .0; T / ;

or equivalently,

F1D1.�; f; c0/CF2D2.�; f; c0/ D 0 on � 	 .0; T /; (8)

where Fi .ci ; ri / WD ri � ni j� , i D 1; 2; is the normal trace operator.
As the operators Fi and Di are affine in �, (8) can be rewritten as

S � D � on � 	 .0; T / ; (9)

where S is the linear time-dependent Steklov–Poincaré operator, defined by

S D S1 CS2; Si � WD �FiDi .�; 0; 0/ (Dirichlet-to-Neumann operator).
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And the right-hand side is

� D F1D1.0; f; c0/CF2D2.0; f; c0/:

Remark. (i) Subdomain problem (7) is wellposed (this is an easy extension of
Theorem 1).

(ii) We solve problem (9) iteratively using a Krylov subspace method such as
GMRES.

(ii) The operator S is non-symmetric. In particular, by writing the variational for-
mulations of the subdomain problems, we deduce for �; � 2 L2.0; T IH 1

2 .� //

that

hS �; �i D
2
X

iD1

�

Z T

0

Z

˝i

D�1 Qri .�/ � Qri .�/C
Z T

0

Z

˝i

!i
@ Qci .�/
@t

Qci .�/
�

;

where . Qci .�/; Qri .�// WD Di .�; 0; 0/ for i D 1; 2. Thus, the well-posedness
of (9) is still an open question (see a related work by Kwok [11]).

2.2 Method 2: Optimized Schwarz Waveform Relaxation
Approach

We consider the second domain decomposition approach, the Optimized Schwarz
Waveform Relaxation (OSWR) method, where we replace the physical transmission
conditions (6) by the equivalent Robin conditions on the space–time interface

�r1 � n1 C p1c1 D �r2 � n1 C p1c2
�r2 � n2 C p2c2 D �r1 � n2 C p2c1 on � 	 .0; T / ; (10)

where p1 and p2 are positive parameters that can be optimized to significantly
improve the convergence rate of the method (see [1,4,6] and the references therein).
The OSWR method may be written as follows: at the kth iteration, we solve in each
subdomain the problem

@t c
k
i Cr � rki D f in ˝i 	 .0; T / ;

D�1i rki Crcki D 0 in ˝i 	 .0; T / ;
�rki � ni C picki D �rk�1j � ni C pick�1j on � 	 .0; T / ; j D .3 � i/;

ci .0; �/ D c0 in ˝i :

(11)

Remark. (i) For the first iteration, the transmission conditions are replaced by

�r1i � ni C pic1i D gi ; on � 	 .0; T /

for gi ; i D 1; 2; an initial guess on the space–time interface.
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(ii) The well-posedness of subdomain problem (11) is an extension of Theorem 1
(see [9]) making use of the space H .d iv;˝i/ defined by

H .div;˝i / D
˚

v 2 H.div;˝i/ such that v � ni 2 L2.� /
�

:

Theorem 2 (Convergence of the OSWR Method in Mixed Form). Suppose that
D is in W 1;1.˝/d2: Let f 2 H1.0; T IL2.˝// and c0 2 H2.˝/ \ H1

0 .˝/. If
the algorithm (11) is initialized by .gi / given inH1

�

0; T IL2 .� /�, then it defines a
unique sequence of iterates

.cki ; r
k
i / 2 W 1;1.0; T IL2.˝i //	L1.0; T IH .div;˝i //\H1.0; T IL2.˝i /

d /; i D 1; 2;

that converges to the weak solution .c; r/ of problem (4).

Remark. Theorem 2 can be extended to the case of many subdomains (see [9]).

As in Sect. 2.1, we now derive an interface problem. However, here we use two
interface unknowns: let �i 2 H1

�

0; T IL2 .� /� ; i D 1; 2. We define the following
extension operators:

Ri W .�i ; f; c0/ 7! .ci .�i ; f; c0/; ri .�i ; f; c0// ; (12)

where .ci .�i ; f; c0/; ri .�i ; f; c0// ; i D 1; 2; is the solution to the problem

!i@t ci Cr � ri D f in ˝i 	 .0; T / ;
D�1i ri Crci D 0 in ˝i 	 .0; T / ;
�ri � ni C pici D �i on � 	 .0; T / ;

ci .0/ D c0 in ˝i:

(13)

The interface operators are denoted by Bi ; i D 1; 2; and are defined by

Bi

�

cj ; rj
� D ��rj � ni C picj

� j� ; j D .3 � i/: (14)

Thus, transmission conditions (10) lead to the interface problem

�1 DB1R2 .�2; f; c0/

�2 DB2R1 .�1; f; c0/
on � 	 .0; T /; (15)

or equivalently,

�

I �B1R2 .�; 0; 0/
�B2R1 .�; 0; 0/ I

��

�1
�2

�

D
�

B1R2 .0; f; c0/

B2R1 .0; f; c0/

�

on � 	 .0; T /:

We solve this system iteratively using Jacobi iteration (this is the OSWR
method (11)) or using GMRES.
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tFig. 1 Non-conforming time
grids in the subdomains

3 Discontinuous Galerkin Time Stepping with Different
Subdomain Time Grids

As the two methods described in the previous section are global in time, we can use
different time steps in different subdomains according to their physical properties.
We consider two possibly different uniform partitions T1 and T2 of the time interval
.0; T / into sub-intervals of lengths �t1 and �t2 respectively. We denote by J im the
interval .t im�1; t im�; m D 1; : : : ;Mi ; for i D 1; 2. In particular, we are interested
in the non-conforming case where �t1 ¤ �t2 as depicted in Fig. 1. For the time
discretization, we use the discontinuous Galerkin method [8, 10]. In this paper, we
consider the lowest order scheme, which is a modified backward Euler method. We
denote by P0.Ti ; W / the space of piecewise constant functions in time on grid Ti

with values inW whereW D H 1
2 .� / for Method 1 andW D L2.� / for Method 2:

P0.Ti ; W / D
˚

� W .0; T /! W; � is constant in time on J im; 8m D 1; : : : ;Mi

�

:

In order to exchange data on the space–time interface between different time grids,
we define the following L2 projection ˘ji from P0.Ti ; W / onto P0.Tj ;W /: for
� 2 P0.Ti ; W /, ˘ji� jJ jm is the average value of � on J jm , for m D 1; : : : ;Mj .
We use a simple algorithm [5] for effectively performing this projection. With these
tools, we are now able to weakly enforce the transmission conditions over the time
intervals.

3.1 For Method 1

We take � piecewise constant in time (on grid T1, or T2 or on yet another grid). Let,
for instance, � 2 P0.T1;H

1
2 .� //. Thus, we have

c1 D ˘11.�/ D Id.�/ and c2 D ˘21.�/; on � 	 .0; T /:

The flux is then conserved over each time interval J 1m by letting
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Z

J 1m

.˘11 .r1.˘11.�// � n1/C˘12 .r2.˘21.�// � n2// dt D 0; form D 1; : : : ;M1:

3.2 For Method 2

As we have two Lagrange multipliers on the space–time interface, we take �i 2
P0.Ti ; L

2.� // for i D 1; 2 and enforce the conservation of the jumps of the two
Robin terms over the time intervals [8] by letting

Z

J im

.�i �˘ij

��rj .�j / � ni C picj .�j /
�

dt D 0;

form D 1; � � � ;Mi , and for i D 1; 2, j D .3 � i/.

4 Numerical Experiments

We consider 2D problems with D D d I isotropic and constant in each subdomain,
where I is the identity matrix. We then denote by di WD d j˝i .

4.1 For Method 1: Using a Neumann–Neumann
Preconditioner

In the elliptic case with strong heterogeneity, the convergence of an iterative
method for the Schur complement problem enhanced with a Neumann–Neumann
preconditioner and weight matrices is independent of the jump in the coefficients
[13]. Thus, we extend the idea to our method for parabolic problem. In particular,
we rewrite the interface problem (9) as

�

ı1S
�1
1 C ı2S �12

�

.S1 CS2/ � D O� on � 	 .0; T / ;

where ıi D Œdi= .d1 C d2/�2 and S �1i , the Neumann-to-Dirichlet operator, is the
inverse of Si for i D 1; 2. This formula can be generalized to the case of many
subdomains.

4.2 For Method 2: Using Two Optimization Techniques

To calculate the optimized Robin parameters for discontinuous coefficients, the
first approach is to optimize the convergence factor based on the two-half space
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Fig. 2 Geometry of the domain

Fourier analysis [6], we call this approach Opt. 1. In our application to nuclear waste
problems where the geometry consists of small objects embedded in a large space,
we use an adapted optimization proposed in [7], called Opt. 2, which takes into
account the size of the subdomains. We consider a test case designed by ANDRA
for the pure diffusion equation. The geometry of the physical domain is depicted in
Fig. 2. The porosity is ! D 0:2 in the repository (in red) and ! D 0:05 in the clay
layer (in yellow). The diffusion coefficient is d D 2	 10�9 m2 s�1 in the repository
and d D 5 	 10�12 m2 s�1 in the clay layer. The source term is

f D
�

10�5 mol/s if t � 105 years;
0 if t > 105 years;

in the repository, and f D 0 in the clay layer.
For the spatial discretization, we use a non-uniform rectangular mesh with a finer

discretization in the repository (a uniform mesh with 600 points in the x direction
and 30 points in the y direction) and a coarser discretization in the clay layer (the
mesh size progressively increases with distance to the repository by a factor of 1:05).
We then apply mixed finite elements with the lowest order Raviart-Thomas space
on rectangles. For the time discretization, we use non-matching time grids with
�t D 2;000 years in the repository and �t D 10;000 years in the clay layer.
Finally, we decompose the domain into 9 rectangular subdomains (3 	 3 with the
repository represented by one subdomain).

To analyze and compare the convergence results of different algorithms, we solve
a problem with the right hand side f � 0. We start with random initial guesses on
the space–time interfaces and check the convergence to zero in L2.0; T IL2.˝//-
norms of the concentration and vector field, with tolerance 10�6 on the residual. We
remark that one iteration of Method 1 with the preconditioner costs twice as much
as one iteration of Method 2 (in terms of number of subdomain solves). Thus we
plot the error versus the number of subdomain solves (instead of versus the number
of iterations). In Fig. 3, we compare the errors for different algorithms (GMRES on
the left and Jacobi iteration on the right) and over different time intervals (shorter
interval on top and longer interval on bottom). The same time steps,�ti , are used for
the shorter and longer time intervals. We observe that with GMRES, both Method
1 (with Neumann–Neumann preconditioner) and Method 2 (with either Opt. 1 or
Opt. 2) work well and their performance is comparable. The convergence becomes
slower when the time interval increases, which is reasonable and expected. On the
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Fig. 3 Convergence curves for different algorithms and time intervals: with GMRES (on the left)
and with Jacobi (on the right), for short time T D 200;000 years (on top) and for long time
T D 1;000;000 years (on below)

other hand, with Jacobi iteration, we see that the performance of Opt. 1 (classical)
is far behind Opt. 2 (adapted), especially for the long time case.
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Block Jacobi for Discontinuous Galerkin
Discretizations: No Ordinary Schwarz Methods

Martin J. Gander and Soheil Hajian

1 Introduction

We study in this paper block Jacobi iterations for matrix problems obtained by
discontinuous Galerkin (DG) discretizations. To fix ideas, we consider the model
problem

��u D f; in ˝ � R2;

u D 0; on @˝:
(1)

Any discretization of (1) leads to a linear system of equations of the form

Ay D f; (2)

where y is the vector of degrees of freedom representing approximations of u and
possibly ru. A block Jacobi iteration with two non-overlapping subblocks is given
by

M y.nC1/ D N y.n/ C f; M D
"

A1 O

O A2

#

; N D �
"

O A12

A21 O

#

: (3)

For classical discretizations of elliptic partial differential equations, like conforming
finite elements or finite differences, block Jacobi methods are equivalent to classical
Schwarz methods with minimal overlap, see for example [5]. This is different when
the linear system (1) is obtained using DG methods.
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Our paper is organized as follows: in Sect. 2 we describe several DG methods for
linear elliptic problems. We follow our discussion by introducing some “hybridiz-
able” DG methods. In Sect. 3 we show that block Jacobi iterations for the DG
methods are corresponding to non-overlapping Schwarz methods with particular
transmission conditions involving the penalty parameter of the DG method used. We
then show numerical experiments in Sect. 4, and present our conclusions in Sect. 5.

2 Discontinuous Galerkin Methods

We introduce the so-called flux formulations, which define a class of discontinuous
Galerkin methods for linear elliptic problems. We use the unified framework
presented in [1].

Let Th D fKg be a shape-regular triangulation of a polyhedral domain˝ � R2.
Let h D maxK2Th hK . We denote by E 0 the set of interior edges shared by all
K 2 Th, the set of boundary edges E @ and all edges by E WD E @ [ E 0.

Following [1] we define the broken Sobolev space Hl.Th/ WD Q

K2Th H
l.K/

and the trace space T .E / D Q

K2Th L
2.@K/ where Hl.K/ is the Sobolev space in

K 2 Th. We also define two trace operators: let q 2 T .E / and ' 2 ŒT .E /�2. On
e D @K1 \ @K2 we then define average ff�gg and jump ŒŒ��� operators by

ffqgg D 1
2
.q1 C q2/; ŒŒq�� D q1 n1 C q2 n2;

ff'gg D 1
2
.'1 C '2/; ŒŒ'�� D '1 � n1 C '2 � n2; (4)

where ni is the outward normal of Ki on e, qi WD qj@Ki\e and 'i WD 'j@Ki\e . On
the boundary of ˝ we set the average and jump operators to be ff'gg D ' and
ŒŒq�� D q n respectively. We do not need to define ffqgg and ŒŒ'�� on e 2 E @; see [1].

We denote two finite dimensional broken spaces on Th for the discrete approxi-
mation by Vh WD

˚

v 2 L2.˝/ s.t. vjK 2 P.K/;8K 2 Th

�

where P.K/ D Pk.K/

and˙h WD
˚

� 2 ŒL2.˝/�2 s.t. �jK 2 ˙.K/;8K 2 Th

�

where˙.K/ D ŒPk.K/�2.
Here Pk.K/ is the space of polynomials of degree � k in the simplex K 2 Th.

For the sake of simplicity we denote the volume and surface integrals by
.a; b/K D

R

K
a b for K 2 Th and ha; bie D

R

e
a b for e 2 E . Moreover

kvk20;Th WD
P

K2Th .v; v/K .

2.1 Flux Formulation

For the Laplacian model problem (1) in the DG context, one first rewrites the
equation in mixed form,

� D ru; �r � � D f .x/; x 2 ˝: (5)
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Then the flux formulation is the following: let K 2 Th, v 2 P.K/ and � 2 ˙.K/.
We multiply (5) by � and v respectively. Integrating by parts over K , we substitute
boundary terms of u and � by two approximation functions. Hence the discrete weak
form reads: find .uh; � h/ 2 Vh 	˙h for all K 2 Th such that

.� h;�/K D � .uh;r � �/K C hOuh;� � nKi@K 8� 2 ˙.K/;
.� h;rv/K D .f; v/K hv; O� h � nKi@K 8v 2 P.K/; (6)

where nK is the outward normal of element K and

Ouh W H2.Th/ 	



H1.Th/
�2 ! T .E /; O� h W H2.Th/ 	




H1.Th/
�2 ! ŒT .E /�2 ;

(7)
which are called numerical fluxes. They approximate the traces of uh and � h on @K .
By defining Ouh and O� h we complete the definition of a DG method.

For instance we introduce the local discontinuous Galerkin method (LDG) with

Ouh D ffuhgg � ˇ � ŒŒuh�� on E 0; Ouh D 0 on @˝;
O� h D ff� hgg C ˇ ŒŒ� h�� � �ŒŒuh�� on E ;

(8)

where ˇ 2 
L2.E /�2 is a constant vector-valued function with ˇ D 0 on @˝ and
� / h�1e where he is the edge length. We will consider the case ˇ D �nK1=2 on
e D @K1\@K2 whereK1;K2 2 Th and the assignment of nK1 is arbitrary. Therefore
the numerical fluxes are

Ouh D .uh/K1 ; O� h D .� h/K2 � �ŒŒuh�� on e: (9)

In case we have non-homogeneous Dirichlet data, e.g. u D gD on @˝ , the numerical
fluxes are

Ouh D gD; O� h D � h � � .uh � gD/ on e 2 E @: (10)

We now introduce two more methods which are “hybridizable”. A hybrid method
is defined by eliminating interior unknowns within an element K 2 Th in terms of
some unknowns defined on E 0, called �h (which here is Ouh). We then obtain a system
for �h which is much smaller than the original system. We do not derive these type
of DG methods here but for a unified approach we refer the reader to [2].

Remark 1. A “hybridizable” DG method is designed to approximate the following
continuous problem using Ouh as Dirichlet data on @K:

� � ru D 0 and � r � � D f in K; u D Ouh.u; � / on @K: (11)

More precisely, their numerical fluxes are such that O� h D .� h/K � � Œ.uh/K � Ouh�
on @K which is the numerical flux one uses to impose Dirichlet boundary data on
the boundary of an element; compare with (10).
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We introduce two hybridizable methods, namely LDG-H and IP-H, by defining
their numerical fluxes. The LDG-H uses

Ouh D �1
�1C�2 uh;1 C �2

�1C�2 uh;2 � 1
�1C�2 ŒŒ� h��;

O� h D �2
�1C�2 � h;1 C

�1
�1C�2 � h;2 �

�1�2
�1C�2 ŒŒuh��;

(12)

where � 2 T .E /. Similarly for IP-H we have

Ouh D �1
�1C�2 uh;1 C �2

�1C�2 uh;2 � 1
�1C�2 ŒŒruh��;

O� h D �2
�1C�2ruh;1 C �1

�1C�2ruh;2 � �1�2
�1C�2 ŒŒuh��:

(13)

One can show that IP-H and LDG-H satisfy Remark 1 by noting that for K 2 Th

O� h D .� h/K � � Œ.uh/K � Ouh� on @K: (14)

3 Domain Decomposition For “Hybridizable” DG Methods

We decompose the domain ˝ into two non-overlapping subdomains, f˝1;˝2g,
such that the interface � I WD ˝1 \ ˝2 is a subset of E 0, i.e. the cut does not
go through any element of Th. Therefore we obtain Th;1;Th;2 from the original Th,
and similarly E 0

1 ;E
0
2 , for our subdomains; see for example Fig. 1 (right).

Let .uh; � h/ be the approximate solution obtained from a DG method. Let
.uh;1; � h;1/ be the restriction of .uh; � h/ to˝1 and similarly .uh;2; � h;2/ to˝2. Then
.uh;i ; � h;i / for i D 1; 2 andK 2 Th;i satisfy

�

.� h;i ;�/K D � .uh;i ;r � �/K C hOuh;i ;� � nKi@K 8� 2 ˙.K/;

.� h;i ;rv/K D .f; v/K C hv; O� h;i � nKi@K 8v 2 P.K/; (15)

where

Ouh;i WD
� Ouh.uh;i ; � h;i ; uh;j ; � h;j / on � I and j 6D i;
Ouh.uh;i ; � h;i / on E 0

i ;
(16)

and similarly for O� h;i . Note that we do not need to define Ouh;1 on E 0
2 since for

.uh;1; � h;1/ we only have one term in (15) that needs the trace of .uh;2; � h;2/ on
� I and not E 0

2 (similarly Ouh;2 does not need to be defined on E 0
1 ).

If the trace of .uh;2; � h;2/ is known on � I , one can solve for .uh;1; � h;1/ in
˝1, and vice versa. This suggests an iterative algorithm for solving .uh;i ; � h;i / in
parallel, namely: find .u.nC1/h;i ; �

.nC1/
h;i / for i D 1; 2 such that it satisfies (15) with
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Ouh;i WD
(

Ouh.u.nC1/h;i ; �
.nC1/
h;i ; u.n/h;j ; �

.n/

h;j / on � I and j 6D i;
Ouh.u.nC1/h;i ; �

.nC1/
h;i / on E 0

i ;
(17)

starting with an initial guess .u.0/h;i ; �
.0/

h;i /, i D 1; 2. Note that Ouh;1 is not equal
any more to Ouh;2 on � I except at convergence, and then we have .u?h;i ; �

?
h;i / D

.uh;i ; � h;i /, i.e. the domain decomposition approximation at convergence is equal to
the mono domain approximate solution.

Denoting the degrees of freedom associated with .u.nC1/h;i ; �
.nC1/
h;i / by y

.nC1/
i D

.ui .nC1/; � i .nC1//T after choosing a basis for P.K/ and ˙.K/, we can write the
equivalent linear systems for our iterative method as

A1y
.nC1/
1 D �A12y.n/2 C f 1; A2y

.nC1/
2 D �A21y.n/1 C f 2; (18)

where A12 is obtained from hOuh;1;� � nKie ; h O� h;1 � nK; vie for e � � I and A1 is the
stiffness matrix obtained from (15) in ˝1, and similarly for ˝2. Setting y.nC1/ WD
.y

.nC1/
1 ;y

.nC1/
2 /T and f WD .f 1;f 2/

T , we obtain precisely a block Jacobi iteration
of the form (3).

For the classical finite element method with P1 approximation a block Jacobi
iteration corresponds to a Schwarz method with minimal overlap and Dirichlet
transmission conditions [5]. We show now that for hybridizable DG methods the
block Jacobi iteration corresponds to a general Schwarz method of the form

��u.nC1/1 D f in ˝1; ��u.nC1/2 D f in ˝2;

B1u
.nC1/
1 D B1u

.n/
2 on � I ; B2u

.nC1/
2 D B2u

.n/
1 on � I ;

(19)

where B1 and B2 are two linear operators determined by the particular choice of
DG discretization. The following propositions show the transmission condition on
� I in (19), when M and N in (3) are obtained from LDG-H, IP-H and minimal
dissipation LDG methods.

Proposition 1. Let K1 2 Th;1, K2 2 Th;2 and e D K1 \ K2 � � I . If M and N
in (3) are obtained from an LDG-H discretization, then the block Jacobi iteration (3)
is the discrete version of (19) with B1 D @n1 C �2 and B2 D @n2 C �1 on e.

Proof. We start with K1: since the numerical fluxes of the LDG-H satisfy the
condition in Remark 1, i.e. O� h;1 D �

.nC1/
h;1 � �1.u.nC1/h;1 � Ouh;1/n1, one can conclude

that we are imposing the following Dirichlet data at the continuous level: u.nC1/1 D
Ouh;1.u.nC1/1 ; �

.nC1/
1 ; u.n/2 ; �

.n/
2 / on e. From the definition of the LDG-H numerical

flux (12) we obtain

u.nC1/1 D �1

�1 C �2 u.nC1/1 C �2

�1 C �2 u.n/2 �
1

�1 C �2 .�
.nC1/
1 � �

.n/
2 / � n1: (20)
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Collecting terms with super index .n C 1/ and noting � i � n1 D @n1
ui on e, we

obtain B1 D @n1
C �2. The same argument applies to K2. ut

Proposition 2. Let K1 2 Th;1, K2 2 Th;2 and e D K1 \ K2 � � I . If M and N
in (3) is obtained from an IP-H discretization, then the block Jacobi iteration (3) is
the discrete version of (19) with B1 D @n1 C �2 and B2 D @n2 C �1 on e.

Proof. This result can be proved similarly to the proof of Proposition 1. ut
Proposition 3. Let K1 2 Th;1, K2 2 Th;2 and e D K1 \K2 � � I . Let M and N
in (3) be obtained from a minimal dissipation LDG and assume ˇ WD �n1=2, then
the block Jacobi iteration (3) is the discrete version of (19) with B1 D @n1 C �2
and B2 D 1 on e.

Proof. We start with K2: note that with this definition of ˇ we have Ouh;2 D u.n/h;1 and

O� h;2 D �
.nC1/
h;2 � �2.u.nC1/h;2 � u.n/h;1/n2. Comparing with (10), one concludes that we

are imposing u.nC1/1 D u.n/2 on e. Now for K1 using the definition of Ouh;1 D u.nC1/h;1

on e in the first equation of (15) one obtains:

	

�
.nC1/
h;1 � ru.nC1/h;1 ;�

�

K1
D
D

Ouh;1 � u.nC1/h;1 ;� � n1
E

@K1ne
8� 2 ˙.K1/: (21)

Choosing � D rv (since rV.K1/ � ˙.K1/), substituting into the second equation
of (15) yields

	

ru.nC1/h;1 ;rv
�

K1
D h O� h;1 � n1; vie C .f; v/K1

C
�

D

Ouh;1 � u.nC1/h;1 ;� � n1
E

@K1ne
C h O� h;1 � n1; vi@K1ne

�

:

Therefore one can conclude that the following Neumann boundary data is imposed
on the interface: �

.nC1/
1 � n1 D O� h;1.u.nC1/1 ; �

.nC1/
1 ; u.n/2 ; �

.n/
2 / � n1 on e. Using the

definition of O� h;1.:/ D �
.n/
2 � �2.u.nC1/1 � u.n/2 /n1 and collecting terms with super

index .nC 1/ leads to B1 D @n1 C �2. ut
The results here are also applicable when a positive reaction terms is present, e.g.

for .���/u D f , � > 0, since the zeroth order term only adds a term like � .u; v/K
in the mixed formulation, and thus does not change numerical fluxes.

3.1 Comments on Optimized Schwarz Methods for DG
Discretizations

One can estimate the convergence of the block Jacobi method by analyzing the
convergence behavior of the equivalent algorithm at the continuous level given
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in (19). This has been done for a simple geometry in [4], where for the case
�1 D �2 DW � on � I , it is shown that the “uniformly optimal” value for

� is �� D �

.K2
min C �/.K2

max C �/
�

1
4 : Here Kmin and Kmax are the minimum

and maximum frequencies that can be represented on the interface, heuristically
chosen to be Kmin D � and Kmax D �

h
for an interface of length one. Therefore

�� / h� 1
2 . The contraction factor of the Fourier modes in (19) is then bounded by

�� D 1 � O.ph/: For analysis of a discretized optimized Schwarz method using
FEM see [6].

We have seen that for the DG methods presented the penalty parameter enters
as Robin parameter in the equivalent continuous Schwarz method. The penalty
parameter in DG methods is chosen such that it ensures coercivity of the bilinear
form as well as optimal convergence of the discrete approximation to the continuous
solution.

Here we would like to comment only for LDG-H on how to choose � such
that one obtains optimal convergence to the continuous solution and achieves fast
convergence of the block Jacobi iteration at the same time. For LDG-H, � can
be chosen as O.1/ or O.h�1/. However using [3, Theorem 2.2], it can be shown
that using � / h� 12 for a class of DG methods in which LDG-H is also included
yields an optimal convergence to the continuous solution and we have the following
corollary.

Corollary 1. Let the discretization be LDG-H and consider the domain decompo-
sition setting in Sect. 3. Set � D h� 12 on � I and � D h�˛ for 0 � ˛ � 1 on E n� I .
Then kuh � uk0;Th � C hkC1, i.e. optimal approximation. Moreover the contraction
factor of the iterative domain decomposition method (block Jacobi), is bounded by
� D 1 �O.ph/ which cannot be improved for any other choice of � on � I .

4 Numerical Experiments

We consider .���/u D f in ˝ and u D 0 on @˝ where we set � D 1,˝ D .0; 1/2
and f such that the exact solution is u.x; y/ D sin.�x/ sin.2�x C �

4
/ sin.2�y/ in

˝ . We illustrate the results in Sect. 3 using a block Jacobi method as in (3) with
� I D f0:5g 	 .0; 1/ as interface on an unstructured mesh; see Fig. 1 (right).

The penalty parameter is usually chosen as � D k2=he where k is the degree
of the polynomials; this would correspond to a very unusual high frequency
approximation of the DtN operator in the optimized Schwarz method, and thus
strongly affects the convergence rate. The convergence results in Fig. 2 are obtained
by measuring ku.n/h � uhk0;Th , where uh is the mono-domain approximate solution

and u.n/h is the solution obtained at iteration n of the block Jacobi method for P1
and P2. It is evident that IP-H and LDG-H converge faster than minimal dissipation
LDG in the block Jacobi iteration due to their transmission conditions. Moreover
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using LDG-H. (right) Unstructured mesh with the interface � I D f0:5g � .0; 1/

10−6

10−5

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250 300 350

u
(n

)
h

−
u
h

0
T h

n

P1

LDG-H
min. LDG

IP-H
LDG-H- ∗

disc. err.

10−6

10−5

10−4

10−3

10−2

10−1

100

0 50 100 150 200 250 300 350

u
(n

)
h

−
u
h

0
T h

n

P2

LDG-H
min. LDG

IP-H
LDG-H- ∗

disc. err.

Fig. 2 Block Jacobi method for LDG-H, minimal dissipation LDG, IP-H, LDG-H with �� and
discretization error for P1 and P2

LDG-H with �� converges faster than LDG-H using � / h�1 since its parameter is
chosen as suggested by optimized Schwarz theory.

Figure 1 (left) shows the number of iterations required for the block Jacobi
method to reduce the iteration error to the machine precision for LDG-H with
different penalty parameters on � I on a sequence of unstructured meshes. We show
that for LDG-H the contraction factor with “uniformly” optimal �� behaves as
predicted in Corollary 1 and [4], i.e. �� D 1 � O.ph/, while with � D O.1/

or O.h�1/ behaves like � D 1 �O.h/.
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5 Conclusions

We have shown that block Jacobi methods for DG discretizations correspond to non-
overlapping Schwarz methods with Robin-, or Robin and Dirichlet transmission
conditions. This is in contrast to standard finite element methods, where block
Jacobi methods correspond to classical Schwarz methods with minimal overlap and
Dirichlet transmission conditions. In addition, we found that the penalty parameter
in certain DG method leads to a high frequency approximation in the transmission
condition of the optimized Schwarz method, which is not a very good choice for the
convergence of the Schwarz method. We are currently studying a way to introduce
a much better parameter for the convergence of block Jacobi, without changing
however the DG approximation properties.
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Overlapping Domain Decomposition Methods
with FreeFem++

Pierre Jolivet, Frédéric Hecht, Frédéric Nataf, and Christophe Prud’homme

1 Introduction

Developing an efficient and versatile framework for finite elements domain decom-
position methods can be a hard task because of the mathematical genericity of
finite element spaces, the complexity of handling arbitrary meshes and so on.
The purpose of this note is to present one way to implement such a framework
in the context of overlapping decompositions. In Sect. 2, the basics for one-level
overlapping methods is introduced, in Sect. 3, a second level is added to the original
framework to ensure scalability using a portable C++ library, and Sect. 4 gathers
some numerical results. FreeFem++ will be used for the computations of finite
element matrices, right hand side and mesh generation, but the work here is also
applicable to other Domain-Specific (Embedded) Language such as deal.II [3],
Feel++ [12], GetFem++: : :.
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2 One-Level Methods

Let ˝ � Rd (d D 2 or 3) be a domain whose associated mesh can be
partitioned intoN non-overlapping meshes fTi g16i6N using graph partitioners such
as METIS [10] or SCOTCH [5]. Let V be the finite element space spanned by the
finite set of n basis functions f�i g16i6n defined on ˝ , and fVig16i6N be the local
finite element spaces defined on the domains associated to each fTi g16i6N . Typical
finite element discretizations of a symmetric, coercive bilinear form a W V 	V ! R

yield the following system to solve :

Ax D b; (1)

where
�

Aij
�

16i;j6n D a.�j ; �i /, and .bi /16i6n D .f; �i /, f being in the dual

space V �. Let an integer ı be the level of overlap:
˚

T ı
i

�

16i6N is an overlapping

decomposition and if we consider the restrictions fRi g16i6N from V to
˚

V ı
i

�

16i6N ,

the local finite element spaces on
˚

T ı
i

�

16i6N , and a local partition of unity
fDi g16i6N such that

N
X

jD1
RTj DjRj D I : (2)

Then a common one-level preconditioner for system (1) introduced in [4] is

P�1
RAS D

N
X

iD1
RTi Di .RiAR

T
i /
�1Ri : (3)

The global matrix A is never assembled, instead, we build locally AıC1i the stiffness
matrix yielded by the discretization of a on V ıC1

i , and we remove the columns and
rows associated to degrees of freedom lying on elements of T ıC1

i n T ı
i , this yields

Ai D RiAR
T
i . The distributed sparse matrix-vector product Ax for x 2 Rn can be

computed using point-to-point communications and the partition of unity without
having to store the global distributed matrix A. Indeed, using (2), if one looks at the
local components of Ax, that is RiAx, then one can write, introducing Oi the set of

neighboring subdomains to i , i.e.
n

j W T ı
i \T ı

j ¤ ;
o

:

RiAx D
N
X

jD1
RiAR

T
j DjRjx (4)

D AiDiRix C
X

j2Oi
RiR

T
j AjDjRj x : (5)
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since it can be checked that

8x 2 Rn; RiAR
T
j DjRj x D RiRTj RjARTj DjRj x (6)

The sparse matrix-sparse matrix productsRiRTj are nothing else than point-to-point
communications from neighbors j to i .
In FreeFem++, stiffness matrices such asAıC1i and right-hand sides are assembled
as follows (a simple 2D Laplacian is considered here):

mesh Th; // Th is a local 2D mesh
�

for example T ıC1
i

�

fespace Vh(Th, Pk); // Vh is a local finite element space
varf a(u, v) = int2d(dx(u) * dx(v) + dy(u) * dy(v))

+ int2d(f * v) + BC;
matrix A = a(Vh, Vh); // A is a sparse matrix stored in the CSR format
Vh rhs; // rhs is a function lying in the FE space Vh
rhs[] = a(0, Vh); // Its values are set to solve Ax D rhs

The mesh Th can either be created on the fly by FreeFem++, or it can be
loaded from a file generated offline by Gmsh [6], for example when dealing with
complex geometries. By default, FreeFem++ handles continuous piecewise linear,
quadratic, cubic, quartic finite elements, and other traditional FE like Raviart-
Thomas 1, Morley, etc. The boundary conditions depend on the label set on the
mesh. For example, if one wants to impose penalized homogeneous Dirichlet
boundary conditions on the label 1 of the boundary of Th, then one just has
to add + on(1, u = 0) in the definition of the varf. For a more detailed
introduction to FreeFem++ with abundant examples, interested readers should
visit http://www.freefem.org/ff++ or see [9].
The partition of unityDi is built using a continuous piecewise linear approximation
of

�i D Q�i
Q�i C

X

j2Oi
Q�j
ˇ

ˇ

T ı
i \T ı

j

; (7)

where Q�i is defined as

Q�i D
(

1 on all vertices of Ti

1 � m
ı

on all vertices of T m
i n T m�1

i 8m 2 Œ1I ı� : (8)

3 Two-Level Methods

It is well known that one-level domain decomposition methods as depicted in Sect. 2
do suffer from poor conditioning when used with many subdomains, [16]. In this
section, we present a new C++ library, independent of the finite element backend

http://www.freefem.org/ff++


318 P. Jolivet et al.

used, that assembles efficiently a coarse operator that will be used in Sect. 4 to
ensure scalability of our framework. The theoretical foundations for the construction
of the coarse operator are presented in [14]. From a practical point of view, after
building each local solver Ai , three dependent operators are needed:

(i) the deflation matrix Z,
(ii) the coarse operatorE D ZTAZ,

(iii) the actual preconditioner P�1
A-DEF1 D P�1

RAS.I � AZE�1ZT / C ZE�1ZT ,
thoroughly studied in [15].

In [14], the deflation matrix is defined as :

Z D 
RT1 W1 R
T
2 W2 � � � RTNWN

� 2 Rn 	 R
PN
iD1 �i (9)

where
n

Wi D
h

Di�i1 Di�i2 � � � Di�i�i

i

2 Rni 	 R�i
o

16i6N
(10)

�i is a threshold criterion used to select the eigenvectors �i associated to the
smallest eigenvalues in magnitude of the following local generalized eigenvalue
problem:

Aıi�i D �iDiR
T
i;0Ri;0A

ı
iDi�i

where Aıi is the matrix yielded by the discretization of a on V ı
i , and Ri;0 is the

restriction operator from T ı
i to the overlap T ı

i \
	

[j2OiT ı
j

�

. In FreeFem++,

sparse eigenvalue problems are solved either with SLEPc [8] or ARPACK [11]. The
latter seems to yield better performance in our simulations. Given, for each MPI
process, the local matrix Ai , the local partition of unity Di , the set of eigenvalues
˚

�ij

�

16j6�i and the set of neighboring subdomains Oi , our library assembles E

without having to assemble A and to store Z, and computes its LU or LDLT

factorization using either MUMPS [1, 2], PARDISO [13] or PaStiX [7]. Moreover,
all linear algebra related computations (e.g. sparse matrix-vector products) within
our library are performed using Intel MKL, or can use user-supplied functions,
for example those from within the finite element Domain-Specific (Embedded)
Language. Assembling E is done in two steps: local computations and then
renumbering.

• first, compute local vector-sparse matrix-vector triple products which will be
used to assemble the diagonal blocks of E . For a given row in E , off-diagonal
values are computed using local sparse matrix-vector products coupled with
point-to-point communications with the neighboring subdomains: the sparsity
pattern of the coarse operator is similar to the dual graph of the mesh partitioning
(hence it is denser in 3D than in 2D),

• then, renumber the local entries computed previously in the distributed matrixE .



Overlapping Domain Decomposition Methods with FreeFem++ 319

Only few processes are in charge of renumbering entries into E . Those processes
will be referred to in the rest of this note as master processes. Any non master
process has to send the rows it has previously computed to a specific master process.
The master processes are then able to place the entries received at the right row and
column indices. To allow an easy incremental matrix construction, E is assembled
using the COO format. If need be, it is converted afterwards to the CSR format.
Note here that MUMPS only supports the COO format while PARDISO and PaStiX
work with the CSR format.

After renumbering, the master processes are also the one in charge of computing
the factorization of the coarse operator. The number of master processes is a
runtime constant, and our library is in charge of creating the corresponding MPI
communicators. Even with “large” coarse operators of sizes of around 100;000 	
100;000, less than few tens of master processes usually perform the job quite well:
computing all entries, renumbering and performing numerical factorization take
around 15 s when dealing with thousands of slave processes.

A routine is then callable to solve the equation Ex D y for an arbitrary
y 2 R

PN
iD1 �i , which in our case is used at each iteration of our Krylov method

preconditioned by P�1
A-DEF1. Once again, the deflation matrix Z is not stored as the

products ZT x 2 R
PN
iD1 �i and Zy 2 Rn can be computed explicitly with a global

matrix-free method (we only use the local Wi plus point-to-point communications
with neighboring subdomains).

4 Numerical Results

Results in this section were obtained on Curie, a Tier-0 system for PRACE
composed of 5,040 nodes made of 2 eight-core Intel Sandy Bridge processors
clocked at 2.7 GHz. The interconnect is an InfiniBand QDR full fat tree network.
We want here to assess the capability of our framework to scale:

(i) strongly: for a given global mesh, the number of subdomains increases while
local mesh sizes are kept constant (i.e. local problems get smaller and smaller),

(ii) weakly: for a given global mesh, the number of subdomains increases while
local mesh sizes are refined (i.e. local problems have a constant size).

We don’t time the generation of the mesh and partition of unity. Assembly and
factorization of the local stiffness matrices, resolution of the generalized eigenvalue
problems, construction of the coarse operator and time elapsed for the convergence
of the Krylov method are the important procedures here. The Krylov method used
is the GMRES, it is stopped when the relative residual error is inferior to " D 10�6
in 2D, and 10�8 in 3D. All the following results where obtained using a LDLT

factorization of the local solvers Aıi and the coarse operatorE using MUMPS (with
a MPI communicator set to respectively MPI_COMM_SELF or the communicator
created by our library binding master processes).
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First, the system of linear elasticity with highly heterogeneous elastic moduli
is solved with a minimal geometric overlap of one mesh element. Its variational
formulation reads:

Z

˝

�r � ur � v C 2�".u/T ".v/C
Z

˝

f � v C
Z

@˝

g � v (11)

where

• � and � are the Lamé parameters such that � D E

2.1C �/ and � D
E�

.1C �/.1� 2�/ (E being Young’s modulus and � Poisson’s ratio). They are

chosen to vary between two sets of values, .E1; �1/ D .2 � 1011; 0:25/, and
.E2; �2/ D .108; 0:4/.

• " is the linearized strain tensor and f the volumetric forces (here, we just
consider gravity).

Because of the overlap and the duplication of unknowns, increasing the number of
subdomains means that the number of unknowns increases also slightly, even though
the number of mesh elements (triangles or tetrahedra in the case of FreeFem++)
is the same. In 2D, we use piecewise cubic basis functions on an unstructured
global mesh made of 110 million elements, and in 3D, piecewise quadratic basis
functions on an unstructured global mesh made of 20 million elements. This yields
a symmetric system of roughly 1 billion unknowns in 2D and 80 million unknowns
in 3D. The geometry is a simple Œ0I 1�d 	 Œ0I 10� beam (d D 1 or 2) partitioned with
METIS.

Solving the 2D problem initially on 1,024 processes takes 227 s, on 8,192
processes, it takes 31 s (quasioptimal speedup). With that many subdomains, the
coarse operator E is of size 121;935 	 121;935. It is assembled and factorized in
7 s by 12 master processes. For the 3D problem, it takes initially 373 s. At peak
performance, near 6,144 processes, it takes 35 s (superoptimal speedup). This time,
the coarse operator is of size 92;160 	 92;160 and is assembled and factorized by
16 master processes in 11 s (Fig. 1).

Moving on to the weak scaling properties of our framework, the problem we
now solve is a scalar equation of diffusivity with highly heterogeneous coefficients
(varying from 1 to 105) on Œ0I 1�d (d D 2 or 3). Its variational formulation reads:

Z

˝

	ru � rv C
Z

˝

f � v (12)

The targeted number of unknowns per subdomains is kept constant at approximately
800 thousands in 2D, and 120 thousands in 3D (once again with P3 and P2 finite
elements respectively) (Fig. 2).

In 2D, the initial extended system (with the duplication of unknowns) is made of
800 million unknowns and is solved in 141 s. Scaling up to 12,288 processes yields
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Fig. 1 Linear elasticity test cases. 2D on the left, 3D on the right. Strong scaling

Fig. 2 Diffusion equation test cases. 2D on the left, 3D on the right. Weak scaling

a system of 10 billion unknowns solved in 172 s, hence an efficiency of 141
172
� 82%.

In 3D, the initial system is made of 130 million unknowns and is solved in 127 s.
Scaling up to 8,192 processes yields a system of 1 billion unknowns solved in 152 s,
hence an efficiency of 127

152
� 83%.

5 Conclusion

This note clearly shows that our framework scales on very large architectures for
solving linear positive definite systems using overlapping decompositions with
many subdomains. It is currently being extended to support nonlinear problems
(namely in the field of nonlinear elasticity) and we should be able to provide
similar functionalities for non-overlapping decompositions. It should be noted that
the heavy use of threaded (sparse) BLAS and LAPACK routines (via Intel MKL,
PARDISO, and the Reverse Communication Interface of ARPACK) has already
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helped us to get a quick glance at how the framework performs using hybrid
parallelism. We are confident that using this novel paradigm, we can still improve
our scaling results in the near future by switching the value of OMP_NUM_THREADS
to a value greater than 1.
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On the Influence of Curvature on Transmission
Conditions

Hélène Barucq, Martin J. Gander, and Yingxiang Xu

1 Introduction

Domain decomposition methods are both highly successful parallel solvers and also
important modeling tools, since problems in subdomains can be treated by adapted
methods to the physics in each subdomain. Subdomain boundaries are therefore
rarely straight lines. The focus of this paper is to study the influence of curvature on
transmission conditions used in optimized Schwarz methods. For straight interfaces
and simple geometries, optimized interface conditions are typically determined
using Fourier analysis, see for example [3] and references therein. Asymptotically,
these optimized conditions are still valid for curved interfaces, as shown in [5, 6].
Since however the curvature is the most important information for a smooth curve,
we want to study in this paper if and how the interface curvature influences the
constants in the optimized parameters.

We consider the model problem

.� � �/u D f; on ˝ D R2, � > 0; (1)
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Γ2 = b(y)

Γ1 = a(y)

Ω1

Ω2

x

Ω̃2

Ω̃1

R

L

Fig. 1 An arbitrary domain decomposition with curved interfaces (left) and a circular domain
decomposition (right)

and we require the solution to decay at infinity. As shown in Fig. 1 on the left, we
decompose˝ into two overlapping subdomains˝1 D .�1; a.y// 	 R and ˝2 D
.b.y/;1/ 	 R, where �1 given by a.y/ and �2 given by b.y/ are smooth curves
satisfying a.y/ � b.y/. A general parallel Schwarz algorithm is then given by

.� � �/uni D f in ˝i;

Bi .uni / D Bi .un�1j / on �i , 1 � i ¤ j � 2;
(2)

where Bi ; i D 1; 2; are transmission conditions to be chosen. If Bi , i D 1; 2 are
chosen as @ni C DtNi , with DtNi the Dirichlet to Neumann operators, the iterates
will converge in two steps [3]. These operators are however non-local, and thus
difficult to use in practice. Therefore, local approximations are used in optimized
Schwarz methods. We study in what follows such local approximations, obtained
by micro-local analysis, and by studying a circular model problem, with the goal to
investigate how the curvature influences these approximations.

2 Transmission Conditions Based on Micro-Local Analysis

Micro-local analysis is a well established technique for the design and study of
absorbing boundary conditions, where it is used to approximate the DtN, see [2]
and references therein. We use in this section micro-local analysis to develop and
analyze transmission conditions. As in [2], we consider local coordinates composed
by the curvilinear abscissa s and the variable r along the normal direction. In these
local coordinates, the model problem (1) can be rewritten as

L u WD @rruC 	

h
@ruC 1

h
@s.
@su

h
/ � �u D f; (3)
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where 	 D 	.s/ is the curvature of the curve �i at the parameter s, and h D
h.r; s/ D 1C r	.s/. The symbol of the operator L is given by

OL D @rr C 	

h
@r C i

h
@s.
1

h
/� � 1

h2
�2 � �: (4)

A pseudodifferential operator P is defined by Pu.x/ WD R

eix��p.x; �/Ou.�/d�,
provided its symbol p.x; �/ 2 Sm, i.e. for every compact set K in Rn and for every
˛; ˇ there exists c D c.˛; ˇ;K/ s.t. for all .x; �/ 2 K 	 Rn, j@˛� Dˇ

x p.x; �/j � c

.1Cj�j/m�j˛j. Based on the Nirenberg’s factorization theorem, there exist two clas-
sical pseudo-differential operators �� and �C of order C1, depending smoothly
on r , such that

L u D .@r C��/.@r C�C/u; (5)

which can be expanded as

L u D @rruC .�� C�C/@ruC op.@r�
C/uC���Cu; (6)

where op.@r�C/ is the operator whose symbol is @r�C. In (5) and (6), the symbol
‘D’ must be interpreted as equal up to a C1-regularizing operator, since the
symbols of �C and �� are explicitly defined by the factorization process up to
a symbol in S�1. Identifying (3) and (6) we get

�� C�C D 	

h
; op.@r�C/C���C D 1

h
@s.
@s

h
/� �: (7)

Due to the integral representation formula of pseudo-differential operators, the
operators �� and �C are determined by their symbols. Using the calculus of
pseudo-differential operators, system (7) can be written at the symbol level,

��C �C D 	

h
;

C1
X

˛D0

.�i/˛
˛Š

@˛� �
�@˛s �CC @r�C D ��� h�2�2 C

i

h
@s.
1

h
/�; (8)

where �˙ 
PC1jD�1 ��̇j are the symbols of �˙. The goal is now to determine the
symbols �� and �C: from the first equation in (8), we get

���j C �C�j D 0; if j ¤ 0 and ��0 C �C0 D
	

h
: (9)

By identifying the homogeneous symbols of highest degree, we obtain

��1 �C1 D �h�2�2 � �; (10)
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where � is considered to be an operator of order 2, see Sect. 3 of [2] for details.
Therefore, we have

�C1 D
p

h�2�2 C � and ��1 D �
p

h�2�2 C �: (11)

Going further with the identification of the homogeneous symbols of the next higher
degree, we find a relation between the unknowns ��0 and �C0 ,

��1 �C0 C ��0 �C1 � i@���1 @s�C1 C @r�C1 D
i

h
@s.
1

h
/�: (12)

Eliminating ��1 and ��0 , we get

�C0 D
1

2�C1
.
	

h
�C1 C i@��C1 @s�C1 C @r�C1 �

i

h
@s.
1

h
/�/: (13)

We can derive a recursive formula from similar relations for lower degrees of
homogeneity. First, we rewrite the left-hand side of the second equation in (8) as

C1
X

˛D0

.�i/˛
˛Š

C1
X

jD�1
@˛� �
��j
C1
X

kD�1
@˛s �
C
�k C

C1
X

lD�1
@r�
C
�l : (14)

Since @˛� �
��j @˛s �

C
�k 2 S�.jCkC˛/, the homogeneous part of degree �m in (14) for

any non-negative integer m is

mC2
X

˛D0

.�i/˛
˛Š

X

j C k D m� ˛;
j � �1; k � �1

@˛� �
��j @˛s �C�k C @r�C�m:

Identifying symbols of the same homogeneity in (8) leads to

mC2
X

˛D0

.�i/˛
˛Š

X

j C k D m� ˛;
j � �1; k � �1

@˛� �
��j @˛s �C�k C @r�C�m D 0:

Using that ���m�1 D ��C�m�1, from the previous equation, the symbol �C�m�1 for
m � 0 can be recursively expressed from homogeneous symbols of higher order by

�C�m�1 D
1

2�C1
.

X

j C k D m;

j � 0; k � 0

���j �C�k C
mC2
X

˛D1

.�i/˛
˛Š

X

j C k D m� ˛;
j � �1; k � �1

@˛� �
��j @˛s �C�k

C@r�C�m/: (15)
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Let ` be a positive integer, and � be the symbol of the pseudo-differential operator
op.�/ defined on �i 	 .�ı; ı/, i D 1; 2, such that

P

�1	j	p �
C
�j � � is of order

.1=
p
�/`�1 for all sufficiently large p. Denoting by Q� the symbol defined on �i ; i D

1; 2 by Q� WD �jrD0, and choosing as transmission condition Bi D @ni C op. Q�/ on
�i , we obtain the MATCs (Micro-local Analysis based Transmission Conditions) of
order `=2 as

Bi D @ni C op.
X

�1	j	`�2
�C�j /; on �i , i D 1; 2: (16)

From (15), note that �C�m�1 still contains the term �C1 D p

h�2�2 C �, and
thus results in non-local transmission conditions. To obtain local transmission
conditions, we use a Taylor expansion in � of the symbols �C�j , �1 � j � 2 to the
order shown as index in the parentheses below, and obtain the following MATCs:

MATC1 Bi .u/ D @ni uC op..�C1 /0/u D @ni uC
p
�u;

MATC2 Bi .u/ D @ni uC op..�C1 /0 C .�C0 /0/u D @niuC .
p
�C 	

2
/u;

MATC3 Bi .u/ D @niu C op.
2
P

jD�1
.�C�j /0/u D @ni u C .

p
� C 	

2
� 	2

8
p
�
C

	3C d2

ds2
	.s/

8�
/u;

MATC4 Bi .u/ D @ni uCop.
1
P

jD�1
.�C�j /1/u D @niuC.p�C 	

2
� 1
8
	2p
�
/u� d

ds 	.s/

2�
@su;

MATC5 Bi .u/ D @ni uC op..�C1 /2/u D @ni uC
p
�u � 1

2
p
�
@2su;

MATC6 Bi .u/ D @ni uC op.
P2

jD�1.�
C
�j /�2/u D @ni u

C.p�C 	
2
� 1

8
	2p
�
C 1

8

	3C d2

ds2
	.s/

�
/u

C. d
ds 	.s/

2�
� 13

8

	.s/ dds 	.s/

�
3
2

/@su

�. 1
2
p
�
� 1

2
	
�
C 13

16
	2

�
3
2

� 7
8

2	3C d2

dx2
	.s/

�2
/@2su;

where the MATC1–3 are of order 0, MATC4 is of order 1, and MATC5 and MATC6
are of order 2. Note how the curvature 	.s/ enters these transmission conditions.

3 Transmission Conditions Based on a Circular
Model Problem

For optimized Schwarz methods, transmission conditions are often analyzed and
optimized for a model problem, see [3]. Following this principle, we consider a
circular decomposition of the domain˝ D R2 as shown in Fig. 1 on the right,

Q̋
1 D f.x; y/j

p

x2 C y2 < R1 D RC Lg;
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Q̋
2 D f.x; y/jR2 D R <

p

x2 C y2 <1g:

In this setting, the curvature of the interface enters naturally, 	.s/ D 1=R. Using
polar coordinates, a general Schwarz algorithm for this decomposition is

@rruni C 1
r
@runi C 1

r2
@��uni � �uni D f in Q̋ i ;

Bi .uni / D Bi .un�1j / on r D Ri , 1 � i ¤ j � 2: (17)

In the classical Schwarz algorithm, one uses for Bi the identity operator in (17).
Using Fourier series in the angular variable, we obtain after a short calculation for
the convergence factor �cla in this case (for details of such calculations, see [4])

�cla D �cla.k;R;L; �/ WD Ik.
p
�R/

Kk.
p
�R/

Kk.
p
�.RC L//

Ik.
p
�.RC L// ; 8k 2 R; (18)

where Ik.�/ and Kk.�/ are the modified Bessel functions of the first (exponentially
increasing) and the second kind (exponentially decreasing), see [1]. Hence, for an
overlap L > 0, the classical Schwarz algorithm converges, with the asymptotic
estimate

sup
kmin	k	kmax

�cla D 1 �GminLCO.L2/; Gmin D 1

RIkmin.
p
�R/Kkmin.

p
�R/

;

where kmin and kmax denote the estimates of the lowest and highest relevant
numerical frequencies respectively. If there is no overlap, the method does not
converge.

Optimized Schwarz methods are based on linear operators Si , i D 1; 2 along the
interface, here in the � direction, with symbols �i , and Bi .u/ D @ru � Siu in (17).
This results in methods with convergence factors �opt .k; L;R; �; �1; �2/ given by
(for details, see [4])

�opt D
@rKk.

p
�r/

Kk.
p
�r/
C �1.k/

@rIk.
p
�r/

Ik.
p
�r/
C �1.k/

ˇ

ˇ

ˇ

rDRCL �
@r Ik.

p
�r/

Ik.
p
�r/
� �2.k/

@rKk.
p
�r/

Kk.
p
�r/
� �2.k/

ˇ

ˇ

ˇ

rDR � �cla: (19)

We can see from (19) that the optimal choice for which �opt vanishes is �1.k/ D
� @rKk.

p
�r/

Kk.
p
�r/
jrDRCL and �2.k/ D @r Ik.

p
�r/

Ik.
p
�r/
jrDR, again the symbol of the non-local

DtN operator. Optimized Schwarz methods use local approximations of the form

�i .k/ D pi C qik2; i D 1; 2; (20)

and determine pi , qi such that the convergence factor �.k;L;R; �; p1; p2; q1; q2/
is small. These transmission conditions are then easy to use and inexpensive.
Simple approximations are obtained by Taylor expansion of the approximation
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q

�C k2=R2i of the optimal symbol: T0 (Taylor of order zero) is given by p1 D
p2 D p�, q1 D q2 D 0, and leads with the estimate kmax D �R

h
, where h is the

mesh size, to the asymptotic convergence factor bounds 1�4p2� 14phCO.h/ with
overlap L D h, and 1 � 4p���1hCO.h2/ without overlap (still convergent!). T2
(Taylor of order two) is obtained with pi D p�, qi D 1

2
p
�Ri

, i D 1; 2; and leads to

the bounds 1 � 8� 14phC O.h/ with overlap L D h, and 1 � 8p���1hC O.h2/
without overlap. It is interesting to note that the curvature 1=R does not play a role
in the asymptotic convergence factor estimates!

Optimized transmission conditions are based on minimizing the maximum of the
convergence factor: let COO0 D fp1 D p2 > 0; q1 D q2 D 0g, COO2 D fp1 D
p2 > 0; q1 D q2 > 0g and C2-sided D fp1 > 0; p2 > 0; q1 D q2 D 0g. By solving
the min-max problems

min
p1;p2;q1;q22CI

. max
kmin	k	kmax

j�.k;L;R; �; p1; p2; q1; q2/j/; (21)

where the index I 2 fOO0;OO2; 2-sidedg, we can determine the optimized
choice of the parameters in each case. The corresponding optimized transmission
conditions are then called OO0 (optimized of order 0), OO2 (optimized of order 2)
and 2-sided (two-sided optimized) Robin transmission condition. Using asymptotic
analysis, see [4] for details, we obtain for example for OO0 (q1 D q2 D 0 ) p1 D
p2 D 2�1G

2
3

minh
� 13 and maxk j�OO0j D 1�4G

1
3

minh
1
3 CO.h2

3 / with overlapL D h,

and p1 D p2 D 2� 12 G
1
2

min�
1
2 h� 1

2 and maxk j�OO0j D 1 � 2 32 G 1
2

min�
� 12 h 1

2 C O.h/
without overlap. Note that now also the convergence factor depends on the curvature
1=R throughGmin. However, limkmin!0 Gmin D 2p�, independent of R.

4 Comparison of the Two Families of Transmission
Conditions

We compare now the transmission conditions derived by micro-local analysis to the
ones obtained based on optimization. We notice that MATC1 and T0 are identical;
MATC5 looks like T2, but without the curvature dependence. In fact, MATC5 is
exactly the Taylor condition of order 2 for a straight interface, see [3]. Next, we plot
in Fig. 2 all the convergence factors of the Schwarz algorithm (17) with the various
transmission conditions for a circular decomposition. We observe that MATC2-
4 perform similarly to T2. Since MATC2-4 are of order �1, we conclude that
involving the curvature does improve the performance. It also seems that MATC5
performs quite well. However, this is not always the case: we show a comparison
between the three second order transmission conditions in Fig. 3. We can see that
MATC5 is much more sensitive to R (1=R is the curvature) than the other two,
both in the case with and without overlap: the optimized transmission condition
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Fig. 2 Convergence factors of MATC1-5 and the Taylor conditions (left), MATC6 (middle), and
with optimized transmission conditions (right), for � D 2, overlap L D 0:01 and R D 0:5
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Fig. 3 The maxima of the convergence factors as functions of R with overlap (left) and without
(right)

performs always better than the other two; the MATC5 gets its best performance
aroundR D 0:5 (this is exactly the case of Fig. 2), it performs as T2 at R D 1, since
then the approximation is identical, and with increasing R it performs worse and
worse. We finally note that MATC6 does not perform well: in the middle of Fig. 2,
we see that near k D 1:5 the convergence factor blows up. Hence MATC6 is not a
good choice as transmission condition.

5 Numerical Experiments

We perform numerical experiments for a model problem in polar coordinates,

@rruC 1
r
@ruC 1

r2
@��u � �u D f .r; �/ in ˝;

u D 0 on @˝;
(22)
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Table 1 Number of iterations required by the Schwarz algorithm with different transmission
conditions with overlap L D h and without overlap (in parentheses)

h Cla MATC1(T0) MATC2 MATC3 MATC4 MATC5 T2 OO0 OO2 Two-sided

1/50 332 26(310) 20(177) 20(173) 22(208) 17(370) 18(1,081) 16(52) 14(48) 41(41)
1/100 684 36(597) 29(354) 27(331) 32(410) 16(644) 23(1,832) 21(75) 13(57) 35(51)
1/200 1,279 51(1,163) 40(662) 39(646) 42(784) 17(1,033) 29(3,048) 26(101) 14(62) 27(61)
1/400 2,919 71(2,236) 53(1,296) 53(1,236) 59(1,519) 22(1,536) 39(4,294) 32(151) 14(70) 23(71)

where˝ D .0; 1/	 .0; 2�/ is decomposed into˝ D ˝1[˝2, with˝1 D .0;RC
L/ 	 .0; 2�/ and ˝2 D .R; 1/ 	 .0; 2�/, and L � 0 is the overlap. We use a finite
difference scheme on a uniform grid with mesh size h to simulate directly the error
equations, f D 0, for R D 0:5 and � D 2, and a random initial guess is chosen
so that all the frequency components are present in the initial error. The number
of iterations required by the parallel Schwarz method (17) are shown in Table 1.
We clearly see that the transmission conditions based on optimization get better
performance in this experiment.

6 Conclusion

We presented two different approaches to take the curvature of interfaces into
account in the transmission conditions of optimized Schwarz methods: micro-
local analysis, and analysis using a circular model problem. In both cases, we
obtained curvature dependent transmission conditions. A preliminary comparison
shows that the transmission conditions based on optimization perform better on the
model problem, and that it could be important to take the curvature into account
in transmission conditions. In our opinion it is however essential to do a more
thorough theoretical and numerical study on more general geometry, where micro-
local analysis is still applicable, before we can definitely draw conclusions.

Acknowledgements Yingxiang Xu was partly supported by NSFC-11201061 and CPSF-
2012M520657.
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Conservative Inexact Solvers for Porous Media
Flow

Eirik Keilegavlen and Jan M. Nordbotten

1 Introduction

Simulation models of flow and transport in geological porous media are character-
ized by a high degree of uncertainty due to both discretization errors and incomplete
measurements of physical parameters. In the context of linear solvers this seemingly
mandates the use of inexact strategies, where a solution is sought with an accuracy
similar to that of the overall computational model. Since the solution of linear
systems often consumes a substantial part of the total simulation time, inexact
solvers can yield considerable computational savings. However the derivation of
the continuous model is based on conservation of mass, and this property must
be preserved in the discrete system for the results to be physically meaningful.
The discretization schemes commonly applied are conservative by construction,
but unless the linear solver is designed specifically to produce solutions that,
even if inexact, conserve mass the inexact solution may not yield a stable overall
simulation strategy. For this reason linear systems are commonly solved to an
accuracy that is much higher than mandated by known discretization errors and
parameter uncertainties.

The key to producing physically meaningful inexact solutions is to design the
linear solver by the same principles as the discretization scheme. Herein we will
explore these ideas in the context of two-phase flow in a horizontal porous media.
The phases denoted water (w) and oil (o) are immiscible and incompressible with a
velocity given by Darcy’s law

u˛ D ��˛Krp; ˛ D w; o: (1)
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Here the phase mobilities �w and �o, represent fluid viscosity and rock-fluid
interaction. Furthermore K is the permeability and p is the fluid pressure. Of
particular importance to this paper are the properties of the permeability, which
commonly possesses sharp contrasts of several orders of magnitude and spatial
correlation structures on a continuum of length scales. Conservation of mass for
each phase is expressed as

�
@S˛

@t
Cr � u˛ D q˛; ˛ D w; o; (2)

where � represents porosity, S˛ is the volume fraction of phase ˛ and q˛ is the
source term. The saturations are assumed to fill the pore volume, that is SwCSo D 1.
Thus when (2) for the two phases are added to get an equation for conservation of
total mass, the saturations are eliminated. This gives a linear elliptic equation for the
pressure, which can be written

r � uT D �r � .�TKrp/ D qT : (3)

Here uT D uw C uo is the total velocity, �T D �w C �o is the total mobility and
qT D qw C qo is the total source term.

2 Discretization

In the rest of the paper we describe the construction of an inexact linear solver for (3)
which preserves the conservation property of uT . The solver is formulated in terms
of a novel multi-level control volume method which is briefly described next. More
details can be found in [6].

2.1 A Hierarchy of Control Volume Discretizations

In applications conservation of mass is considered an essential property that should
be preserved during discretization. To that end a cell centered control volume
method is applied for the spatial discretization. A discrete Darcy’s law is constructed
as in [1]

uh;˛ D ��U˛ Thph; (4)

where uh;˛ is the discrete phase velocities for phase ˛, Th is a matrix of transmis-
sibilities and ph is a cell centered approximation of the pressure. The mobilities,
�U˛ , are discretized by phase-wise upstream weighting. A discrete equation for the
pressure is found by
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Dh..�
U
w C �Uo /Thph/ D Ahph D qh; (5)

where Dh is the discrete divergence, Ah is the system matrix and qh represents
discrete sources. We note that (5) can be considered a Petrov-Galerkin discretization
of (3), with piece-wise constants on the cells as test functions and shape functions
defined by the specific control volume method. When (5) has been solved for ph,
(2) for the water phase is discretized by an explicit method with upstream weighting
of the mobilities.

The sharp contrasts and long correlation structures of the permeability is reflected
in the discretization matrix Ah, thus solving (5) is time consuming. Discretization
errors and uncertainties in the permeability make the linear system a prime candidate
for an inexact linear solver. However, (5) was derived by requiring conservation of
mass, and unless this is reflected in the inexact solution, conservation errors will
in worst case grow exponentially in the time propagation of (2). The linear solver
should therefore be constructed to produce a discrete flux field that, even if inexact,
satisfies (5). Furthermore an efficient solution strategy for (5) should invoke coarse
solvers to account for the global dependencies of the equation.

An inexact two-level method which retains the conservation property can be
realized within the framework of the multiscale finite volume (MSFV) method [3],
see also [8]. The domain is partitioned into a coarse grid and a coarse shape function
 H is constructed for each coarse cell to account for fine-scale variabilities in the
permeability. Coarse test functions �H are defined as piece-wise constants on the
coarse cells. A coarse linear system is then defined as

.˚T
HAh�H/pH D AHpH D ˚T

Hqh: (6)

Here ˚H and �H are column matrices of test and shape functions, respectively, and
AH is the coarse discretization. It is important to note the similarity between (5)
and (6), in that both are obtained by applying Petrov-Galerkin techniques. In this
way the coarse linear system retains the conservation property of the fine-scale
discretization. Specifically it will produce conservative coarse fluxes in the sense
that the fluxes into a coarse cell match the sources within the cell. When projected
to the fine scale the inexact fluxes will not be conservative. This is remedied by a
post-processing step where local fine-scale problems are solved within each coarse
cell [3]. The boundary conditions are the projection of the conservative coarse fluxes
to the fine scale.

2.2 Multi-Level Flux Post-processing

The two-level method outlined above amounts to an inexact linear solver that can
also be applied as a preconditioner within an iterative solver. However it is natural
to seek multi-level methods to realize efficient residual smoothing strategies. Also
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1

2

3

45

u1

u2

u3

Fig. 1 Parts of cells with common support for their basis functions centered around a vertex at the
boundary of a coarse cell. Fluxes (arrows) and cells close to the boundary of a coarse cell (bold).
Cells 3–5 are outside the coarse cell and must be eliminated from the flux expression for u2 using
u1 and u3 (which are known) and their sub-fluxes

when multiple grid levels are available, adaptive upscaling can be applied during the
simulation. Finally, the MSFV method is known to be unstable in cases where the
coarse grid does not follow anisotropy patterns in the permeability [5]. This can be
remedied by an unstructured coarsening strategy that is currently under development
but for this approach to be robust multiple coarsening steps with mild upscaling
ratios should be applied.

Since (6) has the same properties as (5) in terms of sparsity pattern and
conservation property, a further coarsening of the system can easily be constructed
by recursion. However, for the multi-level method to be applicable as a conservative
inexact linear solver, multi-level post-processing is needed, and specifically local
Neumann problems must be solved. For the coarser levels the discretization of Neu-
mann boundary conditions is not available, and this has in practice limited control
volume linear solvers to two grid levels. In the following we will outline how the
multi-level post-processing can be realized, a thorough explanation is given in [6].

As for the two-level method, the post-processing is performed by solving local
problems that are confined to single cells on the coarser level. When conservative
fluxes on coarse faces are known these can be mapped to any finer level via the shape
functions, specifically they can be mapped one level down to form boundary condi-
tions for the local problems. In this way the flux discretization on coarse boundaries
is replaced by known fluxes. However there will be faces interior to the coarse cell
with exterior cells in their flux discretization, in conflict with the goal of a local
post-processing. The exterior cells are eliminated by considering groups of cells that
are centered around vertexes on the boundary of the coarse cell and have common
support for their basis functions, as illustrated in Fig. 1. The exterior cells can be
replaced by the known fluxes over the boundary by formulating and solving a local
linear system. When the number of exterior cells and the number of known fluxes are
equal, the elimination is straightforward. If there are more exterior cells than there
are boundary conditions (respectively 3 and 2 in Fig. 1), additional equations can
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be obtained by splitting the boundary fluxes into sub-fluxes on a finer grid level and
computing higher order moments of the fluxes based on these. Note that on the finest
level the elimination is straightforward since a boundary discretization is available
there; thus the splitting into sub-fluxes is available when needed. A linear system is
then solved around all vertexes on the boundary, and the results are used to formulate
a local system within the coarse cell that is solved to get conservative fluxes.

This methodology provides conservative fluxes for all faces on all grid levels
even if the accompanying pressure is inexact. We make two comments on the
approach: firstly the only pair of pressure and fluxes which satisfies both the discrete
flux law (4) and the conservation equation (5) is the exact solution. The post-
processed fluxes possess the conservation property, but they cannot be computed
from the inexact pressures via (4). The post-processed fluxes can be thought of as
being exact for a modified permeability field, in accordance with an uncertainty in
this parameter. Secondly the post-processing is not applicable unless the inexact
solution preserves the conservation property of the continuous problem. This not
only requires the construction of coarse problems as described above, but also a
careful treatment of the right hand side of the linear system. To be specific, the right
hand side should be coarsened according to the Schur complement formulation of
the multi-level method [7]. The multi-level method with this special coarsening can
be applied as a correction to the residual of any inexact solution. The corrected
solution will in general still be inexact, but it will possess the structure necessary to
apply the post-processing.

2.3 Error Control

With the post-processing outlined above, we can obtain solutions that are inexact but
still honor the conservation property. There are two natural criteria for controlling
the linear solver. The simplest option is to terminate the iterations when a desired
reduction of the relative residual is achieved and then apply post-processing to
obtain a mass conserving flux field. However, even though the post-processing
produces a velocity field without conservation errors a reduction of the relative
residual gives little control of the accuracy of the fluxes. A more nuanced notion
of error can be derived from [4], where we find the expression

kK�1=2.u� u�h/k � inf
s2H1
kK�1=2.u�h �Krs/k C sup

ˇ2H1;kˇD1k
.r � .u� u�h /; ˇ/; (7)

where u is the true flux and u�h is the post-processed flux field. The last term eval-
uates to zero since the post-processed and exact fluxes have the same divergence.
The triangular inequality applied on the first term gives

kK�1=2.u � u�h/k � kK�1=2.u�h �Krp�h /k C inf
s2H1
kK1=2r.p�h � s/k; (8)
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with p�h representing the inexact pressure. The first term on the right hand side
of (8) is immediately computable, and can be interpreted as the error stemming
from the linear solver. We denote this term eLS . The second term is identified as the
discretization error, denoted ed . To give reasonable estimates for the gradient of p�h
in heterogeneous media, we compute this from face pressures that are reconstructed
from the fine-scale discretization. The estimate (8) can employed to control the
linear solution process by terminating the iterations when the error from the linear
solver is smaller than the discretization error, at which point it can be argued that it
makes little sense to improve the inexact solution.

3 Numerical Results

In this section we illustrate the utility of the conservative framework by coupling an
inexact multi-level linear solver for the pressure equation to a non-linear transport
problem. The computational grid is Cartesian, with 34 cells in each direction. The
permeability is taken from the bottom layer of the 10th SPE comparative solution
project (SPE10) [2], which is characterized by long and highly permeable channels
and sharp contrasts of six orders of magnitude. The medium is initially filled with
oil. Water is injected in the lower left corner of the grid, and a production well is
placed in the middle of the domain.

The phase velocities in (4) are discretized on the fine-scale grid by a two-point
flux approximation. Periodic boundary conditions are assigned for simplicity. Three
levels of coarsening are applied, each with a ratio of 3 in each direction, and a direct
solver is invoked on the coarsest grid. Thus the coarse operator constitutes a four-
level multi-grid method. Updates of the saturation feed back to the pressure equation
via the mobilities, which are set to �w D S3w and �o D 10S2o , and thus the velocity
field must be updated regularly. The pressure time step is fixed at a tenth of the total
simulation time, while the time step for the saturation equation is decided by the
CFL criterion.

To solve the pressure equation, GMRES iteration preconditioned by the multi-
level method is applied. Four criteria for terminating the iterative solver are
considered: Two consider the reduction of the relative residual, ", and terminate the
iterations when " < 5 � 10�5 and " < 10�5, respectively. The third criterion requires
that eLS < ed , which in this case corresponds to a value of " of 10�6 � 10�8.
All these estimates apply post-processing to ensure the approximated flux field is
conservative. Finally, we consider a solver with the same preconditioner, but where
post-processing is not applied after the iterations. In this case the fluxes must be
brought sufficiently close to being conservative by iterating on the solution. Note
that this is the strategy applied by a traditional linear solver. For the present setup,
a value of " < 10�10 is needed to avoid severe stability issues due to conservation
errors.

Snapshots of the saturation distributions with the respective control parameters
are shown in Fig. 2. All simulations predict the same large-scale pattern, and it is
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Fig. 2 Saturation profiles obtained with different stopping criteria for the linear solvers. Water
(light) is injected into a domain initially filled with oil (dark). Injection (O) and production (X)
wells are marked in (a). Periodic boundary conditions are applied. (a) " < 5 � 10�5, (b) " < 10�5,
(c) eLS < ed , and (d) " < 10�10, no p.p.

Table 1 Total number of GMRES iterations needed to achieve desired
tolerance level

" < 5 � 10�5 " < 10�5 eLS < ed " < 10�10, no p.p.

190 200 212 293

only the loosest tolerance for the pressure solver that yields notable differences
in the saturation profile. The computational gains from applying post processing
can be seen from the number of iterations shown in Table 1. We observe that
there is considerable room for computational savings without sacrificing significant
accuracy of the transport solution. We reiterate that this is due to the post-processing,
which facilitates inexact yet conservative flux fields. Some caution is needed when
deciding the stopping criterion for the linear solver as the accuracy necessary to get
reasonable transport solution is highly dependent on the simulation setup. Note that
if the post-processing is not applied the accuracy to produce a flux field that makes
the transport solver behaves stable increases significantly. The tolerance necessary
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will be different for other simulations, and in practice the only options to obtain
stable simulations are to iterate until the exact solution is found, or to apply an
inexact solver and somehow tackle conservation errors in the transport solver. We
also remark that the performance of all preconditioners suffers from the Cartesian
coarse grids that leads to strong heterogeneities within the coarse cells. This will be
amended by an unstructured coarsening procedure currently under development.

4 Concluding Remarks

In this paper we have considered the application of an inexact linear solver for
porous media flow with the special property that it provide a set of fluxes that
exactly satisfy a conservation law, even if the associated pressure that drives the
flux was approximated. The solver was formulated as a multi-level control volume
discretization, and we considered the coupling of the solver with a non-linear
transport problem. Since the approximated flux field possessed the conservation
property, considerable computational savings were possible without sacrificing
stability or significant accuracy in the transport simulation.

For simulation of realistic applications there will always be a trade-off between
accuracy and computational effort, and this balance is particularly well articulated
when control parameters for linear solvers are decided. We have shown in this paper
that the linear solver should not be considered a stand-alone part of the overall
simulation tool. Instead it should be in accordance with the same principles as
guided the choice of the discretization scheme. The resulting solver will provide
solutions that even if approximated are physically meaningful, enhancing the
robustness of the simulator.
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Robust Isogeometric Schwarz Preconditioners
for Composite Elastic Materials

L. Beirão da Veiga, D. Cho, L.F. Pavarino, and S. Scacchi

1 Introduction

In this paper, we study Overlapping Schwarz preconditioners for the system of linear
elasticity for composite materials discretized with Isogeometric Analysis (IGA).
This is an innovative numerical methodology, introduced by Hughes et al. [1,6,10],
where the geometry description of the PDE domain is adopted from a Computer
Aided Design (CAD) parametrization usually based on Non-Uniform Rational B-
Splines (NURBS). In IGA, these NURBS basis functions representing the CAD
geometry are also used as the PDEs discrete basis, following an isoparametric
paradigm. Since its introduction, IGA techniques have been studied and applied
in diverse fields, see e.g. [6].

In our previous Domain Decomposition (DD) works for IGA scalar elliptic
problems, we studied Overlapping Additive Schwarz (OAS) methods [2] and
Balancing Domain Decomposition by Constraints (BDDC) methods [3], providing
optimal and quasi-optimal convergence rate bounds for isogeometric DD methods,
together with the required theoretical foundation, technical tools and numerical
validation. Other DD IGA works have explored numerically dual primal Finite
Element Tearing and Interconnecting (FETI-DP) methods for 2D elliptic problems
[11] and have studied multigrid methods for the 2D and 3D Laplacian [9] and
Schwarz methods in the case of two subdomains with non-matching grids [5].
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Here we study Isogeometric OAS preconditioners for the system of linear
elasticity for compressible composite materials. An extension to mixed methods
for almost incompressible elastic materials can be found in [4].

We consider the linear elastic deformation of a body ˝ in Rd , d D 2; 3, with
boundary @˝ D �D[�N . The body is clamped on �D and it is subjected to a given
traction g W �N ! Rd on �N , as well as to a body force density f W ˝ ! Rd . The
displacement field u W ˝ ! Rd satisfies the system

(

divC".u/C f D 0 in ˝

u D 0 on �D and C".u/ � n D g on �N
(1)

Here, " is the symmetric gradient operator, n is the unit outward normal at each
point of the boundary, C� D 2� C �tr./I for all second order tensors  , where
tr./ is the trace of  , � D E�

.1C�/.1�2�/ ; � D E
2.1C�/ are the Lamé constants, E is

the Young modulus and � the Poisson’s ratio. Given loadings f 2 ŒL2.˝/�d and
g 2 ŒL2.�N /�d , define

<  ; v >D .f; v/˝ C .g; v/�N 8v 2 ŒH1.˝/�d ; (2)

where .�; �/˝ , .�; �/�N indicate as usual the L2 scalar product respectively on ˝ and
�N . The variational formulation of problem (1) then reads:

(

Find u 2 ŒH1
�D
.˝/�d such that:

a.u; v/ D<  ; v > 8v 2 ŒH1
�D
.˝/�d ;

(3)

where ŒH1
�D
.˝/�d D fv 2 ŒH1.˝/�d j vj�D D 0g and

a.w; v/ D
Z

˝

2� ".w/ W ".v/ dxC .� divw; divv/˝ 8w; v 2 ŒH1
�D
.˝/�d :

(4)

2 Isogeometric Discretization of Linear Elasticity

We discretize the elasticity system (3) with IGA based on B-splines and NURBS
basis functions, see e.g. [6,8]. Considering for simplicity the two-dimensional case,
the bivariate B-spline discrete space is defined as

OSh D spanfBp;q
i;j .�; �/; i D 1; : : : ; n; j D 1; : : : ; mg; (5)

where the bivariate B-spline basis functionsBp;q
i;j .�; �/ D Np

i .�/M
q
j .�/ are defined

by tensor product of one-dimensional B-splines functions Np
i .�/ and Mq

j .�/ of
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degree p and q, respectively. Analogously, the NURBS space is the span of NURBS
basis functions defined in 1D as

R
p
i .�/ D

N
p
i .�/!i

Pn
O{D1 N

p

O{ .�/!O{
D N

p
i .�/!i

w.�/
; (6)

(with weight function w.�/ DPn
O{D1 N

p

O{ .�/!O{ 2 OSh), and in 2D by tensor product

R
p;q
i;j .�; �/ D

B
p;q
i;j .�; �/!i;j

Pn
O{D1

Pm
O|D1 B

p;q

O{; O| .�; �/!O{; O|
D B

p;q
i;j .�; �/!i;j

w.�; �/
; (7)

where w.�; �/ is the weight function and !i;j D .C !
i;j /3 the weights associated with

a n	m net of control points Ci;j . The discrete space of NURBS scalar fields on the
domain ˝ is defined, component by component as the span of the push-forward of
the NURBS basis functions (7)

Nh WD spanfRp;qi;j ı F�1; with i D 1; : : : ; nI j D 1; : : : ; mg; (8)

with F W Ő ! ˝ the geometrical map between parameter and physical spaces

F.�; �/ D
n
X

iD1

m
X

jD1
R
p;q
i;j .�; �/Ci;j : (9)

Taking into account the boundary conditions, if for simplicity we consider the
case �D D @˝ , we define the spline space in parameter space as

OVh D Œ OSh\H1
0 .
Ő /�d D ŒspanfBp;q

i;j .�; �/; i D 2; : : : ; n�1; j D 2; : : : ; m�1g�d :

and the NURBS space in physical space as

Vh D ŒNh \H1
0 .˝/�

d D ŒspanfRp;qi;j ı F �1; with i D 2; : : : ; n � 1I
j D 2; : : : ; m � 1g�d : (10)

The IGA formulation of problem (3) then reads:

(

Find uh 2 Vh such that:

a.uh; vh/ D<  ; vh > 8vh 2 Vh:
(11)
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3 Isogeometric Overlapping Schwarz Preconditioners

We refer to the monographs [12, 13] for a general introduction to Overlapping
Schwarz methods. We describe first the subdomain and subspace decompositions
in 1D and then extend them by tensor products to 2D and 3D. The decomposition is
first built for the underlying space of spline functions in parameter space, and then
easily extended to the NURBS space in the physical domain.

3.1 1D B-spline Decomposition

From the full set of knots f�1 D 0; : : : ; �nCpC1 D 1g, we select a subset f�ik ; k D
1; : : : ; N C1g of (non repeated) interface knots with �i1 D 0; �iNC1

D 1. This subset
of interface knots defines a decomposition of the closure of the reference interval

� OI � D Œ0; 1� D
	

[

kD1;::;N
OIk
�

; with OIk D .�ik ; �ikC1
/;

that we assume to have a similar characteristic diameter H � Hk D diam. OIk/.
The interface knots are thus given by �ik for k D 2; ::; N . For each of the interface
knots �ik we choose an index 2 � sk � n � 1 (strictly increasing in k) that satisfies
sk < ik < sk C p C 1, so that the support of the basis function Np

sk intersects both
OIk�1 and OIk . Note that at least one such sk exists; if it is not unique, any choice can
be made.

We then define an overlapping decomposition of OI in the following way. Let
r 2 N be an integer (called the overlap index) counting the basis functions shared
by adjacent subdomains, defined as

OVk D ŒspanfNp
j .�/; sk � r � j � skC1 C rg�d k D 1; 2; ::; N; (12)

with the exception that 2 � j � s2 C r for the space OV1 and sN � r � j �
n � 1 for the space OVN . These subspaces form an overlapping decomposition of
the spline space OVh. For r D 0 we have the minimal overlap consisting of just one
common basis function between subspaces, while more generally 2rC 1 represents
the number of basis functions in common (in the univariate case) among “adjacent”
local subspaces. We now define the extended subdomains OI 0k by

OI 0k D
[

N
p
j 2 OVk

supp.Np
j / D .�sk�r ; �skC1CrCpC1/; (13)

with the analogous exception for OI 01, OI 0N ,
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We consider two choices for the coarse space OV0.
(a) A nested coarse space defined by introducing a (open) coarse knot vector �0 D
f�01 D 0; : : : ; �0NcCpC1 D 1g corresponding to a coarse mesh determined by the

subdomains OIk , i.e.

�0 D f�1; �2; : : : ; �p; �i1 ; �i2 ; �i3 ; : : : ; �iN ; �iNC1
; �iNC1C1; �iNC1C2 : : : ; �iNC1Cpg;

such that the distance between adjacent distinct knots is of orderH , �1 D � � � D
�p D �i1 D 0 and �iNC1

D �iNC1C1 D � � � D �iNC1Cp D 1. A coarse spline
space is then defined as

OV0 WD Œ OSH �
d D ŒspanfN0;p

i .�/; i D 2; : : : ; Nc � 1g�d ;

with the same degree p of OSh and is thus a subspace of Œ OSh�
d .

(b) A non-nested coarse space, of smaller dimension than in case (a), is defined as

OV0 WD Œ OSH �
d D ŒspanfN0;1

i .�/; i D 2; : : : ; Nc � 1g�d ;

where now note that p D 1 and the coarse knot vector (and Nc) is changed
accordingly

�0 D f�1; �i1 ; �i2 ; �i3 ; : : : ; �iN ; �iNC1
; �iNC1C1g;

with �1 D �i1 D 0 and �iNC1
D �iNC1C1 D 1. The construction above gives the

standard piecewise linear space on the coarse subdivision.

3.2 2D, 3D B-spline Decomposition

By tensor product (here in 2D for simplicity), we define subdomains, overlapping
subdomains and extended supports by

Ő kl D OIk 	 OIl ; Ő 0
kl D OI 0k 	 OI 0l ; 1 � k � N; 1 � l �M;

(where OIk D .�ik ; �ikC1
/; OIl D .�jl ; �jlC1

/). Moreover, we take the indices fskgNkD2
associated to f�ikgNkD2 and the analogous indices fslgMlD2 associated to f�jl gMlD2. The
local and coarse subspaces are then defined by

OVkl D ŒspanfBp;qi;j .�; �/; sk � r � i � skC1 C r; sl � r � j � slC1 C r g�d ;
OV0 D Œspanf ı

B
p;q

i;j W
ı
B
p;q

i;j .�; �/ WD N0;p
i .�/M

0;q
j .�/; i D 1; : : : ; Nc; j D 1; : : : ;Mcg�d ;
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with the usual modification for boundary subdomains and where
ı
B
p;q

i;j are the coarse
basis functions.

3.3 2D, 3D NURBS Decomposition

The subdomains in physical space are defined as the image of the subdomains in
parameter space with respect to the mapping F

˝kl D F. Ő kl/; ˝ 0kl D F. Ő 0kl/:

The local subspaces and the coarse space are, up to the usual modification for the
boundary subdomains,

Vkl D ŒspanfRp;qi;j ı F�1; sk � r � i � skC1 C r; sl � r � j � slC1 C r g�d ;

V0 D Œspanf ı
R
p;q

i;j ı F�1 WD .
ı
B
p;q

i;j =w/ ı F �1; i D 1; : : : ; Nc; j D 1; : : : ;Mcg�d ;
where we recall that w is the weight function, see (7).

3.4 Overlapping Schwarz Preconditioners

Given the local and coarse embedding operators Ikl W Vkl ! Vh, k D 1; ::; N ,
l D 1; ::;M and I0 W V0 ! Vh, the discrete space Vh can be decomposed into coarse
and local space as

Vh D I0V0 C
X

k;l

IklVkl:

Define the local projections QTkl W Vh ! Vkl by

a. QTklu; v/ D a.u; Iklv/ 8v 2 Vkl;

and the coarse projection QT0 W Vh ! V0 by

a. QT0u; v/ D a.u; I0v/ 8v 2 V0:

Defining Tkl D Ikl QTkl and T0 D I0 QT0, our two-level Overlapping Additive Schwarz
(OAS) operator is then

TOAS WD T0 C
N
X

kD1

M
X

lD1
Tkl: (14)
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The matrix form of this operator is TOAS D BOASA ; where A is the stiffness matrix
and BOAS is the Additive Schwarz preconditioner

BOAS D RT0 A�10 R0 C
N
X

kD1

M
X

lD1
RTkl A

�1
kl Rkl: (15)

Here, Rkl are restriction matrices with 0; 1 entries returning the coefficients of the
basis functions belonging to the local spaces Vkl and Akl are the local stiffness
matrices restricted to the subspace Vkl. If the coarse space is nested into the fine
space, RT0 is the coarse-to-fine interpolation matrix and A0 is the coarse stiffness
matrix associated with the coarse space V0. If the coarse space is non-nested, RT0
is the coarse-to-fine L2-projection matrix and the coarse space stiffness matrix is
given by A0 D R0A RT0 :

3.5 A Convergence Rate Bound

Given the overlap index r defined before (12), we define the overlap parameter

� D h.2r C 2/; (16)

that is related to the width ı of the overlapping region by the bounds � D h.2r C
2/ � ı � h.2r C p C 1/ � pC1

2
�: Assuming that (a) the parametric mesh is quasi-

uniform, and (b) the overlap index r is bounded from above by a fixed constant, we
have the following result (see [4]).

Theorem 1. The condition number of the two-level additive Schwarz precondi-
tioned operator TOAS defined in (14), with either nested or non-nested coarse space,
is bounded by

	2.TOAS/ � C
�

1C H

�

�

;

where � D h.2r C 2/ is the overlap parameter defined in (16) and C is a constant
independent of h;H;N; � (but not of p; k).

4 Numerical Results

In this section, we test the convergence properties of the isogeometric OAS pre-
conditioner defined in (15) for linear elasticity problems on 3D domains. The IGA
discretization with mesh size h, polynomial degree p, regularity k, is carried out
by using the Matlab isogeometric library GeoPDEs [7]. The domain is decomposed
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Table 1 Scalability of OAS preconditioner with nested (left) and non-nested (right) coarse space:
condition number 	2.TOAS/, extremal eigenvalues �max; �min and PCG iteration counts nit as a
function of the number of subdomains N

Nested coarse space Non-nested coarse space

r D 0 r D 1 r D 0 r D 1

N 	2 D �max=�min nit 	2 D �max=�min nit 	2 D �max=�min nit cho 	2 D �max=�min nit

2� 2� 2 16:3 D 8:03=0:49 22 9:1 D 8:25=0:91 19 17:2 D 8:03=0:47 23 9:3 D 8:25=0:89 21

3� 3� 3 18:5 D 8:04=0:43 25 11:2 D 9:31=0:83 22 22:8 D 8:04=0:35 28 12:8 D 9:68=0:76 25

4� 4� 4 19:8 D 8:04=0:41 26 11:9 D 9:47=0:80 23 20:1 D 8:04=0:40 27 12:0 D 9:47=0:79 24

5� 5� 5 20:2 D 8:04=0:40 26 12:1 D 9:52=0:79 23 20:5 D 8:04=0:39 27 12:4 D 9:53=0:77 25

6� 6� 6 20:4 D 8:05=0:40 26 12:3 D 9:56=0:78 23 20:6 D 8:05=0:39 27 12:5 D 9:56=0:76 25

Cubic domain, fixed H=h D 4, p D 3, k D 2, E D 6eC 6, � D 0:3

Table 2 OAS robustness with respect to jump discontinuities in E . Outside the central jump
region of 2� 2� 2 subdomains E D 6eC 3 and � D 0:3

Jumping coefficient E, twisted quarter-ring domain

Unpreconditioned 1-level OAS 2-level OAS

E 	2 D �max
�min

nit 	2 D �max
�min

nit 	2 D �max
�min

nit

6eC 1 1:01eC 6 D 8:48eC3
8:40e�3 6,029 263:96 D 8:00

3:03e�2 57 22:40 D 8:47
0:38

28

Central 6eC 3 1:24eC 4D 8:74eC3
0:70

691 261:04 D 8:00
3:06e�2 66 25:79 D 8:34

0:32
30

jump 6eC 5 9:92eC 5D 7:08eC5
0:71

5,793 215:73 D 8:00
3:71e�2 55 26:35 D 8:58

0:32
29

6eC 7 7:85eC 7D 7:08eC7
0:90

20,625 191:83D 8:00
4:17e�2 54 30:93 D 8:62

0:28
30

CheckerboardE 8:10eC 7D 3:29eC7
0:41

20,625 70:32 D 8:00
0:11

32 19:21 D 8:50
0:44

24

In the checkerboard test for E , E D 6e C 3 or E D 6e C 7. Condition number 	2, extremal
eigenvalues �max; �min and iteration counts nit. Fixed fine mesh 16 � 16 � 8, N D 4 � 4 � 2,
H=hD 4, p D 3, k D 2

into N overlapping subdomains of characteristic size H and overlap index r . The
resulting linear system is solved by PCG with the isogeometric OAS preconditioner,
with zero initial guess and a stopping criterion of 10�6 reduction of the relative
residual.

Table 1 shows the scalability of the proposed isogeometric OAS preconditioner
for a reference cubic domain decomposed into an increasing number of subdomains
cho N of fixed subdomain size H=h D 4 (scaled speedup test), p D 3; k D 2,
overlap r D 0 and r D 1, and both nested (left) and non-nested (right) coarse
spaces. In addition to scalability, the results show that the two coarse spaces have
similar performances and both improve when increasing the overlap size.

Table 2 illustrates the robustness of the OAS preconditioner for composite
materials where the Young modulus E presents discontinuities across subdomain
boundaries. The deformed 3D domain is a twisted bar shown in Fig. 1 (right),
discretized by 16 	 16 	 8 fine elements, N D 4 	 4 	 2 subdomains, and NURBS
with p D 3 and k D 2 (except at the subdomain interfaces where k D 0). In the
central jump test, the jump region consists of the 2 	 2 	 2 central subdomains.
Outside the jump region,E D 6e C 3 and � D 0:3, while inside such region E has
the value indicated in Table 2. In the checkerboard test, E alternates between the
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Fig. 1 3D domains used in the numerical tests

values E D 6e C 3 and E D 6e C 7, while � D 0:3 everywhere. The results show
that the unpreconditioned PCG deteriorate whenE jumps towards 6eC7, while the
two-level OAS preconditioner is very robust for jumps in E .
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Hybrid Domain Decomposition Solvers
for the Helmholtz Equation

Martin Huber and Joachim Schöberl

1 Introduction

When solving the Helmholtz equation with standard finite elements, the oscillatory
behavior of the solution results in a large number of degrees of freedom (DoFs)
required to resolve the wave, especially for high wave numbers. This together with
the indefiniteness of the problem makes an iterative solution of the resulting linear
system of equations difficult. Nevertheless, some advances for finding efficient
preconditioners for wave type problems have been made recently. Well known is
the shifted Laplace Preconditioner [5], or a sweeping preconditioner [4] based on
an approximate block LDL> factorization, which is constructed layer by layer.
Especially for parallel computing platforms domain decomposition methods are
very popular. Apart from optimized Schwarz methods [8], i.e. Schwarz methods
which rely on optimal transmission conditions as interface condition, the FETI-H
[6] and the FETI-DPH [7] method are widely used. The last two methods can be
seen as further developments of the FETI and the FETI-DP methods, respectively,
specialized for Helmholtz problems.

The solution strategies presented in this work are based on a mixed hybrid
discontinuous Galerkin formulation [10, 13] Since the hybrid formulation provides
appropriate interface conditions an efficient iterative solution with Krylov space
methods combined with domain decomposition preconditioners is possible. Apart
from adapting a BDDC preconditioner [3, 11] to the current setting, a new
Robin type domain decomposition preconditioner is constructed. This precondi-
tioner solves in each iteration step local problems on subdomains by directly
inverting the subdomain matrix. Thus, it is well suited for parallel computations.
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Good convergence properties of both preconditioners are demonstrated by numeri-
cal experiments. The results of this paper will be presented in more detail in [9].

2 The Mixed Hybrid Discontinuous Galerkin Formulation

Our formulation is based on the mixed form of the Helmholtz equation: Find a scalar
function u W ˝ ! C and a vector valued function p W ˝ ! Cd

grad u D i!p and div p D i!u

with an absorbing boundary condition �p � n C u D g on � WD @˝ . As
computational domain˝ � Rd with d D 2; 3 a Lipschitz polyhedron is considered.
Furthermore, n denotes the outer normal vector, the angular frequency ! is a
positive constant and g 2 L2.� /. Note that [12] guarantees a unique solution.

In this paper we make use of the following notations. By T a triangulation with
the elements T is denoted. The set of its facets F we call F , nF represents the
normal vector onto a facet F , and nT is the outer normal vector of an element T .
Furthermore volume integrals are denoted by

�

u; v
�

T
WD R

T
u Nv dx and surface

integrals by
˝

u; v
˛

@T
WD R

@T
u Nv ds.

In order to obtain efficient solvers for the Helmholtz equation, we consider it in
a mixed hybrid form. Thus, we search for .u;p; uF ; pF / 2 L2.˝/ 	H.div;T / 	
L2.F / 	 L2.F / DW U 	 V 	 UF 	 VF such that for all .v; q; vF ; qF / 2 U 	 V 	
UF 	 VF
X

T2T

	

�

i!u; v
�

T
� �divp; v

�

T
� �u; divq

�

T
� �i!p; q

�

T
C ˝uF ;nT � q

˛

@T
(1)

C˝nT � p; vF
˛

@T
C ˝nF � p � pF ;nF � q � qF

˛

@T

�

� ˝uF ; vF
˛

�
D �˝g; vF

˛

�
:

This mixed hybrid formulation was introduced and discussed in [13]. In the
formulation the space H.div;T / represents an element wise H.div/ space without
continuity constraints across element interfaces, and L2.F / is the space of L2

functions on the facets. Consequently uF and pF are supported just on the facets,
and they represent the values of u and p � nF there. The problem is discretized by
the finite dimensional spaces

Uh WD
Y

T2T
Pk.T /; Vh WD

Y

T2T
RTk.T /;

UFh WD
Y

F2F
Pk.F /; VFh WD UFh;

where polynomials of order k are denoted as Pk and RTk represents a Raviart-
Thomas element of order k. The discrete solutions we call uh, ph, uFh and vFh,
respectively.
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Since there is no global coupling for the functions uh and ph across different
elements, the corresponding DoFs can be eliminated cheaply on the element level
via static condensation [1]. Note that this elimination corresponds on each element
to the solution of a wave type problem with Robin boundary conditions, and
uniqueness is guaranteed. The resulting linear system of equations needs now to
be solved only for the facet DoFs.

Remark 1. The original form of Eq. (1) in [13] contains a penalty parameter �,
which was chosen to be one in our work. For this choice the local problem on the
element, which needs to be solved during static condensation, corresponds to the
original problem posed on the domain with g D ˙pFCuF . The sign depends on the
direction of the facet normal nF . Thus, g represents now the incoming impedance
trace for the element.

In this work domain decomposition preconditioners will be used to solve the
reduced linear system of equations for the facet unknowns uFh and pFh, which
is obtained by eliminating the volume unknowns uh and ph. Note that this linear
system of equations is related to the skeleton of a mesh, and a domain decomposition
of the skeleton is induced by a decomposition of the underlying mesh. Since
impedance traces are obtained from the facet unknowns by a simple transformation
of variables, transmission conditions on the interface in the sense of [2] can
be enforced by guaranteeing the same value of the facet unknowns of different
subdomains on the subdomain interface. Thus the mixed hybrid formulation allows
in a natural way for appropriate transmission conditions for domain decomposition
preconditioners.

3 The BDDC Preconditioner for the Mixed Hybrid
Formulation

In this section, we adapt the BDDC preconditioner introduced by Dohrmann in [3]
(compare also [11]) to wave type problems. Therefore a stabilization term has to be
added to the mixed hybrid formulation, more precisely, the term

X

T2T
�
	

˝

.nT � nF /pF ; vF
˛

@T n� C
˝

uF ; .nT � nF /qF
˛

@T n�
�

; � 2 C (2)

is added to (1). The parameter � 2 C is a tuning parameter, we choose based on
numerical experiments. For the Helmholtz and the vector valued wave equation we
made good experience with � D �0:5� 0:1i . These additional terms are just added
for inner facets, and because of the different sign of nT � nF for the two neighboring
elements, they cancel out when the global system of equations is assembled. Thus
the problem does not change. But for domain decomposition preconditioners, which
are based on submatrices assembled just for a subdomain the situation changes.
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These additional terms do not cancel out in the submatrices for DoFs located on the
interface to other subdomains.

We use a BDDC preconditioner for this modified facet problem. The computa-
tional domain is divided into subdomains, and the DoFs on facets which just belong
to one subdomain are considered to be primal, as well as the low order DoFs on
interface facets. The high order DoFs on interface facets are the dual ones.

This choice leads to a large global system for the primal DoFs. Note that this
system of equations consists due to the missing high order unknowns at the interface
of weakly coupled subdomain blocks. Therefore it can be solved rather efficiently
by direct solvers on parallel computing platforms.

4 A Robin Type Domain Decomposition Preconditioner

Like the BDDC preconditioner, the new Robin type domain decomposition (RDD)
preconditioner will be applied to the skeleton problem, including the stabilizing
terms (2) with the same value for � .

Before describing the preconditioner, some notations are required. We assume,
that the computational domain is divided into N subdomains ˝i . For each sub-
domain a matrix Ai representing the subdomain problem is subassembled, and
the global matrix A of the linear system of equations is obtained by adding these
submatrices. By QAi we denote the block of Ai which corresponds to DoFs on inner
facets, i.e. facets which just belong to the domain ˝i . The matrix R.i/ restricts a
vector to the components corresponding to these inner DoFs of the domain˝i . The
matrix R.i/D provides a weighted restriction to the domain ˝i , i.e. when applying it,
a vector entry is divided by the number of subdomains to which the corresponding
DoFs belongs to. Note that an application of the prolongation matrix R.i/>D results
again in a division for the interface DoFs. Thus, by summing up over all subdomains,
a mean value on the interface can be created.

Using this notations, a RDD step for finding Qx WD C�1RDDb with b as right hand
side of the linear system of equations and CRDD as the preconditioner reads as

(1) y0 D 0;

(2) y1 D y0 CPN
iD1 R.i/> QA�1i R.i/.b �Ay0/;

(3) y2 D y1 CPN
iD1 R

.i/>
D A�1i R

.i/
D .b �Ay1/;

(4) Qx D y2 CPN
iD1 R.i/> QA�1i R.i/.b� Ay2/:

In step 2, the system of equations is solved exactly for the DoFs on the inner
facets under the constraint that the solution on the interface is zero. Step 3 provides
an update for the interface solution by partitioning the actual residual among the
subdomains and solving the problem there exactly. A continuous interface solution
is constructed by averaging the different subdomain solutions. Finally, in step 4 the
solution is updated by solving the system of equations exactly for the DoFs on inner
facets. Note that the interface solution remains unchanged.
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The RDD-preconditioner can also be introduced in the variational projector
notation. Therefore, we denote the bilinear form representing the Schur complement
system, which is defined on the facet space W WD UFh 	 VFh by a. Additionally,
it is assumed that the bilinear form a can be decomposed into its subdomain
contributions ai , i.e. a D PN

iD1 ai . The subspace of W containing the functions
which are supported on the subdomain ˝i is denoted by Wi , and in QWi functions
supported only on inner facets of the domain ˝i are collected. The operator
representation of the restriction matrix R.i/D is called R

.i/
D W W ! Wi . Thus, when

applying it to any function in W , the function is restricted to the domain˝i , and its
values on the interface facets are divided by the number of neighboring subdomains.
Furthermore, R.i/ W W ! QWi is the restriction operator corresponding to the
matrix R.i/, and by R.i/> the prolongation operators are denoted.

Based on this, we define the variational projector P
.i/
D via P

.i/
D D R

.i/>
D

OP .i/
D

with the projector OP .i/
D W W ! Wi and

ai . OP .i/
D u; �/ D a.u;R.i/>

D �/ 8� 2 Wi :

In the same way the variational projector P .i/ with P .i/ D R.i/> OP .i/ can be
introduced. Here, OP .i/ W W ! QWi is given via

ai . OP .i/u; �/ D a.u;R.i/>�/ 8� 2 QWi :

If the operator A corresponds to the bilinear form a, and I is the identity, the error
propagation operator E of the RDD-preconditioner reads as

E D I � C�1RDDA D
	

I �
N
X

iD1
P .i/

�	

I �
N
X

iD1
P

.i/
D

�	

I �
N
X

iD1
P .i/

�

:

Remark 2. Because the system of equations is always solved exact for the DoFs
on inner facets, both sets of facet DoFs uFh and pFh are not needed anymore, and
the problem can be formulated just by using uFh. On the interface, both types of
unknowns are still necessary in order to fix continuity conditions of the impedance
traces across the interface and to guarantee convergence of the iterative solver.
Nevertheless, neglecting one type of facet unknowns on inner facets saves many
DoFs in an actual calculation.

5 Numerical Results

For all numerical examples which are presented in this section, we made good
experience by taking a CG-solver, although, there exists no convergence theory for
complex symmetric problems. We start the numerical results section by comparing
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Table 1 Iteration numbers of the BDDC/RDD preconditioner using nine subdomains (p D 4) for
different mesh sizes and wavelength �

� 1 1
2

1
4

1
8

1
16

1
32

1
64

h D 1
4

45=78 49=65 60=61
h D 1

8
51=95 48=84 56=71 73=70

h D 1
16

56=123 50=96 49=83 59=73 80=72
h D 1

32
63=154 57=125 48=101 49=84 65=74 85=74

h D 1
64

66=202 62=164 56=127 50=111 50=89 74=82 101=89

the preconditioners for a simple two dimensional model problem. There, the
Helmholtz equation is solved on a square ˝ D Œ�1; 1�2 with an incoming wave
from above of Gaussian amplitude, fixed by the absorbing boundary condition. The
computations were done with the MPI-parallel finite element code Netgen/Ngsolve
(see http://sourceforge.net/projects/ngsolve or [14]), which contains the software
package Metis for partitioning the domain. If not said differently, a Dell R-910
Server (4 Xeon E7 CPUs with 10 cores a 2.2 GHz, 512 GB RAM) was used.

In Table 1 the iteration numbers for the BDDC and the RDD preconditioner for
different wavelengths � WD 2�

!
and mesh sizes h are given. For all computations the

polynomial order was kept constant to four, and nine subdomains were used for the
preconditioners.

According to the table, the BDDC preconditioner shows the highest iteration
numbers close to the resolution limit at h � �, which corresponds for a polynomial
order of p D 4 to about four unknowns per wavelength. When increasing the
number of unknowns per wavelength, either by decreasing the mesh size or by
increasing the wavelength, the number of iterations stays constant or grows slightly.
For the RDD preconditioner the situation is vice versa. Although, for a large
wavelength and a small mesh size the RDD preconditioner needs much more
iterations than the BDDC preconditioner, it gets more and more competitive if the
number of degrees of freedom per wavelength is reduced. Considering, that the RDD
preconditioner is faster than the BDDC preconditioner with respect to setup-time
and time per iteration, it is the method of choice for discretizations close to the
resolution limit of the wave.

One reason for this behavior could be the different structure of the two solvers.
While the RDD preconditioner allows just for local corrections, the BDDC solver
benefits additionally from a coarse grid solution. For a decreasing wavelength, the
solution gets more and more oscillatory, and the coarse grid correction, which
provides communication across the whole subdomain loses its importance.

The number of iterations of the BDDC and the RDD preconditioner is also
influenced by the size of the subdomains the computational domain is divided into.
In Fig. 1 iteration numbers of these two preconditioners are plotted for different
wavelengths against the subdomain size H , both in logarithmic scale. Note that
the partitioning of the domain was done by Metis, and therefore, H represents
an average subdomain size. In the corresponding experiments the mesh size was
kept constant to 1

64
and the polynomial order to four. For the RDD preconditioner

http://sourceforge.net/projects/ngsolve
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Fig. 1 Number of iterations plotted versus the size of one subdomain H for the BDDC and the
RDD preconditioner. The polynomial order was 4 and hD 1

64

Fig. 2 Real part of the solution (left) and its absolute value (right) for a wave diffracted at a grating

the number of iterations decreases with an increasing subdomain size. Figure 1
indicates that this decrease is proportional to H�˛ . According our experimental
data ˛ was estimated to be approximately 0.65. The situation is slightly different for
the BDDC preconditioner. While it shows the same features for small wavelengths,
i.e. for settings close to the resolution limit, the iterations stay almost constant for
large wavelengths. A reason for this is, that for less oscillatory solutions the BDDC
preconditioner benefits from its coarse grid correction.

Finally, we want to demonstrate the efficiency of our preconditioners with a
three dimensional large scale example. The computational results presented in
the following have been achieved using the Vienna Scientific Cluster 2 (VSC2).
In this example, the solution of the Helmholtz equation for a grating (compare
Fig. 2) with period 0.14 was computed. The diameter of the computational domain
was two. Thus, assuming a wave incoming from the top with Gaussian amplitude
and wavelength 0.025 corresponds to an effective domain size of 80 wavelengths.
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For this setting, the left hand plot in Fig. 2 shows the real part of the solution,
and the absolute value is plotted on in the righthand plot. In the calculation, the
underlying mesh had about 1.61 million elements with a maximal mesh size of
0.021. Selecting a polynomial order of pD 4 results in approximately 288.8 million
volume unknowns (56.5 M. for u and 232.3 M. for p) and 98.0 million facet
unknowns (49.0 M. for uF and pF ). Using 1,200 subdomains, the assembly of the
matrix took 58 s and the setup of the RDD preconditioner 33 s. The problem was
solved in 12.9 min with 399 iterations on 1,200 processors. Recovering the volume
DoFs uh and ph from the facet DoFs uFh and pFh took 53 s.
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Efficient Implementation of a Multi-Level
Parallel in Time Algorithm

Matthew Emmett and Michael L. Minion

1 Introduction

The last decade has seen an increase in research into the parallelization of numerical
methods for ordinary and partial differential equations in the temporal direction.
One strategy for temporal parallelization involves decomposing the solution into
time slices, which are distributed across processors or groups of processors, and
employing an iterative scheme for computing the solution on all time slices in
parallel [2–4]. The communication between time slices in these algorithms is quite
regular, where each processor must send updates to the initial condition to the
processor representing the following time slice. This communication must be done
during each iteration of the method, and the amount of data sent is proportional
to the size of the problem being solved. Although this communication takes place
less frequently than that which typically occurs in spatially parallelized solvers for
PDEs, the size of the data that must be transmitted is relatively large, and hence,
reducing the effective cost of this data transfer is necessary to avoid reduced parallel
efficiency.

In [2] a new approach for the temporal parallelization of the numerical solution
to partial differential equations, called the Parallel Full Approximation Scheme in
Space and Time (PFASST), is introduced. PFASST is similar in structure to the
earlier Parareal [4] and PITA [3] methods, but uses a deferred correction type
procedure first described in [6, 7] within time slices instead of a traditional direct
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method, which provides an improved theoretical maximum parallel efficiency as
compared to Parareal or PITA. The PFASST algorithm also uses a hierarchy of
spatial and temporal discretizations of the problem, wherein coarse problems are
defined in a procedure analogous to the full approximation scheme (FAS) used
extensively in multigrid methods for nonlinear problems (see e.g., [1]). Since FAS
is naturally recursive, an extension of the approach in [2] to multiple levels of
spatial and temporal refinement is possible. The key algorithmic change in PFASST
presented here concerns the issue of the communication cost.

The PFASST method is reviewed here in Sect. 2. In Sect. 3, an approach is
outlined wherein corrections computed at different refinement levels are passed
between processors in a way which can greatly reduce the communication overhead
of the PFASST iterations. The timing results presented in Sect. 4 demonstrate the
effectiveness of the proposed communication strategy. Finally, a short discussion of
the current results and future research directions can be found in Sect. 5.

2 Parallel Full Approximation Scheme in Space and Time

In this section, a brief description of the PFASST algorithm is included. It is
assumed that the reader is familiar with Spectral Deferred Correction (SDC) meth-
ods and full approximation scheme (FAS) corrections. For more complete details,
see [2, 6].

For the following description, consider the ODE initial value problem

u0.t/ D f .t; u.t//; u.0/ D u0; (1)

where t 2 Œ0; T �; u0; u.t/ 2 CN ; and f W R 	 CN ! CN . It is assumed here that
(1) represents a method of lines discretization of a PDE.

For a PFASST computation with L levels of spatial and temporal resolution
(with level 0 being the finest), the time interval of interest Œ0; T � is divided into
N uniform intervals Œtn; tnC1� which are assigned to the processors Pn where
n D 0 : : : N � 1. Each interval is subdivided on each level ` by defining M` C 1
SDC nodes t` D Œt`;0 � � � t`;M`

� such that tn D t`;0 < � � � < t`;M`
D tnC1, where

we have omitted the dependence of t` on n for brevity. The SDC nodes t`C1 on
level ` C 1 are chosen to be a subset of the SDC nodes t` on level ` to facilitate
interpolation and restriction between coarse and fine levels. Note that the use of
point injection as the coarsening procedure with Gaussian quadrature nodes means
that the coarse nodes may not correspond to Gaussian nodes. The solution at themth
node on level ` during iteration k is denoted U .`; k;m/. For brevity let U .`; k/ D
ŒU .`; k; 0/; � � � ;U .`; k;M`/� and F .`; k/ D ŒF .`; k; 0/; � � � ;F .`; k;M`/� D
Œf .t`;0;U .`; k; 0//; � � � ; f .t`;M`

;U .`; k;M`//�.
In the parareal method, the processors are typically initialized by using the coarse

propagator in serial to yield a low-accuracy initial condition for each processor.
In [2], an alternative initialization scheme is described. During initialization, each
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processor begins coarse SDC sweeps immediately using the initial condition from
the first processor. Hence the number of coarse iterations (SDC sweeps) done on
processor Pn in the initialization is equal to n rather than 1. This has the same total
computational cost of doing one coarse SDC sweep per processor in serial, but the
additional SDC sweeps can improve the accuracy of the solution significantly, as
is demonstrated in [2]. During this initial iteration, no communication is necessary
since each processor computes the same data as the processor corresponding to the
previous process. Hence further discussion of the initialization procedure is omitted.

The full PFASST iterations for k D 0 : : :K � 1 on each processor Pn proceed
as follows. Assuming that the fine solution and function values U .0; k/ and F .0; k/

are available, the iterations are comprised of the following steps:

(i) Perform one fine SDC sweep using the values U .0; k/ and F .0; k/. This will
yield provisional updated values U .0; k C 1/ and F .0; k C 1/.

(ii) Send U .0; kC 1;M0/ to processor PnC1 if n < N � 1. This will be received
as the new initial condition U .0; k C 1; 0/ in the next iteration.

(iii) Go down the V -cycle: for each ` D 1 : : : L � 2
a. Restrict the fine values U .` � 1; k C 1/ to the coarse values U .`; k/ and

compute F .`; k/.
b. Compute the FAS correction B.`; k/ using F .`� 1; k C 1/, F .`; k/, and

B.` � 1; k/.
c. Perform n` SDC sweeps with the values U .`; k/, F .`; k/ and the FAS

correction B.`; k/. This will yield new values U .`; kC1/ and F .`; kC1/.
d. Send U .`; k C 1;M`/ to processor PnC1 if n < N � 1. This will be

received as the new initial condition U .`; k C 1; 0/ in the next iteration.

(iv) Perform the bottom sweep:

a. Restrict the fine values U .L� 2; k C 1/ to the coarse values U .L� 1; k/
and compute F .L� 1; k/.

b. Compute the FAS correction B.L� 1; k/ using F .L� 2; k C 1/, F .L�
1; k/, and B.L � 2; k/.

c. Receive the new initial value U .L�1; k; 0/ from processor Pn�1 if n > 0
and compute F .L� 1; k; 0/.

d. Perform nL�1 coarse SDC sweeps using the values U .L � 1; k/, F .L �
1; k/ and the FAS correction B.L�1; k/. This will yield new values U .L�
1; k C 1/ and F .L � 1; k C 1/.

e. Send U .L�1; kC1;ML�1/ to processor PnC1 if n < N �1. This will be
received as the new initial condition U .L� 1; k; 0/ in the current iteration
on the next processor PnC1.

(v) Return up the V -cycle: for each ` D L � 2 : : : 1:

a. Interpolate coarse correction U .`C 1; k C 1/�U .`C 1; k/ in space and
time and add to U .`; k C 1/. Recompute new values F .`; k C 1/.

b. Receive the new initial value U .`; kC1; 0/ from processor Pn�1 if n > 0.
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Fig. 1 (a) Communication diagram for the original two-level PFASST algorithm. (b) Communi-
cation diagram for the three-level V -cycle PFASST algorithm

c. Interpolate correction U .`C1; kC1; 0/�U .`C1; k; 0/ to new U .`; kC
1; 0/ and recompute F .`; k C 1; 0/.

d. Perform n` SDC sweeps with the values U .`; kC 1/, F .`; kC 1/ and the
FAS correction B.`; k/. This will once again yield new values U .`; kC1/
and F .`; k C 1/.

(vi) Interpolate coarse correction U .1; k C 1/ � U .1; k/ in space and time and
add to U .0; k C 1/. Recompute new values F .0; k C 1/.

(vii) Receive the new initial value U .0; k C 1; 0/ from processor Pn�1 if n > 0.
(viii) Interpolate correction U .1; k C 1; 0/�U .1; k; 0/ to new U .0; k C 1; 0/ and

recompute F .0; k C 1; 0/.
The steps above are illustrated in Fig. 1b, in which solid blocks denote SDC sweeps
(F`) and gradient blocks denote interpolation (I ``C1) or restriction (R`C1` ). The
length of the blocks are proportional to their cost, with fine SDC sweeps being 4 and
16 times more expensive than intermediate and coarse SDC sweeps, respectively
(which would correspond to a 1D PFASST scheme with both spatial and temporal
refinements by a factor of 2). The length of the interpolation and restriction blocks is
also proportional to their cost: when transferring between levels we must re-evaluate
the function values F .`; k/ in order to compute the FAS corrections B.`; k/.

3 Communication Between Processors

In the precursors to this work appearing in [2, 6] as well as the original papers on
the parareal method, little attention is given to the topic of scheduling the commu-
nication between processors. In this section, a strategy which effectively unblocks
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communication except at the coarsest resolution is presented. It is assumed here that
the parallel implementation of PFASST allows computation and communication to
be performed simultaneously.

In each PFASST iteration, the full solution (or correction to the solution) must
be passed forward in time to the next processor. In the two level scheme presented
in [2, 6], this is done directly after the coarse correction is applied to the current
fine solution. Since the coarse SDC sweep on the next processor cannot begin until
this data is received, scheduling the communication in this way results in a blocking
communication. The blocking communication is depicted in Fig. 1a, where each
column represents the operations done on a processor with wall time progressing
from bottom to top. The white and black circles correspond to the send and receive
process on each processor. After the coarsest SDC sweep (denoted F1), the full
update of the initial condition is sent forward in time. The white gap represents the
waiting time, which grows linearly with the number of processors.

Note in Fig. 1a, the first operation performed after a processor receives data
is a coarse SDC sweep. In order to perform this sweep, a new initial condition
is required, but only at the coarse resolution. The key observation used here is
that it is only necessary to pass the corrections to the initial data during each
PFASST iteration, and more importantly this communication can be decomposed
into corrections corresponding to each level of spatial resolution. Although this
means that more data in total is being passed during each PFASST iteration,
data from the finer levels can be sent before the corresponding fine SDC sweeps
are performed on each processor. Therefore, if the computational cost of the
computation at the coarser levels is greater than the communication cost of sending
data at a particular level, then the communication becomes non-blocking.

For example, consider Fig. 1b, which diagrams the scheduling of communication
for a three-level implementation of the PFASST algorithm. At each level, as soon
as an SDC sweep is completed (denoted by F` for ` D 0 : : : 2), the correction to
the solution at the final SDC node (which corresponds to the first SDC node on
the next processor) is sent. This can be done before the recursive call to compute a
correction at the next coarsest level (denoted by the blocksR`C1` ). The sent data can
then be received in a buffer at the next processor and is not needed until after the
corresponding coarse correction has been computed (denoted by the blocks I ``C1) on
that processor. Hence, the sending of the finest data overlaps with the computation
of the correction on two coarser levels. It is only at the coarsest level that there is no
computational work to be done while waiting for the data to be received. However, if
the coarse data is significantly smaller than fine data, the communication cost at the
coarsest level is likewise significantly reduced. In the three-level, three-dimensional
example in Sect. 4, the coarsest level contains 1/64 the amount of data as the finest
level with communication time similarly reduced.

It should be noted that the crossing of the lines corresponding to communication
in Fig. 1b assume that blocking coarse communication could be scheduled to
interrupt non-blocking fine level communication, a feature which may not exist in a
standard message passing library. If this is not the case, there is still the opportunity
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to overlap computation with communication before the blocking coarsest level send
occurs. Finally, recall that the work performed by each processor in Fig. 1b is not
uniform since processor Pn does n coarse SDC sweeps during the initialization
procedure.

4 Timing

Timing information for a three-level PFASST run was obtained for a three dimen-
sional model problem: the incompressible Navier–Stokes equations given by

ut C u � ru D �r2u� rpr � u D 0: (2)

A method of lines approach is employed by placing the equations in projection
form and using spectral approximations to all spatial derivatives via the FFT [5].
The advective piece of the equation is treated explicitly while the diffusive piece
is treated implicitly. The fine spatial discretization consists of 2563 points in a
unit cube, resulting in a total of 3 	 2563 degrees of freedom on the fine level,
or approximately 384 megabytes using 64 bits per degree of freedom. The fine
temporal discretization consists of 5 Gauss-Lobatto SDC nodes. The run was
performed across 16 processors of “Edison”, the Cray XC30 system at the National
Energy Research Scientific Computing Center (NERSC).

Figures 2 and 3 present timing information for various parts of the PFASST
algorithm across the processors for each PFASST iteration. From Fig. 2 we note that
the iteration time (which encompasses all overhead costs including interpolation,
restriction, and FAS computation) is fairly consistent across each processor and
iteration, and that the cost of the intermediate and coarse sweeps are significantly
cheaper than the fine sweep.

From Fig. 3 we note that the (blocking) coarse send and receive times are
fairly significant (send/receive 0) between some processors. This establishes that
communication across compute nodes is non-trivial even at the coarse level (recall
that the coarse level consists of 3 	 643 degrees of freedom, which is 64 times
less than the fine level). Finally, the fine and intermediate send and receive times
(send/receive 1 and 2) are essentially zero across all processors and iterations. This
demonstrates that the fine and intermediate communications are essentially non-
blocking and were successfully overlapped with computation.

The three-level PFASST run using 16 time processors described above achieves
a speedup of roughly 7.2 compared to a serial SDC-based run (which requires
eight serial iterations per time step to achieve the same accuracy as six PFASST
iterations). This corresponds to a parallel efficiency of roughly 45 %. The parallel
efficiency of PFASST can vary substantially depending on the number of processors,
the error tolerance, and the sensitivity of the problem at hand [2].
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5 Discussion

In summary, we have demonstrated how the necessary transfer of relatively large
amounts of data between processors in the PFASST algorithm can be scheduled so
that only a small amount of the transfer is blocking. As long as the computation
involved in a recursive call to a coarser level correction is more expensive than
the communication, the communication cost is negligible. The effectiveness of
the scheduling procedure relies on the communication and computation being
done simultaneously, and is optimal if blocking communication can interrupt non-
blocking communication between two processors.

Current trends in the design of the next generation of large parallel computers
suggest that the relative cost of data transfer between processors will continue
to grow. In this case, more elaborate strategies to avoid blocking communication
in the PFASST algorithm might become necessary. For example, since only the
correction to the solution needs to be passed between processors, it is possible
that fewer significant digits could be used to transmit data. The main point we
stress here is that, except at the coarsest level, there is useful work that a processor
can perform while data is being passed from processor to processor. In fact, the
algorithm could be reconfigured so that at each stage of the FAS procedure, SDC
sweeps are performed at each level until the necessary data at the next finest level is
received.
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Optimized Schwarz Methods and Model
Adaptivity in Electrocardiology Simulations

Luca Gerardo-Giorda, Lucia Mirabella, Mauro Perego,
and Alessandro Veneziani

1 Numerical Models for the Cardiac Potential

At the macroscopic level, the myocardial tissue can be regarded as the superposition
of two continuous and anisotropic media, the intra-cellular and the extra-cellular
one. They coexist and are connected by a cell membrane, whose capacitance is
denoted by Cm. The tissue conductivity depends upon its cells orientation, and in
the most general case the associated tensor is anisotropic [1, 7, 14]. In any point
x 2 ˝ , where ˝ is the spatial domain under consideration, it is possible to identify
an orthonormal triplet of directions, al .x/, at .x/, an.x/, with al .x/ parallel to the
fibers direction, and we denote by �l , �

t
 , and �n ( D i; e) the corresponding intra

and extracellular conductivity coefficients. The conductivity tensors are given by

D .x/ D �l .x/al .x/aTl .x/C �t .x/at .x/aTt .x/C �n .x/an.x/aTn .x/;  D i; e:
(1)

We assume that D fulfill in ˝ a uniform elliptic condition.
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1.1 The Bidomain Model

The Bidomain model is a nonlinear reaction-diffusion system of parabolic type
describing the spatio-temporal dynamics of the intra and extracellular potentials,
denoted by ui and ue, while the cell membrane is regarded as dislocated in the
domain [2]. We rely in this paper on a non-symmetric formulation in terms of the
transmembrane potential u D ui � ue, and the extracellular one [5]. We denote by
u D .u; ue/T the unknown, by V D H1.˝/nfc W c 2 Rg and by letting

D D
"

�leDi
� liC�le

�leDi��li De
�liC�le

Di Di C De

#

E1 D
�

1 0

0 0

�

e1 D
�

1

0

�

the Bidomain system reads as follows. Find u 2 L2.0; T IH1.˝/ 	 V /, such that

�Cm E1
@u
@t
� r � DruC � Iion.u/ e1 D Iapp; (2)

where � is the membrane area per tissue volume ratio, Iion.u/ is a nonlinear
function of the transmembrane potential u, specified by a ionic model, and where
Iapp represent the applied current stimuli. Several ionic models are available in
literature, from more phenomenological to more accurate ones, but the choice of
the nonlinear term Iion.u/ does not have any influence on the procedure highlighted
in what follows. The problem is completed by suitable initial conditions, and
by homogeneous Neumann boundary conditions on @˝ , modeling an insulated
myocardium. The transmembrane potential u is uniquely determined from (2), while
the extracellular potential ue is determined up to a function of time, and is usually
identified by imposing a zero average at each time (

R

˝
ue.x; t/ dx D 0, for all

t 2 .0; T / ).

1.2 The Monodomain Model

The Monodomain model is a simplified model for the propagation of the electrical
stimulus, based upon a proportionality assumption between the intracellular and
the extracellular conductivity tensors, namely assuming De D �Di , where �
is a constant to be properly chosen. We assume here � D �le=�

l
i [6], and the

Monodomain model reads as follows. Find u 2 L2.0; T IH1.˝//, such that

�Cm
@u

@t
� r � �leDi

� li C �le
ruC �Iion.u/ D I app: (3)

Also system (3) is coupled with suitable initial conditions, and homogeneous
Neumann boundary conditions on @˝ . Differently from the Bidomain, the
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Monodomain model features a unique solution and is cheaper to solve numerically.
In absence of applied currents, the Monodomain model is accurate enough to
catch the desired dynamics and effects of the action potential propagation [12].
However, the Bidomain model becomes necessary when current stimuli are
applied in the extracellular space. Also, the Monodomain is inadequate to simulate
defibrillation [16].

1.3 Numerical Approximation

1.3.1 Time Integration

For simplicity in presentation, we consider a fixed time step�t , and we denote with
superscript n the unknowns computed at time tn D n�t . Both the Bidomain (2) and
the Monodomain equations (3) are advanced in .0; T / by a semi-implicit scheme,
where the nonlinear term (the ionic current) is evaluated at the previous time step
[2, 5]. More precisely, moving from tn to tnC1 we solve in ˝

�Cm E1
unC1 � un

�t
� r � DrunC1 D Iapp � � Iion.u

n/ e1 (4)

for the Bidomain system, and

�Cm
unC1 � un

�t
� r � �leDi

� li C �le
runC1 D Iapp � � Iion.u

n/ (5)

for the Monodomain one.

1.3.2 Space Discretization

Both Bidomain (4) and Monodomain (5) models are discretized in space by finite
elements [2,8,10,11,15]. When solving the Bidomain system, the unknowns of the
fully discrete problem are represented by the vector .uh; ue;h/

T , storing the nodal
values of the transmembrane and extracellular potentials. The matrix associated with
the discrete Bidomain models is given by

B D
�

Buu Bue

Beu Bee

�

D
"

�Cm
�t

MC �le
�liC�le

Ki
� le

� liC�le
Ki � �li

� liC�le
Ke

Ki Ki CKe

#

; (6)

where M is the mass matrix while Ki and Ke are the stiffness matrices associated
with the chosen finite elements space.

When solving the Monodomain system, the unknown of the fully discrete
problem is uh, and the associated matrix is simply block Buu of the matrix B in (6).
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2 A Model Adaptive Strategy

In Fig. 1 (from [6]) we report the differences of the transmembrane potential
computed with the Bi- and Monodomain models respectively at different instants.
The figure pinpoints that the differences are mainly concentrated around the
wavefront. From these results, we argue that the Monodomain provides an accurate
approximation of the potential in most of the region of interest. The model adaptive
strategy consists then in solving the Bidomain only when actually needed. In a first
implementation of this approach [9] a suitable a posteriori model estimator was
introduced. A hybrid model called Hybridomain was advocated. The latter assem-
bles the block Bue only in correspondence with the nodes identified as Bidomain
ones by the model estimator, while the second equation stays untouched. This
simplifies significantly the implementation, however the computational advantage
is limited, since also in the Monodomain regions an extended problem with the
same size of the Bidomain one is solved. An alternative procedure consists of a
genuine heterogeneous coupling by splitting the domains where the two models
are solved. This coupling raises non trivial issues when matching the two models,
featuring a different size. This has been considered in [6], where the Optimized
Schwarz method has been advocated for the heterogeneous coupling, addressing
the matching conditions at the interface between two different domains. Here, we
focus on practical issues when using this approach in realistic problems. A first idea
would be to trivially use the a posteriori error estimator for detecting the regions
where to solve the Bidomain problem and then to couple these subdomains with the
Monodomain regions. However, this approach is barely doable. As a matter of fact.
the Robin-type interface conditions in the Optimized Schwarz setting require the
assembly of mass matrices on the interfaces. As a consequence, every time the Bido-
main region changes, one should identify the new interfaces and then recompute
the matrices, with an additional computational cost that is anticipated to reduce the
advantage of the Optimized Schwarz coupling. The model adaptive strategy we pro-
pose here relies instead on a a priori subdivision of ˝ into smaller subdomains˝j .
The model error estimator will associate runtime each subdomain with either the
Bidomain or the Monodomain problem. In this way, the interfaces matrices needed
for the coupling can be computed once at the beginning of the time loop. Notice that
the non-symmetric formulation of the Bidomain system ensures that the matrices for
the Monodomain model are available after assembling the Bidomain ones.

2.1 Coupling Conditions and Optimized Schwarz Methods

We outline here the coupling conditions for the three different types of interfaces. If
the subdomains involved have the same characteristic (Bido/Bido and Mono/Mono)
the corresponding solutions are labeled by subscript 1 and 2, while if the subdomains
have different characteristics (Bido/Mono) the corresponding solutions are labeled
with subscript B and M .
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Fig. 1 Differences in the propagation of the membrane potential between Bidomain (uBido) and
Monodomain (uMono) simulation: uBido � uMono, with fibers oriented along the x axis (from [6])

2.1.1 Bidomain/Bidomain Interface

The coupling conditions on the Bidomain/Bidomain interface have been introduced
in [4], and are given by

nT1 Dru1 C ˛1 ˙ u1 D nT1 Dru2 C ˛1 ˙ u2

nT2 Dru2 C ˛2 ˙ u2 D nT2 Dru1 C ˛2 ˙ u1; where ˙ D
2

4

�le
�liC�le

0

1
�liC�le
�li

3

5 :

(7)

The convergence of the Optimized Schwarz Algorithm based on the interface
conditions (7) was analyzed in [4], where also optimal parameters have been
identified by means of Fourier analysis.

2.1.2 Bidomain/Monodomain Interface

Due to a dimensional mismatch between the two models, two interface conditions
are needed on the Bidomain side of the interface, and one on the Monodomain
side [6]. Possible coupling conditions are

nTB
�leDi
� liC�le

.ruB Crue;B /� nTB
�li De
�liC�le

rue;B C �le ˛

�liC�le
uB D nTB

�leDi
� liC�le

ruM C �le˛

�liC�le
uB

nTBDi .ruB Crue;B/C nTBDerue;B C ˛uB C �liC�le
�li

˛ue;B D ˛urest

(8)

for the Bidomain subproblem, and

nTM
�leDi
� liC�le

ruM C �le ˛

�liC�le
uM D nTM

�leDi
� liC�le

.ruB Crue;B /� nTM
�li De
�liC�le

rue;B

C �le˛

�liC�le
uB

(9)

for the Monodomain one. To cope with the mismatch, the second condition in (8)
is a transparent boundary condition, designed to avoid spurious reflexions off the
interface for the extracellular potential wave. The convergence of the Optimized
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Schwarz Algorithm based on the interface conditions (8)–(9) was analyzed in [6],
where also optimal parameters has been identified by means of Fourier analysis.

2.1.3 Monodomain/Monodomain Interface

The Optimized Schwarz coupling is significantly simpler on the interface between
two Monodomain regions. The semi-implicit temporal integration scheme reduces
the problem at each time step to a linear steady reaction-diffusion problem, whose
solution by means of Optimized Schwarz Methods has been widely studied, and an
optimal parameter has been identified [3]. The coupling on the interface is given by

nT1
�leDi
� liC�le

ru1 C ˛optu1 D nT1
�leDi
� liC�le

rup2 C ˛optup2

nT2
�leDi
� liC�le

ru2 C ˛optu2 D nT2
�leDi
� liC�le

ru1 C ˛optu1:

(10)

2.2 The Model Error Estimator

The a posteriori error estimator for choosing between a Bidomain or Monodomain
simulation in each subdomain introduced in [9] is based on the extracellular poten-
tial computed from a suitable extension of the Monodomain model. More precisely,

we let D" D De � �le
�li

Di . The model estimator is computed at the subdomain level as

�2j D
Z

˝j

ruM
�li D"

�li C �le
�

D�1i C D�1e
� �li D"

�li C �le
ruM dx: (11)

The value �2j is an upper bound for the error in ˝j between the two models in
a H1.˝j /-type seminorm depending on Di and De. The Bidomain model is then
activated in ˝j whenever �2j exceeds a given threshold j , depending on the size
of the subdomain. Computing �2j requires one matrix-vector and one scalar product,
and we denote by K" the stiffness matrix associated with (11). More details on this
estimator, that we do not report for the sake of space, can be found in [9].

2.3 The Model Adaptive Algorithm

Preprocessing

(i) Split the computational domain into non-overlapping subregions ˝j (j D 1;

::; N ).
(ii) Identify the interfaces �ij between subdomains˝i and ˝j .
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(iii) Assemble the local matrices Bjuu, Bjue, Bjeu, Bjee, and Kj
" .

(iv) Assemble the interface mass matrices M�ij .

(v) Compute the incomplete ILU factorization of the local Bjuu and Bjee matrices.

Runtime (time step tn ! tnC1)

(i) Run a Monodomain simulation at time tnC1 over the whole domain˝ .
(ii) Evaluate the model estimator and compute the local indicator �2j D .ujM /

T

Kj
" ujM .

(iii) For all ˝j (j D 1; ::; N ) such that �2j > j , activate Bidomain.
(iv) Run the Optimized Schwarz Algorithm using the solution computed in Step 1

as initial guess. A few iterations are usually enough.
(v) Advance to time tnC1.

3 Preliminary Numerical Results

Numerical results in this section have the purpose to show the effectiveness of
the model adaptive method: for this reason we consider here only 2D simulations.
The numerical tests are run in Matlab R� 7.5. The Bidomain problems are solved
by a flexible GMRES (f-GMRES) right preconditioned by the Block-triangular
preconditioner introduced in [5], while the Monodomain problems are solved by
a CG preconditioned by an ILU factorization.

We consider the strip˝ D Œ0; 3�	Œ0; 1� subdivided into the three nonoverlapping
subdomains ˝i D Œi � 1; i � 	 Œ0; 1�, i D 1; 2; 3. The fibers are oriented with the
principal direction perpendicular to the interfaces, and we impose a stimulus on the
whole left boundary of ˝1. The well known Rogers-McCulloch ionic model [13] is
used.

We plot in Fig. 2 the wavefront position at different times (top row), and the
activated subdomains (bottom row) during depolarization. The advantage of the
model adaptive approach resides in solving only cheap Monodomain problems
for the large majority of time steps (in a genuine Monodomain setting, without
extensions that were needed by the Hybrodomain approach). In Table 1 we report the
relative CPU gain over a whole heartbeat duration (450 ms) for the model adaptive
strategy with respect to the Optimized Schwarz algorithm introduced in [4].

A more detailed presentation of the method will be the subject of a forthcoming
work. Further work needs to be done to identify the proper trade-off between
the number of subdomains, and the size of the Bidomain region surrounding
the wavefront, and to properly handle the processors load balance in a parallel
architecture. Also, dynamical allocation of tasks is under investigation to properly
balance, in real problems, the load of each processor in the parallel solver.
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Fig. 2 Propagation of the membrane potential (in red the excited region, top row), and the
activated Bidomain region (in green and marked by “B”, bottom row) (Color figure online)

Table 1 Relative CPU time: uOSB and uMA

computed with two Schwarz iterations

uOSB uMA

CPU time 1.000 0.37
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A New Interface Cement Equilibrated Mortar
Method with Ventcel Conditions

Caroline Japhet, Yvon Maday, and Frédéric Nataf

1 Introduction

For many applications in mechanics or fluid dynamics, one need to use different
discretizations in different regions of the computational domain to match with the
physical scales. Mortar methods [2] are domain decomposition techniques based on
a weak coupling between subdomains and enable the use of nonconforming grids.
On the other hand, optimized Schwarz methods [4, 5, 7, 8, 10, 11], based on Robin
or Ventcel transmission conditions and motivated by the physics of the underlying
problem, greatly enhance the information exchange between subdomains and lead to
robust and fast algorithms. Moreover, the Ventcel conditions reduce dramatically the
convergence factor of the Schwarz algorithm compared to Robin conditions [5, 8].

In the finite element case, the NICEM method [6, 9], a new interface cement
using Robin conditions and corresponding to an equilibrated mortar approach (i.e.
there is no master and slave sides) has been developed for Schwarz type methods.

In this paper we extend this approach to Ventcel conditions.
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We first consider the problem at the continuous level: find u such that

.Id ��/u D f in ˝ (1)

u D 0 on @˝; (2)

where ˝ is a C 1;1 (or convex polygon in 2D or polyhedron in 3D) domain of IRd ,
d D 2 or 3, and f is given in L2.˝/. We assume that˝ is decomposed intoK non-

overlapping subdomains:˝ D [KkD1˝
k
. We suppose that the subdomains˝k; 1 �

k � K are either C 1;1 or polygons in 2D or polyhedrons in 3D. Let nnnk be the
outward normal from ˝k. We also assume that this decomposition is geometrically
conforming. We introduce � k;` the interface of two adjacent subdomains, � k;` D
@˝k \ @˝`. An optimized Schwarz algorithm for problem (1)–(2) is

.Id ��/unC1k D f in ˝k

unC1k D 0 on @˝k \ @˝
Bk;`.u

nC1
k / D Bk;`.un` / on � k;`

where .Bk;`/1	k;`	K;k 6D` is the chosen transmission operator on the interface
between subdomains˝k and˝`:

Robin case: Bk;`' D @nnn' C ˛'
Ventcel case: Bk;`' D @nnn' C ˛' � ˇ�k;`';

where �k;` stands for the Laplace-Beltrami operator on � k;`, and ˛; ˇ > 0 are
given. In order to match Ventcel conditions in the non-conforming discrete case,
we need to introduce a new independent entity representing the normal derivative
of the solution on the interface as in the NICEM method [6, 9]. We thus use a
Petrov Galerkin approach instead of Galerkin approximations as in standard mortar
methods.

In Sect. 2 we recall the method at the continuous level. Then in Sect. 3, we present
the method in the non-conforming discrete case and the discrete algorithm with
Ventcel transmission conditions. We finally present in Sect. 4 simulations for two
and twenty-five subdomains. The numerical analysis will be done in future paper.

2 Definition of the Problem

The variational statement of the problem (1)–(2) is: Find u 2 H1
0 .˝/ such that

Z

˝

.rurv C uv/ dx D
Z

˝

fvdx; 8v 2 H1
0 .˝/: (3)
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We introduce the space H1�.˝k/ defined by

H1�.˝k/ D f' 2 H1.˝k/; ' D 0 over @˝ \ @˝kg:

In order to glue non-conforming grids with Ventcel transmission conditions,
denoting by v the K-tuple .v1; : : : ; vK/, we introduce the following constrained
space,

V D f.v; q/ 2
 

K
Y

kD1
H1�.˝k/

!

	
 

K
Y

kD1
H�1=2.@˝k/

!

;

vk D v` and qk D �q` over � k;`; 8k; `g: (4)

Then, problem (3) is equivalent to the following one [9]: Find .u; p/ 2 V such that

K
X

kD1

Z

˝k

.rukrvk C ukvk/ dx �
K
X

kD1
H�1=2.@˝k/ < pk; vk >H1=2.@˝k/

D
K
X

kD1

Z

˝k

fkvkdx; 8v 2
K
Y

kD1
H1�.˝k/:

Being equivalent with (1)–(2), where pk D @nnnku over @˝k , this problem is
well posed.

Let us describe the method in the non-conforming discrete case.

3 Non-conforming Discrete Case with Ventcel Conditions

3.1 Local Problem

We introduce now the discrete spaces. Each ˝k is provided with its own mesh

T k
h , such that ˝

k D [T2T k
h
T; 1 � k � K: For T 2 T k

h , let hT be the
diameter of T and h the discretization parameter: h D max1	k	K hk with hk D
maxT2T k

h
hT . We suppose that T k

h is uniformly regular and that the sets belonging
to the meshes are of simplicial type (triangles or tetrahedra). Let PM.T / denote
the space of all polynomials defined over T of total degree less than or equal to
M . The finite elements are of lagrangian type, of class C 0. We define over each

˝k two conforming spaces Y kh and Xk
h by : Y kh D fvh;k 2 C 0.˝

k
/; vh;k jT 2

PM.T /; 8T 2 T k
h g, Xk

h D fvh;k 2 Y kh ; vh;k j@˝k\@˝ D 0g. The space of

traces over each � k;` of elements of Y kh is a finite element space denoted by Y k;`
h .
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With each interface � k;`, we associate a subspace QW k;`
h of Y k;`

h in the same spirit
as in the mortar element method [2] in 2D or [1, 3] for a P1-discretization in 3D.

More precisely, let T be the restriction to � k;` of the triangulation T k
h . In 2D,

T has two end points that we denote as xk;`0 and xk;`n that belong to the set of
vertices of the corresponding triangulation of � k;` : xk;`0 ; xk;`1 ; : : : ; xk;`n�1; xk;`n . The
space QW k;`

h is then the subspace of those elements of Y k;`
h that are polynomials of

degree �M � 1 over both Œxk;`0 ; x
k;`
1 � and Œxk;`n�1; xk;`n �.

In 3D, we suppose that all the vertices of the boundary of � k;` are connected to
zero, one, or two vertices in the interior of � k;`. Let V , V0, @V denote respectively
the set of all the vertices of T , the vertices in the interior of � k;`, and the vertices
on the boundary of � k;`. Let S.T / be the space of piecewise linear functions with
respect to T which are continuous on� k;` and vanish on its boundary. We denote by
˚a; a 2 V the finite element basis functions. Thus, S.T / D span f˚a W a 2 V0g.
For a 2 V , let �a WD SfT 2 T W a 2 T g, Na WD fb 2 V0 W b 2 �ag, and
N WD [a2@V Na. Let Tc be the set of triangles T 2 T which have all their vertices
on the boundary of � k;`. For T 2 Tc , we denote by cT the only vertex of T that has
no interior neighbor. Let Nc denote the vertices aT of N which belong to a triangle
adjacent to a triangle T 2 Tc . We introduce O̊a defined as follows:

O̊
a WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

˚a; a 2 V0 nN

˚a C
X

b2@V \�a
Ab;a˚b; a 2 N nNc

˚aT C
X

b2@V \�aT
Ab;aT ˚b C ˚cT ; a D aT 2 Nc

:

The weights are defined such that [3]: Ac;a C Ac;b D 1 and jT2;bjAc;a D jT2;ajAc;b ,
for all boundary nodes c 2 @V connected to two interior nodes a and b. Here T2;a
(resp. T2;b) denote the adjacent triangle to abc having a (resp. b) as a vertex and its
two others vertices on @V . For all boundary nodes c 2 @V connected to only one
interior node a, the weights are Ac;a D 1.

The space QW k;`
h is then defined by QW k;`

h WD span f O̊a; a 2 V0g: Then QW k
h is the

product space of the QW k;`
h over each ` such that � k;` 6D ;.

We introduce now the discrete problem. Let rk;` be the gradient operator on
� k;`. We define the discrete constrained space as follows:

VhDf.uh; ph/ 2
 

K
Y

kD1

Xk
h

!

	
 

K
Y

kD1

QW k
h

!

;

Z

� k;`
..ph;k C ˛uh;k/ � .�ph;` C ˛uh;`// h;k;`C

Z

� k;`
ˇrk;` .uh;k � uh;`/rk;` h;k;`

�
Z

@�k;`

ˇ
�rk;`uh;k�rk;`uh;`

�

 h;k;`D 0; 8 h;k;` 2 QW k;`
h g; (5)
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and the discrete problem is the following one: Find .uh; ph/ 2 Vh such that

8vh D .vh;1; : : : vh;K/ 2
QK
kD1 Xk

h ;

K
X

kD1

Z

˝k

�ruh;krvh;k C uh;kvh;k
�

dx �
K
X

kD1

Z

@˝k
ph;kvh;kdsD

K
X

kD1

Z

˝k
fkvh;kdx: (6)

Let us describe the algorithm in the discrete case.

3.2 Iterative Algorithm

We restrict ourselves to the presentation of the algorithm in 2D.
The recommended approach to find the solution of the previous discrete problem

is a GMRES acceleration [12] of the iterative Schwarz algorithm. For the sake of
clarity, let us present the plain Jacobi algorithm applied to the discrete Schwarz
algorithm: let .unh;k; p

n
h;k/ 2 Xk

h 	 QW k
h be a discrete approximation of .u; p/ in ˝k

at step n. Then, .unC1h;k ; p
nC1
h;k / is the solution in Xk

h 	 QW k
h of

Z

˝k

	

runC1
h;k rvh;k C unC1

h;k vh;k

�

dx�
Z

@˝k

p
nC1
h;k vh;kds D

Z

˝k

fkvh;kdx; 8vh;k 2 Xk
h ; (7)

Z

� k;`

�

.p
nC1
h;k C ˛unC1

h;k / h;k;` C ˇrk;`unC1
k rk;` h;k;`

��
Z

@�k;`

ˇrk;`unC1
h;k  h;k;`

D
Z

� k;`

�

.�pnh;` C ˛unh;`/ h;k;` C ˇrk;`un`rk;` h;k;`
�

�
Z

@�k;`

ˇrk;`unh;` h;k;`; 8 h;k;` 2 QW k;`
h : (8)

An initial guess .gk;`/ is given on each interface �k;`, and by convention for the first
iterate, the right-hand side in (8) is given by gk;`.

4 Numerical Results

In this part, we consider a P1 finite element approximation. Problem (6) is a square
linear system, invertible in the various numerical tests we performed, the results
presented below being some of them. We study the numerical error analysis for
problem (6), as well as the convergence of the algorithm (7)–(8) with Ventcel
compared to Robin (i.e. ˇ D 0) transmissions conditions.
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Fig. 1 Nonconforming domain decomposition in 2 domains (left), and 25 domains (right)

We consider the initial problem with exact solution u.x; y/ D x3y2 C sin.xy/.
The domain is the unit square˝ D .0; 1/ 	 .0; 1/.

We decompose˝ into non-overlapping subdomains with meshes generated in an
independent manner. On Fig. 1, we consider the case of 2 non-conforming meshes
(on the left), and the case of 25 non-conforming meshes (on the right). In the sequel,
for the error curves versus h, the computed solution is the solution at convergence
of the discrete algorithm (7)–(8), with a stopping criterion on the L2 norm of the
jumps of the interface conditions that must be smaller than 10�14.

4.1 Choice of the Ventcel Parameters ˛,ˇ

In our numerical results, the Ventcel parameters are obtained by minimizing the
convergence factor (depending on the mesh size in that case). In the conforming two
subdomains case, with constant mesh size h and an interface of lengthL, the optimal
theoretical values of the Ventcel parameters ˛, ˇ which minimize the convergence
factor at the continuous level are [5]:

˛� D k2max

p
k2minC1�k2min

p
k2maxC1p

2.k2max�k2min/
��p

k2maxC1�
p
k2minC1

��

.k2maxC1/
p
k2minC1�.k2minC1/

p
k2maxC1/

�

1
4

ˇ� D
p
k2maxC1�

p
k2minC1/

3
4

p
2.k2max�k2min/

�

.k2maxC1/
p
k2minC1�.k2minC1/

p
k2maxC1

�

1
4

;

(9)
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Fig. 2 Decomposition in two subdomains: error analysis versus h (left), and asymptotic number
of iterations required by the method with optimized Robin or Ventcel conditions, when the method
is used as iterative solver, or used as preconditioner for a Krylov method (GMRES)

where kmin and kmax are respectively the minimum and maximum frequencies which
can be represented on a grid with mesh size h, given by kmin D 1

L
and kmax D �

h
.

In the non-conforming case, the mesh size is different for each side of the interface.
Thus, we consider the parameters given by (9) with h D hm denoted by .˛m; ˇm/, or
with h D hM denoted by .˛M ; ˇM /, where hm and hM are respectively the smallest
and highest step size on the interface. We consider also the Robin case with the

optimal theoretical value given by [5]: ˛�R D
�

. �
L
/2 C 1/�. �

hM
/2 C 1/� 14 .

4.2 Two Subdomains Case

In this part we consider the two non-conforming meshes on the left of Fig. 1. As the
problem (6) depends on ˛,ˇ, we consider two cases: .˛; ˇ/ D .˛m; ˇm/ (case
(m)) and .˛; ˇ/ D .˛M ; ˇM / (case (M)). In order to observe the error versus h,
a computed solution (solution of (6)) corresponds to the solution at convergence
of (7)–(8). The solution with .˛; ˇ/ D .˛m; ˇm/ is different from the one with
.˛; ˇ/ D .˛M ; ˇM /. We represent on Fig. 2 (left), for both cases, the relative
H1 error (defined as in [9]), and the relative L2 error versus the mesh size h, in
logarithmic scale. We start from the two non-conforming meshes and then refine
successively each mesh by dividing the mesh size by two. We observe similar results
for both cases. The results show that the relative H1 error tends to zero at the same
rate as the mesh size h. We also observe that the relative L2 error tends to zero
at the same rate as h2. We represent on Fig. 2 (right) the asymptotic performance
with optimized Ventcel (i.e. ˛ D ˛M , ˇ D ˇM ) or Robin (i.e. ˛ D ˛�R , ˇ D 0)
conditions, for the Schwarz algorithm (7)–(8) and for the GMRES algorithm. We
simulate directly the error equations, f D 0, and use a random initial guess so
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Fig. 3 Decomposition in 25 subdomains: H1 error versus h (left), and error versus iterations (in
the H1 and L1 norms) with optimized Robin or Ventcel conditions

that all the frequency components are present. We plot the number n� of iterations
(taken to reduce the error by a factor 10�6) versus h on a log-log plot. The numerical
results show the asymptotic behavior predicted by the analysis given in [5]:

• n� D O.h1
2 / for Robin (i.e. ˛ D ˛�R, ˇ D 0) with Schwarz as an iterative solver,

• n� D O.h1
4 / for Robin with GMRES (i.e. Schwarz used as a preconditioner),

• n� D O.h
1
4 / for Ventcel (i.e. ˛ D ˛M , ˇ D ˇM ) with Schwarz as an iterative

solver,
• n� D O.h1

8 / for Ventcel with GMRES.

We also observe that using Krylov acceleration (GMRES) improves the asymp-
totic performance by a square root.

4.3 Twenty-five Subdomains Case

We now consider the 25 non-conforming meshes on the right of Fig. 1.
In order to observe the H1 error, each computed solution corresponds to the

solution at convergence of (7)–(8). We represent on Fig. 3 (left) the relativeH1 error
versus the mesh size h in logarithmic scale. We start from the 25 non-conforming
meshes and then refine successively each mesh by dividing the mesh size by two.
The results show that the relativeH1 error tends to zero at the same rate as the mesh
size h. On Fig. 3 (right), we study the performance of the algorithm (7)–(8) with
Ventcel and Robin transmission conditions. We simulate directly the error equations,
f D 0, and use a random initial guess on the interfaces. We plot the H1 and L1
errors versus the number of iterations. We observe that the number of iterations
to obtain an error smaller than 10�6 is by a factor 4 higher with optimized Robin
conditions compared to optimized Ventcel conditions. The results are similar for the
H1 and L1 errors.
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FETI-DP Methods for Optimal Control
Problems

Roland Herzog and Oliver Rheinbach

1 Introduction

We consider FETI-DP domain decomposition methods for optimal control problems
of the form

min
y;u

1

2

Z

˝

.y.x/ � yd .x//2 dxC ˛

2

Z

˝

.u.x//2 dx; (1)

where y 2 V denotes the unknown state and u 2 U the unknown control, subject to
a PDE constraint

a.y; v/ D .f; v/0 C .u; v/0 for all v 2 V: (2)

The function yd denotes a given desired state and ˛ > 0 a cost parameters. By .�; �/0,
we denote the standard L2 inner product. In this paper, a.�; �/ will be the bilinear
form associated with linear elasticity, i.e.,

a.y; v/ D .2�".y/; ".v//0 C .� divy; div v/0; (3)

where �, and � are the Lamé parameters.
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The state (displacement field) is sought in V D H1
0 .˝; @˝D/

2 D fy 2
H1.˝/2 W y D 0 on @˝Dg, where ˝ � R2 and @˝D is part of its boundary.
For simplicity, we consider the case of volume control, i.e., U D L2.˝/2.

Dual-primal FETI methods were first introduced by Farhat, Lesoinne, Le Tallec,
Pierson, and Rixen [3] and have successfully scaled to 105 processor cores [6]. In
[8] a first convergence bound for scalar problems in 2D was provided. Numerical
scalability for FETI-DP methods applied to linear elasticity problems was first
proven in [7].

Balancing Neumann–Neumann domain decomposition methods for the optimal
control of scalar problems have been considered in Heinkenschloss and Nguyen [4,
5]. There, local optimal control problems on non-overlapping subdomains are
considered and a Balancing Neumann–Neumann preconditioner is constructed
for the indefinite Schur complement. Multigrid methods have, of course, also
been considered for optimal control problems, see, e.g., [11]. A review of block
approaches to optimal control problems can be found in [9]. A recent block approach
can be found in [10].

We discretize y by P1 finite elements, u by P0 finite elements and obtain the
discrete problem

min
y;u

1

2
yTMyC ˛

2
uTQu� cT y (4)

s.t. Ay D f C Nu: (5)

2 Discrete Problem and Domain Decomposition

The necessary and sufficient optimality conditions are given by the discrete system

2

4

M 0 AT

0 ˛Q �NT

A �N 0

3

5

2

4

y

u
p

3

5 D
2

4

c

0

f

3

5 (6)

where A 2 Rn�n, Q 2 Rm�m, M 2 Rn�n. Here, A D AT D .a.'i ; 'j //i;j
is a stiffness matrix, whereas Q D .

˝

 i ;  j
˛

/i;j , M D .
˝

 i ;  j
˛

/i;j and N D
.
˝

'i ;  j
˛

/i;j are mass matrices. We will denote the block system (6) by

Kx D b: (7)

We decompose ˝ into N nonoverlapping subdomains˝i ; i D 1; : : : ; N , i.e. ˝ D
SN
iD1 ˝i ; ˝i \ ˝j D ; if i ¤ j : Each subdomain is the union of shape-regular

finite element cells with matching nodes across the interface, � WD S

i¤j @˝i \
@˝j ; where @˝i ; @˝j are the boundaries of ˝i ;˝j , respectively.
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For each subdomain, we assemble the local problem K.i/, which represents the
discrete optimality system for (1) and (2), restricted to the subdomain ˝i . Let us
denote, for each subdomain, the variables that are on the subdomain interface by
an index � and the interior unknowns by I . Note that the interior variables also
comprise the variables on the Neumann boundary @˝ n@˝D . In block form, we can
now write the subdomain problem matrices K.i/; i D 1; : : : ; N as

K.i/ D
2

4

M.i/ 0 A.i/T

0 ˛Q.i/ �N.i/T

A.i/ �N.i/ 0

3

5 D

2

6

6

6

6

6

4

M
.i/
II M

.i/
I� 0 A

.i/
II A

.i/
I�

M
.i/T
I� M

.i/
� � 0 A

.i/T
I� A

.i/
� �

0 0 ˛Q
.i/
II �N.i/T

II �N.i/T
�I

A
.i/
II A

.i/
I� �N.i/

II 0 0

A
.i/T
I� A

.i/
� � �N.i/

� I 0 0

3

7

7

7

7

7

5

: (8)

We define the block matrices

K
.i/
II D

2

6

4

M
.i/
II 0 A

.i/
II

0 ˛Q
.i/
II �N.i/

II

A
.i/
II �N.i/

II 0

3

7

5

; K
.i/
� � D

"

M
.i/
� � A

.i/
� �

A
.i/
� � 0

#

; K
.i/
I� D

2

6

4

M
.i/
I� A

.i/
I�

0 �N.i/T
�I

A
.i/
I� 0

3

7

5

:

(9)

Following the approach of FETI-type methods a continuity constraint Bx D 0

is introduced to enforce the continuity of y and p across each interface � . The
introduction of Lagrange multipliers � then leads to the FETI master system

2

6

6

6

4

K.1/ OB.1/

: : :
:::

K.N/ OB.N/

OB.1/ : : : OB.N/ 0

3

7

7

7

5

2

6

6

6

4

x.1/

:::

x.N/

�

3

7

7

7

5

D

2

6

6

6

4

b.1/

:::

b.N/

0

3

7

7

7

5

: (10)

In the context of our optimal control problem, OB.i/ is of the form OB.i/ D
h

B
.i/
y 0 B

.i/
p

i

: Note that it is not appropriate to enforce continuity for the control

variable u, since it is an algebraic variable and has been discretized by discontinuous
elements.

In dual-primal FETI methods the continuity constraint is enforced on a subset of
the variables on the interface � by partial finite element assembly. These variables
are denoted by the index ˘ (primal). Here, for our 2D problems, we use primal
vertex variables. For the remaining interface variables, the continuity is enforced by
Lagrange multipliers. Such interface variables are denoted by the index � (dual).
We thus write the matrices M.i/; A.i/; N .i/ appearing in (8) in the form
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M.i/D

2

6

4

M
.i/
II M

.i/
I� M

.i/
I˘

M
.i/T
I� M

.i/
�� M

.i/
�˘

M
.i/T
I˘ M

.i/T
I� M

.i/
˘˘

3

7

5

; A.i/D

2

6

4

A
.i/
II A

.i/
I� A

.i/
I˘

A
.i/T
I� A

.i/
�� A

.i/
�˘

A
.i/T
I˘ A

.i/T
I� A

.i/
˘˘

3

7

5

; N .i/D

2

6

4

N
.i/
II

N
.i/
�I

N
.i/
˘I

3

7

5

;

(11)

and Q.i/ D Q
.i/
II : Inserting this block form into (8), we obtain the block form of

K
.i/
˘˘ ,

K
.i/
˘˘ D

"

M
.i/
˘˘ A

.i/T
˘˘

A
.i/
˘˘ 0

#

: (12)

For the assembly of the primal variables y˘ and p˘ , we define the combined
assembly operator OR.i/T˘ , i.e., we obtain for the assembled global matrix QK˘˘

QK˘˘ D ORT˘K˘˘
OR˘ D

h OR.1/T˘ ; : : : ; OR.N/T˘

i

2

6

4

K
.1/
˘˘ 0

: : :

0 K
.N/
˘˘

3

7

5

2

6

4

OR.1/˘
OR.N/˘

3

7

5

D
N
X

iD1
OR.i/T˘ K

.i/
˘˘
OR.i/˘ D

N
X

iD1

"

R
.i/T
˘ 0

0 R
.i/T
˘

#"

M
.i/
˘˘ A

.i/T
˘˘

A
.i/
˘˘ 0

#"

R
.i/
˘ 0

0 R
.i/
˘

#

D
� QM˘˘

QAT˘˘QA˘˘ 0

�

: (13)

The partially assembled system matrix is then

QK D

2

6

6

6

6

4

K
.1/
BB

QK.1/
B˘

: : :
:::

K
.N/
BB

QK.N/
B˘QK.1/T

B˘ : : : QK.N/T
B˘

QK˘˘

3

7

7

7

7

5

(14)

with the blocks

K
.i/
BB D

2

6

6

6

6

6

4

M
.i/
II M

.i/
I� 0 A

.i/
II A

.i/
I�

M
.i/T
I� M

.i/
�� 0 A

.i/T
I� A

.i/
��

0 0 ˛Q
.i/
II �N.i/T

II �N.i/T
�I

A
.i/
II A

.i/
I� �N.i/

II 0 0

A
.i/T
I� A

.i/
�� �N.i/

�I 0 0

3

7

7

7

7

7

5

; (15)
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and

QK.i/T
B˘ D

" QM.i/T
I˘

QM.i/T
�˘ 0 QA.i/TI˘

QA.i/T�˘QA.i/TI˘
QA.i/T�˘

QN.i/T
I˘ 0 0

#

D
"

R
.i/T
˘ 0

0 R
.i/T
˘

#" QM.i/T
I˘

QM.i/T
�˘ 0 QA.i/TI˘

QA.i/T�˘QA.i/TI˘
QA.i/T�˘

QN.i/T
I˘ 0 0

#

:

(16)

Now, we can formulate the FETI-DP master system,

� QK OBT

OB 0

� � Qx
�

�

D
� Qb
0

�

; u 2 Rn; � 2 Rm; (17)

from which the solution of the original finite element problem (6) can be obtained
by averaging the solution Qx from (17) in the interface variables. Here, the jump
operator OB only acts on the variables y� and p�. The vectors Qx and Qb have the form

xT D
h

Œy
.i/T
I ; y

.i/T
� ; u.i/TI ; p

.i/T
I ; p

.i/T
� �; : : : ; Œy

.N/T
I ; y

.N/T
� ; u.N /TI ; p

.N/T
I ; p

.N/T
� �;

Œ QyT˘ ; QpT˘ �
i

bT D
h

Œc
.i/T
I ; c

.i/T
� ; 0; f

.i/T
I ; f

.i/T
� �; : : : ; Œc

.N /T
I ; c

.N/T
� ; 0; f

.N/T
I ; f

.N/T
� �; Œ QcT˘ ; Qf T

˘ �
i

After the elimination of x in (17) it remains to solve a system

F� D d (18)

where F is symmetric indefinite, i.e., with positive and negative eigenvalues, by a
suitable Krylov subspace method. The FETI-DP coarse problem is

QS˘˘ D QK˘˘ �
N
X

iD1
QK.i/
B˘
QK.i/
˘˘
QK.i/T
B˘ : (19)

To define the Dirichlet preconditioner, we consider the block submatrices ofK.i/

defined in (9),

K.i/ D
"

K
.i/
II K

.i/T
�I

K
.i/
� I K

.i/
� �

#

: (20)
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Let us define the Schur complement

S� � D
N
X

iD1
.K

.i/
� � �K.i/

� I .K
.i/
II /
�1K.i/T

�I / D
N
X

iD1
S
.i/
� � ; (21)

which can be computed completely in parallel. The Dirichlet preconditioner is then
given in matrix form by

M�1 D BD ORT� S� � OR� BT
D D

N
X

iD1
B
.i/
D
OR.i/T� S

.i/
� �
OR.i/� B.i/T

D ; (22)

where BD is a variant of the jump operator B scaled by the inverse multiplicity
of the node. The matrices R.i/� are simple restriction operators which restrict the

nonprimal degrees of freedom of a subdomain to the interface, i.e. OR.i/� D
�

0 I

0 0

�

;

if the variables are numbered ŒI;�� on the right hand side and Œ�;˘� on the left
hand side of the operator.

3 Well-Posedness of the Local Problems

In [4] the well-posedness of the local subdomain problems for the balancing
Neumann–Neumann method was considered. These considerations are also valid
for FETI-1-type methods. In contrast to FETI-1 and Balancing Neumann–Neumann
methods the coarse problems of the more recent FETI-DP and BDDC methods are
constructed from partial finite element assembly.

We therefore briefly comment on the well-posedness of the subdomain problems,
i.e. the local blocksK.i/

BB in (14), as well as the coarse problem (19). Each blockK.i/
BB

represents a discrete optimality system local to the subdomain˝i . In contrast to the
original problem (2), natural (stress) boundary conditions are imposed on @˝i for
the state y, except in the (few) primal degrees of freedom on the interface boundary,
and except for the degrees of freedom on @˝i \ @˝D , where Dirichlet conditions
apply. These conditions are sufficient to exclude rigid body motions. Consequently,
the local elasticity system (the four A blocks in (15) combined), is well posed, and
thus it is straightforward to show that also the optimality system is well posed,
whence K.i/

BB non-singular. The non-singularity of the total matrix QK in (14) can be
shown along the same lines. And thus the non-singularity of the Schur complement
(19) follows.

Finally, (21) is well defined since K.i/
II is non-singular. Note that each K

.i/
II

represents a discrete optimality system with all-Dirichlet boundary conditions on
@˝i for the state and adjoint states, with these boundary degrees of freedom
removed.
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Fig. 1 Model problem: Undeformed configuration, desired state, and solution computed using
FETI-DP

4 Numerical Results

Here we will report on the use of GMRES applied to the symmetric indefinite
FETI-DP system (18), using the symmetric indefinite Dirichlet preconditioner (22).
Note that there is no theory for the convergence of GMRES in this situation.
The numerical results are nevertheless very encouraging. We also report on the
convergence of QMR. The stopping criterion is the relative reduction of the
preconditioned residual by 10 orders of magnitude. In [4,5] a symmetric QMR was
used for the Neumann–Neumann method. The numerical results are nevertheless
very encouraging. The iteration counts using QMR and GMRES are very similar.

We consider the volume control of a linear elastic problem on the unit square.
The desired displacement yd is a obtained from applying a linear transformation to
the unit square, i.e., yd .x; y/ D . 2

5
x; 2

5
y/T ; see Fig. 1. The Dirichlet boundary is

on the left. The material data is E D 1 (Young’s modulus) and � D 0:3 (Poisson’s
ratio) in all cases, which are related to the Lamé constants via E D � .2�C3�/

�C� and

� D �
2 .�C�/ :

We numerically observe scalability with respect to the number of subdomains
as known for CG in the symmetric positive case, i.e., the number of iterations
approaches a limit for an increasing number of subdomainsN ifH=h is maintained
fixed, see Table 1. Moreover the number of iterations grows only weakly with H=h
for a fixed number of subdomainsN , see Table 2. In Table 3 we see that the methods
shows robustness with respect to ˛. In Table 4 we report on the strong parallel
scalability of the largest problem from Table 2 using the GMRES implementation
from PETSc [1]. We have used UMFPACK 4.3 [2] for the solution of the subdomain
problems.
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Table 1 Weak scaling. The number of GMRES and QMR iterations is scalable with respect to the
number of subdomains, i.e., it is bounded independently of N . ˛ D 0:01

Dirichlet preconditioner—weak scaling—GMRES and QMR

N #Points#Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

H=hD 2 H=h D 4 H=h D 8

2� 2 25 32 8 8 81 128 11 11 289 512 13 14
4� 4 81 128 14 14 289 512 19 20 1,089 2,048 25 27
6� 6 169 288 15 16 625 1,152 22 24 2,401 4,608 30 32
8� 8 289 512 15 16 1,089 2,048 24 25 4,225 8,192 32 34
10� 10 441 800 16 16 1,681 3,200 24 25 6,561 12,800 33 36
12� 12 625 1,152 16 17 2,401 4,608 25 26 9,409 18,432 34 38
16� 16 1,089 2,048 16 17 4,225 8,192 25 26 16,641 32,768 35 38
20� 20 1,681 3,200 16 17 6,561 12,800 25 26 25,921 51,200 36 39
24� 24 2,401 4,608 16 18 9,409 18,432 25 26 37,249 73,728 36 39
28� 28 3,249 6,272 16 18 12,769 25,088 26 26 50,625100,352 36 40
32� 32 4,225 8,192 16 18 16,641 32,768 26 27 66,049131,072 37 40
36� 36 5,32910,368 16 18 21,025 41,472 26 27 83,521165,888 37 41
40� 40 6,56112,800 16 18 25,921 51,200 26 27 103,041204,800 37 41
48� 48 9,40918,432 16 18 37,249 73,728 26 27 148,225294,912 37 41
56� 56 12,76925,088 16 18 50,625100,352 26 27 201,601401,408 37 41
64� 64 16,64132,768 16 19 66,049131,072 26 27 263,169524,288 37 41

Material parameters E D 1, � D 0:3. The iteration is stopped when the preconditioned residual
has been reduced by ten orders of magnitudes. The largest problem has 2 101 252 D 4�263 169C
2� 524 288 d.o.f.

Table 2 The number of GMRES and QMR iterations grows only weakly with the subdomain size.
˛ D 0:01

Dirichlet preconditioner—GMRES and QMR

H=h #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr #Points #Elem #gmres #qmr

N D 2� 2 N D 3� 3 N D 4� 4
2 25 32 8 9 49 72 12 13 81 128 14 14

4 81 128 11 11 169 288 16 17 289 512 19 20

6 169 288 12 12 361 648 18 19 625 1,152 23 24

8 289 512 13 14 625 1,152 20 21 1,089 2,048 25 27

12 625 1,152 14 14 1,369 2,592 23 25 2,401 4,608 28 31

16 1,089 2,048 14 15 2,401 4,609 25 27 4,225 8,192 31 34

24 2,401 4,608 16 16 5,329 10,368 28 30 9,409 18,432 35 36

32 4,225 8,192 16 17 9,409 18,432 29 30 16,641 32,768 37 38

48 9,409 18,432 17 18 21,025 41,472 32 33 37,249 73,728 40 43

64 16,641 32,768 18 19 37,249 73,728 33 35 66,049 131,072 43 45

96 37,249 73,728 19 19 83,521 165,888 34 38 148,225 294,912 46 50

128 66,049 131,072 19 20 148,225 294,912 36 39 263,169 524,288 49 52

Material parameters E D 1, � D 0:3. The iteration is stopped when the preconditioned residual
has been reduced by ten orders of magnitudes. The largest problem has 2 102 452 D 2 � 2 �
263 169C 524 288 d.o.f.
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Table 3 Dependence on ˛.
The preconditioner is robust
with respect to the choice of
the cost parameter ˛ > 0

Dirichlet preconditioner
—GMRES and QMR

N H=h ˛ #gmres #qmr
8� 8 4 1 19 20
8� 8 4 0.1 22 22
8� 8 4 0.01 24 25
8� 8 4 0.001 23 24
8� 8 4 0.000 1 19 21

Table 4 Strong parallel scalability on a 16 core Opteron 8380 server (2.5 GHz) for one of the
problems from Table 2

#Cores N H=h #Points #Elem d.o.f. #gmres Time (s)
1 4� 4 64 66,049 131,072 526,340 49 89.7
2 4� 4 64 66,049 131,072 526,340 49 45.6
4 4� 4 64 66,049 131,072 526,340 49 23.9
8 4� 4 64 66,049 131,072 526,340 49 14.2

16 4� 4 64 66,049 131,072 526,340 49 10.7
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Domain Decomposition Methods in Feel++

Abdoulaye Samaké, Vincent Chabannes, Christophe Picard,
and Christophe Prud’homme

1 Introduction

Libraries to solve problems arising from partial differential equations (PDEs)
through generalized Galerkin methods are a common tool among mathematicians
and engineers. However, most libraries end up specializing in a type of equation, e.g.
Navier–Stokes or linear elasticity models, or a specific type of numerical method,
e.g. finite elements. The increasing complexity of differential models and the
implementation of state of the art robust numerical methods, demand from scientific
computing platforms general and clear enough languages to express such problems
and provide a wealth of solution algorithms available in a minimal amount of code
but maximum mathematical control. There are many freely available libraries which
offer the capabilities described previously to a certain extent. To name a few: the
Freefem software family [6,9], the Fenics project [10], Getdp [8] or Getfem++ [17],
or libraries or frameworks such as deal.II (C++) [2], Sundance (C++) [11], Analysa
(Scheme) [1].

The library we present in this paper, called FEEL++, Finite Element Embedded
Language in C++, see [14,15], provides also a clear and easy to use interface to solve
complex PDE systems. It aims at bringing the scientific community a tool for the
implementation of advanced numerical methods and high performance computing.
Some recent applications of FEEL++ to multiphysics problems can be found in the
literature, see e.g. [5, 7, 13].
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FEEL++ relies on a so-called domain specific embedded language (DSEL)
designed to closely match the Galerkin mathematical framework. In computer sci-
ence, DS(E)Ls are used to partition complexity and in our case the DSEL splits low
level mathematics and computer science on one side leaving the FEEL++ developer
to enhance them and high level mathematics as well as physical applications to
the other side which are left to the FEEL++ user. This enables using FEEL++ for
teaching purposes, solving complex problems with multiple physics and scales or
rapid prototyping of new methods, schemes or algorithms.

The DSEL on FEEL++ provides access to powerful, yet with a simple and
seamless interface, tools such as interpolation or the clear translation of a wide range
of variational formulations into the variational embedded language. Combined
with this robust engine, lie also state of the art arbitrary order finite elements—
including handling high order geometrical approximations,—high order quadrature
formulas and robust nodal configuration sets. The tools at the user’s disposal grant
the flexibility to implement numerical methods that cover a large combination
of choices from meshes, function spaces or quadrature points using the same
integrated language and control at each stage of the solution process the numerical
approximations.

This paper presents our ongoing work on building a computational framework
for domain decomposition methods in FEEL++ including overlapping and nonover-
lapping Schwarz methods (conforming and non-conforming) and mortar method.
The complete examples are available in FEEL++ sources. Note that examples using
the three fields method are also available in FEEL++.

The framework main objectives consist in (1) reproducing and comparing
easily several of methods in the literature (2) developing a teaching and research
programming environment (3) providing the methods at the functional level or at
the algebraic level. In this context we have also developed also two alternatives:
one which lets the user control the MPI communications and one which hides
completely the MPI communications.

2 Schwarz Methods

Let ˝ be a domain of Rd ; d D 1; 2; 3; and @˝ its boundary. We look for u the
solution of the problem:

Lu D f in ˝; u D g on @˝ (1)

where L is a linear partial differential operator, and f and g are given functions.
Let ˝i.i D 1; : : : ; N; N 2 N; N � 2/ the subdomain partitions of ˝ such that
˝ D [NiD1˝i and �ij D @˝i \˝j the interface between neighboring subdomains
˝i and ˝j . We denote V˝i the set of neighbors subdomains of ˝i . In the case
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of nonoverlapping subdomains �ij D �ji . We are interested in the overlapping
and nonoverlapping alternating Schwarz methods[16, 19] as solver in the general
nonmatching grids and arbitrary number of subdomains. The generic Schwarz
additive algorithm is given by (2) where u0i is known on �ij , j 2 V˝i , k � 1

the Schwarz iteration index and Ci is a partial differential operator.

Luki D f in ˝i ; uki D g on @˝i n �ij ; Ciu
k
i D Ciuk�1j on �ij (2)

The algorithm (2) extends easily to the multiplicative version of Schwarz meth-
ods and treats different types of artificial boundary conditions such as Dirichlet–
Dirichlet (DD), Dirichlet–Neumann (DN), Neumann–Neumann (NN) and Robin-
Robin (RR) (see [16,19,20]) according the choice of the operatorCi that is assumed
linear in our case. The above algorithm can also adapt to relaxation techniques(see
[16]) necessary for the convergence of some types of interface conditions such as
DN and NN without overlap.

In the following Sects. 2.1 and 2.2, we discuss two different approaches for
Schwarz methods in FEEL++ namely with explicit communications and with
seamless communications. In the first approach, we deal different types of Schwarz
methods(Additive, Multiplicative, with(out) Relaxation) with different artificial
boundary conditions(DD, DN, NN, RR) while having the ability to process
(non-)conforming meshes as well as being able to control the size of the overlap
between neighboring subdomains. In the second approach, we use the parallel data
structures of FEEL++ and the algebraic domain decomposition framework provided
by PETSC.

2.1 Explicit Communication Approach

The Schwarz methods are used as solvers and the communications are handled
explicitly by the user. Implementation-wise we use PETSC sequentially even though
the code is parallel using mpi communicators. It requires explicitly sending and
receiving complex data structures such as mesh data structures and elements of
functions space(traces). A sequential interpolation operator is also used to make
the transfer between the grids (overlapping or not, conforming or not). In this case
each subdomain creates locally its mesh and its function space, the matrices and
vectors associated to the discretization process are completely local.

The variational formulation of the problem (2) in the simplest form (L WD ��)
in the subdomain ˝i at iteration number k using Nitsche’s method (see [12]) in
the case of weak Dirichlet-Dirichlet artificial boundary conditions (Ci D Cj D
Id; j 2 V˝i ) is given by: find uki 2 H1.˝i/ such that a.uki ; v/ D l.v/ 8v 2
H1.˝i / where
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Fig. 1 Numerical solutions obtained by Schwarz parallel additive algorithm in 2D on 128

processors (1 subdomain/processor): First schwarz iteration (left) and solution at convergence
(right)
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where � is a penalization parameter and h the maximum mesh size.
Other variants of artificial boundary conditions such as Dirichlet–Neumann

.Ci D Id; Cj D @=@n; j 2 V˝i /, Neumann–Neumann .Ci D Cj D @=@n; j 2
V˝i / and Robin–Robin .Ci D Cj D .@=@n/ C Id; j 2 V˝i / are also treated. In

the above variational formulation, only the terms
P

j2V˝i

R

�ij

	

� @v
@n
C �

h
v
�

uk�1j in

(4) requires communications between neighboring subdomains for each Schwarz
iteration and interpolation between the grids. Note that the assembly of the
other terms of the variational formulation is done once and is purely local. We
make use of Boost.MPI and Boost.Serialization to ease the transfer
of FEEL++ complex data structures such as meshes and (elements of) function
spaces.

To illustrate our implementation of the Schwarz method, we consider the problem
(1) over a partition over the domain ˝ D Œ0; 1�2 into 128 overlapping subdomains
(16 	 8) with non matching meshes. The boundary condition and the source write
g.x; y/ D 0 and f .x; y/ D exp.�10xy/ cos. 3�

8
/ sin.xy/.

The numerical solutions in Fig. 1 are obtained using P2 Lagrange elements. The
precision of the numerical solver is fixed to 1e � 7. The mesh size is 0:01 in each
subdomain and the size of the overlap is 0:02 but we don’t ensure that the grids
are conforming. The total number of degree of freedom is 153600. The number
of Schwarz iterations to convergence is 130 and the relative L2 error ku � uhk D
1:164901e � 06. Listing 1 illustrates some aspects of the Schwarz algorithm using
the Feel++ language.
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Listing 1 Feel++ snippet code for parallel Schwarz algorithm

// Create local mesh and function space on subdomain number i
auto mesh = createGMSHMesh(_mesh=mesh_type, ...);
auto Xh = space_type::New(mesh);
std::vector<mpi::request> reqs; // vector of Boost.MPI requests
for(int j=0, j< Nneighbors, ++j){

// Extract trace mesh on interface number j
trace_mesh_send[j]=mesh->trace(markedfaces(mesh,j));
// Exchange trace mesh with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_mesh_send[j] );
auto req2=comm.irecv( j,j,trace_mesh_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end());// wait all requests
for(int j=0, j< Nneighbors, ++j){

// Create trace function space for interface number j
TXh[j] = trace_space_type::New(trace_mesh_recv[j]);
// Create interpolation operator from Xh to TXh[j]
opI[j]=operatorInterpolation(Xh,TXh[j]); }

while(!convergence) { // Schwarz iterations
reqs.clear();
for(int j=0, j< Nneighbors, ++j){
// Non conforming interpolation for interface number j
opI[j]->apply(solution,trace_solution_send[j]);
// Exchange trace solution with neighbor subdomain number j
auto req1=comm.isend( j,i,trace_solution_send[j] );
auto req2=comm.irecv( j,j,trace_solution_recv[j] );
reqs.push_back(req1); reqs.push_back(req2);

} mpi::wait_all(reqs.begin(), reqs.end());// wait all requests
// Update right hand side for each schwarz iteration

for(int j=0, j< Nneighbors, ++j){
form1( _test=Xh,_vector=F ) +=

integrate(elements(trace_mesh_send[j]),
-grad(v)*N()*idv(trace_solution_recv[j])
+penaldir*idv(trace_solution_recv[j])*id(v)/hFace()); }

solve(); }

2.2 Seamless Communication Approach

Here we consider the domain decomposition methods with seamless communica-
tions in FEEL++. We provide a parallel data framework: we start with automatic
mesh partitioning using GMSH(Chaco/Metis)—adding information about ghosts
cells with communication between neighbor partition;—then FEEL++ data struc-
tures are parallel such as meshes, (elements of) function spaces—create a parallel
degrees of freedom table with local and global views;—and finally we use the
PETSC Krylov subspace solvers(KSP) coupled with PETSC preconditioners such
as Block–Jacobi, ASM, GASM. The last preconditioner is an additive variant of
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Listing 2 Laplacian Solver using continuous approximation spaces and PETSc in parallel

/* Create parallel function space and some associated elements */
auto Xh = space_type::New( _mesh=mesh );
/* Create the parallel matrix and vector of linear system */
auto A = backend()->newMatrix(_test=Xh, _trial=Xh);
auto F = backend()->newVector(Xh);
/* Parallel assembly of the right hand side */
form1( _test=Xh, _vector=F )=

integrate( _range=elements( mesh ), _expr=f*id( v ) )
/* Parallel assembly of the global matrix */
form2( _test=Xh, _trial=Xh, _matrix=A ) =

integrate( _range=elements( mesh ),
_expr=gradt(u)*trans(grad(v)) );

/* Apply Dirichlet boundary conditions strongly */
form2( _test=Xh, _trial=Xh, _matrix=A ) +=

on( _range=boundaryfaces(mesh),
_element=u,_rhs=F, _expr=g );

/* solve system using PETSc parallel solvers/preconditioners */
backend()->solve( _matrix=A, _solution=u, _rhs=F );

Table 1 Strong scalability test

Number of cores Absolute times Speedup

1,024 41.2 1
2,048 18.2 2.26
4,096 10 4.12
8,192 7 5.88

the Schwarz alternating method for the case of many subregion, see [19]. For each
sub-preconditioners (in the subdomains), PETSC allows to choose in the wide range
of sequential preconditioners such, ilu, jacobi, ml.

To illustrate this, we perform a strong scalability test with a Laplace problem in
3D using P3 Lagrange elements (about 8 Millions degrees of freedom). Listing 2
corresponds to the code that allowed us to realize this test. The speedup displayed
in Table 1 corresponds to the assembly plus the solve times. We can see that the
scaling is good except for the last configuration where the local problems is too
small.

3 Mortar Method

Consider the problem (1) where L WD �� and homogeneous Dirichlet boundary
conditions. We assume that ˝ is partitioned into two nonoverlapping subdomains
and it is a d -dimensional domain (d D 2; 3), with a Lipschitz boundary @˝ .
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Fig. 2 Convergence results
for Mortar Element Method
in 2D with L2 Errors curves

We also assume that f belongs to L2.˝/. The main idea of this method is to
enforce the weak continuity between the solutions on each subdomain. This is
achieved by introducing a Lagrange multiplier corresponding to this connection
constraint [3].

Let us denote by Vih the finite element approximation space on ˝i , of basis
. i;j /jD1;���Ni ; i D 1; 2; and by Wh that of � WD @˝1 \ @˝2, of basis .�k/kD1;���K
and � WD
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The convergence results in Fig. 2 are obtained with the solution of the problem
(1) using mortar formulation (5) by splitting the initial domain ˝ D Œ0; 1� 	 Œ0; 1�
into two nonoverlapping subdomains ˝1 D Œ0; 0:45� 	 Œ0; 1� and ˝2 D Œ0:45; 1� 	
Œ0; 1� with g.x; y/ D sin.�x/ cos.�y/ is the exact solution and f .x; y/ D 2�2g

the right hand side. The convergence tests are performed by taking different mesh
sizes h˝1 D h 2 f0:2; 0:1; 0:05; 0:025; 0:0125g, h˝2 D h˝1 C 10�3 and different
Lagrange polygonal orders Pk; k 2 f1; 2; 3; 4; 5g. We plot the linear regression
lines of ku � uhkL2 versus h, and we retrieve the optimal convergence properties
provided by the mortar method. Note that the above 2D/3D mortar code in Listing 3
is purely sequential, the parallel version of 2D/3D mortar code for arbitrary number
of subdomains is presented in [18].
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Listing 3 Jump terms in the global matrix for mortar formulation

// product function spaces Xh1 Xh2 h for W1 W2

typedef meshes<mesh1_type,mesh2_type,trace_mesh_type> mesh_type;
typedef bases<Lagrange<2>,

Lagrange<3>,
Lagrange<2,Mortar> > basis_type;

typedef FunctionSpace< mesh_type, basis_type > space_type;
auto mesh = meshes( mesh1, mesh2, trace_mesh );
auto Xh = space_type::New( _mesh=mesh );
auto u = Xh->element();
auto u1 = u.element<0>();
auto u2 = u.element<1>();
auto mu = u.element<2>();
// assembly of jump terms in the global matrix A
auto A = M_backend->newMatrix( _trial=Xh, _test=Xh );
form2( _trial=Xh, _test=Xh, _matrix=A ) +=

integrate(elements(Xh->mesh<3>()),

4 Conclusion

We presented our ongoing work on building a flexible domain decomposition
framework in FEEL++. A lot of work remains to be done, however we have
already the toolbox to reproduce a large range of domain decomposition methods in
sequential and to a lesser extent in parallel. Regarding the Schwarz methods, we are
currently working on having them as preconditioners of Krylov subspace methods
and building coarse grid preconditioners on massively parallel architectures, see [9].
As to the mortar methods, we have already a 2D/3D parallel code with some
simple preconditioner strategy [18] and we develop scalable preconditioners for the
constraint space formulation, see [4].
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Additive Schwarz Method for DG Discretization
of Anisotropic Elliptic Problems

Maksymilian Dryja, Piotr Krzyżanowski, and Marcus Sarkis

1 Introduction

In the paper we consider a second order elliptic problem with discontinuous
anisotropic coefficients defined on a polygonal region˝ . The problem is discretized
by a Discontinuous Galerkin (DG) finite element method with triangular elements
and piecewise linear functions. Our goal is to design and analyze an additive
Schwarz method (ASM), see the book by Toselli and Widlund [4], for solving the
resulting discrete problem with rate of convergence independent of the jumps of the
coefficients. The method is two-level and without overlap of ˝l , the substructures
into which the original region ˝ is partitioned. It is proved that the convergence of
the method is independent of the jumps of the coefficients appearing on triangles
inside of˝l , see [3]. It is the same for the jumps appearing on triangles which touch
@˝l under additional assumptions on the coefficients, like monotonicity or quasi-
monotonicity. The ASM discussed here is a generalization of method presented in
[1]. Numerical experiments confirm the theoretical results.

The paper is organized as follows. In Sect. 2, differential and discrete DG
problems are formulated. In Sect. 3, ASM for solving the discrete problem is
designed and analyzed. Numerical experiments are presented in Sect. 4.
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2 Differential and Discrete DG Problems

We consider the following elliptic problem: find u� 2 H1
0 .˝/ such that

a.u�; v/ D f .v/; 8v 2 H1
0 .˝/ (1)

where

a.u; v/ D
Z

˝

�.x/ru � rv dx; f .v/ D
Z

˝

f v dx;

�.x/ D
�

�11.x/ �12.x/

�21.x/ �22.x/

�

:

We assume that ˝ is a polygonal region, f 2 L2.˝/ and �.x/, the diffusivity
tensor, is a symmetric matrix, uniformly positive definite with respect to x, and
�ij 2 L1.˝/; i:j D 1; 2. Under these assumptions problem (1) is well posed.

Let T h.˝/ be a triangulation of ˝ with triangular elements Ki and the mesh
parameter h. We assume that T h.˝/ is shape regular and quasiuniform. LetXi.Ki /

denote a space of linear functions on Ki and

Xh.˝/ D ˘N
iD1Xi.Ki /; N̋ D

N
[

iD1
Ki

be the space in which problem (1) is approximated. Note thatXh.˝/ 6� H1.˝/ and
its elements do not vanish on @˝ , in general.

The discrete problem for (1) is of the form: find u�h 2 Xh.˝/ such that

Oah.u�h ; vh/ D f .vh/; vh 2 Xh.˝/; (2)

where for u; v 2 Xh.˝/; u D fuigNiD1; ui 2 Xi.Ki /;

Oah.u; v/ D
N
X

iD1
Oai .u; v/; f .v/ D

N
X

iD1

Z

Ki

f vi dx

and

�.i/ D �jKi ; �.i/ D f�.i/kl g2k;lD1;

and �.i/kl are constants onKi which can always be assumed for linear elements. Here

Oai .u; v/ D ai .u; v/C si .u; v/C pi .u; v/;
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with symmetric forms

ai .u; v/ D
Z

Ki

�.i/rui � rvi dx;

si .u; v/ D
X

Eij�@Ki

Z

Eij

!i Œn
T
i �

.i/rui .vj � vi /C nTi �.i/rvi .uj � ui /� ds;

pi .u; v/ D
X

Eij�@Ki

�

h

Z

Eij

�ij .ui � uj /.vi � vj / ds

where Eij D Eji D @Ki \ @Kj ;Eij � @Ki and Eji � @Kj ; ni D nEij is the unit
normal vector to Eij pointing fromKi to Kj ;

!i � !Eij D
ı
.j /
�n

ı
.i/
�n C ı.j /�n

; !j � !Eji D
ı
.i/
�n

ı
.i/
�n C �.j /�n

and

ı
.i/
�n D nTi �.i/ni ; ı

.j /
�n D nTj �.j /nj I

�ij � �Eij D 2ı.i/�n ı.j /�n =.ı
.j /
�n C ı.i/�n /; � is a positive (sufficiently large, cf. Lemma 1)

penalty parameter, which ensures the ellipticity of Oai .�; �/.
To analyze problem (2) we introduce some auxiliary bilinear forms and a broken

norm. Let the elliptic symmetric form dh.�; �/ be defined as

dh.u; v/ D
N
X

iD1
di .u; v/; di .u; v/ D ai .u; v/C pi .u; v/ (3)

and let the weighted broken norm in Xh.˝/ be defined by

k u k21;h� dh.u; u/ D
N
X

iD1

˚k .�.i//1=2rui k2L2.Ki / C
X

Eij�@Ki

�

h
�ij k ui�uj k2L2.Eij /g:

(4)

Lemma 1. There exists �0 > 0 such that for � � �0 there exist positive constants
C0 and C1 independent of �.i/ and h such that

C0di .u; u/ � Oai .u; u/ � C1di .u; u/

and

C0dh.u; u/ � Oa.u; u/ � C1dh.u; u/
for all u 2 Xh.
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For the proof we refer for example to [1] for isotropic cases and [2] for
anisotropic cases.

Lemma 1 implies that the discrete problem (2) is well posed if the penalty
parameter � � �0. Below � is fixed and assumed to satisfy the above condition.

The error bound is given by

Theorem 1. Let u� and u�h be the solutions of (1) and (2). For u�jKi 2 H
2.Ki/ holds

k u� � u�h k21;h�Mh2
N
X

iD1
�max.�

.i//ju�j2
H2.Ki /

where M is independent of h; u� and �i ; �max.�.i// is a maximum eigenvalue of
�.i/.

The proof follows from Lemma 1, for details see for example [2].

3 Additive Schwarz Method

We design and analyze ASM for solving problem (2) following to the abstract theory
of ASMs, see for example, [4].

3.1 Decomposition of Xh.˝/

Let

N̋ D
L
[

lD1
N̋
l ; ˝l \˝m D f;g; l ¤ m

where N̋ l is a union of triangulation elements Ki and Hl D diam.˝l/. The
decomposition of Xh.˝/ is

Xh.˝/ D X.0/.˝/CX (1).˝/C : : :CX.L/.˝/;

where for l D 1; : : : ; L

X.l/.˝/ D fv D fvigNiD1 2 Xh.˝/ W vi D 0 on Ki 6� ˝lg

and for l D 0

V .0/.˝/ D spanf�.l/gLlD1
with �.l/ D 1 on N̋ l and �.l/ D 0 otherwise.
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3.2 Inexact Local Solvers

For u.l/ D fu.l/i gNiD1 2 X.l/.˝/ and v.l/ D fv.l/i gNiD1 2 X.l/.˝/; l D 1; : : : ; L, we
define

bl.u
.l/; v.l// D dh.u.l/; v.l//:

The overlap between local subproblems is very small (only through the subdomain
interface), reducing communication cost to a level similar to substructuring meth-
ods. Instead of solving exact subproblems with form Oah.�; �/ on subdomains, we
solve problems with simplified form dh.�; �/. Note that on X.l/.˝/ 	X.l/.˝/

dh.u
.l/; v.l// D X

Ki� N̋l
f.�.i/ru.l/i ;rv.l/i /L2.Ki / C

X

Eij�@Ki

�

h
�ij .u

.l/
i � u.l/j ; v

.l/
i � v.l/j /L2.Eij /g:

For l D 0 and u.0/ D fu.0/i gNiD1 2 X.0/.˝/ and v.0/ D fv.0/i gNiD1 2 X.0/.˝/ we set

b0.u
.0/; v.0// D dh.u.0/; v.0// �

L
X

lD1

�

h

X

Eij�@˝l
�ij .u

.0/
i � u.0/j ; v

.0/
i � v.0/j /L2.Eij /:

3.3 Operator Equation

For l D 0; : : : ; L, let us define Tl W Xh.˝/! X.l/.˝/ by

bl.Tlu; v/ D Oah.u; v/; v 2 X.l/.˝/:

Then problem (2) is replaced by

T u�h D gh; gh D
L
X

lD0
gl ; gl D Tlu�h : (5)

with T D T0 C T1 C : : : C TL. Note that in order to compute gl we do not need
to know u�h . From the theorem below it follows that problems (2) and (5) have the
same unique solution.

3.4 Analysis

Let N̋ hl denote a layer around @˝l . It is a union of Ki � N̋ l which touch @˝l by
edge or/and vertex.
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Let

N̨ l WD max
Ki� N̋ hl

�max.�
.i//; ˛l WD min

Ki� N̋ hl
�min.�

.i//

where �max.�
.i// and �min.�

.i// are maximum and minimum eigenvalues of �.i/ on
Ki .

Theorem 2 (Main Result). For any u 2 Xh.˝/ there holds

C2ˇ
�1 Oah.u; u/ � Oah.T u; u/ � C3 Oah.u; u/ (6)

where

ˇ D max
1	l	L

N̨ lH2
l

˛lh
2

andC2 andC3 are positive constants independent of �.i/; N̨l and ˛l for i D 1; : : : ; N
and l D 1; : : : ; L.

To prove Theorem 2 we need to check three key assumptions of the abstract
theory of ASMs, see Toselli and Widlund book [4]. The proof is omitted here due
to the limit of pages and will be published elsewhere.

Remark 1. Note that the convergence of the method is independent of the jumps of
�.i/ on N̋ ln˝h

l for all l D 1; : : : ; L; i.e. of the jumps of �.i/ on Ki which do not
touch @˝l .

Remark 2. Let us mention several specific cases when the above estimate can be
improved. When � is isotropic and subdomainwise constant, then we can prove
that ˇ D maxl .Hl=h/ in (6). When N̨l and ˛l are the same order and ˛l �
maxKi� N̋ l �min.�

.i//, then ˇ D maxl .Hl=h/, i.e. the convergence is independent
of the jumps of �.i/. Estimate (6) can be also improved in the case when �max.�

.i//

on Ki which touch @˝l by edges are monotonic or quasi-monotonic on @˝l for
l D 1; : : : ; L.

4 Numerical Experiments

Let us choose the unit square as the domain ˝ and for some prescribed integer m
divide it into L D 2m 	 2m smaller squares ˝l (l D 1; : : : ; L) of equal size. This
decomposition of ˝ is then further refined into a uniform triangulation T h.˝/

based on a square 2M 	 2M grid (M � m) with each square split into two triangles
of identical shape. Hence, the fine mesh parameter h D 2�M , while the coarse grid
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Table 1 Dependence of the number of iterations and the condition number
(in parentheses) on the ratio H=h, where H D 2�m and hD 2�M . Isotropic,
elementwise constant coefficient

Fine (M )! 2 3 4 5 6
# Coarse (m)
2 33 (32) 82 (300) 133 (530) 164 (840) 237 (2000)
3 45 (41) 140 (370) 189 (700) 225 (1100)
4 48 (42) 155 (470) 186 (690)
5 41 (48) 155 (470)
6 49 (44)

parameter is H D 2�m. We discretize system (1) on the fine triangulation using
method (2) with � D 7.

In tables below we report the number of Preconditioned Conjugate Gradient
iterations for operator T (defined in Sect. 3.3) which are required to reduce the
initial Euclidean norm of the residual by a factor of 106 and (in parentheses) the
condition number estimate for T . We consider two sets of test problems: with either
anisotropic or discontinuous coefficients matrix �. We will always choose a random
vector for the right hand side and a zero as the initial guess.

4.1 Discontinuous, Elementwise Constant Isotropic
Coefficients

Let us consider diffusion coefficient of the form

�.x/ D �11.x/ � I (7)

where �11 equals 1 on even numbered elements (of fine triangulation) and equals
10�2 on odd ones. Table 1 shows the dependence on the ratio between H and h in
this case.

Next, let us fix the number of subdomains and the fine mesh size so that M D 3
and m D 5 and thus H=h D 4. Table 2 shows the dependence of the convergence
rate and the condition number as we vary the value of �11 on odd-numbered
triangles; on even triangles it remains equal to 1 as previously.

Indeed, the condition number estimates agree well with our theory regarding the
dependence on the discontinuity of the coefficient. In our testcase the increase in the
condition number is rather linear than quadratic inH=h, as reported in Table 1. This
behaviour is in agreement with our Remark 2. Let us also explain that low iteration
numbers in Table 2 are due to a very rapid residual in the residual during the initial
phase of the iteration.
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Table 2 Dependence of the number of iterations and the condition number (in parentheses) on
the discontinuity in the isotropic, elementwise constant coefficient. Fixed H=h D 4

�11 100 10�1 10�2 10�3 10�4 10�5 10�6

iter (cond) 61 (80) 72 (102) 167 (6 � 102) 335 (5 � 103) 485 (5 � 104) 613 (5 � 105) 743 (5 � 106)

Table 3 Dependence of the number of iterations and the condition number (in parentheses)
on the discontinuity when the coefficient is isotropic and constant inside subdomains

�11 100 10�1 10�2 10�3 10�4 10�5 10�6

iter (cond) 61 (80) 60 (70) 58 (67) 58 (68) 62 (68) 64 (68) 67 (68)

Red–black 4� 4 distribution of �, aligned with domain decomposition. Fixed H=h D 4

Table 4 Dependence of the number of iterations and the condition number (in parentheses) on the
discontinuity when the coefficient is isotropic and discontinuous across subdomain boundaries

�11 100 10�1 10�2 10�3 10�4 10�5 10�6

iter (cond) 62 (80) 68 (130) 85 (710) 96 (7 � 103) 113 (7 � 104) 126 (7 � 105) 140 (7 � 106)
Red–black 3� 3 distribution of �, not aligned with the domain decomposition. Fixed H=h D 4

4.2 Discontinuous, Domainwise Constant Isotropic
Coefficients

Here we consider � as in (7), with discontinuities aligned with an auxiliary parti-
tioning of ˝ into 4 	 4 squares. Precisely, we introduce a red–black checkerboard
coloring of this partitioning and set � D 1 in red regions, and the value of �11
reported in Table 3 in black ones. In this way, our decomposition of the domain
with M D 5 andm D 3 will always be aligned with the discontinuities and Table 3
shows the dependence on �11 in this case.

As predicted in Remark 2, there is no dependence on the discontinuity in the
coefficients in this case until the coefficient remains continuous (constant) inside
subdomain. This behaviour is not observed when the red–black partitioning is not
aligned with the subdomains˝l : corresponding numbers for a 3	3 partitioning are
shown in Table 4.

4.3 Anisotropic, Discontinuous Coefficients

Let us continue with the 4 	 4 red–black partitioning and let us set the coefficient
matrix � equal to �R in red regions and �B in black ones, where

�R.x/ D
�

10C �22 0

0 �22;

�

�B.x/ D
�

�22 0

0 10C �22
�

;

with constant �22 as specified in Table 5. In this way � is constant in both red and
black regions, but it suffers from discontinuity across the partitioning borders; the
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Table 5 Dependence on the anisotropy for discontinuous, piecewise constant coefficient. Fixed
H=h D 4

�22 100 10�1 10�2 10�3 10�4 10�5 10�6

iter (cond) 60 (82) 94 (210) 222 (103) 463 (104) 680 (105) 782 (106) 897 (107)

Table 6 Dependence on the anisotropy. Fixed H=h D 4. Continuous, constant coefficient

�22 100 101 102 103 104 105 106

iter (cond) 60 (82) 74 (102) 159 (6 � 102) 159 (6 � 102) 144 (6 � 102) 143 (6 � 102) 124 (7 � 102)

jump is always equal to 10, while the anisotropy ratio is 1C 10=�22. The condition
numbers grow linearly with the growth of �22, which agrees with Theorem 2.

4.4 Anisotropic, Constant Coefficients

Finally, let us consider

�.x/ D
�

1 0

0 �22

�

with �22 constant throughout entire ˝ , assuming values specified in Table 6.
It turns out that after initial linear increase in the condition number for moderate

�22, the condition number is insensitive to further growth of the anisotropy ratio �22.
This observation can also be explained on the ground of our theory; the details will
be provided elsewhere.
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A One-Level Additive Schwarz Preconditioner
for a Discontinuous Petrov–Galerkin Method

Andrew T. Barker, Susanne C. Brenner, Eun-Hee Park, and Li-Yeng Sung

1 A Discontinuous Petrov–Galerkin Method for a Model
Poisson Problem

Discontinuous Petrov–Galerkin (DPG) methods are new discontinuous Galerkin
methods [3–8] with interesting properties. In this article we consider a domain
decomposition preconditioner for a DPG method for the Poisson problem.

Let˝ be a polyhedral domain in Rd (d D 2; 3),˝h be a simplicial triangulation
of ˝ . Following the notation in [8], the model Poisson problem (in an ultraweak
formulation) is to find U 2 U such that

b.U; V/ D l.V/ 8 V 2 V;

where U D ŒL2.˝/�
d 	 L2.˝/ 	 H

1
2

0 .@˝h/ 	 H� 12 .@˝h/, V D H.divI˝h/ 	
H1.˝h/,

b.U; V/ D
Z

˝

� �  dx �
X

K2˝h

Z

K

u div  dx C
X

K2˝h

Z

@K

Ou  � nds
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�
X

K2˝h

Z

K

� � grad v dx C
X

K2˝h

Z

@K

v O�n ds

for U D .�; u; Ou; O�n/ 2 U and V D .; v/ 2 V , and l.V/ D R
˝
f v dx.

HereH1=2
0 .@˝h/ (resp.H�1=2.@˝h/) is the subspace of

Q

K2˝h H
1=2.@K/ (resp.

Q

K2˝h H
�1=2.@K/) consisting of the traces of functions in H1

0 .˝/ (resp. traces
of the normal components of vector fields in H.divI˝/), and H.divI˝h/ (resp.
H1.˝h/) is the space of piecewise H.div/ vector fields (resp. H1 functions). The
inner product on V is given by

�

.1; v1/; .2; v2/
�

V
D

X

K2˝h

Z

K

Œ1 � 2C div 1div 2C v1v2C gradv1 � gradv2� dx:

The DPG method for the Poisson problem computes Uh 2 Uh such that

b.Uh; V/ D l.V/ 8 V 2 Vh: (1)

Here the trial space Uh .� U / is defined by

Uh D
Y

K2˝h
ŒPm.K/�

d 	
Y

K2˝h
Pm.K/ 	 QPmC1.@˝h/ 	 Pm.@˝h/;

Pm.K/ is the space of polynomials of total degree � m on an element K ,
QPmC1.@˝h/ D H1=2

0 .@˝h/\QK2˝h QPmC1.@K/, where QPmC1.@K/ is the restriction
of PmC1.K/ to @K , and Pm.@˝h/ D H�1=2.@˝h/ \ QK2˝h Pm.@K/, where
Pm.@K/ is the space of piecewise polynomials on the faces of K with total degree
� m.

Let V r D f.; v/ 2 V W  jK 2 ŒPmC2.K/�d ; vjK 2 Pr.K/ 8K 2 ˝hg for some
r � mC d . The discrete trial-to-test map Th W Uh �! V r is defined by

.ThUh; V/V D b.Uh; V/; 8Uh 2 Uh; V 2 V r ;

and the test space Vh is ThUh.
We can rewrite (1) as ah.Uh;W/ D l.ThW/ for all W 2 Uh, where

ah.U;W/ D bh.U; ThW/ D .ThU; ThW/V

is an SPD bilinear form on Vh 	 Vh, and we define an operator Ah W Uh �! U 0h by

hAhU;Wi D ah.U;W/ 8 U;W 2 Uh: (2)

Our goal is to develop a one-level additive Schwarz preconditioner for Ah (cf. [9]).
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To avoid the proliferation of constants, we will use the notation A . B (or
B & A) to represent the inequality A � .constant/	B , where the positive constant
only depends on the shape regularity of ˝h and the polynomial degrees m and r .
The notation A � B is equivalent to A . B and B . A.

A fundamental result in [8] is the equivalence

ah.U; U/ � k�k2L2.˝/ C kuk2L2.˝/ C kOuk2H1=2.@˝h/
C kO�nk2H�1=2.@˝h/ (3)

that holds for all U D .�; u; Ou; O�n/ 2 Uh, where

kOuk2
H1=2.@˝h/

D
X

K2˝h
kOuk2

H1=2.@K/
D

X

K2˝h
inf

w2H1.K/;wj@KDOu
kwk2

H1.K/
; (4)

k O�nk2H�1=2.@˝h/ D
X

K2˝h
k O�nk2H�1=2.@K/ D

X

K2˝h
inf

q2H.divIK/; q�nj@KDO�n
kqk2H.divIK/:

(5)

Therefore the analysis of domain decomposition preconditioners for Ah requires a
better understanding of the norms k � kH1=2.@K/ and k � kH�1=2.@K/ on the discrete

spaces QPmC1.@K/ and Pm.@K/.

2 Explicit Expressions for the Norms on QPmC1.@K/

and Pm.@K/

Lemma 1. We have

kQ�k2
H1=2.@K/

� hK
	

kQ�k2L2.@K/ C
X

F2˙K
j Q�j2

H1.F /

�

8 Q� 2 QPmC1.@K/;

where hK is the diameter of K and˙K is the set of the faces of K .

Proof. Let N .K/ be the set of nodal points of the PmC1 Lagrange finite element
associated with K and N .@K/ be the set of points in N .K/ that are on @K .

Given any Q� 2 QPmC1.@K/, we define Q�� 2 PmC1.K/ by

Q��.p/ D
8

<

:

Q�.p/ if p 2 N .@K/;

Q�@K if p 2 N .K/ nN .@K/;
(6)

where Q�@K is the mean value of Q� over @K . Since Q�� D Q� on @K , we have

kQ�kH1=2.@K/ D inf
w2H1.K/;wj@KDQ�

kwkH1.K/ � kQ��kH1.K/: (7)
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Suppose w 2 H1.K/ satisfies w D Q� on @K . It follows from (6) and the trace
theorem with scaling that

kQ��k2L2.K/ . hKkQ�k2L2.@K/ D hKkwk2L2.@K/ . kwk2
H1.K/

; (8)

and, by standard estimates,

j Q��j2H1.K/
D jQ�� � Q�@K j2H1.K/

. h�1
K
kQ�� � Q�@Kk2L2.@K/

D h�1
K
kw � w@Kk2L2.@K/ . jwj2

H1.K/
: (9)

Combining (7)–(9), we have kQ�k2
H1=2.@K/

� kQ��k2H1.K/
. The lemma then follows

from (6), the equivalence of norms on finite dimensional spaces and scaling. ut
Lemma 2. We have

k�k2
H�1=2.@K/ � hKk�k2L2.@K/ C h�dK

	

Z

@K

�ds
�2 8 � 2 Pm.@K/:

Proof. We begin with the reference simplex OK. Let RTm. OK/ be the m-th order
Raviart–Thomas space (cf. [2]). Given any � 2 Pm.@ OK/, we introduce a (nonempty)
subspace RTm. OK; �/ D fq 2 RTm. OK/ W q � n D � on @ OK and div q 2 P0. OK/g of
RTm. OK/.

Let �� 2 RTm. OK; �/ be defined by

�� D min
q2RTm. OK;�/

kqkL2. OK/:

Then the map OS W Pm.@ OK/ �! RTm. OK/ that maps � to �� is linear and one-to-one,
and we have . OS�/ � n D � on @ OK, div . OS�/ 2 P0. OK/ and

k OS�kL2. OK/ � k�kL2.@ OK/ 8 � 2 Pm.@ OK/: (10)

Let �1; : : : ; �Nm be a basis of Pm.@ OK/ and 1 D �1; : : : ; �Nm 2 H1=2.@ OK/ satisfy

det
h

R

@ OK �i�j d Os
i

1	i;j	Nm
¤ 0. We define the map OQ W H.divI OK/ �! Pm.@ OK/

by

Z

@ OK
. OQq/�j d Os D hq � n; �j iH�1=2.@ OK/�H1=2.@ OK/ for 1 � j � Nm:

It follows from the definition of OQ that k OQqkL2.@ OK/ . kqkH.divI OK/ for all q 2
H.divI OK/, and OQq D � if q � n D � 2 Pm.@ OK/, in which case

k OS�kL2. OK/ . k�kL2.@ OK/ D k OQqkL2.@ OK/ . kqkH.divI OK/: (11)
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Moreover, since �1 D 1, we have

Z

OK
div . OS�/ d Ox D

Z

@ OK
. OQq/1d Os D hq � n; 1iH�1=2.@ OK/�H1=2.@ OK/ D

Z

OK
div q d Ox

and hence

kdiv . OS�/kL2. OK/ . kdiv qkL2. OK/: (12)

Now we turn to a general simplex K . It follows from (10)–(12) and standard
properties of the Piola transform for H.div/ (cf. [10]) that there exists a linear map
S W Pm.@K/ �! RTm.K/ with the following properties:

(i) .S�/ � n D � and hence

k�kH�1=2.@K/ D inf
q2H.divIK/;q�nj@KD�

kqkH.divIK/ � kS�kH.divIK/ 8� 2Pm.@K/;

(ii) for any q 2 H.divI K/ such that q � n D �, we have

kS�kH.divIK/ . kqkH.divIK/;

(iii) div .S�/ 2 P0.K/ and hence

Z

K

div .S�/ dx D
Z

@K

� ds or kdiv .S�/k2L2.K/ D
	

Z

@K

� ds
�2

=jKj;

(iv) we have

h�d
K
kS�k2L2.K/ � h�.d�1/K k�k2L2.@K/:

Properties (i)–(iv) then imply

k�k2
H�1=2.@K/ � kS�k2H.divIK/ � hKk�k2L2.@K/ C h�dK

	

Z

@K

� ds
�2

: ut

3 A Domain Decomposition Preconditioner

Let˝ be partitioned into overlapping subdomains˝1; : : : ;˝J that are aligned with
˝h. The overlap among the subdomains is measured by ı and we assume (cf. [11])
there is a partition of unity �1; : : : ; �J 2 C1. N̋ / that satisfies the usual properties:
�j � 0,

PJ
jD1 �j D 1 on N̋ , �j D 0 on ˝ n˝j , and

kr�j kL1.˝/ . ı�1 8 1 � j � J: (13)



422 A.T. Barker et al.

We take the subdomain space to be Uj D fU 2 Uh W U D 0 on˝ n˝j g. Let
U D .�; u; Ou; O�n/ 2 Uh. Then U 2 Uj if and only if (i) � and u vanish on every
K outside ˝j and (ii) Ou and O�n vanish on @K for every K outside ˝j . We define
aj .�; �/ to be the restriction of ah.�; �/ on Uj 	 Uj . Let Aj W Uj �! U 0j be defined
by

hAjUj ;Wj i D aj .Uj ;Wj / 8 Uj ;Wj 2 Uj : (14)

It follows from (3) that

aj .Uj ; Uj / � k�j k2L2.˝j / C kujk2L2.˝j / C kOujk2H1=2.@˝j;h/
C kO�n;j k2H�1=2.@˝j;h/; (15)

where Uj D .�j ; uj ; Ouj ; O�n;j / 2 Uj , ˝j;h is the triangulation of ˝j induced by ˝h

and the norms k � kH1=2.@˝j;h/
and k � kH�1=2.@˝j;h/ are analogous to those in (4) and

(5).
Let Ij W Uj �! Uh be the natural injection. The one-level additive Schwarz

preconditionerBh W U 0h �! Uh is defined by

Bh D
J
X

jD1
IjA

�1
j I

t
j :

Lemma 3. We have

�min.BhAh/ & ı2:

Proof. Let Ih;1, Ih;2, Ih;3 and Ih;4 be the nodal interpolation operators for the

components
Q

K2˝h



Pm.K/
�d

,
Q

K2˝h Pm.K/, QPmC1.@˝h/ and Pm.@˝h/ of Uh
respectively. Given any U D .�; u; Ou; O�n/ 2 Uh, we define Uj 2 Uj by

Uj D
�

Ih;1.�j �/; Ih;2.�j u/; Ih;3.�j Ou/; Ih;4.�j O�n/
�

:

Then we have U DPJ
jD1 Uj and, in view of (14) and (15),

hAjUj ; Uj i � kIh;1.�j �/k2L2.˝j / C kIh;2.�ju/k2L2.˝j /
C kIh;3.�j Ou/k2H1=2.@˝j;h/

C kIh;4.�j O�n/k2H�1=2.@˝j;h/: (16)

The following bounds for the first two terms on the right-hand side of (16) are
straightforward:

kIh;1.�j �/k2L2.˝j / . k�k2L2.˝j / and kIh;2.�j u/k2L2.˝j / . kuk2L2.˝j /: (17)
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We will use Lemmas 1 and 2 to derive the following bounds

kIh;3.�j Ou/k2H1=2.@˝j;h/
. ı�2kOuk2

H1=2.@˝j;h/
; (18)

kIh;4.�j O�n/k2H�1=2.@˝j;h/ . ı�2k O�nk2H�1=2.@˝j;h/: (19)

Let K 2 ˝j;h. It follows from Lemma 1, (13) and standard discrete estimates
that

kIh;3.�j Ou/k2H1=2.@K/
� hK

	

kIh;3.�j Ou/k2L2.@K/ C
X

F2˙K
jIh;3.�j Ou/j2H1.F /

�

. hKkOuk2L2.@K/ C hK
X

F2˙K

�kr�j k2L1.˝/kOuk2L2.F / C k�j k2L1.˝/jOuj2H1.F /

�

. hKkOuk2L2.@K/ C hKı�2kOuk2L2.@K/ C hK
X

F2˙K
jOuj2

H1.F /
. ı�2kOuk2

H1=2.@K/
:

Summing up this estimate over all the simplexes in ˝j;h yields (18).
Similarly, it follows from Lemma 2 and (13) that

kIh;4.�j O�n/k2H�1=2.@ OK/ � hKkIh;4.�j O�n/k2L2.@K/ C h�dK
	

Z

@K

Ih;4.�j O�n/ ds
�2

. hKk O�nk2L2.@K/Ch�dK
	

Z

@K

Ih;4



.�j��Kj / O�n
�

ds
�2 C h�d

K
.�Kj /

2
	

Z

@K

O�n ds
�2

. hKk O�nk2L2.@K/ C hKı�2k O�nk2L2.@K/Ch�dK
	

Z

@K

O�n ds
�2

. ı�2k O�nk2H�1=2.@K/;

where �Kj is the mean value of �j over K . Summing up this estimate over all the
simplexes in ˝j;h gives us (19).

Putting (2), (3) and (16)–(19) together we find
PJ

jD1hAjUj ; Uj i . ı�2hAhU; Ui,
which implies �min.BhAh/ & ı2 by the standard theory of additive Schwarz
preconditioners [11]. ut

Combining Lemma 3 with the standard estimate �max.BhAh/ . 1, we obtain the
following theorem.

Theorem 1. We have

	.BhAh/ D �max.BhAh/

�min.BhAh/
� Cı�2;

where the positive constant C depends only on the shape regularity of ˝h and the
polynomial degreesm and r .

Remark 1. Theorem 1 is also valid for DPG methods based on tensor product finite
elements.
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Table 1 Number of
iterations for the Schwarz
preconditioner with
subdomain size H D 1=2

h ı Unpreconditioned Preconditioned

2�2 2�2 496 14
2�3 2�3 1,556 17

2�2 14
2�4 2�4 3,865 20

2�3 17
2�2 14

2�5 2�5 8,793 27
2�4 20
2�3 18

Table 2 Number of
iterations with h D 2�5 and
various subdomain sizes H
with ı D H=2

h H Unpreconditioned Preconditioned
2�5 2�1 8,793 15

2�2 25
2�3 45
2�4 89

4 Numerical Results

We solve the Poisson problem on the square .0; 1/2 with exact solution u D
sin.�x1/ sin.�x2/ and uniform square meshes. The trial space is based on Q1

polynomials for � and u, P2 polynomials for Ou, and P1 polynomials for O�n. We
use bicubic polynomials for the space V r in the construction of the trial-to-test map
Th.

The number of conjugate gradient iterations required to reduce the residual by
1010 are given in Table 1 for four overlapping subdomains. The linear growth of
the number of iterations for the unpreconditioned system is consistent with the
condition number estimate 	.Ah/ . h�2 in [8]. Note that in this case the boundary
of every subdomain has a nonempty intersection with @˝ and it is not difficult to
use a discrete Poincaré inequality to show that the estimate in Theorem 1 can be
improved to 	.BhAh/ . j lnhjı�1. This is consistent with the observed growth of
the number of iterations for the preconditioned system as ı decreases.

In Table 2 we display the results for h D 2�5 and various subdomain sizes
H with ı D H=2. The estimate 	.BhAh/ . ı�2 � H�2 is consistent with the
observed linear growth of the number of iterations for the preconditioned system as
H decreases. Such a condition number estimate for the one-level additive Schwarz
preconditioner is known to be sharp for standard finite element methods [1].
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A Smooth Transition Approach Between
the Vlasov–Poisson and the Euler–Poisson
System

Giacomo Dimarco, Luc Mieussens, and Vittorio Rispoli

1 Introduction

Plasma dynamics is characterized by a wide range of spatial and temporal scales.
Typical examples include plasmas produced around hypersonic bodies, ion wind
of corona discharges, magnetic fusion processes. Depending on conditions, kinetic
models of Boltzmann type or macroscopic models are commonly used for plasma
physics simulations. The most common kinetic model for plasmas is the Vlasov
equation, coupled with the electromagnetic field equations. On the other hand,
Euler or Navier–Stokes based models coupled with the Maxwell equations are
used for describing equilibrium plasma flows. Even if fluid models are sufficiently
accurate to describe many observed phenomena, however, for some of them, this
choice is inadequate. In these cases, it turns out that a kinetic description is strictly
necessary to correctly represent the solutions. In these circumstances, the most
widely used numerical methods for solving the Vlasov equation are Particle-In-
Cell (PIC) approaches [1,5]. They have many advantages in terms of computational
cost for large dimensional problems, for enforcing physical properties such as con-
servation laws and in terms of flexibility when handling with complex geometries.

G. Dimarco
Institut de Mathématiques de Toulouse, Université de Toulouse, UPS, INSA, UT1, UTM, CNRS,
UMR 5219, 31062 Toulouse, France
e-mail: giacomo.dimarco@math.univ-toulouse.fr

L. Mieussens
Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351, cours de la Libération,
33405 Talence cedex, France
e-mail: Luc.Mieussens@math.u-bordeaux1.fr

V. Rispoli (�)
Institut de Mathématiques de Toulouse, Université Paul Sabatier, Toulouse, France
e-mail: vittorio.rispoli@math.univ-toulouse.fr

J. Erhel et al. (eds.), Domain Decomposition Methods in Science and Engineering XXI,
Lecture Notes in Computational Science and Engineering 98,
DOI 10.1007/978-3-319-05789-7__40,
© Springer International Publishing Switzerland 2014

427

mailto:vittorio.rispoli@math.univ-toulouse.fr
mailto:Luc.Mieussens@math.u-bordeaux1.fr
mailto:giacomo.dimarco@math.univ-toulouse.fr


428 G. Dimarco et al.

On the other hand, these methods involve a significant level of numerical noise
and the convergence rate is in general quite slow. Moreover, in situations close
to thermodynamical equilibrium, the cost of PIC methods or, more in general,
direct Monte Carlo simulations increases. For this reason, domain decomposition
techniques have been proposed in the recent past (see [2–4, 6, 8, 9]). Indeed, in
many situations, the resolution of the kinetic equations in the whole computational
domain is unnecessary because the fluid equations coupled with suitable equations
for the electromagnetic fields provide a sufficiently accurate solution, except in
small zones like shock layers or extremely rarefied regions where departure from
thermodynamical equilibrium is strong.

In this paper, we focus on an adaptive kinetic-fluid approach which incorporates
kinetic phenomena in selected regions of phase space where they play a fundamental
role. More in detail, we propose a numerical method for the resolution of the
collisional Vlasov–Poisson equation coupled with the compressible Euler–Poisson
equations through a domain decomposition technique.

The present paper represents an extension of two our earlier works [3, 4], in
which we coupled the BGK equation and the compressible Euler equations. The key
point on which the method relies is the introduction of a buffer zone in which the
transition from the Vlasov-BGK-Poisson equations and the Euler–Poisson equations
and vice-versa is gradual. Therefore, in the buffer zone, both models are solved and
the solution of the full problem is obtained as the combination of the kinetic and
fluid solutions. The introduction of the intermediate zone makes each of the models
degenerate at the interfaces. In this way, no interface condition is needed. Finally, in
this work we consider a constant in time coupling function and refer to [7] for the
time dependent case.

2 The Vlasov-BGK-Poisson Equation

We consider the collisional Vlasov equation for describing the ions evolution in
a plasmas. In this work we assume that the electrons form a uniform neutralizing
background. The binary interactions between particles are substituted by relaxation
towards the equilibrium. The rescaled equation reads

@tf C v � rxf C E � rvf D 1


.Mf � f /; (1)

with the initial condition

f .x; v; t D 0/ D f0.x; v/; (2)

where f D f .x; v; t/ is a non negative function describing the time evolution of
the distribution of particles which move with velocity v 2 Rd in the position x 2
˝ � Rd at time t > 0. In the general case, the relaxation time  is a function
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of the macroscopic quantities. For our scopes, in the present paper, the relaxation
frequency will be fixed and given at the beginning of the simulations. We refer to
[7] for more physical cases. The electric field E is given as a gradient of a potential
function E D rx˚ , where ˚ is obtained from the solution of the Poisson equation

�2�˚ D
Z

Rd

fdv � �0; (3)

with � the so called Debye length and �0 the background electrons density. The
local thermodynamical equilibrium is defined by

Mf DMf Œ%; u; T �.v/ D %

.2��/d=2
exp

��ju � vj2
2�

�

; (4)

where % and u are the density and mean velocity while � D RT with T the
temperature of the ions and R the gas constant.

Formally as " ! 0 the function f tends to the local Maxwellian. In this limit,
multiplying the Vlasov–BGK equation (1) by 1, v, 1

2
jv2j (the so-called collision

invariants), and integrating with respect to v, leads to the following system of
balance laws

@%

@t
Crx � .%u/ D 0; (5)

@%u

@t
Crx � .%u˝ uC pI/� %E D 0; (6)

@E

@t
Crx � ..E C p/u/� %uE D 0; (7)

p D %�; E D d

2
%� C 1

2
%juj2: (8)

where p is the pressure and E the total energy.

3 The Coupling Method

In this section we present the coupling strategy between the Vlasov-BGK-Poisson
equations and the Euler–Poisson system. We will deal here with a constant in time
coupling between the micro and macroscopic models. However, our final scope is to
derive a time dependent coupling strategy, we refer to [7] for this case. We also refer
to [7] for more details on the numerical discretization, the treatment of the boundary
conditions and for the general theory about the time-dependent case.
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3.1 Decomposition of the Kinetic Equation

The coupling strategy is inspired by two recent works ([3, 4]) in which the rarefied
gas dynamic case was considered. For sake of simplicity we describe the method
in one space and velocity dimensions. It can be easily extended to a generic N-
dimensional setting. Also different meshes for the cut-off function and for the other
variables can be used.

We denote the buffer interval by Œa; b�, and we introduce a cut-off function h.x/
such that

h.x/ D
8

<

:

1; for x � a
0; for x � b
0 � h.x/ � 1; for x 2 Œa; b�

(9)

For instance, h can be chosen piecewise linear in Œa; b�:

h.x/ D x � b
a � b for x 2 Œa; b�:

We define two distribution functions such that fR D hf while fL D .1 � h/f .
We look now for an evolution equation for fR and for fL. We write

@tfR D @t .hf / D h@tf;
@tfL D @t ..1� h/f / D .1 � h/@tf:

Thus multiplying the Vlasov–BGK equation (1) by h and 1 � h respectively, we
obtain the following equations for the time evolution of the distributions fR and fL

@tfR D h
	

� v@xf � E � rvf C 1


.Mf � f /

�

;

@tfL D .1 � h/
	

� v@xf � E � rvf C 1


.Mf � f /

�

;

which finally leads to the following system

@tfR C hv@xfR C hv@xfL C E@vfR D h


.Mf � f /; (10)

@tfL C .1 � h/v@xfL C .1 � h/v@xfR C E@vfL D 1 � h


.Mf � f /; (11)

f D fR C fL; (12)

with initial data

fR.x; v; 0/ D h.x; 0/f .x; v; 0/ ; fL.x; v; 0/ D .1 � h.x; 0//f .x; v; 0/: (13)
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It is important to note that if f D fLCfR is the solution of (1) with initial data (2),
then .fL; fR/ is the solution of (10)–(11) with initial data (13) and conversely.

3.2 Kinetic-Hydrodynamic Coupling

Now, let us assume that the domain can be subdivided into two regions: in one of
the regions, the distribution function is close to a local Maxwellian while in the
other, it is far from it. We choose to set h D 0 in the region where f is close to the
Maxwellian. Therefore, fL is close to its associated Maxwellian MfL and we can
replace the Vlasov–BGK equation (1) by its macroscopic limit equations without
making any significant error. We also suppose that in the buffer zone, fL remains
close to the equilibrium and thus, it can be replaced by MfL in the whole interval
x < b.

Replacing fL by MfL in (11) and taking the hydrodynamic moments (mass,
momentum and energy), leads to the following modified Euler system defined in
the interval x � b
@%L
@t
C .1 � h/@x.%LuL/ D �.1 � h/@x

�R

R
vfR dv

�

;

@%LuL
@t
C .1 � h/@x.%Lu2L C pL/ � E%L D �.1 � h/@x

�R

R
v2fR dv

�

;

@EL
@t
C .1 � h/@x..EL C pL/uL/� %LuLE D �.1 � h/@x

	

R

R
v jvj

2

2
fR dv

�

;

(14)

with initial data

.%L; uL; �L/j.x;0/ D .1 � hj.x;0//.%; u; �/j.x;0/:

Under these assumptions, we have f D fR CMfL , where fR is a solution of:

@tfR C hv@xfR C hv@xMfL C E@vfR D h


.Mf � f /; (15)

in the interval x � a. Thus, the coupling model consists of system (14) for the
hydrodynamic moments in the region x � b and of (15) for the kinetic distribution
function in the region x � a.

When h D 0, system (14) coincides with system (8) because fR D 0 and
fL D MfL . Moreover no boundary conditions are needed at the boundary x D b

because the spatial derivatives are degenerate at x D b for the fluid model. A similar
remark is true for fR. Indeed, when h D 0, fR D 0 and no boundary conditions
are needed for the kinetic equation at x D a because the spatial derivatives are
degenerate in (15). In the buffer zone Œa; b�, the solution of the full kinetic problem
f is computed as the sum of the Maxwellian MfL and of the function fR. To
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summarize, the solution of the full kinetic problem is given by fR if x > b, by
MfL if x < a and by MfL C fR if x 2 Œa; b�.

An important feature of the method is that it is very easy to divide the domain
in more than two zones. Thus we can define as many buffers and as many kinetic
regions as necessary if the macroscopic model fails to give the correct solution in
different parts of the domain which are far apart from each other. In this latter case,
the function h is still a piecewise linear function but there are multiple buffer zones
Œaj ; bj �. Additionally, we can create new buffer zones and new kinetic zones during
the simulation. Such strategy is presented in [4] for the Boltzmann–BGK and in [7]
for the Vlasov–Poisson equations.

4 Numerical Test

The numerical example we present is a one-dimensional plasma expansion problem.
This is a two-species problem composed by free ions and fixed electrons. Ions
initially occupy a small region of thicknessD of the space where they have an high
density while in the rest of the domain they have very small density. Background
electrons are initialized by a Maxwell–Boltzmann equilibrium with a self-consistent
potential and their density is constant everywhere. The test problem consists in
observing the expansion of the ions.

This kind of phenomena are well described by the Vlasov–Poisson system in
rarefied regions and by the Euler–Poisson system in dense regions. For this test
case, we consider all our equation in their adimensional form. for dimensional test
cases we refer to [7].

The numerical physical domain goes from the left boundary xL D �20 to the
right boundary at xR D 20 while the velocity domain goes from vmin D �200 to
vmax D 200. There are 1;000 cells in physical space and 140 cells in velocity space.
The slab where ions are initialized with high density is ŒxL;D� withD D �8. Initial
conditions are as follows: for ions, the density is % D 1, mean velocity u D 0 and
temperature T D 10 in the high-density slab ŒxL;D� while in the remaining part
of the domain the density is % D 5 	 10�2, mean velocity u D 0 and temperature
T D 8. Electrons are initialized with density %0 D 1 everywhere.

The collision frequency is given by 1= where  D 5 10�6 in the hydrodynamic
part and  D 10�1 in the kinetic part. The Debye length takes the value �2 D 10�2
and Dirichlet boundary conditions are imposed for the electric potential as˚.xL/ D
0 and ˚.xR/ D 10:0.

The cut-off function h is initialized as h D 0 for x ranging from�20 to a D �1:0
(fluid region), h D x�a

b�a with b D 0:5 (buffer zone) and h D 1 for x > b (kinetic
region).

Boundary conditions are treated as a constant incoming Maxwellian injection at
the left boundary and as free Neumann conditions at the right one.

When the simulation begins, ions start to expand. We plot the solution for the
density after few time steps ti D 3:6 	 10�3 s (Fig. 1), at an intermediate state



Smooth Transitions Between the Vlasov–Poisson and the Euler–Poisson System 433

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 -15 -10 -5 0 5 10 15 20

Kinetic

Hydro

B
u
f
f
e
r

Coupling
Kinetic

Euler
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dashed line Vlasov-BGK-Poisson model, dotted line Euler–Poisson system

before reaching the buffer zone at tm D 8:4 	 10�3 s (Fig. 2) and at the end of the
simulation at tf D 1:32 	 10�2 s (Fig. 3). In the figures we report the results of the
domain decomposition strategy together with the results obtained by employing a
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scheme which solves the Vlasov-BGK-Poisson equation everywhere. We also report
the results obtained by solving the Euler–Poisson system in all the domain.

The figures show that during all the simulation the coupling strategy is able
to capture the good solution which is the one furnished by solving the kinetic
equation everywhere, while the scheme which solves the Euler–Poisson system fails
in describing the good solution where the collision frequency is very small. For more
realistic problems, it will be necessary to follow the discontinuities and the regions
where the rarefaction is high during the time evolution of the problem. This can be
accomplished by constructing some adaptive and dynamic decomposition which are
the subject of a future work [7].
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The Parareal in Time Algorithm Applied
to the Kinetic Neutron Diffusion Equation

A.-M. Baudron, J.-J. Lautard, Y. Maday, and O. Mula

1 Introduction

In the framework of nuclear core calculations, the development of efficient tools
to run neutron kinetic computations is a field of current active research. While
such calculations are crucial for security assessment and the study of new reactor
concepts, they present several mathematical and computational issues that still need
to be overcome.
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The exact model (kinetic transport equation) is indeed far too expensive to be
simulated for these purposes and different simplifications (multi group diffusion
approximation) have led to more tractable numerical simulations. Nevertheless, on
real geometries and despite the use of domain decomposition enabling accelerations
of the simulations thanks to parallel architectures [7], there is still need for
improvements for applications on regular basis.

In this context, the purpose of this work is to investigate the implementation
of the parareal in time algorithm [9] within an industrial solver called MINOS

developed at C.E.A. (cf. [4]) following the preliminary analysis [5].
The paper is organized as follows: after the presentation of the neutron diffusion

equation in Sect. 2, the main aspects of the parareal method will be recalled in
Sect. 3. In particular, we will explain the distributed algorithm that has been used
in our case from the point of view of the expected speed-up. The performances
of the parareal in time algorithm in a numerical application are summarized in
Sect. 4 which is followed in Sect. 5 by a discussion about the convergence behavior
observed in our example.

2 Model

The evolution of the flux  of neutrons in a reactor core R is governed by a kinetic
transport PDE whose theoretical properties (existence, uniqueness, positiveness of
the solution) have been investigated in e.g. [6] (Chap. 21, Sect. 2, Theorem 3). Given
the fact that  depends on seven variables, namely the time t , the position within

the reactor denoted as �!r , the velocity of the neutrons �!v D p

2E=m
�!̋

where E

stands for the energy of the neutron,
�!̋

stands for the direction of the velocity and
m is the mass of the neutron, it has been proposed in [6] (Chap. 21, Sect. 5), to
simplify the model by first considering the average flux over the angular variables

as the unknown: �.t;�!r ; E/ D 1
4�

R

S2
 .t;�!r ;�!̋0; E/d�!̋0. This approach leads to

results that are accurate enough in most of the usual cases but the computing time
still remains unacceptably long.

Another simplification consists in averaging also in the energy variable. This
further approximation, known as the multi-group theory [10], is based on the
division of the energy interval into G subintervals ( ŒEmin; Emax� D ŒEG;EG�1� [
� � � [ ŒE1; E0�) and leads to consider the set ˚ D f�ggg2f1;Gg as the new unknown
solution. In order to take into account the presence of radioactive isotopes (also
called precursors) that are important since they emit neutrons with a given delay,
the model is complemented with a set of first order ODE’s expressing their decays
denoted as C D fC`g`2f1;Lg. Since their half-lives have values that vary in a wide
range, the resulting system is very stiff and small time steps are required for an
accurate approximation in long time intervals.

The set .˚;C/ is the solution of the following set of multi-group diffusion
equations:
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where vg is the neutron velocity, Dg the diffusion coefficient and �gt the total
cross-section in energy group g. �gp is the prompt spectrum in energy group g,
�
g

` the delayed spectrum of precursor ` in energy group g and �` is the decay
constant of precursor `. F g and F

g

` denote the prompt and delayed fission operators
respectively. S gg0

is the neutron scattering operator from energy g to g0 and makes
the flux equations be coupled with respect to the energy variable.

3 The Parareal Algorithm

The unsteady problem .�/ can be written in a more compact form:

@y

@t
CA .t Iy/ D 0 ; t 2 Œ0; 1�I (1)

it is complemented with initial conditions at time t D 0 : y.0/ D y0. The
parareal in time algorithm applied to (1) is an iterative technique where, at each
iteration a predictor corrector propagation is proposed based on two propagators
: a fine one F 1

0
.y0/ that computes an approximation of the solution of (1) at

time 1 accurately but slowly, and a coarse one G 1
0
.y0/ that computes an other

approximation quickly but not so accurately (and not accurately enough). In addition
to these two propagators F and G , the parareal in time algorithm is based on the
division of the full interval Œ0; T � into N sub-intervals Œ0; T � D SN�1

nD0 ŒTn; TnC1�
that will each be assigned to a processor Pn, assuming that we have N processors at
our disposal.

The value y.Tn/ is approximated by Y kn as k increases with an accuracy that
tends to the one achieved by the fine solver (see [2, 3, 9] for further details). It is
obtained by the recurrence relation:

Y kC1nC1 D G
TnC1

Tn
.Y kC1n /CF

TnC1

Tn
.Y kn / � G

TnC1

Tn
.Y kn /; n D 1; : : : ; N (2)

starting from Y 0nC1 D G
TnC1

Tn
.Y 0n /. In this work, the recently described distributed

algorithm (summarized in [1]) has been used for the practical implementation of
parareal. It represents an improvement of parareal from the algorithmic point of
view.
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The first method of implementation was indeed suggested in [9] and consisted
on a master-slave algorithm where the master carried out the coarse propagation in
the whole time interval (each slave being in charge of the fine propagations over
its assigned time slice and sending F

TnC1

Tn
.Y kn / to the master so that the master

computed the parareal corrections (2) 8n). This original algorithm gives rise to two
main computing drawbacks: the coarse propagation by the master is a bottleneck in
the computation and the memory requirement in the master processor scales linearly
with the number of slaves. The distributed algorithm improves both aspects and can
easily be implemented via the MPI library: for each processor Pn the fine and the
coarse solvers are propagated over ŒTn; TnC1� and the parareal correction Y kC1nC1 is
carried out. The process is repeated until convergence, i.e. kY kC1n � Y kn k < �; 8n,
where � is a given tolerance.

It is easy to realize that this kind of implementation does not change the number
of iterations in order the parareal algorithm to converge but it provides better speed-
ups than the original master-slave version. This is the reason why the distributed
algorithm has been implemented in this study. Indeed, if we do not take into
account the communication time between processors, the theoretical speed-ups of
the distributed and master-slave algorithms are respectively (see [1]):

Sdistrib D N

Nr C k�.1C r/ I SMS D N

Nr.1C k�/C k� (3)

where r is the ratio between the two solution times of the two propagators G and F
and k� is the number of parareal iterations needed in order to converge.

4 Numerical Simulation

4.1 Definition of the Test Case

The parareal algorithm has been implemented with an implicit discretization in time.
Note that here we have used the same physical model (diffusion) for both the coarse
and the fine solvers (the only difference is the size of the time steps used to solve
equation .�/ ıt for F and �t D TnC1 � Tn for G ). At each time step, a Gauss-
Seidel iteration is used on the energy groups and the spatial discretization is done
with RT-1 finite elements (see [4]).

The geometry and history that have been chosen for the simulation is the so called
TWIGL benchmark that represents a rod withdrawal (see [8]). The geometry of the
core is three-dimensional. A cross-sectional view of it is specified in Fig. 1 where
only a quarter of it has been represented (the rest can be inferred by symmetry). The
first group of rods (yellow) is withdrawn from t D 0 (z D 100 cm measured starting
from below) until t D 26:6 s: (z D 180 cm) at a constant velocity. The second
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Fig. 1 Cross-sectional view
of a quarter of the core in the
TWIGL benchmark

group of rods (brawn) is inserted from t D 7:5 s: (z D 180 cm) until t D 47:7 s:
(z D 60 cm) and the simulated interval of time is Œ0; T � with T D 66:6 s.

Computations have been carried out with G D 2 energy groups, L D 6

precursors. The coefficients of .�/ remain constant in time and only the geometry
varies. The fine solver has a fixed time step of ıt D 1=6 s.

The scaling has been evaluated with a convergence test associated in which the
tolerance � has been fixed to the precision of the numerical scheme (i. e. � 
 10�3).
With this threshold, convergence has been achieved after only k� D 2, 3 or at most
4 iterations of the parareal in time algorithm.

4.2 Strong Scaling Results

For the strong scaling analysis, the same problem has been solved on an increasing
number N of processors. The size of each interval, equal to the time step of the
coarse solver, has been reduced from �t D 50ıt to �t D 5ıt in order to increase
the number of processors. Therefore, as N varies, the ratio r and the number
of parareal iterations k� change. With the computed k� and using ıt=�t as an
approximation of r , one can infer from (3) the optimal speed-up values that can be
obtained in our current case with the distributed algorithm (measured speed-ups are
of course lower due to the communication time that is not taken into account in (3)).
The values are plotted in Fig. 2, where the theoretical speed-ups of the master-slave
algorithm are also shown in order to compare both methods.

As it can be observed, the distributed algorithm performs better for any number
N of processors. For a reduced number of processors, the speed-ups are similar
because both algorithms increase like N=k� for N small enough. However, when
N becomes significant in (3), the distributed algorithm will behave likeN=r and the
master-slave method like N=.r.1C k�//, making the distributed algorithm become
more perfomant on a wider range of values of N . The performances reach a plateau
and even decrease when N becomes very large (N > 20 in our case) because the
cost of G becomes equivalent to the cost of F (r tends to 1).
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4.3 Weak Scaling Results

For this alternative evaluation of the scaling, the same geometry as before has been
used. We now consider the case in which the problem has a variable length T D
N�t and the time step of the coarse solver �t is fixed (i.e. the size of the problem
linearly increases with the numberN of processors). For our computations, the fine
and coarse time steps are fixed to ıt D 1=6 s and�t D 50ıt respectively.

The control rods are inserted and withdrawn periodically with a sequence of
motion that creates fluctuations in the total power. With the computed k�, the
optimal speed-ups for the distributed algorithm are plotted in Fig. 2 and compared
to the master-slave model. The most important result here is that the distributed
algorithm can effectively speed-up long time calculations as it can be observed.
When compared to the master-slave implementation for large values of N , the
distributed algorithm has a clear advantage because the increase of k� has not such
a strong negative impact on it than on the master-slave implementation (as it can
also be seen in Fig. 2).

5 About the Convergence of Parareal in the Kinetic Neutron
Diffusion Equation

The analysis of the convergence process can be done into two ways, either by
looking only at the history of the values at each Tn, 1 � n � N , or by looking
at the error at each fine discrete time m�t :
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TnCmıt
Tn

.˚k
n / (TWIGL benchmark,

N D 8 processors, �t D 8:3 s)

ek.tn Cmıt/fine D kF
TnCmıt
Tn

.˚kn /�F
TnCmıt
0 .˚0/kL2

k˚0kL2 (4)

8n D 1; : : : N; 8m D 0; 1; : : : �t
ıt
; 8k D 0; : : : ; N � 1

Figure 3 illustrates the global convergence history according to (4). Above the
convergence threshold, we note a surprising behavior of the error over each interval
ŒTn; TnC1� that is, in most cases, neither linear nor constant despite that .�/ is linear.
The following analysis will explain that this is due to the presence of the radioactive
isotopes.

Under several hypothesis (see the point kinetics approximation in [10]), the
kinetic behavior of system .�/ can be analysed through a set of first order ODE’s of
the form:

8

ˆ

ˆ

<

ˆ

ˆ

:

d˚.t/

dt D ˛˚.t/C
L
P

`D1
�`C`.t/

dC`.t/
dt D �`˚.t/ � �`C`.t/;8` D 1; : : : ; L

˚.0/ D ˚0; C`.0/ D C`;0
(5)

where the coefficients are in the range �0:5 � ˛ � �6:10�3, while for any `; 1 �
` � L, 10�2 � �` � 4 and 3:10�3 � �` � 3; 4:10�2

In order to understand the phenomenon in the simulation of .�/ represented in
Fig. 3, let us consider the case where L D 1 in (5). Due to linearity, the evolution
of the error (efine) between the parareal fine propagator and the sequential fine one
follows the same evolution as ˚ in (5) over each interval ŒTn; TnC1� starting from
an initial error ı˚ over ˚ and ıC over C D C1. This system can be solved and
the solution is the sum of two exponential behaviors e��t and e�Ct where �˙ are

the two eigenvalues associated with the problem : �˙ D .˛��/˙
p
.�C˛/2C4��
2

. In
the range of values where the physical parameters lie, � C ˛ is not small and we
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can consider that � D .�C˛/2
4�

." C ı."//. In this case, the eigenvalues behave as

�˙ D ˛��˙j�C˛j
2

˙ j�C˛j
4
" C ı."/ where " is a small quantity, the error ı˚.t/ D

ı˚0e
˛t C �

�C˛ ıC0
�

e˛t � e��t �C �.ı˚0; ıC0; ˛; �/" C ı."/, with � gathering the
terms at order ". At first order, and depending on the values of ˛ and �, ı˚ (and
therefore efine) will present an exponentially decreasing trend (e.g. ˛ D �0:006,
� D 4) or a brief increase followed by a decrease (e.g. ˛ D �0:5, � D 0:01) as it
appears in Fig. 3.

6 Conclusion

The results of this study show that the parareal distributed algorithm can effectively
speed-up neutron kinetic diffusion calculations. They can certainly be improved by
coupling parareal with spatial domain decomposition. A further analysis needs to
be done on the impact of the communication time between processors.

An analysis of a surprising behavior of the error within each interval ŒTn; TnC1�
has also been explained and is a consequence of a special tune of the parameters.

Note also that these results represent the first implementation of the parareal in
time algorithm within the industrial solver MINOS so the current results represent
as well a successful industrial application of parareal.

These results are encouraging because they open the door to the construction
of kinetic transport solvers. Our ongoing study is therefore to explore whether the
parareal algorithm can successfully accelerate such calculations.
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Achieving Robustness Through Coarse Space
Enrichment in the Two Level Schwarz
Framework

Nicole Spillane, Victorita Dolean, Patrice Hauret, Frédéric Nataf,
Clemens Pechstein, and Robert Scheichl

As many domain decomposition methods the two level Additive Schwarz method
may suffer from a lack of robustness with respect to coefficient variation in the
underlying set of PDEs. This is the case in particular if the partition into subdomains
is not aligned with all jumps in the coefficients. Thanks to the theoretical analysis of
two level Schwarz methods (see [11] and references therein) this lack of robustness
can be traced back to the so called stable splitting property (already in [4]).
Following the same ideas as in the pioneering work [1] we propose to solve a
generalized eigenvalue problem in each subdomain which identifies which vectors
are responsible for slow convergence. The spectral problem is specifically chosen
to separate components that violate the stable splitting property. These vectors
are then used to span the coarse space which is taken care of by a direct solve
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while all remaining components can be resolved on the subdomains. The result is
a preconditioned system with a condition number estimate that does not depend
on the number of subdomains or any jumps in the coefficients. We refer to this
method as GenEO for Generalized Eigenproblems in the Overlaps. It is closely
related to the work of [2] where the same strategy leads to a different eigenproblem
and different condition number estimate (which also does not depend on the jumps
in the coefficients or on the number of subdomains). A full theoretical analysis of
the two level Additive Schwarz method with the GenEO coarse space (first briefly
introduced in [8]) is given in [7]. Here our purpose is to show the steps leading from
the abstract Schwarz theory to the choice of our generalized eigenvalue problem
(5). In the first section we introduce the rather wide range of problems to which the
method applies and give the classical two-level Schwarz condition number estimate
in the abstract framework (again, see [11] and references therein). In the second
section we work to make this condition local (on each subdomain), identify the
GenEO generalized eigenproblem and state our main result (Theorem 2). Finally in
the third section we illustrate the result numerically.

1 Problem Setting

Given a finite dimensional Hilbert space Vh, a continuous and coercive bilinear form
a W Vh 	 Vh ! R and a right hand side f 2 V 0h we consider the following problem.
Find v 2 Vh such that a.v;w/ D hf;wi for all w 2 Vh. Then given a basis for Vh we
can derive a linear system Av D f .

Assumption. The following assumption is needed on the bilinear form: a is given
through positive semi definite element matrices fag2Th

where Th is a mesh on
the computational domain ˝ underlying Vh. Our method can also be defined for
abstract elements and degrees of freedom as in [7] but here we focus on PDEs and
prefer this more intuitive point of view.

The reason why we require this assumption is so that we may define, for any
subset D which is resolved by the mesh, the following local bilinear form:

aD.v;w/ WD
X

�D
a .vj ;wj /: (1)

The Additive Schwarz method is based on an overlapping partition f˝j gNjD1 of ˝
where each ˝j is resolved by the mesh. On each of these subdomains, we denote
the space of functions supported in ˝j by: Vh;0.˝j / WD fvj˝j W v 2 Vh; supp.v/ �
˝j g.

An important role is played by the extension operator R>j W Vh;0.˝j / ! Vh
which returns the extension by zero of a function v 2 Vh;0.˝j / to ˝ . The
adjoint of R>j is the restriction operator Rj W V 0h ! Vh;0.˝j /

0 defined by
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hRjg; vi D hg;R>j vi, for v 2 Vh;0.˝j /, g 2 V 0h . Let Rj be the matrix
representation ofRj . This is a boolean matrix. Then the one level Additive Schwarz
preconditioner is defined simply based on these interpolation operators as M�1

AS;1 WD
PN

jD1 R>j A�1j Rj where Aj WD RjAR>j are the local problem matrices.
In other words, the one level Schwarz preconditioner approximates the inverse

of the global matrix A�1 by a sum of local inverses A�1j . The method is known
to converge [11] as long as the subdomains and finite element spaces are chosen

so that Vh D PN
jD1

h

R>j Vh;0.˝j /
i

. In some sense this ensures that the local

subdomains are overlapping enough. The drawback of the one level Schwarz
method is that its convergence rate depends on the number of subdomains and thus
scales poorly for large problems. The introduction of a coarse space is a, by now
classical, way of weakening this dependence. Having chosen the coarse space VH
and an interpolation operator R>H W VH ! Vh, the two-level Additive Schwarz
preconditioner is the most simple two level method: it reads

M�1AS;2 WD R>HA�1H RH C
N
X

jD1
R>j A�1j Rj ; AH WD RHAR>H (Coarse problem matrix);

(2)
where RH is the matrix representations of RH .

The following theorem is simply a reformulation of the results in Chap. 2 of the
book by Toselli and Widlund [11] where the abstract Schwarz theory is presented.
We refer to there for the proof.

Theorem 1 (Condition Number in the Abstract Schwarz Theory). Let k0 be the
maximal degree of multiplicity of a point in ˝ with respect to the partition into

subdomains: k0 D maxx2˝
	

#f˝j W 1 � j � N;x 2 ˝j g
�

.

Assume that for a fixed constant C0 there exists a stable splitting .zH ; z1; : : : ; zN /
2 VH 	 Vh;0.˝1/ 	 � � � 	 Vh;0.˝N / of any v 2 Vh:

v D R>H zH C
N
X

jD1
R>j zj I a.R>H zH ;R

>
H zH/C

N
X

jD1
a.R>j zj ; R

>
j zj / � C2

0 a.v; v/:

(3)
Then the condition number of A preconditioned by the two level Additive Schwarz
operator satisfies 	

�

M�1
AS;2A

� � .k0 C 1/ C 2
0 .

This theorem is the cornerstone of our method and we make our objective more
precise thanks to these two remarks:

• The constant k0 in the inequality does not depend on the number of subdomains
but only on the geometry of the partition. For instance in two dimensions if a
regular partition into rectangular subdomains is used then k0 D 4 no matter what
the total number of subdomains is. This means that the presence of k0 in the
estimate does not violate scalability.
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• To make the theorem more precise, C�20 is a lower bound for the eigenvalues
of the preconditioned operator and k0 C 1 is an upper bound. The upper bound
holds and is sharp regardless of the choice of the (non empty) coarse space. For
this reason we do not work to improve the upper bound and instead we will work
only on the lower bound through the stable splitting assumption.

Now the question of making the method robust with respect to the number of
subdomains and the coefficients in the PDEs reduces to the following problem:

Find a coarse space VH for which there exists a constantC0 independent
of the number of subdomains and the coefficients in the underlying set
of PDEs such that any v 2 Vh admits a stable splitting (3) onto this
coarse space and the local subspaces.

2 From the Abstract Schwarz Theory to the GenEO Coarse
Space

The practical inconvenience of the stable splitting property is that it is not local.
Reducing it to N local problems relies on the following observation: there are two
simple ways to get a local version of v, either with the restriction operator Rjv
which returns a function in Vh;0.˝j / that is supported in ˝j or by restricting the
domain of v to˝j which we denote vj˝j . There is no immediate inequality between
the global term a.v; v/ and any of the local terms a˝j .Rj v;Rj v/. However the
alternative inequality a.v; v/ � a˝j .vj˝j ; vj˝j / holds (and motivates the following
lemma), since according to (1),

a.v; v/ D a˝.v; v/ D a˝j .vj˝j ; vj˝j /C a˝n˝j .vj˝n˝j ; vj˝n˝j /
„ ƒ‚ …

�0
:

Lemma 1. Given v 2 Vh, if there exists a splitting v D zH C z1 C � � � C zN
such that each local component (j D 1; : : : ; N ) satisfies a.R>j zj ; R>j zj / �
C1a˝j .vj˝j ; vj˝j /, then the splitting is stable in the sense of (3) for C2

0 D 2 C
C1k0.2k0 C 1/.
Proof. Using the definition of k0 we can bound the sum of the local contributions:

N
X

jD1
a.R>j zj ; R

>
j zj / � C1

N
X

jD1
a˝j .vj˝j ; vj˝j / � C1k0a.v; v/:

The bound for the energy of the coarse contribution follows from R>H zH D v �
PN

jD1 R>j zj which implies a.R>H zH ;R>H zH/ � 2a.v; v/C2a
	

PN
jD1 R>j zj ;

PN
jD1
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R>j zj
�

and, by the definition of k0 and the previous inequality,

a

0

@

N
X

jD1
R>j zj ;

N
X

jD1
R>j zj

1

A � k0
N
X

jD1
a.R>j zj ; R

>
j zj / � C1k20a.v; v/: (4)

Putting all of these estimates together ends the proof of the lemma. ut
Lemma 1 also explains why we think of the coarse space as the space of bad

components. Indeed, it states that it is enough to check that an estimate holds on
each of the local components zj of the splitting. Then this implies an estimate for
the coarse component zH and in turn the stable splitting assumption is satisfied.

An important tool in building the GenEO coarse space is a family of partition
of unity operators. The particularity of these partition of unity operators is that they
are defined at the degree of freedom level. The main consequence is that when the
partition of unity is applied to a function we do not need to reinterpolate into the
finite element space as is classically the case in partition of unity spaces where an
application of the partition of unity is a multiplication by a continuous function.

Definition 1 (Partition of Unity). For each subdomain let dof.˝j / be the
set of degrees of freedom for which the associated basis function �k is
supported in ˝j : dof.˝j / D fk I supp.�k/ � ˝j g. Then for each degree
of freedom k D 1; : : : ; n let f�j;kgfj W k2dof.˝j /g be a family of weights
	

�j;k � 1 and
P

fj Wk2dof.˝j /g
1
�j;k
D 1

�

. Finally the local partition of unity

operator for v 2 Vh written as v DPn
kD1 vk�k is defined by

)j .vj˝j / WD
X

k2dof.˝j /

1

�j;k
vk �k j˝j :

This definition gives rise to a few remarks:

• A possible choice for the weights in the definition of the partition of unity is
to use the multiplicity of each degree of freedom (this is what we use in the
numerical section): for any degree of freedom k, 1 � k � n, let �k denote the
number of subdomains for which k is an internal degree of freedom, i.e.

�k WD # fj W 1 � j � N and k 2 dof.˝j /g:

Then let �j;k D �k for every subdomain j for which k 2 dof.˝j /.
• Other more coefficient adapted choices similar to those in [3] could be made.
• The family of operators f)j gjD1;:::;N indeed forms a partition of unity since
PN

jD1 R>j )j .vj˝j / D v for any v 2 Vh. This provides an obvious splitting
of v onto the local subspaces.
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• The partition of unity operator)j takes the restriction of a function to subdomain
˝j and returns a function in Vh;0.˝j / (which is supported in ˝j ).

• If a degree of freedom k belongs to only one subdomain j then �j;k D 1 and
�

)j .vj˝j /
�

k
D �vj˝j

�

k
. This is the reason why the overlap plays a special role in

the generalized eigenvalue problem which separates good and bad components.
More detail is given in the proof of the final theorem.

Next we introduce the GenEO coarse space.

Definition 2 (GenEO Coarse Space).

(i) For each subdomain˝j (1 � j � N ), let the overlap be given by

˝ıj D
[

f � ˝j W 9 j 0 ¤ j such that  � ˝j 0g:

(ii) For each j D 1; : : : ; N , solve the following generalized eigenvalue problem:
find the eigenpairs .pkj ; �

k
j / 2 fvj˝j I v 2 Vhg 	 RC of

a˝j .p
k
j ; vj˝j / D �kj a˝ı

j
.)j .p

k
j /; )j .vj˝j // for all v 2 Vh: (5)

(iii) Given a threshold Kj for each j D 1; : : : ; N , let the GenEO coarse space be
defined as

VH WD spanfR>j )j .pjk / W �kj �Kj I j D 1; : : : ; N g:

Assumption. An additional technical
assumption is needed for the proof of
Theorem 2. In [7] this is given rigorously
in the abstract framework but here since
we do not go into the details of the proof
we will relie on the figure on the right.
We assume that given data for the degrees
of freedom in the overlap that do not lie
on the boundary (i.e. the dots) we can
build a discrete harmonic w.r.t. a˝j .�; �/
extension to the whole of ˝j .

In the next theorem we give our main
result which is an estimate for the condi-
tion number. It relies solely on the stable
splitting property. We provide a suitable decomposition that allows to complete the
proof along with the main steps of the proof.

Theorem 2 (Stable Splitting and Final Estimate). For any j D 1; : : : ; N ,
suppose that the pkj 2 VH have been normalized w.r.t. a˝ı

j
.)j .�/; )j .�// and let˘j

be the projection operator: ˘j .vj˝j / D
P

fk W�kj	Kj g a˝ı
j
.)j .p

k
j /; )j .vj˝j //pkj .

Then, for any v 2 Vh, the splitting zH WD PN
jD1 )j

�

˘j .vj˝j /
�

and
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zj WD)j
�

vj˝j �˘j .vj˝j /
�

satisfies Lemma 1 for C1 D max1	j	N
	

1C 1
Kj

�

so,

by Theorem 1, the condition number of the preconditioned operator is bounded by

	.M�1
AS;2A/ � .1C k0/

h

2C k0.2k0 C 1/ max
1	j	N

	

1C 1

Kj

�i

;

Proof. The only thing that we need to check is a.R>j zj ; R>j zj / �
	

1C 1
Kj

�

a.v; v/.

Here we only give the key ideas of the proof, the whole proof in a more general
setting can be found in [7]. The most important ingredient in the proof is that,
because they were obtained through a generalized eigenvalue problem, the pkj form
a basis of fvj˝j I v 2 Vhg with the additional orthogonality type properties:

a˝ı
j
.)j .p

k
j /; )j .p

l
j // D 0 and a˝j .p

k
j ; p

l
j / D 0 for all k ¤ l: (6)

Using these properties we obtain

vj˝j �˘j .vj˝j / D
X

fk W�kj >Kj g
˛kj p

k
j ; for any vj˝j written as vj˝j D

X

k

˛kj p
k
j ;

where the coefficients ˛kj 2 R. Then we make appear the overlap term:

a.R>j zj ; R
>
j zj / D a˝j .zj ; zj / D a˝ı

j
.zj ; zj /C a˝j n˝ı

j
.zj ; zj /:

In the interior ˝j n ˝ıj we have that )j is identity so zj D vj˝j � ˘j .vj˝j / and
because a˝j n˝ı

j
.�; �/ � a˝j .�; �/: a˝j n˝ı

j
.zj ; zj / � a˝j .vj˝j � ˘j .vj˝j /; vj˝j �

˘j .vj˝j //. Then by an orthogonality argument a˝j n˝ı
j
.zj ; zj / � a˝j .vj˝j ; vj˝j /.

For the other term, we write

a˝ı
j
.zj ; zj / D a˝ı

j

0

B

@

X

fk W�kj >Kj g
˛kj)j .p

k
j /;

X

fk W�kj >Kj g
˛kj)j .p

k
j /

1

C

A

D
X

fk W�kj >Kj g
˛kj

2
a˝ı

j
.)j .p

k
j /; )j .p

k
j // (Orthogonality (6))

� 1

Kj

X

fk W�kj >Kj g
˛kj

2
a˝j .p

k
j ; p

k
j / (Definition of eigenproblem (5))

� 1

Kj

X

fall kg
˛kj

2
a˝j .p

k
j ; p

k
j / D

1

Kj

a˝j .vj˝j ; vj˝j /:

ut
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Fig. 1 Left: coefficient distribution (pink or dark is high conductivity)—Middle: Metis par-
tition of the 200 � 200 mesh into 100 subdomains—Right: We plot the condition number
with respect to the coarse space size when the threshold successively takes the values  2
Œ0:01I 0:05I 0:1I 0:2I 0:3I 0:4I 0:5I 0:6I 0:7I 0:8I 0:9�. As a matter of comparison: without any
coarse space the condition number is 9661. With just the weighted constant )j .1j˝j / per floating
subdomain the condition number is 7324: this 62 dimensional coarse space is what we get for
GenEO with a barely positive threshold  D 0C (not shown on the graph simply because of scaling
issues). We observe that the most troublesome eigenmodes are identified for quite a small value of
the threshold and a reasonable size of the coarse space, then the condition number stagnates (Color
figure online)

3 Numerical Results

We run a simulation for the Darcy equation �r � .˛rv/ D 1 in ˝ D Œ0; 1�2

with homogeneous Dirichlet boundary conditions on the whole of @˝ . The mesh
is 200 	 200 square elements further subdivided into triangles and the finite
element discretization uses standard P1 basis functions. All the finite element data is
generated using Freefem++ [5]. The coefficient distribution is rather random since
it is given by a QR code. This is shown on the left hand side of Fig. 1 where in
the yellow (or light) parts ˛ D 1 and in the pink (or dark) parts ˛ D 1; 000. The
decomposition into subdomains is the 100 subdomain partition obtained via Metis
[6] where we add one layer of overlap to each subdomains. This is plotted in the
middle of Fig. 1. The results are shown on the right hand side of Fig. 1 where we
have plotted the condition number versus the coarse space size for different values
of the thresholdKj which is used to select modes for the coarse space. We observe
that the coarse space grows roughly linearly with the threshold but the condition
number stabilizes quickly. What this illustrates is that there is a good compromise
to be found between the size of the coarse space and the efficiency of the method.
An automatic optimal choice for Kj is a subject for future research. More thorough
numerical experiments can be found in [7, 8] including three dimensional examples
and results for elasticity.
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4 Conclusion

We have introduced the GenEO coarse space which is a way to automatically make
the two level Schwarz method robust. The construction of this coarse space is based
on solving generalized eigenvalue problems which isolate good and bad modes
in each subdomain. We have presented the steps which lead to the choice of this
generalized eigenvalue problem starting with the abstract Schwarz theory and the
key ideas of the proof for the condition number estimate. The whole proof and a
more general setting can be found in [7]. Although the eigenvalue problems are
local, can be solved in parallel and only the smallest eigenvalues are needed, this
setup phase could be costly and the study of the overall cost of the algorithm is still
work in progress. The related methods in [2, 4] have been extended to a multilevel
setting by [3,12]. Moreover, this strategy was further applied by some of the authors
in the BDD and FETI frameworks [9, 10].
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Optimized Schwarz Algorithms
in the Framework of DDFV Schemes

Martin J. Gander, Florence Hubert, and Stella Krell

1 Introduction

We are interested in this paper in anisotropic diffusion problems of the form

� div.Aru/ D f on ˝I u D 0 on @˝: (1)

A discretization of the Schwarz algorithm using Discrete Duality Finite Volume
methods (DDFV for short) for such problems was developed in [3]. The DDFV
method needs a dual set of unknowns located on both vertices and “centers” of
the primal control volumes, which leads to two meshes, the primal and the dual
one, and permits the reconstruction of two-dimensional discrete gradients located
on a third partition of ˝ , called the diamond mesh, and also a discrete divergence
operator defined by duality. The DDFV method is particularly accurate in terms of
gradient approximation, see the benchmark [11] for problem (1) and an extensive
bibliography. DDFV methods are also very robust, see [2, 6] for theoretical
justifications, and [5] for applications. It is therefore of great interest to develop
parallel solvers for such discretizations.

A non-overlapping Schwarz method using Robin transmission conditions was
first proposed at the continuous level by Lions in [12]. For the model problem (1),
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the algorithm with two non-overlapping subdomains, ˝ D ˝1 [˝2, and interface
� D @˝1 \ @˝2, computes for iteration index l 2 N� the subdomain solutions

�div.Arulj / D f on ˝j , ulj D 0 on @˝j \ @˝ ,
Arulj � nji C pulj D �Arul�1i nij C pul�1i on � , j ¤ i , (2)

where nji is the unit normal from˝j to˝i , and p is a parameter that one can choose
to accelerate convergence. Choosing p such that the algorithm converges as fast as
possible leads to a so called optimized Schwarz method [8].

The non-overlapping algorithm (2) at the discrete level is interesting for coupling
non-matching grids, see for example [1, 4, 9] for isotropic diffusion problems or
[7, 10] for general diffusion. It has also been analyzed in [3] in the case of highly
anisotropic operators, and on a wide range of meshes. Numerical experiments in [3]
showed however that the DDFV discretization chosen at the interfaces leads to a
convergence factor of 1 � O.h/ of the algorithm (h denotes the mesh size), when
the parameter p was chosen numerically such that convergence was fastest. This
contraction factor is much worse than the optimal contraction factor 1�O.

p
h/ of

(2) for other discretizations, see [8]. The purpose of this short paper is to investigate
why the classical DDFV discretization leads to such a slow convergence of the
optimized Schwarz method, and to develop a new discretization of the transmission
conditions in order to restore the optimal convergence rate. We show our results
for the Poisson equation, A D Id, but the extension to anisotropic tensors A can
be obtained similarly. In Sect. 2, we show for the case of the Poisson equation and
square meshes on half spaces that the traditional DDFV discretization leads to a
mass matrix in the term with the Robin parameter. This mass matrix couples the
primal and dual grids, and destroys the good convergence behavior of the optimized
Schwarz method. In Sect. 3, we then show how to discretize the transmission
conditions differently in the context of DDFV in order to recover the optimal
convergence factor 1 � O.

p
h/. We then extend the algorithm to general meshes

and prove convergence. Finally, in Sect. 4, we present numerical experiments which
illustrate our analysis.

2 DDFV Discretization of the Optimized Schwarz Algorithm

We decompose˝ WD R2 into two non-overlapping half planes˝1 WD .�1; 0/	R

and ˝2 WD .0;1/ 	 R, with the interface � WD @˝1 \ @˝2. We use a regular
grid of squares, so that the DDFV discretization away from the interface � leads
to two interlaced five point finite difference schemes. The mesh size is denoted by
h. We use for the scheme aligned with the interface star indices, and for the other
one indices without stars, see Fig. 1. The DDFV Schwarz algorithm proposed in [3]
solves at each iteration l 2 N�, on each domain j on interior primal cells
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Domain 1 Domain 2

u1 l
m n

m∗ = 2 m∗ = 1 m∗ = 0 m∗ = 0 m∗ = 1 m∗ = 2

n+1

n

u1 l
m∗ n∗ u2 l

m∗ n∗

u2 l
m n

m= 1
2

n−1

n∗ +2

n∗ +1

n∗
ϕ1 l
n n∗ ϕ2 l

n n∗

m= 2m= 0 m= 0m= 2 m= 1 m= 1m= 1
2

Γ

Fig. 1 The unknowns u
j;l
m;n are associated with the primal cells, whose centers are bullets �; the

unknowns uj;lm� ;n� are associated with the dual cells shown in dashed, whose centers are diamonds
�, or ˙ for boundary cells. The centers of the dual cells � are the vertices of the primal cells,
and similarly the centers of the primal cells � are the vertices of the dual cells. Additional primal
unknowns uj;l1

2 ;n
, located at ı, and also additional flux unknowns 'j;ln;n� are needed on the interface � .

The indices j and l stand for the domain and the iteration

uj;lmC1;n � 2uj;lm;n C uj;lm�1;n C uj;lm;nC1 � 2uj;lm;n C uj;lm;n�1 D 0; m > 0: (3)

In order to obtain (3) form D 1, we introduce uj;l0;n which is linked with the interface

primal unknowns uj;l1
2 ;n

by

uj;l1
2 ;n
D 1

2
.uj;l1;n C uj;l0;n/: (4)

On interior dual cells, the algorithm solves

uj;l
m�C1;n� � 2uj;l

m�;n� C uj;l
m��1;n� C uj;l

m�;n�C1 � 2uj;l
m�;n� C uj;l

m�;n��1 D 0; m� > 0;
(5)

whereas on boundary dual cells, the additional fluxes 'j;ln;n� are used,

uj;l1�;n��uj;l0�;n�C 1
2
.uj;l0�;n�C1�2uj;l0�;n�Cuj;l0�;n��1/C

h

2
.'

j;l

n�1;n�C'j;ln;n�/ D 0: (6)

The Robin transmission condition on � can now be expressed using the fluxes 'j;l
n;n� ,

'
j;l

n;n� C p

2
.uj;l0�;n� C uj;l1

2 ;n
/ D �'i;l�1n;n� C p

2
.ui;l�10�;n� C ui;l�11

2 ;n
/: (7)
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Finally, a consistency condition is required for the fluxes, namely

1

2
.'

j;l

n;n� C 'j;ln;n�C1/ D
2

h
.uj;l1

2 ;n
� uj;l1;n/: (8)

Equations (3)–(8) completely describe the original DDFV Schwarz algorithm
from [3]. In order to analyze the DDFV discretization of the optimized Schwarz
algorithm (3) and (5), we perform a discrete Fourier transform in the n index, which
corresponds to the y variable, aligned with the interface. Setting uj;lm;n D Ouj;lm;keiknh;

uj;l
m�;n� D Ouj;lm�;ke

ikn�h; both Ouj;l�;k and Ouj;l
.�/�;k satisfy the recurrence relation

XmC1 � 2Xm CXm�1 C ˛kXm D 0; (9)

with ˛k D 2 cos kh � 2. The general solutions of (3) and (5) are bounded solutions
of (9), which implies that

Ouj;lm;k D Cj;l

k �m; Ouj;l
m�;k D C �;j;lk �m

�
; � WD 2 � ˛k �

p

.2 � ˛k/2 � 4
2

:

In order to determine the constants Cj;l

k and C �;j;lk from the transmission conditions
(6) and (8), we eliminate the fluxes from the interface conditions using (7):

1

h
.uj;l0�;n� � uj;l1�;n�/ � 1

2h
.uj;l0�;n�C1 � 2uj;l0�;n� C uj;l0�;n��1/C p�n�.uj;l /

D �1
h
.ui;l�10�;n� � ui;l�11�;n�/C 1

2h
.ui;l�10�;n�C1 � 2ui;l�10�;n� C ui;l�10�;n��1/C p�n�.ui;l�1/;

and

2

h
.uj;l1

2 ;n
� uj;l1;n/C p�n.uj;l / D �

2

h
.ui;l�11

2 ;n
� ui;l�11;n /C p�n.ui;l�1/;

with traces

�n�.uj;l /D 1
4
.uj;l1

2 ;n
C 2uj;l0�;n� C uj;l1

2 ;n�1
/; �n.u

j;l /D 1
4
.uj;l0�;n� C 2uj;l1

2 ;n
C uj;l0�;n�C1/:

(10)

We then obtain for the iteration of the constants using (4),

 

C
j;l

k

C
�;j;l
k

!

D

B

 

C
i;l�1
k

C
�;i;l�1
k

!

with the iteration matrix B DM�1N , where
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M D
�

1
h
.1 � �/C p

4
.1C �/ p

4
.1C eikh/

p

8
.1C �/.1C e�ikh/ 1

h
.1 � �/� ˛k

2h
C p

2

�

N D
�� 1

h
.1 � �/C p

4
.1C �/ p

4
.1C eikh/

p

8
.1C �/.1C e�ikh/ � 1

h
.1 � �/C ˛k

2h
C p

2

�

:

Proposition 1. The optimized parameter in the DDFV discretized Schwarz algo-
rithm (3)–(8) satisfies popt D Argminp maxk.�.B// D 4

h
, and the associated

optimized contraction factor is 1 � 1
2
kminhCO.h2/.

Proof. The proof of this result is based on two observations: the minimum is
obtained when both eigenvalues are the same, which is achieved with the given
choice of p, and then the maximum is attained for the lowest mode k D kmin. The
computations are however too long and technical for this short paper.

3 A New DDFV Discretization of the Transmission
Conditions

A careful comparison with the convergence results in [8] suggests that the mass
matrices appearing in the traces �n.uj;l / introduce an additional coupling, which
prevents the optimized DDFV Schwarz algorithm from converging rapidly. Modi-
fying the traces �n�.uj;l / in (10) to be lumped, i.e.

�new
n� .uj;l / D uj;l0�;n� ; �

new
n .uj;l / D uj;l1

2 ;n
; (11)

the iteration matrix becomes diagonal: Bnew D .M new/�1N new, where

M new D
�

1
h
.1 � �/C p

2
.1C �/ 0

0 1
h
.1 � �/� ˛k

2h
C p

�

N new D
�� 1

h
.1 � �/C p

2
.1C �/ 0

0 � 1
h
.1 � �/C ˛k

2h
C p

�

;

and we obtain a much better convergence result.

Proposition 2. The optimized parameter in the DDFV Schwarz algorithm (3)–(8)

with modified traces (11) satisfies popt D Argminp maxk.�.Bnew// 
 23=4
p
kminp
h

,

and the associated optimized contraction factor is 1 � 21=4pkmin

p
hCO.h/.

Proof. The proof of this result is based on equioscillation of the first eigenvalue of
Bnew at k D kmin and the second eigenvalue of Bnew at k D kmax � �

h
, using

asymptotic analysis. The details are however too long for this short paper.
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Fig. 2 Notation around a diamond. The new unknowns needed to describe the DDFV scheme on
˝ as the limit of the Schwarz algorithm

We now describe the DDFV Schwarz algorithm for general subdomains and
decompositions using the notation from [3]. DDFV schemes can be described by
two operators: a discrete gradientrD and a discrete divergence .divK; divK�/, which
are dual to each other, see [2] or [3]. We refer to the primal unknowns by uj;lK or uj;lL ,
to the dual unknowns by uj;l

K� or uj;l
L� and to the set of unknowns by uj;l . The primal

mesh on ˝j is called Mj , the dual mesh on ˝j is M�j for the interior cells, @M�
j;�

for the dual boundary cells related to � and the diamond mesh on ˝j is called Dj .

We further need additional unknowns uj;lL on the edges of � denoted by @Mj;� , and
additional fluxes  j;l

K� for K� 2 @M�
j;�

as shown in Fig. 2. We denote by DK� the set
of diamonds such that D\ K� 6D ; for K� 2 @M�j;� . The DDFV Schwarz algorithm
then computes for l 2 N�, j D 1; 2, i D 2; 1

�divK

�rDuj;l
� D 0; 8 K 2Mj ; �divK�

�rDuj;l
� D 0; 8 K� 2M�j ; (12a)

�
X

D2DK�
m��

�rDuj;l ;n�K�
� �m�K� 

j;l

K� D 0; 8 K� 2 @M�j;� ; (12b)

�rDuj;l ;nji
�C puj;lL D �

�rDui;l�1;nij
�C pui;l�1L ; 8 L 2 @Mj;� ; (12c)

 
j;l

K� C puj;l
K� D � i;l�1K� C pui;l�1

K� ; 8 K� 2 @M�j;� : (12d)

Using the same discrete Fourier transform for (12) as in Sect. 2, we obtain Bnew.
Well-posedness of the algorithm can be proved using classical a priori estimates
with the discrete duality property.
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Theorem 1 (Convergence of the New Schwarz Algorithm). For all p > 0, the
solution of the new Schwarz algorithm (12) converges as l tends to infinity to the
solution of the classical DDFV scheme for the Laplace equation on ˝ .

Proof. We first rewrite the classical DDFV scheme for the Laplace equation on ˝
as the limit of the Schwarz algorithm. To this end, we introduce new unknowns near
the boundary � , see Fig. 2:

• for all K 2Mj , we set uj;1K D uK and for all K� 2M�j , we set uj;1
K� D uK� ,

• for all L 2 @Mj;� choose uj;1L D ui;1L D m�K0 uKCm�K uK0
m�� ,

• for all K� 2 @M�j;� choose uj;1
K� D ui;1

K� D uK� and

 
j;1
K� D � i;1K� D � 1

m�K�

X

D2DK�
m��

�rDuj;1;n�K�
�

:

By linearity it suffices to prove the convergence of the new DDFV Schwarz
algorithm (12) to zero. An a priori estimate using discrete duality leads to

2
X

D2Dj

mDkrDuj;lC1k2 �
X

L2@Mj;�

m�L
.rDuj;lC1;n�L

/uj;lC1L

�
X

K�2@M�
j;�

m�K� 
j;lC1
K� uj;lC1

K� D 0:

We now rewrite the last two terms as

�
X

L2@Mj;�

m�L
.rDuj;lC1;n�L

/uj;lC1L

D 1

4p

X

L2@Mj;�

m�L

	

�.rDuj;lC1;n�L
/C puj;lC1L

�2

� 1

4p

X

L2@Mi;�

m�L

��.rDui;l ;n�L
/C pui;lL

�2
;

and using (12b)

�
X

K�2@M�
j;�

m�K� 
j;lC1
K� uj;lC1

K�

D 1

4p

X

K�2@M�
j;�

m�K�
	

puj;lC1
K� � j;lC 1

K�
�2 � 1

4p

X

K�2@M�
i;�

m�K�
	

pui;l
K� � i;lK�

�2

:
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Summing over l D 0; � � � ; lmax � 1 and j D 1; 2, we get

2

lmax�1
X

lD0

X

jD1;2

X

D2Dj

mDkrDuj;lC1k2

C 1

4p

X

jD1;2

X

L2@Mj;�

m�L

	

puj;lmax
L � .rDuj;lmax ;n�L

/
�2

C 1

4p

X

jD1;2

X

K�2@M�
j;�

m�K�
	

� j;lmax
K� C puj;lmax

K�
�2

D
X

jD1;2

1

4p

0

@

X

L2@Mj;�

m�L

	

�.rDuj;0;n�L
/C puj;0L

�2

C
X

K�2@M�
j;�

m�K�
	

� j;0
K� C puj;0

K�
�2

1

C

A

:

This shows that the total energy stays bounded as the iteration l goes to infinity, and
hence the algorithm converges.

4 Numerical Experiments

We show results for Laplace’s equation on˝ D .�1; 1/2 with two subdomains x >
0 and x < 0. We first simulate in Fig. 3 the error equations, i.e. using homogeneous
data, and starting with a random initial guess. On the left, we show the p that worked
best as h is refined, both for a conforming square mesh (2i 	 2i squares on ˝j ,
j D 1; 2), and for a non-conforming square mesh (2i 	2i squares on˝1 and 3i 	3i
squares on ˝2). On the right, we show the number of iterations needed to get an
error reduction of 10�10. These experiments illustrate well our theoretical results.

We next show a case with exact solution u.x; y/ D cos.2:5�x/ cos.2:5�y/.
Starting with a random initial guess, Fig. 4 shows the convergence history of the
algorithms for various parametersp on the left, and snapshots of the error at iteration
10 on the right. We clearly see that for p too small, high frequencies dominate
the error, and for p large low frequencies. In the old algorithm, the theoretically
optimized choice p D 90:5, and in the new algorithm the theoretically optimized
choice p D 14:18 will work best in the long run. Finally, a priori knowledge of
the frequency content of the solution can be used to choose a p that gives very
rapid convergence early on in the iteration (here p D 5, good for low frequencies).
This choice becomes however very bad in the long run, once other error frequencies
become important.
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Fig. 3 Asymptotic behavior of the numerically optimized parameter p on the left, and number of
iterations to reduce the error by a factor of 10�10 on the right
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error at iteration 10, left column for the old version and p D 5; 15; 90:5, right column for the new
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A Time-Dependent Dirichlet-Neumann Method
for the Heat Equation

Bankim C. Mandal

1 Introduction

We introduce a new Waveform Relaxation (WR) method based on the Dirichlet-
Neumann algorithm and present convergence results for it in one space dimension.
To solve time-dependent problems in parallel, one can either discretize in time
to obtain a sequence of steady problems to which the domain decomposition
algorithms are applied, or apply WR to the large system of ordinary differential
equations (ODEs) obtained from spatial discretization. The credit of WR method
goes to Picard [12] and Lindelöf [8] for the solution of ODEs in the late 19th
century. Lelarasmee et al. [7] were the first to introduce the WR as a parallel
method for the solution of ODEs. The main advantage of the WR method is that
one can use different time steps in different space–time subdomains. The authors of
[4] and [6] then generalized WR methods for ODEs to solve time-dependent PDEs.
Gander and Stuart [4] showed linear convergence of overlapping Schwarz WR
iteration for the heat equation on unbounded time intervals with a rate depending
on the size of the overlap; Giladi and Keller [6] proved superlinear convergence
of the Schwarz WR method with overlap for the convection-diffusion equation on
bounded time intervals.

The Dirichlet-Neumann method, which belongs to the class of substructuring
methods, is based on a non-overlapping spatial domain decomposition. The iteration
involves subdomain solves with Dirichlet boundary conditions, followed by subdo-
main solves with Neumann boundary conditions. The Dirichlet-Neumann algorithm
was first considered for elliptic problems by Bjørstad and Widlund [1] and further
discussed in [2, 9, 10]. In this paper, we propose the Dirichlet-Neumann Waveform
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Relaxation (DNWR) method, a new Dirichlet-Neumann analogue of WR for the
time-dependent problems. For presentation purposes, we derive our results for two
subdomains in one spatial dimension. We discuss the method in the continuous
setting to ensure the understanding of the asymptotic behavior of the method in
the case of fine grids.

We consider the following initial boundary value problem (IBVP) for the heat
equation as our guiding example on a bounded domain˝ � R; 0 < t < T ,

@u
@t
D �uC f .x; t/; x 2 ˝; 0 < t < T;

u.x; 0/ D u0.x/; x 2 ˝;
u.x; t/ D g.x; t/; x 2 @˝; 0 < t < T:

(1)

2 The Dirichlet-Neumann Waveform Relaxation Algorithm

To define the Dirichlet-Neumann iterative method for the model problem (1) on the
domain .�b; a/ 	 .0; T /, we split the spatial domain ˝ D .�b; a/ into two non-
overlapping subdomains, the Dirichlet subdomain ˝1 D .�b; 0/ and the Neumann
subdomain ˝2 D .0; a/, for 0 < a; b < 1. The Dirichlet-Neumann Waveform
Relaxation algorithm consists of the following steps: given an initial guess h0.t/; t 2
.0; T / along the interface � D fx D 0g and for k D 0; 1; 2; : : :, do

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

@tu
kC1
1 � @xxukC11 Df .x; t/; x 2˝1;

ukC11 .x; 0/ D u0.x/; x 2˝1;

ukC11 .�b; t/ D g.�b; t/;
ukC11 .0; t/ D hk.t/;

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

@tu
kC1
2 � @xxukC12 Df .x; t/; x 2˝2;

ukC12 .x; 0/ D u0.x/; x 2˝2;

@xukC12 .0; t/ D @xukC11 .0; t/;

ukC12 .a; t/ D g.a; t/;
(2)

with the updating condition

hkC1.t/ D �ukC12 .0; t/C .1 � �/hk.t/; (3)

� being a positive relaxation parameter. The parameter � is chosen in .0; 1� to
accelerate convergence. As the main goal of the analysis is to study how the error
hk.t/�u.0; t/ converges to zero, by linearity it suffices to consider the homogeneous
problem, f .x; t/ D 0, g.x; t/ D 0, u0.x/ D 0 in (1), and examine how hk.t/ goes
to zero as k !1.

3 Convergence Analysis and Main Results

We analyze the DNWR algorithm using the Laplace transform method. The Laplace
transform of a function w.t/, defined for all real numbers t 2 Œ0;1/, is the function
Ow.s/, defined by
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Ow.s/ D L fw.t/g WD
Z 1

0

e�stw.t/ dt;

(if the integral exists) s being a complex variable. If L fw.t/g D Ow.s/, then the
inverse Laplace transform of Ow.s/ is denoted by

L �1 f Ow.s/g WD w.t/; t � 0;

which maps the Laplace transform of a function back to the original function. For
more information on Laplace transforms, see [3, 11]. We use hats to denote the
Laplace transform of a function in time in the rest of the paper.

3.1 Analysis by Laplace Transforms

Applying a Laplace transform in time to (2) and solving the resulting ODEs

yields the solutions: OukC11 .x; s/ D Ohk.s/
sinh.b

p
s/

sinh
˚

.x C b/ps� and OukC12 .x; s/ D
Ohk.s/ coth.b

p
s/

cosh.a
p
s/

sinhf.x � a/psg: Now, evaluating OukC12 .x; s/ at x D 0 and inserting

it into the transformed updating condition (3), we get for k D 0; 1; 2; : : : OhkC1.s/ D
˚

1 � � � � tanh.a
p
s/ coth.b

p
s/
� Ohk.s/: Therefore, by induction we get

Ohk.s/ D ˚1 � � � � tanh.a
p
s/ coth.b

p
s/
�k Oh0.s/; k D 1; 2; 3; : : : (4)

Theorem 1. For the symmetric case, a D b in (2)–(3), the DNWR algorithm
converges linearly for 0 < � < 1. Moreover, for � D 0:5, it converges to the
exact solution in two iterations, independent of the size of the time window.

Proof. For a D b, Eq. (4) reduces to Ohk.s/ D .1 � 2�/k Oh0.s/; which upon back
transforming gives hk.t/ D .1 � 2�/kh0.t/. Thus, the convergence is linear for
� ¤ 0:5. On the other hand, for � D 0:5, h1.t/ D 0. Therefore, one more iteration
produces the desired solution on the whole domain. ut

The main area of concern for the rest of the paper is the analysis of the DNWR
algorithm for a ¤ b. If we define

G.s/ WD tanh.a
p
s/ coth.b

p
s/� 1 D sinh..a � b/ps/

cosh.a
p
s/ sinh.b

p
s/
;

then the recurrence relation (4) reduces to

Ohk.s/ D
(

fq.�/� �G.s/gk Oh0.s/; � ¤ 1=2
.�1/k2�kGk.s/ Oh0.s/; � D 1=2; (5)
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where q.�/ D 1 � 2�: Note that for Re.s/ > 0; G.s/ is1 O.s�p/ for every positive
p. Therefore, by [3, p. 178], G.s/ is the Laplace transform of an analytic function
F1.t/ (in fact this is the motivation in defining G). In general, define Fk.t/ WD
L �1

˚

Gk.s/
�

for k D 1; 2; 3; : : :. For � not equal to 1=2, hk cannot be expressed
as a simple convolution of h0 and an analytic function; thus, different techniques
are required to analyze its behavior. This case will be treated in a future paper. For
� D 1=2 and t 2 .0; T / we get from (5)

ˇ

ˇhk.t/
ˇ

ˇ D
ˇ

ˇ

ˇ

ˇ

2�k
Z t

0

.�1/kh0.t � /Fk./d
ˇ

ˇ

ˇ

ˇ

� 2�k k h0 kL1.0;T /

Z T

0

ˇ

ˇ

ˇ

Fk./
ˇ

ˇ

ˇ

d:

(6)
So, we need to bound

R T

0

ˇ

ˇFk./
ˇ

ˇd to get an L1 convergence estimate. We
concentrate on showing that F1.t/ does not change signs both for the case b < a, in
which F1.t/ � 0, and for b � a, for which F1.t/ � 0. Before we proceed further
with the proof we need the following lemmas.

Lemma 1. Let, w.t/ be a continuous and L1-integrable function on .0;1/ with
w.t/ � 0 for all t � 0. Assume W.s/ D L fw.t/g. Then, for  > 0;

Z 

0

jw.t/jdt � lim
s!0CW.s/:

Proof. Using the definition of Laplace transform, we have

Z 

0

jw.t/jdt D
Z 

0

w.t/dt �
Z 1

0

w.t/dt

D
Z 1

0

lim
s!0Ce

�stw.t/dtD lim
s!0C

Z 1

0

e�stw.t/dt (by Dominated Conv. Theorem)

D lim
s!0CW.s/: ut

Lemma 2. Let ˇ > ˛ � 0 and s be a complex variable. Then, for t 2 .0;1/

'.t/ WD L �1
�

sinh.˛
p
s/

sinh.ˇ
p
s/

�

� 0 I  .t/ WD L �1
�

cosh.˛
p
s/

cosh.ˇ
p
s/

�

� 0:

Proof. First, let us consider the following IBVP for the heat equation on .0; ˇ/:
ut � uxx D 0; u.x; 0/ D 0; u.0; t/ D 0; u.ˇ; t/ D g.t/: Therefore, for g non-
negative, u.˛; t/ is also non-negative for all t > 0, thanks to the maximum principle.
Now using the Laplace transform method, we get the solution along x D ˛ as

1Assuming s D rei# , z D p
s, we can write for b � a,

ˇ

ˇspG.s/
ˇ

ˇ 	 ˇ

ˇ

sp

cosh.az/

ˇ

ˇ 	
2rp

jeap
r=2�e�a

p
r=2j ! 0, as r ! 1; and for a > b,

ˇ

ˇspG.s/
ˇ

ˇ 	 ˇ

ˇ

sp

sinh.bz/

ˇ

ˇ 	 2rp

jebp
r=2�e�b

p
r=2j ! 0,

as r !1.
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Ou.˛; s/ D Og.s/ sinh.˛
p
s/

sinh.ˇ
p
s/

H) u.˛; t/ D
Z t

0

g.t � /'./d:

We prove the result by contradiction: suppose '.t0/ < 0 for some t0 > 0. Then by
continuity of ', there exists ı > 0 such that './ < 0; for  2 .t0 � ı; t0 C ı/. Now
for t > t0 C ı, we choose g as

g.&/ D
(

1; & 2 .t � t0 � ı; t � t0 C ı/
0; else:

Then u.˛; t/ D R t0Cı
t0�ı g.t � /'./d D

R t0Cı
t0�ı './d < 0, a contradiction. This

proves ' to be non-negative. For  , applying the Laplace transform method to the
IBVP for the heat equation ut � uxx D 0; u.x; 0/ D 0; u.�ˇ; t/ D g.t/; u.ˇ; t/ D
g.t/ yields the solution along x D ˛ as: Ou.˛; s/ D Og.s/ cosh.˛

p
s/

cosh.ˇ
p
s/

. Thus, a similar
argument as in the first case proves that  is also non-negative. ut
Theorem 2 (Linear Convergence Bound for the Heat Equation). Let � D 1=2.
For T > 0, the error of the Dirichlet-Neumann Waveform Relaxation (DNWR)
algorithm satisfies

k hk kL1.0;T /�
� jb � aj

2b

�k

k h0 kL1.0;T / :

We therefore have a contraction if a < 3b:

Proof. By virtue of (6), it is sufficient to bound
R T

0

ˇ

ˇFk./
ˇ

ˇd for both b � a and
a > b, where Fk.t/ D L �1

˚

Gk.s/
�

. Suppose b � a > 0:We have L f�F1.t/g D
sinh..b�a/ps/

sinh.b
p
s/
� 1

cosh.a
p
s/
: So by Lemma 2 and the fact that the convolution of two

positive functions is positive, �F1.t/ is positive. Thus, by induction and with the
same arguments, .�1/kFk.t/ � 0 for all t . Therefore by Lemma 1

Z T

0

ˇ

ˇ.�1/kFk./
ˇ

ˇd � lim
s!0C.�1/

kGk.s/ D
�

b � a
b

�k

: (7)

Now let a > b > 0. We claim that F1.t/ is positive. If a � b � b, then we get the
positivity by Lemma 2. If this is not the case, then take the integer m D ba=bc so
that mb < a � .mC 1/b. Then, recursively applying the identity

sinh..a � jb/ps/
sinh.b

p
s/

D sinh..a � .jC1/b/ps/
sinh.b

p
s/

cosh.b
p
s/Ccosh..a�.jC1/b/ps/

for j D 1; : : : ; m � 1, we obtain
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sinh..a � b/ps/
cosh.a

p
s/ sinh.b

p
s/
D sinh..a �mb/ps/

sinh.b
p
s/

:
coshm�1.b

p
s/

cosh.a
p
s/

C
m�2
X

jD0

coshj .b
p
s/ cosh

�

.a � .j C 2/b/ps�

cosh.a
p
s/

:

Applying the binomial theorem to cosh � D �

e� C e�� � =2 we have the power-
reduction formula

coshn � D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

2
2n

n�1
2
X

lD0

�

n
l

�

cosh ..n � 2l/�/ ; n odd;

1
2n

�

n
n=2

�C 2
2n

n
2�1
X

lD0

�

n
l

�

cosh ..n � 2l/�/ ; n even;

so that we can write coshn � D
n
X

lD0
Anl cosh .l�/ with

n
X

lD0
Anl D 1 and Anl � 0.

Therefore, we have

G.s/ D sinh..a � b/ps/
cosh.a

p
s/ sinh.b

p
s/
D sinh..a �mb/ps/

sinh.b
p
s/

m�1
X

lD0
Am�1l

cosh.lb
p
s/

cosh.a
p
s/

C
m�2
X

jD0

j
X

lD0

A
j

l

2

(

cosh
�

.a � .j C l C 2/b/ps�

cosh.a
p
s/

C cosh
�

.a � .j � l C 2/b/ps�

cosh.a
p
s/

)

;

where coshj � D
j
X

lD0
A
j

l cosh .l�/. Note that a �mb � b, .j � l C 2/b � mb < a
and ja � .j C l C 2/bj < a for 0 � j; l � m � 2 and cosh is an even function.
Thus by Lemma 2, each term in the above expression is the Laplace transform of a
positive function. Hence F1.t/ is positive, and therefore the convolution of k F1’s

(i.e. Fk.t/) is also positive. We have lim
s!0CG.s/ D lim

s!0C
sinh..a�b/ps/

cosh.a
p
s/ sinh.b

p
s/
D a�b

b
;

and so by Lemma 1

Z T

0

ˇ

ˇFk./
ˇ

ˇd D
Z T

0

Fk./d � lim
s!0CG

k.s/ D
�

lim
s!0CG.s/

�k

D
�

a � b
b

�k

:

(8)
The result follows by inserting the estimates (7) and (8) into (6). ut
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Fig. 1 Convergence for various parameters: (a) short time window, (b) large time window

4 Numerical Experiments

We perform experiments to measure the actual convergence rate of the DNWR
algorithm for the problem

8

ˆ

ˆ

<

ˆ

ˆ

:

@u
@t
� @2u

@x2
D �e�t�x2 ; x 2 .�3; 2/;

u.x; 0/ D e�2x; x 2 .�3; 2/;
u.�3; t/ D e�2t D u.2; t/; t > 0:

To solve the equation using the Dirichlet-Neumann algorithm, we discretize the
Laplacian using centered finite differences in space and backward Euler in time on a
grid with�x D 2	10�2 and�t D 4	10�4. For the numerical experiments we split
the spatial domain into two non-overlapping subdomains Œ�3; 0� and Œ0; 2�, so that
b D 3 and a D 2 in (2)–(3). Thus this is the case when the Dirichlet subdomain is
bigger than the Neumann subdomain. The numerical results are similar for the case
when the Neumann domain is larger than the Dirichlet one. We test the algorithm by
choosing h0.t/ D t , t 2 .0; T � as an initial guess. Figure 1 gives the error reduction
curves for different values of the parameter � for T D 2 in .a/ and T D 200 in .b/.
Note that, for a small time window, we get linear convergence for all the parameters,
except for � D 0:5 which corresponds to superlinear convergence.
For a large time window, we always observe linear convergence. We now plot the
linear bound for the convergence rate in case of � D 1=2 as shown in Theorem 2.
The theorem provides a T -independent theoretical bound of the error for this special
relaxation parameter and this is also valid for large time windows. Eventually, a
more refined analysis will give a superlinear bound shown in (9)–(10), dependent on
T and the lengths of the subdomains (see [5]). Figure 2 gives a comparison between
the theoretical error for the continuous model problem (calculated using inverse
Laplace transforms), numerical error for the discretized problem, linear bound and
the superlinear bound for a D 2; b D 3 and various T ’s. We can observe that the
error curves seem to approach the linear bound as T increases.
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Fig. 2 Bounds for various times, b � a; in particular a < 3b. Left: T D 2, right: T D 200
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Fig. 3 Fk.t/; k D 1; 2; 3

5 Conclusions and Further Results

We proved convergence of the proposed DNWR algorithm in the symmetric case.
For unequal subdomain lengths and for a particular choice of relaxation parameter,
we presented a linear error estimate that is valid for both bounded and unbounded
time intervals. In fact, Fig. 2 suggests that the method converges superlinearly.

To prove this, one has to consider two different cases: Dirchlet subdomain bigger
than Neumann subdomain (b � a) and the other way around. Figure 3 shows Fk.t/
for k D 1; 2; 3; we see that the curves shift to the right and at the same time, the peak
decreases as k increases. So, if one only considers a small time window, the peak
will eventually exit the time window for k large enough and its contribution will be
vanishingly small in the expression (5). This is the intuitive idea to get superlinear
convergence for � D 1=2 in small time windows. A detailed analysis, which is
too long for this short paper, in [5] leads to the following superlinear convergence
estimates for the small time window .0; T /:

k hk kL1.0;T /�
�

b � a
b

�k

erfc

�

ka

2
p
T

�

k h0 kL1.0;T /; for b � a; (9)
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and

k h2k kL1.0;T /�
( p

2

1 � e� 2kC1
�

) 2k

e�k2=� k h0 kL1.0;T /; for b < a; (10)

where � D T=b2:We are also working on a generalization of the algorithm to higher
dimensions.
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Hierarchical Model (Hi-Mod) Reduction
in Non-rectilinear Domains

Simona Perotto

1 Introduction and Motivations

In [1,4] we have proposed an approach for the numerical modeling of second-order
elliptic problems exhibiting a dominant direction in their behaviour: the solution
of interest can be regarded as a main component aligned with the centerline of
the domain with the addition of local perturbations along the transverse directions.
Reference application is given, e.g., by advection-diffusion-reaction problems in
pipes (like drug transport in the circulatory system). The basic idea of the approach
is to perform a finite element discretization along the mainstream and a spectral
modal approximation for the transverse components. The rationale is that the
transverse components are reliably captured by few modes (usually < 10). In
addition, the number of modes can locally vary along the centerline to properly fit
the transverse behaviour of the solution. Thus we get an actual hierarchy of reduced
models: they are essentially locally-enriched 1D models and differ for the level of
detail in describing the transverse behaviour of the full problem. For this reason, we
defined this approach Hierarchical Model (Hi-Mod) reduction.

So far we have essentially applied the Hi-Mod approach to rectilinear domains
[1, 3, 4]. This implies significant simplifications in the computation of the reduced
model. Nevertheless, domains with a curved centerline are clearly of paramount
interest for practical applications. Aim of this paper is to perform a complete
development of the Hi-Mod reduction in a generic non-rectilinear domain.
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Fig. 1 Sketch of the main geometrical quantities involved in the Hi-Mod procedures (d D 3)

2 The Geometrical Setting

A Hi-Mod reduction procedure relies upon a specific shape of the computational
domain ˝ � IRd , with d D 2; 3. More precisely, we assume ˝ to coincide with
a d -dimensional fiber bundle, where we distinguish a supporting one-dimensional
curved domain˝1D (aligned with the mainstream), and a set of .d�1/-dimensional
transverse fibers � � IRd�1 (associated with the transverse components of the
solution). Following [1, 4], we map the current domain ˝ into a reference domain,
Ő D Ő 1D 	 O�d�1, with Ő 1D a straight line and O�d�1 a reference (transverse) fiber

of the same dimension as � . For this purpose, we introduce the map � W ˝ ! Ő
and we denote by z D .x; y/ 2 ˝ and Oz D . Ox; Oy/ 2 Ő a generic point in ˝ and
the corresponding point in Ő , respectively so that Oz D �.z/ D .�1.z/; �2.z//, with
Ox D �1.z/ and Oy D �2.z/. Likewise, we introduce the inverse map ˚ W Ő ! ˝ ,
defined as z D ˚.Oz/ D .˚1.Oz/; ˚2.Oz//, with x D ˚1.Oz/ and y D ˚2.Oz/ (see Fig. 1).
Without loss of generality, we assume˝1D to coincide with the centerline of˝ , and
analogously for Ő 1D . We assume that both � and ˚ are differentiable with respect
to z. Then, we define the Jacobian associated with the map �

I .z/ D @�

@z
D

2

6

4

@�1

@x
ry�1

@�2

@x
ry�2

3

7

5

2 IRd�d ; (1)

wherery is the gradient with respect to y. Notice that the first row in (1) accounts for
the centerline deformation and it is not trivially the first row of the identity matrix
as in the rectilinear case [4].

3 The Hi-Mod Reduction Procedure

Let us first introduce the model we aim at reducing, i.e., the so-called full problem.
In particular, we consider directly the weak formulation, given by

find u 2 V W a.u; v/ D F.v/ 8v 2 V; (2)
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with V a Hilbert space, a.�; �/ W V 	V ! IR a continuous and coercive bilinear form
and F.�/ W V ! IR a continuous linear functional. Since we deal with second-order
elliptic problems, we have V � H1.˝/.

The Hi-Mod reduction strongly relies upon the fiber structure of ˝ . The idea
is to tackle the dominant and transverse components of the solution in different
ways. In particular, with reference to Ő , we introduce a one-dimensional space V Ő1D
of functions compatible with the boundary conditions assigned along the extremal
faces of˝ , and a modal basis f'kgk2INC of functions orthonormal with respect to the
L2-scalar product on O�d�1 and taking into account the boundary conditions imposed
on the lateral faces of ˝ . A suitable combination of the space V Ő1D with the modal
basis allows us to introduce a so-called hierarchically reduced model. In particular,
in the following, we focus on two possible Hi-Mod reduction procedures proposed
in [1, 4] and here generalized to the non-rectilinear case.

3.1 Uniform Hi-Mod Reduction

The reduced space Vm characterizing a uniform Hi-Mod reduction essentially
coincides with the set of the linear combinations of the modal functions whose
coefficients belong to the one-dimensional space V Ő1D , i.e.,

Vm D
n

vm.z/ D
m
X

kD1
vk.�1.z//'k.�2.z//; with vk 2 V Ő1D

o

: (3)

The map � plays a crucial role since all the functions involved are defined on the
reference framework. Space Vm establishes an actual hierarchy of reduced models
marked by the modal index m, i.e., by the different level of detail in describing the
transverse behaviour of the full solution. The uniform Hi-Mod reduced formulation
for (2) reads: given a modal indexm 2 INC, find um 2 Vm, such that

a.um; vm/ D F.vm/ 8vm 2 Vm: (4)

To guarantee the well-posedness and the convergence of um to u, we
introduce a conformity (Vm � V;8m 2 INC) and a spectral approximability
(limm!C1.infvm2Vm kv � vmkV / D 0;8v 2 V ) assumptions on Vm [1, 4].

Let us detail now the uniform Hi-Mod reduction procedure on a specific differ-
ential problem. In particular, we select the full model (2) as a standard linear scalar
advection-diffusion-reaction (ADR) problem completed with full homogeneous
Dirichlet boundary conditions, so that V D H1

0 .˝/,

a.u; v/ D
Z

˝

�ru�rv d˝C
Z

˝

�

b�ruC�u
�

v d˝; F.v/ D
Z

˝

f v d˝; (5)
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and where the following choices are made for the problem data to ensure the well-
posedness of the weak form (2): f 2 L2.˝/, � 2 L1.˝/, with � � �0 > 0 a.e.
in ˝ , � 2 L1.˝/, b D .b1;b2/T 2 L1.˝/ 	 ŒL1.˝/�d�1, with r � b 2 L1.˝/
and such that � 1

2
r � bC � � 0 a.e. in ˝ .

Now we consider the reduced model (4); we replace um with the corresponding
modal representation um.z/ D Pm

jD1 uj .�1.z//'j .�2.z// and vm with the product

#.�1.z//'k.�2.z//, where #; uj 2 V Ő1D D H1
0 .
Ő
1D/ for j D 1; : : : ; m, to get

m
X

jD1

h

Z

˝

�.z/r�uj .�1.z// 'j .�2.z//
� � r�#.�1.z// 'k.�2.z//

�

d˝ (6)

C
Z

˝

b.z/ � r�uj .�1.z// 'j .�2.z//
�

#.�1.z// 'k.�2.z// d˝

C
Z

˝

�.z/uj .�1.z// 'j .�2.z//#.�1.z// 'k.�2.z// d˝
i

D
Z

˝

f .z/#.�1.z// 'k.�2.z// d˝;

wherer denotes the gradient with respect to z. The actual unknowns of the Hi-Mod
reduced formulation (4) are the modal coefficients uj 2 V Ő1D . We expand separately
the four integrals, by exploiting the gradient expansion

r.w.�1.z//'s.�2.z/// D

w0.�1.z//'s.�2.z//

2

4

@�1.z/
@x

ry�1.z/

3

5C w.�1.z//' 0s.�2.z//

2

4

@�2.z/
@x

ry�2.z/

3

5 ;

where w0.�1.z// D dw=d Oxj OxD�1.z/, ' 0s.�2.z// D d's=d OyjOyD�2.z/ and with w 2
V Ő1D . The idea is to rewrite each term on the reference domain by properly
exploiting the maps � , ˚ . Let us first consider the diffusive contribution in (6):

Z

Ő
�.˚.Oz//

nh	@�1.˚.Oz//
@x

�2 C �ry�1.˚.Oz//
�2
i

'j .Oy/'k.Oy/u0j . Ox/# 0. Ox/

C
h@�1.˚.Oz//

@x

@�2.˚.Oz//
@x

Cry�1.˚.Oz//ry�2.˚.Oz//
i

(7)




'j .Oy/' 0k.Oy/u0j . Ox/#. Ox/C ' 0j .Oy/'k.Oy/uj . Ox/# 0. Ox/
�

C
h	@�2.˚.Oz//

@x

�2 C �ry�2.˚.Oz//
�2
i

' 0j .Oy/' 0k.Oy/uj . Ox/#. Ox/
o

jI �1.˚.Oz//j d Ő ;

with I the Jacobian defined in (1). The convective term is changed into
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Z

Ő

n h

b1.˚.Oz//@�1.˚.Oz//
@x

C b2.˚.Oz//ry�1.˚.Oz//
i

'j .Oy/'k.Oy/u0j . Ox/#. Ox/
h

b1.˚.Oz//@�2.˚.Oz//
@x

C b2.˚.Oz//ry�2.˚.Oz//
i

' 0j .Oy/'k.Oy/uj . Ox/#. Ox/
o

jI �1.˚.Oz//j d Ő ; (8)

while, for the reactive term, we have

Z

Ő
�.˚.Oz//'j .Oy/'k.Oy/uj . Ox/#. Ox/jI �1.˚.Oz//j d Ő : (9)

Finally, for the source term in (6), we simply obtain

Z

Ő
f .˚.Oz//'k.Oy/#. Ox/jI �1.˚.Oz//j d Ő : (10)

From (7) we notice that the treatment of the diffusive term generates advective and
reactive contributions in the reduced setting. Similarly, the reduced convection term
(8) features also a reactive contribution. A straightforward combination of (7)–(10)
leads to the following Hi-Mod reduced formulation for the ADR problem defined
in (5): find uj 2 V Ő1D with j D 1; : : : ; m, such that, for any # 2 V Ő1D and k D
1; : : : ; m,

m
X

jD1

n

Z

Ő1D

h

Or 1;1kj . Ox/ u0j . Ox/ # 0. Ox/ C Or 1;0kj . Ox/ u0j . Ox/ #. Ox/ (11)

COr 0;1kj . Ox/ uj . Ox/ # 0. Ox/C Or 0;0kj . Ox/ uj . Ox/ #. Ox/
i

d Ox
o

D
Z

Ő1D

h

Z

O�d�1
f .˚.Oz//'k.Oy/jI �1.˚.Oz//j d Oy

i

#. Ox/ d Ox;

where

Or s;tkj . Ox/ D
Z

O�d�1
r s;tkj . Ox; Oy/ jI �1.˚.Oz//j d Oy; s; t D 0; 1; k D 1; : : : ; m; (12)

with

r
1;1
kj .Oz/ D �.˚.Oz// ˛1.Oz/ 'j .Oy/'k.Oy/; r

0;1
kj .Oz/ D �.˚.Oz// ı.Oz/ ' 0j .Oy/'k.Oy/;

r
1;0
kj .Oz/ D �.˚.Oz// ı.Oz/ 'j .Oy/' 0k.Oy/C ˇ1.Oz/ 'j .Oy/'k.Oy/; (13)

r
0;0
kj .Oz/ D �.˚.Oz// ˛2.Oz/' 0j .Oy/' 0k.Oy/C ˇ2.Oz/ ' 0j .Oy/'k.Oy/C �.˚.Oz// 'j .Oy/'k.Oy/;
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and

˛i .Oz/ D
	@�i .˚.Oz//

@x

�2 C �ry�i.˚.Oz//
�2

i D 1; 2;

ˇi .Oz/ D b1.˚.Oz//@�i.˚.Oz//
@x

C b2.˚.Oz// � ry�i.˚.Oz// i D 1; 2; (14)

ı.Oz/ D @�1.˚.Oz//
@x

@�2.˚.Oz//
@x

Cry�1.˚.Oz// � ry�2.˚.Oz//:

In the reduced model (11) the dependence of the solution on the dominant and on
the transverse directions is split. The Hi-Mod reduction procedure yields a special
one-dimensional model associated with the main curved stream, whose coefficients,
Or s;tkj , are properly enriched to include the effects of the transverse components. In
particular, the coefficients in (13) reduce to the ones in [1] for rectilinear domains,
where @�1=@x D 1 and ry�1 D 0. From a computational viewpoint, the solution to
(11) requires solving a system of m coupled one-dimensional problems instead of a
full d -dimensional problem. Following [1, 4], we discretize these 1D problems by
introducing a finite element discretization along Ő 1D, while preserving the modal
expansion in correspondence with the transverse directions. We are led to solve a
linear system with an m 	m block matrix, where each block is an Nh 	Nh matrix
with the sparsity pattern of the selected finite element space Xh, with dim.Xh/ D
Nh.

An appropriate choice of the modal index m in (3) is certainly a critical issue
of the uniform Hi-Mod reduction. In [4] a “trial and error” approach is suggested:
we move from the computationally cheapest choice m D 1 and then we gradually
increase such a value until the addition of the successive modal function does not
significantly improve the accuracy of the reduced solution. This strategy may be
sometimes speeded up, e.g., when a partial physical knowledge of the phenomenon
at hand is available, so that the initial guess can be properly calibrated.

3.2 Piecewise Hi-Mod Reduction

The uniform approach may become really uneffective when the meaningful trans-
verse components of the solution are strongly localized: a large number of modal
functions is employed on the whole ˝ , even though it would be strictly necessary
only where significant transverse components are present. This justifies the proposal
of a new formulation, where a different number of modes is employed in different
parts of˝: many modes where the transverse components are important, few modes
where these are less significant. The modal indexm becomes therefore a piecewise
constant vector: this justifies the name of this approach. In more detail, let us assume
to locate s subdomains˝i in˝ such that ˝ D [siD1˝i , with ˙i D ˝i \˝iC1 the
interface between ˝i and ˝iC1, and let f Ő igsiD1 be the corresponding partition on
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Ő , with Ȯ i D �.˙i/ D Ő i \ Ő iC1 (see Fig. 1). In particular, we employmi modal
functions on ˝i , for i D 1; : : : ; s. Following [2], the piecewise Hi-Mod reduced
formulation for (2) reads: given a modal multi-index m D fmigsiD1 2 ŒINC�s , find
um 2 V b

m, such that

a˝.um; vm/ D F˝.vm/ 8vm 2 V b
m; (15)

where a˝.um; vm/ D Ps
iD1 ai .umj˝i ; vmj˝i /, F˝.vm/ D Ps

iD1 Fi .vmj˝i / with
ai .�; �/ and Fi .�/ the restriction to ˝i of the bilinear and of the linear form in (2),
respectively. The reduced space in (15) is a subset of the broken Sobolev space
H1.˝;T˝/ associated with the partition T˝ D f˝igsiD1, and it is defined by

V b
m D

n

vm 2 L2.˝/ W vmj˝i .z/ D
mi
X

kD1
vik.�1.z// 'k.�2.z// 2 H1.˝i/

8iD1; : : : ; s;with vik2H1. Ő 1D; i / and s.t.,8k D 1; : : : ; mj

? withjD1; : : : ; s�1;
Z

O�d�1




vmj˝jC1
.˚. Ȯj // � vmj˝j .˚. Ȯj //

�

'k.Oy/ d Oy D 0
o

;

withmj

? D min.mj ;mjC1/ and Ő 1D; i D Ő 1D\ Ő i . The integral condition weakly
enforces the continuity of the solution in correspondence with the minimum number
of modes employed on the whole˝ . This does not guarantee a priori the conformity
of the reduced solution um (see Sect. 4.2.2 in [4] for more details). According to [2],
we resort to a relaxed iterative substructuring Dirichlet/Neumann method to impose
the weak continuity at the interfaces. From a computational viewpoint, at each
iteration of the Dirichlet/Neumann scheme, we apply a uniform Hi-Mod reduction
on each subdomain˝i , i.e., we solve s systems of coupled 1D problems which are
suitably approximated via a finite element discretization along Ő 1D , analogously
to the uniform case. The choice of the modal multi-index m in (15) is hereafter
based on an a priori approach, driven by some knowledge of the solution u. The
generalization of the approach proposed in [2] for rectilinear domains, where an a
posteriori modeling error estimator drives the automatic selection of both the ˝i ’s
and m is a possible follow up of this work.

4 Numerical Results

We numerically assess the two proposed Hi-Mod reduction procedures in a two-
dimensional setting. In particular, we use affine finite elements to discretize the
problem along Ő 1D , while employing sinusoidal functions to model the transverse
components. We evaluate the integrals of the sine functions via Gaussian quadrature
formulas, with, at least, four quadrature nodes per wavelength. Of course, different
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Fig. 2 Full solution and uniform Hi-Mod reduced solutions u3, u5 , u7 (top-bottom, left-right)

choices are possible for the modal basis (Legendre polynomials, wavelets, suitable
eigenfunctions).

We reduce the ADR problem defined in (5) on the annular region˝ between the
two concentric circles x2C y2 D 1 and x2 C y2 D 9. We select � D 1, the circular
clockwise advective field b D �

30 sin.atan2.y; x//;�30 cos.atan2.y; x//
�T

, with
�� � atan2.y; x/ � � , � D 30�C with �C D f.x; y/ 2 ˝ W x > 0g, and
the source term f D 1000�D localized in the small circular region D D f.x; y/ W
.xC2/2C.y�1/2 < 0:05g. Finally, full homogeneous Dirichlet boundary conditions
complete the problem. The choice of the data identifies a full solution characterized
by a peak inD; it is convected by the field b and damped by the reaction (see Fig. 2,
top-left).

Figure 2 gathers the reduced solutions provided by the uniform Hi-Mod reduction
for different choices of the modal index m and when a uniform finite element
discretization of size h D �=40 is employed on Ő 1D . Solution u3 clearly fails in
detecting the peak in D. At least seven modal functions are demanded to get a
reliable reduced model: the peak of u is well captured for this choice, while the
successive modes essentially do not improve the accuracy of um.

The most significant localization of the transverse components in the left part
of ˝ suggests us employing a higher number of modes in this part of the domain,
according to a piecewise Hi-Mod reduction. We split˝ into two subdomains via the
interface˙1 D f0g	.1; 3/; then we make two different choices for the modal multi-
index, m D f5; 1g and m D f7; 3g, while preserving the finite element partition of
the uniform approach. Concerning the domain decomposition algorithm, we set the
convergence tolerance for the relative error to 10�3 and the relaxation parameter to
0:5. Moreover, to guarantee the well-posedness of the ADR subproblems, we assign
the Dirichlet and the Neumann condition on the right- and on the left-hand side of
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Fig. 3 Piecewise Hi-Mod reduced solutions uf5;1g (left) and uf7;3g (right)

˙1, respectively. The algorithm converges after ten iterations for both choices of
m. Figure 3 shows the reduced solutions uf5;1g (left) and uf7;3g (right) at the last
iteration. As expected, uf7;3g provides a better approximation of the full solution; in
particular, by comparing the color maps, we can state that uf7;3g essentially coincides
with u7 in Fig. 2, bottom-right. Finally, according to [4], both uf5;1g and uf7;3g are
H1-conforming approximations: the model discontinuity across ˙1 is therefore
consequence of the truncation of the iterative domain decomposition algorithm.
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The Origins of the Alternating Schwarz Method

Martin J. Gander and Gerhard Wanner

1 Introduction

Schwarz methods are nowadays known as parallel solvers, and there are many
variants: alternating and parallel Schwarz methods at the continuous level, additive
and multiplicative Schwarz methods at the discrete level, also with restricted
variants, which in the additive case build the important bridge between discrete and
continuous Schwarz methods, see [4]. But where did these methods come from?
Why were they invented in the first place? We explain in this paper that Hermann
Amandus Schwarz invented the alternating Schwarz method in [18] to close an
important gap in the proof of the Riemann mapping theorem, which was based
on the Dirichlet principle. The Dirichlet principle itself addresses the important
question of existence and uniqueness of solutions of Laplace’s equation on a
bounded domain with Dirichlet boundary conditions, and in the nineteenth century,
this equation appeared independently in many different areas. It was therefore
of fundamental importance to put the Dirichlet principle on firm mathematical
grounds, and this is one of the major achievements of Schwarz.
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2 Laplace’s Equation

In his Principia in 1687, Newton presented among many results also his famous
inverse square law for celestial bodies [15, end of proof of Prop. XI]1:

see also [20] for a comprehensive treatment of the influence of Kepler
and Newton on numerical analysis. In modern notation, if we denote by f
the force between two celestial bodies, then f is proportional to 1

r2
, where

r WD p

.x � �/2 C .y � �/2 C .z� �/2, using the notation in Fig. 1. Writing
f D .f1; f2; f3/ component-wise, we obtain for the components

f1 � x � �
r3

; f2 � y � �
r3

; f1 � z� �
r3

:

This very elegant and simple law is at first only valid for point masses. Laplace then,
from 1785 onwards, was wondering how these forces look like if the body is not a
point, but a three dimensional irregular object occupying a domain V � R3. A clear
exposition of his ideas only appeared in his Mécanique Céleste from 1799, see [9].
He imagined that the body is composed of molecules, see the original reproduced in
Fig. 2. In that case, one would need to sum the contributions of all the infinitesimally
small body parts (“molecules”) making up the entire volume, and would thus obtain
for example for the first component of the force

f1 D
Z

V

�.�; �; �/
x � �
r3

d� d� d�; (1)

where � denotes the density of the body. The key idea of Laplace was now to
introduce the potential function

u D
Z Z Z

�.�; �; �/
1

r
d�d�d�: (2)

Taking a derivative with respect x, and using @
@x

1
r
D � x��

r3
, we obtain by comparing

with (1), after a similar computation for y and z,

f D �
�

@u

@x
;
@u

@y
;
@u

@z

�

: (3)

1The centripetal force is inverse to L � SP 2, it is inversely proportional to the squared distance
SP . Q.E.I.
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earth

sun
r

f (x y z)

Fig. 1 The sun and our planet earth, for which Newton’s inverse square law holds

Fig. 2 Generalization of Laplace of the inverse square law of Newton to the case of a spherical
body, arguing with molecules. Copied from the 1799 publication of Laplace’s Mécanique Céleste
[9, p. 136]

Differentiating once more, we obtain @
@x

x��
r3
D r3�3.x��/2r

r6
, and therefore, perform-

ing the same steps for y and z as well, that the potential function satisfies

�u D @2u

@x2
C @2u

@y2
C @2u

@z2
D 0; Laplace’s equation! (4)

This equation appeared already in Euler’s Principia motus fluidorum [2] (E258,
written 1752, published 1756) see Fig. 3, but Euler could not really use it. It
appeared again in the theory of heat transfer, published by Fourier [3] in 1822, see
Fig. 3. Fourier also argued with molecules, and Newton’s law of cooling, in order to
derive the equation.

Laplace’s equation turned out to be absolutely fundamental, it appeared again
in the theory of magnetism proposed by Gauss and Weber in Göttingen in
1839, in the theory of electric fields put forward by W. Thomson (the later Lord
Kelvin, published in the Liouville Journal from 1847 on pages 256 and 496), in
conformal maps (Gauss 1825), in the irrotational motion of fluids in two dimensions
(Helmholtz 1858), and finally in complex analysis, in particular in Riemann’s Ph.D.
Thesis in 1851, which is available in a modern typeset version in [17].
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Fig. 3 Laplace equation by Euler in 1752 (top left), by Laplace in 1799 (top right), by Fourier in
1822 (bottom left), and by Kelvin in 1847 (bottom right)

3 The Riemann Mapping Theorem

Riemann was a prodigy already in high-school, and his mathematical talent
impressed everybody:

Ein Lehrer, der Rektor Schmalfuss, lieh ihm Legendres Zahlentheorie (Théorie des
Nombres), ein schwieriges Werk von 859 Quartformat-Seiten, bekam sie aber schon eine
Woche später zurück und fand, als er Riemann im Abitur über dieses Werk weit über das
Übliche hinaus prüfte, dass Riemann sich dieses Buch vollständig zu eigen gemacht hatte.2

Riemann’s Ph.D. supervisor was Gauss, who rarely praised the work of other
mathematicians. We show the laudatio on Riemann’s thesis in the original hand-
writing of Gauss in Fig. 4.3 Riemann build in his thesis the foundation of analytic
function theory, and gave toward the end an example, which became the famous
Riemann Mapping theorem:

Zwei gegebene einfach zusammenhängende Flächen können stets so aufeinander bezogen
werden, dass jedem Punkte der einen ein mit ihm stetig fortrückender Punkt entspricht. . . ;4

Riemann also gave a constructive proof of this theorem. In modern notation, we
need to find an analytic function f which maps ˝ to the unit disk and one point
z0 2 ˝ into 0. We thus set f .z/ WD .z� z0/eg.z/, g D uC iv an analytic function to

2“A teacher, Professor Schmalfuss, lend him Legendre’s book on number theory, a very difficult
work of 859 pages in quarto format, and he got it back already after a week. When he tested
Riemann in his final high-school exam on this subject much more thoroughly than usual, he
realized that Riemann had completely mastered the content of the book.”
3The manuscript submitted by Riemann is a testament of the thorough and deep studies by the
author in the area to which the treated subject belongs; of an aspiring and truly mathematical
research spirit, and of a glorious, productive self-activity. The presentation is comprehensive and
concise, partly even elegant: the major part of the readers would however in some parts still wish
for more transparency and better arrangement. As a whole, it is a dignified valuable work, which
does not only satisfy the requirement one usually imposes on a manuscript to obtain a Ph.D. degree,
but goes very far beyond.

The mathematics exam I will do myself. I prefer Sunday or Friday, and in the afternoon at 5
or 5:30 pm. I would also be available in the morning at 11am. I assume that the exam will not be
before next week.
4Two simply connected surfaces can always be mapped one to the other, such that each point on
the former moves continuously with the point on the latter. . . .
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Fig. 4 Handwritten Laudatio of Gauss on Riemann’s Ph.D. thesis, copied from Remmert [16]

be determined, in order to ensure that z0 is the only point mapped into zero. In order
to arrive from the boundary @˝ on the boundary of the disk with the mapping, we
must have for all z 2 @˝ that jf .z/j D 1, which implies that

1 D jf .z/j D j.z � z0/e
uCivj D j.z � z0/jeu H) u.z/ D �logjz� z0j; 8z 2 @˝:

(5)

Since g is analytic, the real part u of g satisfies Laplace’s equation �u D 0 on ˝ ,
with boundary values given in (5). It thus suffices to solve for u, construct v using
the Cauchy-Riemann equations, and then the construction of f is complete.

Riemann’s Ph.D. thesis was very well received by the mathematical world of
that time, and widely studied. Among the first readers were also Weierstrass and
Helmholtz:

Weierstrass hatte die Riemannsche Dissertation zum Ferienstudium mitgenommen und
klagte, dass ihm, dem Funktionentheoretiker, die Riemannschen Methoden schwer ver-
ständlich seien. Helmholtz bat sich die Schrift aus und sagte beim nächsten Zusam-
mentreffen, ihm schienen die Riemannschen Gedankengänge völlig naturgemäss und
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selbstverständlich zu sein. (Funktionentheorie 1 von Reinhold Remmert, Georg Schu-
macher)5

Nevertheless, an important question remained: Riemann had used that a u sat-
isfying Laplace’s equation on an arbitrary domain with given boundary conditions
exists. But was this really true? When Riemann was challenged with this, he replied

Hierzu kann in vielen Fällen : : : ein Princip dienen, welches Dirichlet zur Lösung dieser
Aufgabe für eine der Laplace’schen Differentialgleichung genügende Function : : : in seinen
Vorlesungen : : : seit einer Reihe von Jahren zu geben pflegt. (Riemann 1857, Werke p. 97)6

The idea, which became known under the name of “Dirichlet principle”, is to
choose among all the functions defined on a given domain ˝ with the prescribed
boundary values the one that minimizes the integral

J.u/ D
ZZ

˝

1

2

	

u2x C u2y
�

dx dy which is always non-negative:

But is the Dirichlet principle correct for an arbitrary, non-negative functional?
Weierstrass gave in (1869, Werke 2, p. 49) a counter example: for the non-negative
functional

Z 1

�1
.x � y0/2 dx ! min y.�1/ D a; y.1/ D b;

the function y.x/ must have a small derivative when x is large, to make the
functional small. Hence the derivative can only be large when x is close to zero,
and the minimum is achieved for the step function, which is not differentiable at
x D 0. Weierstrass concludes

Die Dirichlet’sche Schlussweise führt also in dem betrachteten Falle offenbar zu einem
falschen Resultat.7

But Riemann only answered “. . . meine Existenztheoreme sind trotzdem richtig”8

and Helmholtz commented “Für uns Physiker bleibt das Dirichletsche Prinzip ein
Beweis”.9

5Weierstrass had taken Riemann’s PhD thesis as vacation reading, and complained that for a
function theorist like him, the methods of Riemann were hard to understand. Helmholtz then also
borrowed the thesis, and said on their next meeting, that for him, Riemann’s thoughts seemed to
be completely natural and self-evident.
6To this end, one can often invoke a principle for finding a function that solves Laplace’s equation,
which Dirichlet has been using in his lectures over the past few years.
7Dirichlet’s reasoning apparently leads to an incorrect result in this case [8].
8. . . my existence theorems nevertheless hold [8].
9For us physicists the Dirichlet principle remains a proof [8].



The Origins of the Alternating Schwarz Method 493

4 The Schwarz Alternating Method

The entire mathematical world stood now in front of a big challenge, namely to
show rigorously that for an arbitrary domain ˝ , Laplace’s equation �u D 0 with
prescribed boundary conditions u D g on @˝ has a unique solution. For special
domains, the answer had been known for quite some time: Poisson (1815) had
found the solution formula for circular domains, and Fourier (1807) for rectangular
domains using Fourier series. But the existence of solutions of Laplace’s equation
on arbitrary domains appeared hopeless!

It is at this moment, where Schwarz invented the first ever domain decomposition
method [18]. His paper starts with the paragraph10

Schwarz then invents the famous alternating Schwarz method to prove existence
and uniqueness of the solution of Laplace’s equation on a domain composed of a
disk and a rectangle, as shown from the original publication in Fig. 5 on the left. His
alternating method is given by

�un1 D 0 in T1, �un2 D 0 in T2,
un1 D g on L0, un2 D g on L3,
un1 D un�12 on L2, un2 D un1 on L1.

(6)

Since the method only uses solutions of Laplace’s equation on the disk and the
rectangle, for which the proof of the Dirichlet principle did not pose any difficulties,
the method is well defined. Schwarz then proved the convergence of his method
to a limit that satisfies Laplace’s equation as well in the composed domain.
Adding other circles or rectangles Schwarz then proved recursively the Dirichlet
principle for more and more complicated domains. This closed the gap in Riemann’s
proof.

Schwarz also gave an analogy of his alternating method with a physical device,
as indicated on the right in Fig. 5: a vacuum pump with two cylinders. In order to

10The method of conclusion, which became known under the name Dirichlet Principle, and
which in a certain sense has to be considered to be the foundation of the theory of analytic
functions developed by Riemann, is subject to, like it is generally admitted now, very well justified
objections, whose complete removal has eluded all efforts of mathematicians to the best of my
knowledge.
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Fig. 5 Original drawing of Schwarz from 1870 on the left to explain his alternating method, and
his physical interpretation of the method using a two level vacuum pump on the right

create a vacuum in the inner chamber, one has to alternatingly pump with the two
cylinders, similar to the subdomain solves in the alternating method.

5 The Schwarz Method as a Computational Tool

At the beginning of the twentieth century, Hilbert (see [6,7]) finally managed, after a
hard struggle, to establish a theory for direct methods of variational calculus, which
later led to the Ritz-Galerkin method (see e.g. [5]). The Schwarz method thus lost
completely its importance as a theoretical tool. Curiously, some other decades later,
its importance for practical computations was discovered: in 1965, Miller states
[14]:

Schwarz’s method presents some intriguing possibilities for numerical methods. Firstly,
quite simple explicit solutions by classical methods are often known for simple regions
such as rectangles or circles. Also, better numerical solutions, from the standpoint of
the computational work involved, are often known for certain types of regions than for
others. By Schwarz’s method, we may be able to extend these classical results and these
computational advantages to more complicated regions.

Fundamental early contributions to the theory were by Sobolev [19], who
gave a variational convergence proof for the case of elasticity, Mikhlin [13],
with a variational proof for convergence for general elliptic operators, and then
the sequence of publications by Lions [10–12]. The complete breakthrough as a
computational method came with the introduction of the two level additive Schwarz
method [1].
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Solving Large Systems on HECToR Using
the 2-Lagrange Multiplier Methods

Anastasios Karangelis, Sébastien Loisel, and Chris Maynard

1 Introduction

We consider the model problem,

��Qu D Qf in ˝ and Qu D 0 on @˝: (1)

In order to solve the problem numerically we discretize it by some suitable
method1 and as a result we get the system,

Au D f; (2)

where A is a large symmetric and positive definite sparse matrix, f is the load
vector and u is the desired discrete solution of our problem. Note that we use the
notation Qu D Qu.x/ for the solution Qu 2 H1

0 .˝/ and u for corresponding finite
element coefficient vector.

We decompose our square model domain ˝ into nonoverlapping rectangular
subdomains˝1; : : : ;˝p and we define the artificial interface� D ˝\.Sp

iD1 @˝i /,

1In general this could be by finite elements or finite differences.
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such that ˝ D � [ �Sp

kD1 ˝k

�

with disjoint unions. Although our numerical
experiments are on a square, the analysis in [3, 5] applies to more general “shape-
regular” domain decompositions and grids such as described in [8].

The local Robin subproblems are,

8

<

:

��Quk D Qf in ˝k;

Quk D 0 on @˝k \ @˝;
.aCD�/Quk D Q�k on @˝k \ � I

(3)

where a > 0 is the Robin parameter, k D 1; : : : ; p and D� denotes the directional
derivative in the direction of the unit outwards normal vector � of @˝ , and Q�k is the
Robin data imposed on the “artificial interface” @˝k \ � .

We now discretize system (3) using the finite element method. This leads to linear
systems of the form,

"

AIIk AI� k

A� Ik A� � k C aI

#"

uIk

u� k

#

D
"

fIk

f� k

#

C
"

0

�k

#

: (4)

Here, the subscript I denotes nodes that are Interior to ˝k , while the subscript �
denotes nodes on � \ @˝k ; this notation is consistent with existing literature, see
[5, 8]. Using a Schur complement, we eliminate the interior nodes of Eq. (4) to get
the equivalent system,

.S C aI/uG D g C �; (5)

where S D diagfS1; : : : ; Spg with symmetric and semidefinite Schur complements
Sk D A� � k � A�IkA�1IIkAI� k I the column vector uG D ŒuT�1; : : : ; u

T
�p�

T is the
multi-valued trace (with one value per interface vertex per adjacent subdomain),
the Robin data are � D Œ�T1 ; : : : ; �

T
p �
T and the “accumulated fluxes” are gk D

f� k �A� IkA
�1
IIk fIk.

We define the scaled “Robin-to-Dirichlet” map Q D diagfQ1; : : : ;Qpg, where
Qk D a.Sk C aIk/�1 and (5) can be rewritten as,

auG D Q.gC �/: (6)

The multi-valued trace uG can be interpreted as the multi-valued trace of a finite
element function Qu.x/ which has jump discontinuities along � . For each vertex
xj 2 � on the interface, we define mj to be the number of subdomains adjacent
to xj . A vertex with mj D 2 is called a regular interface point while a vertex with
mj > 2 is called a cross point. The solution of (1) is continuous and so we must
impose continuity on Qu.x/ (or equivalently, on its finite element trace vector uG).
To that end, we defineK to be the orthogonal projection matrix which averages the
function values for each interface vertex xj ; note that the range of K is precisely
the space of continuous many-sided traces. Hence, uG is continuous if and only if,
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KuG D uG: (7)

Additionally we require the “fluxes” to match which is equivalent to

K.SuG/ D Kg: (8)

1.1 Obtaining the S2LM and 2LM Systems

From (5) and (7) we get that,

KQ.�C g/ D Q.�C g/; (9)

and from (8) we get,

K.g C � �Q.gC �// D Kg: (10)

We add (9) and (10) to get the symmetric 2-Lagrange multiplier system
(S2LM),

.Q �K/� D �Qg: (11)

Multiplying both sides of (11) on the left by .I � 2K/, we get the corresponding
nonsymmetric 2-Lagrange system (2LM),

.I � 2K/.Q �K/� D �.I � 2K/Qg: (12)

We now briefly summarize some known results about the 2-Lagrange methods
and refer to [3–5] for details.

Theorem 1. We define E to be the orthogonal projection onto the kernel of S .
Assume that kEKk < 1. Then (11) is equivalent to (2).

Theorem 2 ([4]). The nonsymmetric 2-Lagrange system, .I � 2K/.Q �K/ is an
Optimised Schwarz Method (at least for two subdomains).

The 2-Lagrange multiplier methods also have a coarse grid preconditioner,

P D I � EKE; (13)

leading to the 2-level methods,

P�1.Q �K/� D �P�1Qg; (14)

P�1.I � 2K/.Q �K/� D �P�1.I � 2K/Qg: (15)



500 A. Karangelis et al.

Theorem 3. The optimized Robin parameter a D psminsmax, where smin and smax

are the extremal eigenvalues of S. Moreover,
The condition number for the 1-level methods is O.h�1=2H�3=2/
The condition number for the 2-level methods is O.H=h/1=2.

2 Implementation of Symmetric and Nonsymmetric
2-Lagrange Multiplier and Large Scale Experiments
on HECToR

The numerical experiments were run on HECToR, a Cray XE6 with 2,816 compute
nodes each comprising of two 16-core AMD Opeteron Interlagos processors. Each
of the 16-core socket is coupled with a Cray Gemini routing and communications
chip.

2.1 Implementation

We have implemented the symmetric and nonsymmetric 2LM methods in C using
the PETSc library [1]. We implemented three matrices K , Q and the coarse grid
preconditioner P . The matrices P ,Q are implemented as PETSc shell matrices
while the K matrix is assembled into a seqaij matrix. In other words, the
matrixK is assembled into PETSc’s parallel compressed row storage sparse matrix
format, while the matrices P and Q are not assembled but instead a matrix-
vector multiplication routine is provided to PETSc. The matrices P and Q are not
assembled because they are not sparse.

We use a PETSc parallel Krylov space solver on (14) or (15) as an “outer
iteration”. Each step of the outer iteration requires multiplying a given vector by the
matricesP;Q;K . The matrix-vector productK� is a straightforward sparse matrix-
dense vector product. The matrix-vector product Q� requires solving subdomain
problems as per (4). These subdomain problems can in principle become large.
Thus, (4) is solved using a PETSc sequential Krylov space solver (i.e. a single-
processor solver) on (4); this is an “inner iteration” which occurs at each step of the
outer iteration. Hence the overall algorithm has an inner-outer iteration structure.
In our test implementation, we use a finite difference implementation with a square
domain and rectangular subdomains, with one domain assigned per MPI task with
affinity to a single core.

2.1.1 The Matrix K

The solution � to the linear systems, (11) or (12) is a multi-valued trace, with one
function value per artificial interface point per subdomain. In PETSc, the rows of �
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are distributed such that the indices of the same domain are assigned to a single
processor,

� D

2

6

6

6

4

�1

�2
:::

�p

3

7

7

7

5

:

Each entry in � corresponds to an artificial interface grid point. When two or more
subdomains are adjacent, then some entries of � correspond to the same artificial
interface point.

Each processor lists the physical grid points on its artificial interface; this
information is shared with neighboring subdomains using MPI explicitly. When
solving subdomain problems, we work with small-dimensional local vectors. The
Robin data �j on subdomain ˝j has length n�j ; we write �j D .�

.j /
i /

n�j
iD1.

Mapping from the “local index” i to a “global offset” is achieved with the function
Fj .i/ D i C P

k<j n� k . The size of the matrix K is
Pp

kD1 n� k . Given this
information, each processor is able to assemble its own rows of K .

2.1.2 The Matrix Q

We begin by showing that the matrix-vector product �k 7! Qk�k can be computed
by solving a local sparse problem. Setting f D 0 (and hence g D 0) in (4) and (5)
shows that Qk�k D au� k , where u� k is defined by,

"

AIIk AI� k

A� Ik A� � k C aI

#"

uIk

u� k

#

D
"

0

�k

#

: (16)

Thus, in order to calculate the matrix-vector productQ�, each processor solves the
Robin local problem (16) and outputsQk�k D au� k .

The local problem (16) can in principle be solved using e.g. a Cholesky
decomposition. However, we found that using a Cholesky decomposition leads to
large amounts of fill-in and poor performance. Thus, we solve the local problem (16)
using the Conjugate Gradient method with relative convergence tolerance 1e-10
and absolute convergence tolerance 1e-9. For the local problem (16), we use
the incomplete Cholesky ICC(`) preconditioner [2]. The incomplete Cholesky
preconditioner is a compromise between higher fill-in (leading in the limit to a
direct solver) and lower fill-in (leading in the limit to a diagonal preconditioner). We
found that a “factor level” ` D 10 gives better overall performance for our problem
sizes.
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2.1.3 The Preconditioner P

The coarse grid preconditioner matrix P defined in (13) is in principle an enor-
mous parallel matrix. Nevertheless, we will describe an efficient way to compute
the matrix-vector product � 7! P�1� efficiently on a single processor (with
some global communication). For j D 1; : : : ; p we denote n�j the number of
vertices on the artificial interface @˝j \ � and we define the matrix J WD
diag. 1p

n�1
1n�1 ; : : : ;

1p
n�p

1n�p / where 1j denotes the j th dimensional column

vector of ones. The columns of J span the “coarse space” of piecewise constant
functions, which are constant on each local artificial interface �k D @˝k \ � . The
coarse space for the preconditioner (13) is the kernel of S , which is contained in the
column span of J . Thus, we define E WD JJT and,

P�1 WD .I � EKE/�1 D I � JJT � J.
L

‚ …„ ƒ

J T KJ � I /�1J T :

Note that although P�1 is dense, we can compute � 7! P�1� efficiently, in a
matrix-free way, via the formula P�1� D � � J.J T �/� J.L�1.J T �//:

Given the assembled parallel sparse matrix J and its transpose J T and the
assembled (sparse) local matrix L, the algorithm for computing the matrix-vector
product � 7! P�1� in a matrix-free way is as follows:

(i) Given �, compute the p-dimensional “coarse” vector �c D J T � and collect
its entries on a single processor as a sequential vector.

(ii) Define uc by solving the local, sparse linear problem Luc D �c .
(iii) Output P�1� D � � J�c � Juc: Note that multiplication by J involves

broadcasting the small local vectors �c and uc to large parallel vectors J�c
and Juc .

2.1.4 The Outer Solve

The implementations of the shell matrices P and Q and the assembly of the
sparse matrix K have been described. Building on these base implementations,
we further form the shell matrices � 7! .Q � K/� (implemented as QminKmul)
and � 7! .I � 2K/.Q �K/� (implemented as Imin2KQminKmul). The PETSc
library enables us to use a variety of different solvers. For the outer iteration we
experimented with the Generalized Minimal Residual KSPGMRES and the Flexible
Generalised Minimal Residual method KSPFGMRES on shell matrices QminKmul
and Imin2KmulQminK, with the preconditioner P . For the KSPFGMRES solver
we set the relative convergence tolerance 1e � 7 and the absolute convergence
tolerance 1e � 6.

Recall that GMRES is an iterative method that computes the approximate
solution xk 2 x0 C spanfr0;Ar0; : : : Akr0g which minimizes the residual norm
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Table 1 Iteration counts
for S2LM

Domain size
# Procs. 1002 3002 10002 30002

64 216 409 952 2,472
256 173 316 782 1,753

1,024 144 220 411 1,090
4,096 – – 301 665

Table 2 Iteration counts
for 2LM

Domain size
# Procs. 1002 3002 10002 30002 100002

64 30 58 114 229 –
256 37 35 72 135 –

1,024 47 44 42 76 –
4,096 – – 53 50 82

kb � Axkk2. The efficient implementation of the least-squares problem relies on
the identity

AVk D VkC1 QHk; (17)

where Vk is an orthonormal basis of the Krylov space and QHk is an upper Hessenberg
matrix; cf. [7] for details. The Flexible GMRES algorithm [6] replaces (17) by,

AZm D VkC1 QHk; (18)

and allows one to vary the preconditioner at each iteration, which required testing
since our matrix-vector products are inexact.

2.1.5 Experiments at Large Scale

Results for the iteration counts of the S2LM and 2LM methods are presented. In
both cases the Flexible GMRES algorithm for the outer solver and the Conjugate
Gradient algorithm for the inner solver were used. The preconditioner for the outer
solve is the shell matrix P , while the preconditioner for the inner solve is the
incomplete Cholesky ICC(10) of (16). The other parameters for the solvers have
been specified in Sects. 2.1.2 and 2.1.4.

The implementation used here is limited to a square domain in two dimensions
using a finite difference discretization. This choice was made entirely for the
simplicity of implementation. The domains vary from 1002 to 100002 grid points
(and hence the largest problem has 108 degrees of freedom). These domains are
partitioned into 64–4,096 subdomains, which again is limited to a square number.
This domain decomposition is mapped to the MPI decomposition on HECToR.

The symmetric (11) and nonsymmetric systems (12) are solved, with tolerances
as in Sect. 2.1.4; the outer iteration counts are reported in Tables 1 and 2. The



504 A. Karangelis et al.

10
0

10
1

10
2

10
3

10
2

10
3

H/h

Ite
ra

tio
ns

 

 

S2LM

O(H/h)1/2

Fig. 1 Scaling of S2LM

10
0

10
1

10
2

10
3

10
2

H/h

Ite
ra

tio
ns

 

 

2LM

O(H/h)1/3

O(H/h)1/2

Fig. 2 Scaling of 2LM

computational cost per outer iteration for a fixed domain and subdomain is constant.
The inner iterations are not reported as the ICC preconditioner is used for simplicity
rather than the optimal multigrid which would be used as first choice in a production
implementation. In addition to these raw iteration counts, we also plot the scaling
of the methods against the ratio H=h in Figs. 1 and 2.

The S2LM performance is well explained by the condition number estimate of
Theorem 3. Indeed, the S2LM matrix is symmetric and indefinite and for such
systems, one can show that the number of iterations is bounded by a quantity
proportional to the condition number. This bound is only sharp when the spectrum of
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the matrix is perfectly symmetric about the origin. We find that some of our smaller
systems perform slightly better than this theoretical estimate.

The 2LM performance appears to be between O.H=h/1=3 and O.H=h/1=2. The
2LM matrix is nonsymmetric. For nonsymmetric matrices, the condition number
does not necessarily predict the performance of the GMRES algorithm. However,
in our case, we find that the condition number explains well the performance of the
algorithm and that we further get “Krylov acceleration”—the performance may be
almost as good as O.H=h/1=3.

3 Conclusions

We have provided a large-scale implementation of the 2-Lagrange multiplier
methods with cross points and a coarse grid correction, which we have tested on
the HECToR supercomputer. Our experiments confirm the good scaling properties
of the 2-Lagrange multiplier methods. In the future, we intend to improve our
implementation to further explore the scaling to the largest systems.
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Coupled Finite and Boundary Element Methods
for Vibro-Acoustic Interface Problems

Arno Kimeswenger, Olaf Steinbach, and Gerhard Unger

1 Vibro-Acoustic Interface Problem

As a vibro-acoustic interface model problem we consider a three-dimensional
elastic body, e.g., a submarine, which is completely immersed in a full space
acoustic region, e.g., water [5]. Other applications that we have in mind are the
sound radiation of passenger car bodies, where the acoustic region is bounded,
or of partially immersed bodies such as ships, where the acoustic region is a half
space [2].

In this paper, we consider both a direct simulation of the interface problem by
using a symmetric coupled finite and boundary element approach, and an eigenvalue
analysis to determine the eigenmodes of the coupled system. The time-harmonic
vibrating structure in ˝s is modeled by the Navier equations in the frequency
domain, while the acoustic fluid in the unbounded exterior domain˝f is described
by the Helmholtz equation,

� %s!2u � ��u � .�C �/grad div u D f in ˝s; 	2p C�p D 0 in ˝f : (1)

In (1), � and � are the Lamé parameters, %s and %f are the densities of the structure
and of the acoustic fluid, respectively, ! is the frequency, and 	 D !=c 2 R is
the wave number. Note that ˝s � R3 is in general a bounded, multiple connected
domain with an interior boundary �I D � D[� N , �D\�N D ;, see Fig. 1, where
boundary conditions of Dirichlet and Neumann type are given,

u D gD on �D; T u WD �.div u/ nC 2� @

@n
uC �n 	 curl u D gN on �N : (2)
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Fig. 1 Computational
domain and boundary
conditions

In addition to the partial differential equations (1) and the boundary conditions (2)
we consider transmission conditions on � D ˝s \˝f ,

T uC pn D 0; %f !
2u � n D n � rp on �: (3)

Finally, p has to satisfy a radiation condition at infinity,

lim
r!1

Z

jxjDr

ˇ

ˇ

ˇ

ˇ

@

@nx
p.x/ � i	p.x/

ˇ

ˇ

ˇ

ˇ

2

dsx D 0: (4)

For complex wave numbers 	 2 C with Im.	/ < 0, instead of (4) one has to use
a radiation condition in terms of spherical Hankel functions in order to describe
outgoing waves, see [11].

The aim of this paper is to derive and to discuss a symmetric coupled finite and
boundary element formulation which is stable for almost all frequencies! 2 R, and
to characterize all eigenfrequencies ! 2 C which imply non-trivial solutions of the
homogeneous transmission problem (1)–(4), i.e. for f D 0, gD D 0, gN D 0. In fact,
in this case only one of the three following situations may appear [8]:

(i) A real eigenfrequency ! 2 R implies p D 0, and any non-trivial solution u is
a so-called Jones mode satisfying T u D 0 and u � n D 0 on � [6].

(ii) A complex value ! 2 C with Im.!/ > 0 implies u D 0 and p D 0.
(iii) If ! 2 CnR is an eigenfrequency, then Im.!/ < 0.

In the low frequency regime one may consider an approximation of the Helmholtz
equation in (1) by the Laplace equation, for related coupled finite and boundary
element formulations, see [9].

2 Coupled Finite and Boundary Element Methods

The symmetric coupling [4] of finite and boundary elements for the transmission
boundary value problem (1)–(4) relies on the standard variational formulation of the
Navier equations in˝s , and the use of the exterior Calderon projection of boundary
integral equations [12] to describe the solution of the Helmholtz equation in ˝f .
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The resulting variational formulation is to find u 2 ŒH1.˝s/�
3, u D gD on �D , such

that

Z

˝s

h

2� e.u/ W e.v/C � div u div v
i

dx � %s!2
Z

˝s

u � v dx (5)

�%f !2hV	Œu � n�; v � ni� C h. 1
2
I CK	/p; v � ni� D

Z

˝s

f � v dx C
Z

�N

gN � v dsx

is satisfied for all v 2 ŒH1.˝s/�
3, v D 0 on �D , where p 2 H1=2.� / is a solution

of the hypersingular boundary integral equation

1

%f !2
D	p C .1

2
I CK 0	/Œu � n� D 0 on �: (6)

The boundary integral operators are defined as, for x 2 � ,

.V	q/.x/ D
Z

�
U �	 .x; y/q.y/dsy; .K	p/.x/ D

Z

�

@

@ny
U �	 .x; y/p.y/dsy;

.K0	q/.x/ D
Z

�

@

@nx
U �	 .x; y/q.y/dsy; .D	p/.x/ D �

@

@nx

Z

�

@

@ny
U �	 .x; y/p.y/dsy;

where the Helmholtz fundamental solution is

U �	 .x; y/ D
1

4�

ei	jx�yj

jx � yj for x; y 2 R3:

For the mapping properties of all boundary integral operators, see, for example,
[12]. In particular, the hypersingular integral operatorD	 W H1=2.� /! H�1=2.� /
is coercive and injective, if 	2 is not an eigenvalue of the related interior Neumann
eigenvalue problem of the Laplace operator in R3n˝f . However, since we are using
a direct approach we find . 1

2
I CK 0	/Œu � n� 2 ImD	 even in the case when 	2 is an

eigenvalue of the interior Neumann eigenvalue problem with a related eigensolution
p	2j� 2 H1=2.� / [13], i.e.

��p	2 D 	2p	2 in R3n˝f ;
@

@n
p	2 D 0 on �:

The general solution of the hypersingular boundary integral equation (6) is then
given by

p D �%f !2D�1	 .
1

2
I CK 0	/Œu � n�C ˛p	2 ; (7)
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whereD�1	 has to be understood as a pseudoinverse. Note that ˛ 2 R is an arbitrary
constant. However, when inserting the solution p as given in (7) into the variational
formulation (5), we have to evaluate

.
1

2
I CK	/p D �%f !2.1

2
I CK	/D

�1
	 .

1

2
I CK 0	/Œu � n�C ˛.

1

2
I CK	/p	2

D �%f !2.1
2
I CK	/D

�1
	 .

1

2
I CK 0	/Œu � n�

due to kerD	 D ker . 1
2
I CK	/. In fact, the Poincaré–Steklov operator

T	 WD V	 C .1
2
I CK	/D

�1
	 .

1

2
I CK 0	/ W H�1=2.� /! H1=2.� /

is well defined for all frequencies !. Hence we conclude the variational problem to
find u 2 ŒH1.˝s/�

3, u D gD on �D , such that

Z

˝s

h

2� e.u/ W e.v/C � div u div v
i

dx (8)

�!2
�

%s

Z

˝s

u � v dx C %f hT	Œu � n�; v � ni�
�

D
Z

˝s

f � v dx C
Z

�N

gN � v dsx

is satisfied for all v 2 ŒH1.˝s/�
3, v D 0 on �D. Since the bilinear form which

is related to the variational formulation (8) is coercive, injectivity ensures unique
solvability of the variational problem (8), see also [8].

Theorem 1. Assume that! 2 R is not a Jones frequency. Then there exists a unique
solution u of the variational problem (8).

Remark 1. Although boundary value problems of the exterior Helmholtz equation
are unique solvable, related boundary integral equations may suffer from spurious
modes which correspond to solutions of related interior eigenvalue problems for
the Laplacian. Formulations which are stable for all frequencies, are usually based
on complex linear combinations of different boundary integral operators, see, e.g.,
[2, 8]. However, when using a direct boundary integral approach as presented here,
this also leads to a stable formulation, see [13] for a further discussion.

In what follows we consider a frequency ! 2 R which is not a Jones mode. If the
displacement field u is known as the unique solution of the variational problem (8),
we may use the boundary integral equation (6) to determine the pressure p. In
the case when 	2 is an eigenvalue of the interior Neumann eigenvalue problem,
the solution p as given in (7) is not unique. However, using the transmission
conditions (3) we find

p D �T u � n; (9)
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in fact .u; p/ is the unique solution of the coupled variational formulation (5). The
representation (9) can be used to modify the boundary integral equation (6) to obtain
a formulation which admits a unique solution p for all frequencies, for example we
may consider the boundary integral equation

h 1

%f !2
D	 C i� QD0

i

p C .1
2
I CK 0	/Œu � n�C i� QD0.T u � n/ D 0 on �;

where QD0 is the stabilized hypersingular boundary integral operator of the Laplacian
[12], and � 2 R is some parameter to be chosen. For simplicity of the presentation
we only consider the discretization of the variational formulation (8) by using
piecewise linear finite elements which are defined with respect to some admissible
triangulation of ˝s , and by using piecewise linear boundary elements on � . This
leads to the linear system

0

@

KFEM
h � !2Œ%sM FEM

h C %f N>h V BEM
h Nh� N

>
h .

1
2
M BEM
h CKBEM

h /

. 1
2
M

BEM;>
h CK 0hBEM/Nh

1
!2%f

DBEM
h

1

A

 

u

p

!

D
 

f

0

!

:

Here,KFEM
h andM FEM

h are the finite element stiffness and mass matrices, respectively,
and V BEM

h , M BEM
h , KBEM

h , and DBEM
h are the Galerkin boundary element matrices, see,

e.g., [10], and Nh corresponds to the application of the normal component, u � n.
From the standard theory, e.g., [12], we expect a second order of convergence when
measuring the error ku�uhkL2.˝s/. Although the pressure p on the boundary� may
not be unique, the computation of the pressure p in ˝f by means of the exterior
representation formula

Qp.x/ D �%f !2
Z

�
U �	 .x; y/Œuh.y/ � ny� dsy C

Z

�

@

@ny
U �	 .x; y/ph.y/dsy for x 2 ˝f

is unique, and we conclude a second order convergence of the pointwise error [12].
As a numerical example for the direct simulation we consider the Neumann

boundary value problem (1)–(4) with

˝s WD
˚

x 2 R3 W 0:8 < jxj < 1� ; ˝f WD
˚

x 2 R3 W 1 < jxj� ;

where the exact solution is given by, r D jxj,

p.x/ D ei	r

r
for r > 1; u.r/ D Œc1u1.r/C c2u2.r/�er for r 2 .0:8; 1/;

and

u1.r/ D �
p

�C 2� cos
r
p
%s!p

�C2�
r
p
%s!

C
.�C 2�/ sin

r
p
%s!p

�C2�
r2%s!2

;
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Table 1 Convergence of the FEM/BEM approach for direct simula-
tion

NFEM
ku� uhkL2.˝s /
kukL2.˝/

ku� uhkH1.˝s/

kukH1.˝/

jp. Ox/� Qp. Ox/j
1,948 9.93 –2 2.56 –1 5.37 –2

15,584 2.71 –2 1.45 –1 1.44 –2
124,672 7.27 –3 7.62 –2 3.69 –3

u2.r/ D �
p

�C 2� sin
r
p
%s!p

�C2�
r
p
%s!

�
.�C 2�/ cos

r
p
%s!p

�C2�
r2%s!2

:

Note that the constants c1 and c2 have to be chosen accordingly to satisfy the
transmission conditions (3). The material constants are given asE D 105�109N/m2,
� D 0:34, while the densities of the structure and of the fluid are chosen as
%s D 1;000 kg/m3 and %f D 4;500 kg/m3, respectively. Recall that the speed of
sound is c D 1;484m/s. As frequency we have chosen ! D 3;090 s�1 which
corresponds to an eigenfrequency of the hypersingular boundary integral operator
D	 . In Table 1 we present the relative errors of the displacement field both in the
L2.˝/ and in the energy norm, where we observe quadratic and linear convergence,
as predicted. In addition, we also give the pointwise error for the pressure which
is evaluated in Ox D .2; 0; 0/>, again we observe a quadratic convergence as
predicted [12].

3 Eigenvalue Analysis

In this section we discuss the solution of the eigenvalue problem which is related
to the transmission problem (1)–(4). Based on the coupled formulation (8) of the
transmission problem the following related eigenvalue problem is considered: Find
.!;u; p/ with .u; p/ ¤ .0; 0/ such that

A.!/

 

u
p

!

WD
 �!2�SMS CKS � �f !2N�V	N N�. 12 I CK	/

. 12 I CK0	/N 1
!2�f

D	

! 

u
p

!

D
 

0
0

!

;

(10)

where MS represents the mass term and KS the stiffness term of the structure,
and Nu D uj� � n. The boundary integral operators depend nonlinearly on the
wave number 	 D !=c, hence (10) is a nonlinear eigenvalue problem in !. For
the eigenvalue problem (10), in addition to the requested eigenvalues we also
obtain eigenvalues which correspond to the Laplacian with a Neumann boundary
condition. However, in practice the latter can be filtered out very easily.
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A Galerkin finite and boundary element discretization of (10) results in a
nonlinear matrix eigenvalue problem of the form

Ah.!h/

 

u
p

!

D
�

0

0

�

: (11)

A rigorous numerical analysis of the Galerkin eigenvalue problem (11) can be
carried out within the framework of the concept of eigenvalue problems for
holomorphic Fredholm operator-valued functions [14] and will be addressed in a
forthcoming paper. This concept provides comprehensive convergence results which
include error estimates for the eigenvalues and eigenspaces.

For the numerical solution of (11) we use the contour integral method [1].
This method is suitable for the extraction of all eigenvalues which lie inside of a
predefined contour in the complex plane. An alternative approach for the numerical
solution of the nonlinear eigenvalue problem (11) which is based on polynomial
interpolation is presented in [3].

As a numerical example we consider the Neumann eigenvalue problem for the
spherical shell ˝S WD fx 2 R3 W 4:95 < jxj < 5g and for the fluid domain ˝f WD
fx 2 R3 W jxj > 5g. For this example analytical approximations of the eigenvalues
are derived in [7]. The material constants for the shell are E D 207 � 109 N/m2, � D
0:3 and �S D 7;669 kg/m3. For the surrounding fluid, we choose c D 1;483:24m/s.
As ansatz spaces for the Galerkin eigenvalue problem (11) we use piecewise linear
finite elements and piecewise linear boundary elements as in the previous section.
The eigenvalues of practical interest are those which are lying close to the real axis,
since the imaginary part of an eigenvalue corresponds to the damping of the related
eigenfunction in time. As domain of interest for the eigenfrequencies f D !=.2�/
we have chosen the strip ff 2 C W 1 < Re.f / < 90; �5 < Im.f / < 5g. In this
domain two analytical approximations are given in [7]. The results of the contour
integral method are presented in Table 2 for different meshes. The approximations
of the eigenvalues on the two finest mesh levels match well with the analytical
approximations.

4 Conclusions

The symmetric formulation of finite and boundary element methods for vibro-
acoustic interface problems turns out to be stable for almost all frequencies. If we
exclude Jones frequencies, no spurious modes appear. In fact, we can avoid the use
of combined boundary integral equation formulations such as Brakhage/Werner and
Burton/Miller, see, e.g., [2,13], which require sufficient smoothness of the coupling
interface. For the acceleration of the numerical simulations one may use fast
boundary element methods such as the adaptive cross approximation [10] or the fast
multipole method [2]. In addition, the design of appropriate preconditioned iterative
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Table 2 Approximations of the two smallest non-zero eigenvalues
f D!=.2�/
h/dof 0.5/8794 0.25/36792 0.15/109455 Anal. approx.

(58.19,�1.44) (55.82,�1.18) (55.65,�1.16) 56.02
(58.26,�1.45) (55.84,�1.18) (55.66,�1.16)
(58.50,�1.48) (55.84,�1.18) (55.66,�1.16)
(58.62,�1.50) (56.03,�1.20) (55.78,�1.18)
(58.96,�1.54) (56.04,�1.21) (55.78,�1.18)
(83.61,�1.00) (71.47,�0.32) (70.45,�0.31) 70.52
(83.73,�1.03) (71.53,�0.32) (70.53,�0.31)
(84.51,�1.08) (71.63,�0.32) (70.53,�0.31)
(85.10,�1.14) (71.63,�0.32) (70.54,�0.31)
(85.47,�1.16) (71.72,�0.33) (70.60,�0.31)
(85.94,�1.18) (71.74,�0.33) (70.61,�0.31)
(87.96,�1.37) (71.80,�0.34) (70.62,�0.32)

Fig. 2 Real and imaginary
part of an eigensolution of a
simplified submarine

solvers is a challenging task not only for the direct simulation. In fact, the contour
integral method allows an reliable and accurate computation of eigenvalues within a
given domain of interest, without any knowledge on the number and on the position
of eigenvalues. Applications of the proposed methodologies include the simulation
and eigenvalue analysis of ships, see Fig. 2 for a simplified model of a submarine
made of titanium. The length is 12 m, its diameter 2 m, and its wall thickness 0.1 m.
The first eigenfrequency is f D 52:12 � 0:007i , the related eigensolution is given
in Fig. 2. This simulation was done by using 67:145 tetrahedral finite elements and
17:372 triangular boundary elements, which results in 74:523 global degrees of
freedom.
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Optimized Schwarz Methods for Maxwell
Equations with Discontinuous Coefficients

Victorita Dolean, Martin J. Gander, and Erwin Veneros

1 Introduction

After the development of optimized Schwarz methods for the Helmholtz equation
[2–4, 12, 14], extensions to the more difficult case of Maxwell’s equations were
developed: for curl-curl formulations, see [1]. For first order formulations without
conductivity, see [7], and with conductivity, see [8, 11]. For DG discretizations of
Maxwell’s equations, optimized Schwarz methods can be found in [5, 6, 9], and for
scattering problems with applications, see [15, 16].

We present here optimized Schwarz methods for Maxwell’s equations in hetero-
geneous media with discontinuous coefficients, and show that the discontinuities
need to be taken into account in the transmission conditions in order to obtain
effective Schwarz methods. For diffusive problems, it was shown in [10] that jumps
in the coefficients can actually lead to faster iterations, when they are taken into
account correctly in the transmission conditions. We show here that for the case
of Maxwell’s equations with jumps along the interfaces, one can obtain a non-
overlapping optimized Schwarz method that converges independently of the mesh
parameter; this is not possible without coefficient jumps.

2 Schwarz Methods for Maxwell’s Equations

The time dependent Maxwell equations are

� "@�
@t
Cr 	� D � ; �

@�
@t
Cr 	 � D 0; (1)
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where � D .E1;E2;E3/T is the electric field,� D .H1;H2;H3/
T is the magnetic

field, " is the electric permittivity, � is the magnetic permeability, and � is the
applied current density. We assume that the applied current density is divergence
free, div� D 0.

The time dependent Maxwell equations (1) are a system of hyperbolic partial
differential equations, see for example [7]. This hyperbolic system has for any
interface two incoming and two outgoing characteristics. Imposing incoming
characteristics is equivalent to imposing the impedance condition

Bn.� ;� / WD �
Z
	 nC n 	 .� 	 n/ D s: (2)

We consider in this paper the time-harmonic Maxwell equations,

� i!"E Cr 	H D J ; i!�H Cr 	E D 0; 2 ˝; (3)

and study the heterogeneous case where the domain ˝ consists of two non-
overlapping subdomains ˝1 and ˝2 with interface � , with piecewise constant
parameters "j and �j in ˝j , j D 1; 2. A general Schwarz algorithm for this
configuration is

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�i!"1E 1;nCr 	H 1;n D J in ˝1,
i!�1H

1;n Cr 	E 1;n D 0 in ˝1,
.Bn1CS1Bn2 /.E

1;n;H 1;n/ D .Bn1CS1Bn2 /.E
2;n�1;H 2;n�1/ on � ,

�i!"2E 2;nCr 	H 2;n D J in ˝2,
i!�2H

2;n Cr 	E 2;n D 0 in ˝2,
.Bn2CS2Bn1 /.E

2;n;H 2;n/ D .Bn2CS2Bn1 /.E
1;n�1;H 1;n�1/ on � ,

(4)

where Sj , j D 1; 2 are tangential, possibly pseudo-differential operators, and

Bnj .E
j;n;H j;n/ D E j;n

Zj
	 nj C nj 	 .H j;n 	 nj /

with Zj D
p

�j ="j , j D 1; 2. Different choices of Sj , j D 1; 2 lead to different
Schwarz methods [7].

3 The Classical Schwarz Method

The classical Schwarz method is exchanging characteristic information at the
interfaces between subdomains, which means Sj D 0. For the case of discon-
tinuous coefficients and the domain ˝ D R3, with the Silver-Müller radiation
condition limr!1 r .H 	 n �E/ D 0, and the two subdomains ˝1 D .�1; 0/ 	
R2; ˝2 D .0;1/ 	 R2, the classical Schwarz method does not converge in the
presence of coefficient jumps:
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Theorem 1. For any .E 1;0;H 1;0/ 2 .L2.˝1//
6 and .E 2;0;H 2;0/ 2 .L2.˝2//

6, if
�1"2 ¤ �2"1 the classical Schwarz algorithm diverges in .L2.˝1//

6 	 .L2.˝2//
6.

Proof. Performing a Fourier transform in the yz plane with Fourier variables k WD
.ky; kz/, jkj D k2y C k2z , we obtain after a lengthy calculation similar to the one
found in [7] the convergence factor

�cla.k; !1; !2;Z/ D max f�1.k; !1; !2;Z/; �2.k; !1; !2;Z/g

with !1 D !p"1�1, !2 D !p"2�2, Z D
q

�1"2
�2"1

and

�1.k; !1; !2;Z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

q

jkj2 � !21 � i!1Z
��

q

jkj2 � !22 � i!2=Z
�

�

q

jkj2 � !21 C i!1
��

q

jkj2 � !22 C i!2
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

; (5)

�2.k; !1; !2;Z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

q

jkj2 � !21 � i!1=Z
��

q

jkj2 � !22 � i!2Z
�

�

q

jkj2 � !21 C i!1
��

q

jkj2 � !22 C i!2
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

: (6)

The condition �1"2 ¤ �2"1 is equivalent to Z ¤ 1. To show divergence, we
consider three cases: if !1 > !2, we obtain for jkj D !1

�41.k; !1; !2; Z/ D 1C .!21 � !22/.Z2 � 1/
!21

; �42.k; !1; !2; Z/ D 1� .!
2
1 � !22/.Z2 � 1/

!21Z
2

;

and hence if Z > 1 we have �2 > 1, and if Z < 1 we have �1 > 1. Therefore, the
algorithm diverges for !1 > !2. Similarly if !1 < !2 we get for jkj D !2

�41.k; !1; !2; Z/D 1� .!
2
2 � !21/.Z2 � 1/

!22Z
2

�42.k; !1; !2; Z/D 1C .!22 � !21 /.Z2 � 1/
!22

;

and we obtain divergence as in the first case. Finally, if !1 D !2, we find

�1.k; !1; !2; Z/D �2.k; !1; !2; Z/D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

q

jkj2 � !21 � i!1Z
��

q

jkj2 � !21 � i!1=Z
�

�

q

jkj2 � !21 C i!1
�2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1=2

:

Setting now jkj D p2!1, we get after some simplifications that

�41 D
1

4

.Z2 C 1/2
Z2

;
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and �41 > 1 is equivalent to

�41 > 1 ” .Z2 C 1/2 > 4Z2 ” .Z2 � 1/2 > 0;

which always holds, because by assumptionZ ¤ 1. So we also have divergence for
the case !1 D !2. ut

The case of continuous coefficients is analyzed in [7]. In this case, �1 D �2, and
�cla.jkj/ < 1 for the propagative modes, jkj < !j , j D 1; 2, and �cla.jkj/ D 1

for the evanescent modes, jkj > !j , j D 1; 2, so the algorithm is stagnating for
all evanescent modes. This is also the case if �1"2 D �2"1 which was excluded in
Theorem 1 .

Having seen that the classical Schwarz method for Maxwell’s equations in
three dimensions diverges for most cases in the presence of coefficient jumps, we
analyze now the special case of the two dimensional transverse magnetic (TMz)
and transverse electric (TEz) Maxwell equations. In the TMz case, the unknowns
are independent of z, and we have E D .0; 0; Ez/ and H D �

Hx;Hy; 0
�

. In the
TEz case, E D �

Ex;Ey; 0
�

and H D .0; 0;Hz/. Since we obtain identical results
in the TMz case and the TEz case (one just has to exchange the roles of " with �),
we only show the TMz case. Our results are again based on Fourier transforms, here
in the y direction with Fourier variable k. After a similar computation as in the proof
of Theorem 1, we obtain for the classical Schwarz algorithm for the TMz case the
convergence factor

�cla.k; !1; !2;Z/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

q

k2 � !21 � i!1Z
��

q

k2 � !22 � i!2=Z
�

�

q

k2 � !21 C i!1
��

q

k2 � !22 C i!2
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

: (7)

For the TMz formulation, the classical Schwarz algorithm can be convergent in the
presence of coefficient jumps:

Theorem 2. Let �1 D �2. If "1 < "2 and
q

"1
"2
> C0, or if "1 > "2 and

q

"2
"1
> C0,

C0 D 0:3213357548 : : :, then the classical Schwarz algorithm for the TMz case is
convergent.

Proof. We can only give an outline of the proof: without loss of generality, we can
assume that !1 < !2. We then proceed in three steps: first, we show that for the
evanescent modes, k > !j , j D 1; 2 we have �cla < 1 if "1 ¤ "2. Second, we show
that �cla at k D 0 and k D !1 is strictly less than one, and finally we show that the
maximum of those two values bounds �cla for all the propagative modes k < !j ,
j D 1; 2, where the restriction involving C0 comes in.

Theorem 3. If "1 D "2 and �1 ¤ �2, then the classical Schwarz algorithm for the
TMz case is divergent.
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Proof. The proof is based on divergence of the evanescent modes, as in Theorem 1.

Theorem 4. If �1 ¤ �2, "1 ¤ "2 and Z < !2
!1
<
p
2
2

, then the classical Schwarz
algorithm for the TMz case is divergent.

Proof. The proof is based again on divergence of the evanescent modes.

4 Optimized Schwarz Methods

We have seen that the classical Schwarz method is not an effective solver for
Maxwell’s equations in the presence of coefficient jumps. We develop now more
effective transmission conditions in order to obtain optimized Schwarz methods
which take the coefficient jumps into account. Using again Fourier analysis, we
can show that if Sj ; j D 1; 2 have the constant Fourier symbol

cS1 D �s2 � i!2Z
�1

s2 C i!2 ; cS2 D �s1 � i!1Z
s1 C i!1 ; (8)

then the optimized Schwarz method for the TMz case has the convergence factor

�opt.!1; !2; �1; �2; s1; s2; k/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

q

k2 � !21 � s1
��

q

k2 � !22 � s2
�

�

q

k2 � !21 C s2 �1�2
��

q

k2 � !22 C s1 �2�1
�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

:

(9)

In order to have a more efficient algorithm, we have to choose sj , j D 1; 2 such
that �opt is as small as possible for all numerically relevant frequencies k 2 K WD
Œkmin; kmax�, where kmin is a constant depending on the geometry and kmax D cmax=h,
with cmax a constant and h denoting the mesh size, see for example [13]. We search
for sj of the form sj D cj .1C i/ such that cj , j D 1; 2 will be the solutions of the
min-max problem

�� D min
c1;c2�0

�

max
k2K �opt.!1; !2; �1; �2; k; c1.1C i/; c2.1C i//

�

: (10)

The proofs of the following theorems are based on asymptotic analysis, and are too
long and technical for this short paper; they will appear elsewhere.

Theorem 5. If �1 < �2 and �2
�1

>
p
2, and r D pj"1�1 � "2�2j, then the

asymptotic solution of the min-max problem for h small is

c�1 D
1

2

cmax�1.�2 C 2�1 �
p

�2.4�1 C 3�2//
.2�21 � �22/h

; c�2 D !r; (11)
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�� D 4

r

1

2
� 2

3=4

4

!.�22 � 2�21/r
.�2 C 2�1 �

p

�2.4�1 C 3�2//
hC O.h2/: (12)

If �2
�1
� p2, then the asymptotic solution of the min-max problem is

c�1 D
1

2h

cmax.�2 � �1/
�2

; c�2 D
!r�2

2

�2 C
q

2�21 � �22
�21 � �22

(13)

�� D
r

�1

�2
�
r

�1

�2

23=4

4

!r.�2 C
q

2�21 � �22/
�2 � �1 hCO.h2/: (14)

Theorem 6. If �1 D �2 and "1 ¤ "2, and r D pj"1�1 � "2�2j, then the
asymptotic solution of the min-max problem for h small is given by

c�1 D
�

cmax
h

�3=4 �!r
2

�1=4
; c�2 D 1

4

�

2cmax
h

�1=4
.!r/3=4; (15)

�� D 1� . !r
2cmax

/1=4h1=4 C O.h1=2/: (16)

Theorem 7. If �1 > �2 and �1
�2

>
p
2, and r D pj"1�1 � "2�2j, then the

asymptotic solution of the min-max problem for h small is

c�1 D
1

2

cmax�2.�1 C 2�2 �
p

�1.4�2 C 3�1//
.2�22 � �21/h

; c�2 D !r; (17)

�� D 4

r

1

2
� 2

3=4

4

!.�21 � 2�22/r
.�1 C 2�2 �

p

�1.4�2 C 3�1//
hCO.h2/; (18)

and if �1
�2
� p2 then the asymptotic solution of the min-max problem is

c�1 D
1

2h

cmax.�1 � �2/
�1

; c�2 D
!r�1

2

�1 C
q

2�22 � �21
�22 � �21

(19)

�� D
r

�2

�1
�
r

�2

�1

23=4

4

!r.�1 C
q

2�22 � �21/
�1 � �2 hCO.h2/: (20)

Theorems 5 and 7 contain the surprising result that in the presence of jumps
in the coefficients, it is possible to obtain an optimized Schwarz method for
Maxwell’s equations with convergence factor that does not deteriorate when the
mesh parameter h goes to zero, even without overlap. In the first parts of each
theorem, we even see the convergence is independent of the jump in the coefficients.
In the case of �1 D �2 in Theorem 6 however, the convergence factor depends on
h and deteriorates as h goes to zero, as in the case in [7] when also "1 D "2.
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Fig. 1 Convergence histories for the classical Schwarz algorithm. On the left two cases of
divergence, one where " is continuous and one where " is not continuous, and on the right two
cases of convergence, one for � continuous and one for � not continuous

5 Numerical Results

We now present some numerical results to illustrate the performance of the
algorithms. We partition the domain ˝ D .�1; 1/ 	 .0; 1/ into two subdomains
˝1 D .�1; 0/ 	 .0; 1/ and ˝2 D .0; 1/2. In each subdomain we select constant
coefficients "j , �j , j D 1; 2. We discretize the TMz Maxwell’s equations using
a finite volume method, and we impose for the test on the outer boundary the
impedance boundary condition E

Zj
	 nj C nj 	 .H 	 nj / D 0, j D 1; 2.

We first show in Fig. 1 convergence histories for the classical Schwarz algorithm.
On the left, we show in blue the case when �1 ¤ �2 and "1 D "2, and in red the case
when �1 ¤ �2 and "1 ¤ "2 and Z < 1p

2
, and the algorithm diverges as predicted

by Theorems 3 and 4. On the right in Fig. 1 we show in blue the case when "1 ¤ "2
and �1 D �2, and in red the case when �1 ¤ �2 and "1 ¤ "2 and Z > 1p

2
, and we

observe convergence, as predicted by Theorem 2.
We next show the performance of the optimized Schwarz algorithms. We call the

first parts of Theorems 5 and 7 case 1, the result in Theorem 6 case 2, and the last part
of Theorems 5 and 7 case 3. In Fig. 2, we show scaling experiments obtained when
h is refined. Clearly case 1 and 3 lead to convergence independent of the mesh size,
as predicted by Theorems 5 and 7, whereas the convergence in case 2 deteriorates,
as predicted by Theorem 6. We use here the parameters ! D 2� , "1 D �1 D 1 for
all the cases. For the first case we set "2 D 2 and �2 D 2, for the second "2 D 2 and
�2 D 1 and for the third "2 D 1 and �2 D 1:4 <

p
2.
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Optimized Case 1 29 31 29 29
Optimized Case 2 32 40 44 52
Optimized Case 3 27 29 31 31

Fig. 2 Number of iterations against the mesh size h, to attain an error of 10�6 with the three cases
of the optimized Schwarz algorithm

6 Conclusions

We proved that in the presence of jumps in the coefficients, the classical Schwarz
method for Maxwell’s equations in 3d is not convergent, and unless �1"2 D �2"1,
the algorithm actually diverges. In the 2d case of TMz and TEz modes, it is
possible to obtain convergence for specific configurations of jumps. Optimized
Schwarz methods on the other hand can take coefficient jumps into account and
are always convergent, sometimes even better than without jumps. One can even
get convergence independent of the mesh parameter in the non-overlapping case,
something which is impossible without coefficient jumps.
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Lower Dimensional Coarse Spaces for Domain
Decomposition

Clark R. Dohrmann and Olof B. Widlund

1 Introduction

Coarse spaces are at the heart of many domain decomposition algorithms. Building
on the foundation laid in [7], we have an ongoing interest in the development of
coarse spaces based on energy minimization concepts [5]. Several different areas
have been investigated recently, including compressible and almost compressible
elasticity [1, 2], subdomains with irregular shapes [6, 11], problems in H.curl/ [4],
and problems in H.div/ [12]. We also comment that there has been much recent
complementary work to address problems having multiple materials in individual
subdomains (see, e.g., [9, 10]).

The purpose of this study is to investigate a family of lower dimensional coarse
spaces for scalar elliptic and elasticity problems. The basic idea involves the use of
certain equivalence classes of nodes on subdomain boundaries. Coarse degrees of
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freedom are then associated with these classes, and the coarse basis functions are
obtained from energy-minimizing extensions of subdomain boundary data into the
subdomain interiors. We note in the context of a cube, domain decomposed into
smaller cubical subdomains, that these classes are simply the subdomain vertices.

An analysis for scalar elliptic problems reveals that significant reductions in the
coarse space dimension can often be achieved without sacrificing the favorable
condition number estimates for larger coarse spaces. This can be important when
the memory and computational requirements associated with larger coarse spaces
are prohibitive due to the use of large numbers of processors on a parallel computer.
A multi-level approach could be used in such cases, but this may not always be
possible or the best solution.

In the next section, we describe the nodal equivalence classes that are used in
the construction of the coarse spaces. We then present algorithms for generating
the coarse basis functions for different problem types in Sect. 3. An analysis for a
scalar elliptic equation is provided in Sect. 4, and numerical examples are presented
in Sect. 5.

2 Coarse Nodes

Consider a domain ˝ partitioned into non-overlapping subdomains ˝1; : : : ;˝N .
The set of all nodes common to two or more subdomains, excluding those with
essential boundary conditions, is denoted by �n. Let Sn denote the index set of
subdomains containing node n. Two nodes nj ; nk 2 �n are related if Snj D Snk .
As with FETI-DP or BDDC methods, we partition �n into nodal equivalence classes
based on this relation. Notice that for a decomposition of a cube into cubical
subdomains that the nodal equivalence classes consist of faces (groups of nodes
shared by the same two subdomains), edges (groups of nodes shared by the same
four subdomains), and vertices (individual nodes shared by eight subdomains).
For economy of words, we will henceforth use the abbreviation nec for nodal
equivalence class.

Let SN denote the index set of subdomains for any node of nec N . A nec Nj

is said to be a child of nec Nk if SNj � SNk
. Likewise, Nk is called a parent of

Nj in this case. A nec is designated a coarse node if it is not the child of any other
nec, and its coordinates are chosen as the centroid of its constituent nodes. Let Mi

denote the set of all necs for ˝i . Notice that each nec in Mi is either a coarse node
or the child of at least one coarse node. Further, a coarse node c of ˝i is also a
coarse node of ˝j for all j 2 Sc .

Notice that for the example decomposition described in the first paragraph of this
section the coarse nodes are the subdomain vertices. If all necs are used as in [5],
then there are approximately .6=2 C 12=4 C 8=8/N D 7N necs associated with
the coarse space. Likewise, if only subdomain edges and vertices are used as in [2],
then there are approximately .12=4 C 8=8/N D 4N necs. In contrast, the coarse
space of this study is based on only about N coarse nodes.
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3 Coarse Basis Functions

In this section, we describe how to construct coarse basis functions for scalar elliptic
and elasticity problems in three dimensions. These coarse basis functions are fully
continuous between adjacent subdomains, and we focus our attention on a single
subdomain ˝i . The support of a coarse basis function associated with coarse node
c is the interior of the union of all N̋ j with j 2 Sc .

The first step is to obtain a partition of unity for the nodes of �i WD @˝i n@˝ . Let
CN denote the set of parent coarse nodes for nec N . If N is itself a coarse node,
then we take CN D N . For the simplest case, the partition of unity associated with
node n 2 N and coarse node c 2 CN is chosen as

pnc D 1=jCN j: (1)

One can easily confirm that
P

c2CN
pnc D 1.

Notice from (1) that pnc is the same for all n 2 N and c 2 CN . This feature
can cause abrupt changes in the coarse basis functions near nec boundaries, typically
resulting in a logarithmic factor log.Hi=hi/ in estimates for the energy of the coarse
basis functions. Here,Hi is the diameter of˝i and hi is the diameter of its smallest
element.

In an attempt to avoid the logarithmic factor, we also consider a partition of unity
originating from linear functions rather than constants. Define

a.n/ WD 
1 xn1 � � � xnd

�

;

where xnj is the j -coordinate of node n and d is the spatial dimension. Let the matrix
AN denote the row concatenation of a.n/ for all coarse nodes in CN . Notice that
the number of rows of AN is the number of parent coarse nodes for N and that the
number of columns is d C 1. The origin is chosen as any one of the parent coarse
nodes. With reference to (1), pnc is now chosen as

pnc D a.n/A�N ec; (2)

where � denotes the Moore-Penrose pseudo-inverse and ec is a row vector with a
single nonzero entry of 1 in the row of AN corresponding to the coarse node c. As
before, one can confirm that

P

c2CN
pnc D 1. We note if a.n/ is replaced by only

its first column, then (2) simplifies to (1).
The energy of ˝i is defined as Ei.ui / WD uTi Aiui ; where ui is a vector of nodal

degrees of freedom (dofs) for˝i and Ai is the stiffness matrix for˝i . LetRin select
the rows of ui for the dofs of node n 2 N . That is, Rinui is the vector of dofs for
node n. Let Nic denote the set of nodes on �i which have c as a parent coarse node
and define
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�ic WD
X

n2Nic

pncR
T
inNnc;

where the matrix Nnc is specified later for different problem types.
Let Ri� and RiI select the rows of ui for the nodal dofs on �i and the interior of

˝i , respectively, and define

Ai� � WD Ri� AiRTi� ; AiI� WD RiIAiR
T
i� ; AiII WD RiIAiR

T
iI ; etc.

The coarse basis function associated with the coarse node c is given by

˚ic D �ic � RTiIA�1iII AiI� .Ri� �ic/:

We note that the first term on the right hand side of this expression is the boundary
data for the coarse basis function, while the second term is its energy-minimizing
extension into the interior of ˝i .

For scalar elliptic equations like the Poisson equation, we choose

Nnc D



1
�

:

Remark 1. The coarse space in [6] is obtained by choosing the subdomain vertices
and edges as the coarse nodes, and using the partition of unity given in (1). Similarly,
the smaller coarse space of [3] is obtained by choosing only the subdomain vertices
as the coarse nodes and using the partition of unity given in (2).

For elasticity problems,Nnc is chosen as

Nnc D
2

4

1 0 0 0 xcn3 �xcn2
0 1 0 �xcn3 0 xcn1
0 0 1 xcn2 �xcn1 0

3

5 ;

where xcnj is the j -coordinate of node n with the origin at the coarse node c. The
first three columns ofNnc correspond to rigid body translations, while the final three
columns correspond to rigid body rotations about c. We note the expression for Nnc

can be adapted easily to accommodate finite element models with shell elements
simply by adding three more rows to Nnc.

4 Analysis

In this section, we develop estimates for the energy of a coarse interpolant of ui
for a scalar elliptic equation. The diffusion coefficient �i > 0 is assumed constant
in ˝i (see Sect. 4.2 of [13] for additional details). We will use the symbol ui for
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both a finite element function and its vector representation in terms of nodal values.
Similarly, �ic is the finite element function counterpart of ˚ic.

For simplicity, we assume shape regular tetrahedral subdomains. In this case, the
coarse basis functions for ˝i based on (2) are identical to those for the standard
P1 linear tetrahedral element on �i . Consequently, the coarse basis functions are
also identical to the standard shape functions throughout˝i since a linear function
minimizes energy for boundary data given by a linear function. We have the standard
estimate

Ei.�ic/ � CHi �i : (3)

Let Nui , NuF , NuE denote the mean of a finite element function u over the subdomain
˝i , a subdomain face F , and a subdomain edge E , respectively. For a face F of
˝i , it follows from the a trace theorem and a Poincaré inequality that

�iHi jNuF � Nui j2 � CEi .ui /: (4)

Similarly, for an edge E of ˝i , we find using a discrete Sobolev inequality (see,
e.g., Lemma 4.16 of [13]) that

�iHi jNuE � Nui j2 � C.1C log.Hi=hi //Ei.ui /: (5)

Assumption 1. Let c be any vertex of ˝i and Sc the index set of all subdomains
containing c. Pick jc 2 Sc such that �jc � �j for all j 2 Sc . There exists a
sequence fi D j 0c ; j

1
c ; : : : ; j

p
c D jcg such that �i � C�j `c and ˝j`�1c

and ˝j`c
have

a face in common for all ` D 1; : : : ; p and i D 1; : : : ; N .
In other words, Assumption 1 means there is a face connected path between ˝i

and ˝jc such that the diffusion coefficient �i is no greater than a constant times the
diffusion coefficient of any subdomain along the path. This assumption appears to
be essentially the same as the quasi-monotone assumption in [8].

Assumption 2. Using the same notation as in Assumption 1, there exists a
sequence fi D j 0c ; j

1
c ; : : : ; j

p
c D jcg such that �i � C�j `c and ˝j`�1c

and ˝j`c
have an edge in common for all ` D 1; : : : ; p and i D 1; : : : ; N .

Notice that Assumption 2 is weaker than Assumption 1 since we have more
options to continue at every step in the construction of a path. Our coarse interpolant
of ui for˝i is chosen as

uic D
X

c2Mic

Nujc�ic; (6)

where Mic is the set of subdomain vertices for˝i . Let Fij denote the face common
to ˝i and ˝j . Since the coarse basis functions for ˝i can approximate constants
exactly on �i and also minimize the energy, it follows from a Poincaré inequality
that
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Ei.
X

c2Mic

Nui�ic/ � CEi .ui /: (7)

We next establish bounds for Ei.uic/. Starting with

Nui � Nujc D .Nui � NuF
j 0c j

1
c
/C

p�1
X

`D1
.NuF

j `�1c j `c
� NuF

j `c j
`C1
c

/C .NuF
j
p�1
c j

p
c

� Nujc /;

rewriting the term in the summation as

NuF
j `�1c j `c

� NuF
j `c j

`C1
c

D .NuF
j `c j

`�1
c
� Nuj `c /� .NuF

j `c j
`C1
c

� Nuj `c /;

and using Assumption 1 and (4), we find

�iHi jNui � Nujc j2 � C
X

j2Sc

Ej .uj /:

It then follows from (3) that

Ei..Nui � Nujc /�ic/ � C
X

j2Sc

Ej .uj /:

Finally, from (6), (7), and the triangle inequality, we obtain

Ei.uic/ � C
X

j2Mi

Ej .uj /;

where Mi is the index set of all subdomains adjacent to˝i . Summing contributions
from all subdomains and noting that jMi j < C , we see that the energy of our coarse
interpolant is uniformly bounded by the energy of u. That is, under Assumption 1,

N
X

iD1
Ei.uic/ � C

N
X

iD1
Ei .ui /: (8)

By using (5) instead of (4) in the previous development, we find under the less
restrictive Assumption 2 that

N
X

iD1
Ei .uic/ � C.1C log.H=h//

N
X

iD1
Ei .ui /; (9)

whereH=h WD maxi .Hi=hi /.
If the coarse basis functions originate from (1) rather than (2), then it follows

from elementary estimates and Lemma 4.25 of [13] that an additional factor of
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1C log.Hi=hi/ will appear on the right-hand-side of (3). Thus, this additional
factor will also be present in (8) and (9). The same also holds for hexahedral
subdomains even when (2) is used since a linear function cannot interpolate a
function at all four nodes of a quadrilateral planar face.

With the estimates for our coarse interpolants in hand, we may now perform a
local analysis for an overlapping additive Schwarz algorithm using basically the
same approach as in [6] or [3]. This involves a partition of unity f#i gNiD1 with
0 � #i � 1, jr#i j � C=ıi , and #i supported in the closure of the overlapping
subdomain ˝ 0i . Here, ıi is the thickness of the part of ˝ 0i which is common to its
neighbors. Given an estimate of the form

N
X

iD1
Ei .uic/ � Cf .H=h/

N
X

iD1
Ei .ui /;

the resulting condition number estimate for the preconditioned operator is given by

	.M�1A/ � Cf .H=h/.1CH=ı/; (10)

where H=ı WD maxi Hi=ıi . Comparing (10) with (8) and (9), we that f .H=h/ is 1
and 1C log.H=h/ under Assumptions 1 and 2, respectively.

5 Numerical Examples

We consider a unit cube domain decomposed into either smaller cubical subdomains
or irregular-shaped subdomains obtained from a mesh partitioner for a scalar elliptic
equation; an analysis and results for elasticity will appear in a forthcoming study.
The numbers of iterations and condition number estimates from the conjugate
gradient algorithm appear under the headings iter and cond in the tables. All results
are for homogeneous essential boundary conditions on one face of the cube, a
random right-hand-side vector, and a relative residual solver tolerance of 10�8.

The results in Table 1 are for 64 cubical subdomains and a fixed dimensionless
overlap H=ı. By plotting condition numbers versus log.H=h/, it appears that the
line segment slopes are bounded above by constants as H=h increases for both the
constant and checkerboard material properties. Moreover, these line segment slopes
for constant material properties and the linear partition of unity in (2) appear to
decrease with increasing H=h, while those for (1) appear to approach a constant
value. These observations are consistent with the analysis. We note for a vertex
coarse space, as used in this example, a much less favorable condition number
estimate of C.H=h/.1 C log.H=h//2 holds for FETI-DP and BDDC algorithms
(cf. Algorithm A in Sect. 6.4.2 of [13]).

For the final example, we consider a mesh of 483 elements decomposed into
different numbers of subdomains using a mesh partitioner. Results in Table 2 show
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Table 1 Results for constant and checkerboard arrangements of subdomain material properties
(�i D 1 or �i D 104) for partitions of unity based on (1) and (2)

Constant Checkerboard
pnc (1) pnc (2) pnc (1) pnc (2)

H=h iter cond iter cond iter cond iter cond

8 40 29.0 37 25.2 37 39.9 35 29.7
12 43 33.3 38 27.7 40 46.4 37 32.5
16 45 36.4 39 29.3 40 50.9 38 34.4
20 45 38.8 39 30.5 41 54.1 38 35.7

The overlap H=ı 
 4 is held fixed while H=h varies

Table 2 Results for constant coefficients and a mesh with 483 elements decomposed using a mesh
partitioner

Ref. [5] pnc (1) pnc (2)
N nc iter cond nc iter cond nc iter cond

63 831 45 21.3 166 46 22.5 166 40 15.7
64 863 45 21.5 174 46 22.5 174 41 16.4
65 916 46 21.1 189 46 21.7 189 40 16.6
64 279 40 24.9 27 43 33.3 27 38 27.7

The coarse space dimension is denoted by nc and the overlap is for two layers of additional
elements. The final row in the table is for a regular mesh decomposition into 64 identical
subdomains

that the present coarse space dimensions are significantly smaller than those for
the richer coarse space in [5]. Smaller dimensional coarse spaces result in reduced
computational requirements for the coarse problem, and extend the range of problem
sizes that can be solved effectively using a two-level method.
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Robust Preconditioners for DG-Discretizations
with Arbitrary Polynomial Degrees

Kolja Brix, Claudio Canuto, and Wolfgang Dahmen

1 Introduction

Discontinuous Galerkin (DG) methods offer an enormous flexibility regarding
local grid refinement and variation of polynomial degrees rendering such concepts
powerful discretization tools which have proven to be well-suited for a variety of
different problem classes. While initially the main focus has been on transport
problems like hyperbolic conservation laws, interest has meanwhile shifted towards
diffusion problems. Specifically, we focus here on the efficient solution of the linear
systems of equations that arise from the Symmetric Interior Penalty DG method
applied to elliptic boundary value problems. [1] The principal objective is to develop
robust preconditioners for the full “DG-flexibility” which means to obtain uniformly
bounded condition numbers for locally refined meshes and arbitrarily (subject to
mild grading conditions) varying polynomial degrees at the expense of linearly
scaling computational work. A first step towards that goal has been made in [3]
treating the case of geometrically conforming meshes but arbitrarily large variable
polynomial degrees which already exposes major principal obstructions. In this
paper we complement this work by detailed studies of several issues arising in [3].

To our knowledge the only concept yielding full robustness with respect to
polynomial degrees is based on Legendre-Gauß-Lobatto (LGL) quadrature. Specif-
ically, in the framework of auxiliary space methods low order finite element
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discretizations on LGL-grids can be used to precondition high order polynomial
discretizations. However, when dealing with variable degrees the possible non-
matching of such grids at element interfaces turns out to severely obstruct in general
the design of efficient preconditioners. To overcome these difficulties we propose
in [3] a concatenation of auxiliary space preconditioners. In the first stage the
spectral DG formulation (SE-DG) is transferred to a spectral continuous Galerkin
formulation (SE-CG). In the second stage we proceed from here to a finite element
formulation on a specific dyadic grid (DFE-CG) which is associated with an LGL-
grid but belongs to a nested hierarchy. The latter problem can then be tackled by a
multilevel wavelet preconditioner presented in forthcoming work. The overall path
of our iterated auxiliary space preconditioner therefore is SE-DG ! SE-CG !
DFE-CG. It should be noted that a natural alternative is to combine the first
stage with a domain decomposition substructuring preconditioner as proposed in
[6] admitting a mild growth of condition numbers with respect to the polynomial
degree.

We are content here for most part of the paper with brief pointers to the detailed
analysis in [2–4] to an extent needed for the present discussion.

Section 2 introduces our model problem, the LGL technique is explained in
Sect. 3. The auxiliary space method is detailed in Sect. 4, while Sects. 5 and 6
consider stages 1 and 2 of our preconditioner. Finally in Sect. 7 we give some
numerical experiments that shed light on the constants that arise in four basic
inequalities used in the second stage.

2 Model Problem and Discontinuous Galerkin Formulation

Given a bounded Lipschitz domain ˝ � Rd with piecewise smooth boundary we
consider as a simple model problem the weak formulation: find u 2 H1

0 .˝/ such
that

a.u; v/ WD
Z

˝

ru � rv dx D hf; vi ; v 2 H1
0 .˝/

of Poisson’s equation ��u D f on ˝ with zero Dirichlet boundary conditions
u D 0 on @˝ . For simplicity, we assume that N̋ is the union of a collection R
of finitely many (hyper-)rectangles, which at most overlap with their boundaries.
More complex geometries can be handled by isoparametric mappings. By Fl .R/we
denote the l-dimensional facets of a (hyper-)rectangleR and by Fl D [R2RFl .R/

the union of all these objects. Let Hk.R/ be the side length of R in the k-th
coordinate direction.

The polynomial degrees used in each cell R are defined as p D .pk/
d
kD1,

where pk is the polynomial degree in the k-th coordinate direction. We introduce
the piecewise constant function ı D .H; p/ that collects the hp approximation
parameters. On ı we impose mild grading conditions, see [3] for the details.
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For the spectral discretization of our model problem, we choose the DG spectral
ansatz space Vı WD

˚

v 2 L2.˝/ W vjR 2 Qp.R/ for all R 2 R
�

, where Qp.R/ is
the tensor space of all polynomials of degree at most p on the (hyper-)rectangleR.

We employ the standard notation of DG methods for jumps and averages on
the mesh skeleton and on @˝ . The The Symmetric Interior Penalty Discontinuous
Galerkin method (SIPG) aı.u; v/ D hf; vi for all v 2 Vı is based on the SIPG
bilinear form

aı.uı; vı/ WD
X

R2R
.ruı;rvı/R C

X

F2F
.�.fruıg ; Œvı�/F � .Œuı� ; frvıg/F /

C
X

F2F
�!F .Œuı� ; Œvı�/F D .f; vı/˝; vı 2 Vı

with !F WD max
˚

!F;R� ; !F;RC
�

for internal faces F and !F;R˙ WD
pk.R

˙/.pk.R˙/C1/
Hk.R˙/ . For boundary faces F � @˝ we set !F;R WD pk.R/.pk.R/C1/

Hk.R/
.

3 Legendre-Gauß-Lobatto (LGL) Grids

Denoting by .�i /
p�1
iD1 the zeros of the first derivative of thep-th Legendre polynomial

Lp , in ascending order, and setting �0 D �1 and �p D 1, Gp D .�i /0	i	p is
the Legendre-Gauß-Lobatto (LGL) grid of degree p on the reference interval OI D
Œ�1; 1�, see e.g. [5]. In combination with appropriate LGL weights .wi /0	i	p the
LGL points of order p can be interpreted as quadrature points of a quadrature rule
of exactness 2p � 1. In [4] we prove quasi-uniformity of the LGL-grids .Gp/p2N,

i.e., hiC1;p

hi ;p
, for 1 � i � p� 1, remains uniformly bounded independent of p, where

hi D j�i � �i�1j.
The particular relevance of tensor product LGL-grids for preconditioners for

spectral element discretizations lies in the two norm equivalences (see [5])



'




Hi .R/
Å


I R
h;p'





Hi.R/
for all ' 2 Qp.R/; i 2 f0; 1g; (1)

which hold uniformly for any d -dimensional hypercubeR D 	dkD1 Ik where I R
h;p

is the piecewise multi-linear interpolant on the tensor product LGL-grid.

4 Abstract Theory: Auxiliary Space Method

The auxiliary space method (ASM) [9–11] is a powerful concept for the construction
of preconditioners that can be derived from the fictitious space lemma [7–9].
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Given a problem a.u; v/ D f .v/ for all v 2 V on the linear space V equipped
with a bilinear form a.�; �/ W V 	 V ! R, we seek an auxiliary space QV with an
auxiliary form Qa.�; �/ W QV 	 QV ! R that is in some sense close to the original one but
easier to solve. Note that we neither require V � QV nor QV � V which is important
in the context of non-conforming discretizations. Therefore on the sum OV D V C QV
we need in general another version Oa.�; �/ W OV 	 OV ! R as well as a second form
b.�; �/ W OV 	 OV ! R which dominates a on V and plays the role of a smoother.
The required closeness of the spaces V and QV is described with the aid of two linear
operatorsQ W QV ! V and QQ W V ! QV . Specifically, these operators have to satisfy
certain direct estimates involving the above bilinear forms. For the details on the
ASM conditions see [9].

Lemma 1 (Stable Splitting [9]). Under the assumptions of the ASM, we have the
following stable splitting

a.v; v/ 
 inf
w2V;Qv2 QV W vDwCQQv

.b.w;w/C Qa. Qv; Qv// for all v 2 V:

The main result of the ASM is given in the following theorem [9].

Theorem 1 (Auxiliary Space Method). Let CB and C QA be symmetric precondi-
tioners for B and QA, respectively. Let S be the representation of Q W QV ! V . Then
CA WD CB C SC QAST is a symmetric preconditioner for A. Moreover, there exists a
uniform constant C such that the spectral condition number of CAA satisfies

	.CAA/ � C	.CBB/	.C QA QA/:

For a given practical application it remains to identify a suitable auxiliary space
QV , the bilinear forms Qa W QV 	 QV ! R and Oa; b W OV 	 OV ! R, as well as the

two linear operators Q and QQ, such that ASM conditions are satisfied. In addition
efficient preconditioners for the “easier” auxiliary problems C QA and CB need to be
devised. Of course, the rationale is that the complexity to apply C QA and CB should
be much lower than solving the original problem.

Note that the operator QQ need not be implemented but enters only the analysis.

5 Stage 1: ASM DG-SEM ! CG-SEM

In the first stage, we choose the largest conforming subspace QV WD Vı \H1
0 .˝/ of

V WD Vı as auxiliary space so that Q can be taken as the canonical injection. The
definition of the operator QQ can be found in [3].

The main issue in this stage is the choice of the auxiliary form b.�; �/. Using LGL-
quadrature combined with an inverse estimate for the partial derivatives in the form
a.�; �/ we arrive at
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b.u; v/ WD
X

R2R

X

�2Gp.R/
u.�/ v.�/ c�W�; W� WD

 

d
X

kD1
w�2�;k

!

w�;k:

Here the weights c� 
 1 are chosen as

c� WD
�

ˇ1.c
2
1 C ��1!FwF;R=W�/; � 2 Gp.F;R/; F 2 Fd�1.R/; R 2 R;

ˇ1c
2
1 ; else;

where wF;R˙ is the LGL quadrature weight on F seen as a face of R˙ and the
parameters ˇ; �1 can be used to “tune” the scheme. The resulting matrix B is
diagonal so that the application of CB WD B�1 requires only O.N / operations.
It is shown in [3] that all ASM conditions are satisfied for this choice of b.�; �/.
Numerical experiments show that the parameters ˇ1 and �1 can by and large be
optimized independently of the polynomial degrees.

6 Stage 2: CG-SEM ! CG-DFEM

The second stage involves three major ingredients, namely

(1) the choice of spaces of piecewise multi-linear finite elements on hierarchies of
nested anisotropic dyadic grids, to permit a subsequent application of efficient
multilevel preconditioners,

(2) the construction of the operatorsQ and QQ, and
(3) the construction of the auxiliary bilinear form b.�; �/.
As for (1), the non-matching of LGL-grids for different degrees p at interfaces
prevents us from taking low order finite element spaces as auxiliary space for
the high order conforming problem resulting from the first stage. Instead, with
each LGL-grid Gp we associate a dyadic grid GD;p , which is roughly generated
as follows: starting with the boundary points f�1; 1g as initial guess we adaptively
refine the grid. A subinterval in the grid is bisected into two parts of equal size, if
the smallest of the overlapping LGL-subintervals is longer than ˛ times its length.
The parameter ˛ therefore controls the mesh size of the dyadic grid. However, for
input LGL-grids of different polynomial degrees the resulting dyadic grids are not
necessarily nested yet. How to ensure nestedness while keeping the grid size under
control is shown in [3, 4]. The key quality of the associated dyadic grids GD;p is
that mutual low order piecewise multi-linear interpolation between the low order
finite element spaces on Gp.R/;GD;p.R/ is uniformly H1-stable, see [3] for the
proofs. Denoting by Vh;D;p.R/ the space of piecewise multi-linear conforming finite
elements on GD;p.R/, we now take V WD Vı \H1

0 .˝/ and QV WD Vh;D \H1
0 .˝/,

where Vh;D D fv 2 C0.˝/ W 8R 2 R ; vjR WD vR 2 Vh;D;p.R/g.
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Concerning (2), the operator Q is defined element-wise as follows. For a given
element vertex z 2 F0.R/ let p� denote the polynomial degree vector whose
kth entry is the minimum of the kth entries of all degree vectors associated with
elements R0 sharing z as a vertex. Here a grading of the degrees is important. Let
˚z 2 Q1.R/ the multi-linear shape function onR satisfying conditions˚z.y/ D ıy;z
for all y 2 F0.R/. Then, we define

Qv�z WD I R
h;D;p�

z
.˚z QvR/ 2 Vh;D;p�

z
.R/ and v�z D I R

p�
z
Qv�z 2 Qp�

z
.R/ ; (2)

where I R
h;D;p�

z
;I R

p�
z

are the dyadic piecewise multilinear and high order LGL-
interpolants on the respective grids. Summing-up over the vertices of R, we define

Qv�R WD
X

z2F0.R/

Qv�z 2 Vh;D;p.R/ and QR QvR WD v�R WD
X

z2F0.R/

v�z 2 Qp.R/ :

(3)

The operator QQ is defined analogously with the roles of dyadic and LGL-grids
exchanged, see [3].

To finally address (3), for the structure of the form b.�; �/ from the first stage the
direct estimates in the ASM conditions are no longer valid. It has to be suitably
relaxed along the following lines. We make an ansatz of the form

b.v;w/ WD
X

R2R

d
X

kD1

	

X

S`2T0;k .R/
b0R;k;S` .v;w/C

X

S`2T1;k .R/
b1R;k;S`.v;w/

�

; (4)

where T0;k.R/ is the collection of those LGL-subcellsS`, ` 2 	dkD1f1; : : : ; pk.R/g,
with side lengths h.`l /l in the LGL-grid Gp.R/ that are strongly anisotropic according

to .maxl¤k h.`l /l /=h
.`k/

k > Caspect for a fixed constant Caspect > 0, while T1;k.R/

is comprised of the remaining “isotropic” cells. On the isotropic cells in T1;k.R/

we use an inverse estimate applied to piecewise multi-linear LGL-interpolants of
v and w. On the remaining anisotropic cells we retain integrals over the variable
involving the partial derivative and use quadrature in the remaining variables. For
this auxiliary form b.�; �/ and the above operators Q and QQ we can verify all ASM
conditions, see [3]. Note that the Gramian B is no longer diagonal and we refer to
[3] for efficient realizations of CB.

7 Numerical Experiments: Constants in the Basic
Interpolation Inequalities

A fundamental role in the proof of the ASM-conditions in the second stage
SE-CG ! DFE-CG is played by four basic interpolation estimates. In particular,
knowing the size of the constants arising in these inequalities and their dependence
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on the polynomial degrees helps understanding the quantitative effects observed in
more complex situations later on.

As before, let ˚z denote the affine shape function now on the reference interval
OI D Œ�1; 1� � R satisfying ˚z.x/ D ıx;z for x; z 2 f�1; 1g. By Iq we denote
the polynomial interpolation operator on the LGL-grid Gq for polynomial degree q
and by Ih;D;q the piecewise affine interpolation operator on the dyadic grid GD;q
associated with Gq .

A major tool for proving the ASM conditions is given by the following theorem.

Theorem 2. Assume that cp � q � p for some fixed constant c > 0. Then we have

jIq.˚zv/jHm. OI / . kvkHm. OI / for all v 2 Qp. OI /; z 2 f�1; 1g; m 2 f0; 1g; (5)

and

jIh;D;q.˚z Qv/jHm. OI / . k QvkHm. OI / for all Qv 2 Vh;D;p. OI /; z 2 f�1; 1g; m 2 f0; 1g:
(6)

We determine next numerically the smallest constants that fulfill the inequali-
ties (5) and (6). This can be obtained by solving generalized eigenvalue problems
for the largest generalized eigenvalue. For all dyadic grids we choose the grid
generation parameter ˛ D 1:2, which balances two effects: on the one hand, the
generated auxiliary space is rich enough for a good approximation while on the other
hand, to keep the solution of the auxiliary space feasible, the dyadic grid does not
have too many degrees of freedom. Figure 1 shows the dependence of the smallest
possible constants on the polynomial degrees p and q in the range 1 � p; q � 64.

We observe that the constants in (5) and (6) become large for m D 0 when the
quotient p=q increases, but eventually stay bounded as long as cp � q � p for
a fixed c > 0. For m D 1 we find uniform moderate constants in (5) and (6) for
arbitrary choices of p and q. While the nodes in the LGL-grids move gradually with
increasing degree the associated dyadic grids change more abruptly which explains
the jumps in the graph in Fig. 1c.

We are particularly interested in the behavior of the constants when the quotient
of p and q is fixed, i.e., we restrict ourselves to a cross section through the three-
dimensional plots along a line in the pq-plane. As an example, we choose p D 2q

representing strongly varying degrees on adjacent elements. The smallest constants
in the inequalities for polynomial degrees q up to 128 are displayed in Fig. 2.

While form D 0 the constants quickly approach an asymptotic value for both (5)
and for (6), this is not true for (5) and m D 1. In this case we observe a very
slow monotonic convergence to its asymptotic limit. Thus for moderate polynomial
degrees one still observes a significant growth. Since this estimate is relevant for the
ASM conditions on the operator QQ in the second stage, this leads to some growth
of the condition number of the preconditioned problem for moderate polynomial
degrees and significant inter-element jumps, although it eventually stays uniformly
bounded independent of the polynomial degree q.
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Fig. 1 Dependance of the constants in (5) and (6) on p and q. (a) (5), m D 0, (b) (5), m D 1,
(c) (6), m D 0, (d) (6), m D 1
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Fig. 2 Constants in the basic interpolation inequalities for p D 2q (dashed line: (5), solid
line: (6)). (a) m D 0, (b) m D 1

8 Summary and Outlook

In this paper we sketch a preconditioner for the spectral symmetric interior penalty
discontinuous Galerkin method that, under mild grading conditions, is robust in
variably arbitrarily large polynomial degrees, announcing detailed results given in
[3]. The concept is based on the LGL-techniques for spectral methods combined
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with judiciously chosen nested dyadic grids through an iterated application of the
auxiliary space method. A detailed exposition of a multiwavelet preconditioner for
the dyadic grid problem, an extension to locally refined grids with hanging nodes,
strategies for parallel implementations, and the treatment of jumping coefficients
will be presented in forthcoming work.
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ASM-BDDC Preconditioners with Variable
Polynomial Degree for CG- and DG-SEM

C. Canuto, L.F. Pavarino, and A.B. Pieri

1 Introduction

Discontinuous Galerkin (DG) methods for partial differential equations are well
suited to treat nonconforming meshes and inhomogeneous polynomial orders
required by hp-adaptivity. Their elementwise formulation permit us to consider
complex meshes and the relaxation of the continuity constraints allows the poly-
nomial order to be refined locally. However, DG discretizations lead to large
and ill-conditioned algebraic systems. In this paper, we study a quasi-optimal
preconditioner for the spectral element version of Discontinuous Galerkin methods.
In particular, we focus on the interior penalty formulation of such DG schemes. For
a review of the different classes of DG methods, the reader is referred to [2].

Recent endeavors in the domain decomposition community have lead to the
development of additive [7] and multiplicative [1] Schwarz preconditioners for
DG. Among additive Schwarz solvers, nonoverlapping methods such as BDDC
(Balancing Domain Decomposition by Constraints) or FETI-DP (Dual-Primal
Finite Element Tearing and Interconnecting) for DG have been designed [6]
considering only variations on the subdomain size H or the element size h in a
finite element context. Based on the pioneer work by Refs. [5, 9] and later [10],
the BDDC algorithm was recently generalized to CG-SEM (continuous Galerkin
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spectral elements) in [8, 12]. Following the work in [11], and more recently [3],
we make use of the ASM (Auxiliary Space Method) to derive a preconditioner for
DG-SEM. The paper is organized as follows.

First, we generalize the BDDC preconditioners for CG-SEM studied in [12]
to inhomogeneous polynomial distributions, where polynomial degrees is allowed
to vary in different elements but we enforce the polynomial degree of the basis
functions to match at the interface between elements.

Second, the ASM is presented and applied to derive a solver for DG-SEM based
on the previous continuous solver. Once the Schur complement for the continuous
problem is solved, the global continuous solution is readily obtained using exact
local solvers. The discontinuous solution is then obtained solving the ASM problem.
The resulting preconditioner is proved to have the same performances of the BDDC
preconditioners for CG-SEM if the polynomial jumps are smooth enough.

In the last section, we present numerical simulations showing the robustness of
the extended BDDC preconditioner with respect to polynomial jumps. The ASM-
BDDC is finally tested by varying the number of spectral elements per subdomain
H=h, the polynomial degree p and the viscosity coefficients.

The present work is an extension of [4].

2 Balancing Domain Decomposition by Constraints
with Inhomogeneous Polynomial Degrees

We consider the second-order elliptic problem with homogeneous Dirichlet bound-
ary conditions

� r � .�ru/ D f in ˝ ; u D 0 on @˝ ; (1)

where ˝ � Rd (d D 2; 3) is a bounded domain with Lipschitz boundary.
Problem (1) admits a unique weak solution inH1

0 .˝/ if we assume that f 2 L2.˝/
and � 2 L1.˝/, with � � �0 a.e. in ˝ for a suitable constant �0 > 0.

2.1 CG-SEM Discretization for Elliptic Problems

Given a partition of˝ DSN
kD1 ˝k into spectral elements, we define the continuous

Galerkin space V C
ı D fv W ˝ ! R j 8k; vj˝k 2 Ppk .˝k/; v 2 C0.˝/g ; that is

the space of continuous elementwise polynomial functions. Problem (1) in its weak
form is then:

Find u 2 H1
0 .˝/ such that

ac.u; v/ D L.v/ 8v 2 V C
ı ; (2)
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where

ac.u; v/ D
X

k

Z

˝k

�.x/ru � rvdx; L.v/ D
X

k

Z

˝k

f vdx:

Considering elliptic coefficients � that are constant on each spectral element i.e.
�j˝k D �k , the bilinear form of problem (2) can be written

ac.u; v/ D
X

k

�ka
k
c .u; v/: (3)

2.2 CG-SEM with Locally Varying Polynomial Degrees

The definition of V C
ı allows the polynomial degree to vary inside an element.

However, the continuity constraint forces the polynomial degrees to match at the
interface between two spectral elements, in the direction parallel to the interface.
Therefore, the polynomial degree at the interface is enforced by the spectral element
carrying the lowest polynomial degree. For a given polynomial order p on ˝k , we
introduce the nodal basis functions f inginD0���pn formed by the .pn C 1/ Lagrange
interpolants at the Gauss-Legendre-Lobatto (GLL) nodes fxinginD0���pn in the n-
th dimension. Considering a node x 2 ˝k , the following two configurations can
occur:

• x 2 ˝k=@˝k. In this case the basis function �j relative to x is obtained by
tensorial product of one-dimensional basis functions and �j.x/ D ˘d

nD1  jn.xn/.
• x 2 @˝k . In this case, x lies on a face F D ˝k \ ˝k0 normal to,

lets say, the q-th dimension. The basis function �j relative to x is built as

�j.x/ D  jq .xq/˘n¤q ?jn.x
?
n /. The functions

n

 ?jn
o

—defined as the Lagrange

interpolants at the GLL nods
˚

x?n
�

—are obtained by linear combinations of the
˚

 jn
�

 ?jn.x/ D
X

im

 ?jn.xm/ im.x/ D
X

im

C k
nm im.x/:

The nodes
˚

x?n
�

are given by the lowest GLL quadrature on the face F :
pF D min .pk; pk0/.

Problem (2) is now brought into the algebraic form

Au D f; (4)

where A D PN
nD1P t

nA
nPn and fAng are the matrices representing the bilinear

forms anc .:; :/ of problem (3). The fPng are defined in terms of the coefficient fC n
ij g
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Pn D
�

I 0

0 C n

�

;

provided that internal unknowns are all ordered before those of the interface. In the
next section, we present the continuous solver relative to this algebraic system.

2.3 BDDC as a Preconditioner for the Schur Complement

In this section, we assume that the domain ˝ is decomposed into nonoverlapping
subdomains ˝ D S

k ˝
.k/. Each subdomain ˝.k/ has diameter Hk and is

composed of several spectral elements ˝.k/ D SNk
mD1 ˝m having diameter hk—

we assume without loss of generality that the partition is spatially uniform inside
a subdomain—so that Hk=hk quantifies the number of spectral elements along a
subdomain edge. By partitioning the local degrees of freedom into interior (I) and
interface (� ) sets, and by further partitioning the latter into dual (�) and primal (˘ )
degrees of freedom, then the matrix A.n/ relative to the restriction of ac.:; :/ to the
n-th subdomain˝.n/ can be written as

A.n/ D
"

A
.n/
II A

.n/T

� I

A
.n/
� I A

.n/
� �

#

D

2

6

4

A
.n/
II A

.n/T

�I A
.n/T

˘I

A
.n/
�I A

.n/
�� A

.n/T

˘�

A
.n/
˘I A

.n/
˘� A

.n/
˘˘

3

7

5

: (5)

The choice of primal and dual variables is discussed in [12]. In two dimensions,
the primal variables reduce to the vertices of the subdomains while the dual ones
correspond to the unknowns lying on an interface between two subdomains. Using
the scaled restriction matrices defined in [12] and keeping the same notations, the
BDDC preconditioner for the Schur complement of system (4) can be written as

M�1 D QRTD;� QS�1� QRD;� ; (6)

where

QS�1� D RT��

0

@

N
X

nD1

h

0 R
.n/T

�

i

"

A
.n/
II A

.n/T

�I

A
.n/
�I A

.n/
��

#�1 "
0

R
.n/
�

#

1

AR�� C ˚S�1˘˘˚T ; (7)

with the coarse matrix

S˘˘ D
N
X

nD1
R
.n/T

˘

0

@A
.n/
˘˘ �

h

A
.n/
˘I A

.n/
˘�

i

"

A
.n/
II A

.n/T

�I

A
.n/
�I A

.n/
��

#�1 "
A
.n/T

˘I

A
.n/T

˘�

#

1

AR
.n/
˘
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and a matrix ˚ mapping interface variables to primal degrees of freedom, given by

˚ D RT�˘ � RT��
N
X

nD1

h

0 R
.n/T

�

i

"

A
.n/
II A

.n/T

�I

A
.n/
�I A

.n/
��

#�1 "
A
.n/T

˘I

A
.n/T

˘�

#

R
.n/
˘ :

Equation (7) means that we solve on each subdomain a problem with Neumann
data for the dual variables and a coarse problem with matrix S˘˘ for the primal
variables.

Theorem 1. The condition number 	2 of the BDDC and FETI-DP preconditioned
systems in 2D, using at least one primal vertex for each subdomain edge F˝ � � ,
satisfies the following bound:

	2.M
�1 OS/ � C

�

1C log
	

H max
FK�

p2FK
hFK

�

�2

; (8)

where pFK is the polynomial degree over an element edge FK (we recall that if
FK D @KT

@K 0, thenpFK D min.pK; pK0/ and the constantC > 0 is independent
of pFK ; hFK ;H and the values of the coefficient � of the elliptic operator.

This result (see [4] for a proof) states in particular that the preconditioned problem
is scalable in the number of subdomains and robust with respect to jumps in the
elliptic coefficients. Once we have a preconditioner for the Schur complement of
the CG-SEM problem, we are able to build a global preconditioner for DG via the
Auxiliary Space Method. This is the object of the next section.

3 Preconditioning DG with ASM-BDDC

3.1 DG-SEM Discretization for Elliptic Problems

We recall that the weak form of problem (1) obtained choosing as Galerkin space
Vı D fv W ˝ ! R j 8k; vj˝k 2 Ppk .˝k/; v 2 L2.˝/g ; that is the space of
discontinuous elementwise polynomial functions is given by:

Find u 2 H1
0 .˝/ such that

a.u; v/ D L.v/ 8v 2 Vı; (9)

where the bilinear form defined on Vı 	 Vı is

aı.u; v/ D
X

K2K

Z

K

�ru�rv �
X

F2F
�F

Z

F

ffruggF ŒŒv��F C ffrvggF ŒŒu��F

C
X

F2F
�F�F

Z

F

ŒŒu��F ŒŒv��F ;
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as well as the linear form F.v/ D R

˝ f v defined on Vı. The jump ŒŒ:��F and
average ff:ggF operators are the standard ones defined e.g. in [2] and the coefficients
�F and �F are defined as in [6]. Choosing an appropriate basis of Vı, problem (9) is
brought into its algebraic form and we are ready to apply the ASM preconditioning
technique.

3.2 The Auxiliary Space Method (ASM)

The Auxiliary Space Method (ASM) [11] gives a general framework for designing
preconditioners of nonconforming discretizations, provided preconditioners for
some related conforming discretizations are available. Hereafter, we recall the ASM
formulation tailored to the current situation of interest, referring e.g. to [3] for the
most general setting. We assume there exists a symmetric bilinear form bı.u; v/ on
Vı 	 Vı and a linear operatorQc

ı W Vı ! V c
ı such that

aı.v; v/ . bı.v; v/ 8v 2 Vı (10)

and

bı.v �Qc
ıv; v �Qc

ıv/ . aı.v; v/ 8v 2 Vı : (11)

Here and in the sequel, the symbol . means � c for a constant c bounded
independently of ı in the admissible range of variability of ı. This implies the
following algebraic results. Let A and B denote the matrices associated with the
forms aı and bı once a basis in Vı has been chosen; similarly, let A denote the
matrix associated with the form a D aı restricted to V c

ı , once a basis in V c
ı has

been chosen. Let Z be the matrix representing the inclusion V c
ı � Vı in the chosen

bases. In addition, assume that P�1B is a symmetric preconditioner for B and P�1A is
a symmetric preconditioner for A, such that the following eigenvalue bounds hold:

�max.P
�1
B B/; �max.P

�1
A A/ � �max; �min.P

�1
B B/; �min.P

�1
A A/ � �min :

Then,

P�1
A
WD P�1B CZP�1A ZT (12)

is a symmetric preconditioner for A, such that

	2.P
�1
A

A/ � �max

�min
: (13)
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Fig. 1 Test case with 5 � 5 subdomains. Polynomial degrees and elliptic coefficients obey
a pyramidal distribution, where p increases toward the center of the domain (a), the elliptic
coefficient � decreases (b)

Now, we choose for P�1A the global BDDC-based preconditioner defined according
to [13]

P�1A D
�

I �A�1II AI�
0 I

��

A�1II 0

0 M�1
��

I 0

�A�IA�1II I
�

; (14)

where M�1 is the BDDC preconditioner of Eq. (6). The subscript � means that we
consider the unknowns lying on the Schur skeleton while the subscript I is linked
to internal unknowns (inside a subdomain). In the last section, we present some
numerical results showing the robustness of preconditioners (6) and (12).

4 Numerical Results and Conclusion

We present two test cases that illustrate the robustness and quasi-optimality of both
preconditioners P�1A and P�1

A
. First, the number of spectral elements is fixed and

we consider both jumping elliptic coefficients and polynomial degrees, see Fig. 1.
The results are presented in Table 1, where it is shown that the condition number
	2.P

�1
A A/ is quite insensitive to moderate jumps in the polynomial degree such

as p ! p C 2 ! p C 4. Discontinuities in the elliptic coefficients are managed
quite well by the ASM-BDDC preconditioner for minor variations in the polynomial
degree. We also study the sensitivity of 	2 to simultaneous variations in h and
p. In particular, setting H D 1 (that is the continuous solver is exact), Table 2
shows that the condition number of the ASM-BDDC remains O.1/ in agreement
with bound (8) in Theorem 1. Lastly, a case with rectangular spectral elements is
investigated, see Fig. 2. We consider a diadic evolution of spectral elements width h
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Table 1 Condition numbers
for increasing polynomial
degree p with nonuniform
(uniform in brackets)
polynomial distribution and
jumping elliptic coefficients
given in Fig. 1, with 5� 5
subdomains and H=h D 1

Degree p BDDC 	2.P�1
A A/ ASM-BDDC

	2.P
�1
A

A/

2 2.34 (1.47) 5.95 (5.09)
4 3.37 (2.64) 6.31 (5.71)
6 4.20 (3.56) 6.54 (6.20)
8 4.89 (4.33) 6.70 (6.50)
10 5.49 (4.99) 6.83 (6.70)
12 6.02 (5.56) 6.94 (6.82)

Table 2 Condition number of the preconditioned DG matrix for increasing polynomial degree
p with uniform polynomial distribution and increasing h, so that the ratio p2=h is maintained
approximatively constant

Degree p # elements p2

h
ASM 	2.P

�1
A

A/

2 252 100 5.10
3 102 90 5.44
4 62 96 5.82
5 42 100 6.07
6 32 108 6.25

Uniform elliptic coefficients �K D 1. Results for one subdomain H D 1

p κ2(P−1
A A) κ2(P−1

A A)

2 4.12 14.13
4 4.09 13.46
6 4.75 12.89
8 5.43 12.50
10 6.07 12.24
12 6.65 12.08

Fig. 2 Test case with uniform polynomial degree and diadic mesh in h. The ratio H=h is kept
equal to 1, meaning one element per subdomain. Condition number of the preconditioned DG
matrix for this configuration. Uniform elliptic coefficients �K D 1. Results for one element per
subdomain H=h D 1

as 2�i for i D 1; � � � ; 5 with a uniform polynomial degree. The results are presented
in Fig. 2 for both k2.P�1A

A/ and 	2.P�1A A/.
As a conclusion, this paper presents a new way of preconditioning DG-SEM

systems based on an available preconditioner for CG-SEM. The ASM applied to
such a global BDDC-based preconditioner provides a solver for DG that is still

0.H log.max p2K
hK
// but it also introduces a dependence on the maximal polynomial

jump and elliptic coefficients. However, we show numerically that for moderate
polynomial jumps, the preconditioner is scalable and quasi-optimal.
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Domain Decomposition in Shallow-Water
Modelling for Practical Flow Applications

Mart Borsboom, Menno Genseberger, Bas van ’t Hof, and Edwin Spee

1 Introduction

For the simulation of flows in rivers, lakes, and coastal areas for the executive arm of
the Dutch Ministry of Infrastructure and the Environment the shallow-water solver
SIMONA is being used [10]. Applications range from operational forecasting of
flooding of the Dutch coast [2] and big lakes [6], to the assessment of primary
water defences (coast, rivers, and lakes). These applications require a robust and
efficient modelling framework with extensive modelling flexibility and good parallel
performance.

About two decades ago, a parallel implementation of SIMONA was developed
[9,11] based on domain decomposition with maximum overlap. In the same period,
non-overlapping domain decomposition with optimized coupling was considered
for Delft3D-FLOW [1], a shallow-water solver that is numerically very similar
to SIMONA. More recently, ideas of the latter were adapted for incorporation in
SIMONA for enhanced modelling flexibility and parallel performance. This will be
the subject of the present paper.

The paper is organized as follows. The numerical approach for modelling shal-
low-water flow as implemented in SIMONA is outlined in Sect. 2. In Sect. 3 we
show how domain decomposition has been incorporated and which refinements have
been made. The parallel performance of the modified method is illustrated in Sect. 4
for two practical flow problems from civil engineering.
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2 ADI-Type Shallow-Water Solvers

The shallow-water equations consist of a depth-integrated continuity equation and
two horizontal momentum equations. Vertical momentum is replaced by the hydro-
static pressure assumption, i.e., the vertical variation of the pressure is assumed
to depend solely on hydrostatic forces as determined by the position of the free
surface. For the numerical solution of the shallow-water equations SIMONA applies
a so-called alternating direction implicit (ADI) method to integrate the equations
numerically in time, using an orthogonal staggered grid with horizontal curvilinear
coordinates � and � [10].

In the ADI method, each time step is split in two stages of half a time step. In the
first stage, the water-level gradient is taken implicitly in the �-momentum equation
and explicitly in the �-momentum equation. The mass fluxes in the continuity
equation are taken implicitly/explicitly in �- and �-direction as well, allowing the
implicit terms to be combined to uncoupled tridiagonal systems of equations in �-
direction for the water level at the intermediate time level. In contrast, the evaluation
of the horizontal convection terms and viscosity terms are respectively explicit and
implicit in the �- and �-momentum equation. In the second stage of the time step,
the implicit and explicit discretisations are interchanged. For stability, derivatives in
vertical direction and the bottom friction term are always integrated implicitly.

The ADI method requires the use of fairly small time steps to avoid excessive
splitting errors:

u�t

�x�
� O.1/ ; v �t

�x�
� O.1/ ;

p

g h�t

�x�
� O.10/ ; and

p

g h�t

�x�
� O.10/ :

(1)

Here, �x�; �x� are the grid sizes and u; v the velocities in the two horizontal
curvilinear coordinate directions � and �, �t is the time step, h the local water
depth, and g the acceleration due to gravity (

p

g h is the shallow-water wave
celerity). Because of the conditions (1), the discretized equations to be solved have
a fairly high diagonal dominance horizontally. This enables the use of semi-explicit
iterative methods horizontally, such as red-black Jacobi to solve implicit convection
and viscosity. For the same reason, horizontal domain decomposition with explicit
coupling, if designed properly, can be very efficient. We remark that in the vertical
direction grid sizes �x�; �x� are used and the systems of equations are much
stiffer. Vertical derivatives are therefore always integrated implicitly in time.
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3 Domain Decomposition Techniques for ADI-Type
Shallow-Water Solvers

About two decades ago, a parallel implementation of SIMONA was developed
[9, 11] using a multi-domain version of the ADI method with Dirichlet–Dirichlet
coupling and maximum overlap to ensure fast convergence. This approach is still
applied in the 2006 version of SIMONA. Later on, for modelling flexibility, the
possibility to use different grid resolutions per subdomain has been introduced. For
such a situation it is not that easy to deal with an overlap between subdomains.
Therefore, the overlap was removed. This concerns the overlap of the physical
area of the subdomains, i.e., the area containing the inner grid cells. For the
implementation of boundary conditions and coupling conditions, virtual grid cells
were added outside the physical areas along boundaries and DD interfaces. So
although the subdomains do not overlap, the subdomain grids do. Unfortunately,
a Dirichlet–Dirichlet coupling with minimal overlap (only the virtual grid cells
overlap) has a very slow rate of convergence. See also panel (b) of Fig. 1. By re-
using ideas from a non-overlapping domain decomposition approach with optimized
coupling for Delft3D-FLOW [1], the good convergence behavior has been restored.
This approach is implemented since 2010 in SIMONA.

To illustrate how convergence errors due to domain decomposition propagate
from one subdomain to another in a multi-domain ADI-type shallow-water solver,
we consider a uniform grid of size �x� , a uniform depth h, and assume a small
surface elevation � and flow velocity u. The implicit systems in the �-direction at
the first half time step from tn to tnC1=2 are then of the form (discretized continuity
equation and momentum equation):

�
nC1=2
i � �ni
�t=2

C hunC1=2iC1=2 � unC1=2i�1=2
�x�

D : : : ; unC1=2iC1=2 � uniC1=2
�t=2

C g �
nC1=2
iC1 � �nC1=2i

�x�
D : : : : (2)

At the second half time step from tnC1=2 to tnC1, equations in �-direction (j -index)
are obtained. By eliminating unC1=2iC1=2 , the two equations (2) can be combined to:

�
nC1=2
i � CFL2

	

�
nC1=2
iC1 � 2 �nC1=2i C �nC1=2i�1

�

D : : : ; (3)

with CFL number CFL D pgh�t=.2�x�/.
To study the behavior of (3) in a DD framework, we consider the homogeneous

equation that is satisfied by the DD convergence error ı�nC1=2;mi D �
nC1=2;m
i �

�
nC1=2
i , with �nC1=2i the solution that is sought and �nC1=2;mi its iteratively determined

approximation at iterationm:
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ı�
nC1=2;m
i � CFL2

	

ı�
nC1=2;m
iC1 � 2 ı�nC1=2;mi C ı�nC1=2;mi�1

�

D 0 : (4)

The inhomogeneous perturbation of ı�nC1=2;mi comes from the boundaries of the
subdomains where information is updated explicitly (Schwarz algorithm). Equa-
tion (4) determines how that information spreads across a subdomain and reaches
the opposite subdomain boundary. This becomes clear from the solution of (4),
which is of the form:

ı�
nC1=2;m
i D CLR�

i C CRL�
�i ; (5)

with � D .CFL2 C 1=2 �
p

CFL2 C 1=4/=CFL2. The solution consists of the
superposition of two modes: one decaying from left to right and one decaying from
right to left. Panel (a) in Fig. 1 illustrates this for a subdomain of eight grid cells
at CFL D 2 (green), CFL D 5 (red), and CFL D 10 (blue). For CFL  1, we
have � � 1=CFL2. At such a high decay rate per grid cell, which is due to the large
diagonal dominance of (4), a Dirichlet–Dirichlet coupling is efficient. For CFL� 1,
however, we have � � 1�CFL�1 and hence a much lower decay rate. A Dirichlet–
Dirichlet coupling is then not efficient anymore, unless a large overlap is used to
compensate for the low decay rate. This is illustrated in panel (b) and (c) of Fig. 1.

A much larger DD convergence speed is obtained by only transferring from left
to right (right to left) the information that is moving in that direction. This is realized
by the coupling:

.CFLC 1=2/ı�nC1=2;mC1iR
� .CFL � 1=2/ı�nC1=2;mC1iRC1

D .CFLC 1=2/ı�nC1=2;miL�1 � .CFL � 1=2/ı�nC1=2;miL
; (6)

with iR the index of the left virtual grid cell of the subdomain right of the DD
interface under consideration, and with iL the index of the right virtual grid cell
of the subdomain left. Notice the explicit nature of the coupling: the solution of
domain L at previous iteration m determines the value (right-hand side of (6)) of
the condition to be imposed at the left boundary of domain R during next iteration
m C 1 (left-hand side of (6)). An equivalent procedure is used for the transfer of
coupling information in the other direction, from domainR to domain L.

Panel (d) of Fig. 1 illustrates the high DD convergence rate that can be obtained
with an optimized coupling; the convergence speed is about as high as would be
obtained with a Dirichlet–Dirichlet coupling with maximum overlap (of half a
subdomain, cf. panel (c)). However, because of the overlap, the amount of work per
iteration in the latter would be twice as large. Furthermore, as mentioned before, it
can not be combined easily with local grid refinements for which the grid cells in
the overlap do not coincide, contrary to the situation in panel (c).

The fast DD convergence speed that for diagonally dominant problems can be
obtained with an optimized explicit local DD coupling (optimized Schwarz), and
the link with absorbing boundary conditions, is well known [3–5, 7, 8]. Because the



Domain Decomposition in Shallow-Water Modelling for Practical Flow Applications 561

Fig. 1 Behavior of convergence error ı�nC1=2;m
i in subdomains consisting of eight inner grid

cells (white) and 1, 2, or 3 added virtual grid cells (grey) that overlap with inner grid cells of
neighbouring subdomains: (a) inside a subdomain at CFL D 2 (green), CFL D 5 (red), and
CFL D 10 (blue); (b) across three subdomains at CFL D 5 with Dirichlet boundary condition left,
Neumann boundary condition right, and multiplicative Schwarz Dirichlet–Dirichlet coupling with
minimal overlap in between (red, blue, green indicate subsequent DD iterations); (c) enhancement
of DD convergence with Dirichlet–Dirichlet coupling when using a larger overlap (increasingly
longer dotted lines indicate error reduction for 1-, 2-, and 3-cell overlap); (d) across three
subdomains with optimized multiplicative Schwarz based on the decomposition of the convergence
error (red lines) in its two solution modes (blue and green lines), cf. (5). Note that in (b, c) the
arrows indicate the transfer of Dirichlet values from an inner grid cell to a virtual grid cell; in
(d) the arrows indicate the transfer of optimized coupling information from interface to interface
(Color figure online)

splitting applied in the ADI method leads to independent 1D problems, we have
the advantage that the optimized coupling can not only easily be determined for
constant �x� and h, as we did here, but also for the general case, by means of the
LU decomposition of the resulting tridiagonal systems that are of the form (3), but
with space- and time-varying coefficients. The bidiagonal L-matrices describe the
decay of the solution in increasing i - (or j -) direction. Their last rows determine
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the combinations of pairs of �’s at the subdomain interface (one � in a virtual grid
cell, the other � in the adjacent inner grid cell) that do not specify this part of the
solution, and hence only specify solution modes decaying in decreasing i - (or j -)
direction. Transferring these combinations in decreasing i - (or j -) direction across
DD interfaces (the variable-coefficient generalization of (6)) therefore ensures
maximum DD convergence speed. Likewise for the bidiagonal U-matrices and the
exchange of coupling information in the other direction.

4 Applications

There are many application areas of SIMONA. Here we present two examples. First
we show the effect of the optimized coupling without overlap for a schematic model
of the river Waal in the Netherlands. This schematic model has a simple geometric
shape such that load balancing is straightforward. Second we show the parallel
performance of the approach for DSCM, a huge real-life hydrodynamic model in
which both load balancing and number of unknowns are an issue.

For the experiments we considered the following hardware:

• H4 linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 AMD dual-core Athlon X2 5200B processor with 2.7 GHz per
core,

• H4+ linux-cluster at Deltares, nodes interconnected with Gigabit Ethernet, each
node contains 1 Intel quad-core i7-2600 processor with 3.4 GHz per core and
hyperthreading (so effectively eight threads are used on four cores), and

• Lisa linux-cluster at SURFsara, nodes interconnected with Infiniband, each node
contains two Intel quad-core Xeon L5520 processors with 2.3 GHz per core.

On the H4 linux-cluster both the 2006 and 2010 version of SIMONA were used.
On the H4+ and Lisa linux-cluster the 2010 version of SIMONA was used. Recall
(see Sect. 3) that the 2006 version uses Dirichlet–Dirichlet coupling and maximum
overlap where the 2010 version uses optimized coupling without overlap.

4.1 Schematic Model of River Waal

To study the effect of lowering the groynes on design flood level, in [12] a
schematised river reach was used that was based on characteristic dimensions of
river Waal in the Netherlands. Here, for the performance tests we will use the
detailed model of [12] in which the groynes are represented as bed topography (see
Fig. 2).

The detailed model is a symmetrical compound channel of 30 km length
including floodplain (width of 1,200 m) and main channel (width of 600 m). We
apply a depth averaged version of SIMONA. The floodplain is schematised with
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Fig. 2 Schematic model of river Waal: an excerpt of the model including part of the floodplain
(top), parallel performance for different versions of SIMONA and on different hardware (bottom)

grid cells of 2 m 	 4 m and the main channel with grid cells of 2 m 	 2 m, resulting
in more than 9 million unknowns. A time step of 0.015 min is used, resulting in
12,000 time steps for the 3 h simulation that we consider here for the performance
tests.

From Fig. 2 it can be observed that, in general, SIMONA scales well. Further-
more, on the H4 linux-cluster the 2010 version of SIMONA is about 20–30 % faster
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5

4

3

Fig. 3 DCSM. Left: partitioning of computational domain in 96 subdomains using the orthogonal
recursive bisection (ORB) method. Right: parallel performance on Lisa linux-cluster for partition-
ings in vertical strips and ORB partitionings

than the 2006 version. This additional work can be explained from the overlap in
the 2006 version which is not in the 2010 version (see Sect. 3). The difference in
performance for the 2010 version of SIMONA on H4, Lisa, and H4+ linux-cluster
is because of the different hardware.

4.2 Next Generation Dutch Continental Shelf Model (DCSM)

The current generation of nested SIMONA models used for predicting water levels
along the Dutch coast in an operational mode (see [2]) already require high
performance computing. At the Lisa linux-cluster parallel performance of the 2010
version of SIMONA was tested for a next generation version of the DCSM (North
Sea and adjacent region of the North Atlantic). This 3D (ten layer) higher resolution
model includes salinity and temperature stratification processes which are essential
for simulating among others the spread of the freshwater Rhine plume along the
Dutch coast. This new model requires a huge computational effort but simulation
times cannot increase for operational purposes. Although the North Sea model has
an irregular geometry which is not ideal for scalability, performance tests at Lisa
showed linear scalability up to 100 processors. The left panel of Fig. 3 shows the
partitioning of the domain in 96 subdomains of (about) the same number of grid
cells that is obtained by applying orthogonal recursive bisection (ORB). The right
panel shows the parallel performance on the Lisa linux-cluster as a function of the
number of subdomains and cores, for partitionings in strips and by means of ORB.
The results show an optimal speed-up for the ORB partitioning and a small decay
in performance for the larger strip decompositions. The latter is due to the shape of
the strips. The strips become very thin with widths of less than a dozen grid cells
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as the number of domains increases, which affects the validity of the applied local
coupling optimization.

Acknowledgements We thank SURFsara (www.surfsara.nl) for their support in using the Lisa
linux-cluster.
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Space–Time Domain Decomposition with Finite
Volumes for Porous Media Applications

Paul-Marie Berthe, Caroline Japhet, and Pascal Omnes

1 Introduction

In the context of simulating flow and transport in porous media (e.g. for the
assessment of nuclear waste repository safety), two main challenges must be taken
into account: the heterogeneity of the medium with physical properties ranging
over several orders of magnitude, and widely differing space–time scales. Solving
these features accurately requires very fine meshes or well-adapted and highly
nonconforming meshes. On the one hand, one possible approach is to use non-
overlapping domain decomposition which leads to efficient parallel algorithms
with local adaptation in both space and time. The Optimized Schwarz Waveform
Relaxation method (OSWR) [1, 9] with the Discontinuous Galerkin (DG) scheme
in time [8] is a solution procedure which allows local time stepping. On the other
hand, the finite volume schemes of DDFV type (Discrete Duality Finite Volumes)
for diffusion problems [3] allow highly nonconforming meshes. Finally, [6] presents
a strategy which is well adapted to domain decomposition for coupling upwind
discretization of the convection with diffusion in the context of a finite volume
method. In this paper, we extend the OSWR method to the DDFV scheme for
advection-diffusion problems, using the strategy of [6]. The method is proven to
be well posed and we prove the convergence of the iterative algorithm.
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We consider the following transport equation in a porous medium :

L c D !@tc � r � .KKKrc � bbbc/ D f; in ˝ 	 .0; T /; (1)

c.:; 0/ D c0; in ˝;

where ˝ is an open bounded polygonal subset of R2, c is the concentration
(e.g. of radionuclides) and f the source term. Equation (1) is supplemented with
homogeneous Dirichlet boundary conditions. We assume that˝ is decomposed into
non-overlapping subdomains. For the sake of simplicity, we present the method in
the case of two polygonal subdomains˝L and˝R with interface � WD @˝L\@˝R

(the method can be extended to the many subdomain case). We assume that the
possible discontinuities of the porosity coefficient !, the tangential component of
the advection velocity bbb and the anisotropic diffusion matrixKKK are along � . In the
sequel, the subscripts and superscripts L (resp. R) refer to ˝L (resp.˝R).

The initial problem (1) is equivalent to a system of subproblems defined on ˝L

and ˝R with the following physical transmission conditions on � : Œc�� D 0 and
Œ.KKKrc�bbbc/ �nnn�� D 0, where Œv�� denotes the jump of v through � and nnn a normal
vector to � . These interface conditions can also be written, through Robin interface
operators BL and BR, under the equivalent form

ŒBLc�� D ŒBRc�� D 0; (2)

with BL D .KKKrc � bbbc/ � nnnL C �L ; BR D .KKKrc � bbbc/ � nnnR C �R; (3)

where nnnL (resp. nnnR) is the outward normal to ˝L (resp. ˝R) and �L (resp. �R) a
strictly positive function in L1.� /.

Then, an OSWR algorithm [1, 9] for solving problem (1) is:

8

ˆ

<

ˆ

:

L c
.`C1/
L D f in ˝L 	 .0; T /

c
.`C1/
L .:; 0/ D c0 in ˝L

BLc
.`C1/
L D BLc

.`/
R on � 	 .0; T /

8

ˆ

<

ˆ

:

L c
.`C1/
R D f in ˝R 	 .0; T /

c
.`C1/
R .:; 0/ D c0 in ˝R

BRc
.`C1/
R DBRc

.`/
L on � 	 .0; T /

(4)

where �L and �R optimize the convergence factor of (4), see [1, 4, 7].
In Sect. 2, we present the DDFV scheme for the advection–diffusion problem

in the global domain ˝ . Then, in Sect. 3, we describe the multidomain DDFV
scheme. Section 4 is devoted to the OSWR algorithm for the DDFV scheme. Finally
in Sect. 5, we present numerical results.
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Fig. 1 DDFV primal (solid lines), dual (dashed lines) and half-diamond cells (filled triangles):
interior (left) and interface (right) cells

2 The DDFV scheme for advection-diffusion problems

In this part, we present the DDFV scheme for Problem (1). This scheme uses
unknowns at the centers of the cells of a primal mesh and at their vertices. These
vertices are considered as the centers of dual cells, obtained by joining the centers
of the surrounding primal cells through the edge midpoints. This construction is
sufficiently general to be able to treat non-conforming meshes, see Fig. 1 (left)
where the primal (resp. dual) nodes are in black (resp. red), and Ti1 (resp. Pk1 ) is
an example of primal (resp. dual) cell. Using these supplementary vertex unknowns
is the price to pay to be able to use arbitrary meshes [3]. We split .0; T / into time
intervals In WD .tn�1; tn/ and define�tn WD tn� tn�1. We denote by cni1 (resp. cnk1 ) an
approximation of c at time tn in the cell Ti1 (resp. Pk1 ). Restricting the presentation
to the lowest order DG scheme in time, (1) can be discretized on each time interval
and on each primal cell Ti1 by

!i1
cni1 � cn�1i1

�tn
� 1

jTi1 j
X

Aj�@Ti1
jAj jF n

i1j
D f n

i1
WD 1

�tnjTi1 j
Z

In

Z

Ti1

f .xxx; t/dxxxdt;

(5)
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and on each inner dual cell Pk1 by

!k1
cnk1 � cn�1k1

�tn
� 1

jPk1 j
X

A0
j;˛�@Pk1

jA0j;˛jF n
k1j;˛
D f n

k1
WD 1

�tnjPk1 j
Z

In

Z

Pk1

f .xxx; t/dxxxdt:

(6)

In (6), the subscript ˛ 2 f1; 2g refers to the local numbering i1; i2, and !k1 is
defined by

jPk1 j!k1 D jPk1 \˝Lj!Lk1 C jPk1 \˝Rj!Rk1 : (7)

In order to lighten the notations, we leave out the exponents n in this section.
For any primal edge Aj D Œk1k2� and its associated dual edges A0j;˛ , the fluxes

Fi1j and Fk1j;˛ are sums of a diffusive and a convective contribution. The diffusive
part is evaluated as in [3] using a gradient defined by two directions, on each triangle
k1i˛k2 DW Dj;˛ (also called “half-diamond cell”), see Fig. 1 (left):

(

.rhc/i˛j �
�!
i˛� D c� � ci˛

.rhc/i˛j �
��!
k1k2 D ck2 � ck1

; (8)

where � is the midpoint of Aj . Formulas (8) are equivalent to

.rhc/i˛j D
1

jDj;˛j
	

.ck2 � ck1/jA0j;˛jnnn0k1j;˛ C .c� � ci˛ /jAj jnnni1j
�

; (9)

where nnni1j is the outward normal to Ti1 on Aj and nnn0k1j;˛ the outward normal to Pk1
on A0j;˛ . The unknown c� is introduced both to deal with possibly discontinuous
tensors KKK and to be able to write a local discretization adapted to domain
decomposition, as will be shown in Sect. 3. The gradient .rhc/i˛j is used in the
diffusive part of Fi˛j and in the diffusive part of Fk1j;˛ and Fk2j;˛ . Let us denote by
Œa�C and Œa�� the positive and negative part of a such that a D Œa�� C Œa�C. The
convective part of the flux on the primal mesh is discretized with an upwind scheme
which is local to the half-diamond cell Dj;˛:

.bbbc � nnn/i˛j WD Œ.bbb � nnn/i˛j �Cci˛ C Œ.bbb � nnn/i˛j ��c� : (10)

This upwinding using c� ensures that the discretization of the convection flux is
local to a subdomain. This is the idea borrowed from [6]. On the dual mesh, we use
a standard upwind scheme:

.bbbc � nnn0/k1j;˛ WD Œbbbj;˛ � nnn0k1j;˛�Cck1 C Œbbbj;˛ � nnn0k1j;˛��ck2 : (11)

In (10), .bbb �nnn/i˛j is defined by (recall that bbb �nnn is continuous through primal edges)
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.bbb � nnn/i˛j WD
1

jAj j
Z

Aj

bbb � nnni˛j .�/d�: (12)

In (11),bbbj;˛ is the mean-value of bbb overA0j;˛. The fluxes are then defined as follows:

Fi˛j WD ŒKKKi˛j .rhc/i˛j � � nnni˛j � .bbbc � nnn/i˛j ; (13)

Fk1j;˛ WD ŒKKKj;˛.rhc/i˛j � � nnn0k1j;˛ � .bbbc � nnn0/k1j;˛: (14)

In (13) and (14), KKKi˛j and KKKj;˛ are the mean-values of KKK jTi˛ over Aj and A0j;˛,
respectively (we recall that KKK may be discontinuous through primal edges Aj ). In
order to complete the definition of the scheme, we still need an equation for each c� ,
and one equation for each boundary dual cell. If � is not on @˝ , c� is eliminated by
requiring the flux conservation through the common interface @Ti1 \ @Ti2 :

Fi1j C Fi2j D 0: (15)

Formula (15) defines a unique c� that we replace in (9) and (10). For nodes � and k
located on the Dirichlet boundary, we set

c� D ck D 0 ; 8� 2 @˝ ; 8k 2 @˝: (16)

Theorem 1. We suppose that r � bbb � 0 and that KKK is a bounded, uniformly
definite positive matrix. Then, the discrete convection-diffusion problem in the
global domain˝ , defined by formulas (5) to (16) is well-posed.

3 The Multidomain DDFV Scheme

In this part we describe the local DDFV scheme in a subdomain together with the
discretization of the Robin conditions (2) and (3).

The subdomain scheme is not modified for primal cells : we still use (5) and (13)
with the superscript L (resp. R) for ˝L (resp. ˝R), cL;R� D 0 on the Dirichlet
boundary and (15) when � is not on @˝ nor on � . Moreover, when � , midpoint
of a primal edge Aj , is on � , we discretize the Robin conditions (2) and (3) on
Aj by

F
L;n
i1j
C �L;j cL;n� D �F R;n

i2j
C �L;j cR;n� ; (17)

F
R;n
i2j
C �R;j cR;n� D �F L;n

i1j
C �R;j cL;n� ; (18)

where �L;j and �R;j are discrete counterparts of �L and �R defined on each primal
edge Aj . In (17) and (18), we use the convention that i1 is in ˝L and i2 in ˝R. We
remark that (17) and (18) are equivalent to cR;n� D cL;n� and F L;n

i1j
C F R;n

i2j
D 0.
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On interior dual cells, the scheme is not modified: we still use (6) with the
superscript L (resp. R) for˝L (resp.˝R). Moreover, cL;Rk D 0 if k is a node located
on the Dirichlet boundary. Finally, if k1 belongs to � n @˝ , then we denote by PL

k1

(resp. PR
k1

) the boundary dual cell in ˝L (resp. ˝R) to which k1 is associated (see
Fig. 1, right). The cell PL

k1
(resp. PR

k1
) has two types of edges: the edges A0j;˛ that

belong to @PL
k1
n � (resp. @PR

k1
n � ) and the edges on @PL

k1
\ � (resp. @PR

k1
\ � ).

Integrating (1) on PL
k1

and over In yields the approximation

!Lk1 jPL
k1
j
 

cLnk1 � cLn�1k1

�tn

!

�
X

A0
j;˛�@PLk1

jA0j;˛jF n
k1j;˛
� j@PL

k1
\ � jFLn

k1;�
D jPL

k1
jf Ln
k1
;

(19)

where FLn
k1;�

is an approximation of 1

�tn j@PLk1\� j
R

In

R

@PLk1
\� .KKKrc�bbbc/ �nnnL and f Ln

k1

is defined similarly to f n
k1

in (6) in which Pk1 is replaced by PL
k1

. In the same way,
we define F Rn

k1;�
and f Rn

k1
, and we obtain the following approximation of (1) on PR

k1

!Rk1 jPR
k1
j
 

cR nk1 � cR n�1k1

�tn

!

�
X

A0
j;˛�@PRk1

jA0j;˛jF n
k1j;˛
� j@PR

k1
\ � jFRn

k1;�
D jPR

k1
jf Rn
k1
:

(20)

Equations (19) and (20) introduce new flux unknowns F Ln
k1;�

and FRn
k1;�

which are
related to the boundary unknowns cLnk1 and cR nk1 by the following dual approxima-
tions of the Robin boundary conditions (2) and (3)

FLn
k1;�
C �L;k1cLnk1 D �F Rn

k1;�
C �L;k1cR nk1 ; (21)

FRn
k1;�
C �R;k1cR nk1 D �F Ln

k1;�
C �R;k1cLnk1 ; (22)

where �L;k1 and �R;k1 are discrete counterparts of �L and �R defined on each dual
intersection @PL

k1
\ � D @PR

k1
\ � . We remark that (21) and (22) are equivalent

to cLnk1 D cR nk1 and FLn
k1;�
C FRn

k1;�
D 0. With these equalities for all time steps,

adding (19) and (20) and using (7) yields (6) on Pk1 D PL
k1
[ PR

k1
, the inner dual

cell of the global domain˝ .
In order to study the well-posedness of the subdomain problems, we restrict

ourselves to one subdomain, e.g. ˝L. Recalling that .bbb � nnn/i˛j is defined by (12)
and defining .bbb � nnn/Lk1 by

.bbb � nnn/Lk1;� WD
1

j@PL
k1
\ � j

Z

@PLk1
\�
bbb � nnnL.�/d�;

we can prove the following theorem
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Theorem 2. Under the hypothesis of Theorem 1, if �L;j >
1
2
.bbb � nnn/i1j for all j

such that Aj � � and if �L;k1 >
1
2
.bbb � nnn/Lk1;� for all k such that @PL

k \ � ¤ ;,
then the discrete problem in ˝L, defined by formulas (5)–(6) and (13) to (16) with
the superscript L, formula (19) for boundary dual cells, and the Robin conditions

F
L;n
i1j
C �L;j cL;n� D gL;nj .on primal edges Aj � � /

F Ln
k1;�
C �L;k1cLnk1 D gL; nk1

.on dual edges @PL
k1
\ � /;

with gL;nj and gL; nk1
given real numbers, is well-posed.

4 The Schwarz Algorithm

Let S denote the superscript L or R. The discrete Schwarz algorithm is defined
as follows: let .cS n .`/i ; c

S n .`/

k ; c
S n .`/
� / and .F

S n .`/
ij ; F

S n .`/
kj;˛ ; F

S n .`/

k;� / be given
approximations, at step `, of c at nodes i; k; � and .KKKrc � bbbc/ � nnn at edges
Aj ; A

0
j;˛ , @P S

k \ � . Then we compute .c
S n .`C1/
i ; c

S n .`C1/
k ; c

S n .`C1/
� / and

.F
S n .`C1/
ij ; F

S n .`C1/
kj;˛ ; F

S n .`C1/
k;� / as the solution of (5) and (6) and (13)–(16)

with the superscript L (resp. R), formula (19) (resp. (20)) and the following Robin
conditions for interface primal and dual cells:

F
Ln .`C1/
i1j

C �L;j cL n .`C1/� D �FRn .`/
i2j

C �L;j cR n .`/� ;

F
Ln .`C1/
k1;�

C �L;k1cL n .`C1/k1
D �FRn .`/

k1;�
C �L;k1cRn .`/k1

;

F
Rn .`C1/
i2j

C �R;j cR n .`C1/� D �FLn .`/
i1j

C �R;j cLn .`/� ;

F
R n .`C1/
k1;�

C �R;k1cR n .`C1/k1
D �FLn .`/

k1;�
C �R;k1cL n .`/k1

:

Theorem 3. Under the hypothesis of Theorem 2, if �R;k1 � �L;k1 � .bbb �nnn/Lk1;� D 0
for all k such that @PL

k \ � ¤ ; and if �R;j � �L;j � .bbb � nnn/i1j D 0 for all j
such that Aj � � , then the discrete Schwarz algorithm converges to the solution of
the discrete convection-diffusion problem in the domain˝ , defined by formulas (5)
to (16).

Remark 1. Following [4, 7], the Robin parameters are chosen in the form

�L;j D .�.bbb � nnn/i1j C pL;j /=2 ; �R;j D ..bbb � nnn/i1j C pR;j /=2; (23)

�L;k1 D .�.bbb � nnn/Lk1;� C pL;k1/=2 ; �R;k1 D ..bbb � nnn/Lk1;� C pR;k1 /=2; (24)

where pL;j , pR;j and pL;k1 , pR;k1 are the primal and dual parameters which
optimize the convergence factor of the continuous algorithm (4). This optimization
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Fig. 2 Top: Discrete convergence factor (left) and error versus iterations (right), with p� and p�
h .

Bottom: solution at time t D 0:4 (left) and error versus iterations (right) for different values of p

is performed by a numerical minimization process. With the form given by (23)–
(24), the hypothesis in Theorem 3 reduces to pL;j D pR;j and pL;k1 D pR;k1 .
Remark 2. The scheme we proposed here is different from the one developed in [2].
On the other hand, it is shown independently in [5], using an analysis of the
convergence factor at the discrete level, that our method leads to a faster convergence
than the approach in [2]. In our simulations, we observed that using the optimized
parameters at the discrete level does not improve significantly the convergence.

5 Numerical Results

Here, the Robin parameter for ˝L=R is taken as the mean value of all �L=R;j and
�L=R;k1 and is denoted ��L=R. Moreover, bbb � nnn D 0 on � in our tests, thus ��L=R D
p�, the same value for all primal and dual (L and R) interface cells. Its discrete
counterpart p�h is obtained in the same way but with an optimization of the discrete
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convergence factor, denoted �h. We assume that KKK D �III where III is the identity
matrix.

In the first test case, we take ˝L D .0; 2:5/ 	 .0; 5/ and ˝R D .2:5; 5/ 	 .0; 5/,
with T D 1, !L D !R D 1, bbb D 000, �j˝L D 0:06, and �j˝R D 1. The mesh size and
time step are h D 5

100
and �t D 1

70
respectively. On Fig. 2 we show a section along

the diagonal .wm; km/�.wM ; kM / of �h (top left), where .wm;wM /	.km; kM / is the
frequencies interval over which �h is optimized, with wm D �

T
; wM D �

�t
; km D

�
5
; kM D �

h
, and the error versus the number of iterations for the Schwarz algorithm

(top right) with p� and p�h . We simulate directly the error equations, f D 0 and use
a random initial guess so that all the frequency components are present. We observe
that using p�h or p� give similar results. We also observe the equioscillation property
[1] with p�h .

In the second test case, we take˝L D .0; 0:5/	.0; 1/ and˝R D .0:5; 1/	.0; 1/,
with T D 1, !L D 0:2, !R D 1, �j˝L D 0:005, �j˝R D 0:01, and a rotating velocity
field bbb D .�sin.�.y � 1

2
//cos.�.x � 1

2
//; cos.�.y � 1

2
//sin.�.x � 1

2
///. We take

h D 1
100

and �t D 1
50

. On Fig. 2 we show the computed solution at time t D 0:4

(bottom left) and the error versus the number of iterations (bottom right) for different
values of the Robin parameter p, taken constant along the interface. We take f D 0
and a random initial guess. We observe that p� is close to the optimal numerical
value.
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Block Jacobi Relaxation for Plane Wave
Discontinuous Galerkin Methods

T. Betcke, M.J. Gander, and J. Phillips

1 Introduction

Nonpolynomial finite element methods for Helmholtz problems have seen much
attention in recent years in the engineering and mathematics community. The idea
is to use instead of standard polynomials Trefftz-type basis functions that already
satisfy the Helmholtz equation, such as plane waves [17], Fourier–Bessel functions
[8] or fundamental solutions [4]. To approximate the inter-element interface condi-
tions between elements several possibilities exist, such as the ultra-weak variational
formulation (UWVF [6]), plane wave discontinuous Galerkin methods (PWDG
[15]), partition of unity finite elements (PUFEM [3]), least-squares methods [5,18],
or Lagrange-multiplier approaches [10].

The advantage of Trefftz methods is that they often require fewer degrees of
freedom than standard polynomial finite element methods since the basis functions
already oscillate with the correct wavenumber. The disadvantage is that the resulting
linear systems are often significantly ill-conditioned, making direct solvers or
efficient preconditioning for iterative solvers necessary. For very large problems,
especially in three dimensions, direct solvers become prohibitively expensive, and
preconditioning iterative solvers is a difficult problem for the Helmholtz equation as
demonstrated in [9].

Domain decomposition methods, in particular optimized Schwarz methods, have
proven to still be effective iterative solvers for finite elements and discontinuous
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Galerkin methods with polynomial basis functions; for the Helmholtz equation, see
[13, 14], and for Maxwell’s equation, see [1, 7].

In this paper we consider block Jacobi relaxation methods for the PWDG method.
In the classical finite element case a block Jacobi relaxation is equivalent to a
classical Schwarz method with Dirichlet transmission conditions, see for example
[11]. This is however not necessarily the case for discontinuous Galerkin methods,
see [12]. We investigate in this short paper what kind of domain decomposition
methods one obtains when simply performing a block Jacobi relaxation in a
PWDG discretization of the Helmholtz equation, and also show how one can obtain
optimized Schwarz methods for such discretizations. Motivated by the block Jacobi
relaxation we present a simple algebraic decomposition approach of the system
matrix in PWDG methods and demonstrate for an example problem with plane wave
basis functions its performance for iterative solvers.

While in this paper we focus on plane wave basis functions the results are
certainly more generally applicable for other Trefftz basis functions, and also for
standard polynomial basis functions.

We consider the following model problem: find u 2 C 2.˝/\H1.˝/, such that

��u � k2u D f in ˝;
@u

@n
� Su D g on @˝ . (1)

Here, ˝ � Rd , d D 2; 3, is a bounded domain with Lipschitz boundary � WD @˝

and g 2 H�1=2.� /. The operator S is often an exact or approximate Dirichlet to
Neumann (DtN) map, e.g. S D ik.

We will use the following notation: the triangulation into finite elements of
maximum diameter h is denoted by Th. Let K 2 Th be an element of the
triangulation. The outward normal direction to K is denoted by n. On an edge e
between two elements K� and KC we define for a scalar quantity v the jumps
ŒŒv�� WD v�n� C vCnC and averages ffvgg WD 1

2

�

v� C vC�. Similarly, for a vector
quantity � we define ŒŒ� �� WD �� � n� C �C � nC and ff� gg WD 1

2

�

�� C �C
�

. On
boundary edges we define ŒŒv�� D vn and ff� gg D � .

The set of all interior edges is denoted by E .int/ and the set of all edges is denoted
by E . Also, let Q̋ be defined by Q̋ WD SK2Th K .

2 Plane Wave Discontinuous Galerkin Methods

In the following we give a brief overview of the Plane Wave Discontinuous
Galerkin Method (PWDG). For a more detailed introduction and convergence
results see [15, 16]. For each element Ki 2 Th we define a local approximation
space Vi WD spanf�.i/

1 ; : : : ; �
.i/
Ni
g, where �.i/

` 2 C 2.Ki/ \ H1.Ki/ and satisfies

��
.i/

` C k2�.i/

` D 0, ` D 1; : : : ; Ni . A frequent choice is the plane wave basis

set PW.Ni /
i defined by �.i/

` .x/ WD eikd`�x , where the d` are direction vectors with
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kd`k2 D 12. In two dimensions, typically d` D 2�.`�1/
Ni

, that is we take equally
spaced directions on the unit circle. In three dimensions several possibilities exist to
choose approximately equally spaced directions on the unit sphere (see e.g. [17]).
By V WD fv 2 L2.˝/ W vjKi 2 Vi 8Ki 2 Thg we denote the global approximation
space.

LetK � Th. By multiplying (1) with a test function v � V onK and integrating
by parts we obtain

Z

K

ru � rvdV � k2
Z

K

uvdV �
Z

@K

ru � nvdS D
Z

K

f vdV:

A further integration by parts yields

Z

K

.��v � k2v/uC
Z

@K

u � rv � ndS �
Z

@K

ru � nvdS D
Z

K

f vdV:

Define � WD 1
ikru and note that ��v � k2v D 0. It follows that

Z

@K

u � rv � ndS � ik
Z

@K

� � nvdS D
Z

K

f vdV:

Using the DG summation formula, see [2],

X

K2Th

Z

@K

qK�K � nK D
Z

E

ŒŒq�� � ff�gg dSC
Z

E .int/
ffqgg ŒŒ��� dS;

where q is a scalar and � a vector quantity we obtain

Z

E
ŒŒu�� �

nn

rv
oo

dSC
Z

E .int/
ffugg

hh

rv
ii

dS � ik
Z

E
ff� gg � ŒŒv�� dS

� ik
Z

E .int/
ŒŒ� �� ffvgg dS D

Z

Q̋
f vdV: (2)

We now approximate u and � on the Ledges in terms of their numerical fluxes Ouh
and O�h, defined by

O� h WD 1

ik
ffrhuhgg � ˛ ŒŒuh�� � 

ik
ŒŒrhuh�� ; Ouh WD ffuhgg C  � ŒŒuh�� � ˇ

ik
ŒŒrhuh��

(3)

for interior edges, and by

O�h WD 1

ik
rhuh� .1 � ı/

ik
.rhuh � Suhn � gn/ ; Ouh WD uh� ı

ik
.rhuh � n� Suh � g/

(4)
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for boundary edges. Choices for the parameters ˛, ˇ,  and ı are discussed in [15].
In particular, it is shown there that with the choice ˛ D ˇ D ı D 0:5,  D 0

the PWDG is equivalent to the UWVF. By replacing u and � in (2) with their
corresponding numerical fluxes, noting that

ffOuhgg D Ouh; ff O� hgg D O� h; ŒŒOuh�� D ŒŒ O� h�� D 0;

on interior edges and using ŒŒOuh�� D Ouhn, ff� hgg D O� h on boundary edges we arrive
at the following variational problem: find uh 2 V , such that

a.uh; vh/ D `.vh/ � b.g; vh/ 8vh 2 V; (5)

where

a.uh; vh/ WD
Z

E .ext/
uhrhvh � ndS � ı

ik

Z

E .ext/
rhuh � nrhvh � ndS

C ı
ik

Z

E .ext/
Suhrhvh � ndS

C
Z

E .int/
ffuhgg

hh

rhvh
ii

dSC
Z

E .int/
 � ŒŒuh��

hh

rhvh
ii

dS

�ˇ
ik

Z

E .int/
ŒŒrhuh��

hh

rhvh
ii

dS

� ı

Z

E .ext/
rhuh � nvhdS � .1 � ı/

Z

E .ext/
SuhvhdS

�
Z

E .int/
ffrhuhgg � ŒŒv�� dS

C ˛ik
Z

E .int/
ŒŒuh�� � ŒŒvh�� dSC

Z

E .int/
ŒŒrhuh��  � ŒŒvh�� dS;

b.g; vh/ WD ı

ik

Z

E .ext/
grvh � ndS � .1 � ı/

Z

E .ext/
gvhdS;

`.vh/ WD
Z

Q̋
f vhdV:

3 A Natural Schwarz Iteration for the UWVF

In this section we show that a simple block relaxation of the UWVF gives rise
to a Schwarz algorithm with Robin transmission conditions, and not the classical
Schwarz algorithm with Dirichlet transmission conditions. We consider a simple
example problem of a domain˝ decomposed into two subdomains˝1 and˝2 with
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interface �12 D ˝1 \ ˝2. We start by defining the following optimized Schwarz
iteration with Robin transmission conditions and optimization parameter p:

��u.nC1/1 � k2u.nC1/1 D f in ˝1,
��u.nC1/2 � k2u.nC1/2 D f in ˝2,

@u
.nC1/
1

@n1
C pu.nC1/1 D @u

.n/
2

@n1
C pu.n/2 on �12,

@u
.nC1/
2

@n2
C pu.nC1/2 D @u

.n/
1

@n2
C pu.n/1 on �12,

@u
.nC1/
1

@n1
C iku.nC1/1 D g on � \ @˝1,

@u
.nC1/
2

@n2
C iku.nC1/2 D g on � \ @˝2.

(6)

Discretizing each of the subproblems with the PWDG and UWVF flux parameters,
and setting p D ik gives the sequence of discrete equations

a1.u
.nC1/
h;1 ; vh/ D `1.vh/ � b�\@˝1.g; vh/ � b�12

 

@u.n/2
@n1
C iku.n/2 ; vh

!

; vh 2 V .h/
1 ;

a2.u
.nC1/
h;2 ; vh/ D `1.vh/ � b�\@˝2.g; vh/ � b�21

 

@u.n/1
@n2
C iku.n/1 ; vh

!

; vh 2 V .h/
2 :

Theorem 1. A classical block-Jacobi relaxation applied to the global variational
problem (5) discretized with PWDG and UWVF flux parameters, i.e. setting

O� nC11 � n1 D 1

ik
ffruggnC1;n � n1 � 1

2
ŒŒu��nC1;n � n1; (7)

O� nC12 � n2 D 1

ik
ffruggnC1;n � n2 � 1

2
ŒŒu��nC1;n � n2; (8)

OunC11 D ffuggnC1;n � 1

2ik
ŒŒru��nC1;n ; (9)

OunC12 D ffuggnC1;n � 1

2ik
ŒŒru��nC1;n ;

(10)

where

ffruggnC1;n WD 1

2
..ru�/nC1C.ruC/n/; ŒŒu��nC1;n WD 1

2
..u�/nC1n�C.uC/nnC/;

leads precisely to the optimized Schwarz method (6) discretized with PWDG and
UWVF, provided the optimization parameter is set to p D ik.

Proof. The classical Robin condition for the Helmholtz equation in this formulation
uses the flux term
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O� nC11 D 1

ik
runC11 � 1

ik
.1 � ı/ �runC11 C ikunC11 � n1 � .run2 C ikun2 � n1/

�

;

and similarly for the second flux term. We have to show that this is precisely the flux
(7) given by natural algebraic relaxation. We calculate

O� nC11 � n1 D ı

ik
runC11 � n1 � .1 � ı/unC11 C 1 � ı

ik
run2 � n1 C .1 � ı/un2

D ı

ik
ŒŒru��nC1;n � .1 � ı/ ŒŒu��nC1;n � n1 C 1

ik
run2 � n1

and choosing ı D 1
2
, and using the relation

run2 � n1 D ffruggn;n � n1 � 1
2
ŒŒru��n;n

we obtain

O� nC11 � n1 D 1

2ik
ŒŒru��nC1;n � 1

2
ŒŒu��nC1;n � n1 C 1

ik
.ffruggn;n � n1 � 1

2
ŒŒru��n;n/

D 1

ik
ffruggn;n � n1 � 1

2
ŒŒu��nC1;n � n1 C 1

2ik
ŒŒru��nC1;n � 1

2ik
ŒŒru��n;n

D 1

ik
ffruggnC1;n � n1 � 1

2
ŒŒu��nC1;n � n1

and the proof for O� nC11 is complete. The proof for the other flux terms follows along
the same lines.

The choice p D ik corresponds to a low frequency approximation of the optimal
transmission condition, see for example [13]. Optimized Schwarz methods use
however a different value for the complex parameter p, in order to obtain fast
geometric convergence of the method [13, 14]. The question is how to modify the
natural relaxation in order to obtain an optimized Schwarz method. In the following
this is described for the O� -flux parameter. The result for the Ou-flux follows similarly.

Theorem 2. Performing the modified algebraic relaxation

O� nC11 � n1 D 1

ik
ffruggnC1;n � n1 � 1

2
ŒŒu��nC1;n � n1 C 1

2
.1 � p

ik
/.unC11;r � un2/; (11)

O� nC12 � n2 D 1

ik
ffruggnC1;n � n2 � 1

2
ŒŒu��nC1;n � n2 C 1

2
.1 � p

ik
/.unC12;l � un1/; (12)

where we needed to introduce for subdomain ˝1 the additional variable unC11;r to
represent the quantity from the other side of the interface corresponding to u2, and
on˝2 the additional variable unC12;l which represents the quantity from the other side
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of the interface corresponding to u1, we obtain a discretization of the transmission
conditions

@u.nC1/1

@n1
C pu.nC1/1 D @u.n/2

@n1
C pu.n/2 ; (13)

@u.nC1/2

@n2
C pu.nC1/2 D @u.n/1

@n2
C pu.n/1 : (14)

Proof. With the new variables before relaxation, we can write the flux at the
interface as

O� nC11 D 1

ik
runC11 � 1

ik
.1 � ı/ �runC11 C ikunC11 � n1 � .runC11;r C ikunC11;r � n1/

�

:

In order to substitute the Robin condition from the right, we compute from (13) by
adding and subtracting the same term

@u.nC1/1;r

@n1
C iku.nC1/1;r D @u.n/2

@n1
C pu.n/2 C .ik � p/u.nC1/1;r ;

which we insert into the flux to obtain

O� nC11 � n1 D ı

ik
runC11 � n1 � .1 � ı/unC11 C 1 � ı

ik
run2 � n1 C .1 � ı/

p

ik
un2

C .1 � ı/ ik � p
ik

unC11;r

D ı

ik
ŒŒru��nC1;n � .1 � ı/ ŒŒu��nC1;n � n1 C 1

ik
run2 � n1

C 1
2
.1 � p

ik
/.unC11;r � un2/

D 1

ik
ffruggnC1;n � n1 � 1

2
ŒŒu��nC1;n � n1 C 1

2
.1 � p

ik
/.unC11;r � un2/;

where we used the same simplification as in the proof of Theorem 1 to complete the
proof for O� nC11 . The proof for O� nC12 is analogous.

4 Discrete System and Numerical Results

In this section we present preliminary results for the natural decomposition accord-
ing to Theorem 1. Results for optimized flux parameters are in preparation. We
consider as example a problem partitioned into two subdomains. The global system
matrix can be decomposed in the following form.
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Fig. 1 Left: Convergence of GMRES for the solution of (15) for various wavenumbers k. Right:
GMRES convergence for the solution of (16) for various k
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6
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ui2

3

7

7

5

D

2

6

6

4

ge1
ge2
gi1
gi2

3

7

7

5

: (15)

Here, e1, and e2 denote degrees of freedom associated with the interface elements
from both sides, and i1 and i2 denote the interior degrees of freedom. Assume that
a fast direct solver is available on each subdomain. Eliminating interior degrees of
freedom we arrive at the Schur complement system

"

Ae1;e1 �Ae1;i1A�1i1;i1Ai1;e1 Ae1;e2
Ae2;e1 Ae2;e2 � Ae2;i2A�1i2;i2Ai2;e2

#

�

ue1
ue2

�

D
�

ge1
ge2

�

�
"

Ae1;i1A
�1
i1;i1
gi1

Ae2;i2A
�1
i2;i2
gi2

#

: (16)

From Theorem (1) it follows that a classical block Jacobi method applied to (15)
recovers the Schwarz iteration with Robin transmission conditions for the case p D
ik. Instead of iterating this system via block Jacobi we apply a Krylov subspace
iteration and demonstrate the performance of this simple algebraic decomposition
at the example of the solution of a Helmholtz equation ��u � k2u D 0 on the unit
square Œ0; 1�2. The mesh is a regular triangular mesh with 200 elements. The basis on
each mesh consists of 16 equally spaced plane wave directions leading to an overall
system size of n D 3;200. On the boundary of the domain impedance conditions
are applied, such that the exact solution is a Hankel source H0.kjx � Oyj/ with Oy D
.�1;�1/. The GMRES convergence for the solution of the full system (15) for
various wavenumbersk is shown in the left plot of Fig. 1. The convergence tolerance
is set to 10�5. For the simple algebraic decomposition approach in (16) the results
become significantly better. The right plot of Fig. 1 shows the results for various
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wavenumbers for the solution of (16). The subdomain solves were performed with
UMFPACK as fast sparse direct solver. The overall system size of (16) is n D 320.
As expected the results deteriorate for higher wavenumbers, which is due to p D ik
only being a good parameter for low-frequency problems.
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Optimized Schwarz Methods for Curl-Curl
Time-Harmonic Maxwell’s Equations

Victorita Dolean, Martin J. Gander, Stéphane Lanteri, Jin-Fa Lee,
and Zhen Peng

1 Introduction

Like the Helmholtz equation, the high frequency time-harmonic Maxwell’s equa-
tions are difficult to solve by classical iterative methods. Domain decomposition
methods are currently most promising: following the first provably convergent
method in [4], various optimized Schwarz methods were developed over the last
decade [1–3, 5, 8, 10, 11, 13, 14, 16]. There are however two basic formulations
for Maxwell’s equation: the first order formulation, for which complete optimized
results are known [5], and the second order, or curl-curl formulation, with partial
optimization results [1, 13, 16]. We show in this paper that the convergence factors
and the optimization process for the two formulations are the same. We then show
by numerical experiments that the Fourier analysis predicts very well the behavior
of the algorithms for a Yee scheme discretization, which corresponds to Nedelec
edge elements on a tensor product mesh, in the curl-curl formulation. When using
however mixed type Nedelec elements on an irregular tetrahedral mesh, numerical
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experiments indicate that transverse magnetic (TM) modes are less well resolved
for high frequencies than transverse electric (TE) modes, and a heuristic can then be
used to compensate for this in the optimization.

2 Optimized Schwarz Algorithms

We consider the curl-curl problem in a bounded domain ˝ , with boundary
conditions on @˝ such that the problem is well posed [12]. A general Schwarz
algorithm then solves for n D 1; 2 : : : and the decomposition ˝ D ˝1 [ ˝2 the
subdomain problems

�!2E1;n Cr 	 �r 	 E1;n
� D �i!ZJ in ˝1

Tn1 .E
1;n/ D Tn1 .E

2;n�1/ on @˝1 \˝2;

�!2E2;n Cr 	 �r 	 E2;n
� D �i!ZJ in ˝2

Tn2 .E
2;n/ D Tn2 .E

1;n�1/ on @˝2 \˝1,

(1)

where �12 D @˝1 \ ˝2, �21 D @˝2 \ ˝1, and Tnj are transmission conditions.
The classical Schwarz method uses for example the impedance condition Tn.E/ D
.r 	 E 	 n/ 	 nC i!E 	 n, where n denotes the unit outward normal.

The transmission conditions in [5] for the first order formulation, for which com-
plete optimization results are available, can be written for the curl-curl formulation
in the form

T DGG
n .E/ D .I C �1.STM CSTE//.r 	 E 	 n/ 	 n

C i!.I � �1.STM CSTE//.E 	 n/; (2)

where STM D rr �, STE D r 	 r	 and  denotes the tangential direction.
These transmission conditions are a particular case of the more general formulation

T 1
n .E/ D .I C �1.ı1STM C ı2STE//.r 	 E 	 n/ 	 n

C i!.I � �2.ı3STM C ı4STE//.E 	 n/;
(3)

since by choosing ı1 D ı2 D ı3 D ı4 D 1, �1 D �2 D �1 in (3) we obtain (2).
Rawat and Lee proposed in [16] a transmission condition of the form

T RL
n .E/ D n 	 r 	 EC ˛n 	 .E 	 n/C ˇr 	 r 	 .n 	 E 	 n/C �rr � n

	.r 	 E/ D .I C �STM/.n 	 r 	 E/C .˛ C ˇSTE/.n 	 .E 	 n//;
(4)

and analyzed the performance for the case of plane waves traveling in the yz plane
and with the interface in the xy plane. A different choice of transmission conditions
was proposed in [13],
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T TETM
n .E/ D .I � �2.ı1STM CSTE//.n 	 r 	 E/

C i!.�I C �2.STM C ı4STE//.n 	 .E 	 n//:
(5)

Both transmission conditions (4) and (5) are a particular case of the more general
formulation

T 2
n .E/ D .I C �1.ı1STM C ı2STE//.n 	 r 	 E/

C i!.�I C �2.ı3STM C ı4STE//.n 	 .E 	 n//;
(6)

since by taking ı1 D ı4 D 1, ı2 D ı3 D 0, �1 D � , �2 D ˇ in (6) we obtain (4), and
choosing ı2 D ı3 D 1, �1 D ��2, �2 D �2 in (6) we obtain (5).

Thus, at first sight, it seems that there are two different classes of optimized
algorithms, the ones with transmission conditions (3), and the ones with (6). One
can show however that the optimized algorithm with the special form (2) of the
transmission conditions (3) has identical convergence properties to the algorithm
with transmission conditions (6) when taking ı1 D ı2 D ı3 D ı4 D 1, �1 D �2 D
��1 in (6), see [6]. In the following we will thus simply denote T 2

n by Tn and only
study that case.

3 Convergence Analysis Using the TE-TM Decomposition

We use Fourier analysis, and thus assume that the coefficients are constant, and
the domain on which the original problem is posed is ˝ D R3, in which case
we need the Silver–Müller radiation condition limr!1 r .r 	 E 	 nC i!E/ D 0,
where r D jxj, n D x=jxj, in order to obtain well-posed problems [12]. The two
subdomains are now half spaces, ˝1 D .0;1/ 	 R2; ˝2 D .�1; L/ 	 R2,
the interfaces are �12 D fLg 	 R2 and �21 D f0g 	 R2, and the overlap is
L � 0. Let the Fourier transform in y and z directions be FE.x; y; z/ D
R

R2
E.x; y; z/ei.kyyCkzz/dyd z, where we denote by ky and kz the Fourier variables

and jkj2 D k2y C k2z . We first compute the local solutions of the homogeneous
counterparts of (1), which corresponds to the equation that the error satisfies at each
iteration.

Lemma 1 (Local Solutions). The local solutions of (1) with J D 0, computed in
Fourier space, are given by

F .E1/ D e�x
�

� i.A2kz C A4ky/
�

;A4; A2

�T

;

F .E2/ D e��x
�

i.A1kzCA3ky/
�

;A3; A1

�T

(7)

where � D pjkj2 � !2 and the coefficients A1;2;3;4 may depend on ky , kz.
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The expressions of the solutions in Lemma 1 suggest a different formulation in
another basis, which we call the TE-TM decomposition. It can easily be obtained by
splitting the solution in (7) into combinations of solutions verifyingA2kzCA4ky D
0; A2; A4 ¤ 0 (TE modes) and A2ky D A4kz; A2; A4 ¤ 0 (TM modes).

Lemma 2 (Local Solution Decomposition into TE-TM Modes). The local solu-
tions in (7) can be re-written as

F .Ej / D ATMF .Ej;TM/C ATEF .Ej;TE/; j D 1; 2; (8)

where

F .E1;TE/ D e�x
	

0;� kz
ky
; 1
�T

; F .E1;TM/ D e�x
	

� i jkj2
ky�

; 1;
kz
ky

�T

;

F .E2;TE/ D e��x
	

0;� kz
ky
; 1
�T

; F .E2;TM/ D e��x
	

i jkj2
ky�

; 1;
kz
ky

�T

:
(9)

To derive the convergence factors, we compute the action of the interface operators
from (6), and then replace them into the interface iterations of (1). This calculation
is greatly simplified with the decomposition into TE-TM modes, with the difference
that we now iterate on the unknownsATE and ATM . The convergence factor is again
given by the spectral radius of some iteration matrix, as in [5], and this matrix
happens to be conveniently diagonal for a certain choice of the parameters.

Theorem 1 (Convergence Factor for the TE-TM Decomposition). In the case
ı3 D ı2, ı4 D 1

ı1
, which holds for all algorithms we consider, the interface iteration

can be written as

�

ATE

ATM

�1;n

D B
�

ATE

ATM

�1;n�2
;

with the interface iteration matrix B given by

B D � � i!
�C i!

"

� .�Ci!/.��2ı2Ci!�1ı1/C1
.��i!/.���2ı2Ci!�1ı1/�1 0

0
.�Ci!/.��1ı1ı2Ci!�2/Cı1
.��i!/.���1ı1ı2Ci!�2/�ı1

#

e�2�L: (10)

The proof can be found in [6]. The convergence factor of the algorithm is for each
Fourier mode given by the spectral radius of B . In the following we assume that
there is no overlap, L D 0.

Corollary 1 (DGG Conditions). If we choose ı1 D 1, ı2 D 1, �1 D �2 D
� 1
jkj2�2!2C2i!s in (10), where s is a complex parameter to be chosen, we obtain an

iteration matrix with the same convergence factor as in the first order formulation
in [5],

�DGG.jkj; !; s/ D
ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�i!p
jkj2�!2Ci! �

p
jkj2�!2�sp
jkj2�!2Cs

ˇ

ˇ

ˇ

ˇ

: (11)
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Corollary 2 (RL Conditions). If we choose ı1 D 1, ı2 D 0, �1 D 1

!2C! Qktm , �2 D
1

!2C! Qkte in (10), where Qktm and Qkte are real parameters to be chosen, we obtain an
iteration matrix with convergence factor as in [16],

�RL.jkj; !; Qkte; Qktm/ D
ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�i!p
jkj2�!2Ci!

ˇ

ˇ

ˇ

ˇ

�max

�

ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�i Qktep
jkj2�!2Ci Qkte

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�i Qktmp
jkj2�!2Ci Qktm

ˇ

ˇ

ˇ

ˇ

�

:

(12)

Corollary 3 (TETM Conditions). If we choose ı1 D i!Cste

i!Cstm , ı2 D 1, �1 D �2 D
� 1
jkj2�2!2Ci!.steCstm/

in (10), where stm and ste are real parameters to be chosen, we
obtain an iteration matrix with convergence factor as in [14],

�TETM.jkj; !; stm; ste/ D
ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�i!p
jkj2�!2Ci!

ˇ

ˇ

ˇ

ˇ

�max

�

ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�step
jkj2�!2Cste

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

p
jkj2�!2�stmp
jkj2�!2Cstm

ˇ

ˇ

ˇ

ˇ

�

:

(13)

It remains to explain the choice of the parameters in the three different algorithms:
for the DGG conditions, the same choice as for the first order formulation can be
used. Minimizing the maximum over all relevant frequencies leads for example in
[5, case 3, Sect. 3.5] to

s D .1C i/
p
kmax.k2C � !2/1=4=

p
2; kmax D C

h
(14)

with kC an estimate of the closest numerical frequency just above !.
For the RL conditions, the authors in [13, 16] recommend

Qkte D �i
q

�

1
2
.kmax;te C !/�2 � !2; Qktm D �i

q

�

1
2
.kmax;tm C !/�2 � !2;

(15)

with the same estimates kmax;te, kmax;tm as in the TETM case, where a separate
minimization of the maximum leads to the parameters

ste D .1C i/pkmax;te.k2C � !2/1=4=
p
2; stm D .1C i/pkmax;tm.k2C � !2/1=4=

p
2:

(16)

For a mixed type Nedelec elements on irregular tetrahedral meshes, numerical
observations in [15, Sect. 4.5.1] indicate that a good choice is kmax;te D kmax,
kmax;tm D 2

3
kmax. If however kmax;te D kmax;tm, as it is for example the case in a Yee

discretization, then minimizing the maximum of the contraction factor in TETM
leads again to the DGG transmission conditions. Note that a separate optimization
for the TE and TM modes can also potentially be beneficial if one knows for
example a priori which TE or TM modes one wants to simulate, since one can then
optimize the performance of the algorithm for these modes.
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Fig. 1 Comparison of the theoretical contraction factors (11), (12), and (13) on the left, and
convergence histories of the corresponding algorithms, in the middle with a random initial guess,
and on the right with a high frequency initial guess

4 Numerical Results

We first show a comparison of the theoretical convergence factors �RL, �DGG and
�TETM in Fig. 1 on the left for the specific values h D 0:001 and ! D 10� .
From these convergence factors, we can expect that a numerical implementation
of the algorithm with all error frequencies contained in the initial guess will overall
converge better with the DGG and TETM conditions than with the RL conditions.
The DGG and TETM transmission conditions have identical convergence behavior
for lower error frequencies, but for high error frequencies, the DGG conditions are
better. Even though being much less favorable in general, the RL conditions are
excellent for very high frequency evanescent error modes.

We now illustrate our convergence results with numerical experiments. We first
solve Maxwell’s equations in the curl-curl formulation on the domain˝ D .0; �/2	
.0; 2�/ using a Yee scheme. We decompose the domain into two subdomains
˝1 D .0; �/2 	 .0; �/ and˝2 D .0; �/2 	 .�; 2�/. We chose the frequency ! D 1
for this experiment. We show in Fig. 1 in the middle and on the right the convergence
histories for the three Schwarz algorithms we considered over 20 iterations. In the
middle, we used a random initial guess to make sure all frequencies are present in
the error. Here the DGG and TETM algorithms have identical convergence behavior,
while the RL algorithm is very slow as expected from the theoretical result in the
left plot. On the right we used the highest possible frequency that can be represented
on the mesh only as the initial guess for the error. Now, the RL conditions lead to
the fastest convergence, whereas the TETM conditions are the slowest, again as
expected from the theoretical plot on the left. This shows that one has to be careful
when doing numerical investigations: from the right panel in Fig. 1, one could
conclude that the RL conditions are the best, but this only holds for one particular
error frequency. This is why one solves min–max problems to determine optimized
parameters: the algorithm needs to be good for all error frequencies uniformly, see
especially the experiments in [9, Sect. 5.1, Fig. 5.2].

Next, we show numerical experiments for a discretization with mixed type Ned-
elec elements on irregular tetrahedral grids. We start by examining the eigenvalues
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Fig. 2 Eigenspectra for a parallel plate waveguide, h D �0=4, p D 2, RL (left), DGG (middle),
TETM (right)

of three non-overlapping domain decomposition matrices, using the RL, DGG,
and TETM conditions. We chose a 0:5�0 (�0 denotes the free space wavelength)
segment of a parallel plate waveguide with both ports terminated by first order
absorbing boundary conditions. The parallel plate waveguide is partitioned by a
transverse plane into two equally sized sub-domains. The mesh size is chosen to be
�0=4. In Fig. 2, we show the eigenvalue distributions of the three iteration matrices
using the RL, DGG, and TETM transmission conditions. All of them provide
desirable convergence properties, since all the eigenvalues are within the shifted-
unit-circle. It is clear that the spectral radius of the DGG conditions is slightly
smaller than the RL conditions, due to the fact that �max

DGG < �max
RL . We also see

that for this discretization, the TETM conditions further improve the convergence
factor of the TM modes: one portion of eigenvalues moves towards the center of the
unit circle.

We now present scalability studies: we denote by d the size of the sub-domains,
by D the size of the entire problem domain and by h the mesh size. A Krylov
subspace iterative method, Generalized Conjugate Residual (GCR) [7], is used for
the solution of the matrix equation.

Scalability with respect to !h: we simulate a 1:5�0 segment of a parallel plate
waveguide. The waveguide is partitioned into three sub-domains, each 0:5�0 long.
These sub-domains are meshed independently and quasi-uniformly such that the
interface meshes do not match. The mesh size varies from h D �0=4 to h D �0=16.
The numbers of iterations required using the RL, DGG, and TETM transmission
conditions are given in Table 1, for a random initial guess, and in parentheses with
the TEM mode as an excitation and a zero initial guess. The h�refinement permits
the representation of more high frequency evanescent modes on the interface, and
we see that computing just one TEM mode solution with a zero initial guess requires
much less iterations than when all modes are present. The iteration numbers could
still substantially be lowered in the one TEM mode case by optimizing just for that
mode.

Scalability with respect to !D: We fix the subdomain size to 0:3�0, and we
increase the length of the waveguide by increasing the number of subdomains. The
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Table 1 Number of iterations to attain a relative residual reduction of 10�8 for
different transmission conditions and different mesh sizes

Cases !h D 1:57 !h D 0:785 !h D 0:524 !h D 0:393

RL conditions 23 (19) 27 (17) 34 (22) 41 (22)
DGG conditions 21 (18) 26 (21) 32 (19) 39 (20)
TETM conditions 21 (14) 25 (15) 30 (12) 36 (14)

Table 2 Number of iterations to attain a relative residual reduction of 10�8 for different
transmission conditions and different problem sizes

Cases !D D 18:8 !D D 37:7 !D D 75:3 !D D 150:7

RL conditions 34 (17) 63 (28) 146 (72) 363 (168)
DGG conditions 30 (18) 49 (22) 90 (33) 185 (51)
TETM conditions 31 (21) 46 (22) 85 (29) 176 (37)

mesh size is kept fixed as well at h D �0=8. The performance of the methods for 10,
20, 40, and 80 subdomains is shown in Table 2, again for a random initial guess, and
then in parentheses with the TEM mode as excitation, and a zero initial guess. In
this study, the propagating modes are of pre-dominant significance since the wave
must travel from one end of the waveguide to the other. We see that all of the three
conditions show dependence on the problem size, which is expected in the absence
of a coarse space. We see that the DGG and TETM conditions perform much better
in this set of experiments than the RL condition, and also that all methods need a
substantially bigger number of iterations in the presence of all error modes, than
when just one mode is present.

5 Conclusions

We have shown that the optimized transmission conditions developed for the first
order Maxwell system in [5] can also be used for the curl-curl formulation, and the
corresponding convergence factors and hence optimized parameters are identical.
We illustrated these results with a Yee discretization of the curl-curl formulation.
We then showed also numerical experiments with a mixed type Nedelec finite
element discretization on irregular tetrahedral grids, and presented several scaling
experiments.
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On the Origins of Iterative Substructuring
Methods

Martin J. Gander and Xuemin Tu

1 The Invention of Substructuring Methods

Substructuring methods were invented in the engineering community. A very early
precursor is the so called “Moment Distribution Method”, or “Hardy Cross Method”
named after its inventor [11]. Cross states in the introduction to his paper from 1930
his motivation for the method:

The reactions in beams, bents, and arches which are immovably fixed at their ends have
been extensively discussed. They can be found comparatively readily by methods which are
more or less standard. The method of analysis herein presented enables one to derive from
these the moments, shears, and thrusts required in the design of complicated continuous
frames.

The idea is to give a precise method how to combine structures for which their
reaction to load is known (i.e. tabulated), when they interact at joints between
structures. The method is iterative, and described in Fig. 1.

In modern terms, it is a Jacobi relaxation applied to the displacement formulation
of structural analysis [39], but also a precursor to the finite element method.

It was however at Boeing, right after the reinvention of the finite element method
for the design of aircraft [9, 38], where Przemieniecki introduced in his seminal
paper [33] the first substructuring method of the form we know them now. He first
explains why substructuring became necessary:
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Fig. 1 The Hardy Cross Method from 1930

Fig. 2 Two plane structures with non-overlapping subdomain decompositions from the original
publication of Przemieniecki in 1963

The necessity for dividing a structure into substructures arises either from the requirement
that different types of analysis have to be used on different components, or because the
capacity of the digital computer is not adequate to cope with the analysis of the complete
structure.

At the time, computational techniques for the simulation of aircraft were rapidly
developing, and complex structures had to be simulated, as shown in the original
drawings of Przemieniecki in Fig. 2. Unlike in the case of Cross, the substructures
were too complicated to have tabulated solutions, and had to be simulated as well. At
the beginning of his paper, Przemieniecki describes the idea of his domain domain
decomposition method, which is not so different from the method of Cross, but it is
not iterative:

In the present method each substructure is first analyzed separately, assuming that all
common boundaries with adjacent substructures are completely fixed: these boundaries are
then relaxed simultaneously and the actual boundary displacements are determined from
the equations of equilibrium of forces at the boundary joints. The substructures are then
analyzed separately again under the action of specified external loading and the previously
determined boundary displacements.
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Let us see how this can be written in mathematical terms, using the notation used
by Przemieniecki. Like for many structural engineers at that time, the reasoning was
at the discrete level: let P be the exterior forces, K the stiffness matrix, and U the
displacement vector. Then these quantities satisfy the system of equations

KU D P: (1)

We now partition the unknowns U into unknowns Ui in the interior of each
substructure, and the unknowns Ub on the boundaries between substructures, as
indicated in Fig. 2. If we partition the matrix and right hand side accordingly, the
system (1) can be rewritten as

�

Kbb Kbi

Kib Kii

� �

Ub

Ui

�

D
�

Pb

Pi

�

: (2)

Now the algorithm of Przemieniecki has three steps, as we have seen above.
The first step must keep boundaries between substructures fixed, and hence an
(unknown) force P .˛/ is needed to keep these boundaries fixed. Przemieniecki
therefore partitions the forcing vector into

P D P .˛/ C P .ˇ/ D
"

P
.˛/

b

Pi

#

C
"

P
.ˇ/

b

0

#

: (3)

Since with the first vector on the right hand side as a load, the boundaries of
the substructures do not move, the displacements can also be written in the same
decomposition, namely

U D U .˛/ C U .ˇ/ D
"

0

U
.˛/
i

#

C
"

Ub

U
.ˇ/
i

#

: (4)

By linearity, we can rewrite the original system as two systems, which represent the
first two steps in Przemieniecki’s algorithm,

.˛/ W
�

Kbb Kbi

Kib Kii

�

"

0

U
.˛/
i

#

D
"

P
.˛/

b

Pi

#

;

and

.ˇ/ W
�

Kbb Kbi

Kib Kii

�

"

Ub

U
.ˇ/
i

#

D
"

P
.ˇ/

b

0

#

:

In the first step of Przemieniecki’s algorithm one needs to solve the first system.
Because the interfaces between substructures are not moving, this system simpli-
fies to
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KbiU
.˛/
i D P .˛/

b ; KiiU
.˛/
i D Pi :

Knowing the forces Pi in the interior of each substructure, we can compute the
interior displacements when the interfaces are kept fixed, U .˛/

i D K�1ii Pi . Inserting
this result into the first equation uncovers the unknown force that Przemieniecki
needed to impose to keep the interfaces fixed, namely

P
.˛/

b D KbiK
�1
ii Pi :

We can now determine the remaining forces P .ˇ/

b on the interfaces,

P
.ˇ/

b D Pb � P .˛/

b D Pb �KbiK
�1
ii Pi ;

and inserting this result into the second system (ˇ) gives

KbbUb CKbiU
.ˇ/
i D P .ˇ/

b ; KibUb CKiiU
.ˇ/
i D 0:

We can now compute the second step in Przemieniecki’s algorithm, namely the
response of the structures to the interface loading P .ˇ/

b . The second equation gives

the internal displacement U .ˇ/
i based on the boundary displacement Ub,

U
.ˇ/
i D �K�1ii KibUb;

and inserting this into the first equation, Przemieniecki obtains for the unknowns at
the interfaces the system

.Kbb �KbiK
�1
ii Kib/Ub D Pb �KbiK

�1
ii Pi : (5)

We see that the procedure, which Przemieniecki motivated by a strictly mechanical
argument, leads simply to the Schur complement system, where all interior variables
are eliminated! We note that the Schur complement system can also be derived using
discrete harmonic functions on the substructures. The third and last step, after solv-
ing the Schur complement system, is to simply compute the corresponding interior
displacements, and the problem is solved. Historically, the Schur complement was
also known under the name capacitance matrix [25], as we will see next.

2 Capacitance Matrix Methods

The capacitance matrix method became popular in the early 1970, due to a
publication by Buzbee, Dorr, George and Golub [8] that has a very short abstract:

There are several very fast direct methods which can be used to solve the discrete Poisson
equation on rectangular domains. We show that these methods can also be used to treat
problems on irregular regions.



On the Origins of Iterative Substructuring Methods 601

The paper first gives a general introduction to Schur complement techniques at
the algebraic level, and then the authors show how Schur complements can be used
to solve problems on irregular domains by imbedding, and by domain splitting,
with a typical example of an L-shaped domain. As in Przemieniecki, the Schur
complement system (5) is solved by direct methods. A new important idea was then
introduced by Proskurowski and Widlund in [32]:

This new formulation leads to well-conditioned capacitance matrix equations which can be
solved quite efficiently by the conjugate gradient method. A highly accurate solution can,
therefore, be obtained at an expense which grows no faster than that for a fast Laplace solver
on a rectangle when the mesh size is decreased.

The authors explain that their method can use fast Possion solvers for a similar
purpose as for the fundamental solutions when constructing the classical integral
equations of potential theory. The key contribution is however the solution of the
Schur complement system by a Krylov method, which paved the way for iterative
substructuring methods.

3 Iterative Substructuring Methods

The explicit calculation of the Schur complement S is expensive and requires large
amount of memory since the matrix is much denser than the original stiffness matrix
K as defined in (1), even though it is much smaller. However the action of the Schur
complement on a vector can be calculated implicitly by solving local substructure
problems. Therefore the explicit formation of the Schur complement can be avoided
if Krylov space methods are used to solve the interface problem (5) iteratively, as
shown in [32]. To make the number of iterations however manageable, for certain
accuracy, it is crucial to construct a suitable preconditioner for the Krylov subspace
methods. In a sequence of papers [15–17], Dryja first introduced preconditioned
Krylov space methods for solving the interface problem (5). The L-shaped domain
shown in Fig. 3 on the left was divided into two subdomains in [16], and the
preconditioner is selected asK�1=2, whereK is here the discrete Laplacian operator
on the subdomain interface. Dryja proved in [16] the first spectral equivalence
result for preconditioning the capacitance matrix, as shown in Fig. 3 on the right.
This result was proved using Fourier analysis, and the preconditioner can also be
implemented efficiently using a fast sine transform.

Golub and Mayers proposed a slightly improved version of this preconditioners
in [24]. In [1, 2], Bjørstad and Widlund explicit derived and diagonalized the
local Schur complement S.i/ and proposed two preconditioners. The precondi-
tioner considered by Dryja was called the “good method” and the other, the
Neumann-Dirichlet preconditioner for two subdomains, the “excellent method”.
The application of this preconditioner to a vector requires the solution of one
subdomain Neumann problem and one subdomain Dirichlet problem. It converges
in one step if the two subdomains come from a symmetric region cut in half and
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Fig. 3 Original Figure by Dryja [16] to introduce preconditioned iterative substructuring methods
on the left, and first preconditioner estimate on the right

the triangulation is regular and symmetric. If the subdomain partition allows a red-
black coloring, the Neumann–Dirichlet (Dirichlet–Neumann) algorithms can also
be extended to many subdomains.

Another type of preconditioner, the Neumann–Neumann preconditioner was
introduced in [3, 22, 27]. The application of this preconditioner to a vector requires
the solutions of two Dirichlet problems and two Neumann problems. Thus, it is
more expensive than the Neumann–Dirichlet preconditioner. However, it is easy to
extend to many subdomains and can be made to perform well with jump coefficients
by introducing a simple scaling operator.

The number of iterations will increase with an increase of the number of
subdomains for most one-level preconditioners. An additional level is needed
to remove such dependence. For Dirichlet–Neumann preconditioners, when the
subdomain partitions has cross points, a natural second, coarse level solver can
be formed using variables related to these cross points, see [18, 19]. The two-
level Neumann–Neumann algorithms, known as Balancing Neumann–Neumann
algorithms, where introduced in [21, 26, 28, 29]. The coarse level solver can be
constructed using weighted counting functions. The balancing Neumann–Neumann
algorithm has been extended to several applications such as for the mixed finite
element discretizations, Stokes, and almost incompressible elasticity, [10, 23, 31].
Recently, the balancing domain decomposition by constraints method has been
developed and it has been widely used [12, 30]; it is similar to the balancing
Neumann–Neumann algorithms but its coarse problems are given in terms of a set
of primal constraints partially enforcing continuity across the interface.

4 Primal Iterative Substructuring Methods

There is another class of substructuring methods known as the primal iterative
substructuring methods. The difference between the preconditioners in this class
and the algorithms described in Sect. 3 is that the coupling between all pairs of
faces, edges, and vertices are eliminated in the preconditioners of this class while
the coupling between neighboring subdomains are eliminated in the previous class.

The development of the primal iterative substructuring methods started with a
famous series of four papers [4–7]. Bramble, Pasciak, and Schatz [4] is the first
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paper on iterative substructuring methods to deal with cross points satisfactorily.
The algorithm proposed in that paper has a coarse level component formed in terms
of the cross points and an almost optimal condition number bound was established
in two dimensions. However such a coarse level problem does not always work well
in three dimensions because of a much weaker finite element Sobolev inequality.
Related methods with a coarse solver based on the wire basket were introduced in
[7] for three dimensional problems and an almost optimal bound was obtained.

An observation on using a change of basis from a partial hierarchical basis
to the usual nodal basis for this class of algorithms was made in [37] and
many preconditioners of this type were introduced in [20]. These algorithms have
been successfully implemented and extended to three dimensional linear elasticity
[35,36]. Quite recently, the coarse components introduced here have also been used
for overlapping domain decomposition methods to obtain algorithms independent
of the coefficient jumps [13, 14, 34].
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Discontinuous Coarse Spaces for DD-Methods
with Discontinuous Iterates

Martin J. Gander, Laurence Halpern, and Kévin Santugini Repiquet

1 Introduction

Basic iterative domain decomposition methods (DDM) can only transmit informa-
tion between direct neighbors. Such methods never converge in less iterations than
the diameter of the connectivity graph between subdomains. Convergence rates are
dependent on the number of subdomains, and thus algorithms are not scalable. The
use of a coarse space [16] is the only way to provide information from distant
subdomains, as they enable global information transfer, ensuring scalability. In this
respect, well known methods are the two level additive Schwarz method [3], and the
FETI [13] and balancing Neumann–Neumann methods [4, 12, 14]. See also [11]
for non-symmetric problems. For complete analyses of such scalable methods,
see [17, 18].

Adding an effective coarse space correction to an existing method is currently an
active area of research, for example in the case of high contrast problems [2, 15].
Combining coarse spaces with methods with discontinuous iterates, such as opti-
mized Schwarz methods (OSM [8]) is also non-trivial, see [6] and Chap. 5 in [5]
which contain extensive numerical tests, and [7] for a rigorous analysis of a special
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case. For restricted Additive Schwarz (RAS [1]), which also produces discontinuous
global iterates since they are glued from local ones by the QR operators in RAS in
an aribirary fashion, see [9] in the present proceedings. We explain in Sect. 2 why
an effective coarse space for non-overlapping OSM (and DDMs with discontinuous
iterates in general) should inherently be discontinuous. In Sect. 3, we present one
possible realization of a coarse grid correction based on a discontinuous coarse
space, and we show that convergence in one coarse correction step can be obtained,
although this is only practical in one dimension. For higher dimensional problems,
we then propose approximations of this optimal coarse space. In Sect. 4, we present
numerical experiments with this new algorithm, and finally give an outlook on future
work in Sect. 5.

2 Choosing a Good Coarse Space

In this section, we explain why it makes sense to consider discontinuous coarse
space corrections. We place ourselves in a continuous setting and consider the model
problem

�u ��u D f in ˝; �u D 0 on @˝; (1)

where˝ is a polygonal domain in Rd (d � 1 ), and � is a trace operator.
Let .˝i /1	i	N be a non-overlapping domain decomposition of ˝ . A non-

overlapping optimized Schwarz method with a coarse grid correction is given in
Algorithm 1.

Instead of explaining in detail how the coarse correction UnC1 is computed, we
first focus on the more important question of how to choose the coarse space X .

2.1 Suboptimality of a Conformal Coarse Space

We first explain why with a coarse spaceX � H1.˝/, it is not possible to compute a
very good coarse correction for a domain decomposition method with discontinuous
iterates. A function u, with uj˝i in H1.˝/, is a weak solution of (1) if

(1) u satisfies (1) inside each subdomain˝i ,
(2) u has no jump between two adjacent subdomains,
(3) the normal derivative of u has no jump between two adjacent subdomains.

In an efficient domain decomposition algorithm, each step of the algorithm should
improve as many of these three conditions as possible. In particular, the coarse grid
correction should be such that the iterates unC1i are closer to satisfying these three

conditions than the uncorrected iterates unC1=2i . However:
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Algorithm 1 (Generic)
Initialize u0i , either by zero or using the coarse solution.
for n � 0 and until convergence do

In each subdomain ˝i , compute the uncorrected iterates u
nC1=2
i in parallel using the

optimized Schwarz algorithm.
Compute a coarse correction UnC1 belonging to a coarse space X .
Set the corrected iterates to unC1

i WD unC1=2
i C UnC1.

end for
Set either ui WD un�1=2

i or ui WD uni where n is the exit index of the above loop.

(1) The uncorrected iterates already satisfy the equation inside each subdomain.
(2) The uncorrected iterates are discontinuous, they have jumps in the Dirichlet

traces along interfaces.
(3) The uncorrected iterates have also discontinuous normal derivatives, they have

jumps in the Neumann traces along interfaces.

Using continuous coarse functions is suboptimal for a method that produces
discontinuous iterates, since they can not reduce the Dirichlet jumps. Using instead
a discontinuous coarse space, for example P0, then the Dirichlet jumps can be
improved, but not the Neumann jumps. If the coarse functions are even more regular,
for example C 1 on the whole domain, then neither the Dirichlet jumps nor the
Neumann jumps can be improved.

2.2 Better Coarse Spaces for Methods with Discontinuous
Iterates

To be effective, a coarse space for a domain decomposition method that produces
discontinuous iterates must contain discontinuous functions. Furthermore the dis-
continuities must be aligned with the interfaces between subdomains. Suppose
that the subdomains ˝i form a conforming polygonal mesh T ˝ of ˝ (triangles
or rectangles in two dimensions). The local polynomial space P1 is P1 in the
former case, Q1 in the latter. The conforming coarse space is P1.T

˝/ D fv 2
C 0. N̋ /; 8i; vj˝i 2 P1g, but a better choice is the discontinuous coarse space (or
broken in the Discontinuous Galerkin literature) Pdisc

1 .T ˝/ D fv; 8i; vj˝i 2
P1g, where the continuity across the interfaces is no longer required.

In addition, for linear problems, it is important for the coarse shape functions to
be solutions of the homogeneous counterpart of equation (1) inside each subdomain,
because then the corrected iterates are also solutions of the interior equation
inside each subdomain. To see this, it suffices to note that the error between the
monodomain solution and any iterates produced by the optimized Schwarz method
is always a solution to the homogeneous equation inside each subdomain. Therefore,
in H1;disc

0 .˝/ D fu 2 L2.˝/; 8i; uj˝i 2 H1.˝i /; u D 0 on @˝g, the space
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A D fu 2 H1;disc
0 .˝/; 8i; .��4/uj˝i D 0g (2)

is an ideal candidate for a coarse space. For one-dimensional problems, the space
A is finite dimensional, and can directly be used as the coarse space. In higher
dimensions, the space A is infinite dimensional for the continuous problem, and
must therefore be discretized as well to be practical: a finite dimensional subspace
of A must be chosen. To do so, one only needs to choose boundary conditions on
each @˝i . For the particular algorithm presented in the next section, the intersection
of the coarse space with H1 should be “big enough”, for there to be enough test
functions. This can be guaranteed by constructing coarse elements with potentially
compatible Dirichlet conditions.

For these reasons we introduce the space of all discontinuous functions, whose
element shape functions are solutions to the homogeneous equation inside each
subdomain, with Dirichlet boundary conditions:

PA
1 .T

˝/ D fu 2 A ; 9Ou 2Pdisc
1 .T ˝/; u D Ou in

N
[

iD1
@˝i g: (3)

Remark 1. Other Dirichlet boundary conditions can be used to define the discontin-
uous coarse elements. Any finite dimensional vector space of continuous functions
defined over

SN
iD1 @˝i may be used to construct finite dimensional coarse spaces

that are subsets of A with a “big enough” continuous subset.

Now that we have chosen the coarse space, we can design an efficient algorithm
to compute a discontinuous coarse space correction. The coarse correction must
be chosen such that it diminishes both Dirichlet and Neumann jumps while not
losing too much in terms of satisfying the interior equations in each subdomain.
Using the full coarse space A (which is only practical in one dimension), any good
algorithm for computing the coarse correction should converge in a single coarse
iteration, because the error between the iterates and the exact solution belongs to
A . In the next section, we present such an algorithm, the DCS-DMNV algorithm
(discontinuous coarse space—Dirichlet minimizer Neumann variational), which is
suitable for finite element methods.

3 The DCS-DMNV Algorithm

We formulate the algorithm with subdomain iterates at the continuous level, with a
discrete coarse space.

Let Xd be any finite dimensional coarse space, subspace of H1;disc
0 .˝/ (for

example PA
1 .T

˝/ defined above), and Xc D Xd \ H1.˝/, which will be non-
trivial if we use potentially compatible Dirichlet boundary conditions for the coarse
elements. We define the positive quadratic form overH1;disc

0 .˝/ by
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Algorithm 2 (DCS-DMNV)
Initialize u0i by either zero or u0j˝i where u0 is the coarse solution.
while no convergence do

Compute the local iterates u
nC1=2
i 2 H1.˝i / in parallel by

�u
nC1=2
i �4u

nC1=2
i D f in˝i ; (4a)

@unC1=2
i

@ni
C punC1=2

i D @unj
@ni
C punj on @˝i \˝j ; (4b)

u
nC1=2
i D 0 on @˝i \˝: (4c)

Define a global unC1=2 2 H1;disc
0 .˝/ as u

nC1=2
i in˝i . Set UnC1 as the unique function inXd

such that

q.unC1=2 C UnC1/ D min
v2Xd

q.unC1=2 C v/; (5a)

and satisfying

�

Z

˝

U nC1.x/v.x/dx C
Z

˝

rUnC1.x/rv.x/dx

D �X
i;j

Z

@˝i\@˝j

 

@unC1=2
i

@ni
C @unC1=2

j

@nj

!

vd�; (5b)

for all test functions v in Xc .
Set unC1

i WD unC1=2
i C UnC1.

end while
Set u WD un�1=2

i on ˝i for each i in f1; : : : ; N g.

q W H1;disc
0 .˝/! RC; u 7!

X

ij

Z

@˝i\@˝j

ˇ

ˇui � uj
ˇ

ˇ

2
d�:

Note that the kernel of q is H1.˝/. The DCS-DMNV algorithm is stated in
Algorithm 2 at page 611.

Proposition 1 (Existence of the Coarse Iterate). Let .unC1=2i /1	i	N be the local
iterates. Then there exists a unique UnC1 in Xd that satisfies (5).

Proof. The function V 7! q.unC1=2CV / is quadratic, choose one minimizer UnC1
d

on Xd . By Lax-Milgram’s Lemma, there exists a unique UnC1
c in Xc such that

UnC1 D UnC1
c C UnC1

d satisfies (5b). Uniqueness comes from the fact that q is
quadratic. ut

The DCS-DMNV algorithm 2 has the important property of converging in a
single coarse step if the full coarse space A is used. However, it is only practical in
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a one dimensional setting as the coarse space is too big in higher dimensions. We
state that theorem in the discrete case.

Theorem 1 (Convergence in a Single Coarse Step for the Full Coarse Space).
Let ˝ be a bounded polygonal domain in Rd . Let .˝i /1	i	N be a domain
decomposition of ˝ that also forms a coarse mesh of ˝ . Let Th be a simplicial
or a cartesian fine mesh on ˝ which is a refinement of the .˝i/1	i	N domain
decomposition. Let F be the conformal finite element space given either by P1.Th/

if Th is simplicial or by Q1.Th/ if Th is cartesian. Let F disc be the set of all
functions on ˝ whose restriction to each ˝i is also the restriction of a function
belonging to F to ˝i , F0 be the space of functions in F vanishing on all
subdomain boundaries.

Let Xd � F disc be a coarse space. Suppose all elements in Xd satisfy the
homogenous variational equation for all test functions in F0. Let Xc D Xd \F .
Suppose u 7! ..u.xi;j //1	j	ki /1	i	N is from Xd onto

QN
iD1Rki where ki is the

number of nodes of Th located on @˝i n @˝ and where xi;j is the j -th node
located on @˝i n@˝ . Then, for any choice of initial fine iterate .u0i /1	i	N satisfying
the variational equation for all test functions in F0, the DCS-DMNV algorithm 2
converges in a single coarse step.

Proof. Let .Ui/1	N be the coarse correction. Let u1i D u0i C Ui be the corrected
iterates. The corrected iterates must satisfy the minimum jump condition (5a). Since
u 7! ..u.xi;j //1	j	ki /1	i	N is onto, it is possible to completely cancel the jumps,
therefore q..u1i /1	i	N / D 0 and u1 defined over ˝ as u1j˝i D u1i belongs to F ,
i.e. is continuous across subdomains. Moreover, since the coarse correction satisfies
the homogenous counterpart of (1) inside each subdomain, the corrected iterates
satisfy the variational equation for all test functions in F0. By (5b), the corrected
iterates also satisfy the variational equation for all test functions v in Xc . Since
u 7! ..u.xi;j //1	j	ki /1	i	N is onto, F D Xc C F0. Therefore, the corrected
iterates satisfy the variational equation for all test functions in F . ut

In a practical implementation however, convergence in a single coarse iteration
would only be possible if the coarse space contains all the degrees of freedom on
the interfaces corresponding to the fine discretization of the subdomain problems,
which would be a very rich and expensive coarse space. We will see in the next
section that a linear approximation of all the degrees of freedom on the interfaces
already leads to a very good discontinuous coarse correction.

4 Numerical Results

We implemented the DCS-DMNV Algorithm 2 in one and two dimensions, using
a finite element discretization based on a regular cartesian grid. In 1D, we chose
˝ D�0; 4Œ, � D 10 and the right hand-side f .x/ D �1. For the Robin parameter,
we used p D 5, with 60 subdomains. Convergence curves are presented in Fig. 1.
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Fig. 1 Convergence curves of the DCS-DMNV algorithm in 1D (left) and 2D (right)

As expected, a coarse grid correction with conforming P1 finite elements already
improves convergence. Requiring the coarse shape functions to be solutions of the
homogeneous equation within each subdomain does not bring any further gain. A
striking improvement is the use of discontinuous P1 elements. Optimal convergence
(see Theorem 1) can then be reached if in addition the coarse functions solve the
homogeneous equation inside each subdomain.

In two-dimension, we chose � D 0 and iterate directly on the error equations, i.e.,
we solve ��e D 0 but start with random boundary conditions on each subdomain.
Q1 elements discretize ˝ D�0; 4Œ2, and the algorithm is run with p D 12:4, 5 	 5
subdomains and 10	10 cells per subdomain. It is important for the Robin boundary
conditions to be lumped, see [10]. To compute the coarse correction, we use the
Conjugate Gradient algorithm to compute the result of the multiplication of the
pseudo-inverse of Q, q.u; v/ D .Qujv/ with a right hand-side derived from the
uncorrected iterates. This gives us one minimizer in Xd of the q functional. To
satisfy the variational condition, an additional continuous coarse correction can then
be computed in Xc .

As in the 1D case, the convergence curves presented in Fig. 1 show that the
discontinuous coarse space correction leads to a much faster convergence than
the continuous one. Even though the discontinuous coarse space is only a subset
of the optimal theoretical coarse space, the improvement over continuous coarse
spaces is substantial. In order to see in the error how the jumps slow down the
convergence of the continuous coarse correction version, we present in Fig. 2 a few
snapshots of the errors. We observe the formation of a checkerboard like structure
which cannot be corrected by a continuous coarse space. Once the errors look like a
checkerboard, the convergence of the continuous coarse correction algorithm slows
down considerably. Using a discontinuous coarse space prevents the checkerboard
like structure from appearing.
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Fig. 2 Error of the algorithm with continuous (left) and discontinuous (right) coarse grid
correction at iterations 5 and 20. Each error has been renormalized independently

5 Conclusion

We have shown that for domain decomposition methods with discontinuous iterates,
the use of a discontinuous coarse space greatly improves that of a standard
continuous one. We have designed one such discontinuous coarse space algorithm,
the DCS-DMNV algorithm, the formulation of which is well suited for finite
element discretizations. In practice, this algorithm should be used in conjunction
with Krylov acceleration. We intend to study the behavior of the Krylov accelerated
DCS-DMNV in a forthcoming paper. We are currently studying such algorithms
also for finite difference and finite volumes schemes, and investigating how the
optimization parameter p in the transmission conditions interacts with the Dirichlet
boundary conditions used in the definition of the coarse space.
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A Two-Level Preconditioning Framework Based
on a Richardson Iterative Process

Thomas Dufaud

1 Introduction

We focus on the solution of a general linear system Au D f by a Krylov type
iterative method, where A 2 Rm�m is non-singular, u; f 2 Rm. The major
drawback of the GCR (Generalized Conjugate Residual) [6] and the GMRES
(General Minimum Residual) [7] methods is their convergence rate that depends
on the conditioning number 	.A/ D kAk kA�1k.

The convergence rate of these techniques decreases while 	 increases and the
use of such methods needs preconditioning. In the following we consider left
preconditioning. The goal is to solve M�1Au D M�1f with M�1 such that
	.M�1A/ 	.A/.

Preconditioning can be enhanced by multilevel techniques. Multilevel techniques
are known to be robust for scalar elliptic Partial Differential Equations with
standard discretization and to enhance the scalability of domain decomposition
method such as Restricted Additive Schwarz preconditioning techniques. An issue
is their application to linear system encountered in industrial applications which
can be derived from non-elliptic PDEs. Moreover, the building of coarse levels
algebraically becomes an issue since the only known information is contained in
the operator to inverse.

One can consider a coarse space as a space to represent an approximated solution
of a smaller dimension than the leading dimension of the system. It is possible to
build a coarse level based on a coarse representation of the solution. Drawing our
inspiration from the Aitken-SVD methodology [8] dedicated to Schwarz methods,
we proposed to construct an approximation space by computing the Singular Value
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Decomposition of a set of iterated solutions of the Richardson process associated to
a given preconditioner.

From a preconditionerM�1 associated to a Richardson process:

uk D uk�1 C ˛M�1 �f � Auk�1
�

with ˛ 2 R (1)

We propose to build a two-level additive preconditionerM�12L :

M�12L D M�1 CM�1c (2)

where for a basis Uq 2 Rm�q , M�1c D Uq.U
T
q AUq/

�1UTq .
The plan of the paper is the following. Section 2 describes the methodology

to compute an algebraic coarse level from successive iterations of a Richardson
process. Numerical investigations with the RAS preconditioner built for real non-
symmetric indefinite operator, are performed in Sect. 3. Section 4 concludes the
study.

2 Methodology

The idea is to compute a coarse representation of the solution. In [8] a fully algebraic
computation of a coarse space is proposed to perform an Aitken acceleration of
vectorial sequence generated with an iterative domain decomposition method. In [5]
Aitken-SVD Schwarz algorithms were derived for the Aitken Restricted Additive
Schwarz preconditioning technique [4].

The choice of constructing the coarse space with the SVD is based on the
following properties. Let G 2 Rm�l . Assume that the values �k; 1 � k � l are
ordered in decreasing order and there exists a q such that �q > 0 while �q C 1 D 0.
Then G can be decomposed in a dyadic decomposition:

G D �1U1V �1 C �2U2V �2 C : : :C �qUqV �q : (3)

This means that SVD provides a way to find optimal lower dimensional approxi-
mations of a given series of data. More precisely, it produces an orthonormal base
for representing the data series in a certain least squares optimal sense. This can be
summarized by the theorem of Schmidt-Eckart-Young-Mirsky:

Theorem 1. A non-unique minimizerX� of the problem minX;rankXDq kG�Xk2 D
�qC1.G/, provided that �q > �qC1, is obtained by truncating the dyadic decompo-
sition of 3 to contain the first q terms: X� D �1U1V �1 C �2U2V �2 C : : :C �qUqV �q
Moreover, the SVD of a matrix is well-conditioned with respect to perturbations
of its entries. Consider the matrix G;B 2 Rm�l , the Fan inequalities write
�qCsC1.G CB/ � �qC1.G/C �sC1.B/ with q; s � 0; q C s C 1 � l . Considering
the perturbation matrix E such that jjEjj D O."/, then j�k.G C E/ � �k.G/j �
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Algorithm 1 Computation of M�12L with SVD of solutions of a Richardson process

Require: .uk/0�k�l�1 , l successive iterates satisfying ukC1 � u1 D �

I � ˛M�1A
� �

uk � u1�

starting from any initial guess u0

1: Compute the Singular Value Decomposition of the snapshots G D 


u0; : : : ; ul�1
�D Ul˙lV

T
l

2: Set the index q such that q D max0�i�l�1f˙.i; i/ > tolg, to define the full rank matrix
Uq D 


U0; U1; : : : ; Uq
�

{ex.: tol D 10�12.}
3: Define the coarse operator Ac 2 Rq�q such that Ac D UTq AUq

4: Define the two-level additive preconditioner M�1
2L DM�1 C UqA

�1
c UTq

�1.E/ D kEk2; 8k. This property does not hold for eigenvalues decomposition
where small perturbations in the matrix entries can cause a large change in the
eigenvalues.

These properties allow us to search an approximation of the solution in the
base linked to the SVD of a sequence of vectors obtained by iterating a linearly
convergent iterative process.

Here, we propose a general framework which enables to compute algebraically
a two-level additive preconditioner from any preconditioner that can be used in a
Richardson iterative process. Algorithm 1 shows the steps to compute M�12L that
way. In step 1, we compute the SVD of l successive iterations stored in a matrix
G 2 Rm�l of a Richardson process (1) having a linear convergence, i.e. we compute
a dyadic decomposition of G, as G D Ul˙lV

T
l , with Ul 2 Rm�l ˙l 2 Rl�l and

Vl 2 Rm�l . In step 2, Uq is made of the first q columns of Ul with respect to
the decreasing of the singular values ˙i;i , such that Uq is full rank. This selection
is done according to Theorem 1 where Xq 2 Rm�q is a non-unique minimizer of
the problem minX;rankXDq kG � Xk2 D �qC1.G/, such that Xq D Uq˙qV

T
q and

rk.Uq/ D q, with Uq 2 Rm�q , ˙q 2 Rq�q and Vq 2 Rm�q . Once this basis of the
coarse space is defined, one can compute the coarse operator (step 3) and solve the
coarse problem (step 4).
It is possible to see this approach as a way to approximate a Krylov subspace.
Basically, the solution of the linear system Au D f defined in Sect. 1 consists
on minimizing F.uk/ D �

f � Auk; f � Auk
�

on a Krylov space Kl

�

A; r0
� D

fr0; Ar0; : : : ; Al�1r0g D fd0; : : : ; d l�1g, where from an arbitrary initial solution
u0 2 Rm, r0 D f � Au0.

Let choose u0 D 0. Each iterate uk of the Richardson process can be written in a
Krylov subspace:

uk D
k
X

iD0
ˇi
�

M�1A
�i
M�1f , ˇi ¤ 0

Following Algorithm 1, we can write that

span
�

U0; : : : ; Uq�1
� � span .U0; : : : ; Ul�1/
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Then the solution of the coarse problem is an approximation of a solution in
span.Kl.M

�1A;M�1f //.
This link enable us to choose a good initial guess for the Krylov method pre-

conditioned by this two-level preconditioning approach by computing the solution
uc 2 Rq of the coarse linear system: Acuc D fc; with fc D Uqf .

Then we can set the initial guess for the Krylov method such that,

u0 D Uquc

3 Numerical Experiments

In this section we propose to apply the methodology for a RAS preconditioner for
the solution of CFD problems. The considered matrices A are real, non-symmetric,
indefinite and possibly not positive.

The Additive Schwarz (AS) preconditioning is built from the adjacency graph
G D .W;E/ of A, where W D f1; 2; : : : ; mg and E D f.i; j / W aij ¤ 0g are the
edges and vertices of G. Starting with a non-overlapping partition W D [piD1Wi;0

and ı � 0 given, the overlapping partition fWi;ıg is obtained defining p partitions
Wi;ı � Wi;ı�1 by including all the immediate neighbouring vertices of the vertices
in the partition Wi;ı�1. Then the restriction operator Ri;ı W W ! Wi;ı defines the
local operator Ai;ı D Ri;ıARTi;ı; Ai;ı 2 Rmi;ı�mi;ı on Wi;ı. The AS preconditioning

writes: M�1AS;ı D
p
X

iD1
RTi;ıA

�1
i;ı Ri;ı. Introducing QRi;ı the restriction matrix on a

non-overlapping subdomain Wi;0, the Restricted Additive Schwarz (RAS) iterative
process [2] writes:

uk D uk�1 CM�1RAS;ı

�

f � Auk�1
�

; withM�1RAS;ı D
p
X

iD1
QRTi;ıA�1i;ı Ri;ı (4)

When the number of subdomains increases the convergence rate of RAS decreases.
When it is applied to linear problems, the RAS has a pure linear rate of convergence.

First we study the robustness and scalability of the preconditioner on a 2D driven
cavity problem. Second we propose a test of the quality of our coarse space on an
2D industrial problem.

3.1 Robustness

Here, we want to study the numerical scalability of the method for the domain
decomposition preconditioner chosen. We fix the number of Richardson iteration
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to perform while decreasing the convergence rate of the preconditioner, i.e. we set a
coarse space size l and increases the number of partitions p.

We consider a test case called e30r2000 coming from modeling 2D fluid flow in
a driven cavity proposed in the Matrix Market data collection [3] referenced under
the name DRIVCAV. The flow is modeled using the incompressible Navier Stokes
equations discretized using Finite Element Method and linearized using Newton’s
method. The unit square on what the problem is solved is dicretized by 30 elements
on the edges. The Reynolds number is set to 2000.

The matrix A is real, non-symmetric and indefinite of size m D 9;661 and has
306;356 entries. The estimated condition number given by the condest function of
MATLAB is 	1.A/ D 6:77 eC 11.

We partition the operator with the METIS software for partitioning graphs with a
multilevel recursive-bisection algorithm, in p D f4; 8; 12g partitions. We compute
l D 60 iterations of a RAS iterative process starting from an initial guess u0 D 0,
and perform the SVD of the corresponding sequence of vectors.

Figure 1 (top) shows the singular values profile. When p increases the spectrum
coverage decreases which implies a decreasing of the quality of the solution on the
coarse space.

Figure 1 (bottom) shows the convergence to the solution of a GCR method
preconditioned by a RAS preconditioning technique on the left and enhanced by
the given algebraic two-level approach with initialisation of the Krylov method by
the solution of the coarse system written on Rm. The convergence rate of the RAS
method is reduced for each choice of partitioning. For p D 4 and p D 8 the
initialization by the coarse solution is efficient and we observe an enhancement
about 8 and 2 orders of convergence at the initialization respectively. For all
partitioning the accuracy is better than for the RAS, i.e. the GCR reaches greater
convergences and, although there is still a plateau due to the bad conditioning of the
system, the convergence to the solution for p D 12 can reach 10�7 instead of 10�5.

3.2 Quality

Here, we want to observe the influence of the quality of the coarse space on the
convergence rate of the preconditioned solution method.

We apply our technique on the case GT01R proposed by a CFD company
called FLUOREM, on [1], which deals with steady flow parametrization. From a
steady RANS simulation (compressible Navier–Stokes equations) on a reference
configuration they obtain linear systems with real, square and indefinite matrices.
Those matrices, generated through automatic differentiation of the flow solver
around a steady state, correspond to the Jacobian with respect to the conservative
fluid variables of the discretized governing equations (finite-volume discretization).
The right hand side represents the derivative of the equations with respect to a
parameter (of operation or shape).
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Fig. 1 Solving 2D driven cavity, ReD 2000, nD 9,661, with GCR preconditioned by RAS (left)
and ML_RAS_svd(60) (right). Singular values of RAS solutions to computeM�1

c for pD 4, 8, 12
(top)

The CASE_004 GT01 operator comes from a 2D inviscid case in the context
of a linear cascade turbine. The solution of the discrete system is defined over five
variables per node. The discretisation is done among 1;596 nodes, describing one
inter-blade channel. The stencil involved by the convective scheme uses nine nodes.
Thus, there are nine non-zero blocks for each node in the matrix. The peculiarity
is that the computational domain is periodic, which introduces some non-zero
elements far away from the diagonal. The resulting matrix is real, non-symmetric
and not positive definite, of size m D 7;980.

Figure 2 shows the singular values (left) obtained after 20, 40 or 60 iterations of
a RAS iterative process with p D 8. For l D 60, � covers 15 orders of magnitude,
while it covers 10 orders of magnitude for l D 40 and 5 for l D 20. For each we
choose l D q. As expected, the convergence of the GMRES (right) is better when
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Fig. 2 Solving 2D case, GT01, nD 7,814, with GMRES preconditioned by RAS and
ML_RAS_svd(q), pD 8 (right), Singular values of RAS solutions to compute M�1

c (left)

Table 1 Coarse solution accuracy for the GT01 case, com-
pared to a solution given using LU factorization

Modes 20 40 60
kuex � UTq uck 7.23 e�01 5.99 e�02 8.39 e�03

q increases. Nevertheless, the convergence plots for 20 and 40 singular values kept
are similar.

Table 1 shows the coarse solution accuracy compared to a solution given using
LU factorization. The greater the number of iterations of a Richardson process is,
the better the coarse solution accuracy is.

Those results shows that, although the quality of the coarse space is increasing
with the number of Richardson iterations, it is not necessary to compute a lot of
singular values to enhance the convergence with this technique.

4 Conclusion

As in [8] and [5] the principle of using the SVD of successive solutions of an
iterative process enables to compute a coarse solution without the knowledge of
the underlying equations but it not used to accelerate a sequence of vectors but to
construct a Krylov subspace. Then it can also be used to construct algebraic coarse
levels for a two-level preconditioning technique based on any preconditioner which
can be used in an iterative Richardson process.

Numerical results have been shown for the RAS preconditioning technique
on two fluid flow problems. The algebraic framework enables to deal with real,
non-symmetric and not positive definite operators. The two-level preconditioners
produced are numerically scalable for domain decomposition technique such as
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RAS and the coarse space enables to compute an approximation of the solution
which is used to initialize the chosen Krylov method.

Further work concerns the study of the non-singularity of the coarse operators
built with this approach. Moreover, a discussion about the choice of the SVD
algorithms and the quality of the coarse space produced should be studied.
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Distributed Nonsmooth Contact Domain
Decomposition (NSCDD): Algorithmic
Structure and Scalability

V. Visseq, A. Martin, D. Dureisseix, F. Dubois, and P. Alart

1 Introduction

Numerical simulations of the dynamics of discrete structures in presence of numer-
ous impacts with frictional contacts leads to CPU-intensive large time computations.
To deal with these problems (e.g. granular materials, masonry structures), numerical
tools have been developed, such as the nonsmooth contact domain decomposition
(NSCDD), presented Sect. 2. We focus herein on a distributed version with parallel
detection of fine contacts (Sect. 3) and on two possible communication schemes
to solve the interface problem (Sect. 4). Those improvements allow to study
scalability and numerical performances of the method for 2D and 3D granular media
(Sect. 5).
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2 The Nonsmooth Contact Domain Decomposition

2.1 Nonsmooth Contact Dynamics Reference Problem

In this section we recall briefly the background theory of nonsmooth contact
dynamics in the context of time-stepping schemes before an analysis of the main
steps of the NSCDD method.

With a time-stepping scheme, no event detection is performed. Once the solution
is known at the beginning of a time slab Œti ; tiC1�, whose known quantities are
denoted with a superscript (�), the quantities at the end of the time slab (without a
superscript) have to be determined.

2.1.1 Grain Nonsmooth Dynamics

Considering a rigid model for the grains, the dynamics of the granular medium is
written as the vector equation [4]:

MV � R D Rd ; (1)

where the prescribed right-hand side is Rd DRDCMV�. V is the velocity of the
grain (it contains the translational degrees of freedom—dof, and the rotational ones);
R is the resultant impulse on the grain due to interactions with other grains and RD

are the external prescribed impulses. The matrix M contains both the mass (for
the translational dof) and the inertia (for the rotational dof). The assembly of these
equations (independent for each grain) is formally written in the same way (1).

2.1.2 Contact Interaction

For a unilateral contact Moreau proved via a viability lemma [4], that we can use a
velocity-impulse complementary law:

R.v; r/ D 0; (2)

v is the velocity jump at the contact point between the two interacting grains, r is
the impulse at the same contact point. R is usually a non linear and multivalued
relationship between the previous two dual quantities. Both v and r are expressed in
the local coordinate basis to the contacts between the interacting grains. Therefore,
they are linked to the global kinematic and static quantities with compatibility
conditions v D HT V and R D Hr.
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2.1.3 Reduced Dynamics

Taking the dynamics (1) and the compatibility conditions into account, the reduced
dynamics involving material variables can be obtained:

Wr � v D �vd ; (3)

where W is the Delassus operator: W D HTM�1H , and vd D HTM�1Rd . To
close the problem, one adds the constitutive relation (2), and the reference problem
reads:

�

Wr � v D �vd
R.v; r/ D 0 : (4)

The difficulty to solve this problem is at least twofolds: on one hand, the number
of unknowns (number of interaction quantities r and v) may be large (for instance,
an average of 6:5 	 105 unknowns for the 3D problem illustrating this paper), and
the Delassus operatorW is not well conditioned. On the other hand, the constitutive
relation is nonsmooth (e.g. it is non linear, and not differentiable). To address the
nonsmoothness issue, the NSCD (nonsmooth contact dynamics) method with a non-
linear Gauss–Seidel (NLGS) solver [2, 4] is used. To address the large size of the
problem, a substructuring approach is proposed.

2.2 Sub-structuring

The proposed sub-structuring may be seen as a FETI-like domain decomposition.
Indeed, after the partition of the sample (step detailed in Sect. 3) constraints are
added on the interface grain velocities, with E the index of a subdomain:

ns
X

ED1
A�EVE D 0; (5)

ns is the number of subdomains, A�E is a signed Boolean matrix selecting interface
grains among subdomains to construct their velocity jumps. This step consists of
a perfect gluing procedure, which is quite different from the approach proposed in
[3]. The dynamics per subdomain reads:

MEVE �RE D RdE �AT�EF�; (6)

where F� are the Lagrange multipliers associated to the previous constraints. One
shows that combining equation (5) and (6) the interface problem reads:

XF� D
ns
X

ED1
A�EM

�1
E

�

RE CRdE
�

; (7)
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with X D Pns
ED1 A�EM

�1
E AT�E the interface operator [5]. The reduced dynamics

problem per subdomain has the same structure that the global one provided the
addition of Lagrange multipliers as additional external impulses on the given right
hand side:

(

WErE � vE D �vdE C v�E
R.vE; rE/ D 0;

; (8)

where v�E D HT
E M

�1
E AT�EF� . To close the problem, the interface behavior (5) or

(7) should be added.

2.3 NSCDD Algorithmic Structure in the LMGC90 Platform

The NSCDD method has been implemented into the LMGC90 platform1 [1] for
time-evolution problems (N is the number of time steps). Algorithm 1 describes
its structure. A NSCDD iteration is then composed of nGS Gauss Seidel iterations
on the reduced dynamics and an update of interface quantities. In practice nGS is
chosen equals to 1. In the next two sections we will focus on the underlined stages
(with boldface) in the following Algorithm 1.

Algorithm 1 NonSmooth contact domain decomposition (NSCDD)
for i D 1; : : : ; N do

Contact detection (eventually parallelized) and
possible new decomposition of the domain
Initialize unknowns at time ti : .rE; vE; F� /
while (convergence criterion not satisfied) do

In parallel for E D 1; : : : ; ns:
Compute the velocity Nv�E
Compute (NrE , NvE ) with nGS non-linear Gauss–Seidel iterations on:

�

WE NrE � NvE D �NvdE C Nv�E
R. NvE; NrE/D 0

(9)

Update .rE; vE/ .NrE; NvE/
Compute NRE and correct the velocity on interface grains to get A�E NVE

In sequential, but may be possibly parallelized (DCS version):
Compute �F� as: X�F� DPns

ED1 A�E NVE and update interface impulses F�
end while
Update grain positions in parallel

end for

1www.lmgc.univ-montp2.fr/LMGC90.

http://www.lmgc.univ-montp2.fr/LMGC90
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3 Contact Detection

At the beginning of a time step, positions and velocities of grains are known and
the contact network between bodies has to be computed. Contact detection is a
CPU time consuming task, especially for a large number of bodies—this is directly
related to the number and the shape of the elements considered. Usually, an efficient
solution is to proceed to a two-level detection, i.e. a rough (and cheap) detection
followed by an elimination of loose contact predictions and the computation of
contact frame (the fine detection).

3.1 Partitioning Based on “Rough” Contact Network

Once a rough detection has been performed, the interaction graph consists in
nodes associated to grains and edges associated to interactions. We choose to
distribute interactions among subdomains as in [5] (we proceed by distributing the
middle points between the centers of mass of interacting grains, according to their
coordinates, using an arbitrary regular underlying grid, Fig. 1a). Indeed, with such a
choice, the “boundary” grains are duplicated in the subdomains. If a grain indexed
with i is connected with mi subdomains, mi is called its multiplicity number. For
consistency for the rigid model of the grains, the masses and moments of inertia
are distributed among the neighboring subdomains according to their multiplicity
number, in a partition of unity manner. We remark that rough detection, and so the
domain partitioning, does not have to be done at each time step, but at a user-defined
frequency (fixed at ten time steps for numerical tests of Sect. 5).

3.2 Parallelized Fine Detection

Once the domain decomposition has been performed, data can be distributed among
the processors and a fine contact detection can be performed in parallel on each
substructure local data. Nevertheless contacts roughly detected may disappear at the
end and the multiplicity number of the grains may have been incorrectly predicted
(Fig. 1a, b show cases we may encountered). In particular, predicted boundary grains
could turn out not to belong to the minimal interface (computed thanks to the fine
contact graph). Their adding to the interface gluing step does not change the problem
to solve but increases the size of data to transfer between processors. A future
optimization should be to correct interface structures and material parameters to
take this phenomenon into account.
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a b

Fig. 1 Rough (a) and fine (b) interaction network and their associated domain partitioning. Striped
grains represent grains of multiplicitymi > 1; dashed lines represent interactions roughly detected
which vanishes in effective contact network

4 Communication Schemes for Solving Interface Problem

In this section we present two communication schemes associated to centralized
and distributed interface problem solving procedure. As one has to solve the
interface problem for each NSCDD iterations, to define an appropriate algorithmic
formulation, minimizing the data exchanges between processes, is a key issue for
the performances of the proposed method.

4.1 Centralized Communication Scheme (CCS)

At a first glance, the interface gluing step (7) is defined as a global linear equation
linking all the subdomains. This is replaced in the iterative algorithm by requiring
communications between the subdomains such that one process gathers all the
velocity contributions to the vector of velocity jumps. The value of the Lagrange
multipliers F� computed sequentially is then distributed such that subdomain E
receives its minimal data amount AT�EF� .

4.2 Decentralized Communication Scheme (DCS)

Due to the structure of the interface operator X , extensively studied in [5], each
distributed database (per process related to subdomain E�) is sufficient to construct
the elementary contribution to the interface operator:
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Table 1 Comparison of elapsed CPU time percentage consumed during MPI
exchanges for centralized (CCS) and decentralized (DCS) communication
schemes; isotropic compaction of a 55;000 spheres sample

ns

Partitioning
parameters (x; y; z)

CPU percentage
(CCS)

CPU percentage
(DCS)

1 1 1 1 0% 0%
3 3 1 1 31:3% 14:0%
4 2 2 1 35:6% 9:1%
8 2 2 2 58:3% 18:4%

X�E� D
ns
X

ED1
A�E� EM

�1
E AT�E� E; (10)

A�E� E is a signed boolean matrix, mapping grains of subdomain E to velocity jumps
of the elementary interface �E� (restriction of the global interface to the boundary
of subdomain E�). Then, an elementary interface problem can be defined as:

X�E��F�E� D
ns
X

ED1
A�E� EVE: (11)

Finally, the data gathering of
Pns

ED1 A�E� EVE on each process corresponds to
data exchanges over an unstructured topology. Indeed discrete element methods,
such contact dynamics, may deal with large/elongated bodies, possibly related to all
subdomains. A common example of such bodies is a wall which support contacts
on a large range. With the computation of the assembling of local contributions, it
is easy to show that this is the expected iterated vector:

�F� D
ns
X

ED1
B�EDEB

T
�EE�F�E ; (12)

B�E is a boolean matrix selecting interface grains among subdomains, B�EE is a
boolean matrix selecting elementary interface grains among subdomains and DE is
a diagonal matrix with value 1=mi for entries corresponding to grain i .

4.3 Performance Comparison of the Two Communication
Schemes

The influence of the proposed communication schemes is studied regarding the
CPU time percentage consumed during MPI exchanges (Table 1) with respect to
the whole CPU time of a simulation. The test consists of a sample with 55;000
spheres submitted to an isotropic compaction, over 500 time steps (Fig. 2).
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Fig. 2 Sample of 55;000 spheres submitted to isotropic compaction. Subdomains indexes (a) and
multiplicity number of grains (b)

Results presented in Table 1 show clearly the gain we may obtain considering
DCS compared to CCS. Decentralized communication scheme indeed allows to
avoid MPI collective communications (especially expensive, in our case, to scatter
updating of Lagrange multipliers) and to partially parallelize interface treatment.

5 Scalability Preliminary Results

We propose to study scalability of the NSCDD method on tests consisting in
samples of (2D) disks and (3D) spheres submitted to basic loadings. The speedup
Sp, function of the number of processes Np (supposed equals to the number of
subdomains), and the number of total iterations, over 100 time steps, are then
highlighted. On both tests, friction is considered at contact between particles.
Simulations are performed on a 48 cores AMD processor.

5.1 2D: Biaxial Test

As shown in Fig. 3, the speedup does not change drastically depending on the
communication scheme for a quite small 2D sample, at least for a small number of
processes. The number of iterations (independent from the communication scheme)
is nearly constant for all the tested domain splittings.

5.2 3D: Triaxial Test

For 3D granular samples (Fig. 4) the centralized communication scheme has very
poor efficiency so it is not reported here. We consider a random closed packing
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Fig. 3 Speedup (a) and total number of iterations (b); biaxial loading of a 13;000 disks sample
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Fig. 4 Speedup (a) and mean number of iterations (b); 64;000 spheres sample

of 64;000 spheres subjected to triaxial compaction (downward displacement of the
top wall with a constant velocity and confining stress acting on the lateral walls).
That is the hardest mechanical configuration one may encountered because of the
strong indeterminacy of the problem cumulated to the high number of contacts
unknowns (6:5	105 in average in our case), but also the most interesting numerical
case for the domain decomposition method proposed. We see that the speedup has
good quantitative behavior, even if the hardware and MPI library optimization may
be improved. Indeed, the use of about a hundred processors (for larger problems
than those studied here) implies to mobilize a supercomputing platform to obtain
reasonable speedup.
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Integrating an N -Body Problem with SDC
and PFASST

Robert Speck, Daniel Ruprecht, Rolf Krause, Matthew Emmett,
Michael Minion, Mathias Winkel, and Paul Gibbon

1 Introduction

Particle methods are an attractive approach for solving complex three-dimensional
flow problems since they are naturally adaptive [4]. In this work, we utilize a particle
description based on vorticity to discretize the Navier–Stokes equations in space,
which results in a first-order initial value ODE for the particles’ positions and
vorticities. When highly accurate solutions to the initial value problem are required,
it is usually more efficient to use higher-order temporal integration schemes.
Spectral Deferred Correction (SDC) methods [6] are an elegant way to achieve high-
order time integration by using simple low-order schemes in an iterative fashion.
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While a single time-step of an SDC method is usually more expensive in terms
of computation time than a step of a classical Runge–Kutta scheme, SDC can be
competitive in terms of time-to-solution required for a fixed accuracy [2].

The temporal integration in vortex methods requires the evaluation of anN -body
problem for each function evaluation. This evaluation can be parallelized efficiently
by a spatial distribution of the particles over multiple cores. However, the strong
scalability of this approach is limited when the number of degrees-of-freedom per
core becomes too small (similar to domain decomposition techniques for mesh-
based methods). Time-parallel methods are one possible approach to speed up
simulations beyond this saturation point, with early approaches dating back to [18].
A very general scheme is Parareal [15], which allows arbitrary integration schemes
to be used in a black-box fashion. A detailed mathematical analysis of Parareal is
conducted in [8] and comprehensive lists of references can be found e.g. in [17,19].
The drawback of Parareal is that the parallel efficiency is formally bounded by 1=K
where K is the number of iterations required for convergence. The Parallel Full
Approximation Scheme in Space and Time (PFASST) method for parallelizing SDC
methods in time is introduced in [7, 17]. By combining the iterations of SDC with
the iterations of Parareal, it significantly relaxes the efficiency bound of Parareal and
further enhances the competitiveness of integration schemes based on SDC.

The present paper investigates the accuracy of integrating a particle-based
discretization of the 3D Navier–Stokes equations in time using SDC and PFASST.
We are not aware of any other studies that investigate SDC integration methods in
conjunction with particle-based spatial solvers aside from a small, one-dimensional
N -body example in [3] for Revisionist Integral Deferred Corrections (RIDC).

Since this work focuses on the accuracy of the temporal discretization, the N -
body problem is solved directly with O.N 2/-complexity, limiting the presented
studies to rather small numbers of particles. The unfavorable quadratic complexity
can be overcome by computing approximate interactions using e.g. Barnes–Hut
tree codes [1] or the Fast Multipole Method [11]. Results on the strong scaling of
PFASST on extreme scales, simulating merely 4 million particles on up to 262;144
cores, are reported in [25], where the massively parallel Barnes–Hut tree code
PEPC [9, 10, 22, 23, 27] is applied. There, however, only a very brief discussion
of accuracy is given, aiming solely at identifying parameters that generate time-
parallel and time-serial solutions of comparable quality that allow for a meaningful
comparison in terms of runtimes. Here, accuracy of the method is addressed in more
detail, including a comparison with a standard Runge–Kutta scheme.

We briefly describe SDC and PFASST in Sect. 2 and present accuracy studies
in Sect. 3. In Sect. 4 we summarize our results and comment on how further
efficiency can be achieved for particle-based methods as a prelude to the large-scale
simulations performed in [25].
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2 Parallel in Time Integration Using Spectral Deferred
Corrections

Discretizing the vorticity-velocity formulation of the Navier–Stokes equations with
N particles results in an initial value problem of the form (see e.g. [4])

d

dt
y.t/ D f .y.t//; y.0/ D y0 2 R6N ; t 2 Œ0; T � (1)

where the right-hand side f denotes the sum of all mutual particle interactions
(commonly via regularized smoothing kernels) and y 2 R6N is a vector containing
3D positions and vorticities of N particles. Without further approximation, directly
evaluating f is of O.N 2/-complexity. This can be significantly reduced using mul-
tipole approximations with either Barnes–Hut tree-codes [21] or the Fast Multipole
Method [5] at the cost of increased spatial approximation errors. In this work,
however, we focus on errors from temporal discretization, and hence f is evaluated
exactly with full accuracy and quadratic complexity. To solve the initial value
problem (1), classical explicit time-stepping algorithms such as fourth-order Runge–
Kutta schemes are commonly used, see e.g. [26]. Here, we use SDC methods [6],
which can easily produce high-order time integration schemes from simple low-
order methods and which can be parallelized in time using PFASST [7, 17].

Let 0 D t0 < t1 < t2 < : : : < tM D T denote a discretization of the time-
interval Œ0; T �, and let tm � m1 < m2 < : : : mJ � tmC1 denote a set of quadrature
points in the interval Œtm; tmC1�, see [14] for details on the choice of these nodes. For
brevity, we fix m and write j instead of mj for all j D 0; : : : ; J . Moreover, let yj
denote an approximation to y.tj /, j D 0; : : : ; J . Starting from the equivalent Picard
formulation of Eq. (1), the key ingredient of SDC is the spectral approximation

SjC1j f D
J
X

lD0
˛j;lf .yl / �

Z jC1

j

f .y.// d (2)

with quadrature weights ˛j;l 2 R. Then, the k C 1 explicit update for yjC1 at node
j C 1 using low-order explicit Euler is evaluated as

ykC1jC1 D ykC1j C�j
h

f .ykC1j / � f .ykj /
i

C SjC1j f k; (3)

where �j D jC1 � j , k is the iteration index and y0j is some provisional
solution computed at the nodes j . For K iterations with a first-order propagator,
SDC formally results in a Kth-order time integrator, provided the quadrature
approximation is accurate enough. On the other hand, using M Gauss–Lobatto
quadrature nodes yields a method of order 2M�2, provided the number of iterations
K is large enough. We refer to [6, 12] for more details and properties of this
approach.
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To introduce parallel time-stepping we briefly review the Parareal approach [15].
Here, temporal parallelization of (1) is imposed by iterating over two integration
schemes, a fast and inaccurate one (the “coarse” propagator) denoted typically as
G and a slow but accurate one (the “fine” propagator) labeled F . While a classical
time-marching scheme computes a sequence of solutions

ymC1 D F .ym/; tm 2 Œ0; T �; (4)

Parareal replaces (4) by the iteration

ykC1mC1 D G .ykC1m /CF .ykm/� G .ykm/; m D 0; : : : ;M � 1 (5)

where k � 0 is again the iteration index. The key here is that if the solution from
iteration k is known, the expensive evaluation of the terms F .ykm/ can be done
in parallel for multiple m. Then, a correction is propagated from t0 to tM through
the cheap yet serial computation of the terms G .ykC1m /. The Parareal iteration (5)
converges to a solution of the same accuracy as obtained by running F in serial
[i.e. by computing (4)]. ForNit iterations of Parareal andNp processors, the speedup
achievable is bound by Np=Nit, see [17].

To improve parallel efficiency, the PFASST algorithm intertwines SDC integra-
tors of different accuracy for G and F with the iterations of Parareal. In addition
to multiple levels in time, PFASST can benefit from spatial coarsening, as used
in e.g. multi-grid techniques. Furthermore, PFASST employs Full Approximation
Scheme (FAS) corrections to increase the accuracy of SDC iterations on coarse lev-
els. Many details of SDC, Parareal and PFASST have been omitted here for brevity,
and the reader is referred to the more detailed discussions in e.g. [6,7,15,17,19,25].

3 Numerical Results

To test SDC and PFASST in the framework of particle simulations we use a
standard spherical vortex sheet setup as discussed e.g. in [20, 24] with N D 10;000
particles (i.e. 60;000 degrees-of-freedom), a sixth-order algebraic kernel for the
regularization, and final time T D 32. For convenience, the direct evaluation of f
has been parallelized in space using 64 processors of the Intel Cluster JUROPA at
Jülich Supercomputing Centre [13]. Reported errors are computed using a reference
solution generated by an 8th-ordered SDC method with 2;048 time-steps.

Figure 1a shows the relative maximum error against the number of evaluations
of f for the standard RK4 method [denoted RK.4/] and SDC with different
numbers of iterations and Gauss–Lobatto quadrature nodes [denoted SDC.X; Y /
for X iterations and Y Gauss–Lobatto nodes]. The left-most markers correspond
to 8 time-steps, the rightmost to 2;048. Here, the order of convergence of SDC
equals the number of performed iterations, since the number of quadrature nodes
is high enough, see [6]. Increasing the order of SDC (i.e. increasing the number of
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Fig. 1 Error versus number of evaluations of the right-hand side f for SDC.X; Y / and the
maximum number of f evaluations performed by one process (typically on the last time-rank)
for PFASST.X; Y / on four time-processes. Direct particle simulation of a spherical vortex sheet
with 10;000 particles, sixth-order algebraic kernel, and up to 2;048 time-steps. (a) SDC vs. RK.4/;
(b) PFASST vs. SDC.8; 7/

iterations) reduces the error substantially for a given number of function evaluations.
Hence, if solutions of moderate or high accuracy are sought, e.g. below 10�7,
higher-order SDC methods are more efficient in terms of f evaluations than RK4
or lower-order SDC methods.

Although fourth-order SDC [realized here by SDC.4; 3/ in Fig. 1a] is more
expensive than the classical RK4, one advantage of SDC methods is that the order
of convergence can be easily controlled by the interplay of quadrature nodes and
iterations. Implementing Runge–Kutta schemes of higher-order, on the other hand,
involves tedious and error-prone code re-implementations. Moreover, SDC can
easily treat stiff and non-stiff parts of the right-hand side separately and/or with
differing time-steps accuracy [16]. More importantly for the present study is that
SDC methods can be parallelized in time using PFASST.

In Fig. 1b, we show the relative maximum error of two-level PFASST runs
on four time-processes, i.e. with four times more processors than the space-
parallel/time-serial SDC runs. Here, the x-axis depicts the maximum number of
f evaluations performed by one process (maximum is typically attained on the last
time-rank), counting evaluations of f in F as well as in G , see also the discussion
on Fig. 2 below. We do not employ spatial coarsening, i.e. the propagators F and
G differ only in the number of temporal quadrature nodes. We also compare the
PFASST runs to a serial SDC run with eight iterations on seven Gauss–Lobatto
nodes. PFASST, while being more expensive in terms of f evaluations, also yields
a higher accuracy for a given number of iterations and quadrature nodes in our
case. This is due to the fact that each iteration contains sweeps at both fine and
coarse levels, so that effective number of SDC sweeps is higher than the number
of iterations. Note again that higher-order schemes show much better efficiency in
terms of accuracy versus f evaluations.
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Fig. 2 Distribution of f evaluations on the coarse and fine level for SDC.12; 7/ [abbreviated by
S.12; 7/] and PFASST.8; 7; Z/ with Z D 1; 2; 4; 8 time-processes [abbrev. by P.8; 7; Z/]. One
block of coarse and fine evaluations corresponds to one time-step on one time-process (SDC is
serial in time and evaluates only on the fine level). Depicted runtimes are normalized with respect
to the SDC runtime (418 s for our test setup with 10,000 particles, sixth-order algebraic kernel).
All runs yield comparable accuracy for 16 time-steps

Besides providing higher accuracy, PFASST also introduces an additional layer
of parallelism. Provided that the spatial parallelization is already saturated, the
application of PFASST can push the strong-scaling limit further by distributing
the temporal integration across multiple time-processes, as shown in [25]. To shed
more light on this concept, Fig. 2 shows the number of f evaluations required by
PFASST.8; 7/ on one to eight time-processors with 16 time-steps. As a reference,
we choose SDC with 12 iterations on 7 quadrature nodes to obtain a comparable
accuracy to PFASST.8; 7/ when tested against a very fine resolved reference
solution: Both schemes provide an accuracy of approx. 10�13 with 16 time-steps.
The number of f evaluations in G are highlighted in blue and hatched, the
ones in F in red. Note that there is no coarse propagator in the single-level
SDC scheme. The second bar, denoted P.8; 7; 1/, corresponds to PFASST with
eight iterations and seven quadrature nodes on one time-processor. When run on
one time-processors, PFASST reduces to a multi-level SDC scheme. Comparing
SDC.12; 7/ and PFASST.8; 7; 1/ we note that by switching from a single-level
SDC scheme of a given order to a multi-level SDC scheme with comparable
accuracy, the number of iterations are reduced (from 12 to 8 in our case). On
the other hand, significant additional costs are introduced due to the additional f
evaluations required by the coarse step and the transfer operations between fine
and coarse quadrature nodes. However, the extra computational work of the multi-
level SDC scheme can be distributed across multiple processors as demonstrated in
the three remaining bars, which correspond to PFASST.8; 7/ on two, four and eight
processors. Hence, if the workload of PFASST.8; 7/ is distributed across sufficiently
many processors, then the total runtime becomes smaller than the time-to-solution
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of the serial SDC.12; 7/method. This is highlighted by the green line, which shows
the runtime normalized by the runtime of SDC.12; 7/. While PFASST.8; 7; 2/ is
still slightly slower than SDC.12; 7/, PFASST.8; 7; 4/ and PFASST.8; 7; 8/ show
significant speedup. The cost of enlarging the problem, i.e. switching from SDC to
a multi-level scheme, is compensated by the fact that this multi-level approach is
amenable to parallelization while SDC itself is not.

4 Conclusion and Outlook

In this work, we have investigated the accuracy and convergence order of Spectral
Deferred Correction (SDC) methods and their parallelization using the PFASST
method. SDC provides a reliable, flexible, and generic mechanism to generate
high-order and high-accuracy time integrators. We have shown that SDC and its
time-parallel variant PFASST provide the theoretically expected convergence orders
and accuracies on an example particle problem. In contrast to classical Runge–Kutta
schemes, the convergence order and/or accuracy of SDC methods can easily be
controlled by changing the number of iterations and/or quadrature points used, and
the use of higher-order SDC methods allows much larger time-steps and hence fewer
evaluations of the right-hand side. This is consistent with the increase of accuracy
and also stability regions observed in [6].

Another key advantage of SDC methods is that they can be parallelized in
time with PFASST. Here, the careful union of fine and coarse SDC iterations
leads to a high-order parallel-in-time integration scheme which relaxes Parareal’s
bound on parallel efficiency and can provide significant speedup beyond space-
only parallelization. In our test case, PFASST is more accurate for a given number
of quadrature nodes and iterations, although for enough iterations both SDC and
PFASST eventually provide the same solution. Moreover, we have demonstrated
how the principle of “doing more to be faster” paves the way for temporal
parallelism: the introduction of (possibly multi-level) coarsening in space and time
increases the number of f evaluations significantly but also allows work to be
distributed across many time-processors.

Here PFASST is used with temporal coarsening only, while considerably more
parallel efficiency can be obtained by introducing both spatial and temporal
coarsening. While grid-based spatial coarsening by multi-grid techniques is well
understood, spatial coarsening of particles systems is less straightforward. One
possibility is to control the quality of the approximation of f using multipole
methods instead of direct summation [25]. Thus, the use of fast summation
algorithms not only allows extreme-scale simulations as demonstrated in [27], but
also introduces a promising way of particle-based spatial “coarsening”.
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Hybrid Space–Time Parallel Solution
of Burgers’ Equation

Rolf Krause and Daniel Ruprecht

1 Introduction

Many applications in high performance computing (HPC) involve the integration
of time-dependent partial differential equations (PDEs). Parallelization in space by
decomposing the computational domain is by now a standard technique to speed up
computations. While this approach can provide good parallel scaling up to a large
number of processors, it nevertheless saturates when the subdomains become too
small and the time required for exchanging data starts dominating. Regarding the
anticipated massive increase of available cores in future HPC systems, additional
directions of parallelization are required to further reduce runtimes. This is espe-
cially important for time-critical applications like, for example, numerical weather
prediction, where there exists a very strict constraint on the total time-to-solution
for a forecast in order to be useful.

One possibility for providing such an additional direction of parallelization are
parallel-in-time integration schemes. A popular scheme of this type is Parareal,
introduced in [1, 7]. It has been applied successfully to a broad range of problems
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and also undergone thorough analytical investigation. A large number of corre-
sponding references can be found, for example, in [6, 9].

While numerous works exist dealing with different aspects of Parareal in a purely
time-parallel approach, there seem to be few studies that address the combination of
Parareal with spatial parallelization, in particular with a focus on implementation.
First results on combining Parareal with spatial domain decomposition are presented
in [8]. While scaling of the algorithm is discussed, no runtimes are reported. In [12,
13], computing times for a pure MPI-based combination of Parareal with spatial
domain decomposition for the two-dimensional Navier–Stokes equations are given,
but with ambiguous results: Either a pure time-parallel or a pure space-parallel
approach performed best, depending on the problem size. In [4], the capability of
a purely MPI-based approach to speed up simulations for the 3D Navier–Stokes
equations beyond the saturation of the spatial parallelization is shown. Extensive
scaling tests for the “revisionist deferred correction” method (RIDC) for the linear
heat equation, also in combination with domain decomposition, can be found in [3].

The present paper investigates the performance of a combination of a shared
memory implementation of Parareal featuring explicit integrators with an MPI-
based parallelization of a stencil-based spatial discretization into a hybrid (see [10])
space–time parallel method. The code is an extension of the purely time-parallel,
OpenMP-based implementation used in [11]. Using shared memory for Parareal
avoids communication of volume data by message passing and thus reduces the
memory footprint of the code.

2 Algorithm and Implementation

The starting point for Parareal is an initial value problem

dq
dt
D f.q/; q.0/ D q0 2 Rd ; (1)

where in the present work, the right hand side f stems from the spatial finite
difference discretization of some PDE on a rectangular domain˝ � R2. The spatial
parallelization uses a standard non-overlapping decomposition of the domain,
allowing for a distributed computation of f.q/, where every MPI-process handles
the degrees-of-freedom of one subdomain and ghost-cell values are exchanged at
the boundaries. The implementation described below can be used for all integrators
that involve only straightforward evaluations of f, that is explicit methods or implicit
methods where the arising linear or nonlinear system is solved with e.g. a fixed point
iteration. For more complex solvers, e.g. a multi-grid method, a hybrid strategy will
be more involved, because other parts like restriction or interpolation would have to
be included in the hybrid paradigm as well.
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Algorithm 1 Parareal algorithm implemented with OpenMP using Nc threads

1: q00 D q0, k WD 0

2: for i D 0 to Nc � 1 do
3: q0iC1 D G�t .q0i ; tiC1; ti /

4: end for
5: repeat
6: omp parallel for
7: for i D 0 to Nc � 1 do
8: QqkiC1 D Fıt .qki ; tiC1; ti /

9: end for
10: omp end parallel for
11: for i D 0 to Nc � 1 do
12: qkC1

iC1 D G�t .q
kC1
i ; tiC1; ti /C QqkiC1 � G�t .qki ; tiC1; ti /

13: end for
14: k WD kC 1
15: until k D Nit

2.1 Parareal

Parareal allows one to parallelize the integration of (1) by combining a number of
time-steps into one coarse time-slice and performing an iteration where multiple
time-slices are treated concurrently. Let Fıt denote a numerical integration scheme
of suitable accuracy, using a time-step ıt . A second integration scheme is required,
typically called G�t , using a time-step �t � ıt , which has to be much cheaper in
terms of computation time but can also be much less accurate. Denote by

Qqg D G�t.q; Qt ; t/; Qqf D Fıt .q; Qt ; t/ (2)

the result of integrating forward in time from an initial value q at time t to a time
Qt > t using G�t or Fıt . Parareal uses G�t to produce approximate solutions at nodes
.ti /iD0;:::;Nc of a coarse temporal mesh (lines 2–4 in Algorithm 1). These guesses
are then used as initial values for running Fıt concurrently on all Nc time intervals
Œti ; tiC1� (lines 6–10). A correction is then propagated sequentially by another sweep
of G�t (lines 11–13). The procedure is iterated and converges towards the solution
that would be obtained by running Fıt sequentially from t0 to tNc . For a detailed
explanation and properties of the algorithm we refer to [6] and references therein.
Note that an MPI-based implementation of Parareal requires communication of full
volume data in line 12, which is avoided by the shared memory parallelization in
time used here.

For a given time interval Œt0; tNc �, denote by Nf the number of fine steps required
to integrate from t D t0 to t D tNc , by c and f the execution time of one single
coarse or fine time-step and by Nit the number of performed iterations. Further,
assume that G�t always performs one single step, so that Nc is also the number of
coarse steps between t0 and tNc . The speedup obtainable by Parareal for a given
number of processors can be estimated by
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s.Np/ � 1

.1CNit/
Nc
Nf

c
f
C Nit

Np

� Np

Nit
: (3)

Note that the maximum parallel efficiency is bounded by 1=Nit. Because of this
limit, Parareal is commonly considered on top of a saturated spatial parallelization
for problems where minimizing time-to-solution is critically important. Recently,
a new scheme named PFASST, based on a combination of Parareal with spectral
deferred correction methods, has been introduced in [5].

2.2 Implementation

For the OpenMP-based parallelization sketched in Algorithm 1 to be efficient,
the implementation of the fine propagator Fıt has to be suitably designed for
multithreading. This involves a number of technical issues like taking care of “non-
uniform memory access” (NUMA) inside compute nodes by ensuring that the data
a core accesses while running a thread is located in the memory closest to this core.
A detailed introduction into efficient OpenMp programming can be found in [2].

2.2.1 Ghost-Cell Exchange

To combine the OpenMp implementation of Parareal with parallelization in space,
frequent exchange of boundary values between processors handling different sub-
domains is necessary: Fig. 1 sketches the decomposition of a 4 	 4 cell domain
into four sub-domains. In order to evaluate e.g. a standard five-point stencil discrete
Laplacian, every processor needs to receive a “halo” of up-to-date values before
evaluating the stencil (halo cells for the upper left sub-domain are marked in grey
in Fig. 1). Communication of these halo data is done here through message passing
using MPI.

For using MPI in conjunction with OpenMp, different options exists for the
initialization of the MPI library that govern how MPI routines can be called by
different threads. Here, we use the option MPI_THREAD_FUNNELED which
allows only the master thread to make calls to the MPI library. As the ghost-
cell communication in Fıt takes place in the multithreaded part of the code,
suitable OpenMP directives have to be used to synchronize threads and ensure
compliance with the funneled option (OMP_BARRIER and OMP_MASTER).
The coarse integrator is outside the parallel OpenMp region in Algorithm 1 so that
no thread synchronization is required there. Organization of the ghost-cell exchange
is sketched in Fig. 2: Prior to every evaluation of the right hand side function f, the
master thread (thread 0) exchanges halo data for all threads on the node. While the
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Fig. 1 Sketch of a decomposition of a 4� 4 cells domain (left) into four sub-domains with 2� 2
cells each (right). Cell-centers are marked as dots. The grey cells mark the halo values that have
to be send to the processor handling the upper left sub-domain before each evaluation of f if a
simple five-point star is used. For stencils with wider support, the halos also need to be wider and
communication between diagonally adjacent processors might be required. In the time-parallel
OpenMp version, halo data has to be exchanged for each thread. In the implementation used here,
the master thread handles all halo exchanges as sketched in Fig. 2

Fig. 2 Flow chart of halo exchange in funneled mode with two nodes, each running three threads:
Before each evaluation of the right hand side f, the master thread (thread 0) exchanges up-to-
date halo values (represented by three grey bars) for all threads with the other node. The other
threads are idle during communication. After communication has finished, all threads continue
with evaluating f. Synchronization is achieved by the OpenMp BARRIER directive while MPI
calls are enclosed in MASTER directives to ensure they are only executed by the master thread

master thread is busy communicating, the other threads are idle. This “idle threads
problem” is one of the drawbacks of the funneled approach pointed out in [10].
Then, after the master thread has finished communicating, all threads continue with
the computation of f and update the solution according to the integration method
used for Fıt . After every update (in case of a Runge–Kutta method for example,
that means after every stage), the new halo values have to be exchanged again by
the master thread before the next evaluation of f and so on.



652 R. Krause and D. Ruprecht

3 Numerical Results

The performance of the hybrid space–time parallel approach is analyzed here for
the two-dimensional, nonlinear, viscous Burgers equation

ut C uux C uuy D ��u (4)

on a domain Œ�2; 2� 	 Œ�2; 2� with initial value

u.x; y; 0/ D sin.2�x/ sin.2�y/; (5)

a parameter � D 0:02, a mesh width �x D �y D 1=40 and periodic boundary
conditions. A two-dimensional decomposition of the domain into square or rectan-
gular subdomains, depending on the number of MPI-processes, is performed and a
cartesian communicator for MPI is used. Parareal uses time-steps �t D 2 	 10�3
and ıt D 2 	 10�5. For G�t , the spatial discretization uses third-order upwind
finite differences for the advection term and second-order centered differences for
the Laplacian, while Fıt uses a fifth-order upwind stencil for the advection and
a fourth-order centered stencil for the Laplacian. Hence, a two-cell wide halo has
to be exchanged in the coarse and a three-cell wide halo in the fine propagator.
The simulations are run until T D 0:5 and G�t always performs one single step
per coarse interval, so the number of restarts of Parareal depends on the number of
threads assigned for the temporal parallelization. A forward Euler scheme is used for
G�t and a Runge–Kutta-2 scheme for Fıt . To assess accuracy, a reference solution
with ıt=10 is computed sequentially. With a fixed number of Nit D 3 in Parareal,
the relative k � k1-error of the time-parallel solution is "para � 2:2 	 10�8 and of
the time-serial solution "seq � 1:8 	 10�8, so that both solutions are of comparable
accuracy. The coarse integrator run alone results in "coarse � 2:9 	 10�2.

The used machine is a cluster consisting of 42 nodes, each containing 2 quad-core
AMD Opteron CPUs with 2,700 MHz and 16 GB RAM per node. In the example
below, the time parallelization always uses eight threads per node, in order to utilize
one full node. The nodes are connected by an INFINIBAND network.

3.1 Runtimes and Scaling

Reported runtimes are measured with the MPI_WTIME routine provided by MPI
and do not contain I/O operations.

3.1.1 Speedup from Parareal

With the used parameters, the speedup obtainable by Parareal using eight threads is
bounded by s � 2:57 according to (3). The ratio c=f D 0:35 has been determined
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Table 1 Runtimes of the time-serial code and the hybrid Parareal code using eight threads on each
node for different numbers of spatial sub-domains, each corresponding to one MPI process

# MPI-P Time-serial hybrid Parareal Speedup
1 59.9 s 29.5 s 2.0
2 34.6 s 15.4 s 2.2
4 21.2 s 9.4 s 2.3
8 14.2 s 6.0 s 2.4

16 9.2 s 4.2 s 2.2
20 9.5 s – –

# MPI-P Time-serial hybrid Parareal Speedup
1 16.4 s 7.3 s 2.2
2 10.5 s 4.9 s 2.1
4 6.9 s 3.3 s 2.1
8 4.7 s 2.2 s 2.1

16 3.3 s 1.5 s 2.2
20 4.5 s – –

Shown are runtimes for a grid with 160 � 160 cells (left) and for a grid with 80 � 80 cells (right).
Note that using more than 16 sub-domains no longer reduces runtime of the serial code in both
cases

experimentally by running G�t and Fıt serially on a single core. The value varies
when using multiple processes, but the effects of the variation on the speedup
estimate are small. Table 1 (left) shows the runtimes of the time-serial and the
hybrid Parareal solution for different numbers of subdomains and corresponding
MPI-processes. To further illustrate performance of the approach, runtimes for the
80	 80 cell mesh are also shown (right). Runtimes obtained for a 40	 40 mesh not
shown here indicate similar speedups from Parareal using one, two and four MPI-
processes as well as no further reduction of runtime of the time-serial code if more
than four MPI-processes are used.

While the time-serial solution assigns each process to one core, the time-parallel
solution assigns each process to one node and uses the eight cores inside the node
for the temporal parallelization. In both cases, the speedups from Parareal actually
achieved by the hybrid implementation are between 78 and 93% of the theoretical
maximum, despite the overhead caused by the funneled mode, supporting the
efficiency of the hybrid space–time parallel approach.

3.1.2 Total Scaling

As discussed above, one essential motivation for time-parallel schemes is to provide
an additional direction of parallelization to achieve further reduction of time-to-
solution after spatial parallelization saturates. Figure 3 shows the total speedup,
that is compared against the time-serial solution on one core, for the time-serial
and hybrid Parareal scheme. Because the considered problem is quite small and
the underlying stencil-based discretization is comparably cheap to evaluate in terms
of computation time, the pure spatial parallelization scales only to 16 cores (cf.
Table 1). Beyond that point, using more cores does not further reduce runtime.
Also, near perfect scaling is seen only up to two cores, after this the parallel
efficiency is noticeable less than one. Note that the slow increase in speedup for
the hybrid scheme is caused by the efficiency bound (3) of Parareal: For lower
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Fig. 3 Total speedup achieved by the space-parallel, time-serial (blue) and the hybrid space–time-
parallel scheme (red) depending on the total number of used cores for the 160 � 160 cell mesh
(Color figure online)

numbers of cores where the spatial parallelization is not yet saturated, the time-
serial version performs better, because the efficiency of the parallelization in space,
although no longer optimal, is still better than that of the time-parallel scheme. The
advantage of the space–time-parallel scheme is that it can provide a significantly
greater overall speedup. Hence, for a time-critical application where minimizing
time-to-solution is of paramount importance and a purely spatial parallelization
does not provide sufficient runtime reduction, a space–time parallel scheme can
reduce runtime below some critical threshold if sufficient computational resources
are available. The example clearly demonstrates the potential of the hybrid space–
time parallelization to provide runtime reductions beyond the saturation of the space
parallelization.

4 Conclusions

A shared memory implementation of the Parareal parallel-in-time integration
scheme is combined with a standard distributed memory parallelization of a stencil-
based spatial discretization. In the resulting hybrid space–time parallel scheme, each
spatial subdomain is handled by one MPI-process which is assigned to one compute
node. The time-slices from Parareal are assigned to different threads spawned by
the process, with each thread running on one core of the node. The capability of the
hybrid implementation to provide runtime reduction beyond the saturation of the
spatial parallelization is documented.

Acknowledgement This work is funded by the Swiss “High Performance and High Productivity
Computing” initiative HP2C.
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Optimized Interface Preconditioners
for the FETI Method

Martin J. Gander and Hui Zhang

1 Motivation

In the past two decades, the FETI method introduced in [8] and its variants have
become a class of popular methods for the parallel solution of large-scale finite
element problems, see e.g. [9–11, 14, 15]. A key ingredient in this class of methods
is a good preconditioner for the dual Schur complement system whose operator is
a weighted sum of subdomain Neumann to Dirichlet (NtD) maps. One choice is
the so-called Dirichlet preconditioner, which is the primal Schur complement, i.e.
a weighted sum of subdomain Dirichlet to Neumann (DtN) maps. The Dirichlet
preconditioner is quasi-optimal in the sense that together with an appropriate coarse
space, it leads to a polylogarithmic condition number in H=h, see e.g. [14].
However, in terms of total CPU time, often a cheaper alternative called the lumped
preconditioner performs better [9, 11].

We show here that the lumped preconditioner can be further improved by
introducing parameters into the tangential interface operator and optimizing them
to get condition numbers as small as possible while keeping the cost of the
preconditioner low. Since these preconditioners, like the lumped preconditioner,
only involve computations along the interface, and no computations in the interior
of subdomains, we call them interface preconditioners.

We consider the model problem

(

�uxx � uyy D f; .x; y/ 2 R2

lim.x;y/!1 u D 0;
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which can be decomposed into two non-overlapping subproblems as follows:

8

<

:

�.u1/xx � .u1/yy D f; .x; y/ 2 .�1; 0/	 R;

.u1/x D �; .x; y/ 2 f0g 	R;

lim.x;y/!1 u1 D 0;
(1)

8

<

:

�.u2/xx � .u2/yy D f; .x; y/ 2 .0;1/	 R;

.u2/x D �; .x; y/ 2 f0g 	R;

lim.x;y/!1 u2 D 0;
(2)

1

2
u1 � 1

2
u2 D 0; .x; y/ 2 f0g 	R: (3)

The FETI method takes the common Neumann trace � as unknown and the equation
to be solved for � is defined by (3). To analyze the operator of the equation for �,
we let f D 0 and do a Fourier transform in y 2 R for (1)–(3) to obtain

8

<

:

�.Ou1/xx � k2 Ou1 D 0; x 2 .�1; 0/;
.Ou1/x D O�; x D 0;

limx!�1 Ou1.x; k/ D 0;
(4)

8

<

:

�.Ou2/xx � k2 Ou2 D 0; x 2 .0;1/;
.Ou2/x D O�; x D 0;

limx!1 Ou2.x; k/ D 0;
(5)

and

1

2
Ou1 � 1

2
Ou2 D 0; x D 0: (6)

The subdomain solutions Oui ; i D 1; 2 can be obtained from (4) and (5), and
substituting them into the left hand side of (6) yields the equation for O�,

OF O� WD 1p
k2
O�;

where OF is the symbol of the averaged NtD operatorF . Similarly, one can obtain the
symbol of the Dirichlet preconditioner (i.e. the averaged DtN operator): it is exactly
OF�1, which means that the Dirichlet preconditioner is an exact preconditioner for

our symmetric partition into two subdomains. However, using the Dirichlet precon-
ditioner requires to solve the Dirichlet boundary value problems on the subdomains,
which are in addition to the Neumann boundary value problems involved in F .

As a cheaper alternative, Farhat and Roux introduced the lumped preconditioner
for F , see e.g. [9], which corresponds to the submatrix of the assembled matrix for
the original problem restricted to the interface. Here we explain it as an operator
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at the continuous level, that is P�1L WD �@yy C p acting on the interface, where
p D O.h�2/. To see this, let us consider a five-point stencil discretization of the
minus Laplacian (see the left part of the following illustration)

1

h2

2

4

�1
�1 4 �1
�1

3

5 ;
1

h2

2

4

�1
4

�1

3

5 :

Assuming the interface is along the vertical direction, the lumped preconditioner
corresponds to a three-point stencil along interface, shown on the right part of the
above illustration. So the symbol of the preconditioned operator will be

OP�1L OF WD k2 C pp
k2

:

Note that practically jkj varies in Œkmin; kmax� WD Œ �
H
; �
h
�, where H is the domain

size and h is the mesh size, both along the y direction, and that usually we havep
p 2 Œkmin; kmax�. In this case, the spectra of OP�1L OF are bounded by

�. OP�1L OF / � Œ2pp;maxfkmin C p

kmin
; kmax C p

kmax
g�:

If we fix H and let h ! 0, we will find that the condition number of P�1L F is
O.h�1/. So the drawback of the lumped preconditioner is that the condition number
deteriorates at the same rate as the unpreconditioned method as the mesh size tends
to zero. This is conforming to the result in [10] where it was also pointed out that
the lumped preconditioner has a favorable spectral distribution for the Conjugate
Gradient method. However, in our special cases of numerical experiments, we have
not found this superiority, see Sect. 3 (in which we did use the original form of the
lumped preconditioner).

Since the symbol of F is OF D 1p
k2

, it is clear that an exact preconditioner for F
is the square-root of the Laplacian operator on the interface. We already know that
the Dirichlet preconditioner implements the square-root through subdomain solves.
There are also other ways to approximate the square-root or its inverse, the latter
is useful for the primal Schur complement methods. Some are based on the idea
of FFT and its extensions, see e.g. [4, 7, 13]. Two multilevel methods are proposed
in [5]. In [16], the Green’s function is used for approximating the inverse square-
root in general geometry. In the more recent approach [2, 3], a Krylov subspace
method is adopted for the approximate application of the inverse square-root. In the
context of integral equation methods for scattering problems, Padé approximation
is adopted for preconditioning, see e.g. [6]. Our work is more related to that of [1],1

in which the ideas of using quadratic approximations and minimizing the condition

1We only discovered this reference when we already finished our present investigation.
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number were first presented. The first difference of our work from that of [1] lies in
the problems studied: the positive definite Helmholtz equation is considered in [1]
while we study the Poisson equation here. The second difference is that we propose
two new approaches, in addition to the quadratic approximation.

2 Optimized Interface Preconditioners

In this section we will introduce some approximations of the square-root of the
interface Laplacian, which define our new preconditioners. Parameters involved
in these approximations will be optimized so that condition numbers of the
corresponding preconditioned operators are as small as possible.

We first consider the preconditioner whose symbol is of the form OP�1 WD k2 C
p, the same as that of the lumped preconditioner. We now optimize however the
parameter p � 0 by solving the minimization problem

min
p�0 cond.P�1F / D min

p�0
maxk2Œkmin;kmax�.k

2 C p/=pk2
mink2Œkmin;kmax�.k

2 C p/=pk2 : (7)

Theorem 1. The solution of problem (7) is given by p� D kminkmax. In particular,
if kmin D O.1/ and kmax D O.h�1/, we have cond.P�1F / D O.h�1=2/ when
p D p�.
Remark 1. It is also possible to include the first-order derivative into the precon-
ditioner. But in that case, symmetry is destroyed, and minimizing the condition
number is then not necessarily the relevant goal.

In the second approach, the symbol of the preconditioner is chosen to be of the
form

OP�1 D p0 C p2k2 C k4
q C k2 ; (8)

and we optimize p0; p2; q by solving the minimization problem

min
p0;p2;q�0

cond.P�1F / D min
p0;p2;q�0

maxk2Œkmin;kmax� �.k/

mink2Œkmin;kmax� �.k/
;

where �.k/ is the symbol of the preconditioned operator, i.e.

�.k/ WD p0 C p2k2 C k4
.q C k2/pk2 :

Theorem 2. Assume kmax D Ch�1 and let p0 D p2 D k
4=3
max

	

2kmin C 2
kmin

�2=3

,

q D
	

kmin C 1
kmin

�4=3

.kmax=2/
2=3. Then we have cond.P�1F / D O.h�1=3/.
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Remark 2. We found numerically that the smaller kmin is, the smaller h needs to
be before the asymptotics set in. We also observed that there exist better choices of
parameters in the pre-asymptotic regime, but a formula still needs to be found.

Remark 3. There are many possible ways to implement (8) in the physical domain.
We found that a good way in practice is formally given by

P�1 D .�@yy C r0/.�@yy C q/�1.�@yy C r2/;

where r0; r2 are related to p0; p2 of (8) such that k4Cp2k2Cp0 D .k2Cr0/.k2Cr2/.
Now we propose a third approach for approximating the square root. Suppose we

have a good preconditioner QA (e.g. Jacobi) for an operator A such that

(a) kSk < 1 where S WD I � QA�1A is the iteration operator,
(b) QA1=2 is cheap to apply,
(c) A commutes with QA (this can be omitted in practice).

Then, using Newton’s binomial series, we have

A1=2 D QA1=2 .I � S/1=2 D QA1=2
1
X

iD0

 

1
2

i

!

.�S/i :

A preconditioner for A�1=2 can be obtained by truncating the infinite series,

P�1 D QA1=2
n
X

iD0

 

1
2

i

!

.�S/i ; (9)

so n iterations of S are needed in one application of P�1. We can also consider the
more general polynomial

P�1 D QA1=2
n
X

iD0
pi .�S/i :

The right preconditioned operator is then

A�1=2P�1 D T
n
X

iD0
pi .�S/i ; T WD A�1=2 QA1=2:

Assume the symbol of S to be s 2 Œsmin; smax� � .�1; 1/ and the symbol of T to
be OT D 1p

1�s , which can be obtained for example by Fourier analysis. Hence, the
symbol of the preconditioned operator is

�.s/ WD OA�1=2 OP�1 D 1p
1 � s

n
X

iD0
pi .�s/i : (10)
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Fig. 1 Values of the symbol (10) with pi the binomial coefficient in (9)

In the case of truncation of the binomial series and n D 1; : : : ; 4, the symbols are
plotted in Fig. 1. This clearly shows that the symbol value tends to infinity as s goes
to one. In fact, we have � D O.t�1=2/ for t WD 1 � s ! 0.

For example, when S is Jacobi for the 1d discrete Laplacian, we have s 2
fcos. j�

N
/; j D 1; : : : ; N � 1g, where the mesh size is h D 1=N and we assumed

Dirichlet conditions on the boundary. In this case, we have maxŒ�1;smax � �.s/ D
O.h�1/ no matter how many orders are kept in the truncation! To make things
worse, the discrete points in s are more clustered near s D ˙1 than elsewhere.

Remark 4. Since the direct truncation of the binomial series is really good away
from low frequencies (small j ), it is natural to approximate the low frequency part
by a coarse grid or multigrid. We will however not investigate this further here.

The idea to improve is optimizing the parameters fpig such that the correspond-
ing condition number is minimized. We begin with the approximation of order
n D 1.

Theorem 3. Let s 2 Œ�1; smax� with 0 < smax < 1, n D 1 and assume p1 D 1 is
used for the preconditioned operator (10). If the operator is positive definite, then
the condition number of the preconditioned operator is minimized if and only if

p0 D 2smax Cp2 � 2smax

2 �p2 � 2smax
;

in which case cond.P�1A�1=2/ D O.t�1=4/ as t WD 1 � smax ! 0.

We also tried the approximation of order n D 2. The scaling of the condition number
when s goes to one is not improved for the exponent but is improved for the constant.
We do however not have closed formulas for the optimized parameters when n � 2.
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Fig. 2 Maximum errors between iterates and the FEM solutions for the Laplacian in the unit
square for hD 1=16; 1=64; 1=256; 1=512

3 Numerical Experiments

All the numerical experiments are coded in FreeFemCC [12] with P1 elements.
We solve homogeneous equations on ˝ D .0; 1/2 with the zero solution. We
take a random initial guess for the CG iterations which stop when the relative
preconditioned residual norms are less than 10�15. It is worthwhile to note that
the proposed preconditioners involve only integer-order differential operators
easily implementable as matrices from standard discretization (FFT is unnecessary).
So in methodology, they are applicable to general geometry though the optimal
parameters could change.

First, we solve the Laplace equation in two equal subdomains. The maximum
errors of the iterates to the exact zero solution are illustrated in Fig. 2 against
the iteration numbers, from which we can see that with the optimized interface
preconditioners the iterations converge faster than without or with the lumped
preconditioner, and the optimized rational preconditioners eventually outperform
the others in terms of iteration numbers as the mesh size h becomes small.

Next, we consider a diffusion problem with smoothly varying coefficient,

�r � .a.x; y/ru/ D 0; .x; y/ 2 .0; 1/2;
u D 0; if xy.1 � x/.1 � y/ D 0; (11)
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Fig. 3 Maximum errors between iterates and the FEM solutions for (11) with h D 1=32 for
� D 1; 10; 100; 1000

where a D � x2y2 C 0:1. The coefficient a is continuous but varies along the
interface. To study the effect of the variation, we take the constant � to be 1, 10,
100, and 1000. We use a fifth-order quadrature rule to ensure accurate numerical
integration in the discretization. The results using two subdomains are shown in
Fig. 3, and clearly show the robustness of the optimized interface preconditioners,
except for the one based on the Jacobi preconditioner.

Remark 5. For the quadratic and the quartic/quadratic approximation, we adapted
the interface Laplacian to @y.a.x; y/@y/ and at the same time multiplied the opti-
mized parameters with a.x; y/. For the Jacobi induced preconditioner, we still use
the interface Laplacian operator, which is better than using the diffusion operator.
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Domain Decomposition Method
for Reaction-Diffusion Systems

Rodrigue Kammogne and Daniel Loghin

1 Introduction

Reaction diffusion systems have important applications in the area of modern
mathematical modeling. They can be found in a number of real-life problems,
ranging from chemical and biological phenomena to medicine, for example [5, 10].
However the numerical solution to reaction-diffusion problems remains a challenge,
as they are often represented as a system of nonlinear PDEs, which are solved on a
complex domain. One approach to attempt to solve such problems is to use domain
decomposition methods .DD/, which are more powerful and flexible. They deal
with the problem in a more elegant and efficient way, by dividing the domain into
subdomains and then obtaining the solution by solving smaller problems on these
subdomains.

In a recent paper, Caetano et al. [3] have introduced a non-overlapping domain
decomposition algorithm of Schwarz waveform relaxation type for semilinear
reaction-diffusion equations. For solving the interface problem they proposed a new
type of nonlinear transmission, using Robin or Ventcell transmission conditions,
which leads to a solution technique independent of the mesh parameter. However,
this has not been extended to reaction-diffusion systems. Our aim in this work is
to present an alternative approach to approximate the Steklov–Poincaré operators
arising from a non-overlapping DD-algorithm for reaction diffusion systems. Our
approach is related to that in [2]. The coercivity and the continuity of the Steklov–
Poincaré operators arising in a non-overlapping domain decomposition algorithm
for scalar elliptic problems with respect to Sobolev norms of index 1=2 allow us
to construct a new interface preconditioner, which leads to solution techniques
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independent of the mesh size h. We validate the theoretical results on various
numerical experiments.

2 Problem Description

Let ˝ � R2 be an open bounded set. We consider the following model problem:

� �D�uCMu D f in ˝;
u D 000 on @˝;

(1)

where:

u D
�

u1
u2

�

; M D
�

˛1.x; y/ ˇ1.x; y/

ˇ2.x; y/ ˛2.x; y/

�

; f D
�

f1
f2

�

; D D
�

d1 0

0 d2

�

:

We assume that f1 and f2 are in L2.˝/ and M satisfies the following bounds for all
.x; y/ 2 ˝:

0 < �min <
�T M�

�T �
for all � 2 R2 n f0g and kM k < �max: (2)

The weak formulations of problem (1) reads:

�

Find u 2 H1
0 .˝/	H1

0 .˝/ such that for all z 2 H1
0 .˝/ 	H1

0 .˝/

B.u; z/ D< f; z >;
(3)

where:

B.w; z/ D
Z

˝

Drw W rzC .Mw/ � z dx; and < f; z >D
Z

˝

f � z dx:

For the weak form (3), it can be shown that the conditions of the Lax–Milgram
lemma are satisfied (see [4] for more details). In particular,

B.u; z/ � maxf1; �maxgkuk1kzk1; 8u; z 2 H1
0 .˝/ 	H1

0 .˝/; (4)

B.z; z/ � minf1; �mingkzk21; 8z 2 H1
0 .˝/ 	H1

0 .˝/ (5)

Let V h	V h be a finite dimensional subspace ofH1
0 .˝/	H1

0 .˝/. The finite element
discretizations of the weak formulation (3) reads:

�

Find uh 2 V h 	 V h such that for all zh 2 V h 	 V h

B.uh; zh/ D hfh; zhi: (6)
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Since (4) and (5) hold for all u, z 2 H1
0 .˝/	H1

0 .˝/, the existence and uniqueness
of the solution of formulation (6) is guaranteed by the Lax–Milgram lemma for all
uh, zh 2 V h 	 V h.

3 Domain Decomposition

Let ˝ be partitioned into N subdomains without overlap such that:

˝ D
N
[

iD1
˝i ; ˝i \˝j D ; .i ¤ j /; �i D @˝in@˝; � D

N
[

iD1
�i :

Let also ui D u j˝i be the restriction of the solution u to subdomain ˝i , and
ui j�iD ���i the trace of u on each interface.

Problem (1) is equivalent to a set of N subproblems:

8

<

:

L ui D f in ˝i;

ui D 000 on @˝i \ @˝;
ui D �i�i�i on �i ;

(7)

where L WD �D�CM. If we write ui D wi C vi , then Eqs. (7) are equivalent to
the following two sets of N subproblems:

8

<

:

L wi D f in ˝i I
wi D 000 on @˝i \ @˝I
wi D 000 on �i I

(8)

8

<

:

L vi D 000 in ˝i I
vi D 000 on @˝i \ @˝I
vi D �i�i�i on �i :

(9)

We can view vi as the L -extension of ���i to the domain ˝i and will be denoted by
Hi���i . The equation for ��� can be shown to be of the form:

N
X

iD1

Z

�i

.ni � rHi���i / � zi ds D �
N
X

iD1

Z

�i

.ni � rwi / � zi ds: (10)

From (10), the Steklov–Poincaré operator S can be defined in the following way:

hS���;���i WD
N
X

iD1

Z

�i

.ni � rHi���i/ ����i ds: (11)
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The systems (8) and (9) together with the Steklov–Poincaré problem (10) represent
the multi-domain formulation of the problem (1).

3.1 Mixed Finite Element Discretisation

The weak formulation of the multi-domain formulation of the problem (1) reads:

.1/

�

Find ui 2 H1
0 .˝i / 	H1

0 .˝i / such that for all zi 2 H1
0 .˝i / 	H1

0 .˝i /I
Bi.wi ; zi / D .fi ; zi /:

.2/

8

ˆ

<

ˆ

:

Find ��� 2 H1=2
00 .� / 	H1=2

00 .� / such that for all ��� 2 H1=2
00 .� / 	H1=2

00 .� /I
s.���;���/ WD hS���;���i D

N
X

iD1
Œ.fi ; ���i /� Bi.wi ; ���i /�:

.3/

�

Find Qvi 2 H1
0 .˝i / 	H1

0 .˝i / such that for all zi 2 H1
0 .˝i/ 	H1

0 .˝i /I
Bi.Qvi ; zi / D Bi.vi ; zi / � Bi.pi ; zi / D �Bi.pi ; zi /:

Note that Qvi D vi � pi , where pi is an L -extension of ���i to ˝i satisfying pi D 0

on @˝i \ @˝ .
Let Th denote a subdivision of˝ � R2 into simplices. We define V h D SN

iD1 V h
i

a subset ofH1
0 .˝/ to be a space of piecewise polynomial functions on Th such that:

V h
i D V h;r

i WD
n

w 2 C0.˝i / W wjt 2 Pr 8t 2 Th; w j@˝\@˝iD 0
o

:

Here Pr.t/ is considered as the space of polynomials in d variables of degree r
defined on a set t � Rd . Given a basis f���kgnkD1 of V h 	 V h, such that:

uh.x/ D
2.nICn� /
X

k

uk���k.x/;

we obtain the following linear system:

0

B

B

B

@

A
.1/
II A

.1/
I� M

.1/
II M

.1/
I�

A
.1/
� I A

.1/
� � M

.1/
�I M

.1/
� �

M
.2/
II M

.2/
I� A

.2/
II A

.2/
I�

M
.2/
�I M

.2/
� � A

.2/
� I A

.2/
� �

1

C

C

C

A

0

B

B

@

u1I
u1�
u2I
u2�

1

C

C

A

D

0

B

B

@

f1I

f1�
f2I
f2�

1

C

C

A

I (12)

with A.i/ WD diLC ˛iM and M.i/ WD ˇiM . The matrix M is known as the mass
matrix, whileL represents the discrete Laplacian matrix. We also denote by SA.i/ WD
A
.i/
� � �A.i/� I .A.i/II /

�1A.i/I� the corresponding local Schur complement associated with
A.i/. Equation (12) can be rewritten as:
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Au D
�

AII AI�
A�I A� �

��

uI
u�

�

D
�

fI
f�

�

; (13)

where:

A�� D
�

d1L�� C ˛1M�� ˇ1M��

ˇ2M�� d2L�� C ˛2M��

�

; �; � 2 fI; � g:

4 A Blockdiagonal Interface Preconditioner

Let H1=2
00 .� / denote the interpolation space between H1

0 .� / and L2.� /, which is
equipped with the norm k : k1=2;� as given in [8, Chap. 1]. It can be shown that the
finite element matrix representation of the norm k : k1=2;� is given by Arioli and
Loghin [1]

H1=2 WD ŒM� ;L� �1=2 WD M� .M
�1
� L� /

1=2;

where M� and L� represent respectively the Mass matrix and discrete Laplacian
matrix assembled on � . It has been proven in [6] that the matrix H.i/

1=2.� /

H
.i/

1=2.� / WD ŒM� ;A
.i/
� �1=2 WD M� .M

�1
� A

.i/
� /

1=2

is spectrally equivalent to H1=2 for i D 1; 2, where A.i/� WD diL� C ˛iM� .
Consider the following eigenvalue problem:

�

AII AI�
A�I A� �

��

uI
u�

�

D �
�

AII AI�
0 PS

��

uI
u�

�

(14)

with S D A� � � A�IA�1II A�I . Then � D 1 or it satisfies:

Su� D �PSu� :

Using the definition of S in Eq. (11), we can derive the following theorem:

Theorem 1. There exist positive constants c1; c2 such that for all
���h;���h 2 H1=2

00 .� / 	H1=2
00 .� /:

c1k���hk21=2;� � hS���h;���hi; hS���h;���hi � c2k���hk1=2;� k���hk1=2;� :

Proof. The reader should refer to [6].
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From the equivalence between the continuous and the discrete interpolation norms
of index 1=2, we have:

	1k�hk1=2;� � k���kH1=2 � 	2k�hk1=2;� ; 8��� 2 Rn� :

Therefore we can derive the following inequalities:

Corollary 1. There exist positive constants c1; c2; 	1; 	2 such that for all
���;��� 2 Rn� :

c1

	22
k���k2

H
.1/
1=2˚H.2/

1=2

� hS���;���i; hS���;���i � c2

	21
k���k

H
.1/
1=2˚H.2/

1=2

k���k
H
.1/
1=2˚H.2/

1=2

:

This leads to the following two remarks:

Remark 1. It can be shown using a standard GMRES convergence based on the
Field of Values that any symmetric positive definite preconditioner PS which
satisfies:

�2k���k2PS � hS���;���i; hS���;���i � �1k���kPS k���kPS ; 8���;��� 2 Rn;

leads to convergence independent of the size of the problem [9].

Remark 2. It has been shown in [6], that there exist constants �i ; ıi such that for all
Q�; Q� 2 H1=2

00 .� /:

�ikQ�k2
H
.i/

1=2

� hSA.i/ Q�; Q�i; hSA.i/ Q�; Q�i � ıikQ�kH.i/
1=2

k Q�k
H
.i/
1=2

I i D 1; 2:

Then, a natural choice for PS is:

OS1 D
�

SA.1/ 0

0 SA.2/

�

:

Another more practical choice for PS is:

OS2 D
 

H
.1/

1=2 0

0 H
.2/

1=2

!

:

The implementation of this preconditioner can be achieved using sparse linear
algebra techniques. In particular the action of the inverse of H.i/

1=2 on a given vector
z 2 Rn can be approximated via a generalised Lanczos algorithms (see [1, 2]),
which would only involve sparse computations with interface mass and Laplacian
matrices.
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Table 1 GMRES iterations for Problem 1

Preconditioner= PR1 PR2
k1= 1 2 3 1 2 3

Domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

Size = 8;450 4 4 4 4 4 4 4 4 4 14 16 19 13 13 14 11 11 11
33;282 4 4 4 4 4 4 4 4 4 14 16 20 13 13 15 11 11 12
132;098 4 4 4 4 4 4 4 4 4 14 16 20 13 14 15 11 11 12

5 Numerical Results

In this section we present the numerical experiments obtained by solving some
reaction diffusion problems in two dimensions. All the problems are solved on
a square domain ˝ D .�1; 1/2. The domain ˝ is divided into N D Nx 	 Ny
subdomains of size 2=Nx	2=Ny each, withNx D Ny 2 f2; 4; 8g. Furthermore, we
used a uniform triangulation on each subdomain so that we work with a sequence
of nested grids as well as nested subdomain partitions. The GMRES method is
employed with a tolerance of 10�6 together with the following right preconditioners:

PRj D
�

AII AI�

0 OSj
�

.j D 1; 2/:

5.1 Test Problem 1

We consider now the problem (1), with the following parameters:

d1 D d2 D 1; ˛1 D ˛2 D 10k1; ˇ1 D ˇ2 D 1

with f such that uT D ..x � 1
3
x3/.y � 1

3
y3/; .x � 1

3
x3/.y � 1

3
y3/C 2/. We showed

in Table 1 that PR1 is an optimal preconditioner for problem (1), as the number
of iterations is independent of the problem size and the number of subdomains.
However, it remains computationally expensive. A more practical option is PR2 .
We find indeed that working with PR2 still gives us virtually no dependence on the
size of the problem but a dependence on the number of subdomains. However this
dependence disappears for increasing ˛i . This latter property is due to the fact that
the problem becomes ‘easier’ to solve iteratively as the mass matrix becomes more
and more dominant. For the remaining test problems, we consider only PR2 .



674 R. Kammogne and D. Loghin

Table 2 GMRES iterations for Problem 2

Without scaling With scaling
k1= 1 2 3 1 2 3

Domains = 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64 4 16 64

Size = 8;450 20 24 26 17 19 19 16 17 16 13 14 17 12 12 13 9 11 10
33;282 20 24 27 17 20 21 15 19 19 13 14 18 12 13 13 10 12 11
132;098 20 24 28 18 21 22 15 19 19 14 14 18 12 13 13 10 12 12

5.2 Test Problem 2

We solve the same problem as in the previous example but with d1 D 1; d2 D 0:1

and k2 D 0. Since d1 ¤ d2 two set of results have been obtained (see Table 2). The
first set of results is obtained by applying the preconditioner directly to the problem
(1). The second set of results is obtained by applying the preconditioner to a scaled
version of problem (1), namely:

��vCMD�1v D f; where v D Du: (15)

In both cases we have a logarithmic dependence on the number of subdomains
and virtually no dependence on the size of the problem. However the number of
iterations remains higher than those seen in test Problem 1. This is due to the fact
that the preconditioned matrices are no longer symmetric.

Remark 3. The similarity between the second part of the results in Tables 1 and 2
tells us that the performance of our preconditioner will not be affected if
d1 << d2. In that case the scaled version (15) of the problem is used.

5.3 Test Problem 3

Finally we consider problem (1) with d1 D 1I d2 D 0:1I f D .1; 1/T and u D
0 on @˝ together with the following jump coefficients:

˛1 D
�

1 if x2 C y2 < 1=4
100 otherwise

I ˛2 D
�

100 if x2 C y2 < 1=4
1 otherwise

ˇ1 D
�

0:1 if x2 C y2 < 1=4
1 otherwise

I ˇ2 D
�

1 if x2 C y2 < 1=4
0:1 otherwise

An illustration of the final solution u is provided in Fig. 1, while the iteration count
is presented in Table 3. We observe a similar convergence behavior: independence
of the problem size and logarithmic dependence on the number of subdomains.
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Fig. 1 Solution for Problem 3

Table 3 GMRES iterations
for Problem 3

Domains = 4 16 64
Size = 8;450 19 24 28

33;282 18 25 28
132;098 18 26 28

6 Conclusion

We presented a general non-overlapping domain decomposition method for solving
a system of coupled reaction-diffusion equations (linear case only). We derived
the corresponding Steklov–Poincaré operator together with the associated linear
algebra problem. In addition, by exploiting the fact that the Steklov–Poincaré
operators arising in a non-overlapping DD-algorithm are coercive and continuous
with respect to Sobolev norms of index 1=2, an interface preconditioner for the
Schur complement problem was constructed, which is strongly related to the finite
element representation of the norm k : k1=2;� . Its implementation can be achieved
via sparse Lanczos procedures, which do not add to the complexity of the problem.
We used various numerical examples to validate our theoretical results. We found
that the performance of the method is independent of the mesh size h, but remains at
worst logarithmically dependent on the number of subdomains. Similar performance
is obtained when using a METIS [7] partitioning of the domain, or when our
approach is extended to non-linear reaction-diffusion systems (see [6] for more
details).
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Domain Decomposition for the Neutron SPN

Equations

E. Jamelot, P. Ciarlet, Jr., A.-M. Baudron, and J.-J. Lautard

1 Introduction

The neutron transport equation allows to describe the neutron flux density in a
reactor core. It depends on seven variables: 3 for the space, 2 for the motion
direction, 1 for the energy (or the speed), and 1 for the time. The energy variable is
discretized using the multigroup theory [4]. ThePN transport equations are obtained
by developing the neutron flux on the spherical harmonics from order 0 to order N .
This approach is very time-consuming. The simplified PN (SPN ) transport theory
[14] was developed to address this issue. The two fundamental hypotheses to obtain
the SPN equations are that locally, the angular flux has a planar symmetry; and that
the axis system evolves slowly. The neutron flux and the scattering cross sections are
then developed on the Legendre polynomials. The order N is odd, and the number
of SPN odd (resp. even) moments is NC1

2
.

Let R, the domain of studies, be a bounded, open subset of R3, with a piecewise
smooth boundary. Let GC 1 be the number of energy groups, and let g 2 f0; ::; Gg.
In the time-independent case, the multigroup SPN equations read in R:

Solve in .pg; �g/ j
(

T
g
o pgC grad .H �g / DPg0¤g S

g0g
o pg

0
;

HT divpgCTge �g DPg0¤g S
g0g
e �g

0C 1
�
�g
PG

g0D0M
g0
f �

g0
:

(1)
For each energy group:
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• �g D .�g0 ; �g2 ; : : :/T 2 R
NC1
2 (resp. pg D .pg1 ;pg3 ; : : :/T 2 .R3/

NC1
2 ) denotes the

vector containing all the even (resp. odd) moments of the neutron flux.

• T
g
e (resp. Tgo ) 2 R

NC1
2 �NC1

2 denotes the even (resp. odd) removal matrix, such
that: T

g
e D diag

�

�
g
r;0; �

g
r;2; : : :

�

, T
g
o D diag

�

�
g
r;1; �

g
r;3; : : :

�

, where �gr;l are
proportional to the macroscopic removal cross sections.

• S
g0g
e (resp. Sg

0g
o ) 2 R

NC1
2 �NC1

2 denotes the even (resp. odd) scattering matrix,

such that: Sg
0g
e D diag

	

�
g0!g
s;0 ; �

g0!g
s;2 ; : : :

�

, Sg
0g
o D diag

	

�
g0!g
s;1 ; �

g0!g
s;3 ; : : :

�

,

where �g
0!g

s;l are proportional to the macroscopic group-transfer cross sections.

• M
g

f 2 R
NC1
2 � NC1

2 is such that .Mg

f /k;l D ık;0ıl;0�g�
g

f (with ık;l the Kronecker

symbol), so that M
g

f �
g D .�g�

g

f �
g
0 ; 0; : : :/

T . �g is the number of neutrons

emitted per fission and �gf the macroscopic fission cross section. �g is the fission
spectrum.

• H 2 R
NC1
2 �NC1

2 is such that Hk;l D ık;l C ık;l�1.
We must fix boundary conditions (BC) on @R, such as Dirichlet BC: �g D 0 (zero
flux), Neumann BC: pg:n D 0 (reflection), or Robin BC (void or isotropic albedo,
[2]). From now on, we set zero flux BC.

For simplicity reasons, we will focus on the one-speed SPN approximation
(G C 1 D 1). From this study, one can easily deduce the multigroup SPN case
[4], for which we use the Gauss–Seidel method on the energy groups. The group-
transfer terms disappear and we can skip the g superscript. We have �0 D 1. The
linear system (1) corresponds to a set of coupled diffusion equations.1 Moreover,
Eqs. (1) can be written in a primal form, with the even moments of the neutron flux
as unknowns:

�HT div
�

T�1o grad .H�/
� CTe � D 1

�
Mf �, in R; � D 0, on @R: (2)

Due to the structure of Eqs. (2), we remark that Eqs. (1) actually correspond to
a generalized eigenproblem, where � acts as the inverse of an eigenvalue with
associated eigenflux �. One can apply the Krein–Rutman theorem [9] to Eqs. (1):
the physical solution is necessarily positive, and it is the eigenfunction associated to
the largest eigenvalue keff D max� �, which is in addition simple. More precisely,
keff characterizes the physical state of the core reactor:

• if keff D 1: The nuclear chain reaction is self-sustaining. The reactor is critical;
• if keff > 1: The chain reaction races. The reactor is supercritical;
• if keff < 1: The chain reaction vanishes. The reactor is subcritical.

1Note that the SP1 equations are similar to the neutron mixed diffusion equations.
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2 The One-Domain Algorithm

As we look for the smallest eigenvalue .keff /�1, it can be computed by the inverse
power iteration algorithm. After some initial guess is provided, at iterationmC1, we
deduce .pmC1; �mC1; kmC1eff / from .pm; �m; kmeff / by solving Eqs. (1) with a source
term. Set in a domain R, the inverse power iteration algorithm reads:

Set .p0; �0; k0eff /, m D 0.
Until convergence, do: m mC 1

Solve in .pmC1; �mC1/:
8

ˆ

<

ˆ

:

To pmC1C grad
�

H �mC1
� D 0, in R;

HT div pmC1CTe �
mC1 D .kmeff /�1Mf �

m, in R;

�mC1 D 0, on @R:

(3)

Compute: kmC1eff D kmeff
R

R. ��f �
mC1
0 /2 =

R

R. ��f �
mC1
0 ��f �

m
0 /.

End

Above, the Eqs. (3) with unknowns .pmC1; �mC1/model the so-called source solver,
with a source term equal to .kmeff /

�1smf , where smf D ��f �
m
0 . The updated value

kmC1eff is inferred as follows: assuming that convergence is achieved, i.e.

HT div pmC1CTe �
mC1 D .kmC1eff /

�1smC1f ; (4)

one can write .kmC1eff /
�1smC1f D .kmeff /

�1smf and, multiplying this equation by

smC1f and integrating over the domain of computation R, we obtain the equation

below (3). The convergence criterion is usually set on jkmC1eff � kmeff j, and jjsmC1f �
smf jj. The inverse power iterations are called the outer iterations as opposed to the
inner iterations, which correspond to the iterations of the source solver, with a source
S . It reads:

Solve in .p; �/ W
8

<

:

To pC grad .H � / D 0, in R;

HT div pCTe � D S , in R;

� D 0, on @R:
(5)

In the MINOS solver [1, 2], these equations are solved with Raviart–Thomas–
Nédélec FE (RTN FE) on a Cartesian or hexagonal mesh. In order to reduce memory
size and time computation, we encoded a DD method to solve (5), studied below.
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3 Optimized Schwarz Method

In order to use non overlapping subdomains, we chose the Schwarz iterative
algorithm with Robin interface conditions to exchange information [11]. Let us
split R in two non-overlapping subdomains R1 and R2: R D R1 [R2 such that
R1 \R2 D ;. We define the interface � D R1 \R2. Let ni be the outward unit
normal vector to @Ri , and .pi ; �i / D .p; �/jRi

. The Schwarz algorithm reads [5]:

Set .p0i ; �
0
i /iD1;2, n D 0.

Until convergence, do: n nC 1
Solve in .pnC1i ; �nC1i /iD1;2:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

To pnC1i C grad
�

H �nC1i

� D Q, in Ri ; i D 1; 2;
HT div pnC1i CTe �

nC1
i D S , in Ri ; i D 1; 2;
�nC1i D 0, on @Ri \ @R; i D 1; 2;

pnC11 :n1C˛1�nC11 D �pn2:n2C ˛1�n2 , on �;
pnC12 :n2C˛2�nC12 D �pn.C1/1 :n1C ˛2�n.C1/1 , on �:

(6)

End

Here, the Robin parameters are matrices ˛i 2 R
NC1
2 � NC1

2 : hence the Robin interface
condition can couple all harmonics. The discretization of Eqs. (6) with RTN FE is
described in [6] for the SP1 case. Compared to the Schur complement method [10],
this method requires less modifications, and rather easy to implement, provided one
has at hand a subdomain solver for the source problem. One has only to ensure the
data transfer between the subdomains given by the interface conditions. The n.C1/
superscript indicates that we can use either the additive Schwarz method (ASM),
or the multiplicative Schwarz method (MSM). We showed in [6,7] the convergence
of the sequences .pnC1i ; �nC1i /iD1;2, n � 0 to .p; �/jRiD1;2 (in the case ˛1 D ˛2).
It is well known that the convergence rate depends highly on the Robin matrices
.˛i /iD1;2. In order to choose them optimally and automatically, we carried out an
asymptotic study, à la Nataf and Nier [12]. For the SP1 case, we obtained that
˛i D .�r;0jRj

/1=2.�r;1jRj
/�1=2 [6]. We refer to [7] for the computations of the SPN

case, N > 1. In this case, the Robin matrices .˛i /iD1;2 are symmetric positive
definite, and they depend on the removal cross sections values in .Rj /jD2;1. In the
multigroup case, the cross sections depend moreover on the energy groups and so do
the .˛i /iD1;2. Let us see next how this algorithm modifies the eigenvalue algorithm.

4 The Multi-domains Algorithm

Applying the Schwarz iterative method to algorithm (3), at iteration m C 1, we
should compute the solution to the source solver iteratively, which yields in principle
nested outer (m  m C 1) and inner (index n) iterations. However, numerical
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experiments show that the inverse power algorithm leads the global convergence: a
single inner iteration is sufficient. So, the resulting algorithm contains only one level
of iteration (with indexm). The inverse power algorithm with DD reads then:

Set ..p0i ; �
0
i /iD1;2; k0eff /, m D 0.

Until convergence, do: m mC 1
Solve in .pmC1i ; �mC1i /iD1;2, with j D 2; 1:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

To pmC1i C grad
�

H �mC1i

� D 0, in Ri ;

HT div pmC1i CTe �
mC1
i D .kmeff /�1Mf �

m
i , in Ri ;

pmC1i :ni C˛i�mC1i D �pm.C1/j :nj C ˛i�m.C1/j , on �;
�mC1i D 0, on @Ri \ @R:

(7)

Compute: kmC1eff D kmeff

P2
iD1

R

Ri
.��f �

mC1
i;0 /2=

P2
iD1

R

Ri
.��f �

mC1
i;0 ��f �

m
i;0/.

End

At iteration m C 1, convergence is measured on the source, expressed as a vector
sf : "mC1f D maxdof j.smC1f � smf /dof j = . 1N

P

dof j.smC1f /dof j/. Iterations stop when

"mC1f � "f , where "f is given by the user. Let us test our method.

5 Results

To perform computations, we use the MINOS solver [1, 2] of the APOLLO3r2

neutronics code. The cross sections come from experimental measurements. They
take constant values per unit mesh which can be very different from one mesh to
another: we face highly heterogeneous problems. We use the following notations:

• Nc: The number of cores.
• NDD: The 3D cartesian (Nx

DD, Ny
DD ,N z

DD) decomposition.
• Nout : The number of outer iterations to achieve convergence.
• Err .: The (unsigned) difference between the computed and the converged

eigenvalues, either sequentially or in parallel, times 10�5.
• CPU : The CPU time spent within the MINOS solver, given in seconds.
• Eff . (Tables 3 and 2 only): The efficiency (in %): namely, T1=.Nc	TN/, where
T1 is the total sequential CPU time with a single domain, and TN is the parallel
CPU time on Nc cores with Nc subdomains.

For Tables 1 and 3, we used Intel Xeon L5640 processors with an infiniband
network. For Table 2, computations were carried out on the Titane computer, hosted
by the CCRT (the CEA Supercomputing Center). For each test, we report, above

2APOLLO3 is a trademark registered in France.
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Table 1 Results of the PWR core computation (diffusion, two energy groups, RTN0, MSM)

N NDD .x; y; z/ Nout Err. �10�5 CPU (s)

1 .1; 1; 1/ 381 0:0 230

17 .17; 1; 1/ 382 0:0 199

289 .17; 17; 1/ 393 0:0 210

1;156 .17; 17; 4/ 392 0:0 252

2;890 .17; 17; 10/ 390 0:0 382

4;335 .17; 17; 15/ 394 0:0 499

8;670 .17; 17; 30/ 405 0:0 660

17;340 .17; 17; 60/ 450 0:1 1;255

Table 2 Results of the PFR core computation (SP5 , four energy groups, RTN0, ASM)

Nc NDD .x; y; z/ Nout Err. �10�5 CPU (s) Eff. (%)

1 .1; 1; 1/ 649 0:0 12;272 100

2 .2; 1; 1/ 645 0:0 6;468 95

4 .2; 2; 1/ 644 0:0 3;783 81

8 .2; 2; 2/ 649 0:0 2;269 67

16 .2; 2; 4/ 649 0:0 1;045 73

32 .4; 4; 2/ 654 0:4 504 76

64 .4; 4; 4/ 643 0:3 303 63

128 .8; 8; 2/ 649 0:2 123 155

Fig. 1 Power distribution
map of the PWR core
computation, run with the
diffusion approximation, two
energy groups, RTN0 FE,
MSM

the results tables, a resulting .x; y/ normalized power distribution map of the
calculation (Figs. 1, 2, and 3).

The results presented in Table 1 concern a 3D model of a pressurized water
reactor (PWR) core of capacity 900MWe. We performed computations on a mono-
core, on the diffusion approximation, with two energy groups (GC1 D 2) and RTN0
FE. The mesh is of size .289	 289	 60/, which yields more than 40M unknowns.
We set "f D 10�5. In order to validate our optimization choice, we ran the MSM
(with N subdomains), from 1 up to 17;340 subdomains.

For N � 4;335, the number of outer iterations does not increase much, and
moreover the accuracy is steady. ForN � 1;156, theCPU time increase is probably
caused by the use of a table to store the subdomains, for which the subdomain
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Fig. 2 Power distribution
map of the PFR core
computation, run with the
SP5 approximation, four
energy groups, RTN0 FE,
ASM

Fig. 3 Power distribution
map of the JHR core
computation, run with the
SP1 approximation, six
energy groups, RT1 FE, ASM

access is not optimized yet. On the other hand, the method seems robust: hence, our
optimized choice of the Robin parameters is validated in the diffusion case.

We consider now a 3D model of a plate-fuel reactor (PFR) core. We performed
computations on the SP5 approximation, with four energy groups (G C 1 D 4) and
RTN0 FE. The mesh is of size 364	 364	 100, which yields 638M unknowns. We
set "f D 5 	 10�5. We ran the ASM on Nc cores with Nc subdomains.

Our DD method converges nicely to the sequential solution, since the error on the
eigenvalue is always smaller than 5	10�6. Moreover, the number of outer iterations
is quite steady: the optimized choice of the Robin parameters is validated in the SPN
case. The method scales quite well, from 67 up to 155% efficiency on 128 cores. To
explain this last result, we suppose that the communication traffic was low, second
that some computations were performed in the memory cache.

In [6,7], we give results which show that choosing random Robin matrices leads
to worse results: the number of outer iterations increases faster, and the accuracy
deteriorates: in practice, it is important to optimize the Robin matrices.

The last results concern a 2D model of the Jules Horowitz reactor (JHR)
core,3 dedicated to research, which is currently under construction. We performed

3http://www.cad.cea.fr/rjh/index.html.

http://www.cad.cea.fr/rjh/index.html
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Table 3 Results of the JHR core computation (SP1 , six energy groups, RT1, ASM)

Nc NDD .x; y; z/ Nout Err. �10�5 CPU (s) Eff. (%)

1 .1; 1/ 639 0:0 1;487 100

2 .2; 1/ 653 0:4 777 96

4 .2; 2/ 643 0:5 352 106

8 .2; 4/ 653 0:1 256 73

16 .2; 8/ 656 0:2 97 96

32 .4; 8/ 664 0:6 64 73

64 .8; 8/ 653 0:9 29 80

computations on the SP1 approximation, with six energy groups (G C 1 D 6), and
RT1 FE. The mesh is of size 103	103, which represents more than 72M unknowns.
We set "f D 5 	 10�4 (Table 3).

For this last test, the physical geometry is not Cartesian. It probably explains
why the accuracy is not as good as for the other tests. The number of outer
iterations is quite steady while the efficiency is excellent. In the case of four
cores, the superlinear efficiency is probably again a consequence of the amount of
computations in the memory cache.

6 Conclusions and Perspectives

We presented a domain decomposition method based on the optimized Schwarz
iterative algorithm, to solve the mixed neutrons SPN equations with RTN FE.
Numerical experiments carried out with the MINOS solver show that the method
is robust and efficient both sequentially and in parallel, and that our optimized
choice of the parameters of the Schwarz algorithm is satisfactory. Note that the
number of iterations to solve our problem increases only slightly with the number
of subdomains.

Let us finally mention some potential new research directions:

• The use of Ventcell interface conditions: introducing tangential derivatives in the
Robin interface condition [8, 12].

• The use of an overlapping DD method with a coarse grid solver, as done in [13].

Finally, let us mention that the MINOS solver can also solve source and kinetic
problems [3].
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A Stochastic-Based Optimized Schwarz Method
for the Gravimetry Equations on GPU Clusters

Abal-Kassim Cheik Ahamed and Frédéric Magoulès

1 Introduction

By giving another way to see beneath the Earth, gravimetry refines geophysical
exploration. In this paper, we evaluate the gravimetry field in the Chicxulub crater
area located in between the Yucatan region and the Gulf of Mexico which shows
strong gravimetry and magnetic anomalies. High order finite elements analysis is
considered with input data arising from real measurements. The linear system is
then solved with a domain decomposition method, namely the optimized Schwarz
method. The principle of this method is to decompose the computational domain
into smaller subdomains and to solve the equations on each subdomain. Each
subdomain could easily be allocated to one single processor (i.e. the CPU), each
iteration of the optimized Schwarz method involving the solution of the equations
on each subdomain (on the GPU). Unfortunately, to obtain high speed-up, several
tunings and adaptations of the algorithm should be carefully performed, such as data
transfers between CPU and GPU, and data structures, as described in [3, 4].

The plan of the paper is the following. In Sect. 2, we present the gravimetry
equations. In Sect. 3, we introduce the optimized Schwarz method, followed in
Sect. 4 by a new idea of using a stochastics-based algorithm to determine the
optimized transmission conditions. An overview to the GPU programming model
and hardware configuration suite is given in Sect. 5 for readers not familiar with
GPU programming. Section 6 shows numerical experiments which clearly confirm
the robustness, competitiveness and efficiency of the proposed method on GPU
clusters for solving the gravimetry equations.
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2 Gravimetry Equations

The gravity force is the resultant of the gravitational force and the centrifugal force.
The gravitational potential of a spherical density distribution is equal to ˚.r/ D
Gm=r , withm the mass of the object, r the distance to the object andG the universal
gravity constant equal toG D 6:672	10�11 m3 kg�1 s�2. The gravitational potential
at a given position x initiated by an arbitrary density distribution � is given by
˚.x/ D G R .�.x0/=jjx�x0jj/dx0 where x0 represents one point position within the
density distribution. In this paper, we consider only regional scale of the gravimetry
equations therefore we do not take into account the effects related to the centrifugal
force. The gravitational potential ˚ of a density anomaly distribution ı� is thus
given as the solution of the Poisson equation�˚ D �4�Gı�.

3 Optimised Schwarz Method

The classical Schwarz algorithm was invented more than a century ago [16] to
prove existence and uniqueness of solutions to Laplace’s equation on irregular
domains. Schwarz decomposed the irregular domain into overlapping regular ones
and formulated an iteration which used only solutions on regular domains and
which converged to a unique solution on the irregular domain. The convergence
speed of the classical Schwarz algorithm is proportional to the size of the overlap
between the subdomains. A variant of this algorithm can be formulated with non-
overlapping subdomains and the transmission conditions should be changed from
Dirichlet to Robin [7]. These absorbing boundary transmission conditions defined
on the interface between the non-overlapping subdomains, are the key ingredients
to obtain a fast convergence of the iterative Schwarz algorithm [2, 6]. Optimal
transmission conditions can be derived but consists of non local operators and thus
are not easy to implement in a parallel computational environment. One alternative
is to approximate these operators with partial differential operators. This paper
investigates an approximation based on a new stochastics optimization procedure.

For the sake of clarity, the gravimetry equations are considered in the domain˝
with homogeneous Dirichlet condition. The domain is decomposed into two non-
overlapping subdomains˝.1/ and˝.2/ with an interface � . The Schwarz algorithm
can be written as:

��˚.1/
nC1 D f; in ˝.1/

	

@�˚
.1/
nC1 CA .1/˚

.1/
nC1

�

D �

@�˚
.2/
n CA .1/˚.2/

n

�

; on �

��˚.2/
nC1 D f; in ˝.2/

	

@�˚
.2/
nC1 �A .2/˚

.2/
nC1

�

D �

@�˚
.1/
n �A .2/˚.1/

n

�

; on �
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with n the iteration number, and � the unit normal vector defined on � . The
operators A .1/ and A .2/ are to be determined for best performance of the algorithm.
Considering the case ˝ D R2, f D 0, and applying a Fourier transform,
similar calculations as in [8] lead to the expression of the Fourier convergence
rate, involving the quantities �.1/ and �.2/, which are the Fourier transforms of
A .1/ and A .2/ operators. In this case, the choice �.1/ WD jkj, and �.2/ WD jkj is
optimal, since with this choice the algorithm converges in two iterations for two
subdomains. Different techniques to approximate these non local operators with
partial differential operators have been analyzed in recent years [5, 6, 8]. These
techniques consist to define partial differential operators involving a tangential
derivative on the interface such as: A .s/ WD p.s/ C q.s/@2

2
, with s the subdomain

number, p.s/, q.s/ two coefficients, and  the unit tangential vector. The first results
presented in [2,6] use a zero order Taylor expansion of the non local operators to find
p.s/ and q.s/. In [9] for convection diffusion equations, in [5] for Maxwell equation,
in [8, 13] for the Helmholtz equation, and in [10, 11] for heterogeneous media,
a minimization procedure has been used. The function to minimize, i.e., the cost
function, is the maximum of the Fourier convergence rate for the frequency ranges
considered, and the approach consists to determine the free parameters p.s/ and
q.s/ through an optimization problem. Despite, analytic expressions of p.s/ and q.s/

can be determined for some specific problems, finding quasi-optimal coefficients
numerically is also a good alternative [14]. Furthermore, since the evaluation of the
cost function is quite fast and the dimension of the search space reasonable, a more
robust minimization procedure could be considered, in the next section. Extension
to non-regular geometry can be performed as described in reference [12].

4 Stochastic-Based Optimised Transmission Conditions

The stochastic minimization technique we propose to use now, explores the whole
space of solutions and finds absolute minima; this technique is based on the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES). This algorithm is
very robust [1], has good global search ability and does not need to compute the
derivatives of the cost function. This algorithm only needs an initial search zone
and a population size, even if the solution can be found outside of the initial search
zone. The population size parameter is a trade-off between speed and global search.
Meaning that, smaller populations lead to faster execution of the algorithm but have
more chance to find a local minimum, and, larger sizes allow to avoid local minima
better but need more cost function evaluations. For our purpose, a population size
of 25 has been large enough to find the global minimum in a few second or less.

The main idea of the algorithm is to find the minimum of the cost function by
iteratively refining a search distribution. The distribution is described as a general
multivariate normal distribution d.m;C /. Initially, the distribution is given by the
user. Then, at each iteration, � samples are randomly chosen in this distribution
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and the evaluation of the cost function at those points is used to compute a new
distribution. When the variance of the distribution is small enough, the center of
the distribution m is taken as solution. After evaluating the cost function for a new
population, the samples are sorted by cost and only the � best are kept. The new
distribution center is computed with a weighted mean (usually, more weight is put
on the best samples). The step size � is a factor used to scale the standard deviation
of the distribution, i.e., the variance of the search distribution is proportional to the
square of the step size. The step size determines the “size” of the distribution. The
covariance matrix C determines the “shape” of the distribution, i.e., it determines
the principal directions of the distribution and their relative scaling. Adapting
(or updating) the covariance matrix is the most complex part of the algorithm.
While this could be done using only the current population, it would be unreliable
especially with a small population size; thus the population of the previous iteration
should also been taken into account.

5 Overview of GPU Programming Model

Parallel computation was generally carried out on Central Processing Unit (CPU)
cluster until the apparition in the early 2000s of the Graphics Processing Unit (GPU)
that facing the migration of the era of GPU computing. The peak performance
of CPUs and GPUs is significantly different, due to the inherently different
architectures between these processors. The first idea behind the architecture of
GPU is to have many small floating points processors exploiting large amount of
data in parallel. This is achieved through a memory hierarchy that allows each
processor to optimally access the required data. The gains of GPU computing
is significantly higher for large size problem compared to CPU, due to the
difference between these two architectures. GPU computing requires using graphics
programming languages such as NVIDIA CUDA, or OpenCL. Compute Unified
Device Architecture (CUDA) [15] programming model is an extension of the C
language and has been used in this paper.

A specific characteristic of GPU compared to CPU is the feature of memory used.
Indeed, a CPU is constantly accessing the RAM, therefore it has a low latency at the
detriment of its raw throughput. CUDA devices have four main types of memory: (a)
Global memory is the memory that ensures the interaction with the host (CPU), and
is not only large in size and off-chip, but also available to all threads (also known
as compute units), and is the slowest; (b) Constant memory is read only from the
device, is generally cached for fast access, and provides interaction with the host;
(c) Shared memory is much faster than global memory and is accessible by any
thread of the block from which it was created; (d) Local memory is specific to each
compute unit and cannot be used to communicate between compute units.

Threads are grouped into blocks and executed in parallel simultaneously, see
Fig. 1. A GPU is associated with a grid, i.e., all running or waiting blocks in the
running queue and a kernel that will run on many cores. An ALU is associated with
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Fig. 1 Gridification of a GPU. Tthread, block, grid (left); GPU computing processing (right)

the thread which is currently processing. Threading is not an automated procedure.
The developer chooses for each kernel the distribution of the threads, which are
organized (gridification process) as follows: (a) threads are grouped into blocks; (b)
each block has three dimensions to classify threads; (c) blocks are grouped together
in a grid of two dimensions. The threads are then distributed to these levels and
become easily identifiable by their positions in the grid according to the block they
belongs to and their spatial dimensions. The kernel function must be called also
providing at least two special parameters: the dimension of the block, nBlocks, and
the number of threads per block, nThreadsPerBlock. Figure 1 presents the CUDA
processing flow. Data are first copied from the main memory to the GPU memory,
(1). Then the host (CPU) instructs the device (GPU) to carry out calculations, (2).
The kernel is then executed by all threads in parallel on the device, (3). Finally, the
device results are copied back (from GPU memory) to the host (main memory), (4).

To cope with this difficulty the implementation proposed in this paper uses some
advanced tuning techniques developed by the authors, but the details are outside
the scope of this paper, and the reader is referred to [3, 4] for the computer science
aspects of this tuning.

6 Numerical Analysis

In this section, we report the experiments performed to evaluate the speed-up of our
implementation. The Chicxulub impact crater, formed about 65 million years ago, is
now widely accepted as the main footprint of the global mass extinction event that
marked the Cretaceous/Paleogene boundary. Because of its relevance, in the last two
decades, this impact structure has been used as a natural laboratory to investigate
impact cratering formation processes and to indirectly infer global effects of
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large-scale impacts. The crater is buried under 1 km of carbonate sediments in the
Yucatan platform. The crater is about 200 km in rim diameter, half on-land and half
off-shore with geometric center at Chicxulub Puerto. The internal structure of the
Chicxulub crater has been imaged by using several geophysical data sets from land,
marine and aerial measurements.

In this paper we perform a finite element analysis of the gravimetry equation
using the characteristics of the region provided by the measure. The domain
consists of an area of 250 	 250 	 15 in each spatial direction, and is discretized
with high order finite element with a total of 19,933,056 degrees of freedom.
This mesh is partitioned in the x-direction. Each subdomain is allocated to one
single processor (i.e. the CPU), each iteration of the optimized Schwarz method
involving the solution of the equations inside each subdomain is allocated to
one single accelerator (i.e. the GPU). We compare the computational time of the
optimised Schwarz method using one subdomain per CPU with the optimised
Schwarz method using one subdomain per CPU and a GPU accelerator. For this
particular model we performed calculations using our CUDA implementation of the
Schwarz method with stochastics-based optimization procedure. The workstation
used for all the experiments consists of 1,596 servers Bull Novascale R422Intel
Nehalem-based nodes. Each node is composed of two processors Intel Xeon 5570
quad-cores (2.93 GHz) and 24 GB of memory (3Go per cores). 96 CPU servers are
interconnected with 48 compute Tesla S1070 servers NVIDIA (4 Tesla cards with
4 GB of memory by server) and 960 processing units are available for each server.

For the subdomain problems, the diagonal preconditioner conjugate gradient
(PCG) is used and the coefficient matrices are stored in CSR format. We
fix a residual tolerance threshold of " D 10�10 for PCG. Alinea [3, 4], our
research group library, implemented in CCC, which offers CPU and GPU
solvers, is used for solving linear algebra system. In this paper, the GPU is
used to accelerate the solution of PCG algorithm. PCG algorithm required the
computation of addition of vectors (Daxpy), dot product and sparse matrix-
vector multiplication. In GPU-implementation considered (Alinea library),
the distribution of threads (gridification, differs with these operations. The
gridification of Daxpy, dot product and sparse matrix-vector product correspond
respectively to (nBlocks D numb_rowsCnumb_th_block�1

numb_th_block , nThreadsPerBlock D
256), (nBlocks D numb_rowsCnumb_th_block�1

numb_th_block , nThreadsPerBlock D 128) and

(nBlocks D .numb_rows�n_th_warp/Cnumb_th_block�1
numb_th_block , nThreadsPerBlock D 256),

where numb_rows, n_th_warp and numb_th_block represent respectively the
number of rows of the matrix, the number of threads per warp and the thread
block size. We fix for all operations eight threads per warp. GPU is used only for
solving subdomain problems in each iteration. GPU experiment workstation Tesla
S1070 has 4 GPUs of 240 cores. The number of computing units depends both on
the size of the subdomain problem and the gridification that use 256 threads per
threads and 8 threads per warp as introduced in [3, 4].

In our experiments, the CMA-ES algorithm considers as the cost function the
Fourier convergence rate of the optimised Schwarz method. We consider for the
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Fig. 2 Fourier convergence rate of the Schwarz algorithm

Table 1 Optimized coefficients obtained from CMA-ES algorithm

p.1/ q.1/ p.2/ q.2/ �max

oo0_symmetric 0.1826 0 0.1826 0 0.6823
oo0_unsymmetric 1.2193 0 0.0469 0 0.4464
oo2_symmetric 0.0471 0.7050 0.0471 0.7050 0.2143
oo2_unsymmetric 0.1081 0.3205 0.0231 1.5786 0.1101

CMA-ES the following stopping criteria of: a maximum of number iterations equal
to 7;200 and a residue threshold equal to 5 	 10�11. Figure 2 represents the
convergence rate of the Schwarz algorithm in the Fourier space, respectively for the
symmetric zeroth order (top-left), unsymmetric zeroth order (bottom-left), the sym-
metric second order (top-right) and unsymmetric second order (bottom-right) trans-
mission conditions obtained from the CMA-ES algorithm. The Fourier convergence
rate of the Schwarz method with one side (respectively two sides) transmission
conditions obtained from the CMA-ES algorithm is presented in Fig. 2 and Table 1.

The distribution of processors is computed as follows: number of processors D
2 	 number of nodes, where 2 corresponds to the number of GPU per node as
available on our workstation. As a consequence, only two processors will share
the bandwidth, which strongly improve the communications, especially the inter-
subdomain communications. Table 2 presents the results done with double precision
with a residue threshold, i.e. stopping criterion equal to 10�6, for several number of
subdomains (one subdomain per processor).
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Table 2 Comparison of the implementation of our method on CPU and GPU

# subdomains # iterations CPU time (s) GPU time (s) SpeedUp

32 41 11,240 1,600 7.03
64 45 5,360 860 6.23

128 92 6,535 960 6.81

7 Conclusion

In this paper, we have presented a stochastic-based optimized Schwarz method
for the gravimetry equation on GPU Clusters. The effectiveness and robustness
of our method are evaluated by numerical experiments performed on a cluster
composed of 1,596 servers Bull Novascale R422Intel Nehalem-based nodes where
96 CPU servers are interconnected with 48 compute Tesla S1070 servers NVIDIA
(4 Tesla cards with 4 GB of memory by server). The presented results range from
32 up-to 128 subdomains show the interest of the use of GPU technologies for
solving large size problems, and outline the robustness, performance and efficiency
of our Schwarz domain decomposition method with stochastic-based optimized
conditions.

Acknowledgements The authors acknowledge partial financial support from the OpenGPU
project (2010–2012), and GENCI (Grand Equipement National de Calcul Intensif) for the
computer time used during this long-term trend.
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A Parallel Preconditioner for a FETI-DP
Method for the Crouzeix–Raviart Finite Element

Leszek Marcinkowski and Talal Rahman

1 Introduction

In this paper, we present a Neumann–Dirichlet type parallel preconditioner for
a FETI-DP method for the nonconforming Crouzeix–Raviart (CR) finite element
discretization of a model second order elliptic problem. The proposed method is
almost optimal, in fact, the condition number of the preconditioned problem grows
poly-logarithmically with respect to the mesh parameters of the local triangulations.

In many scientific applications, where partial differential equations are used
to model, the Crouzeix–Raviart (CR) finite element has been one of the most
commonly used nonconforming finite element for the numerical solution. This
includes applications like the Poisson equation (cf. [11, 23]), the Darcy–Stokes
problem (cf. [8]), the elasticity problem (cf. [6]). We also would like to add that
there is a close relationship between mixed finite elements and the nonconforming
finite element for the second order elliptic problem; cf. [1, 2]. The CR element has
also been used in the framework of finite volume element method; cf. [9].

There exists quite a number of works focusing on iterative methods for the CR
finite element for second order problems; cf. [3, 4, 10, 13, 16, 18–22] and references
therein. The purpose of this paper is to propose a parallel algorithm based on a
Neumann–Dirichlet preconditioner for a FETI-DP formulation of the CR finite
element method for the second order elliptic problem. To our knowledge, this is
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apparently the first work on such preconditioner for the FETI-DP method for the
Crouzeix–Raviart (CR) finite element.

The FETI-DP method, which was first introduced in [12], describes a class of
fast and efficient domain decomposition solvers for systems of algebraic equations
arising from the finite element discretization of elliptic partial differential equations,
cf. [14, 15, 17, 24] and references therein.

In a FETI-DP method one has to solve a linear system for a set of dual variables,
formulated after eliminating the primal variables. The FETI-DP system contains
in itself a coarse problem which is associated with the primal variables, while its
preconditioner is based on solving only local problems which is fully parallel.

In this paper, we first present the Crouzeix Raviart discretization of the dif-
ferential problem, a FETI-DP formulation of the problem is then introduced, and
finally a Neumann–Dirichlet preconditioner for the FETI-DP problem is proposed.
We present an almost optimal bound for the condition number, showing that the
condition number of the preconditioned system grows like C.1 C log.H=h//2,
where H is the maximal diameter of the subdomains and h is the fine mesh size
parameter.

2 Discrete Problem

In this section we present the Crouzeix–Raviart finite element discretization of a
model second order elliptic problem with discontinuous coefficients.

Let˝ be a polygonal domain in the plane. We assume that there exists a partition
of˝ into disjoint polygonal subdomains˝k such that˝ D SN

kD1 ˝k with˝k\˝l

being an empty set, an edge or a vertex (crosspoint). We also assume that these
subdomains form a coarse triangulation of the domain which is shape regular in the
sense of [7]. We introduce a global interface � D S

i @˝i n @˝ which plays an
important role in our study.

Our model differential problem is to find u� 2 H1
0 .˝/ such that

a.u�; v/ D
Z

˝

f v dx 8v 2 H1
0 .˝/; (1)

where f 2 L2.˝/, and a.u; v/ D PN
kD1

R

˝k
�krurv dx: The coefficients �k are

positive and constant.
We assume that there exists a quasiuniform triangulation, Th D Th.˝/ D

fg, of ˝ such that any element  of Th is contained in only one subdomain,
as a consequence any subdomain ˝k inherits a local triangulation Th.˝k/ D
fg�˝k;2Th .

Let h D max2Th.˝/ diam./ be the mesh size parameter of the triangulation,
cf. [5]. We introduce the following sets of Crouzeix–Raviart (CR) nodal points or -
nodes:˝CR

h ; @˝CR
h ;˝CR

k;h ; @˝
CR
k;h , and � CR

kl;h correspond to˝; @˝;˝k; @˝k , and�kl ,
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Fig. 1 Illustrating the CR
finite element in 2D with
black dots as the CR nodal
points or CR nodes

respectively. Here �kl is an interface, an open edge, which is shared by the two
subdomains,˝k and ˝l .

We now introduce the local finite element spaces. Let OW h.˝/ be the Crouzeix–
Raviart finite element space defined as follows,

OW h.˝/ D fu 2 L2.˝/ W uj 2 P1./ for each triangle  2 Th.˝/;
u is continuous at every midpoint m 2 ˝CR

h (2)

and u.m/ D 0 for every m 2 @˝CR
h g:

Here P1./ is the function space of linear polynomials defined over  . The degrees
of freedom of a function u 2 OW h.˝/ over  2 Th.˝/ are: fu.mj /gjD1;2;3, where
mj is a midpoint of an edge of  , cf. Fig. 1.

We define the local CR space W h.˝k/ as the space of functions which are
restrictions to ˝k of the functions of OW h.˝/, i.e. W h.˝k/ D fuj˝k W u 2 OW h.˝/g.
The standard nodal basis function, �CRx , of W h.˝k/, associated with the CR nodal

point x 2 ˝CR

k , is a function which is equal to one at x and zero at the remaining

CR nodal points of ˝
CR

k n @˝CR. f�CRx gx2˝CR
k n@˝CR is the standard nodal basis of

W h.˝k/.
The discrete problem is then defined as follows: Find u�h 2 OW h.˝/ such that

ah.u
�
h ; v/ D f .v/ 8v 2 OW h.˝/; (3)

where ah.u; v/ WDPN
kD1 ak;h.u; v/ with the local broken bilinear form:

ak;h.u; v/ WD
X

2Th.˝k/

Z



�krurv dx:

This problem has a unique solution, and an optimal error bound is known; cf. [5].
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We shall now reformulate (3) as a saddle point problem. We start by introducing
the following global space defined over˝ as follows,

W h.˝/ WD ˘N
kD1W h.˝k/:

Note that each interface �kl inherits a 1D triangulation Th.�kl / from Th. We define
V h.�kl / as the space of piecewise constant functions over Th.�kl /. In FETI-DP,
an important role is played by the global interface which is defined as � WD
SN
kD1 @˝k n @˝: Then, let

V h.� / WD
Y

�kl��
V h.�kl /

be the auxiliary interface space which will be later used as the space of Lagrange
multipliers. We introduce the bilinear form b.u;  / W W h.˝/ 	 V h.� / ! R as
follows: let u D .uk/NkD1 2 W h.˝/ and  D . lk/�kl 2 V h.� /, then b.u;  / D
P

�kl�� blk.u;  lk/ with

blk.u;  lk/ D
Z

�kl

.uk � ul / lk ds k > l:

Throughout the rest of this paper, we will use the same notation to denote a
function and its vector representation with values of the degrees of freedom (dofs)
of this function as entries in the representation.

Let cr be a crosspoint, which is a subdomain vertex, not lying on @˝ , and
let V CR.cr / be the set of CR nodal points of those triangle edges that lie on
subdomain boundaries and are incident to cR, e.g. the black dots in Fig. 2. Let
V CR D Scr2� V CR.cr /.

We then introduce QW h.˝/ as the subspace of W h.˝/ of functions which
are continuous at the CR nodes of V CR. We also introduce a reduced Lagrange
multiplier space as follows,

QV h.� / WD f� 2 V h.� / W �.m/ D 0 8m 2 � CR
h \ V CRg � V h.� /:

The discrete problem can now be reformulated as the following saddle point
problem: find the pair .u�h ; ��/ 2 QW h.˝/ 	 QV h.� / such that

a.u�h ; v/C b.v; ��/ D f .v/ 8v 2 QW h.˝/;

b.u�h ; �/ D 0 8� 2 QV h.� /:
(4)

Any vector w corresponding to the function w 2 QW h.˝/ (note that we are using
the same symbol for the function and its vector representation) can be decomposed
as follows,

w D .w.i/;w.c/;w.r//;
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Fig. 2 Illustrating a four subdomain case with one crosspoint. Black dots in the figure represent
the CR nodes of V CR corresponding to the cross point. CR nodes (both circles and black dots)
which the degrees of freedom (dofs) of QW h.˝/ are associated with, are also shown

where w.i/ is the vector with dofs associated with the CR nodes of the subdomain
interior, w.c/ is the vector with dofs associated with the CR nodes of V CR, and w.r/

is the vector with dofs associated with the remaining dofs.
Analogously, let W � QW h.˝/ be the space corresponding to the vectors with

the dofs associated with � , then we can decompose any vector w of w 2 W as
w D .w.c/;w.r//:

Now let Wr D fw.r/ W w 2 QW h.˝/g, in other words,Wr is the space of functions
representing the dofs associated with the CR nodes on � , not belonging to the set
V CR.

Note that w.r/ 2 Wr has two degrees of freedom associated with each midpoint
on � n V CR, for instance, if m 2 � CR

kl;h then its associated two degrees of freedom
are wk.m/ and wl .m/.

We introduce A as a block diagonal matrix with local stiffness matrices as the
blocks, i.e., A WD diag.Ak/NkD1 with Ak being the stiffness matrix generated by
ak;h.�; �/ in the standard nodal basis of W h.˝k/.



702 L. Marcinkowski and T. Rahman

Let B D diag.B.kl//�kl be a block diagonal matrix with B.kl/ related to the edge
�kl � � (for k > l) containing only zeros, ones and minus ones as matrix entries,
and w�h is the vector representation of the function w�h 2 W (denoted by the same
symbol).

We note that each block Aj associated with an inner subdomain˝j (subdomain
not having an edge on @˝), is singular and therefore cannot be inverted. As
part of our FETI-DP algorithm, we enforce continuity at the CR nodes close to
the crosspoints, i.e., at the CR nodes of V CR, thereby remove the problem of
noninvertibility.

We introduce the Schur complement matrix, S , of A, with respect to the
unknowns associated with � , which is obtained after eliminating the unknowns
associated with the subdomain interior. We note that S is a block diagonal matrix.

3 FETI-DP Problem

Let QA be the matrix obtained from block diagonal matrix A by taking into account
the continuity of the degrees of freedom at V CR. Let QA be partitioned into

QA D
0

@

Aii Aic Air

Aci Acc Acr
Ari Arc Arr

1

A ;

where the subscript i and superscript .i/ refer to the dofs associated with CR nodes
in the subdomain interior, the subscript c and superscript .c/ to the dofs associated
with the crosspoints, and the subscript r and superscript .r/ to the dofs associated
with the remaining CR nodes.

The matrix formulation of (4) takes the following form,

0

B

B

@

Aii Aic Air 0

Aci Acc Acr 0

Ari Arc Arr .B
.r//T

0 0 B.r/ 0

1

C

C

A

0

B

B

@

u.i/

u.c/

u.r/

��

1

C

C

A

D

0

B

B

@

fi
fc
fr

0

1

C

C

A

; (5)

where B.r/ is the submatrix of B , associated with the CR nodes that are on � but
not in V CR.

Eliminating the unknowns corresponding to the subdomain interior CR nodes
and the crosspoints, i.e., u.i/ and u.c/, in (5) we arrive at

QSu.r/ C .B.r//T �� D Qfr ;
B.r/u.r/ D 0;

(6)
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where QS D Arr �
�

Ari Arc
�

�

Aii Aic
Aci Acc

��1 �
Air
Acr

�

:

Further eliminating u.r/, we obtain the following FETI-DP problem: find �� 2M
such that

F.��/ D d; (7)

where d WD �B.r/ QS�1 Qfr and F WD B.r/ QS�1.B.r//T .

4 Parallel Preconditioner

The general idea of our Neumann–Dirichlet preconditioner for the FETI-DP system
comes from [14], where the case of nonmatching grids and standard continuous P1
finite element were considered.

We start by further decomposing the vector w.r/ into its two component vectors,
i.e.,

w.r/ D
	

w.r/� ;w
.r/
�

�T

;

where w.r/� D .w.r/kl;� /�kl with

w.r/kl;� .m/ D

8

ˆ

<

ˆ

:

w.r/k .m/ if �k > �l

w.r/k .m/ if �k D �l ; k > l;

w.r/l .m/ otherwise

m 2 � CR
kl;h

i.e., w.r/kl;� is the vector with those entries of w.r/ which are related to �kl and to the
subdomain ˝s with the larger coefficient �s , s D k; l . In case of equality we pick
the ones related to ˝k with k > l . The vector w.r/� corresponds to the remaining

dofs of w.r/. Correspondingly, we introduce W� D fw.r/� W w.r/ 2 Wrg, which is
a subspace of Wr , consisting of functions which are defined by the values at the
CR nodes on the interface �kl belonging to the subdomain ˝s , s D k; l , with the
smaller coefficient. We note that dim QV h.� / D dim W�; which equals the number
of CR nodes on � n V CR.

Let S� be the matrix obtained by restricting the block diagonal Schur comple-
ment matrix S W W ! W toW�. Note that this matrix can be represented as a block
diagonal matrix with nonsingular diagonal blocks Sk;�, i.e.

S� WD diag.Sk;�/k;
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where the subscript k runs over the subdomains˝k such that Sk;� correspond to the
CR nodes of @˝CR

k and these CR nodes which are dofs of w 2 W�.
We define the nonsingular block diagonal matrix B� W W� ! W�, as

B� WD diag.B.r/
�;�kl

/�kl�� ;

where B.r/
�;�kl

is a diagonal block of the matrix B.r/, corresponding to �kl and these
CR nodes which are dofs of w 2 W�. Note that these blocks are nonsingular.

The parallel preconditioner is then as follows,

M�1
DN WD B�T� S�B

�1
� ;

which is nonsingular, and its inverse is MDN WD B�S�1� BT
�:

5 Condition Number Bounds

The main result of this paper is the following theorem which yields a bound for the
condition number of the preconditioned system.

Theorem 1 (Condition Number Estimate). It holds that

hMDN�; �i � hF�; �i � C
�

1C log

�

H

h

��2

hMDN�; �i 8� 2M;

where H D maxk diam.˝k/ and C is a positive constant independent of the
coefficients, and the mesh size parameters H and h. Here h�; �i is the standard l2
inner product.

As a direct consequence of this theorem, we see that the condition number of the

preconditioned matrix M�1
DNF is bounded by C

�

1C log
�

H
h

��2
.

The lower bound in the theorem is obtained by a purely algebraic argument,
while we get the upper bound by using several technical results of which the most
important one is the estimate of special trace norms of jumps of tangential and
normal traces over the interface �kl � � .
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An Adaptive Parallel-in-Time Method
with Application to a Membrane Problem

Noha Makhoul Karam, Nabil Nassif, and Jocelyne Erhel

1 Introduction

Assuming global existence on Œ0;1/ (and uniqueness) for a solution to the initial
value problem:

.S /

�

dY
dt D F.t; Y /; 0 < t � T <1;
Y.0/ D Y0;

we seek in this paper, computing its solution Y W Œ0;1� ! Rk using a parallel-in-
time method, for a given function F W R 	Rk ! Rk .

There is no natural parallelism across time since the solution on a time level
must be known before the computation of the solution at subsequent time levels
can start. However, it could be possible to compute simultaneously on many time
levels by providing a multi-processor architecture some initial guesses for the
solution at later time levels. Such time-parallel computations may be superposed
to parallelism in space variables whenever .S / results from a semi-discretization
of a time-dependent partial differential equation. Several parallel-in-time algorithms
have been proposed to tackle .S /. One of the first has been suggested by Nievergelt
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[12] in 1964 and led to multiple shooting methods of which many variants were
developed [2, 3], . . . . In the 1980s and 1990s, parabolic multigrid methods and
multigrid waveform relaxation have been devised. In 2001, Lions, Maday, and
Turinici proposed in [5] the parareal algorithm that marked a turning point: since its
introduction, it was subject to many contributions ([1,4,6], . . . ), in particular during
Domain Decomposition Conferences. All those methods are based on the principle
of combining coarse and fine resolutions in time, starting with the choice of a most
often regular coarse grid for the time domain, followed by prediction of starting
seed values at the lower ends of the coarse grid intervals, then iteratively proceed
with parallel computations on a fine grid within each time-interval yielding updated
values at their upper ends. Evaluation of the resulting gaps between predicted and
updated values on the coarse grid provides corrections for new seed values. An
iterative process is thus pursued until convergence occurs.

In this work, we give a parallel-in-time method that has been first introduced in
[9] and experimented on a reaction-diffusion problem having a bounded solution.
Two main features are used in this method: (a) the use of an end-of-slice function,
strongly related to the behavior of the solution, that permits the automatic generation
of a non-uniform coarse grid; (b) rescaling, within each of the generated slices,
the time and the solution variables thus obtaining a sequence of rescaled initial
value problems with uniformity properties. Such approach has been used (in its
two components) in [8, 10] for getting sequentially accurate solutions for stiff and
explosive systems and has been exploited in [9] for parallel time integration of
several types of initial value problems. The resulting parallel in time integration
is done without numerical integration over the coarse grid as it is the case
in the parareal method: instead, a concept of similarity between the rescaled
systems allows the prediction of starting values at the onset of future slices. We
refine here the similarity concepts in order to tackle more problems (having non-
bounded solutions) and to increase the accuracy of the predictions thus enhancing
speed-ups.

After giving, in Sect. 2, an overview of the automatic coarse grid generation, we
define in Sect. 3 some similarity properties that yield a prediction model which is
at the core of the adaptive parallel-in-time (APTI) algorithm presented in Sect. 4.
Numerical results on a membrane problem are then given in Sect. 5.

2 Automatic Coarse Grid Generation

The basic principle of the method is in breaking .S / into a sequence of shooting
values problems. Specifically, we assume the existence of a shooting-value function
E W Rk 	 Rk ! R that permits the initiation of a recurrence process, starting with
a first slice of the coarse grid, obtained by seeking

˚

T1;
˚

Y.t/ 2 Rk; 0 � t � T1
��

such that:
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.S1/

8

<

:

dY
dt D F.t; Y /; 0 < t < T1;
Y.0/ D Y0;
E.Y.t/; Y0/ 6D 0; 0 < t < T1; E.Y.T1/; Y0/ D 0:

Y1 D Y.T1/ becomes the initial condition for a 2nd slice of the coarse grid. More
generally, we let for n > 1, Yn�1 D Y.Tn�1/ and define the system on the nth slice:

.Sn/

8

<

:

dY
dt D F.t; Y /; Tn�1 < t < Tn;
Y.Tn�1/ D Yn�1;
E.Y.t/; Yn�1/ 6D 0; Tn�1 < t < Tn; E.Y.Tn/; Yn�1/ D 0:

Based on the End-Of-Slice (EOS) function E.:; :/, one gets the coarse grid:

f0 D T0 < T1 < : : : < Tn < : : : TN�1 < T � TN g;
with the corresponding sequence of starting values of the solution:

fYn D Y.Tn/jn D 0; 1; : : : ; N g:
Two cases of existence of a function E.:; :/ have so far been identified [7].

(a) Case of Explosive solutions
Let jj:jj D jj:jj1;Rk and assume limt!1 kY.t/k D 1. In that case, given

U; W 2 Rk , and D.W / 2 Rk�k an invertible matrix depending on W

with jj.D�1.W //.V /jj � c.W /jjV jj, we then let for S > 0: E.U;W / D
jjD�1.W /.U �W /jj � S .

When applied to .Sn/, such function E.:; :/ determines the size of the nth
slice ŒTn�1; Tn� by:

� S � E.Y.t/; Yn�1/ < 0; Tn�1 � t < Tn and E.Y.Tn/; Yn�1/ D 0: (1)

(b) Case of Oscillatory Problems
When the behavior of the solution is oscillatory, over a long period of time,

in the sense that there exists a two-dimensional plane P in Rk on which the
projection of the solution’s trajectory rotates about a fixed center !, then a slice
is ended when the solution completes a full, or almost full, rotation in that plane
about !.

3 Parallelizing the Shooting Values Problems fSng

The sequence of shooting values problems f.Sn/jn D 1; : : : ; N g can be com-
puted in a parallel way, provided one is able to predict accurately, the coarse
grid f0; T1; T2; : : : ; TN g and the values of the solution Y.t/ on that grid, i.e.
fY0; Y1; Y2; : : : ; YN g.
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3.1 Rescaling and Use of Local Time and Solution

Dealing uniformly with f.Sn/g is then done through a rescaling technique that
changes the variables ft; Y.t/g on each time-slice ŒTn�1; Tn�, into a new pair
fs; Zn.s/g:

t D Tn�1 C ˇ.Yn�1/s; (2.1)
Y.t/ D Yn�1 CD.Yn�1/Zn.s/: (2.2)

(2)

where ˇ.Yn�1/ � ˇn > 0 andD.Yn�1/ � Dn 2 Rk�k is an invertible matrix. Thus,
each (Sn) is now equivalent to a shooting value problem, whereby one seeks the
pair fsn; fZn.s/ 2 Rk; 0 � s � sngg, such that:

.S 0n/

8

<

:

dZn
ds D Gn.s;Zn/; 0 < s < sn
Zn.0/ D 0;
Hn.Zn.s// 6D 0; 0 < s < sn Hn.Zn.sn// D 0;

where:

Gn.s;Zn/ D ˇnD�1n F.Tn�1 C ˇns; Yn�1 CDnZn/ and Hn.Zn/

D E.Yn�1 CDnZn; Yn�1/:

Note the following:

– The rescaled time s D t�Tn�1
ˇn

and solution Zn.s/ are set to 0 at the beginning of
every slice.

– The functionsGn andHn depend on the starting values Tn�1 and Yn�1.
– The solution function Zn.:/ depends on ˇn, on each nth slice, in the sense that

different choices of ˇn lead to different functionsZn.:/. However, independently
of ˇn and Dn, one has the following identities:

8ˇn;
�

ˇnsn D Tn � Tn�1; (3.1)
Zn.sn/ D D�1n .Yn � Yn�1/ : (3.2)

(3)

These identities are at the core of our prediction model, whereas, if the choice of
ˇ.Yn�1/ and D.Yn�1/ are such that the behavior of the pair fsn; Zn.sn/g can be
accurately predicted, then the coarse grid fTng and the values fYng of Y.t/ on that
grid can also be obtained from (3).

3.2 Similarity Concepts

The change of variables (2) and the consequent rescaled problems (S 0n) have been
originally proposed in [8, 10] to handle initial value problems (S ) which solutions
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explode in a finite time. As the computation of these problems present a high
sensitivity to the sharp variations of the solution on a short time, one way to
circumvent this issue is through appropriate choices of fˇn;Dn;Hn.:/g, so that one
inherits “uniformity” on the rescaled systems f.S 0n/g. This is done by selecting
appropriately the rescaling parameter ˇn so as to insure uniform boundedness,
independently of n, of fsng, kZnk, kGnk and kJGnk (where JGn is the jacobian of
Gn), thus controlling the stiffness of the problem. In that way, placing the same fine
solver on each of the .S 0n/, provides a robust algorithm for solving (S ), as proved
in [11].

Using this approach for parallel in time solving was done first in [9] and more
extensively in [7] on the basis of properties satisfied by the pair fsn; Zn.sn/g.
Definition 1. Invariance: If the rescaling parameters fˇn;Dng are such that
8n; Gn.:; :/ D G1.:; :/ and Hn.:/ D H1.:/, then the rescaled systems .S 0n/ are
invariant and are all equivalent to the shooting Problem .S 01/.

In that case one has 8n; Zn.:/ D Z1.:/, sn D s1 and Zn.sn/ D Z1.s1/. Invariance
is an ideal and rare case: one unique time-slice allows getting the solution on all
time-slices through a simple change of variables. A weaker property is given as
follows.

Definition 2. Asymptotic similarity: it occurs when the rescaling parameters fˇn;
Dng are such that limn!1 fsn; Zn.sn/g D fsL;ZL.sL/g, where fsL;ZL.sL/g are
obtained from a limit shooting value problem:

.SL/

8

<

:

dZL
ds D GL.s;ZL/; 0 < s < sL
ZL.0/ D 0;
HL.ZL.s// 6D 0; 0 < s < sL HL.ZL.sL// D 0:

In this case, the use of (3) for a prediction purpose is possible after a sequential run
on a number of slices ns , at which point one has:

max
n>ns
fmaxfjsn � sn�1j; jjZn.sn/ �Zn�1.sn�1/jjgg � tol; (4)

where tol is a user’s computation tolerance. We finally consider, based on (4), a
weak case of similarity, which can be used in spite of the lack of any evidence of
invariance or asymptotic similarity.

Definition 3. Numerical Similarity is considered to be reached, whenever, there
exists 2 integers, n0 � 1 and nr sufficiently large, such that:

max
n0	n	n0Cnr

fmaxfjsn � sn�1j; jjZn.sn/ �Zn�1.sn�1/jjgg � tol; (5)

In that case, as in (4), one lets ns D n0 C nr .
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Remark. in the case where all components of Yn are distinct from 0, then (3.2) is
equivalent to Yn D Dn.eCZn.sn//, where e 2 Rk is a vector of 1’s, and Zn.sn/ D
D�1n Yn � e can be expressed in terms of the vector Rn D D�1n Yn D f Yn;i

Yn�1;i g (ratio-
vector). The behavior of fZn.sn/g is then equivalent to that of fRng.

3.3 Data Analysis and Prediction Model

The similarity properties determine the behavior of the ordered pairs ffsn; Zn.sn/gg
or ffsn; Rngg and allow the prediction of the pairs ffTn; Y.Tn/gg, without any
integration on the coarse grid. Hence, on the basis of Asymptotic or Numerical
Similarity, let ns be the number of slices on which a sequential run has been
conducted with (5) being reached. We seek a prediction data model on the pairs
ffsn; Rngjn > nsg. For that purpose, data analysis is carried out on the sequence:
D .0/ D ffsn; Rngjn D n0; : : : ; nsg. It leads to the model:

ffsn; Rngjn > nsg D Fit.D .0//; (6)

extrapolating best onto next slices. In case of asymptotic similarity, the data model
should also take into consideration the convergence of fsn; Rng to fsL;RLg (see [7]).

Besides, this model allows to get an estimate on N0, least number of slices such
that:

N0�1
X

nDns
ˇnsn < T �

N0
X

nDns
ˇnsn: (7)

3.4 The Case of a Membrane Problem

Consider the second order IVP where one seeks y W Œ0; T � �! R (T � 1) such
that:

�

y
00 � bjy0 jq�1 y0 C jyjm�1 y D 0, t > 0, (8.1)
y.0/ D y1;0, y

0
.0/ D y2;0: (8.2)

(8)

This model describes the motion of a membrane element linked to a spring. When
b > 0, the speed-up of the motion causes a “blow-up” of the solution, case that
has been studied by Souplet et al in [13]. In [10], the rescaling method was applied
to the case m > 1 and q D 2m

mC1 where the solution explodes in finite time. We
consider now the case 0 < m � q � 2m

mC1 � 1. Carrying numerical integration of
(8) has shown global existence of the solution on Œ0;1/ with (a) limt!1 jy.t/j D
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limt!1 jy0
.t/j D 1, (b) y.t/ and y

0
.t/ admit an infinite number of roots in the

interval Œ0;1/.
Such behavior makes the solution, in the phase-plane .y; y0/, spiral outwards

about the origin toward infinity. The first step for solving (8) is to write it as a system
of first order ODE’s. Letting Y1.t/ D y.t/ and Y2.t/ D y0.t/ makes problem (8)
equivalent to an initial value problem of the form .S / where:

Y0 D
�

Y1;0

Y2;0

�

IY.t/ D
�

Y1.t/

Y2.t/

�

IF.t; Y / D F.Y / D
�

Y2

bjY2jq�1 Y2 � jY1jm�1 Y1

�

:

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
9

−6

−4

−2

0

2

4

6

8

10 x 10
7  m = 0.7,         q = 0.77,            on 10 slices

Y
1

Y
2

Y
2
 = |Y

1
|(m+1)/2

EOS condition for a membrane problem

Because of the oscil-
latory behavior of the
solution, one possible
way to end the nth
slice could be whenever
the trajectory of the
solution, in the Y1Y2
phase plane, intersects

the curve Y2 D jY1jmC1
2

in the first quadrant,
thus completing an
almost full rotation. The
oscillating behavior of
the solution makes such
EOS condition guaran-
teed to be reached. Thus,
one chooses:

8 W D
�

W1

W2

�

2 R2; H.W / D W2 � jW1jmC1
2 ; and

ˇn D jYn�1;1j 1�m2 D jYn�1;2j 1�mmC1 :

This yields the rescaled systems:

8

ˆ

ˆ

<

ˆ

ˆ

:

dZn;1
ds D 1CZn;2;

dZn;2
ds D b�nj1CZn;2jq�1.1CZn;2/ � j1CZn;1jm�1.1CZn;1/; 0 < s � sn;
Zn;1.0/ D Zn;2.0/ D 0; H.Zn.s// 6D 0; 0 < s < sn and H.Zn.sn// D 0;

(9)
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with �n D jYn�1;1j
mC1
2

	

q� 2m
mC1

�

� 1. Thus, one checks the following [7]:

1. If q D 2m
mC1 ; 8m � 1, the rescaled systems (9) are invariant and equivalent to

finding Z.s/ D .Z1.s/; Z2.s//, such that:

8

ˆ

ˆ

<

ˆ

ˆ

:

dZ1
ds D 1CZ2;

dZ2
ds D bj1CZ2jq�1.1CZ2/ � j1CZ1jm�1.1CZ1/; 0 < s � s1;
Z1.0/ D Z2.0/ D 0; H.Z.s// 6D 0; 0 < s < s1 and H.Z.s1// D 0;

(10)

2. If 0 < m � q < 2m
mC1 � 1, then the rescaled systems (9) are asymptotically

similar to the limit problem:

8

ˆ

ˆ

<

ˆ

ˆ

:

dZL;1
ds D 1CZL;2;

dZL;2
ds D �j1CZL;1jm�1.1CZL;1/; 0 < s � sL;
ZL;1.0/ D ZL;2.0/ D 0; H.ZL.s// 6D 0; 0 < s < sL andH.ZL.sL// D 0;

(11)

4 Adaptive Parallel in Time (APTI) Algorithm

The superscripts p and c denote predicted and calculated values respectively.
At the core of parallel in time algorithms, one must have a fine solver F that

uniformly handles each of the rescaled problems .S 0n/. It is a software function
defined by:

.F / ŒY cn ; T
c
n � D F .Y

p
n�1; T

p
n�1; ˇn;Dn; F;E; tol/;

on the basis of the functions F and E , given in .Sn/, with Dn D D.Yn�1/ and
ˇn selected to insure obtaining a prediction model on the pairs fsn; Zn.sn/g; tol is a
global user’s tolerance, the same as that used to check (4) or (5). The function F is
designed so that:

max

8

<

:

jjYn�1�Y pn�1jjjjYn�1jj ;
jTn�1�T pn�1jjTn�1j

9

=

;

D O.tol/ ) max

( jjYn�Y cn jjjjYn jj ;jTn�T cn jjTn j

)

D O.tol/: (12)

Such fine solver F is discussed in [11], with a proof of (12) in the case when E is
given by E.U;W / D jjD�1.W /.U �W /jj � S ; F takes in charge changing .Sn/

to .S 0n/, then uses a high order explicit Runge-Kutta method with a local tolerance
tol1 << tol to insure (12).
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Algorithm 1 APTI
Initialization step duplicated on all P processors:
- Set the iteration index l to 0.
- Solve sequentially problem f.S 0

n /g on m.0/ D ns time-slices using F .

- Obtain f.T .0/j ; Y
.0/
j /jj D 0; : : : ; m.0/g and let T .0/ D max fT .0/j g.

- Compute N0 according to estimate (7).
Allocation of tasks on the P processors: At this point, the remaining time-slices (n > m.0/) are
statically allocated, based on a cyclic distribution: processor pr will be assigned slices number
n where .n�m.0// is congruent to pr mod P . This provides an optimized synchronization and
a load balanced distribution of the work.
while T .l/ < T : do

All P processors duplicate the task of predicting f.T pj ; Y pj /jj D m.l/ C 1; : : : ; N lg, using
Fit.D .l// from (6).
for all pr 2 f1; : : : ; P g do

pr solves its first slice n (n � m.l/ C 1) and computes Y cn and T cn using F .
Processor pr computes max fjjY pn � Y cn jj=jjY p

n jj; jT pn � T cn j=jT pn jg.
While max fjjY pn � Y cn jj=jjY p

n jj; jT pn � T cn j=jT pn jg 	 tol and n < N l , processor pr takes
on its assigned next slice, based on theorem 1, and repeats the above.
If max fjjY pn � Y cn jj=jjY p

n jj; jT pn � T cn j=jT pn jg > tol, processor pr stops the execution
(the remaining time-slices need not to be solved). It sends to the master processor
(processor 1) the index I .pr/ of the last slice having converged, together with the new
˚

T cn ; Y
c
n

�

n>m.l/
.

end for
if Master processor then

it synthesizes the received data and updates the following:
- Iteration number l WD l C 1 and number of so far solved slices m.l/ WD maxpr I .pr/.

-
n	

T
.l/
j ; Y

.l/
j

�

jj D 0; : : : ; m.l/
o

with
	

T
.l/
j ; Y

.l/
j

�

WD
	

T
.l�1/
j ; Y

.l�1/
j

�

; 8j D
0; : : : ; m.l�1/g.
- T .l/ WD max fT .l/j g, and N .l/ from estimate (7), and the set D.l/ to be used by the
function Fit (as set in (6)).
Then, it sends T .l/ , N .l/ and D.l/ to all other processors.

end if
end while

Theorem 1. Assuming (12) is satisfied, then:

8

<

:

max
n jjYn�1�Y pn�1jjjjYn�1jj ;

jTn�1�T pn�1jjTn�1j
o

D O.tol/

max
n jjY pn �Y cn jj
jjY pn jj ;

jT pn �T cn j
jT pn j

o

D O.tol/
H) max

( jjYn�Y pn jj
jjYn jjjTn�T pn j
jTnj

)

D O.tol/:

An iterative process can be initiated using a parallel architecture with P processors
(See Algorithm 1). For increasing the speed-up, we adopt a strategy of duplication
of sequential tasks on all processors (that reduces communications and avoids idle
time).



716 N.M. Karam et al.

5 Numerical Results

Case 1 2 3 4 5 6 7 8

m 0.8 0.7 0.7 0.6 0.6 0.6 0.5 0.5
q 0.84 0.74 0.77 0.66 0.69 0.72 0.55 0.60
T 
 1014 
 1029 
 1028 
 1014 
 1018 
 1030 
 1017 
 1025

N 65000 65000 50000 65000 65000 65000 65000 65000

ns 1499 1143 1471 1156 1414 1993 1053 1385
nI 6 11 12 35 28 23 5 5

S2 1.88 1.93 1.93 1.96 1.94 1.91 1.96 1.94
Smax
2 1.95 1.97 1.94 1.97 1.96 1.94 1.97 1.96

S4 3.57 3.66 3.50 3.59 3.56 3.44 3.68 3.63
Smax
4 3.74 3.80 3.68 3.80 3.75 3.66 3.81 3.76

S8 6.47 6.76 6.23 6.57 6.38 6.05 6.82 6.59
Smax
8 6.89 7.12 6.63 7.11 6.94 6.59 7.19 6.96

The table above summarizes some results obtained by the APTI algorithm on the
membrane problem, in the case of asymptotic similarity when 0 < m � q < 2m

mC1
and for eight combinations of the problem parametersm and q, with b D 1. The total
number of slices N , and therefore the interval of integration Œ0; T �, corresponds to
the maximum (or almost) number preventing the explosive solution from exceeding
the machine capacity. The total number of iterations vary from one case to another,
but in all cases, the results show how small is this number compared to the total
number of slices. This ascertains the fast convergence of the method when applied to
this type of problems. Si represents the speed-up obtained when using i processors
(compared to the sequential run time of the same rescaling method) and Smax

i

is the corresponding maximum speed-up stated by Amdhal’s law. The following
tolerances have been used: tol D 5 	 10�6 (global) and tol1 D 10�14 (local).

Actually, the method has been
tested on the previous eight cases,
using 2, 3, 4, 5, 6, 7, and 8
processors. The opposite figure
shows how the values of speed-
up, averaged on the eight cases
above, vary with the number of
processors and how close it is to
the maximum speed-up.
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6 Conclusion

The application of the adaptive parallel in time algorithm we have presented is
not unconditional and requires the prior knowledge of the solution behavior and
the existence of an EOS condition inducing the predictability of the end-of-slice
values. However, when applicable, APTI algorithm yields a fast convergence due to
accurate predictions that do not require any sequential integration on the coarse
grid. Besides, not all the remaining time-slices are solved at each iteration and
communications are minimized in number and size. Our future work aims at
experimenting the method on additional application problems.
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A Schur Complement Method for DAE Systems
in Power System Dynamic Simulations

Petros Aristidou, Davide Fabozzi, and Thierry Van Cutsem

1 Introduction

Power system dynamic simulations are widely used in industry and academia to
provide important information on the dynamic evolution of a system after the
occurrence of a disturbance. In modern dynamic simulation software there is the
need to represent complex electric equipment that interact with each other directly or
through the network. These equipment models represent generators, motors, loads,
wind generators, compensators, etc. with all the physics involved and the required
controls. This multi-domain modeling leads to large, non-linear, stiff and hybrid
(i.e. subject to both continuous and discrete dynamics) Differential and Algebraic
Equation (DAE) systems [10].

In these dynamic simulation studies, the speed of simulation is of the utmost
importance. The observations resulting from these simulations can be critical in
scheduling corrective actions to guard the actual power system against instability.
This procedure, called real-time Dynamic Security Assessment, is performed by
many power system companies.

Triggered mainly by the developments in parallel processing technologies,
some DDMs have already been proposed to speed up simulations. They are
mainly based on Schwartz alternating methods and Waveform Relaxation methods
[7, 9, 11]. Unlike space domain decomposition, no geometrical information is given
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to decompose a DAE system [5] and engineers have to rely on a priori information
on the system’s topology and operation for partitioning. Furthermore, alternating
algorithms demand great care in the partitioning of the system and the handling of
interface values to ensure the convergence of the methods [1, 8]. If tightly coupled
unknowns are mapped to different partitions and an alternating procedure is used,
significantly slowed down convergence rates or divergence can be experienced [2].

This paper proposes a robust, accurate and efficient parallel algorithm based
on the direct Schur Complement DDM [13]. The algorithm yields significant
acceleration when compared to classic, high performance, integrated (applied on
the undecomposed system) dynamic simulation algorithms. The twofold gain comes
from utilizing the parallel potential of the method and exploiting the locality and
sparsity of power systems. Furthermore, as a direct method, convergence does not
depend on the specific partitioning of the system as the interface values are resolved
accurately at each step before solving the sub-domain problems. A connection
between the proposed algorithm and quasi-Newton based integrated algorithms
is demonstrated allowing the better comprehension of the algorithm’s properties.
Finally, an implementation of the algorithm using the shared-memory parallel
programming model and some numerical results are presented based on a realistic
large-scale test system.

The paper is organized as follows: in Sect. 2 we present the partitioning scheme
of the proposed algorithm. In Sect. 3, we explain the formulation of the dynamic
simulation problem and the solution using the Schur Complement method. In
Sect. 4, some further investigation of the algorithm is made with the help of quasi-
Newton integrated algorithms. Implementation specifics and simulation study are
reported in Sect. 5 and followed by closing remarks in Sect. 6.

2 Power System Modeling

An electric power system, under the phasor approximation [10], can be described in
compact form by the following DAE Initial Value Problem:

0 D ���.x;V /
��� Px D ˚̊̊ .x;V /

x.t0/ D x0;V .t0/ D V 0

(1)

where V is the vector of voltages through the network, x is the expanded state vector
containing the differential and algebraic variables (except the voltages) of the system

and ��� is a diagonal matrix with ��� `` D
�

0; if the `-th equation is algebraic
1; if the `-th equation is differential.

The first part of system (1) corresponds to the purely algebraic network equa-
tions. The second part describes the remaining DAEs of the system. Discrete events
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Network

M

M

M

M

V

Injectors

Fig. 1 Decomposed power system: the power system is decomposed into the network and the
injectors connected to it. This reveals a star shaped decomposition layout with the network sub-
domain connected to all other sub-domains

(caused by digital controllers, load tap changing devices, etc.) can alter the power
system equations during the simulation. The handling of these discrete events is not
presented in this paper [4].

2.1 Power System Partitioning

First, the purely algebraic equations describing the electric network are separated to
create one sub-domain. Then, each model of a component connected to the network
(such as a synchronous machine, a load, a motor or even a low-voltage distribution
network) is separated to form the remaining sub-domains. All the aforementioned
devices connected to the network will be called injectors. This term encompasses
devices that either produce or consume power in normal operating conditions. Each
injector is assumed to be connected to a single bus of the network and the interface
is on the physical junction between the sub-domains. Extension to two or more
connection buses is straightforward [4]. The decomposition is visualized in Fig. 1.

The network sub-domain is described by the algebraic equation system (2) while
the sub-domain of each injector i is described by the DAE system (3).

0 D ���.xext;V /

xext.t0/ D xext
0 ;V .t0/ D V 0

(2)

��� i Pxi D ˚̊̊ i .xi ;V
ext/

xi .t0/ D xi0;V
ext.t0/ D V ext

0

(3)

Sub-domains numbered 1; : : : ;M � 1 relate to injectors and M relates to the
network. Vectors xi and matrices ��� i are the projections of x and ��� , defined in (1),
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on the i sub-domain. The variables of each sub-domain are separated into interior
(int) variables appearing only in equations of the sub-domain itself and interface
(ext) variables appearing in equations of both the Network and an injector sub-
domain. Thus, for injectors xi D Œxint

i xext
i � and for the Network V D ŒV int V ext�

(see Fig. 1).

3 DDM-Based Algorithm

3.1 Local System Formulation

Each injector DAE sub-system is algebraized and the resulting non-linear systems of
equations are solved with a quasi-Newton method. The local linear systems involved
in the solution take on the form of (4) for the injectors and (5) for the network.
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4xext
i

�
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�
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4V ext

�

D
�

f int
i .x

int
i ;x

ext
i /

f ext
i .x

int
i ;x

ext
i ;V

ext/

�

„ ƒ‚ …

Ai 4xi QB i f i

(4)

�

D1 D2

D3 D4

�

„ ƒ‚ …

�4V int

4V ext

�

„ ƒ‚ …

CPM�1
jD1




0 C j

�

„ ƒ‚ …

"

0

4xext
j

#

D
�

gint.V int;V ext/

gext.V int;V ext;xext/

�

„ ƒ‚ …

D 4V QC j g

(5)

where A1i (resp. D1) represents the coupling between interior variables. A4i (resp.
D4) represents the coupling between local interface variables. A2i and A3i (resp.
D2 and D3) represent the coupling between the local interface and the interior
variables and, B i (resp. C j ) represent the coupling between the local interface
variables and the external interface variables of the adjacent sub-domains.

3.2 Global Reduced System Formulation

To formulate the global reduced system involving only the interface variables, the
interior variables of the injector sub-domains are eliminated from (4), which yields
for the i -th injector:

S i4xext
i CB i4V ext D Qf i (6)

where S i D A4i � A3iA
�1
1i A2i is the local Schur complement matrix and Qf i D

f ext
i �A3iA

�1
1i f int

i the corresponding adjusted mismatch values.
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Contrary to matrices Ai , which are small but dense and general, matrix D is
large but sparse and structurally symmetric. Thus, eliminating the interior variables
from (5) would destroy its sparsity and symmetry. Therefore, all the variables of the
network sub-domain are included in the reduced system (7).
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(7)

Due to the star layout of the decomposed system (see Fig. 1), the resulting global
Schur complement matrix in (7) is block bordered diagonal. Manipulating this
structure we can further eliminate all the interface variables of the injector sub-
domains and keep only the variables associated to the network sub-domain, as
shown in (8).

The elimination factors C iS
�1
i B i affect only non-zero elements of sub-matrix

D4 thus retaining the original sparsity pattern. This system is solved efficiently
using a sparse linear solver to update V at each Newton iteration. Then, the network
interface variables (V ext) are backward substituted and the injector sub-domain
variables (xi ) are updated independently and in parallel using (4).

�

D1 D2

D3 D4 �PM�1
iD1 C iS

�1
i B i

�

„ ƒ‚ …

�

�V int

�V ext

�

„ ƒ‚ …

D
�

gint

gext �PM�1
iD1 C iS

�1
i
Qf i

�

„ ƒ‚ …

QD �V Qg
(8)

3.3 Exploiting Locality

The procedure can be further accelerated by exploiting the locality of the sub-
domains. Some sub-domains, described by strongly non-linear systems or with
fast changing variables, converge slower. Other sub-domains, with “low dynamic
activity”, converge faster. This can be exploited in two ways.

First, subdomains with low dynamic activity are detected by measuring the effort
(number of Newton iterations) needed for convergence at each discrete time. A
subdomain’s system is updated if that effort increases above a threshold. Second,
a subdomain is declared converged (and stops being solved within the discrete
time) if the absolute maximum normalized correction of a Newton solution of
the subdomain system becomes smaller than a selected tolerance. Since the low
dynamics are detected numerically during the simulation and the tolerance is chosen
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Fig. 2 Parallel Algorithm (P)

small enough so as not to disturb the Newton solution, the accuracy of the solution
is preserved. Figure 2 shows the full parallel algorithm.

4 Further Analysis of the Algorithm

To better understand its properties, Algorithm (P) in Fig. 2 can reformulated into an
equivalent quasi-Newton undecomposed scheme with the k-th iteration described:
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where 0�kj�k.j D 1; : : : ;M / and r i D
�

f i ; if i -th sub-domain has converged
0; otherwise:
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The approximate Jacobian QJ k is used by the method at each iteration k. Every
block line i of QJ k corresponds to a sub-domain and is updated independently based
on sub-domain update criteria [4]. Thus, some block lines can be kept constant for
several iterations or even time-steps (ki � k).

Furthermore, sub-domains considered to have converged are not solved any more
(see Fig. 2). In the equivalent quasi-Newton integrated scheme this corresponds to
explicitly setting the mismatch of those sub-domains to zero by introducing some
inaccuracy to the method through the correction term rk . The inaccuracy is bounded
and controlled to avoid affecting the accuracy of the final solution.

Using this formulation for Algorithm (P) allows us to utilize a general and well
developed framework within which quasi-Newton schemes involving inaccuracy
can be described and analyzed [3, 12].

5 Implementation and Numerical Results

The Schur Complement-based DDM was implemented in the simulation software
RAMSES, developed at the University of Liège. The benchmark Algorithm (I) is
a quasi-Newton scheme applied to the undecomposed DAE system (1). It uses
an approximate Jacobian which is updated and factorized if the system hasn’t
converged after three Newton iterations at any discrete time instant. This method
(also referred to as Very Dischonest Newton Method) is considered to be one of the
fastest sequential algorithms and many traditional industry software use it.

A large-scale model, representative of the Western European main transmission
grid, is used. It includes 15;226 buses, 21;765 branches and 3;483 synchronous
machines represented in detail together with their excitation systems, voltage
regulators, power system stabilizers, speed governors and turbines. Additionally,
7;211 models are included involving induction motors, dynamically modeled loads
and equivalents of distribution systems. The resulting, undecomposed, DAE system
has 146;239 states. The disturbance simulated consists of a short circuit near a bus
lasting 5 cycles (100ms at 50Hz), that is cleared by opening a double-circuit line.
The system is then simulated over a period of 240 s with a time step of 1 cycle
(20ms).

The same models, algebraization method (second-order Backward Differentia-
tion Formula) and way of handling the discrete events are used in both algorithms.
For the solution of the sparse linear systems, HSL MA41 [6] is used and for the
dense injector linear systems of Algorithm (P), Intel MKL LAPACK library. The
computer used for the simulation is a 24-core, shared memory, AMD Opteron
Interlagos (CPU 6238 @ 2.60 GHz) running Debian Linux.

Figure 3 shows that the DDM-based algorithm is already twice faster than
the benchmark in sequential execution. This speedup is mainly attributed to the
exploitation of locality in the decomposed algorithm (Sect. 3.3). As we proceed to
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parallel execution, the proposed algorithm performs up to 4:5 times faster. Figure 4
shows the real-time potential of the algorithm in parallel execution.

The ratio of the interface system to the subdomain systems is very important
to the performance of the algorithm since it corresponds to the ratio between the
sequential portion of the code and the parallel portion of the code. A higher ratio
leads to better speedup and avoids the saturation observed when increasing the
number of cores. The size of the interface system (8) is the same as of the network
subdomain (5), that is approx. 30,000 for the test-system considered. At the same
time, the subdomain systems include approx. 120,000 states. Thus, the size ratio is
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approx. 4, which explains why a relatively small speedup is observed after 6 cores
and the speedup saturates at 4.5 times.

6 Conclusion

In this paper a Schur Complement-based algorithm for dynamic simulation of
electric power systems has been outlined. The algorithm yields acceleration of the
simulation procedure in two ways. On the one hand, the procedure is accelerated
numerically, by exploiting the locality of the sub-domain systems and avoiding
many unnecessary computations (factorizations, evaluations, solutions). On the
other hand, the procedure is accelerated computationally, by exploiting the paral-
lelization opportunities inherent to DDMs.

References

1. Crow, M., Ilic, M., White, J.: Convergence properties of the waveform relaxation method as
applied to electric power systems. In: IEEE International Symposium on Circuits and Systems,
vol.3, pp. 1863–1866 (1989)

2. CRSA, RTE, TE, TU/e: D4.1: Algorithmic requirements for simulation of large network
extreme scenarios. Technical report. http://www.fp7-pegase.eu/

3. Dennis, J., Walker, H.: Inaccuracy in quasi-Newton methods: Local improvement theorems.
Math. Program. Oberwolfach II 22, 70–85 (1984)

4. Fabozzi, D.: Decomposition, localization and time-averaging approaches in large-scale power
system dynamic simulation. Ph.D. thesis, University of Liège (2012)

5. Guibert, D., Tromeur-Dervout, D.: A Schur complement method for DAE/ODE systems
in multi-domain mechanical design. In: Domain Decomposition Methods in Science and
Engineering XVII, Springer Berlin Heidelberg, pp. 535–541 (2008)

6. HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.
uk (2011)

7. Ilic’-Spong, M., Crow, M.L., Pai, M.A.: Transient stability simulation by waveform relaxation
methods. IEEE Trans. Power Syst. 2(4), 943–949 (1987)

8. Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-
algebraic systems. SIAM J. Numer. Anal. 33(6), 2303–2317 (1996)

9. Kron, G.: Diakoptics: The Piecewise Solution of Large-Scale Systems. MacDonald, London
(1963)

10. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)
11. La Scala, M., Bose, A., Tylavsky, D., Chai, J.: A highly parallel method for transient stability

analysis. IEEE Trans. Power Syst. 5(4), 1439–1446 (1990)
12. Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Clas-

sics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia
(1987)

13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and
Applied Mathematics, Philadelphia (2003)

http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://www.fp7-pegase.eu/


FETI Solvers for Non-standard Finite Element
Equations Based on Boundary Integral
Operators

Clemens Hofreither, Ulrich Langer, and Clemens Pechstein

1 Introduction

This paper is devoted to the construction and analysis of Finite Element Tearing and
Interconnecting (FETI) methods for solving large-scale systems of linear algebraic
equations arising from a new non-standard finite element discretization of the
diffusion equation. This discretization technique uses PDE-harmonic trial functions
in every element of a polyhedral mesh. The generation of the local stiffness matrices
utilizes boundary element techniques. For these reasons, this non-standard finite
element method can also be called a BEM-based FEM or Trefftz-FEM.

The FETI method was introduced by Farhat and Roux in [1] and has been
generalized and analyzed by many people, see, e.g., [7, 11] for the corresponding
references. The Boundary Element Tearing and Interconnecting (BETI) method was
later introduced by Langer and Steinbach [6] as the boundary element counterpart
of the FETI method. The analysis of the convergence of the BETI method is heavily
based on the spectral equivalences between FEM- and BEM-approximated Steklov–
Poincaré operators. Similar techniques are used for the analysis of the BEM-based
FETI methods considered in this paper. Due to space constraints, this analysis is
however postponed to a forthcoming article. In the present work, we derive the
solver, state the convergence results without proof, and present numerical results.
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2 A Skeletal Variational Formulation

Let ˝ � Rd , d D 2 or 3, be a bounded Lipschitz domain, and let us consider the
following diffusion problem in the standard weak form: find u 2 H1.˝/ such that
u matches the given Dirichlet data gD on �D and satisfies the variational equation

Z

˝

˛ru � rv dx D
Z

˝

f v dx C
Z

�N

gN v ds 8v 2 H1
D.˝/

D fv 2 H1.˝/ W vj�D D 0g (1)

where ˛ is the uniformly positive and bounded diffusion coefficient, f is a given
forcing term, �D � @˝ is the Dirichlet boundary with positive surface measure,
�N D @˝ n �D is the Neumann boundary with prescribed conormal derivative gN .

Consider a decomposition T of the domain ˝ into polytopal elements T 2 T .
In contrast to a standard FEM method, we allow the mesh to consist of a mixture
of rather general polygons (in 2d) or polyhedra (in 3d). We now require that the
coefficient function ˛ is piecewise constant with respect to T , i.e., ˛jT .x/ �
˛T 8T 2 T .

On every element T , we introduce the local harmonic extension operator HT W
H1=2.@T / ! H1.T / which maps any gT 2 H1=2.@T / to the unique weak
solution uT 2 H1.T / of the local PDE �div.˛TruT / D 0 with Dirichlet boundary
condition uT j@T D gT . Furthermore, we define the local Steklov–Poincaré operator
ST W H1=2.@T / ! H�1=2.@T / by ST uT D �1HT uT , where �1 is the conormal
derivative operator which takes the form �1 D n � ˛r for sufficiently regular
arguments.

If we introduce the skeleton �S WD S

T2T @T and denote by H1=2.�S/ the
trace space of H1.˝/-functions onto the skeleton, we can formulate the skeletal
variational problem: find u 2 H1=2.�S/ with uj�D D gD such that

a.u; v/ D hF; vi 8v 2 WD D fv 2 W D H1=2.�S/ W vj�D D 0g; (2)

where the bilinear from a.u; v/ and the linear form hF; vi are defined by a.u; v/ D
P

T2T hST uj@T ; vj@T i and hF; vi D P

T2T
h

R

T
fHT .vj@T / dx C

R

@T\�N gN v

ds
i

; respectively. It is easy to see that the skeletal variational formulation (2) is

equivalent to the standard variational formulation (1) in the sense that the solution
of the former is the skeletal trace of the solution of the latter [4].

3 Approximation of the Steklov–Poincaré Operator

It is well-known [10] that the Steklov–Poincaré operator ST can be expressed as

ST D ˛T .V �1T . 1
2
I CKT // D ˛T .DT C . 12I CK 0T /V �1T . 1

2
I CKT //
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in terms of the boundary integral operators defined on every element boundary @T ,

VT W H�1=2.@T /! H1=2.@T /; KT W H1=2.@T /! H1=2.@T /;

K 0T W H�1=2.@T /! H�1=2.@T /; DT W H1=2.@T /! H�1=2.@T /;

called, in turn, the single layer potential, double layer potential, adjoint double
layer potential, and hypersingular operators. They are defined by means of the
fundamental solution of the Laplace equation.

We construct a computable approximation as follows. We assume that each
element boundary @T has a shape-regular mesh FT which consists of line segments
in R2 and of triangles in R3, and that these local meshes match across elements. On
this mesh, we construct a space Z h

T of piecewise constant functions and define,
given u 2 H1=2.@T /, the discrete variable whT 2 Z h

T by solving the discrete
variational problem hVTwhT ; zhT i D h. 1

2
I C KT /u; zhT i for all zhT 2 Z h

T : A
computable approximation to ST is then given by QST u WD ˛T .DT uC. 1

2
ICK 0T /whT /:

The approximation QST remains self-adjoint and its kernel is given by the constant
functions, just as for ST . Furthermore, it satisfies the spectral equivalence

QcT hST v; vi � h QST v; vi � hST v; vi 8v 2 H1=2.@T / (3)

with QcT 2 .0; 14 �. Replacing, in (2), ST by its approximations QST , we obtain the
inexact skeletal variational formulation: find u 2 H1=2.�S/ with uj�D D gD such
that

Qa.u; v/ WD
X

T2T
h QST uj@T ; vj@T i D hF; vi 8v 2 WD:

The positive constant QcT in (3) depends on the geometry of the elementT . For robust
error estimates, it is necessary to bound QcT from below uniformly for all elements.
Recently, explicit bounds for these constants have been obtained, starting with a
paper by Pechstein [8] which relied on the Jones parameter and a constant in an
isoperimetric inequality. These results were employed in the rigorous a priori error
analysis of the BEM-based FEM [2, 4] and have later been simplified in [3].

Theorem 1 ([3]). Let ˝ � R3. Assume that there exists a shape-regular simplicial
mesh ).˝ 0/ of an open, bounded superset ˝ 0 � ˝ of ˝ such that each element
T 2 T is a union of simplices from).˝ 0/, and the number of simplices per element
T is uniformly bounded. Furthermore, assume that the boundary meshes FT , T 2
T , are shape-regular.

Then, the contraction constants QcT , T 2 T , are uniformly bounded away from 0

in terms of the mesh regularity parameters.
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4 Discretization

By assumption, F WD S

T2T FT describes a shape-regular triangulation of the
skeleton �S . On this mesh, we construct the discrete trial space W h � H1=2.�S/ of
piecewise linear, continuous functions on the skeleton and set W h

D WD W h \ WD .
After this discretization, we aim to find uh 2 W h with uhj�D D gD such that

Qa.uh; vh/ D hF; vhi 8vh 2 W h
D : (4)

Rigorous error estimates of optimal order for this discretized variational problem
can be found in [2, 4]. Equivalently, (4) can be written as an operator equation

Auh D F (5)

with A W W h ! .W h
D/
�. The associated stiffness matrix in the canonical nodal

basis shares many properties with the stiffness matrix obtained from a standard finite
element method like sparsity, symmetry and positive definiteness.

5 A FETI Solver

In the following, we derive a solution method for (5) based on the ideas of the FETI
substructuring approach, originally proposed by Farhat and Roux [1]. Our derivation
closely follows that of the classical FETI method. Thus, we refer to the monographs
[7, 11] and the references therein for further details and proofs.

We decompose ˝ into non-overlapping subdomains .˝i/
N
iD1 in agreement with

the polyhedral mesh T , that is, ˝i D S

T2Ti T with an associate decomposition
.Ti /

N
iD1. For a sketch and a comparison to classical FETI substructuring, see

Fig. 1. We set Hi WD diam˝i and H WD maxNiD1 Hi . Every subdomain ˝i has
an associated skeleton

S

T2Ti @T and discrete skeletal trial spaces W h.˝i / and
W h
D.˝i/, constructed as in Sect. 4. In the following, we assume that the problem has

been homogenized with respect to the given Dirichlet data gD , such that uh 2 W h
D .

Both the operator A and the functional F in (5) can be written as a sum of
local contributions Ai W W h.˝i / ! W h.˝i/

� and fi 2 W h.˝i/
� such that

PN
iD1 Ai .uj˝i / D

PN
iD1 fi ; where here and in the sequel we drop the superscript

h since all functions are discrete from now on. Indeed, all relevant functions live in
spaces of piecewise linear functions which have natural nodal bases. Therefore, we
will not distinguish in the following between functions and the coefficient vectors
representing them with respect to the nodal basis, nor between operators and their
matrix representations.

We introduce the Schur complement QSi D Ai;� � � Ai;�IA�1i;IIAi;I� of the
subdomain stiffness matrix Ai . The blocks Ai;� � ; Ai;� I ; Ai;I� ; Ai;II are chosen
such that the subscripts � and I correspond to the boundary and inner degrees
of freedom, i.e.,
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Fig. 1 Sketch of domain decomposition approach in 2D for a rectangular domain with N D 2

subdomains. Left: FETI substructuring. Right: FETI-like substructuring for the BEM-based FEM

Aiw D
�

Ai;� � Ai;� I
Ai;I� Ai;II

� �

w�
wI

�

:

Eliminating the interior unknowns in (5) yields the equivalent minimization problem

u D arg minv2W h
D.�

H
S /

1

2

N
X

iD1
h QSivj@˝i ; vj@˝i i �

N
X

iD1
hgi ; vj@˝i i; (6)

where � H
S D SN

iD1 @˝i is the coarse skeleton, W h
D.�

H
S / is the trace space of

discrete functions W h
D.˝/ onto � H

S , and gi is a suitably adjusted forcing term.
Let W h.@˝i / WD fvj@˝i W v 2 W h.˝i/g denote a space of discrete boundary

functions. We then introduce the broken space Y WD QN
iD1 Yi with Yi WD fv 2

W h.@˝i / W vj�D D 0g: In order to enforce continuity of the functions in Y , we
introduce the jump operator B W Y ! RN� , where N� 2 N is the total number of
constraints. Here we assume fully redundant constraints, i.e., for every node on a
subdomain interface, constraints corresponding to all neighboring subdomains are
introduced. This choice implies that B is not surjective, and we define the space
of Lagrange multipliers as the range � WD RangeB � RN� and consider B as a
mapping Y ! �.

Using the jump operator, we rewrite (6) as u D arg miny2kerB
1
2

PN
iD1h QSiyi ; yi i�

PN
iD1hgi ; yi i: Introducing Lagrange multipliers to enforce the constraint By D 0,

we obtain the saddle point formulation

� QS B>
B 0

� �

u
�

�

D
�

g

0

�

; (7)

for u 2 Y and � 2 �, with the block matrices and vectors QS D diag. QS1; : : : ; QSN /;
B D .B1; : : : ; BN /, u D .u1; : : : ; uN />; g D .g1; : : : ; gN />. From (7), we see that
the local skeletal functions ui satisfy the relationship

QSiui D gi � B>i �: (8)

For a non-floating domain ˝i , that is, one that shares a part of the Dirichlet
boundary such that @˝i \ �D ¤ ;, QSi is positive definite and thus invertible. For
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a floating domain ˝i , the kernel of QSi consists only of the constant functions, and
we parameterize it by the operator Ri W R ! ker QSi � Yi which maps a scalar to
the corresponding constant function. Under the condition that the right-hand side is
orthogonal to the kernel, i.e.,

hgi � B>i �; Ri �i D 0 8� 2 R; (9)

the local problem (8) is solvable and we have ui D QS�i .gi �B>i �/CRi�i with some
�i 2 R. Here, QS�i denotes a pseudo-inverse of QSi . For non-floating domains ˝i , we
set QS�i D QS�1i .

We set Z WD QN
iD1Rdim.ker QSi / and introduce the operator R W Z ! Y by

.R�/j˝i WD Ri�i for floating ˝i and .R�/j˝i WD 0 for non-floating ˝i . The local
solutions u can then be expressed by

u D QS�.g � B>�/CR� (10)

under the compatibility condition R>B>� D R>g derived from (9). Inserting (10)
into the second line of (7) yields B QS�g �B QS�B>�CBR� D 0; and together with
the compatibility condition and using the notations F D B QS�B> andG D BR, we
obtain the dual saddle point problem

�

F �G
G> 0

� �

�

�

�

D
�

B QS�g
R>g

�

: (11)

With a self-adjoint operatorQ W �! � which is assumed to be positive definite
on the range of G and which will be specified later, we define the projector P D
I�QG.G>QG/�1G> from� onto the subspace�0 WD kerG> � � of admissible
increments. The choice �g WD QG.G>QG/�1R>g 2 � ensures that G>�g D
R>g, and thus, with � D �0 C �g, we can homogenize (11) such that we only
search for a �0 2 �0 with

F�0 �G� D B QS�g � F�g: (12)

Applying the projector P> to this equation and noting that P>G D 0, we obtain
the following formulation of the dual problem: find �0 2 �0 such that

P>F�0 D P>.B QS�g � F�g/ D P>B QS�.g � B>�g/: (13)

It can be shown that P>F is self-adjoint and positive definite on �0. Thus, the
problem (13) has a unique solution which may be computed by CG iteration in
the subspace �0. Once � D �0 C �g has been computed, we see that applying
.G>QG/�1G>Q to (12) yields � D .G>QG/�1G>QB QS�.B>� � g/: The
unknowns ui may then be obtained by solving the local problems (10), and the



FETI Solvers for BEM-Based FEM 735

unknowns in the interior of each ˝i may be recovered by solving local Dirichlet
problems.

Preconditioners for FETI are typically constructed in the form PM�1 with a
suitable operatorM�1 W �! �. The FETI Dirichlet preconditioner adapted to our
setting, is given by the choiceM�1 D B QSB> and works well for constant or mildly
varying coefficient ˛. In this case, the choiceQ D I works satisfactorily.

To deal with coefficient jumps, we need to employ a scaled or weighted jump
operator as introduced in [9] and analyzed in [5]. We restrict ourselves to the case
of subdomain-wise constant coefficient ˛, i.e., ˛.x/ D ˛i for x 2 ˝i .

Let xh 2 @˝i refer to a boundary node. We introduce weighted counting
functions ıj via piecewise linear interpolation on the facets of the coarse skeleton
� H
S of the nodal values defined by ıj .x

h/ D ˛j =.
P

k2f1;:::;N gWxh2@˝k ˛k/ for
xh 2 @˝j and 0 otherwise, j D 1; : : : ; N . We introduce diagonal scaling matrices
Di W � ! �, i D 1; : : : ; N , operating on the space of Lagrange multipliers.
Consider two neighboring domains˝i and˝j sharing a node xh 2 @˝i \@˝j . Let
k 2 f1; : : : ; N�g denote the index of the Lagrange multiplier associated with this
node and pair of subdomains. Then, the k-th diagonal entry of Di is set to ıj .xh/,
and the k-th diagonal entry of Dj to ıi .xh/. Diagonal entries of Di not associated
with a node on @˝i are set to 0.

The weighted jump operator BD W Y ! � is now given by BD D
ŒD1B1; : : : ;DNBN �; and the weighted Dirichlet preconditioner by M�1D D
BD QSB>D : In this case, a possible choice for Q is simply Q D M�1D . Alternatively,
Q can be replaced by a suitable diagonal matrix as described in [5].

6 Convergence Analysis

The convergence analysis proceeds by the idea of spectral equivalences between the
BEM-based FEM Schur complements QSi and the Schur complements which occur
in a standard one-level FETI method, allowing us to transfer the known condition
estimates from the FETI literature to our case. This is similar to the approach used in
the analysis of the BETI method [6]. For space reason, we cannot give this analysis
here, and it must be postponed to a forthcoming paper. Here we only state the main
results. Under standard assumptions, we can prove the condition number estimate

	.P>F j�0/ � C.˛=˛/maxiD1;:::;N .Hi=hi/

for the non-preconditioned case, where ˛ D maxx2˝ ˛.x/, ˛ D minx2˝ ˛.x/, and
the constant C depends only on mesh regularity parameters. For the preconditioned
case, with the choiceQ DM�1D , we have the condition number estimate

	.PM�1D P>F j�0/ � C .1C log.maxiD1;:::;N .Hi=hi///
2:
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Fig. 2 Left: ˝ partitioned into N D 400 subdomains. Right: zoom into the polygonal mesh

Table 1 Results of the non-preconditioned (left)/preconditioned
(right) CG solver

N Total time Avg. loc. time # iter # Lagrange
25 32.23/20.49 0.0776/0.0759 133/29 5,875
50 30.19/19.10 0.0317/0.0310 135/30 8,962

100 26.64/17.70 0.0135/0.0131 131/31 13,012
200 23.69/17.41 0.0059/0.0057 134/36 19,056
400 21.06/16.13 0.0027/0.0026 123/34 27,324
800 20.23/17.68 0.0013/0.0013 109/36 39,304

1,600 22.19/20.96 0.0006/0.0006 095/35 56,632

Columns: number of subdomains, total CPU time for the solution in
seconds, averaged time for solving the local problems in seconds,
number of iterations, number of Lagrange multipliers

7 Numerical Experiments

We solve the pure Dirichlet boundary value problem ��u D 0 in ˝ and u.x/ D
�.2�/�1 log jx � x?j on @˝: The 2d domain ˝ (Fig. 2, left) is discretized by an
irregular polygonal mesh. The source point x? D .�1; 1/ lies outside of ˝ .

The polygonal mesh T is constructed by applying the graph partitioner METIS to
a standard triangular mesh consisting of 524,288 triangles, resulting in a polygonal
mesh with 99,970 elements, most of which are unions of 5 or 6 triangles, cf. Fig. 2,
right. The domain decomposition f˝ig is obtained by applying METIS a second time
on top of the mesh T , see Fig. 2, left.

We use the Dirichlet preconditioner with multiplicity scaling and a suitable
diagonal matrix for Q as described in [5], and solve the dual system by the
corresponding PCG iteration. In Table 1, we give the number of CG iterations
required to reduce the initial residual by a factor of 10�8 without and with Dirichlet
preconditioner, and provide some CPU times for varying numberN of subdomains.
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Domain Decomposition Methods for Problems
of Unilateral Contact Between Elastic Bodies
with Nonlinear Winkler Covers

Ihor I. Prokopyshyn, Ivan I. Dyyak, Rostyslav M. Martynyak,
and Ivan A. Prokopyshyn

1 Introduction

Thin covers from different materials are often applied in engineering to improve the
functional properties of the surfaces of machines and structures components. On the
other hand, thin covers with certain mechanical properties are used to model the real
microstructure of surfaces, adhesion and glue bondings [6, 14, 15].

The classical methods for solution of contact problems for bodies with thin
covers are grounded on integral equations and are reviewed in work [15]. Nowadays,
one of the most effective numerical methods for such contact problems are methods,
based on variational formulations and finite element approximations.

Efficient approach for solution of multibody contact problems is the use of
domain decomposition methods (DDMs). Many DDMs for contact problems
without covers are obtained on discrete level [3, 16]. Among DDMs, proposed
on continuous level for contact problems without covers are methods presented in
[1, 9, 12]. Domain decomposition methods for solution of problem of ideal contact
between two bodies, connected through nonlinear Winkler layer are proposed in
[2,8]. These methods are based on saddle-point formulation and conjugate gradient
methods.

In current contribution we consider a problem of unilateral contact between
elastic bodies with nonlinear Winkler covers. We give variational formulations
of this problem in the form of nonquadratic variational inequality on convex
set and nonlinear variational equation in the whole space, and present theorems
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about existence and uniqueness of their solution. Furthermore, we propose on
continuous level a class of parallel domain decomposition methods for solving the
nonlinear variational equation, which corresponds to original contact problem. In
each iteration of these methods we have to solve in a parallel way linear variational
equations in separate bodies, which are equivalent in a weak sense to linear elasticity
problems with Robin boundary conditions on possible contact areas. These DDMs
are based on abstract nonstationary iterative methods for variational equations in
Banach spaces. They are the generalization of domain decomposition methods,
proposed by us earlier in [4, 5, 10] for unilateral contact problems without covers.
Some particular cases of proposed DDMs can be viewed as a modification of
semismooth Newton method [7]. The numerical analysis of obtained DDMs is made
for plane contact problems using finite element approximations.

2 Statement of the Problem

Consider a unilateral contact of N elastic bodies ˝˛ � R3 with sufficiently smooth
boundaries �˛, ˛ D 1; 2; : : : ; N (Fig. 1a). Suppose that across each contact surface
there is a nonlinear Winkler layer. Denote ˝ D SN

˛D1 ˝˛.
A stress-strain state in point x D .x1; x2; x3/

> of each solid ˝˛ is described by
the displacement vector u˛ D u˛ i ei , the tensor of strains O"""˛ D "˛ ij ei ej and the
tensor of stresses O���˛ D �˛ ij ei ej . These quantities satisfy the following relations:

3
X

jD1

@�˛ ij.x/
@xj

C f˛ i .x/ D 0 ; x 2 ˝˛ ; i D 1; 2; 3 ; (1)

�˛ ij.x/ D
3
X

k;lD1
C˛ ijkl.x/ "˛ kl .x/ ; "˛ ij D 1

2

�

@u˛ i
@xj
C @u˛ j

@xi

�

; i; j D 1; 2; 3 ;

(2)

where f˛ i are the components of volume forces vector f˛ D f˛ i ei , and C˛ ijkl are
symmetric elasticity constants, which are bounded in the following sense:

.9 b˛; c˛>0/ .8 x/

8

<

:

b˛

3
X

i;jD1
"2˛ij�

3
X

i;j;k;lD1
C˛ijkl "˛ij "˛kl � c˛

3
X

k;lD1
"2˛kl

9

=

;

: (3)

On the boundary �˛ introduce a local orthonormal coordinate system
���˛; ���˛; n˛ , where n˛ is an outer unit normal, and ���˛ , ���˛ are unit tangents. Then
the vectors of displacements and stresses on �˛ can be written in the following way:
u˛ D u˛ � ���˛ C u˛� ���˛ C u˛n n˛ ; ���˛ D O���˛ � n˛ D �˛� ���˛ C �˛� ���˛ C �˛n n˛ :

Suppose, that the boundary �˛ consists of three disjoint parts: �˛ D
� u
˛

S

� �
˛

S

S˛, � u
˛ D � u

˛ , � u
˛ ¤ ;, S˛ ¤ ;. On the part � u

˛ homogenous
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Fig. 1 Unilateral contact between several elastic bodies through nonlinear Winkler layers

Dirichlet boundary conditions are prescribed, and on the part � �
˛ we consider

Neumann boundary conditions:

u˛.x/ D 0; x 2 � u
˛ I ���˛.x/ D p˛.x/; x 2 � �

˛ : (4)

The part S˛ D S

ˇ2B˛ S˛ˇ ,
T

ˇ2B˛ S˛ˇ D ; is the possible contact area of body
˝˛ with the other bodies. Here S˛ˇ is the possible unilateral contact area of body
˝˛ with body ˝ˇ, and B˛ � f1; 2; : : : ; N g is the set of the indices of all bodies
in contact with body ˝˛. We assume that the surfaces S˛ˇ � �˛ and Sˇ˛ � �ˇ
are sufficiently close (S˛ˇ � Sˇ˛), and n˛.x/ � �nˇ.x0/, x 2 S˛ˇ , x0 D P.x/ 2
Sˇ˛ , where P.x/ is the projection of point x on S˛ˇ. Let d˛ˇ.x/ D ˙kx � x0k
be a distance between bodies ˝˛ and ˝ˇ before the deformation. We suppose that
possible contact areas S˛ˇ and Sˇ˛, ˇ 2 B˛ , ˛ D 1; : : : ; N have nonlinear Winkler
covers. Total compression w˛ˇ of these covers is related with normal contact stress
as follows: �˛n.x/ D �ˇn.x0/ D g˛ˇ

�

w˛ˇ.x/
�

, x 2 S˛ˇ , x0 2 Sˇ˛ , where g˛ˇ is
given nonlinear continuous function, which satisfies the following conditions:

g˛ˇ.0/ D 0 ; .8 y; z/ ˚ y < z ) g˛ˇ.y/ < g˛ˇ.z/
�

; (5)

�9M˛ˇ > 0
�

.8 y; z/ ˚ ˇˇg˛ˇ.y/ � g˛ˇ.z/
ˇ

ˇ �M˛ˇ jy � zj � : (6)

On possible contact zones S˛ˇ , ˇ 2 B˛ , ˛ D 1; 2; : : : ; N we consider the
following unilateral contact conditions through nonlinear Winkler layers:

�˛�.x/ D �ˇ�.x0/ D 0 ; �˛�.x/ D �ˇ�.x0/ D 0 ; (7)

�˛n.x/ D �ˇn.x0/ D g˛ˇ
�

w˛ˇ.x/
� � 0; u˛n.x/C uˇn.x0/C w˛ˇ.x/ � d˛ˇ.x/;

(8)



u˛n.x/C uˇn.x0/C w˛ˇ.x/� d˛ˇ.x/
�

�˛n.x/ D 0 ; x0 D P.x/ ; x 2 S˛ˇ :
(9)
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3 Variational Formulations

For each body˝˛ consider Sobolev space V˛ D ŒH1.˝˛/�
3 and the closed subspace

V 0
˛ D fu˛ 2 V˛ W u˛ D 0 on � u

˛ g. All values of the elements from these spaces
on the parts of boundary �˛ should be understood as traces. The trace of element
u˛ 2 V˛ on the part� u

˛ should belong to space ŒH1=2.� u
˛ /�

3, and the trace of element
from V 0

˛ on the part )˛ D int .�˛ n � u
˛ / should belong to ŒH1=2

00 .)˛/�
3.

Define Hilbert space V0DQN
˛D1V˛ with scalar product .u; v/V0D

PN
˛D1.u˛; v˛/V˛

and norm kukV0 D .u ;u/1=2V0 , u; v 2 V0. Moreover, introduce the following spaces

W D fw D .w˛ˇ/>f˛; ˇg2Q W w˛ˇ 2 H1=2
00 .)˛/g and U0 D V0 	W D fU D .u;w/> W

u 2 V0;w 2 W g, where Q D ff˛; ˇg W ˛ 2 f1; 2; : : : ; N g ; ˇ 2 B˛g.
In space U0 consider the closed convex set of all displacements, which satisfy

nonpenetration contact conditions:K D fU 2 U0 W u˛n C uˇn C w˛ˇ � d˛ˇonS˛ˇ ,

f˛; ˇg 2 Qg, where u˛n D n˛ � u˛ 2 H1=2
00 .)˛/, w˛ˇ; d˛ˇ 2 H1=2

00 .)˛/.
Let us introduce bilinear form A.u; v/ D PN

˛D1 a˛.u˛; v˛/, u; v 2 V0,
a˛.u˛; v˛/ D

R

˝˛
O���˛.u˛/ W O"""˛.v˛/ d˝ , such that A.u;u/ represents the total

elastic deformation energy of the bodies, linear form L.u/ D PN
˛D1 l˛.u˛/,

l˛.u˛/ D
R

˝˛
f˛ � u˛ d˝ C

R

� �˛
p˛ � u˛ dS , f˛ 2 ŒL2.˝˛/�

3, p˛ 2 ŒH�1=200 .)˛/�
3,

which is equal to external forces work, and nonquadratic functional H.w/ D
P

f˛; ˇg2Q
R

S˛ˇ


R w˛ˇ
0 g˛ˇ.z/ d z

�

dS , w 2 W , which represents the total deformation
energy of nonlinear Winkler layers.

We have shown, that bilinear form A is symmetric, continuous and coercive
if condition (3) holds, and nonquadratic functional H is Gateaux differentiable:
H 0.w; z/ DPf˛; ˇg2Q

R

S˛ˇ
g˛ˇ.w˛ˇ/ z˛ˇ dS , w; z 2 W .

Theorem 1. Suppose that conditions (3), (5), (6) hold. Then problem (1), (2), (4),
(7)–(9) has an alternative weak formulation as the following minimization problem:

F.U/ D A .u;u/=2� L.u/CH.w/! min
U2K : (10)

Moreover, there exists a unique solution of problem (10), and this problem is
equivalent to the following nonquadratic variational inequality on set K:

F 0.U;V�U/ D A .u; v� u/�L.v� u/CH 0.w; z�w/ � 0 ; 8 .v; z/> 2 K :
(11)

Except this variational formulation, we also have proposed another weak formu-
lation of original contact problem in the form of nonlinear variational equation.

Let us introduce the following nonquadratic functional in space V0:

J.u/ D
X

f˛; ˇg2Q

Z

S˛ˇ

"

Z d˛ˇ�u˛n�uˇn

0

g�̨̌ .z/ d z

#

dS ; u 2 V0 ; (12)

where g�̨̌ .z/ D f 0 ; z � 0 g _ f g˛ˇ.z/ ; z < 0 g is nonlinear function.
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Functional J.u/ is nonnegative and Gateaux differentiable in V0:
J 0.u; v/ D �Pf˛; ˇg2Q

R

S˛ˇ
g�̨̌ .d˛ˇ � u˛n � uˇn/ Œv˛n C vˇn� dS . We have shown

that if conditions (5) and (6) hold, then Gateaux differential J 0.u; v/ satisfies
the following properties: .8 u 2 V0/ .9 QR > 0 / .8 v 2 V0/ f jJ 0.u; v/j �QRkvkV0g; .9 QD > 0/ .8 u; v;w 2 V0/ f jJ 0.uCw; v/�J 0.u; v/ j � QDkvkV0kwkV0 g,
.8 u; v 2 V0/ f J 0.u C v; v/ � J 0.u; v/ � 0 g. These properties helped us to prove
the next theorem.

Theorem 2. Suppose that conditions (3), (5) and (6) hold. Then the contact
problem (1), (2), (4), (7)–(9) is equivalent to problem (1), (2), (4), (7) with the
following nonlinear boundary value conditions on the possible contact areas:

�˛n.x/ D �ˇn.x0/ D g�̨̌
�

d˛ˇ.x/� u˛n.x/� uˇn.x0/
�

; x0 D P.x/ ; x 2 S˛ˇ ;
(13)

and it is equivalent in weak sense to the next nonquadratic minimization problem:

F1.u/ D A .u;u/=2 �L.u/C J.u/! min
u2V0

: (14)

Moreover, problem (14) has a unique solution and is equivalent to the following
nonlinear variational equation in space V0:

F 01.u; v/ D A .u; v/C J 0.u; v/� L.v/ D 0; 8 v 2 V0 ; u 2 V0 : (15)

4 Nonstationary Iterative Methods

In reflexive Banach space V consider an abstract nonlinear variational equation

˚ .u; v/ D Y.v/ ; 8 v 2 V; u 2 V; (16)

where ˚ W V 	 V ! R is a functional, which is linear in v, but nonlinear in u, and
Y W V ! R is linear continuous form. For numerical solution of (16) consider the
following nonstationary iterative method [5, 11]:

Gk.ukC1; v/ D Gk.uk; v/� �k 
˚ .uk; v/� Y.v/ � ; k D 0; 1; : : : ; (17)

where Gk W V 	 V ! R are some given bilinear forms, �k 2 R are iterative
parameters, and uk 2 V is the k-th approximation to the exact solution of
problem (16).

Theorem 3 ([5]). Suppose that functional ˚ satisfies the following properties:
.8u 2 V /.9R˚ > 0/.8v 2 V /f j˚.u; v/j � R˚kvkV g, .9D˚ > 0/ .8u; v;w 2
V /f j˚ .uCw; v/�˚ .u; v/ j � D˚kvkV kwkV g; .9B˚ > 0/.8u; v 2 V / f˚ .uC
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v; v/�˚ .u; v/ � B˚kvk2V g. Then nonlinear variational equation (16) has a unique
solution Nu 2 V . In addition, suppose that bilinear forms Gk; k D 0; 1; : : : are
symmetric, continuous with constant M �G > 0, coercive with constant B�G > 0,
and the following conditions hold: .9k0 2 N0/ .8k � k0/ .8u 2 V / fGk.u;u/ �
GkC1.u;u/g; .9" 2 .0; ��/; �� D B˚B

�
G=D

2
˚/.9k1/.8k � k1/ f �k 2 Œ"; 2�� �

"� g. Then kuk � NukV !
k!1 0, where fukg � V is obtained by iterative method (17).

5 Domain Decomposition Schemes

Now let us apply nonstationary iterative method (17) for solving the nonlinear
variational equation (15), which corresponds to original contact problem. This
equation can be written in form (16), where ˚.u; v/ D A .u; v/ C J 0.u; v/ ,
Y.v/ D L.v/ , u; v 2 V , V D V0 , and iterative method (17) applied to solve
(15) rewrites as follows:

Gk.ukC1; v/ D Gk.uk; v/� �k 
A .uk; v/C J 0.uk; v/� L.v/� ; k D 0; 1; : : : :
(18)

Note, that in general case iterative method (18) does not lead to domain
decomposition. Let us propose such variants of this method, which involve the
domain decomposition. At first, let us take bilinear forms Gk in method (18) as
follows:

Gk.u; v/ D @2F1.uk;u; v/ D A .u; v/C @2J.uk;u; v/ ; u; v 2 V0 ; (19)

@2J.uk;u; v/ D
X

f˛; ˇg2Q

Z

S˛ˇ

�k˛ˇ g
0̨
ˇ.d˛ˇ�uk˛n�ukˇn/




u˛n C uˇn
� 


v˛n C vˇn
�

dS;

�k˛ˇ D �Œ sgn .d˛ˇ�uk˛n�ukˇn/ �
� D f 0; d˛ˇ�uk˛n�ukˇn � 0 g_f 1; else g: (20)

Here @2F1.uk;u; v/, @2J.uk;u; v/ are one of the second subdifferentials of func-
tionals F1 and J in point uk 2 V0. In the case when �k D 1, k D 0; 1; : : : ,
iterative method (18) with bilinear forms (19) corresponds to semismooth Newton
method for variational equation (15). However, this method does not lead to domain
decomposition.

Now, let us take bilinear formsGk in the following way:

Gk.u; v/ D A .u; v/CXk.u; v/ ; u; v 2 V0 ; (21)

Xk.u; v/ D
N
X

˛D1

X

ˇ2B˛

Z

S˛ˇ

 k˛ˇ g
0̨
ˇ.d˛ˇ � uk˛n � ukˇn/ u˛nv˛n dS ; u; v 2 V0 ;

(22)
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where  k˛ˇ.x/ D f 1; x 2 Sk˛ˇ g _ f 0; x 2 S˛ˇnSk˛ˇ g are characteristic functions of

some given subsets Sk˛ˇ � S˛ˇ of possible contact areas.
Iterative method (18) with bilinear forms (21) can be written in such way:

A . QukC1; v/CXk. QukC1; v/ D L.v/CXk.uk; v/� J 0.uk; v/ ; 8 v 2 V0 : (23)

ukC1 D �k QukC1 C .1 � �k/ uk; k D 0; 1; : : : : (24)

Since the common quantities of the subdomains are known from the previous
iteration, variational equation (23) splits into N separate equations in subdomains
˝˛ , and iterative method (23)–(24) can be written in the following equivalent form:

a˛. QukC1˛ ; v˛/C
X

ˇ2B˛

Z

S˛ˇ

 k˛ˇ g
0̨
ˇ.d˛ˇ � uk˛n � ukˇn/ QukC1˛n v˛n dS D

D l˛.v˛/C
X

ˇ2B˛

Z

S˛ˇ

 k˛ˇ g
0̨
ˇ.d˛ˇ � uk˛n � ukˇn/ uk˛nv˛n dS C

C
X

ˇ2B˛

Z

S˛ˇ

g�̨̌ .d˛ˇ � uk˛n � ukˇn/ v˛n dS ; 8 v˛ 2 V 0
˛ ; (25)

ukC1˛ D �k QukC1˛ C .1 � �k/ uk˛ ; ˛ D 1; 2; : : : ; N; k D 0; 1; : : : : (26)

In each iteration k of method (25)–(26), we have to solve N linear variational
equations (25) in parallel, which correspond to linear elasticity problems in separate
bodies ˝˛ with Robin boundary conditions on possible contact areas. Therefore,
this method refers to parallel Robin–Robin type domain decomposition schemes.

By taking different characteristic functions  k˛ˇ , we can obtain different partic-

ular cases of domain decomposition method (25)–(26). Thus, taking  k˛ˇ.x/ � 0

.Sk˛ˇ D ;/, 8˛; ˇ, 8k, we get parallel Neumann–Neumann domain decomposition

scheme. Other borderline case is when  k˛ˇ.x/ � 1 .Sk˛ˇ D S˛ˇ/, 8˛; ˇ, 8k.

Moreover, we can choose characteristic functions  k˛ˇ by formula (20), i.e.

 k˛ˇ D �k˛ˇ . Numerical experiments, provided by us, have shown, that such DDM
has higher convergence rate than other particular domain decomposition schemes.

6 Numerical Analysis

Numerical analysis of proposed DDMs has been provided for plane problem of
unilateral contact between two isotropic bodies ˝1 and ˝2, one of which has a
groove (Fig. 1b). The bodies are loaded by normal stress with intensity q D 10MPa.
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Fig. 2 Relative error (a), and normal contact stress (b)

Each body has length l D 4 cm and height h D 1 cm. The elasticity constants of
the bodies are the same: E1 D E2 D 2:1 � 105 MPa, �1 D �2 D 0:3. The distance
between bodies is d12.x/ D r

˚

Œ 1 � .x1 � l/2
ı

b2�C
�3=2

, x 2 S12 , where b D 1 cm,
r D 5 � 10�4 cm.

Across possible contact area S12 there is a nonlinear Winkler layer. The relation-
ship between normal contact stresses and displacements of this layer is described by
the following power function: g12 .w12.x// D B�1=a sgn .w12.x// jw12.x/j1=a, x 2
S12 , where parametersB and a are taken from the intervalsB 2 Œ 10�6 cm=.MPa/a;
2 � 10�4 cm=.MPa/a � , a 2 Œ 0:1; 1 �. For such choice of these parameters the
nonlinear Winkler layer models a roughness of the possible contact surface [6].

This problem has been solved by DDM (25)–(26) with stationary iterative
parameters �k D � , 8 k and characteristic functions  k12, taken by formula (20),
i.e.  k12 D �k12, 8 k. For solving linear variational problems (25) in each iteration k
we have used finite element method with 8,192 linear triangular elements for each
body.

We have used the following initial guesses for displacements u01n.x/ D u02n.x/ �
10�4 cm, and the next stopping criterion: �kC1˛ D 

ukC1˛n � uk˛n




2
=


ukC1˛n





2
� "u,

˛ D 1; 2, where ku˛ nk2 D
q

P

j Œu˛ n.xj /�
2 is discrete norm, xj 2 S12 are finite

element nodes on the possible contact area, and "u > 0 is relative accuracy.
At Fig. 2a the relative error �k2 of displacement u2n on different iterations k,

obtained for B D 2:5 � 10�5 cm=.MPa/a, a D 0:5, is represented for different
values of parameter � . Curves 1–9 correspond to � D 0:02, 0.03, 0.05, 0.6, 0.8
(0.3), 0.9, 0.95, 0.97, 0.98. For these values of parameter � , DDM (25)–(26) reaches
the accuracy "u D 10�3 in 110, 83, 58, 7, 12 (14), 29, 60, 102, 155 iterations
respectively. Thus, we conclude, that the best convergence rate reaches if � D 0:6.
The convergence rate is good if � 2 Œ 0:1; 0:9 �. However, it becomes slow when � is
close to 0 or to 1. For � D 0:98 the method is still convergent, but the convergence
becomes nonmonotone.
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We also have established, that the convergence rate of proposed DDMs does not
depend strongly on the number of finite element nodesm in each body. Form D 43,
149, 553, 2,129, 8,353, and 33,089, DDM (25)–(26) with parameter � D 0:6 reaches
the accuracy "u D 10�6 in 15, 15, 14, 14, 14, and 14 iterations respectively.

At Fig. 2b the normal contact stress �1n D �2n, obtained by DDM (25)–(26)
for B D 10�5 cm=.MPa/a and different values of parameters a is represented.
Curves 1–4 correspond to numerical solution for a D 0:3, 0.6, 0.8, 1. Dashed
curve represents the analytical solution, obtained in [13] for contact between two
halfspaces without nonlinear layer. Here we conclude, that for small values of a
(a � 0:3) the influence of nonlinear layer on the contact behavior is not so large and
the numerical solutions are close to the solution without layer. However, for larger
values of a (a � 0:5) the influence of nonlinear layer becomes more significant and
can not be neglected.
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Asymptotic Expansions and Domain
Decomposition

G. Geymonat, S. Hendili, F. Krasucki, M. Serpilli, and M. Vidrascu

1 Introduction

At a first glance asymptotic expansions and domain decomposition are two alter-
natives to efficiently solve multi scale elasticity problems. In this paper we will
combine these two methods: we will use, for several types of problems, asymptotic
expansions and show that for an efficient implementation of problems obtained at
the asymptotic limit it may be useful to use domain decomposition type algorithms.
In particular we will consider problems with heterogenous or non heterogenous thin
layers (see Fig. 1a, b). To directly solve such problems by a standard finite element
method is too expensive from a computational point of view. That is why specific
asymptotic expansions are used and allow to replace the original problem by a set of
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a b c

Fig. 1 (a) Heterogeneous layer, (b) homogeneous layer, (c) limit domain

problems defined on a new domain where the thin layer is replaced by a line in 2D or
a surface in 3D (see Fig. 1c). In addition particular jumping conditions are defined
on this new interface yielding a non standard problem which can be solved by a
Neumann-Neumann domain decomposition algorithm. The paper is organized as
follows: In Sect. 2 we review of a domain decomposition algorithm on an elasticity
problem, in Sect. 3 we consider a thin layer of heterogeneities which can be holes
or elastic inclusions and, finally, in Sect. 4 we consider a multi-materials with a thin
layer with high ratio in material properties.

2 Domain Decomposition Algorithm: General Setting
for an Elasticity Problem

The aim of this paragraph is to specify the notations. We consider a standard linear
elasticity problem:

8

ˆ

ˆ

<

ˆ

ˆ

:

div�" D 0 in ˝"

�" D Ae.u"/ in ˝"

�"n D F on �F
u" D 0 on �0

(1)

The mechanical characteristics of the multi-material structure are described by the
elasticity tensor A. Each material is isotropic but A is indeed material dependent. In
the sequel we will omit this constitutive equation. The structure is clamped on a part
�0 � @˝ (of surface measure > 0) and a density F of surface forces is applied on
the complementary part �F . In a variational form this problem writes

A.u; v/ D L.v/ for all v 2 V; with A.u; v/ D
Z

˝

Aijk`ek`.u/eij.v/ dx: (2)

Let us mention that the variational form is always used to discretize the problem,
nevertheless in order to simplify notations we will use either partial differential
equations or variational form. The same problem will be considered in Sects. 3
and 4, where the domain differs with respect to the heterogeneities. We will explain
how the domain decomposition algorithm is adapted in each situation. In order to
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use a primal domain decomposition to solve the problem we transform the problem
on the entire domain in a problem on the interface. After splitting the domain in
non overlapping subdomains we introduce an additional unknown, � D T r.u/ on
the interface. For simplicity reasons we will consider here only two sub-domains
and only a first level preconditioner. To solve the original problem is equivalent to
solving the following problem on each subdomain:

8

ˆ

ˆ

<

ˆ

ˆ

:

div�.ui / D f ˝ in ˝i

�n D f � on @˝F \˝i

ui D ud on @˝u \˝i

ui D � on �

(3)

By linearity ui D ui0 C ui� where ui0 is the solution of (3) with ui0 D 0 on � and ui�
is the solution of (3) with f ˝ D 0; f � D 0. In order to settle the interface problem
we write the continuity of the normal stress on the interface:

�.u1/n1 C �.u2/n2 D �.u1� /n1 C �.u10/n1 C �.u2� /n2 C �.u20/n2 D 0

Using the Steklov Poincaré operator S which is defined as follows: for � given
on � (the sub-domains interface )

Si� D �.ui� /ni

where ni denotes the outer normal on � , the interface problem writes:

S1� C S2� D ��.u10/n1 � �.u20/n2 (4)

In variational form

S1.�; v/C S2.�; v/ D �L.�.u10/n1; v/ �L.�.u20/n2; v/

This problem will be solved using a iterative method, the preconditioner is M D
˛1S

�1
1 C ˛2S�12 with ˛1 C ˛2 D 1 [3, 6]

The parallel between this approach and the one used in the asymptotic analysis
(as described in Sect. 1) is that a particular problem has to be solved on the interface,
the next sections will specify this concept.

3 Structure with a Thin Layer of Heterogeneities

Let us consider a three-dimensional structure with small identical heterogeneities
periodically distributed along a surface !. Let " be a small dimensionless
parameter which characterizes the diameter and the periodic arrangement of the
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heterogeneities. We denoteB" the layer of thickness " containing the heterogeneities
centered on ! (see Fig. 1a).

The domain˝ contains I " the set of identical heterogeneities of diameter "D and
"-periodically distributed in the vicinity of the interior surface ! of equation x1 D
0. We consider the problem (3) with two types of inclusions: cavities and elastic
inclusions. The displacement field u" and the stress field �", satisfy, respectively,
equilibrium equation (1).

Notice that ˝ is a domain with a number of heterogeneities which depends
on ". For the elastic inclusions AS and AI (the elasticity tensor in the structure,
respectively in the inclusions) are of same order of magnitude.

The asymptotic analysis of this problem for " ! 0 provides a model describing
the linear elastic behavior of the structure on a simplified domain denoted by
˝0 where the layer B" becomes the surface � (see Fig. 1c). More precisely, by
assuming that u" ' u0 C "u1, the initial problem (1) is approximated by two new
ones where the layer of heterogeneities is replaced by a surface on which particular
jump conditions are defined.

The zeroth order approximation u0 is the solution of the following transmission
linear problem:

8

<

:

div�0 D 0 in ˝0

�0n D F on �F
u0 D 0 on �

(5)

Notice that there are no jumps on � for the outer approximation. In other words, at
the zero order the outer approximation does not consider the heterogeneities. Thus
this problem can be solved using a standard finite element procedure.

The first order approximation u1 is the unique solution of the following boundary
value problem (with transmissions conditions on � ):

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

div�1 D 0 in ˝0n�
�1n D 0 on �F
u1 D 0 on �0



u1
�

. Ox/ D Gd

�

u0.0; Ox/ I 
V ij
�1�




� 1e1
�

. Ox/ D GnS

�

u0.0; Ox/ I R
Y

T ij.y/ dy
�

(6)

where V ij are the solutions of nine elementary problems defined on one represen-
tative cell Y [4, 5] and T ij are the stress fields associated with V ij and




V ij
�1 D

limy1!C1 V ij � limy1!�1 V ij�
Gd has the same structure for the different types of inclusions, while GnS depends

on the inclusion:

Gd D @u0i
@xj

.0; Ox/ 
V ij
�1

(7)
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(i) in the elastic inclusions case one has:

GnS D div

�

jI j �AS � AI
�

e
�

u0.0; Ox/� � @u0i
@xj

.0; Ox/
Z

Y

T ij.y/ dy

�

(8)

(ii) in the cavities case one has:

GnS D div

�

jI jAIe �u0.0; Ox/� � @u0i
@xj

.0; Ox/
Z

Y

T ij.y/ dy

�

(9)

Let us emphasize that, for the first order problem, Gd and GnS are given and depend
on the first and second order derivatives of the zeroth order problem. This is not an
issue at the domain decomposition level, while, at the implementation level, since
the solution u0 is only of classC0, a regularization is needed. In practice, an efficient
way to implement the jump conditions in problem (6) is to solve this problem by a
domain decomposition type algorithm which will be detailed hereafter.

Finally, the generic form of the first order problem, (6) is given by:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

�div�.u/ D 0 in ˝
�n D 0 on @˝F

u D 0 on @˝u

Œu� D Gd on �
Œ�n� D GnS on �

(10)

where Gd and GnS denote, respectively, the gap in displacements and normal stresses
on � . By using the linearity of the problem, we will search, in each subdomain a
solution of the form

ui D wi C ˇi zi

where ˇi are two real numbers conveniently chosen and zi are the solutions of the
following two independent problems:

8

ˆ

ˆ

<

ˆ

ˆ

:

�div�.zi / D 0 in ˝i

�n D 0 on @˝F \˝i

zi D 0 on @˝u \˝i

zi D Gd on �

(11)

Notice that

�div�.wi / D �div�.ui � ˇi zi / D 0
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a b

Fig. 2 (a) Mesh used for the asymptotic computation. (b) Fine mesh for "D 1
20

Table 1 L2-errors norms computed in˝"

" Nb elements dofs
jju"h � u0hjjL2
jju"hjjL2

jju"h � .u0h C "u1h/jjL2
jju"hjjL2

1/20 13348 54938 0.013501216 0.001225971
1/40 27668 113530 0.006689361 0.000475813
1/80 57164 234050 0.003281498 0.000176916

The transmission conditions for wi are given by:

�

Œw� D Œu� � ˇ1Gd C ˇ2Gd D .1 � ˇ1 C ˇ2/Gd

Œ�n� D Œu�C ˇ1�.z1/n � ˇ2�.z2/n D GnS C ˇ1�.z1/n � ˇ2�.z2/n

If we choose 1�ˇ1Cˇ2 D 0 then w is continuous on the interface � , while the
normal stress is discontinuous at the interface.

By introducing the Steklov Poincaré, as described above, the unknown � on the
interface is the solution of the following problem:

.S1 C S2/� D ��.w10/n1 � �.w20/n2 C GnS C ˇ1�.z1/n1 � ˇ2�.z2/n2

Let us remark that this equation differs from (4) only on the right hand side.
In this situation the solution of the entire problem is not as regular as in Sect. 2.
Here, because of the jumps, the solution is not in H1.˝/, this is why the norms
used in the following numerical simulations are L2.˝/. Thus as the operator does
not change, the same algorithms (and in particular the same preconditioner) may be
used to solve the problem with the same performance and no additional analysis is
required to prove efficiency.

In order to numerically validate this approach we consider a 2D case where˝ is
a plane domain containing N " holes of diameter "D. Notice that the domain and
thus the number of holes depends on ". A reference solution u"h of the problem (1) is
computed on a large mesh (see Fig. 2b) and compared with the asymptotic solution
u0h and u0h C "u1h obtained by solving the problems (5) and (6) on a coarse mesh
(see Fig. 2a). This comparison is performed by computing the relative error for the
L2-norm (see Table 1).
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4 Multimaterials with Strong Curved Interface

In this section we analyze the mechanical behavior of a particular structural
assembly, which is constituted by an elastic shell-like inclusion with high rigidity
surrounded by two three-dimensional elastic bodies.

Let ˝C and ˝� be two disjoint open domains with smooth boundaries @˝C
and @˝�. Let ! WD ˚

@˝C \ @˝��ı be the interior of the common part of the
boundaries which is assumed to be a non empty domain in R2. Let � 2 C 2.!IR3/
be an immersion such that the vectors a˛.y/ WD @˛�.y/ form the covariant basis of
the tangent plane to the surface S WD �.!/. We note with a3.y/ WD a1.y/^a2.y/

ja1.y/^a2.y/j the

unit normal vector to S . We insert an intermediate curved layer moving˝C and˝�
in the a3 and �a3 directions, respectively, by an amount equal to t " > 0, where " is
a small dimensionless real parameter. Then let˝˙;" WD fx" WD x˙ t "a3I x 2 ˝˙g,
˝m;" WD !	� � t "; t "Œ, and ˝" WD ˝�;" [ ˝C;" [ ˝m;", as shown in Fig. 1. The
structure is clamped on � "

0 � .@˝" n � m;"/. We consider that S coincides with
the middle surface of the shell-like inclusion ˝m;". Moreover, the shell thickness
t " depends linearly on ", so that t " D "t . For a more detailed treatment of this
asymptotic problem in a general curvilinear framework, the reader can refer to [1,2].

The physical variational problem defined over the variable domain˝" is

�

Find u" 2 V " WD fv" 2 H1.˝"IR3/I v"j� "0 D 0g
A"�.u"; v"/C A"C.u"; v"/CA"m.u"; v"/ D L.v"/ for all v" 2 V ";

(12)

where A is defined as in (2).
The functional L.�/ is the linear form associated with the applied forces. Here

Aijk`;" WD �"gij;"gk`;"C�".gik;"gj`;"Cgi`;"gjk;"/ are the contravariant components
of the elasticity tensor, where gij can be considered as the curvilinear version of
the Kronecker’s delta. Let us suppose that the Lamé’s constants of the isotropic
materials satisfy the following dependences with respect to ": �˙;" D �˙; �˙;" D
�˙; �m;" D 1

"
�m; �m;" D 1

"
�m:

As shown in [1], the asymptotic expansion method applied to the physical
problem (12) leads to a simplified model for the assembly, in which the layer
inclusion is reduced to its middle surface as " tends to zero. Thus the presence of the
layer is replaced by a surface shell like energy at the interface which corresponds to
a particular membrane transmission condition between the two three-dimensional
bodies. The main result is contained in the following theorem:

Theorem 1. The leading term u0 of the asymptotic expansion u."/ D u0 C "u1 C
"2u2 C : : :, is the unique solution of the following limit problem:

�

Find u0 2 VM such that
A�.u0; v/C AC.u0; v/C AmM .u0; v/ D L.v/ for all v 2 VM (13)
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where VM WD fv 2 H1.˝C[![˝�IR3/I vj! 2 H1.!IR2/	H 1
2 .!/; vj�0 D 0g,

and

AmM .u
0; v/ D 2t

Z

!

a˛ˇ� e� .u0/e˛ˇ.v/ dy; (14)

is the bilinear form associated with the membrane behavior of the shell, a˛ˇ� is the
elasticity tensor of the shell and e˛ˇ.u/ WD 1

2
.uˇj˛ C u˛jˇ/ is the change of metric

tensor.

Remark. In the simplified model we obtain a membrane transmission condition at
the interface between the two three-dimensional bodies, which can be interpreted as
a curvilinear generalization of the Ventcel-type transmission condition obtained in
[1]. Indeed, by integrating by parts problem (13), one has

� �div �˙ D f in ˝˙,
u0 D 0 on �0,

�




�˛3
� D div .n˛ˇ/ in !,




�33
� D n˛ˇb˛ˇ in !,

(15)

where � ij
˙ WD A

ijk`

˙ ek`.u0/ and n˛ˇ WD 2ta˛ˇ� e� .u0j!/ represent, respectively,
the Cauchy stress tensor and the membrane stress tensor of the shell,




�i3
� WD �i3C �

�i3� represents the stress jump at the interface !, and b˛ˇ is the second fundamental
form associated to the shell middle surface.

In order to solve the problem (13) we introduce a specific domain decomposition
algorithm, more precisely, we construct the interface problem. We consider three
subdomains˝C WD ˝.1/, ˝� WD ˝.2/, and the shell ˝m. For the two 3D domains,
˝1;˝2 we introduce the corresponding Steklov Poincaré operator and we observe
that the domain ˝3 is the interface. Thus, in a variational form, the compatibility
condition on the interface writes:

S1.�; v/C S2.�; v/CAmM .�; v/ D L.��.u10/n1 � L�.u20/n2; v/ (16)

This problem can be solved by a Neumann-Neumann algorithm as well because,
compared to (4) we add in the right hand side a term which is symmetric and positive
defined.

As a numerical example, we consider an axisymmetric problem of two thick
cylinders bonded together with a cylindrical shell with high rigidity subjected to an
internal pressure (Ecyl D 5e05, Eshell D 5e07, � D 0:3, t D 0:1, Rmax D 6).
We choose this particular geometry because it is characterized by an immediate
mechanical interpretation. Moreover we can compute an exact solution for this
problem. We tested the domain decomposition by using two subdomains (the
shell is “glued” to another subdomain) and three subdomains and by studying the
influence of a Neumann-Neumann preconditioner on the number of iterations. The
preliminary results are shown in Table 2. As we can see the number of iterations
decreases drastically when adopting a preconditioner.
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Table 2 Mesh: Nel D 11020, Nel; shell D 580

Subdomains Iterations Iterations with preconditioner
2 69 6
2+1(shell) 70 46

In the actual simulations we can use membrane or shell elements. The shell is
more robust but also more computationally demanding. In our example we used
a membrane element. The drawback is that the operator is not invertible (that is
needed in the preconditioning step) and that explains why the results with two
domains are far better than with three domains. Hence, our test example does not
behave totally as a pure membrane. This feature disappears when shell elements are
used or when the problem has a pure membrane behavior.

Acknowledgements This work was partially supported by the French Agence Nationale de la
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A Schur Complement Method for Compressible
Two-Phase Flow Models

Thu-Huyen Dao, Michael Ndjinga, and Frédéric Magoulès

1 Introduction

Computations of complex two-phase flows are required for the safety analysis of
nuclear reactors. These computations keep causing problems for the development
of best estimate computer codes dedicated to design and safety studies of nuclear
reactors. Moreover, we often need to find the long-term behavior of the system. In
these cases, implicit schemes are proven very efficient. Unfortunately, for implicit
schemes, after the discretization, we need to solve a nonlinear system A U D b.
This task is computationally expensive in particular since the matrix A is usually
non-symmetric and very ill-conditioned. It is therefore necessary to find an efficient
preconditioner.

When the size of the system is large, the parallel resolution on multiple
processors is essential to obtain reasonable computation times. Currently in the
thermal hydraulic code, FLICA-OVAP (see [7]), the matrix A and the right hand
side b are stored on multiple processors and the system is solved in parallel
with a Krylov solver with a classical incomplete factorization preconditioner.
Unfortunately, the parallel preconditioners of FLICA-OVAP only perform well on
a few processors. In contrast, if we want to increase the number of processors these
parallel preconditioners perform poorly. Tests were run on different test cases and
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led us to conclude that it is often better not to use these parallel preconditioners,
especially for 3D problems [2]. This strategy does not make an optimal use of
the available computational power. Hence, we seek for more efficient methods to
distribute the computations. We study and use a domain decomposition method as
an alternative to the classical distribution.

2 Mathematical Model

For the modeling of two-phase flows, several sets of equations have been worked
out. They range in complexity from the homogeneous equilibrium model to two-
fluid models involving unequal pressure for each phase. In this paper, we consider
the well-known two-fluid model. This model is obtained by averaging the balance
equations for each separated phase, using space, time or ensemble averaged
quantities (see [8] and [6]). The unknown physical quantities are the volume fraction
˛k 2 Œ0; 1�, the density �k � 0, and the velocity uk of each phase. The subscript k
stands for l if it is the liquid phase and g for the gas phase. The common averaged
pressure of the two phases is denoted by p. In our model, pressure equilibrium
between the two phases is postulated. For the sake of simplicity, we study the
isentropic two-fluid model. This model can be written as follows:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@.˛g�g/

@t
C r � .˛g�gug/ D 0;

@.˛l �l /

@t
C r � .˛l�lul / D 0;

@.˛g�gug /

@t
C r � .˛g�gug ˝ ug/C ˛grp C�pr˛g � r � .˛g�grug/ D 0;

@.˛l �lul /

@t
C r � .˛l�lul ˝ ul /C ˛lrp C�pr˛l � r � .˛l�lrul / D 0;

(1)

with ˛gC˛l D 1, and the two equations of state(EOS) �g D �g.p/ and �l D �l .p/.
In our problem, we use the stiffened equation of state. Here �k is the viscosity of
phase k, and �p denotes the pressure default p � pk between the bulk average
pressure and the interfacial average pressure.

By denotingmk D ˛k�k , qk D ˛k�kuk and U D �mg;qg;ml ;ql
�t

, we can write
the system (1) as follows:

@U
@t
C F conv.U/C F diff .U/ D 0; where (2)

F conv.U/D

0

B

B

B

@

r � qg
r � ql

r � .qg ˝ qg
mg
/C ˛grpC�pr˛g

r � .ql ˝ ql
ml
/C˛lrpC�pr˛l

1

C

C

C

A

, F diff .U/D

0

B

B

B

@

0

0

�r � .˛g�gr qg
mg
/

�r � .˛l�lr ql
ml
/

1

C

C

C

A

.
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3 Numerical Method

Most of the numerical methods used in two-phase flow computer codes are based
upon semi-implicit finite difference schemes with staggered grids and donor-cell
differencing. The main features of these schemes are their efficiency and their
robustness. However, these methods have a large amount of numerical dissipation,
giving poor accuracy in smooth regions of the flow. Moreover, discontinuities are
heavily smeared on coarse grids and oscillations appear when the grid is refined.
Here, we propose to use an approximate Riemann solver to discretize and solve
the system (2). We decompose the computational domain into N disjoint cells Ci
with volume vi . Two neighboring cells Ci and Cj have a common boundary @Cij

with area sij. We denote N.i/ the set of neighbors of a given cell Ci and nij the
exterior unit normal vector of @Cij. Integrating the system (2) over Ci and setting
Ui .t/ D 1

vi

R

Ci
U.x; t/dx and Un

i D Ui .n�t/, the discretized equations can be
written:

Z

Ci

@U
@t

dx C
X

j2N.i/
˚ conv

ij C
X

j2N.i/
˚

diff
ij D 0 (3)

with ˚ conv
ij , ˚diff

ij denote the numerical flux of convection and diffusion on the cell
Ci in direction of the neighbor cell Cj .

The diffusion numerical flux ˚diff
ij is approximated on structured meshes using

the formula:

˚
diff
ij D D.

Ui C Uj

2
/.Uj � Ui/: (4)

Full details of the evaluation of diffusive flux terms are given in [15].
Due to the ˛krp and �pr˛k terms, the inviscid part of the two-phase flow

cannot be written in a conservative form. But this system can be written in the quasi-
linear form:

@U
@t
C A.U/@U

@x
D 0: (5)

Under some simplifying assumptions, the authors of [16] were able to obtain a
conservative form that allowed them to give a sense to discontinous solutions. It was
also under those assumptions that they have been able to develop an approximate
Riemann solver of Roe-type for the system (5) providing a local linearization of the
non-conservative term ˛krp. We can also construct other linearizations than that of
[16]. Here, we will not propose a specific linearization but a general method for the
construction of the Roe matrix once we have chosen a linearization. We then define
a local inviscid flux function F locand a local Roe matrix ARoe for this linearization.
The inviscid flux in the normal direction to the cell interface @Ci;j is given by:
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˚ conv
ij DF

loc.Ui /C F loc.Uj /

2
:nij CD

Ui �Uj

2
(6)

DF loc.Ui /:nij C A�.Uj �Ui /;

where D is an upwinding matrix, ARoe the Roe matrix and A˙ D 1
2
.ARoe ˙D/:

The choice D D 0 gives the centered scheme, whereas D D jARoej gives the
upwind scheme.

3.1 Newton Scheme

Finally, since
P

j2N.i/ F loc.Ui /:nij D 0, using (6) and (4) Eq. (3) of the numerical
scheme becomes:

UnC1
i � Un

i

�t
C

X

j2N.i/

sij

vi
f.A� CD/.UnC1

i ;UnC1
j /g.UnC1

j �UnC1
i / D 0: (7)

The system (7) is nonlinear, hence we use the following Newton iterative method to
obtain the required solutions:

ıUkC1
i

�t
C

X

j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i 	

ıUkC1
j � ıUkC1

i

�

D �Uk
i �Un

i

�t
�
X

j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i

.Uk
j � Uk

i /; (8)

where ıUkC1
i D UkC1

i � Uk
i is the variation of the k-th iterate that approximates

the solution at time nC 1. Defining the unknown vector U D .U1; : : : ;UN /
t , each

Newton iteration for the computation of U at time step nC1 requires the numerical
solution of the following linear system:

A .U k/ıU kC1 D b.U n;U k/: (9)

3.2 Scaling Strategy

The larger the time step, the worse the condition number of the matrix A in (9).
As a consequence, it is important to apply a preconditioner before solving the linear
system. The most popular choice is the Incomplete LU factorisation (later named
ILU, see [1] for more details). The error made by the approximate factorisation
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using an ILU preconditioner depends on the size of the off diagonal coefficients of
the matrix. For a better performance of the preconditioner, it is desirable that off
diagonal entries of the matrix have small magnitudes.

Here, we use the Scaling strategy (see details in [3]) to improve the condition
number of the matrix. This strategy is a similarity transformation. Combined with
the classical ILU preconditioner this strategy has reduced significantly the GMRES
iterations for local systems and the computational time.

4 Domain Decomposition Method

The object of the present work is to solve the compressible fluids by a nonover-
lapping domain decomposition methods [9, 11, 12, 14], and more precisely by a
Schur complement method. A simple attempt is to adapt the principle of the domain
decomposition method for elliptic problems [10, 13] to our problems. As in the
case of elliptic problems, the principle is that we decompose the global problem
into independent subproblems which are solved by each processor. However,
the implementation of these ideas in hyperbolic problems raise some technical
difficulties such as:

• The scheme must be conservative.
• In the finite volume formulation, there is no unknown defined at the interface.
• The boundary condition of hyperbolic systems must depend on the characteristics

of the problem.

Those difficulties are solved in [5] for the Euler equations by replacing the interface
variables in the context of elliptic problems by the interface fluxes in the context
of hyperbolic problems. In this paper, we introduce a new interface variable which
make the Schur complement method easy to build and allows us to treat diffusion
terms.

4.1 Implicit Coupling

We recall the linear system at each Newton iteration of the implicit scheme (8):

ıUkC1
i

�t
C

X

j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i 	

ıUkC1
j � ıUkC1

i

�

D �Uk
i �Un

i

�t
�

X

j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i

.Uk
j � Uk

i /:
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We would like to solve (8) on N processors and each processor work on one
subdomain. We see that it lacks ıUkC1

j to the computational unit of the subdomain
I if the cell j belongs to another subdomain, and it is not calculable by the system
since ıUkC1

j is to be calculated. Then the processor I needs from the processor J the

value ıUkC1
j which is not yet available. Conversely, the processor J needs ıUkC1

i

from the processor I .

4.2 A New Interface Variable

In order to include diffusion terms in the model and to use various schemes and
various systems, we introduce a new interface flux variable ı�ij (see [4]) at the
domain interface between two neighboring cells Ci andCj which belong to different
subdomains:

ı�ij D ıUj � ıUi (10)

In the case where the cell i of the subdomain I is at the boundary and has to
communicate with the neighboring subdomains, we can rewrite the system (8) as:

ıUkC1
i

�t
C

X

j2I;j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i 	

ıUkC1
j � ıUkC1

i

�

D �Uk
i �Un

i

�t
�

X

j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i

.Uk
j �Uk

i /

�
X

j 62I;j2N.i/

sij

vi

h

.A� CD/.Uk
i ;U

k
j /
i

ı�kC1ij

We define UI D .U1; : : : ;Um/
t the unknown vector of the subdomain I ,

ı�I D .ı�ij/i2I;j2J;j2N.i/; (11)

AI the local Neumann matrix of the subdomain I , and PI D P

j 62I;j2N.i/
sij
vi

h

A�.Uk
Roe/CD.Uk

diff /
i

, we can write the linear system as:

AI .Uk/ıUkC1
I D bI .Un;Uk/� PI ı�I (12)
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By taking into account Eqs. (10)–(12), and denoting ı˚ D .ı�I /, I D 1 : : : N

we can build an extended system that distinguishes the internal unknowns from the
interface ones:

0

B

B

B

B

B

@

A1 0 : : : : : : P1
0 A2 0 : : : P2
: : : : : : : : : : : : : : :

0 0 : : : AN PN

M1 : : : : : : MN I

1

C

C

C

C

C

A

0

B

B

B

B

B

@

ıU1

ıU2

: : :

ıUN

ı˚

1

C

C

C

C

C

A

D

0

B

B

B

B

B

@

b1

b2
: : :

bN

b˚

1

C

C

C

C

C

A

(13)

where AI is the matrix that couples the unknowns associated with internal cells of
˝I whereasMI links ıUI to ı˚ through (10). Then, in our method,MI comprises
only 0 or˙1.

The internal unknowns in (13) can be eliminated in favor of the interface ones to
yield the following interface system:

Sı˚ D b˚ ; (14)

with .Sı˚/ D ı˚ CPN
ID1 MIAI

�1PI ı�I and .b˚/ DPN
ID1 MIAI

�1bI :
The computation of the matrix S is so costly as we have to inverse the local

matrix AI . Fortunately, we do not have to compute explicitly the coefficients of S .
All we need is to design the operator ı˚ ! Sı˚ . Then Eq. (14) can be solved by,
e.g., GMRES, BICGStab, or the Richardson methods. Once we solved the interface
system, we know ı˚ and then we can solve the internal unknowns on each processor
using Eq. (12).

5 Numerical Results

We have implemented our method for the compressible Navier-Stokes equations
and the isentropic two-fluid model and compared the results obtained using single
and multiple domains. After this validation, we compare the computation time of
the ILU preconditioner, our method and our method with strategy Scaling [3].

Figure 1 presents the computational time required to perform a time step of a
fixed global problem of one million cells using upwind scheme. We compare the
computational time required using the classical distributed method (red curve), the
domain decomposition method (blue curve) and the domain decomposition method
with scaling (green curve). We vary the number of processors up to 128. One can
see that the domain decomposition method is comparable with classical distributed
method and using scaling [3] is better.
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Fig. 1 Upwind scheme, single-phase flow, global meshD 96 � 96� 96, CFL 20

Fig. 2 Centered scheme, single-phase flow, global meshD 96� 96� 96, CFL 10

Figure 2 shows the computational time required to perform the previous test but
using centered scheme. We can see only two curves. This is because, in this case
the classical distributed method does not converge like we use the centered scheme.
Domain decomposition is the only one method that converges.

Similarly, Figs. 3 and 4 show the computational time required to perform a time
step in the case of the two-phase flow for the upwind and centered schemes.
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Fig. 3 Upwind scheme,
two-phase flow, global mesh
D 96 � 96� 96, CFL 20

Fig. 4 Centered scheme,
two-phase flow, global mesh
D 96 � 96� 96, CFL 20

6 Conclusion

We have presented a new interface variable which allows for the treatment of
diffusion terms and the use of various numerical schemes for two-phase flows.
We also introduced the Scaling strategy to improve the conditioner number of
the matrix and reduce the computational time. We compared the scalability of our
method with the classical distributed computations. Numerical results showed that
our method is more robust and efficient.
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A Posteriori Error Estimates
for a Neumann-Neumann Domain
Decomposition Algorithm Applied
to Contact Problems

Daniel Choï, Laurent Gallimard, and Taoufik Sassi

1 Introduction

Contact problems are frequent in structural analysis. They are characterized by
inequality constraints such as non-interpenetration conditions, sign condition on
the normal constraints, and an active contact, an area that is a priori unknown.
Several approaches exist for solving the non linear equations issued from the finite
element discretization of frictionless contact problems. Recently, many efficient
error estimates for solving frictionless contact problems have been proposed, see
for example [1] and with domain decomposition techniques combined with adaptive
finite element methods, see [5, 8].

In this work, we consider a natural Neumann-Neumann domain decomposition
(NNDD) algorithm, in which each iterative step consists of a Dirichlet problem for
the one body, a contact problem for the other one and two Neumann problems to
coordinate contact stresses. Two main approximation errors are introduced by this
algorithm: a discretization error due to the finite element method (FEM) and an
algebraic error due to the NNDD algorithm.

In [5] an error estimator in the constitutive relation for contact problems solved
by a Neumann-Dirichlet domain decomposition algorithm has been proposed. The
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objective of this paper is to extend this error estimator for a frictionless contact
problem, solved by a NNDD algorithm and to present two errors indicators which
allow us to estimate the part of the error due to the spatial discretization and the
part of the error due to the domain decomposition algorithm. Numerical results are
presented, showing the practical efficiency of the proposed error estimators.

2 A Contact Problem, Notations and Conventions

Two plane bounded domains ˝1 and ˝2 representing two linear elastic bodies
are considered. Their Lipschitz boundaries are composed of distinct parts � ˛

D; �
˛
N

and � ˛
C :

@˝˛ D � ˛
D [ � ˛

N [ � ˛
C ˛ D 1; 2:

The indicesD,N ,C of the boundary parts indicate respectively Dirichlet, Neumann
and contact imposed boundary conditions, see problem (2)–(5). For the sake of
simplicity, we suppose that � 1

C D � 2
C D @˝1 \ @˝2 D �C is a common part of

@˝˛ along which the bodies ˝˛ are in unilateral contact. On the presumed contact
boundary �C , we define

n D n1 D �n2 and t D t1 D �t2;

where n˛ and t˛ denote, respectively, the unit external normal and tangential vectors
to @˝˛ .

On each domain˝˛, ˛ D 1; 2, the stress tensor is �˛ and E .u˛/ is the linearized
strain tensor associated with the displacement u˛ . With the elasticity tensors E˛ ,
characterizing the materials of˝˛, we have the linear strain-stress relation:

�˛ D E˛E .u˛/: (1)

The bilinear energy forms, of linear elastic deformation, are then defined as

a˛.u˛;u�/ D
Z

˝˛

�˛ W E .u�/:

The external loads (surfacic tractions of density F ˛ on � ˛
N ) are represented, in their

weak form, as the linear forms b˛:

b˛.u�/ D
Z

� ˛N

F ˛:u�:
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3 Unilateral Contact Problem and ‘Neumann-Neumann’
Domain Decomposition Algorithm (NNDD)

We consider a unilateral frictionless contact problem between˝1 and with volumic
forces neglected and tractions of density F ˛ imposed on � ˛

N , the equilibrium
equations can be written for ˛ D 1; 2:

div�˛ D 0 in ˝˛ (2)

�˛:n˛ D F ˛ on � ˛
N (3)

with the kinematic boundary condition and unilateral frictionless contact condi-
tions :

u˛ D u˛D on � ˛
D (4)

.u1 � u2/:n � 0
�1TN D �2TN D 0
�1NN D �2NN D �N
�N � 0
�N :.u1 � u2/:n D 0

9

>

>

>

>

>

=

>

>

>

>

>

;

on �C (5)

with

�˛NN D n˛:�˛n˛ (6)

�˛NT D t˛:�˛t˛: (7)

We now define a Neumann-Neumann domain decomposition (NNDD) algo-
rithm. First, for any given normal displacement �p on �C , we define the functional
spaces

V 1 D fu 2 H 1.˝1/Iuj� 1D D u1Dg
U 1
C .�p/ D fu 2 V 1Iuj� 1C :n D �pg

V 2 D fu 2 H 2.˝2/Iuj�D D u2Dg
K 2
C .�p/ D fu 2 V 2Iuj� 2C :n � �pg:

Given a non-negative parameter � and an initial arbitrary �1, we define two
sequences of displacements u˛p on each solid ˝˛, ˛ D 1; 2. Each iteration p of
the NNDD algorithm is divided in two successive steps.

• Step 1—Two independent elasticity problems (hence parallelizable) are solved
on ˝1 and˝2:
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(i) In ˝1, the variational problem writes

(

Find u1p 2 U 1
C .�p/ such that

a1.u1p;u
� � u1p/ D b1.u� � u1p/ 8u� 2 U 1

C .�p/
(8)

(ii) In ˝2, with the given �p normal displacement defined on �C , we solve
the following variational problem corresponding to a unilateral frictionless
contact problem on � 2

C :

(

Find u2p 2 K 2
C .�p/ such that

a2.u2p;u
� � u2p/ � b2.u� � u2p/ 8u� 2 K 2

C .�p/
(9)

From the respective unique solutions u1p and u2p of (8) and (9) we deduce
r1p and r2p , defined on the contact �C as

r1p D �1pn1

r2p D �2pn2:

where�1p and �2p are the stress tensor associated with the respective solutions
u1p and of u2p of problems (8) and (9).

• Step 2—With r1p and r2p obtained in step 1, we solve two independent “Neumann
type” problems (hence the name NNDD):

In ˝1, we solve

(

Find w1p 2 V 1 such that
a1.w1p;u

� � w1p/ D �
R

�C

1
2
.r1p C r2p/:.u

� � w1p/ 8u� 2 V 1:
(10)

In ˝2, we solve

(

Find w2p 2 V 2 such that
a2.w2p;u

� � w2p/ D
R

�C

1
2
.r1p C r2p/:.u

� � w2p/ 8u� 2 V 2:
(11)

Let "t be the precision of the algorithm, we have the alternative:

(i) If " is small enough, the algorithm stops.
(ii) Else, the normal displacement �p is updated:

�pC1 WD �p C �.w1p � w2p/:n

and we return to step 1 for iteration p C 1.
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If r1pCr2p D 0, it means that the equilibrium is satisfied on the contact interface,
in other words the solutions u1p and u2p of step 1 constitute the unique solution of the
reference problem (2)–(5). The proof of convergence of the NNDD algorithm (8)–
(11) is given in [6] for any sufficiently small � > 0:

Theorem 1. There is a �0 > 0 such that for any 0 < � � �0, the NNDD algorithm
for unilateral frictionless contact converges.

4 Error Estimates

The NNDD algorithm introduces two error sources. The first one is introduced by
the solution of the FE problems (8)–(9). The second is introduced by the iterative
NNDD algorithm. The global error is defined as the difference between the solution
of the weak form of the reference problem u˛ and the finite element solution
computed from the NNDD algorithm u˛h . Let

eh D
v

u

u

t

2
X

˛D1
ku˛ � u˛hk2u;˝˛ where kuk2u;˝˛ D

Z

˝˛

E˛E .u/ :E .u/ d˝˛

In the next section, we will define an a posteriori global error estimator, which is
an adaptation to the NNDD algorithm of the error estimator proposed in [4, 5].
Moreover, we propose here two error indicators that allow us to estimate separately
the part of the error due to the FE discretization and that due to the NNDD algorithm.

4.1 Global Error Estimator

The global error estimator is based on the concept of error in the constitutive relation
[7]. Let us consider kinematically admissible displacements, i.e. those satisfying (4),
Ov D .v1; v2; vN / and statically admissible stress tensor fields Oc D .1; 2; tc/, i.e.
those satisfying (5), where on �c , with w˛ D v˛j�c :

wc D w1 � w2; and tc D ˛n˛:

We define a global error estimator for any admissible Os D . Oc; Ov/ :

eCRE.Os/ D
"

2
X

˛D1
k˛ � E˛E .v˛/k2;˝˛ C 2

Z

�c

Œ�.�wc/C ��.tc/C wc:tc� dS

#1=2

;



774 D. Choï et al.

with

k˛k2;˝˛ D
Z

˝˛

˛ W .E˛/�1.˛/;

and where � and �� are the conjugate convex potentials introduced in [2] to model
the Coulomb’s constitutive law in a frictionless case:

�.v/ D
�

0 if vN � 0
C1 otherwise

��.t/ D
�

0 if tN � 0 and tT D 0
C1 otherwise;

where the indices N and T indicate respectively the normal and the tangential
component.

From [2, 3] the unilateral frictionless contact condition is equivalent to

�.�wc/C ��.tc/C wc:tc D 0 on �C : (12)

eCRE.Os/ is the constitutive relation error estimator for the admissible solution Os. It is
equal to zero if and only if Os is the exact solution of the unilateral frictionless contact
problem (5)–(2). From [1], we have the upper bound,

eCRE.Os/ � eh D
v

u

u

t

2
X

˛D1
ku˛h � u˛k2u;˝˛ :

4.2 Error Indicators

The discretization error is estimated through a discretization error indicator com-
puted for a second reference problem defined by (8)–(9) for a given �p. The only
approximation used to solve this problem is the Finite Element approximation.

Let Osp D .Oup; Ocp/ be an admissible pair for this new reference problem, then the
discretization error indicator is defined by

�dis
h;p D eCRE.Osp/:

To define an algorithm error indicator, we consider a third reference problem
obtained with the Finite Element discretization of Eqs. (2)–(5) (it is also necessary to
introduce a discretized contact constitutive relations), the only approximation used
to solve this problem is the Neumann-Neumann domain decomposition algorithm.
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ΓD
1

F 1
N

ΓC

Ω

Ω

1

2

ΓD’
1

ΓD
2

N
1Γ

Fig. 1 A test problem for
NNDD algorithm: frictionless
unilateral contact between
two elastic bodies

Let Osh D .Ouh; Och/ be an admissible pair for this third reference problem, then the
algorithm error indicator is defined by

�NNDD
h D eCRE.Osh/

To build the admissible fields Osp and Osh, we use an adaptation of the techniques
developed in [5].

5 Numerical Results

We consider a test problem illustrating the reference problem (2)–(5). The domain
˝1 is subject to a non-zero imposed displacement on a part � 1

D of its boundary
and to a rigid frictionless contact on another part � 1

D0 . The domain ˝2 has zero
displacement imposed on � 2

D . Some surface forces F N are imposed on � 1
N to

illustrate some loss of contact at the interface, see Fig. 1. The two domains are in
contact on �C .

In our implementation of the NNDD Algorithm, we define the precision of the
algorithm "t as

" D
2max�C jr1p C r2pj

max�C jr1pj Cmax�C jr2pj

where r1p and r2p are obtained from step 1 of the NNDD algorithm at iteration p.
We first test the a posteriori error estimates of the NNDD algorithm (8)–(11) for

different values of � , and two meshes, one coarse mesh with 380 nodes and one finer
mesh with 5,994 nodes, see Fig. 2. For both meshes, we notice an apparently optimal
value near 0:4 � � � 0:5 after three iterations of the NNDD algorithm. We also
remark that the algorithm errors are very similar for both the fine and coarse meshes.
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A posteriori error estimates of NNDD algorithm after 3 iterations on 380 Nodes Mesh
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Fig. 2 NN error indicators for different values of � , coarse 380 nodes mesh (up) and finer 5,994
nodes mesh (down) after three iterations

The discretisation errors are naturally greater for the coarse mesh, but it doesn’t
change much with � .

In Fig. 3, we show the evolution of the algorithm error and the precision "t for
an increasing number of iterations for a fixed value � D 0:4 and a fixed coarse
mesh (380 nodes). While both decrease towards zero, the slopes of each appear
very different. It means that the precision "t may not be a very good stopping
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Fig. 3 Algorithm error and precision "t on fixed coarse mesh per number of iterations, with
� D 0:4

criterion and can be deceiving as it appears much smaller than the algorithm error,
which constitutes the largest part of the global error when using finer mesh, see the
previous Fig. 2.
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Additive Schwarz with Variable Weights

Chen Greif, Tyrone Rees, and Daniel B. Szyld

1 Introduction and Motivation

We consider the numerical solution of nonsymmetric linear systems of equations of
the form

Au D f; (1)

that arise from the discretization of partial differential equations (PDEs). In practical
problems, the number of mesh points is very large, and thus also the number of
unknowns in (1), and the resulting matrix is large and sparse. In these circumstances,
iterative methods are often used, due to their ability to deal more effectively with
a high degree of sparsity. A popular iterative method is the Generalized Minimum
Residual iterative scheme, or GMRES [8–10]. This method is based on minimizing
at the kth iterate the residual within the affine Krylov subspace u0 C K k.A; r0/,
where u0 is an initial vector, r0 D f � Au0 is the initial residual, and

K k.A; r0/ D span.r0; Ar0; : : : ; Ak�1r0/:
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The performance of GMRES is often (though not exclusively) determined by the
structure of the eigenvalues of the matrix A. Loosely speaking, if they are strongly
clustered, then GMRES is expected to converge fast. To accomplish a clustering
effect, a preconditionerM is typically used: instead of solving (1) we solve, say,

AM Qu D f;

where M is constructed so that AM has a more favorable eigenstructure than A.
Upon incorporating the preconditioner M , the Krylov subspace changes accord-
ingly: the matrix associated with the subspace becomes AM, and the preconditioned
residual is now minimized.

A common way of dealing with the large number of degrees of freedom in a
fine mesh is to break the problem down into a number of more manageable sub-
problems. This amounts to the technique of domain decomposition; see, e.g., [11].
We can then incorporate preconditioners that work on the subdomains into the
general iterative framework.

The additive Schwarz preconditioner [11] and its restricted variant (RAS) [3],
can be written in the form

M D
t
X

iD1
QRiA�1i RTi ;

where t is usually the number of subdomains, QRi is a restriction operator, RTi is
a prolongation operator, and Ai D RTi ARi is the restriction of A onto the i th
subdomain.

A possible generalization would be to use a weighted additive or restricted
additive Schwarz preconditioner, say of the form

M.k/ D
t
X

iD1
˛
.k/
i
QRiA�1i RTi ;

where the weights ˛.k/i are chosen at the kth iteration of GMRES so as to minimize
the preconditioned residual, cf. [1].1 What we propose in this paper is to go a step
further, and implicitly find at each iteration both the current weights and all the
weights at the previous iterations, so as to minimize the residual at the current step.

Incorporating weights which change from one iteration to the next is significant
and we can no longer talk about a standard iterative method with a single precondi-
tioner. Instead, the proposed strategy fits into the MPGMRES paradigm the authors
recently described in [5], where more than one preconditioner may be applied

1We point out that this is completely different than the approach in [4], where the weights are zeros
and ones, and the emphasis is on asynchronous iterations.
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simultaneously.2 Our main goal in this paper is to show that this methodology is
particularly effective in the domain decomposition paradigm, since we can associate
each subdomain with a specific, unique preconditioner.

An outline of the remainder of this paper follows. In Sect. 2 we briefly describe
Additive and Restricted Additive Schwarz Preconditioning. In Sect. 3 we describe
the MPGMRES algorithm. We address the question of computational cost of the
algorithm and characterize the generalized Krylov subspace and its unique features
in domain decomposition setting. In Sect. 4 we provide some details on numerical
experiments. Finally, in Sect. 5 we make some concluding remarks.

2 Additive Schwarz Preconditioning

Suppose we divide the domain˝ containing n nodes into t subdomains˝1; : : : ;˝t ,
which overlap by bands of width ı nodes. Suppose each subdomain consists of
mi  n nodes, which we denote as the entries of the set Ii . We can define a
prolongation matrix RTi;ı 2 Rn�mi which extends vectors u.i/ 2 Rmi to Rn by

.RTi;ıu
.i//k D

�

.u.i//k if k 2 Ii
0 otherwise:

The transpose of this matrix defines a restriction operator Ri which restricts
vectors in Rn to the subdomain ˝i . The restriction of the discretized PDE, A, to
the i th subdomain is given by Ai D Ri;ıARTi;ı :

We can now define the additive Schwarz preconditioner as

M WD
t
X

iD1
RTi;ıA

�1
i Ri;ı D

t
X

iD1
Mi ; (2)

whereMi WD RTi;ı.Ri;ıARTi;ı/�1Ri;ı. Note that, by the definition ofRTi;ı , there exists
some permutation˘i such that, for all x,

˘iMix D .	 � � � 	 0 � � � � � � 0/T ;

i.e., the vector resulting from multiplication by the Mi (regardless of the permuta-
tion) will be sparse.

We can also define a restricted additive Schwarz (RAS) preconditioner [5] by
considering the prolongationRTi;0 instead of RTi;ı in (2).

2This algorithm extends previous work on using a combination of preconditioners—e.g., flexible
GMRES [7] with alternating preconditioners, as described by Rui et al. [6] in the method they call
multipreconditioned GMRES—by making an ‘optimal’ choice of weights. See [5] for a discussion.
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Fig. 1 Schematic of Arnoldi decompositions in (a) complete and (b) selective MPGMRES

Algorithm 1 MPGMRES
Choose u0, r0 D f�A u0
ˇ D kr0k, v1 D r0=ˇ
Z1 D ŒM1v1 � � �Mtv1�
for k D 1; : : :, until convergence do
W D AZk
for j D 1; : : : ; k do
Hj;k D .Vj /

T W

W D W � VjHj;k

end for
W D VkC1HkC1;k (skinny QR factorization)
yk D argminkˇe1 � QHkyk2
uk D u0 C ŒZ1 � � �Zk�yk
ZkC1 D

�

ŒM1VkC1 � � �MtVkC1� for complete MPGMRES
ŒM1VkC11 � � �MtVkC11� for selective MPGMRES

end for

3 The MPGMRES Algorithm for Domain Decomposition
Problems

MPGMRES [5] is a minimal residual algorithm for solving a linear system of equa-
tions which allows the user to apply more than one preconditioner simultaneously
(see also [2] for a multipreconditioned version of the conjugate gradient method).
At each step, new search directions are added to the search space, corresponding to
AMiv for each i D 1; : : : ; t , and for each basis vector v of the current search space.
The multipreconditioned search directions are all combined into a generalized
Krylov subspace, and the minimization procedure requires solving a linear least-
squares problem. As opposed to standard GMRES, here the subspace grows quickly
due to the presence of multiple search directions and the projection can be expressed
in terms of a block upper Hessenberg matrix; see Fig. 1. It has been shown in [5] that
a so-called selective MPGMRES (sMPGMRES) algorithm—which chooses a subset
of t search directions and hence keeps the size of the search space growing only
linearly—can be an effective method. MPGMRES (in both complete and selective
forms) is given as Algorithm 1.



Additive Schwarz with Variable Weights 783

3.1 Computational Work

In the selective algorithm we need t matrix-vector products and t preconditioner
solves per iteration, as opposed to one for both in the standard preconditioned
GMRES algorithm. The main other source for work is the inner products. Note
that every entry in the Hessenberg matrix Hk is the result of an inner product,
and these are the only inner products in the algorithm. MPGMRES therefore needs
.2k � 1/ t2

2
C 3

2
t inner products at the kth step [5, Table 4.1].

Significantly, in the domain decomposition setting, due to the nature of the
standard Additive Schwarz preconditioner, the preconditioning step is exactly the
same cost when using both selective MPGMRES and standard preconditioned
GMRES. Moreover, since the vectors we obtain by applying the preconditioners are
sparse, the cost of the matrix-vector products will also be of the same order as in the
standard GMRES algorithm—the only extra expense coming from the overlapping
nodes. Indeed, if we use RAS, then the cost of a matrix-vector product would be
identical here too. While we studied RAS in the context of MPGMRES in [5], in the
rest of this paper we restrict our comments and experiments to additive Schwarz.
The extra cost in the MPGMRES approach therefore lies completely with the inner
products. The vectors here are, in general, dense, as we lose sparsity of W in the
modified Gram-Schmidt step (in the inner loop of Algorithm 1).

3.2 The Subspace in Complete MPGMRES

Recall that (complete) MPGMRES minimizes over the multi-Krylov subspace

K k
M1;:::;Mt

.A; r0/;

where

K 1
M1;:::;Mt

.A; r0/ D spanfM1Ar0; : : : ;MtAr0g;
K 2
M1;:::;Mt

.A; r0/ D spanfM1Ar0; : : : ;MtAr0;M1AM1r0; : : : ;M1AMtr0; : : :

: : : ;MtAM1r0; : : : ;MtAMtr0g;

etc. Usually the size of this space grows exponentially with each iteration. However,
in an additive Schwarz context the situation is not quite so dire, as we see below.

First, note that each preconditioned matrix is a projection, since

MiAMi D RTi;ı.Ri;ıARTi;ı/�1Ri;ıARTi;ı.Ri;ıARTi;ı/�1Ri;ı DMi:



784 C. Greif et al.

Hence applyingMi to AMi does nothing to enrich the space.
Next, note that

MiAMj D RTi;ı.Ri;ıARTi;ı/�1Ri;ıARTj;ı.Rj;ıARTj;ı/�1Rj;ı:

In the middle of this expression is the cross-term Ri;ıAR
T
j;ı . Now note that

Ri;ıAR
T
j;ı D 0 whenever Ii \ Ij D ;: Provided the overlap ı is not large enough

to touch two subdomains, this implies that only the contributions from sub-domains
that touch each other add anything to the multi-Krylov subspace. This is the number
of edges + corners in 2D (a maximum of 8 for a tensor product-based grid), and
these plus the number of faces in 3D (a max of 26 for a tensor product-based grid).
Altogether, this means that

dim.K k
M1;:::;Mt

.A; r0// D .kc C 1/t;

where c is a constant independent of k; t . Therefore, even in the complete
MPGMRES case, we only have linear growth in the search space.

4 Numerical Experiments

If we split the domain into a small number of subdomains, i.e., we have a high
proportion of subdomains lying on an edge, then there may not be much difference
between the spaces minimized over by the selective algorithm and the complete
algorithm.

For example, consider the special case where we split the domain ˝ into two
subdomains, ˝1 and ˝2 such that ˝1 [ ˝2 D ˝ . Then it can be shown [5,
Sect. 5.2.1] that, provided the subdomain solves are exact, the space over which
we minimize in both selective and complete MPGMRES are identical.

Figure 2 shows the convergence curves for solving the advection-diffusion
equation

� r2uC ! � ru D f in ˝ (3)

u D 0 on @˝; (4)

where˝ denotes the unit square and ! D 10 �cos.�
3
/; sin.�

3
/
�T
: This is discretized

using finite differences with a uniform mesh size h, and the right hand side is taken
to be the vector of ones. Thus, in 2D, n D 1=h2 and in 3D, n D 1=h3.

As we see in Fig. 2, the iteration counts are significantly better using a multi-
preconditioned approach. Despite only having a serial MATLAB code, this also
corresponds to significantly better timings, as is seen in Table 1: it is anticipated
that the difference between the two approaches would be even more striking in a
parallel implementation.



Additive Schwarz with Variable Weights 785

0 10 20 30 40 50 60 70
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

its

GMRES sMPGMRES

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

its

GMRES sMPGMRES

a b

Fig. 2 Convergence curves for solving the advection-diffusion equation (3)–(4) with two subdo-
mains in 2D and 3D. The iteration number is plotted along the x-axis, and krkk2 is plotted along
the y-axis. (a) 2D, h D f2�3; 2�4; 2�5; 2�6; 2�7; 2�8g. (b) 3D, h D f2�2; 2�3; 2�4; 2�5g
Table 1 Timings for sMPGMRES and GMRES with two subdomains in 2D (left) and 3D (right)
h sMPGMRES GMRES
2�3 0:008 0:007

2�4 0:015 0:023

2�5 0:13 0:087

2�6 0:32 0:55

2�7 2:1 3:7

2�8 15:3 28:6

h sMPGMRES GMRES
2�2 0:010 0:011

2�3 0:059 0:058

2�4 1:03 1:49

2�5 25:6 39:7
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Fig. 3 Convergence curves for multiple subdomains in 2D (h D 2�6). The iteration number is
plotted along the x-axis, and krkk2 is plotted along the y-axis

For a large numbers of subdomains, the work involved in the inner products and
vector updates becomes significant, even though the work in actually applying the
preconditioners is essentially the same as for the usual AS method. Convergence
curves for the problem (3)–(4) are given in Fig. 3.

Although the iteration counts are impressive for a large number of subdomains
(with, e.g., 101 iterations for GMRES with an additive Schwarz preconditioner
being reduced to 17 iterations with selective MPGMRES for 256 subdomains), the
timings in this case are not yet competitive—e.g., for the case with 256 subdomains
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GMRES converges in 2.5 s whereas sMPGMRES takes 9 s. This is due to the
fact that we are using a proof-of-concept (serial) MATLAB code. Recall that
the only extra work between the methods is in calculating the inner products and
the subsequent vector update in the Gram-Schmidt process. Due to the block nature
of the proposed method much of this extra work could be distributed across any
available processors. We envisage that a state-of-the-art implementation would yield
great computational savings, which would be manifested in a significantly reduced
running time. This would be especially true for very large scale problems, where the
cost of the subdomain solves would dominate the cost of each iteration. A Fortran 95
implementation of MPGMRES—HSL_MI29—will be included in the 2013 release
of the HSL subroutine library.

Recall from Algorithm 1 that in the implementation of sMPGMRES reported
here we apply each preconditioner to the sum of the columns of VkC1. This choice
is by no means unique, and there are many other possible selection strategies [5,
Sect. 2.3]. The approach employed here seems to perform well on a wide range
of problems, but it is a somewhat arbitrary choice. There may be situations where
another selection strategy would be superior; this is one avenue for future research.

5 Conclusions

We have presented an algorithm that applies Additive Schwarz with Variable
Weights. The approach is incorporated as a set of multiple preconditioners into
MPGMRES. Domain decomposition has a few unique features that make our
approach particularly attractive. First, the preconditioning step entails the same cost
when using both selective MPGMRES and standard preconditioned GMRES, and
the cost of the matrix-vector products is also of the same order as in the standard
GMRES algorithm. Secondly, because there is a very low degree of overlap between
nodes in the different subdomains, the growth in the search space for complete
MPGMRES is only linear, i.e., very modest. This is in contrast to other situations,
where the search space for complete MPGMRES grows exponentially and we
settle for a selective algorithm. For these reasons we believe that the combination
of domain decomposition preconditioners and the MPGMRES framework is an
effective method for the numerical solution of linear systems arising from PDEs.
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A Parallel Multigrid Solver on a Structured
Triangulation of a Hexagonal Domain

Kab Seok Kang

1 Introduction

Fast elliptic solvers are a key ingredient of massively parallel Particle-in-Cell
(PIC) and Vlasov simulation codes for fusion plasmas. This applies for both,
the gyrokinetic and fully kinetic models. The currently available most efficient
solver for large elliptic problems is the multigrid method, especially the geometric
multigrid method which requires detailed information of the geometry for its
discretization.

In this paper, we consider a structured triangulation of a hexagonal domain for
an elliptic partial differential equation and its parallel solver. The matrix-vector
multiplication is the key component of iterative methods such as CGM, GMRES,
and the multigrid method. Many researchers have developed parallel solvers for
partial differential equations on unstructured triangular meshes. In this paper, we
consider a new approach to handle a structured grid of a regular hexagonal domain
with regular triangle elements. We classify nodes as either real or ghost ones and
find that the required steps of data communication to assign the values on the ghost
nodes is five. We show that the matrix-vector multiplication of this approach has an
almost perfect scaling property.

The multigrid method is a well-known, fast and efficient algorithm to solve many
classes of problems [1,4,5]. In general, the ratio of the communication costs to com-
putation costs increases when the grid level is decreased, i.e., the communication
costs are high on the coarser levels in comparison to the computation costs. Since,
the multiplicative multigrid algorithm is applied on each level, the bottleneck of the
parallel multigrid lies on the coarser levels, including the exact solver at the coarsest
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level. The additive multigrid method could combine all the data communication
for the different levels in one single step. However, this version can be used only
for preconditioner and need almost the double amount of iterations generally. The
multiplicative version can be used as a solver and as a preconditioner, so we consider
the multiplicative version only.

The feasible coarsest level of operation of the parallel multigrid method depends
on the number of cores. The number of degrees of freedom (DoF) of the coarsest
level problem will be increased as the number of cores is increased. To improve
the performance of the parallel multigrid method, we consider reducing the number
of executing cores to one (the simplest case) after gathering data from all cores on
a certain level. This algorithm avoids the coarsest level limitation and numerical
experiments on large numbers of cores show very good performance improvement.

A different way to improve the performance of the parallel multigrid method is
to use a scalable solver on the coarsest level. A good candidate for the coarsest level
solver is the two-level domain decomposition method because these methods are
intrinsically parallel and their required number of iterations does not depend on the
number of sub-domains (cores). We consider BDDC [2] and FETI-DP [3] because
these are well-known two-level non-overlapping domain decomposition methods
and show very good performance for many problems.

In this paper we investigate the scaling properties of the multigrid method with
gathering data, BDDC, and FETI-DP on a massively parallel computer.

2 Model Problem and Its Parallelization

We consider the Poisson type second order elliptic partial differential equations on
a regular hexagonal domain˝ with Dirichlet boundary conditions

c.x; y/u � r � a.x; y/ru D f; in ˝ ,

u D 0; on @˝ , (1)

where f 2 L2.˝/, c.x; y/ is a non-negative function and a.x; y/ is a uniformly
positive and bounded function. It is well known that Eq. (1) has a unique solution.

The second-order elliptic problem (1) is equivalent to: find u 2 H1
0 .˝/ such that

aE.u; v/ D
Z

˝

c.x; y/uv dxC
Z

˝

a.x; y/ru � rv dx D
Z

˝

f v dx (2)

for any test function v 2 H1
0 .˝/whereH1

0 .˝/ is the space of the first differentiable
functions in ˝ with zero values on the boundary @˝ .

We consider a piecewise linear finite element space defined on a triangulation
with regular triangles. This triangulation generate a structured grid and can be
applied to a D-shape Tokamak interior region with conformal mapping. Let h1
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and Th1 � T1 be given, where T1 is a partition of ˝ into triangles and h1 is
the maximum diameter of the elements of T1. For each integer 1 < k � J , let
hk D 2�.k�1/h1 and the sequence of triangulations Thk � Tk be constructed by
the nested-mesh subdivision method, i.e., let Tk be constructed by connecting the
midpoints of the edges of the triangles in Tk�1, and let ThJ � TJ be the finest grid.

Let us define the piecewise linear finite element spaces

Vk D fv 2 C0.˝/ W vjK is linear for all K 2 Tkg:

Then, the finite element discretization problem can be written as follows: find
uJ 2 VJ such that

aE.uJ ; v/ D
Z

˝

f v dx (3)

for any test function v 2 VJ , i.e., solve the linear system AJ uJ D fJ :
Let us now consider the parallelization of the above problem. We use real and

ghost nodes on each core. The values on the real nodes are handled and updated
locally. The ghost nodes are the part of the distributed sub-domains located on other
cores whose values are needed for the local calculations. Hence, the values of the
ghost nodes are first updated by the cores to which they belong to as real nodes and
then transferred to the cores that need them. To reduce data communication during
matrix element computation, the computation of matrix elements on some cells can
be executed on several cores which have a node of the cell as a real node.

We consider the way to divide the hexagonal domain into sub-domains with the
same number of cores. Except for the single core case, we divide the hexagonal
domain in regular triangular sub-domains and each core handles one sub-domain.
Hence, feasible numbers of cores are limited to the numbers 6 	 4n for n D
0; 1; 2; : : :. For each core we have to define what are real and ghost nodes on the
common boundary regions of the sub-domains. We determine the nodes on the
common boundary of the sub-domains as the real nodes of the sub-domain which are
located in the counterclockwise direction or in the outer direction from the center of
the domain as shown in Fig. 1. For our problem with a Dirichlet boundary condition
on the outer boundary, we can handle the boundary nodes as ghost ones. The values
of these boundary nodes are determined by the boundary condition and thus do not
have to be transferred between cores.

We number the sub-domains beginning at the center and going outwards
following the counterclockwise direction. Each sub-domain can be further divided
into triangles; this process is called triangulation. In this process each line segment
of the sub-domain is divided into 2n parts. It can be shown that, independently of the
total number of sub-domains and triangulation chosen, there are just three domain
types. These give detailed information on the real and ghost nodes being connected
to other sub-domains and cells which are needed to compute the matrix elements
for the real nodes. To see how good the load balancing is, we measure the ratio
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Fig. 1 The subdomains on
24 cores and real (solid lines,
filled circle) and ghost (dotted
lines, open circle) nodes on
subdomains according to the
types

of the largest number of real nodes to the smallest number of real nodes which is
f2n.2n C 3/g=f2n.2n C 1/g which tends to ‘1’ as n is increased.

To get the values on the ghost nodes from the other cores for all sub-domains, we
implement certain communication steps. The communication steps are the dominat-
ing part of the parallelization process and thus a key issue for the performance of
the parallel code. The easiest way to implement the data communication would be
that every ghost node value is received from the core which handles it as a real node
value. However, such implementation would need several steps and the required
number would then vary among the different cores. So this approach could be used
for unstructured grids, but it would be too slow in our case. However, we solved the
problem by using a sophisticated data communication routine which needs a fixed
number of steps for each core (that is, five).

Our dedicated data communication steps are as follows:

S1: Radial direction
S2: Counterclockwise rotational direction
S3: Clockwise rotational direction
S4: Radial direction (same as in S1)
S5: Mixed communications

3 Multigrid and Domain Decomposition Methods

The motivation for the multigrid method is the fact that basic iterative methods, such
as Jacobi and Gauss-Seidel methods, reduce well the high-frequency error but have
difficulties to reduce the low-frequency error, which can be well approximated after
projection on the coarser level problem. The multigrid method consists of two main
steps, one is the smoothing operator and the other is the intergrid transfer operator.
The former has to be easy to be implemented and be able to reduce effectively the
high frequency error.
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The other important operator is the intergrid transfer operator, which consists
of the prolongation and the restriction operator. The intergrid transfer operators on
triangular meshes have been studied in depth by many researchers, and their usage
is mature.

The main issue with the parallelization of the multigrid method is execution time
on the coarser level iterations. In general, the ratio of communication to computation
on a coarse level grid is larger than on a fine level grid. Because the multigrid method
works on both the coarse and fine grid levels, to get good scaling performance, we
might need to avoid operating on the coarser level if possible. Usually, the W -cycle
and the variable V -cycle multigrid methods require more work on the coarse level
problems, so we consider for parallelization only the V -cycle multigrid method.

In addition to the execution time on the coarser level, we have to consider the
solving time on the coarsest level. As a coarsest level solver, we can use either
a Krylov subspace method or a direct method. The solving time of both methods
increases with the problem size. So in considering the solution time of the coarsest
level we need to find the optimal coarsening level, as well as the ratio of the
communication to computation on each level.

From a certain level on, we can use a small number of cores to perform
computations for the coarser levels. Among all the possible algorithms, let us
consider the one which executes only on one core after having gathered all data.

Such a multigrid algorithm variation can solve the coarsest level problem on
one core only, independent of the total number of cores. Instead of having only
one core solving the coarser level problems and other cores idling, we choose to
replicate the same computation on the coarser levels on each core; then we use
these results for computations on the finer level. In the variant which we use, we use
MPI_Allreduce which may yield a better performance than using combinations
of MPI_Reduce and MPI_Bcast, depending on the MPI implementation on the
given machine.

Let us now consider another well known parallel solver, namely the domain
decomposition method (DDM). The non-overlapping DDM is a natural method
for problems which have discontinuous coefficients or many parts and are akin to
being implemented on distributed memory computers. The non-overlapping DDM
can be characterized by how it handles the values on the inner-boundary (that is,
the common boundary of the two sub-domains). The condition number of the two-
level non-overlapping DDM does not depend on the number of sub-domains. The
BDDC and FETI-DP methods are well developed two-level DDM and have good
performance when using a large number of sub-domains.

The BDDC algorithm [2] has been developed as an algorithm for substructuring,
based on the constrained energy minimization concept. We follow the algorithm
of [2] with a constraint matrix Cu which enforces equality of substructure DoF
averaged across edges and at individual DoF on substructure boundaries (corner).

The FETI-DP method [3] imposes the continuity on the corner nodes which
includes more than two sub-domains and the continuity on the edge nodes by using
the Lagrange multipliers �. By block Gauss elimination, we obtain the reduced
system F� D d and solve it with PCGM with the Dirichlet preconditioner, as in [3].
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4 Numerical Experiments

As a model problem, we choose the simplest one with c.x; y/ D 0 and a.x; y/ D
1:0 in Eq. (1), i.e., the Poisson problem. To test the performance of our implemen-
tation, we use the finite element discretization formula which is the same for the
finite volume discretization for this test problem. As a termination criterion for the
solvers, we define a reduction of the initial residual error on the finest level by a
factor of 10�8.

The performance results reported in this paper were obtained on the HELIOS
machine. The HELIOS machine is located in the International Fusion Energy
Research Centre (IFERC) at Aomori, Japan. IFERC was built in the framework for
the EU(F4E)-Japan broader approach collaboration. The machine is made by 4410
Bullx B510 Blades nodes of two 8-core Intel Sandy-Bridge EP 2.7 GHz processors
with 64 GB memory and connected by Infiniband QDR. So it has a total of 70,560
cores total and 1.23 Petaflops Linpack performance.

We consider the multigrid method as a preconditioner of the preconditioned
CGM with a localized Gauss-Seidel smoother which use old values on the ghost
nodes. For the multigrid method, we use PCGM with the symmetric Gauss-Seidel
method as a solver on the coarsest level and run two pre- and post-smoothing
iterations for all cases.

We tested different data gathering levels on fixed numbers of cores. Without
gathering data, the feasible coarsest level of the multigrid algorithm is the level that
has at least more than one DoF per core. This level is the coarsest gathering level
and depends on the number of cores. For instance, the coarsest gathering level of
384 cores is 5, of 1,563 cores is 6, and 6,144 cores is 7. Experimentally, setting the
gathering level to the coarsest one shown always best performance. After gathering
the data, all the computations are performed on one core. In this coarsest gathering
level, the coarsest level does not impact performance as along as it is taken below
level 6.

In this paper, we use the simplest case only from the gathering level, all the
data of the coarse problem are gathered on one core. In the case of large coarse
problem, i.e., level greater than 6, a performance improvement could be expected
by distributing it on many cores instead of one. But it has not been tested.

Let us now consider the performance impact when gathering the data on each
core. To show that, we choose the coarsest level of the parallel algorithm as the
coarsest gathering level. In the case of not gathering data, we have to use the coarsest
gathering level as the coarsest level on which we solve the problem by using PCGM
exactly. We tested four different cases, 2.2K, 8.5K, 33K, and 132K DoF per core and
depicted the results in Fig. 2 which show that the gathering of the data is needed for
large number of cores. The solution time of the solver in this case has a significant
improvement for large numbers of cores and small number of DoF per core.

For a multigrid algorithm it is nearly impossible to fix the number of operations
per core while increasing the total problem size, so we consider a semi-weak scaling
by fixing the number of DoF of the finest level on each core. We tested six different
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Fig. 2 The solution times in
seconds of the multigrid
method as a preconditioner
for the PCGM with the
Gauss-Seidel smoother with
(solid lines) and without
(dotted lines) gathering data
as a function of the number of
cores for domains with 2.2K
DoF (times symbol), 8.5K
DoF (filled circle), 33.4K
DoF (plus sign), and 132K
DoF (open circle) per core

Table 1 The solution times in seconds of the multigrid method as a preconditioner for the PCGM
with the Gauss-Seidel smoother and the execution times of the matrix-vector multiplication (in
bracket) according to the number of cores for domains with the several numbers of DoF per core

# cores 2.2K 8.5K 33.4K 132K 527K 2.1M

24 0.0034(0.000013) 0.0081(0.000055) 0.0356(0.00045) 0.1671(0.0031) 0.7046(0.0129) 2.824(0.052)

96 0.0075(0.000013) 0.0131(0.000056) 0.0406(0.00045) 0.1717(0.0031) 0.7114(0.0129) 2.825(0.051)

384 0.0104(0.000013) 0.0157(0.000056) 0.0502(0.00048) 0.2057(0.0031) 0.8397(0.0129) 3.327(0.052)

1,536 0.0175(0.000013) 0.0244(0.000056) 0.0605(0.00051) 0.2209(0.0031) 0.8661(0.0129) 3.366(0.052)

6,144 0.0633(0.000013) 0.0756(0.000056) 0.1192(0.00052) 0.3015(0.0031) 0.9476(0.0131) 3.471(0.052)

24,576 0.5671(0.000014) 0.5630(0.000060) 0.6302(0.00054) 0.9105(0.0033) 1.6122(0.0141) 6.954(0.056)

number of DoF of the finest level on each core; from 2.2K DoF to 2.1M DoF
and depicted the results in Table 1 together with the execution time (in bracket)
of the matrix-vector multiplication which is the basic operation for iterative solvers
and include the data communication step to update the values on the ghost nodes.
The data shows that the matrix-vector multiplication has a perfect weak scaling
property and the multigrid method as a preconditioner has really good semi-weak
scaling properties when the number of DoF per core is large (compare 527K DoF
and 2.1M DoF per core cases). Typically, the behaviour of multigrid algorithm
implementations in weak scaling experiments is that they perform better as the
number of DoF per core is increased.

The required number of iterations of the FETI-DP and BDDC methods does not
depend on the number of sub-domains, but rather on the ratio of the mesh size of the
triangulation (fine level, h) to the size of the sub-domains (coarse level, H ). This is
shown in Table 2 where we list the required number of iterations of the FETI-DP
and DBBC methods.

To implement the FETI-DP and BDDC methods, we have to solve local problems
with Dirichlet and/or Neumann boundary conditions on each sub-domain and one
globally defined coarse level problem. Furthermore, we need to communicate data
with neighboring sub-domains and data on the coarse level. Solving the local
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Table 2 The required number of iterations of FETI-DP and BDDC according to the number of
sub-domains and the ratio of the mesh size of the fine level (h) to the coarse level (H )

h=H 1/8 1/16 1/32 1/64 1/128
# cores FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC FETIDP BDDC
24 12 7 14 8 16 9 18 10 20 12
96 15 8 17 9 20 11 23 13 26 14
384 16 8 19 10 22 11 24 13 28 14
1,536 16 8 20 10 23 11 26 13 29 14
6,144 16 8 19 10 23 11 26 13 30 14
24,576 16 8 19 9 23 11 26 13 29 14

problems and communicating the data with neighboring sub-domains are performed
in parallel. So, these local steps do not alter the performance by changing the number
of cores. Otherwise, the dimension of the global coarse level problem would grow as
the number of cores increases. The dimension of the coarse level problem used for
BDDC method is the same as of the coarsest gathering level used for the multigrid
method. And the dimension of the coarse level problem used for FETI-DP method
is one level below it.

We use the same gathering algorithm as in the multigrid method to solve the
global coarser level problem. In both FETI-DP and BDDC, every sub-domain has
some contributions to the matrices and vectors on the coarse level and uses the
solution of the coarse level problem. So, we gather these contributions on each core
using the MPI_Allreduce and use the solution after solving the coarse problem
without any data communication.

To solve the local and global problems, we used two direct methods, the
LAPACK (Intel MKL) library with dense matrix format and the IBM WSMP library
with sparse matrix format, and the multigrid method as an iterative method. For large
number of cores (more than 1,536 cores), the global problems could be solved by
either the iterative method or parallelized direct methods only on a small number
of cores, due to the memory limitation. The solution time with parallel solver for
the global problems could be reduced as same as progressively reduced cores on the
multigrid method.

For comparison to our previous results, we chose the solver which performs best.
We tested five different cases with fixed number of DoF per core, from 55 DoF to
2200 DoF, and depicted the results in Table 3 together with the multigrid method.
Results in Table 3 show that the FETI-DP is faster than the latter even though the
DBBC requires a smaller number of iterations. These results also show that the weak
scaling property is improved as the number of DoF per core is increased.

The solution times of the FETI-DP and the multigrid method for the smallest
number of DoF per core cases (55 DoF per core) are almost the same. The multigrid
method with gathering data is faster than the FETI-DP method. The difference of
the solution time between the two methods increases as the number of DoF per core
is increased, except for the largest number of cores (24,576 cores).
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Table 3 The solution times in seconds of the FETI-DP, the BDDC, and the multigrid method
(MG) as a function of the number of cores for domains with the number of DoF per core

DoF/core 55 170 590 2200

# cores MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC MG FETI-DP BDDC

24 0.0009 0.0013 0.0014 0.0015 0.0020 0.0027 0.0019 0.0115 0.0216 0.0034 0.1007 0.2328

96 0.0022 0.0024 0.0028 0.0038 0.0034 0.0046 0.0054 0.0165 0.0298 0.0075 0.1287 0.3309

384 0.0043 0.0041 0.0067 0.0065 0.0057 0.0181 0.0080 0.0228 0.0439 0.0104 0.1414 0.3513

1,536 0.0126 0.0131 0.0171 0.0152 0.0240 0.0367 0.0146 0.0512 0.0666 0.0175 0.1953 0.4056

6,144 0.0582 0.0792 0.2954 0.0550 0.0988 0.3809 0.0584 0.1509 0.4849 0.0632 0.3864 1.2242

24,576 0.5550 0.4961 1.8470 0.5762 0.5359 2.3163 0.5505 0.6883 2.3867 0.5671 1.0609 3.7620

5 Conclusions

We investigated the performance of the multigrid method with gathering data,
BDDC, and FETI-DP on a regular hexagonal domain with regular triangulations
and concluded that the first is the fastest solver for such a problem.
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A Parallel Crank–Nicolson Predictor-Corrector
Method for Many Subdomains

Felix Kwok

1 Introduction

In this paper, we propose a fast parallel solver for the parabolic equation

@tu D L uC g.x; t/; x 2 ˝;
u D u� .x; t/ on � D @˝; u.x; 0/ D f .x/ on ˝ ,

(1)

where ˝ is an open connected subset of R2 and L u D P

i;j @xi
�

	ij.x/@xj u
� �

c.x/u; with c.x/ � 0 and 	ij.x/ symmetric and uniformly positive definite, i.e., we
have 	ij.x/ D 	ji.x/ for i ¤ j and

P

i;j 	ij.x/�i �j � �Pi �
2
i for all choices of �i ,

where the constant � > 0 is independent of x. Our method is based on the predictor-
corrector method introduced by Rempe and Chopp [15]. In that work, the authors
consider nonlinear reaction-diffusion equations posed on branched structures, which
model the evolution of the electric potential in neurons, see Fig. 1. In such problems,
the nodal points are natural separators of the computational domain, meaning that
the solution within the individual branches can be solved independently if the
electric potential at the nodes are known. Based on this observation, the authors
proposed the Crank–Nicolson predictor-corrector (CNPC) method: they first use
forward Euler to predict the nodal values, and then backward Euler to solve for
the solution within the branches. To maintain stability, they then correct the nodal
values using a backward Euler step, and the whole solution is extrapolated to obtain
formal second-order accuracy in time. The main advantage of this method is that
a fixed amount of computation is performed at each time step, and no iteration is
necessary. This is unlike classical domain decomposition (DD) algorithms such as
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Fig. 1 A branched structure,
with nodes indicated

Schwarz methods [1, 3, 11, 14] or waveform relaxation methods [7–10], where one
must iterate to convergence (or to some fixed tolerance), and the number of iterations
generally increases as the grid is refined. Thus, a suitable extension of the CNPC
method for 2D and 3D problems can be useful for parallel-in-time methods such as
Parareal [6, 13], where fast coarse integrators are needed. Other DD-type methods
with a fixed cost per time step have been proposed in [4] and [16]; both are only first
order accurate under simultaneous refinement in space and time.

Our main goal is to present in detail a generalization of the CNPC method
that can be used to solve 2D problems with many subdomains in parallel. This is
done in Sect. 2. In particular, we show how the backward Euler correction step for
the interface can be implemented efficiently, even in cases where the subdomain
interfaces are coupled through cross points. To fix ideas, we have chosen a finite
volume discretization in space, although similar techniques can be used for other
discretizations. In Sect. 3, we examine the convergence of the CNPC method. We
will see that the method indeed converges as the mesh size h ! 0 the time step
 satisfies  D O.h˛/ for ˛ � 1. In fact, the method attains full second order
accuracy for ˛ � 3=2; it is however only first order accurate when  D O.h/.
Finally, numerical results in Sect. 4 illustrate the behavior of the method for many
subdomains.

2 The CNPC Algorithm

To define the CNPC algorithm, we will assume that the domain ˝ is divided into
shape regular, quasi-uniform and conforming control volumes Vi , i D 1; : : : ; n,
with diameter hi � h, see Fig. 2. If we discretize (1) in space using a finite volume
method, we get a semi-discrete ODE system of the form

M@tu.t/C Au.t/C Bu� .t/ D Mg.�; t/: (2)

Here, u.t/ are the unknown values at the nodal points at time t ,A 2 Rn�n is a sparse,
symmetric positive definite matrix whose entries aij are non-zero and of O.1/
(constant with respect to h) if and only if volumes i and j are neighbors.B 2 Rn�n�
contains the dependence on the Dirichlet boundary values; its entries are also O.1/.
u� .t/ 2 Rn� contains the Dirichlet boundary values at time t .M is a diagonal mass
matrix whose .i; i/ entry is the area of Vi ; thus, the elements ofM are of sizeO.h2/.
g.�; t/ is a vector whose elements are the values of g at the nodes; we will use this dot
notation to denote the vectors of samples of other functions elsewhere in this paper.
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Fig. 2 Decomposition into
interface (light and dark
gray) and interior (white)
cells and their corresponding
unknowns. Light gray
corresponds to edge nodes
and dark gray to cross points

We now divide the unknowns into two subsets, the interface unknowns V1 and the
interior unknowns V2. We also define two corresponding projectors X1;X2 2 Rn�n
such that X1u projects onto V1, i.e., it leaves all the values in V1 unchanged and sets
all the other entries to zero, and X2 does the opposite. Thus, we have X2 D I � X1
and X1X2 D X2X1 D 0. Note that X1 and X2 commute with M , since the latter is
diagonal.

We are now ready to define the CNPC algorithm. For a given time-step size 
and an approximation un � u.�; tn/, one step of the CNPC method proceeds as
follows:

(i) Predict the interface values at t D tnC1=2 using forward Euler: calculate u�
using

M.u� � un/
=2

D �X1.Aun C Bu� .tn//CX1Mg.�; tnC1=2/;

Note that X2.u�� un/ D 0, so interior node values are not altered by this step.
(ii) Using the predicted values X1u� as boundary values, solve for u�� in

M.u�� � un/
=2

D �X2
�

A.X1u� CX2u��/C B
	u� .tn/C u� .tnC1/

2

�

�

CX2Mg.�; tnC1=2/;

where both u� .tn/ and u� .tnC1/ are known. This corresponds to a backward
Euler step for the interior unknowns V2; the interface values are not updated.
Note that this step requires solving a linear system with the matrix M C

2
X2AX2.

(iii) Compute unC1=2 by correcting the interface values at t D tnC1=2 with backward
Euler, using u�� as boundary values:

M.unC1=2� u��/
=2

D �X1
h

A.X1unC1=2CX2u��/CB
	u� .tn/Cu� .tnC1/

2

�i

CX1Mg.�; tnC1=2/:
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This is a backward Euler step for the interface nodes, since their values have not
been updated in the previous steps, i.e., we have X1u�� D X1un. For the other
nodes, we have X2unC1=2 D X2u��, i.e. we reproduce the values obtained in
step 2. Here one needs to solve a linear system with matrix M C 

2
X1AX1.

(iv) Extrapolate to obtain unC1:

unC1 D 2unC1=2 � un:

Note that there is no iteration to convergence, since each of the above is only
performed once per time step.

2.1 Parallelization

We only need consider how to solve linear systems with matrices Ai D M C

2
XiAXi (i D 1; 2) in parallel, since the other operators are local in nature and

easy to parallelize. For the matrix A2 D M C 
2
X2AX2 (step 2), we note that the

interior nodes V2 are naturally decomposed into disconnected “subdomains” whose
only connections are through the interface nodes V1. Thus, A2 is block diagonal,
with blocks corresponding to subdomains or to individual nodes in V1. As a result,
if we assign each subdomain to its own processor, step 2 can be solved in parallel.

Next, we need to solve systems involving A1 D M C 
2
X1AX1 (step 3). This

is a block diagonal matrix whose largest block is of the same size as V1, so it is
much smaller than the original system. Also note that X1AX1 (and hence A1) is
sparse, with nonzero entries corresponding to neighboring interface nodes only.
This is unlike a Schur complement approach, where the elimination of interior
nodes introduces additional connections between non-neighboring interface nodes.
However, the unknowns corresponding to edges from different subdomains are
coupled through cross points, see Fig. 2, leading to a system that is globally coupled.

We now show how we can overcome this bottleneck by reducing the interface
system to an even smaller one that has only as many variables as there are cross
points in the domain. Let N be the number of subdomains, i.e., the number
of connected components of V2. We partition the set V1 of interface nodes into
edges fE1; : : : ;Emg between subdomains and C , the set of cross points, so that

V1 D C [
	

[mjD1Ej
�

. We now permute the blocks of A1 so that edges are ordered

first and the cross points last. If we let uj be the unknowns corresponding to Ej and
v be those belonging to cross points, we get

2

6

6

6

6

6

4

E1 G1
E2 G2

: : :
:::

Em Gm
GT
1 G

T
2 � � � GT

m C

3

7

7

7

7

7

5

0

B

B

B

B

B

@

u1
u2
:::

um
v

1

C

C

C

C

C

A

D
N
X

iD1
f i ;
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where Ej are sparse matrices corresponding to couplings within Ej , Gj are the
connections between Ej and the cross points, and C represents the connections
among cross points themselves (typically C D 0). The f i represent contributions
of subdomain i to the right-hand side, e.g., contributions from nodes in subdomain i
that are adjacent to Ej . Then the Schur complement with respect to the cross points
becomes

	

C �
m
X

jD1
GT
j E
�1
j Gj

�

v D RC
N
X

iD1

m
X

jD1
.I � RTj GT

j E
�1
j Rj /f i ; (3)

where Rj is the restriction from V1 to Ej , j D 1; : : : ; m and RC the restriction
from V1 to C . Thus, each term in the sum on the right-hand side can be computed
independently by subdomain i ; moreover, since edges are one-dimensional, Ej
is typically a tridiagonal matrix that can be factored easily. In addition, Rjf i is
nonzero only if Ej is an edge of subdomain i , so the inner sum contains only as
many terms as there are edges in the subdomain boundary. Thus, the contribution
GT
j E
�1
j Gj and the corresponding right-hand side can be calculated in parallel, and it

remains to solve the Schur complement system, whose size is typically comparable
to the number of subdomains. Once v is known, the uj can be calculated in parallel
by back substitution, which completes Step 3 in the CNPC algorithm. Thus, the cost
of the coarse solve is low, similar to the cost of one coarse grid correction step in
other domain decomposition methods, such as FETI-DP [5].

3 Convergence of the CNPC Method

In this section, we outline the convergence analysis of the CNPC method under
simultaneous time and spatial grid refinement. For more details, see [12]. For ease
of presentation, we assume a uniform rectangular grid in which all control volumes
are of size h2, so that M D h2I . Then (2) is a second-order discretization of (1):

�L u.�; t/ D 1

h2
ŒAu.�; t/C Bu� .t/�CO.h2/:

We assume that the boundary data and source terms are sufficiently smooth, so that
u.x; t/ has as many continuous spatial and temporal derivatives as needed.

Lemma 1. The CNPC method can be written as

DunC1 C k

2
.I C k

2
X2AX1/Bu� .tnC1/ D Cun � k

2
.I � k

2
X2AX1/Bu� .tn/

Cg.�; tnC1=2/;

where k D =h2,D D .IC k
2
X2A/.IC k

2
X1A/ and C D .I � k

2
X2A/.I � k

2
X1A/.

Moreover, the stability matrix D�1C satisfies kD�1CkW < 1 for any  > 0 and
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Fig. 3 Local truncation error of the CNPC method for a 1D two-subdomain problem with ut D
uxx C g.x; t/,  D hD 1=n, where n D 20; 40; 80

h > 0, where k � kW is induced by the vector norm kuk2W WD uT .I C k
2

AX1/A.I C
k
2
X1A/u:

Recall that the classical Crank–Nicolson method can be written as

.I C k

2
A/unC1 C k

2
Bu� .tnC1/ D .I � k

2
A/un � k

2
Bu� .tn/C g.�; tnC1=2/:

Thus, we see that CNPC and the classical Crank–Nicolson (CN) method differ by

O�n WD k2

4
X2AX1ŒA.unC1 � un/C B.u� .tnC1/� u.tn//�

D � 
3

4h2
X2AX1

�

L .@tu.�; tnC1=2//CO.h2/
�

:

This observation, combined with the fact that the truncation error of CN is
O.2 C h2/, yields the following lemma.

Lemma 2. The local truncation error �n of the CNPC method at time step n

satisfies

�n D 
�

� 
2

4h2
X2AX1

	

L .@tu.�; tnC1=2//CO.2/CO.h2/
�

CO.2/CO.h2/
�

:

In particular, if  D O.h˛/ with ˛ � 1, then �n D  � ŒO.h2/CO.h2˛�2/�:
Note that the O.h2˛�2/ term comes from the term 2

4h2
X2AX1. Figure 3 shows the

local truncation error for a two-subdomain decomposition with  D O.h/, for which
Lemma 2 predicts �n= D O.1/. Although this is true near the interface, we observe
that the error is much smaller away from the interface, where X2AX1 vanishes.

Let "n WD u.�; tn/� un denote the global error of the method at step n. If "0 D 0,
i.e., if the correct initial conditions are used, then a standard argument shows that
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"n D
n
X

jD1
.D�1C /n�jD�1�j�1:

We now split �n into the interface part O�n and the O.h2/ part and treat them
differently. The smoothness of O�n in time allows us to prove the following lemma.

Lemma 3. Let O"n D Pn
jD1.D�1C /n�jD�1 O�j�1 be the global error due to the

interface. Then

kO"nkA � 42 � max
0	l	n�1

kX2AX1zlkA�1 CO.4/;

where z0 D �L @tu.�; t1=2/ and zl D �L @2t u.�; tl / for l � 1.

Since kukH1.˝/ is spectrally equivalent to ku.�/kA, we can use Lemma 3 to obtain
a bound for k"nkH1.˝/. To do so, we estimate

kX2AX1zlkA�1 D kA�1=2.I � X1/AX1zlk2 � kA1=2X1zlk2
C
p

kX1A�1X1k2 � kAX1zlk2:

But X1A�1X1 D S�11 , where S1 is the Schur complement of A with respect to the
interface. Thus, we can invoke the well-known Sobolev estimate [17, Lemma 4.11],
cf. [2], which states that for a decomposition of ˝ into shape-regular, conforming
subdomains with diameterH , we have the condition number estimate

	.S1/ WD kS1k2kS�11 k2 �
C

Hh
:

Since A has been scaled in such a way that kS1k2 D O.1/, we conclude that
kS�11 k2 � Ch�1H�1. Additionally, since there are O.h�1/ points per interface
and O.H�1/ interfaces, we have kX1zlk2 D O.h�1=2H�1=2/. Combining these
estimates leads to our main result.

Theorem 1. Let ˝ be partitioned into shape-regular, conforming subdomains ˝i

with diameter� H . Then for  D �h˛ for � > 0 and ˛ � 1, the error of the CNPC
method satisfies

k"nkH1.˝/ � Chˇ

H
; (4)

where ˇ D minf2˛ � 1; 2g:
Thus, for a fixed number of subdomains, the method is second order if and only if
˛ � 3=2. For ˛ D 1, i.e., for  D O.h/, the method is only first order, unlike
the classical CN method; this is due to the local inconsistency near subdomain
interfaces.
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Fig. 4 Error of the CNPC scheme for the 2D heat equation ut ��u D g.x; y; t/ on ˝ D .0; 1/2

Table 1 Maximum L2 error for the 2D example

 D h  D h3=2

Subdomains per direction (N D 1=H ) Subdomains per direction (N D 1=H )
n D 1=h 2 4 8 16 2 4 8 16

16 7.540e�02 2.347e�01 3.300e�01 5.888e�02 6.585e�02 7.165e�02
32 2.265e�02 1.399e�01 2.330e�01 3.185e�01 1.448e�02 1.397e�02 1.392e�02 1.402e�02
64 1.291e�02 7.602e�02 1.382e�01 2.391e�01 3.607e�03 3.425e�03 3.296e�03 3.168e�03
128 6.941e�03 4.006e�02 7.405e�02 1.397e�01 9.010e�04 8.513e�04 8.107e�04 7.571e�04
256 3.597e�03 2.053e�02 3.838e�02 7.426e�02 2.252e�04 2.124e�04 2.015e�04 1.860e�04

4 Numerical Results

We apply the CNPC method to solve

@tu ��u D g.x; y; t/; .x; y/ 2 ˝ D .0; 1/	 .0; 1/;

The domain˝ is decomposed into 4	4 equal subdomains, and the PDE discretized
using a standard 5-point finite difference stencil in space. The initial conditions
u.x; y; 0/ and the source term g.x; y; t/ are chosen so that the exact solution is
u.x; y; t/ D sin.3�x/.1 � e2y/.1 � ey�1/p1C t : Figure 4 shows the maximum
L2 and H1 error of the method over the time interval t 2 .0; 1/, with  D h˛ for
˛ D 1; 3

2
; 2. As predicted by Theorem 1, the error behaves likeO.h/ for  D h, and

O.h2/ for ˛ D 3
2

and 2. Moreover, we also see that using the finer time step  D h2
only improves the error marginally when compared to  D h3=2.

Table 1 shows the error of the method for  D h and  D h3=2, when
˝ is decomposed into N 	 N subdomains with N D 1=H . We see that for
 D h, the estimate (4) is sharp; indeed, the errors are approximately constant
along the diagonals, except for the column N D 2. For  D h3=2, the estimate
is too conservative, as the error does not deteriorate as the number of subdomains
increases. This appears to be a 2D effect, since the estimate is sharp for  D h3=2
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in the 1D case. Thus, there appears to be a subtle interplay between temporal and
spatial interpolation errors that gives rise to this “superconvergence” behavior.

5 Conclusions and Outlook

The CNPC method allows one to solve diffusion problems in parallel to second-
order accuracy without iterating, provided  D O.h3=2/ or smaller. For 3D
problems, the Schur complement (3) becomes much denser; one alternative is to
use a two-level approach, by first correcting the face values using explicit edge and
vertex values, and then correct the edge and vertex values using the face values.
The error analysis for this variant, as well as for more general equations (e.g. the
advection-diffusion equation), will be the subject of a future paper.
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Heterogeneous Coupling for Implicitly
Described Domains

Christian Engwer and Sebastian Westerheide

1 Introduction

Many applications in physics, biology or chemistry exhibit complex geometrical
shapes. Often these models feature partial differential equations (PDEs) on the
complex shaped domain and its surface. At the same time the domain might be
time-dependent, e.g. in cell biology the shape of a cell depends on its internal state
and couples back to the cell metabolism, cf. [12]. Modern imaging techniques yield
high resolution data of microscopic structures and thus allow us to exploit direct
simulations.

Constructing suitable meshes for complex geometries is a very involved task,
thus methods to decouple the computational mesh from the geometry are of great
interest. In the context of Fictitious Domain Methods a wide range of methods
was developed; we want to mention explicitly the Unfitted Finite Element Method
[2, 3, 13], which we build upon. These methods formulate the original problem
as a problem embedded in a larger domain. Different ways of incorporating the,
now internal, boundary conditions are described in the literature. Examples for
applications to coupled problems can be found using XFEM [9, 10], or using
fictitious domain and mortar methods [1]. Many of these methods have been
developed for engineering applications and are not directly applicable to biological
problems as certain processes, e.g. topology changes cannot be captured. An
alternative class of methods uses implicit domain descriptions as level sets [17], or
phase-field models [5, review paper]. Both approaches have been applied to coupled
problems (e.g. [6, 18]), but due to the diffusive representation of the coupling
interface these methods can lead to numerical artifacts, including spurious fluxes.
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In this work we present a new approach to incorporate processes on manifolds
in a heterogeneous domain-decomposition framework for implicitly described
geometries. Although using a level set formulation, we avoid a diffuse coupling
interface by utilizing an explicit reconstruction. It uses concepts of the Unfitted
Finite Element Method and can be directly applied to image data.

Outline The paper is structured as follows. In Sect. 2 we discuss how domains
can be described implicitly and in the following section we introduce the model
problem. Section 4 describes the numerical scheme, starting with the Unfitted
Discontinuous Galerkin approach for volume equations and then presenting a
consistent approach for equations on the surface as well as the way of imposing
coupling conditions. Finally, a numerical example is discussed in Sect. 5.

2 Implicitly Described Domains

For each t 2 Œ0; T �, T > 0, let˝.t/ � Rn be a Lipschitz bounded domain and � .t/
its boundary, with � denoting the outward pointing unit normal vector field to � .t/.

By embedding ˝.t/ in a larger stationary domain Ő , it is possible to describe
˝.t/ using the so-called level set approach [14]. It captures the geometric informa-
tion and motion of a moving interface from an Eulerian point of view in terms of
a level set function and an associated PDE. A level set function is a scalar function
˚.x; t/ defined in Ő 	 Œ0; T � with

˚.x; t/

8

ˆ

ˆ

<

ˆ

ˆ

:

< 0 for x 2 ˝.t/;
D 0 for x 2 � .t/;
> 0 else;

like illustrated in Fig. 1. For each t the interface � .t/ corresponds to the zero level
set ˚�1.0/ WD fx 2 Ő j ˚.x; t/ D 0g. ˚.x; t/ satisfies the level set advection
equation

˚t C v � r˚ D 0;

where v.x; t/ is a velocity field corresponding to the evolution of ˝.t/ and � .t/.
The level set approach allows for an elegant treatment of complex geometrical

morphologies with potential topology changes in a fully implicit way, as discrete
versions of ˚ can be defined using a fixed grid on Ő . It is convenient to choose an
appropriate Ő which allows to use a simple Cartesian grid.

In this paper we only consider static domains, i.e. v � 0. Eulerian formulations of
PDEs on moving domains contain additional terms corresponding to the transport of
information induced by domain movement, the so-called material derivatives. The
numerical schemes we present in Sect. 4 are extended accordingly by appropriate
transport terms.
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→ → &

Fig. 1 Given the fundamental mesh T . Ő / and a piecewise linear level set function ˚ (left), the
domain˝ and the Finite Element mesh T .˝/ are defined. Local triangulations of its cells En and
@En yield a partition of ˝ into integration parts

˚

En;k
�

and a piecewise linear reconstruction of �

3 Model Problem

Let u1 and u2 denote the concentrations of two scalar quantities on a static domain
˝ and its surface � , respectively. Conservation of these quantities with a diffusive
flux�D1ru1 in˝ and a diffusive surface flux�D2r� u2 together with an additional
reactive process on � leads to the model problem we want to consider. Given some
initial values u1.�; 0/ and u2.�; 0/, it reads

@tu1 D r � .D1ru1/ in ˝ 	 .0; T �; (1a)

@tu2 D r� � .D2r� u2/C r2
�

u1j� ; u2
�

on � 	 .0; T �; (1b)

D1ru1 � � D r1
�

u1j� ; u2
�

on � 	 .0; T �: (1c)

Here, r� denotes the tangential surface gradient as well as the induced surface
divergence. D1 and D2 are the particular volume and surface diffusivity tensors,
i.e. D2 maps the tangent space of � into itself at every point. r1 together with
r2 are potentially nonlinear terms which couple the processes in ˝ and � . For
example, they could describe transitions between u1 and u2. The coupling in Eq. (1a)
is due to its Robin-like boundary condition (1c), whereas r2 appears as a standard
surface reaction term in equation (1b).

4 Heterogeneous Coupling

We propose a new numerical scheme for solving problems like model problem (1).
It is based on the Unfitted Discontinuous Galerkin method (UDG) for solving PDEs
in ˝ and a level set based extension to surface PDEs. The method of lines [16] is
used to split spatial and temporal operators. A semi-discretization in space yields:
Find .u1;h; u2;h/ 2 L2.0; T IV1;h/ 	 L2.0; T IV2;h/ such that for each t 2 .0; T �

tvol.u1;h; v1;h; t/C avol.u1;h; v1;h; t/C c1.u1;h; u2;h; v1;h; t/ D 0 8v1;h 2 V1;h;
tsur.u2;h; v2;h; t/C asur.u2;h; v2;h; t/C c2.u1;h; u2;h; v2;h; t/ D 0 8v2;h 2 V2;h;

(2)



812 C. Engwer and S. Westerheide

where V1;h and V2;h denote discrete function spaces. The operators tvol and tsur

correspond to the two time derivatives @tu1 and @tu2 in problem (1). The elliptic
diffusion terms of Eqs. (1a) and (1b) are contained in the operators avol and asur,
respectively, and c1 and c2 are coupling operators which correspond to the terms r1
and r2. To get a fully discrete scheme, different time discretization schemes can be
used.

Bulk Discretization: The Unfitted Discontinuous Galerkin Method To treat the
bulk Eqs. (1a, 1c), we consider the UDG method [3], which is a general approach
for simulations on complicated domains. It uses the concepts of the Unfitted Finite
Element Method [2, 13] and discretizes PDEs on an unfitted mesh, i.e. the domain
boundary � is not resolved by the mesh. For an easy implementation, this so
called fundamental mesh is chosen to be the same mesh as for the discrete level
set function. Shape functions are defined on the unfitted mesh and their support is
restricted to˝ . We use a Discontinuous Galerkin (DG) discretization. This allows to
easily incorporate local mass conservation and to use higher order shape functions.

Based on the fundamental mesh T . Ő / WD
n OE0; : : : ; OEM�1

o

, a Finite Element

mesh for domain˝ is defined by intersecting˝ and T . Ő / (see Fig. 1):

T .˝/ WD ˚En D ˝ \ OEn
ˇ

ˇ OEn 2 T . Ő /; jEnj > 0
�

:

The elements En can be arbitrarily shaped and in general will not be convex. Using
standard DG shape functions on T . Ő / with their support restricted to the elements
in T .˝/, the resulting Finite Element space is defined by

V1;h WD
n

v 2 L2.˝/
ˇ

ˇ

ˇ

vjEn 2 Pk 8En 2 T .˝/
o

;

Pk being the space of polynomial functions of degree k. V1;h is discontinuous on
the internal skeleton �int WD

˚

�n;m D @En \ @Em
ˇ

ˇ En;Em 2 T .˝/; En ¤
Em; j�n;mj > 0

�

; with j�n;mj denoting the codimension one volume of �n;m, but not
on the external skeleton �ext WD

˚

�n D @En \ @˝
ˇ

ˇ En 2 T .˝/; j�nj > 0
�

: To
each �n;m D �m;n, we assign unit normal vector fields nEn � �nEm and arbitrarily
choose n WD nEn . Using the DG formulation described in [15], the operators which
result from Eq. (1a) read:

tvol.u1;h; v1;h; t/ WD d

dt

X

En2T .˝/

Z

En

u1;h v1;h dV;

avol.u1;h; v1;h; t/ WD
X

�n;m2�int

Z

�n;m

" h .D1rv1;h/�n iŒ u1;h ��h .D1ru1;h/�n iŒ v1;h � ds

C
X

En2T .˝/

Z

En

.D1ru1;h/ � rv1;h dV C
X

�n;m2�int

�

j�n;mjˇ
Z

�n;m

Œ u1;h �Œ v1;h � ds:
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Γ

Ω̂

Fig. 2 From left to right: Surface � embedded into the larger level set domain Ő , � and some
other level sets �r of ˚ , the same together with a Cartesian grid on Ő

Here, � and ˇ are appropriate stabilization parameters and " D ˙1. Furthermore,
Œ � � denotes the jump of a function v 2 V1;h on the interface between two adjacent
elements En, Em which is defined as Œ v � WD vj@En � vj@Em and the average h � i is
defined as h v i WD 1

2

�

vj@En C vj@Em
�

.
Assembling the local stiffness matrix requires integration over the volume of

each element En and different parts of its surface @En. As these mesh elements
might exhibit very complicated shapes, quadrature rules based on interpolation
functions are not directly applicable. Integration on the fundamental mesh also
does not work, since shape functions are discontinuous. In order to guarantee
accurate evaluation of integrals in an efficient manner, quadrature rules for irregular
shaped elements are constructed using a local triangulation of En. To do so, En is
subdivided into a disjoint set

˚

En;k
�

k
of simple geometric objects, i.e. simplices and

hypercubes. For each of these integration parts an efficient Gauss type quadrature
rule is available. For a piecewise linear approximation of the level set function, the
local triangulation can be efficiently constructed by applying a modified marching
cubes algorithm [3].

Extension to Surface Equations The pure surface part of model problem (1)
without the coupling term r2 reads

@tu2 D r� � .D2r� u2/ on � 	 .0; T �: (3)

To treat this equation, we combine the DG method with an implicit surface Finite
Element approach which was introduced in [7]. Similar to the method described in
[7], we make use of the implicit level set description of� . The basic idea is to extend
a surface diffusion equation like (3) and its solution to the whole level set domain
Ő by simultaneously formulating the .n�1/-dimensional PDE on all level surfaces

of ˚ . The resulting n-dimensional problem is solved using a DG discretization on
an arbitrary triangulation of Ő . See also Fig. 2. The solution of the original surface
problem is then obtained by restricting the higher dimensional solution to � .

In particular, we use that we can partition Ő into level surfaces

�r WD
˚

x 2 Ő ˇˇ ˚.x/ D r�
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with
S

r2.˚min;˚max/
�r D Ő , ˚min WD infx2 Ő ˚.x/, ˚max WD supx2 Ő ˚.x/. Note

that � D �0. First, we create a suitable extension D˚
2 of the surface diffusivity

tensor D2 to the level set domain Ő , such that we do not have any diffusion normal
to any level surface. In detail, D˚

2 is chosen such that D˚
2

ˇ

ˇ

�
D D2 and

D˚
2 �
? � � D 0 in Ő 	 .0; T � (4)

for every tangential vector �?, where we now denote by � the outward pointing
unit normal vector field to every level surface. Then the elliptic surface differential
operatorr� is extended to each level surface �r yielding a differential operatorr˚ .
Using these extensions, (3) is formulated on all level surfaces �r . This results in the
n-dimensional equation

@tu2 D r˚ �
�

D˚
2 r˚u2

�

in Ő 	 .0; T �:

Assuming that the level set function˚ is differentiable and satisfies a non-degenera-
cy conditionr˚ ¤ 0 in Ő [@ Ő , we can follow the approach from [7, Remark 3.3]
and reformulate the extended tangential surface divergence operatorr˚ . This results
in an equivalent equation

@tu2jr˚ j D r �
� QD˚

2 ru2
�

in Ő 	 .0; T �; (5)

with a modified diffusion tensor QD˚
2 WD jr˚ jD˚

2 P˚ . At every point in Ő ,
P˚ is the operator which projects onto the tangent space of the corresponding
level surface. Equation (5) is a usual parabolic diffusion equation in Rn with
a special mass density. In order to define a well-posed problem it has to be
supplemented by initial values and an appropriate boundary condition for u2 on
@ Ő . We choose initial values which are an arbitrary but continuous extension of
the original initial values chosen for Eq. (1b) and use the natural no-flux boundary
condition QD˚

2 ru2 � �@ Ő D 0, with the outer unit normal �@ Ő . Note that the
restricted solution on a particular level surface �r only depends on the values
of data on that surface as we do not have any diffusion in the normal direction
due to Eq. (4). Therefore it is independent of the solutions on any other level
surface. It can, however, be related to these solutions by the extensions of the
data. Furthermore, it is not affected by the artificial boundary condition as long
as �r does not intersect @ Ő . Further note that the solution on � , i.e. u2j� , solves
Eq. (3).

The initial-boundary-value problem resulting from Eq. (5) can be discretized on
the fundamental mesh T . Ő / by usual grid-based numerical methods. Using the
same DG formulation as for the volume part, we obtain:
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tsur.u2;h; v2;h; t/ WD d

dt

X

OEn2T . Ő /

Z

OEn

u2;h v2;h jr˚ j dV;

asur.u2;h; v2;h; t / WD
X

O�n;m2 O�int

Z

O�n;m

" h � QD˚
2 rv2;h

� � n iŒ u2;h ��h
� QD˚

2 ru2;h
� � n iŒ v2;h � ds

C
X

OEn2T . Ő /

Z

OEn

� QD˚
2 ru2;h

� � rv2;h dV C
X

O�n;m2 O�int

�

j O�n;mjˇ
Z

O�n;m

Œ u2;h �Œ v2;h � ds:

Here, we choose the discrete function space

V2;h WD
˚

v 2 L2. Ő / ˇˇ vj OEn 2 Pk 8 OEn 2 T . Ő /�;

and the jump Œ � � and average h � i act on functions from V2;h, targeting discontinuities
that lie on the internal skeleton of T . Ő /, which is defined by

O�int WD
˚ O�n;m D @ OEn \ @ OEm

ˇ

ˇ OEn; OEm 2 T . Ő /; OEn ¤ OEm; j O�n;mj > 0
�

:

Explicit Coupling of Bulk and Surface The volume coupling operator c1 results
from the way DG formulations include boundary conditions of Robin type. For
boundary condition (1c) we get

c1.u1;h; u2;h; v1;h; t/ WD �
X

�n2�ext

Z

�n

r1
�

u1;hj� ; u2;hj�
�

v1;hj� ds:

The surface coupling operator c2 is imposed directly along � by choosing

c2.u1;h; u2;h; v2;h; t/ WD �
X

�n2�ext

2 h

Z

�n

r2
�

u1;hj� ; u2;hj�
�

v2;hj� ds;

such that the native surface reaction term r2 from Eq. (1b) now acts like the lower
order term in a Robin-like inner boundary condition. The integrals over each �n are
efficiently evaluated using the local triangulation of the bulk discretization. In each

time step, this results in a globally coupled block system A D
	

Avol C1
C2 Asur

�

; which

can be solved fully coupled or using a Schwarz type iteration.

5 Numerical Example and Conclusion

We compute a problem from cell biology. Prior to cell division, the shape of a single
yeast cell can be idealized as a circular domain˝ � R2 whose surface � is the cell
membrane. We use Eq. (1) to model the intracellular pathway of a protein known
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Fig. 3 Left: Initial values on a circular shaped domain ˝ and its surface � . Right: Simulation
result at final time T D 500, using polynomial degree k D 1 and time step dt D 0:5; note the
localization of u2 on � at the lower left

as CDC42, where u1 and u2 denote its bulk and surface concentration. Diffusion
driven instabilities lead to clustering of CDC42 on the membrane, which triggers the
sprouting of a bud in areas of high concentration. The model uses coupling terms
r2.u1; u2/ WD �r1.u1; u2/ WD k1 �u1u22Ck2 �u1u2�k3 �u2, k1 WD 0:0036, k2 WD 0:0067,
k3 WD 0:01733, which describe transitions between CDC42 inside of the cell and on
its membrane, and constant diffusivities D1 WD 10, D2 WD 0:0025 DW D˚

2 .
In our simulation, we use a level set domain Ő D Œ0; 1�2 and a Cartesian

fundamental mesh T . Ő /which contains 32	32 elements. The cell˝ is positioned
in the center of Ő . It is described by a level set function˚.x/ WD kx�.0:5; 0:5/T k�
0:35 which is approximated using Q1 Finite Elements on T . Ő /.

The discretization is done using polynomial degree k D 1. For bulk discretization
we choose " D �1, the Interior Penalty Galerkin scheme. For the surface
discretization we use " D C1, the Nonsymmetric Interior Penalty Galerkin scheme.
The resulting semi-discretized problem (2) is solved using Newton’s method for
linearization and the fractional step �-method [11] for time discretization. As
shown in Fig. 3, random generated initial values for u1 and u2 lead to the expected
localization of u2 on the membrane.

Conclusion The proposed approach yields a unified setting for coupled volume
and surface problems. The same infrastructure can be used to implement the
discretization of both the volume and the surface part. Coupling conditions are
handled explicitly along the surface in an efficient way without additional effort.
At the same time we use an implicit description of the domain which makes the
method completely independent of the problem’s geometry. This level set based
Eulerian formulation makes the approach a promising tool for biological problems,
especially those which involve strongly evolving domains with potential topology
changes.

Future topics may include the application to evolving domain problems or a
thorough error analysis.
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NKS Method for the Implicit Solution
of a Coupled Allen-Cahn/Cahn-Hilliard System

Chao Yang, Xiao-Chuan Cai, David E. Keyes, and Michael Pernice

1 Coupled Allen-Cahn/Cahn-Hilliard System

Coupled Allen-Cahn/Cahn-Hilliard (AC/CH) systems, often found in phase-field
simulations, are prototype systems that admit simultaneous ordering and phase
separation. Numerical methods to solve coupled AC/CH systems are studied in
e.g., [2, 6, 8–11]. However, except for [9, 10], the above works are based on explicit
methods that require very small time step size to advance the solution and need many
time steps for long time integrations. Fully implicit methods enjoy an advantage that
the stability limit on the time step size is greatly relaxed. The purpose of this paper is
to study efficient and scalable algorithms based on domain decomposition methods
for the fully implicit solution of a coupled AC/CH system.

There are several different ways to couple the AC and the CH equations. Among
them we restrict our study to the original form introduced in [3], which is
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ˆ

ˆ

<

ˆ

ˆ

:

@u

@t
D r � c.u; v/r ıE.u; v/

ıu
;

@v

@t
D �c.u; v/

�

ıE.u; v/

ıv
:

(1)

where u and v are functions of x 2 ˝ � R2 and t 2 Œ0;C1/. Both u and v are
bounded with restrictions: u 2 Œ0; 1�, v 2 Œ�1=2; 1=2� and .u˙v/ 2 Œ0; 1�. Here the
first equation in (1) is the Cahn-Hilliard equation in which u represents a conserved
concentration field for the phase separation; the second equation in (1) is the Allen-
Cahn equation where v denotes a non-conserved order parameter for the anti-phase
coarsening.

In (1), the mobility c.u; v/ D u.1 � u/.1=4 � v2/ is degenerate at pure phases
and the density � is a positive constant. The free energy functionalE.u; v/ reads

E.u; v/ D
Z

˝

�

�

2
.jruj2 C jrvj2/C � .˚.uC v/C ˚.u � v//C ˛

2
u.1 � u/ � ˇ

2
v2
�

dx;

(2)

where ˚.z/ D z ln zC .1 � z/ ln.1 � z/ and � , � , ˛, ˇ are all positive constants. It
then follows that

ıE

ıu
D ���uC �˚ 0.uC v/C �˚ 0.u � v/� ˛.u � 1=2/;

ıE

ıv
D ���v C �˚ 0.uC v/ � �˚ 0.u � v/ � ˇv:

(3)

In the current study we consider periodic boundary conditions for both u and v.
Other boundary conditions lead to similar numerical results and the performance of
our proposed solver is not sensitive to them. The AC/CH system (1) is closed with
the above boundary conditions and an initial condition u D u0, v D v0 at t D 0.

2 Discretizations

We restrict our study in this paper to the case of a two-dimensional square domain
˝ . A second-order accurate cell-centered finite difference (CCFD) scheme on a
uniform mesh is applied to the system. The details of the CCFD scheme is omitted
here due to the page limit.

Special attention should be paid when considering the time integration of the
AC/CH system (1). Because of the high-order spatial differentiation in the system,
explicit methods become impractical due to the severe restriction on the time step
size. In order to relax the restriction and obtain the steady-state solution in an
efficient way, we use the fully implicit backward Euler scheme. We remark that due
to the co-existence of both diffusive and anti-diffusive terms in the AC/CH system,
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the backward Euler scheme is not unconditionally stable. Other more efficient and
accurate implicit schemes will be studied in a forthcoming paper.

After spatially discretizing the AC/CH system, u and v are replaced with their
cell-centered values U and V respectively. Denote the spatial discretizations of the
right-hand-sides in the two equations in (1) as M.U; V / and N.U; V / respectively,
the nonlinear algebraic system arising at each time step reads

8

ˆ

ˆ

<

ˆ

ˆ

:

Mk.U
kC1; V kC1/ WD U kC1 � U k

�tk
�M.U kC1; V kC1/ D 0;

Nk.U
kC1; V kC1/ WD V kC1 � V k

�tk
�N.U kC1; V kC1/ D 0;

(4)

where �tk is the step size and U kC1, V kC1 are the solutions for the k-th time step.
Due to the multiple temporal scales admitted by the AC/CH system, �tk is adap-
tively controlled by a method that is analogous to the switched evolution/relaxation
method [5, 7]. More specifically, we start with a relatively small time step size �t0

and adjust its value according to

�tk D max .1=r;min .r; s//�tk�1;

s D
�k.Mk�1.U k�1; V k�1/;Nk�1.U k�1; V k�1//T k2

k.Mk.U k; V k/;Nk.U k; V k//T k2
�p

;
(5)

for k D 1; 2; 3; : : :, where we use r D 1:5 and p D 0:75.

3 Newton-Krylov-Schwarz Solver

An inexact Newton method is applied to solve the nonlinear system (4) at each time
step. We denote the solution of (4) at the k-th time step asW kC1 D .U kC1; V kC1/T .
The initial guess X0 D W k is set to be the solution of the previous time step, then
the approximate solution XnC1 is obtained by

XnC1 D Xn C �nSn; n D 0; 1; : : : (6)

Here �n is the steplength determined by a linesearch procedure and Sn is the Newton
correction vector. To calculate Sn for each Newton iteration, a right-preconditioned
linear system

JnM
�1.MSn/ D �Fk.Xn/ (7)

is constructed and solved approximately by using a GMRES method that restarts
every 30 iterations. Here Fk.Xn/ D .Mk.Xn/;Nk.Xn//

T is the nonlinear resid-
ual and
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Jn D @Fk.Xn/

@Xn
(8)

is the Jacobian matrix.
In (4) M�1 is an additive Schwarz preconditioner. We first partition ˝ into np

non-overlapping subdomains˝p, p D 1; 2; : : : ; np. An overlapping decomposition
is obtained by extending each subdomain with ı mesh layers. Denote the over-
lapping subdomain as ˝ı

p. The one-level restricted additive Schwarz (RAS, [4])
preconditioner is

M�1 D
np
X

pD1
.R0p/

T inv.Bp/R
ı
p: (9)

Here Rıp and .R0p/
T serve as a restriction operator and an interpolation operator

respectively; their detailed definitions can be found in [4].
In (9), inv.Bp/ is either an exact or approximate inverse of the subdomain

problem defined by Bp . Choosing proper boundary conditions for the subdomain
problems has a great impact on the convergence of the RAS preconditioner. Since
the AC/CH system (1) contains two differential equations with different orders, it
is natural to impose different boundary conditions. For the first equation in (1) we
follow [12] by employing the following homogeneous boundary conditions

u D .ru/ � n D 0; @˝ıC1
p n@˝; (10)

where n is the outward normal of @˝ıC1
p . For the second equation in (1), the

boundary conditions are simply

v D 0; @˝ı
pn@˝: (11)

We remark that the above boundary conditions for the subdomain problems are
essential for the success of the NKS solver. Other boundary conditions are also
tested but only lead to poor convergence of GMRES. To solve the subdomain
problems, we use either a sparse LU factorization or a sparse incomplete LU (ILU)
factorization. In doing the factorization, we use a point-block ordering for the
subdomain matrix and keep the coupling between the two components at each mesh
cell. Within each time step, the factorization is only done once at the first Newton
iteration and is reused thereafter.

4 Numerical Experiments

We carry out numerical experiments on a Dell supercomputer located at the
University of Colorado Boulder. The computer consists of 1,368 compute nodes,
with two hex-core 2.8Ghz Intel Westmere processors and 24GB local memory in
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Fig. 1 Contour plots of the conserved concentration field u

each node. Our algorithm is implemented based on the Portable, Extensible Toolkits
for Scientific computations (PETSc, [1]) library. In the numerical experiments
we use all 12 cores in each node and assign one subdomain per processor
core. The relative stopping conditions for the Newton and GMRES iteration are
respectively 1 	 10�6 and 1 	 10�5.

4.1 Steady-State Solution

The test case we study here is taken from [11]. The initial condition for
the test is a randomly distributed state .U 0; V 0/ D .0:05 C ıu; ıv/, where
max.kıuk1; kıvk1/ � 0:05. The parameters are set as: ˛ D 4, ˇ D 2, � D 0:005,
� D 0:1, � D 0:001.

We run the test case on a 256 	 256 mesh with an initial time step size
�t0 D 0:001. The time step size is then adaptively controlled by using (5). Thanks
to the fully implicit method and the adaptive time stepping strategy, we are able to
obtain the steady-state solution at about t D 100, as seen in Figs. 1 and 2. From
the figures we observe that when t < 1:4 both the spinodal decomposition and the
order-disorder type instability occur but after that the order parameter quickly tends
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Fig. 2 Contour plots of the non-conserved order parameter v
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Fig. 3 Evolution history of the time step size (left panel) and the total free energy (right panel)

to zero as the conserved concentration field coarsens to a stabilized state. Provided
in Fig. 3 is the evolution history of the time step size and the total free energy. It can
be seen that by using the adaptive strategy, the time step is successfully adjusted by
several orders of magnitude. The total free energy decays and finally approaches to
its minimizer when the solution arrives at the steady-state.

We remark that because of the severe stability restriction on the time step size, it
is often difficult to obtain the steady-state solution when an explicit method is used.
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Table 1 Effects of different subdomain solvers

ILU(2) ILU(4) ILU(8) LU LU-blk LU-blk-reuse
#Newton n/c n/c n/c 41 41 41
#GMRES n/c n/c n/c 1,225 1,225 1,243
Time (s) n/c n/c n/c 138.6 89.2 65.6

Here “n/c” means no convergence

Table 2 Results on using different overlaps

ı 0 1 2 3 4 5 6
#Newton 41 41 41 41 41 41 41
#GMRES 21,274 2,482 1,243 840 642 513 440
Time (s) 205.6 95.3 65.6 55.7 45.7 50.8 52.0

In [11], although similar tests are conducted, no steady-state solutions are obtained
due to the explicit time stepping.

4.2 Parameters in the NKS Solver

To understand how the parameters in the Schwarz preconditioner affect the perfor-
mance, in the following experiments we run the test case on a 1152 	 1152 mesh
with 144 processor cores by using a fixed the time step size �t D 1:0 	 10�5 for
only the first 20 steps.

We first examine the effects of different subdomain solvers. The overlap size
is fixed at ı D 2. In Table 1 we show the total numbers of Newton and GMRES
iterations as well as the total compute time. Results for both LU and ILU with
different fill-in levels are provided. From the table we find surprisingly that GMRES
doesn’t converge when ILU is the subdomain solver, even with large fill-in levels.
When a sparse LU factorization is used as subdomain solver, although the point-
block version doesn’t change the number of iterations, the compute time is saved by
around 35% compared to the non-block version. To reduce the compute time, we
perform the subdomain LU factorization only once per time step, and reuse it for all
the Newton iterations within the same time step. By reusing the LU factorization the
total compute time is cut by around 26% despite of the slight increase of the number
of GMRES iterations. Based on the above observations, for all the following tests,
we use the point-block version of sparse LU factorization and reuse the factorization
within each time step.

We next investigate the performance of the NKS solver with different overlap
ı. Table 2 shows the total numbers of Newton and GMRES iterations as well as
the total compute time for ı D 0; 1; : : : ; 6. It is observed from the table that: (1) the
number of Newton iterations does not change as ı varies; (2) the number of GMRES
iterations reduces when ı becomes larger; and (3) the total compute time is optimal
for ı D 4 in the test. Therefore we use ı D 4 in our scalability tests.



826 C. Yang et al.

Fig. 4 Total numbers of Newton and GMRES iterations for the first 20 time steps

Fig. 5 Total compute time (left) and parallel scalability (right) results

4.3 Parallel Scalability

In the parallel scalability tests, we fix the overlap size to be ı D 4 and choose the
point-block version of the sparse LU factorization (reused with each time step) as
the subdomain solver. We run the tests on a 1152	1152mesh for 20 time steps with
�t D 1:0	 10�5 and gradually double the number of processor cores. As shown in
Fig. 4, when the number of processor cores is increased the total number of Newton
iterations stays unchanged while the total number of GMRES iterations increases
slightly. Further from Fig. 5 we observe that the total compute time is reduced almost
linearly as more processor cores are used. A total of 12:35 speedup is achieved when
the number of processor cores increases from 144 to 2;304, leading to a parallel
efficiency of 78:1%.
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Surrogate Functional Based Subspace
Correction Methods for Image Processing

Michael Hintermüller and Andreas Langer

1 Introduction

Recently in [3, 4, 6] subspace correction methods for non-smooth and non-additive
problems have been introduced in the context of image processing, where the non-
smooth and non-additive total variation (TV) plays a fundamental role as a regular-
ization technique, since it preserves edges and discontinuities in images. We recall,
that for u 2 L1.˝/, V.u;˝/ WD sup

˚R

˝
udiv�dx W � 2 ŒC 1

c .˝/�
2; k�k1 � 1

�

is
the variation of u. In the event that V.u;˝/ < 1 we denote jDuj.˝/ D V.u;˝/
and call it the total variation of u in ˝ [1].

In this paper, as in [6], we consider functionals, which consist of a non-smooth
and non-additive regularization term and a weighted combination of an `1-term
and a quadratic `2-term; see (1) below. This type of functional has been shown to
be particularly efficient to eliminate simultaneously Gaussian and salt-and-pepper
noise. In [6] an estimate of the distance of the limit point obtained from the
proposed subspace correction method to the global minimizer is established. In
that paper the exact subspace minimization problems are minimized, which are in
general not easily solved. Therefore, in the present paper we analyse a subspace
correction approach in which the subproblems are approximated by so-called
surrogate functionals, as in [3,4]. In this situation, as in [6], we are able to achieve an
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estimate for the distance of the computed solution to the real global minimizer. With
the help of this estimate we show in our numerical experiments that the proposed
algorithm generates a sequence which converges to the expected minimizer.

2 Notations

For the sake of brevity we consider a two dimensional setting only. We define ˝ D
fx1 < : : : < xN g 	 fy1 < : : : < yN g � R2, and H D RN�N , where N 2 N.
For u 2 H we write u D u.x/ D u.xi ; yj /, where i; j 2 f1; : : : ; N g and x 2 ˝ .
Let h D xiC1 � xi D yjC1 � yj be the equidistant step-size. We define the scalar
product of u; v 2 H by hu; viH D h2

P

x2˝ u.x/v.x/ and the scalar product of
p; q 2 H2 by hp; qiH2 D h2

P

x2˝hp.x/; q.x/iR2 with hz;wiR2 D
P2

jD1 zjwj
for every z D .z1; z2/ 2 R2 and w D .w1;w2/ 2 R2. We also use kuk`p.˝/ D
�

h2
P

x2˝ ju.x/jp
�1=p

, 1 � p <1, kuk`1.˝/ D supx2˝ ju.x/j and k � k, when any
norm can be taken.

The discrete gradient ru is denoted by .ru/.x/ D ..ru/1.x/; .ru/2.x// with
.ru/1.x/ D 1

h
.u.xiC1; yj / � u.xi ; yj // if i < N and .ru/1.x/ D 0 if i D N , and

.ru/2.x/ D 1
h
.u.xi ; yjC1/ � u.xi ; yj // if j < N and .ru/2.x/ D 0 if j D N , for

all x 2 ˝ . For! 2 H2 we define ' W R! R by '.j!j/.˝/ WD h2Px2˝ '.j!.x/j/,
where jzj D

q

z21 C z22. In particular we define the total variation of u by setting

'.t/ D t and ! D ru, i.e., jruj.˝/ WD h2Px2˝ jru.x/j.
For an operator T we denote by T � its adjoint. Further we introduce the discrete

divergence div W H2 ! H defined by div D �r� (r� is the adjoint of the gradient
r), in analogy to the continuous setting. The symbol 1 indicates the constant vector
with entry values 1 and 1D is the characteristic function of D � ˝ .

For a convex functional J W H ! NR, we define the subdifferential of J at v 2 H
as the set valued mapping @J.v/ WD ; if J.v/ D 1 and @J.v/ WD fv� 2 H W
hv�; u � viH C J.v/ � J.u/ 8u 2 H g otherwise. It is clear from this definition
that 0 2 @J.v/ if and only if v is a minimizer of J . Whenever the underlying space
is important, then we write @Vi J or @HJ .

3 Subspace Correction Approaches

As in [6] we are interested in minimizing by means of subspace correction the
following functional

J.u/ D ˛SkSu � gSk`1.˝/ C ˛T kT u � gT k2`2.˝/ C '.jruj/.˝/; (1)
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where S; T W H ! H are bounded linear operators, gS ; gT 2 H are given data,
and ˛S ; ˛T � 0 with ˛S C ˛T �  > 0. We assume that J is bounded from
below and coercive, i.e., fu 2 H W J.u/ � C g is bounded in H for all constants
C > 0, in order to guarantee that (1) has minimizers. Moreover we assume that
' W R ! R is a convex function, nondecreasing in RC with (i) '.0/ D 0 and
(ii) cz � b � '.z/ � czC b; for all z 2 RC for some constant c > 0 and b � 0.

Note that for the particular example '.t/ D t , the third term in (1) becomes the
well-known total variation of u in ˝ and we call (1) the L1-L2-TV model.

Now we seek to minimize (1) by decomposing H into two subspaces V1 and
V2 such that H D V1 C V2. Note that a generalization to multiple splittings
can be performed straightforwardly. However, here we will restrict ourselves to
a decomposition into two domains only for simplicity. By V c

i we denote the
orthogonal complement of Vi in H and we define by �V ci the corresponding
orthogonal projection onto V c

i for i D 1; 2.
With this splitting we want to minimize J by suitable instances of the following

alternating algorithm:
Choose an initial u.0/ DW u.0/1 C u.0/2 2 V1CV2, for example, u.0/ D 0, and iterate

8

ˆ

ˆ

<

ˆ

ˆ

:

u.nC1/1 D arg min
u12V1

J.u1 C u.n/2 /;

u.nC1/2 D arg min
u22V2

J.u.nC1/1 C u2/;

u.nC1/ WD u.nC1/1 C u.nC1/2 :

(2)

Differently from the case in [6], where the authors solved the exact subspace
minimization problems in (2), we suggest now to approximate the subdomain
problems by so-called surrogate functionals (cf. [2–5, 8]): Assume a; ui 2 Vi ,
u�i 2 V�i , and define

J s.ui C u�i ; aC u�i / WD J.ui C u�i /C ˛T
�

ıkui C u�i � .aC u�i /k2`2.˝/ (3)

� kT .ui C u�i � .aC u�i //k2`2.˝/
�

D J.ui C u�i /C ˛T
	

ıkui � ak2`2.˝/ � kT .ui � a/k2`2.˝/
�

for i D 1; 2 and �i 2 f1; 2g n fig, where ı > kT k2. Then an approximate solution
to minui2Vi J.u1 C u2/ is realized by using the following algorithm: For u.0/i 2 Vi ,

u.`C1/i D arg min
ui2Vi

J s.ui C u�i ; u.`/i C u�i /; ` � 0;

where u�i 2 V�i for i D 1; 2 and �i 2 f1; 2g n fig.
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The alternating domain decomposition algorithm reads then as follows:
Choose an initial u.0/ DW Qu.0/1 C Qu.0/2 2 V1CV2, for example, u.0/ D 0, and iterate

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

(

u.nC1;0/1 D Qu.n/1 ;
u.nC1;`C1/1 D arg min

u12V1
J s.u1 C Qu.n/2 ; u.nC1;`/1 C Qu.n/2 /; ` D 0; : : : ; L � 1;

(

u.nC1;0/2 D Qu.n/2 ;
u.nC1;mC1/2 D arg min

u22V2
J s.u.nC1;L/1 Cu2; u

.nC1;m/
2 Cu.nC1;L/1 /; mD 0; : : : ;M � 1;

u.nC1/ WD u.nC1;L/1 C u.nC1;M/
2 ; Qu.nC1/1 D �1 � u.nC1/; Qu.nC1/2 D �2 � u.nC1/;

(4)

where �1; �2 2 H have the properties (i) �1 C �2 D 1 and (ii) �i 2 Vi for i D 1; 2.
Let 	 WD maxfk�1k1; k�2k1g <1.

The parallel version of the algorithm in (4) reads as follows:
Choose an initial u.0/ DW Qu.0/1 C Qu.0/2 2 V1CV2, for example, u.0/ D 0, and iterate

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

(

u.nC1;0/1 D Qu.n/1 ;
u.nC1;`C1/1 D arg min

u12V1
J s.u1 C Qu.n/2 ; u.nC1;`/1 C Qu.n/2 /; ` D 0; : : : ; L � 1;

(

u.nC1;0/2 D Qu.n/2 ;
u.nC1;mC1/2 D arg min

u22V2
J s.Qu.n/1 C u2; u

.nC1;m/
2 C Qu.n/1 /; m D 0; : : : ;M � 1;

u.nC1/ WD u
.nC1;L/
1 Cu

.nC1;M/
2 Cu.n/

2
; Qu.nC1/1 D �1 � u.nC1/; Qu.nC1/2 D �2 � u.nC1/:

(5)

Note that we prescribe a finite number L and M of inner iterations for each
subspace, respectively. Hence we do not get a minimizer of the original subspace
minimization problems in (2), but approximations of such minimizers. Moreover,
observe that u.nC1/ D Qu.nC1/1 C Qu.nC1/2 , with u.nC1;L/i 6D Qu.nC1/i , for i D 1; 2, in
general.

We have that u.nC1;L/1 2 arg minu2H
n

J s.uCQu.n/2 ; u.nC1;L�1/1 CQu.n/2 / W �V c1 u D 0
o

:

Then, by Hiriart-Urruty and Lemaréchal [7, Theorem 2.1.4, p. 305] there exists an
�
.nC1/
1 2 Range.�V c1 /

� ' V c
1 such that

0 2 @HJ s.� C Qu.n/2 ; u.nC1;L�1/1 C Qu.n/2 /.u.nC1;L/1 /C �.nC1/1 : (6)

Analogously, we have that if u.nC1;M/
2 is a minimizer of the second optimization

problem in (4) or (5), then there exists an �.nC1/2 2 Range.�V c2 /
� ' V c

2 such that

0 2 @HJ s.u.nC1;L/1 C �; u.nC1;L/1 C Qu.nC1;M�1/2 /.u.nC1;M/
2 /C �.nC1/2 ; or (7)

0 2 @HJ s.Qu.n;L/1 C �; Qu.n;L/1 C Qu.nC1;M�1/2 /.u.nC1;M/
2 /C �.nC1/2 ; (8)

respectively.
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3.1 Convergence Properties

In this section we state convergence properties of the subspace correction methods
in (4) and (5). In particular, the following three propositions are direct consequences
of statements in [3, 4, 6].

Proposition 1. The algorithms in (4) and (5) produce a sequence .u.n//n inH with
the following properties:

(i) J.u.n// > J.u.nC1// for all n 2 N (unless u.n/ D u.nC1/);
(ii) limn!1 ku.nC1;`C1/1 � u.nC1;`/1 k`2.˝/ D 0 and limn!1 ku.nC1;mC1/2 �

u.nC1;m/2 k`2.˝/ D 0 for all ` 2 f0; : : : ; L� 1g andm 2 f0; : : : ;M � 1g;
(iii) limn!1 ku.nC1/ � u.n/k`2.˝/ D 0;
(iv) the sequence .u.n//n has subsequences that converge in H .

The proof of this proposition is analogous to the one in [3, Theorem 5.1].

Proposition 2. The sequences .Qu.n/i /n for i D 1; 2 generated by the algorithm in (4)

or (5) are bounded in H and hence have accumulation points Qu.1/i , respectively.

Proof. By the boundedness of the sequence .u.n//n we obtain kQu.n/i k D k�iu.n/k �
	ku.n/k � C <1 and hence .Qu.n/i /n is bounded for i D 1; 2. ut
Remark 1. From the previous proposition it directly follows by the coercivity
assumption on J that the sequences .u.n;`/1 /n and .u.n;m/2 /n are bounded for all
` 2 f0; : : : ; Lg and m 2 f0; : : : ;M g.
Proposition 3. Let u.1/1 , u.1/2 , and Qu.1/i be accumulation points of the sequences

.u.n;L/1 /n, .u.n;M/
2 /n, and .Qu.n/i /n generated by the algorithms in (4) and (5), then

u.1/i D Qu.1/i , for i D 1; 2.

One shows this statement analogous to the first part of the proof of [4,
Theorem 5.7].

Moreover, as in [6] we are able to establish an estimate of the distance of the limit
point obtained from the subspace correction method to the true global minimizer.

Theorem 1. Let ˛S �  , u� a minimizer of J , and u.1/ an accumulation point of
the sequence .u.n//n generated by the algorithm in (4) or (5). Then we have that

(i) u.1/ is a minimizer of J or
(ii) there exists a constant ˇ > 0 (independent of ˛T ) such that ku.1/�u�k`2.˝/ �

ˇ or

(iii) if ˛T <
�

ˇ2ı
for 0 < � � J.u.1//� J.u�/, then ku.1/ � u�k`2.˝/ � ˇ2kO�k`2.˝/

��˛T ıˇ2 ;
where k O�k`2.˝/ D minfk�.1/1 k`2.˝/; k�.1/2 k`2.˝/g and �.1/i is an accumulation

point of the sequence .�.n/i /n for i D 1; 2 defined as in (6)–(8) respectively, or
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(iv) if T �T is positive definite with smallest Eigenvalue � > 0, ˛T > 0 and kT k2 <
ı < 2� , then we have ku� � u.1/k`2.˝/ � kO�k`2.˝/

˛T .2��ı/ :

Proof. Since .u.nC1;L/1 /n, .u.nC1;L�1/1 /n, and .Qu.n/2 /n are bounded and based on

the fact that @J s.�; Q�/ is compact for any �; Q� 2 H we obtain that .�.n/1 /n
is bounded, cf. [6, Corollary 4.7]. By noting that .u.nC1;L/1 /n and .u.nC1;L�1/1 /n
have the same limit for n ! 1, see Proposition 1, we subtract a suitable
subsequence .nk/k with limits �.1/1 , u.1/1 , and Qu.1/2 such that (6)–(8) respectively

are still valid, cf. [9, Theorem 24.4, p 233], i.e., 0 2 @HJ
s.� C Qu.1/2 ; u.1/1 C

Qu.1/2 /.u.1/1 / C �
.1/
1 . By the definition of the subdifferential and Proposition 3

we obtain J.u.1// D J s.u.1/; u.1// � J s.v; u.1// C h�.1/1 ; u.1/ � viH �
J s.v; u.1// C k�.1/1 k`2.˝/ku.1/ � vk`2.˝/for all v 2 H . Similarly one can show

that J.u.1// � J s.v; u.1//Ck�.1/2 k`2.˝/ku.1/ � vk`2.˝/ for all v 2 H , and hence
we have

J.u.1// � J s.v; u.1//C kO�k`2.˝/ku.1/ � vk`2.˝/ (9)

for all v 2 H , where k O�k`2.˝/ D minfk�.1/1 k`2.˝/; k�.1/2 k`2.˝/g.
Let u� 2 arg minu2H J.u/. Then there exists a � � 0 such that J.u.1// D

J.u�/C �.

(i) If � D 0, then it immediately follows that u.1/ is a minimizer of J .
(ii) If � > 0, then from the coercivity condition we obtain that there exists a

constant ˇ > 0, independent of ˛T , such that ku.1/ � u�k`2.˝/ � ˇ < C1.
(iii) If ˛T <

�

ˇ2ı
for 0 < � � J.u.1//�J.u�/, then J.u.1// � J.u�/C �

ˇ2
ku.1/�

u�k2
`2.˝/

. Setting v D u� in (9) and using the last inequality we obtain

˛T

	

ıku� � u.1/k2
`2.˝/
� kT .u� � u.1//k2

`2.˝/

�

C kO�k`2.˝/ku.1/ � u�k`2.˝/

� �

ˇ2
ku.1/ � u�k2

`2.˝/
:

(10)

From the latter inequality we get k O�k2 � . �ˇ2 �˛T ı/ku.1/�u�k`2.˝/ and since

˛T ı <
�

ˇ2
we obtain

ˇ2kO�k
`2.˝/

��˛T ıˇ2 � ku.1/ � u�k`2.˝/:
(iv) If ˛T > 0 and T �T is symmetric positive definite with smallest Eigenvalue

� > 0, then the factor �

ˇ2
on the right hand side of the inequality in (10) is

replaced by ˛T � , cf. [6], and (10) reads as follows

˛T .��ı/ku��u.1/k2
`2.˝/
C˛T kT .u��u.1//k2

`2.˝/
� kO�k`2.˝/ku.1/�u�k`2.˝/:
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Fig. 1 Image of size 1920 � 2576 pixels which is corrupted by Gaussian blur with kernel size
15� 15 pixels and standard deviation 2, 4% salt-and-pepper noise, and Gaussian white noise with
zero mean and variance 0:01. In (a) decomposition of the spatial domain into stripes and in (b) into
windows

By using once more the symmetric positive definiteness assumption on T �T
we obtain from the latter inequality that ˛T .2� � ı/ku� � u.1/k2

`2.˝/
�

kO�k`2.˝/ku.1/ � u�k`2.˝/: If 2� > ı then we get ku� � u.1/k`2.˝/ � kO�k`2.˝/
˛T .2��ı/ :ut

4 Numerical Experiments

We present numerical experiments obtained by the parallel algorithm in (5) for
the application of image deblurring, i.e., S D T are blurring operators and
'.jruj/.˝/ D jruj.˝/ (the total variation of u in ˝). The minimization problems
of the subdomains are implemented in the same way as described in [6] by noting
that the functional to be considered in each subdomain is now the strictly convex
functional in (3).

We consider an image of size 1920	2576 pixels which is corrupted by Gaussian
blur with kernel size 15	 15 pixels and standard deviation 2. Additionally 4% salt-
and-pepper noise (i.e., 4% of the pixels are either flipped to black or white) and
Gaussian white noise with zero mean and variance 0:01 is added.

In order to show the efficiency of the parallel algorithm in (5) for decomposing
the spatial domain into subdomains, we compare its performance with the L1-L2-
TV algorithm presented in [6], which solves the problem on all of ˝ without any
splitting. We consider splittings of the domain in stripes, cf. Fig. 1a, and in windows
as depicted in Fig. 1b for different numbers of subdomains (D D 4; 16; 64).

The algorithms are stopped as soon as the energy J reaches a significance level
J �, i.e., when J.u.n// � J � for the first time. For reason of comparison we
experimentally choose J � D 0:059054, i.e., we once restored the image of interest
until we observed a visually satisfying restoration and the associated energy-value
as J �. In the subspace correction algorithm as well as in the L1-L2-TV algorithm
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Table 1 Restoration of the image in Fig. 1: Computational performance (CPU time in seconds
and the number of iterations) for the global L1-L2-TV algorithm and for the parallel domain
decomposition algorithms with ˛1 D 0:5, ˛2 D 0:4 for different numbers of subdomains
(D D 4; 16; 64)

# Domains Window-splitting Stripe-splitting
D D 1 (L1-L2-TV alg.): 11;944 s/131 it
D D 4: 2;374 s/27 it 2;340 s/27 it
D D 16: 2;914 s/27 it 2;982 s/27 it
D D 64: 7;833 s/27 it 8;797 s/28 it

Restored image

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−3 Norm of the Lagrange multiplier in first domaina b

Fig. 2 (a) Restoration of the image in this figure by the parallel subspace correction algorithm
in (5). (b) The progress of the minimal Lagrange multiplier �.n/

we restore the image by setting ˛S D 0:5, ˛T D 0:4, and ı D 1:1. The computations
are done in Matlab on a computer with 256 cores and the multithreading-option is
activated.

Table 1 presents the computational time and number of iterations the algorithms
need to fulfill the stopping criterion for different number of subdomains. We clearly
see that the domain decomposition algorithm for D D 4; 16; 64 subdomains is
much faster than the L1-L2-TV algorithm (D D 1). Since a blurring operator is in
general non-local, in each iteration u.n/ has been communicated to each subdomain.
Therefore the communication time becomes substantial for splittings into 16 or
more domains such that the algorithm needs more time to reach the stopping
criterion.

In Fig. 2 we depict the progress of the minimal Lagrange multiplier �.n/ WD
mini fk�.n/i k`2.˝/g, which indicates that the parallel algorithm indeed converges to
a minimizer of the functional J .
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Practical Aspects of Domain Decomposition
in Jacobi-Davidson for Parallel Performance

Menno Genseberger

1 Introduction

Most computational work in Jacobi-Davidson [7], an iterative method for large
scale eigenvalue problems, is due to a so-called correction equation. For this, to
reduce wall clock time and local memory requirements, [3, 5] proposed a domain
decomposition strategy that was further improved in [4] (Sects. 2 and 3).

Here we investigate practical aspects for parallel performance of the strategy by
scaling experiments on supercomputers (Sect. 4). This is of interest for large scale
eigenvalue problems that need a massively parallel treatment.

2 Domain Decomposition

In [3, 5] a domain decomposition preconditioning technique for the (approximate)
solution of the correction equation was proposed. This technique is based on
a nonoverlapping additive Schwarz method with locally optimized coupling
parameters by Tan and Borsboom [8, 9] (belonging to the class of optimized
Schwarz methods [2]).

For some partial differential equation (PDE) defined on a domain˝ with appro-
priate boundary conditions, ˝ is covered by a grid Ő and the PDE is discretized
accordingly, with unknowns defined on the grid points, yielding the linear system

B y D d: (1)

Now, the domain decomposition technique

M. Genseberger (�)
Deltares, PO Box 177, 2600 MH Delft, The Netherlands
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Fig. 1 Decomposition in one (left picture) and two dimensions (right picture)

1. Enhances the linear system (1) into BC y
 D d0 with the following structure
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(2)

in case of a two subdomain decomposition (generalization is straightforward).
Here ˝ is decomposed in two nonoverlapping subdomains ˝1 and ˝2 with
interface (or internal boundary) � (see Fig. 1). The subdomains are covered
by subgrids Ő 1 and Ő 2 with additional grid points located just outside the
subdomain near the interface � (the open bullets “ı” in Fig. 1) such that no
splitting of the original discretized operator (or stencil) has to be made. For B, the
labels 1; 2; `; and r , respectively, refer to operations on data from/to subdomain
˝1, ˝2, and left, right from the interface � , respectively. For y and d, the labels
1; 2; `; and r , respectively, refer to data in subdomain˝1,˝2, and left, right from
the interface � , respectively. Here, subvector y` (yr respectively) contains those
unknowns on the left (right) from � that are coupled by the stencil both with
unknowns in˝1 (˝2) and unknowns on the right (left) from � . Subvector Qyr ( Qy`
respectively) contains the unknowns at the additional grid points of the subgrid
for ˝1 (˝2) on the right (left) of � . For the unknowns on the additional grid
points additional equations are provided with the requirement that the submatrix
(the interface coupling matrix)

C �
�

C`` C`r
Cr` Crr

�

(3)

is nonsingular as for nonsingular C the solution y
 of (2) is unique, Qy` D y`
and Qyr D yr , and the restriction of y
 to y is the unique solution of the original
linear system (1) ([9, Theorem 1], [8, Theorem 1.2.1]).

2. Splits the matrix BC D MC � NC in a part MC , the boxed parts in (2) that do
not map elements from one subgrid to the other subgrid and a remaining part
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NC that couples the subgrids via the discretized interface with a relatively small
number of nonzero elements. (Therefore matrix vector multiplication with BC
can be implemented efficiently on distributed memory computers.)

3. Tunes the interface coupling matrix C defined in (3) such that error components
due to domain decomposition are damped in the Richardson iteration

y .iC1/
 D y .i/
 CM�1C .d0 � BC y .i/
 /: (4)

Note MC
�1BC D I � MC

�1NC , therefore error components are propagated by
MC
�1NC .

4. Computes a solution of the enhanced linear system from (4) or with a more
general Krylov method like GMRES [6] with Km.MC

�1 BC ;MC
�1 d0/ �

span.MC
�1 d0;MC

�1 BC MC
�1 d0; : : : ; .MC

�1 BC /m�1 MC
�1 d0/.

The key idea is to use the degrees of freedom, that we have created by the
introduction of additional unknowns near the interface, for damping the error
components. For this purpose, the spectral properties of M�1C NC for the specific
underlying PDE are analyzed. With results of this analysis, optimal coupling
parameters can be estimated, i.e. the interface coupling matrix C defined in (3)
can be tuned. In this way error components due to the splitting are damped “as
much as possible”, optimal choices result in a coupling that annihilates the outflow
from one domain to another: absorbing boundary conditions. This leads effectively
to almost uncoupled subproblems at subdomains. As a consequence, the number
of iterations required for convergence is minimal with minimal communication
overhead (due to the explicit step with NC ) between subdomains: an ideal situation
for implementation on parallel computers and/or distributed memory.

3 Jacobi-Davidson

For a standard eigenvalue problem A x D � x each iteration Jacobi-Davidson [7]

1. Extracts an approximate eigenpair .�;u/ � .�; x/ from a search subspace V:
constructH � V�A V, solveH s D � s, compute u D V s.

2. Corrects the approximate eigenvector u with a correction t ? u that is computed
from the correction equation:

P B P t D r where P � I � u u�

u�u
;B � A � � I; and r � �B u: (5)

3. Expands the search subspace with the correction t: VnewD ŒV j t?�where t??V.

The linear system described by the correction equation (5) may be highly
indefinite and is given in an unusual manner so that the application of the domain
decomposition technique needed further development and special attention.
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Similar to the enhancements (1) of the linear system (2) in Sect. 2, the following
components of the correction equation are enhanced: the matrix B � A � � I to
BC , the correction vector t to t
 and the vectors u and r to u0 and r0. With these
enhancements, a correction t
 ? u0 is computed from the following enhanced
correction equation [3, Sect. 3.3.2]:

P BC P t
 D r0 with P � I � u0u�0
u�0u0

: (6)

The preconditioner MC for BC is constructed in the same way as the ordinary
linear system case shown by the boxed parts in (2). However, because of the
indefiniteness, for the correction equation the matrices BC and MC are accompanied
by projections. Both for left and right preconditioning the projection is as follows:

P0 � I� M�1C u0 u�0
u�0 M�1C u0

: (7)

In case of left preconditioning (for right preconditioning see [3, Sect. 3.3.3]) we
compute approximate solutions to the correction equation from

P0M�1C BC P0 t
 D P0M�1C r0: (8)

However, there is more to gain. For approximate solutions of the correction
equation with a preconditioned Krylov method, the Jacobi-Davidson method is an
accelerated inexact Newton method that consists of two nested iterative solvers. In
the innerloop of Jacobi-Davidson a search subspace for the (approximate) solution
of the correction equation is built up by powers of M�1C .A � � I / for fixed � . In
the outerloop a search subspace for the (approximate) solution of the eigenvalue
problem is built up by powers of M�1C .A � � I / for variable � . As � varies slightly
in succeeding outer iterations, one may take advantage of the nesting by applying
the domain decomposition technique to the outer loop as was the subject of [4]. This
effectively leaded to two different processes:

• Jacobi-Davidson with enhanced inner loop, enhancement at intermediate level
with enhanced correction equation (6) and

• Jacobi-Davidson with enhanced outer loop, enhancement at highest level with a
slightly different correction equation

P BC P t
 D r
 with P � I� u0u�0
u�0u0

: (9)

The amount of work for both processes per outer iteration is almost the same.
However, Jacobi-Davidson with enhanced outer loop turned out to be faster as it
damps remaining error components from the previous outer iteration in the next
one.



Practical Aspects of Domain Decomposition in Jacobi-Davidson for Parallel. . . 843

4 Scaling Experiments

For the two processes, in [4, Sect. 5.1] different eigenvalue problems have been
considered including variable coefficients and large jumps. Here, to investigate
practical aspects for parallel performance, we consider the eigenvalue problem for
the Laplace operator as results for different numbers of subdomains show more
regular behavior (see for instance Fig. 3 in [4]). Except for the first experiment
about different decompositions, in all experiments we take for the domain ˝ the
unit square, decompose˝ in p square subdomains, and cover each subdomain by a
256	256 subgrid. Jacobi-Davidson is started with a parabolic shaped vector x . 1�
x / y . 1 � y / for 0 � x � 1 and 0 � y � 1 (see also [3, Sect. 3.5.1]) to compute
the most global eigenvector (for which the corresponding eigenvalue is the closest
one to zero) of the two-dimensional Laplace operator on ˝ until the residual norm
of the approximate eigenpair is less than 10�9. We apply right preconditioning in
the enhanced correction equation for exact solves with the preconditioner (i.e. exact
subdomain solves) to enable a Schur complement approach. The preconditioner MC

is constructed only once, at the first Jacobi-Davidson outer iteration. The remaining
linear system is solved with GMRES [6].

Implementation is in Fortran77 with calls to BLAS, LAPACK, and MPI. Note,
however, that Fortran compiler, BLAS, LAPACK, and MPI versions differ on the
specific hardware which is of influence on the (parallel) performance. Scaling
experiments are performed on the following hardware:

• Curie linux-cluster (2 Intel eight 2.7 GHz core E5-2680 node, InfiniBand QDR,
Intel Fortran 12, BLAS/LAPACK from MKL, Bull X MPI),

• H4+ linux-cluster (1 Intel quad 3.4 GHz core i7-2600 node, 1 GB/s Gigabit
Ethernet, Intel Fortran 11, MPICH2),

• IBM POWER5+ system Huygens (16 IBM single 1.9 GHz core Power5+ node,
1.2 GB/s InfiniBand, XL Fortran 10, BLAS from ESSL, MPI from IBM PE),

• IBM POWER6 system Huygens (16 IBM dual 4.7 GHz core Power6 node,
160 GB/s InfiniBand, XL Fortran 12, BLAS from ESSL, MPI from IBM PE),

• Lisa 2008 linux-cluster (1 Intel Xeon 3.4E GHz core node, 800 MB/s InfiniBand,
GFortran, MPICH2),

• Lisa 2012 linux-cluster (2 Intel eight 1.8 GHz core Xeon E5-2650L node, Intel
Fortran 12, BLAS/LAPACK from MKL, OpenMPI),

On the H4+ and Lisa 2008 linux-clusters one subdomain is assigned to one node.
On the other hardware one subdomain is assigned to one core. Results presented
here are averages of three measured wall-clock times.

First we study different decompositions for a fixed number of subdomains for
the same (discretized) eigenvalue problem. We keep the overall grid fixed to a size
of 1024	1024 gridpoints and consider configurations with a 1	16, 2	8, 4	 4,
8	2, and 16	1 decomposition, respectively (resulting in subgrids of size 1024	64,
512	128, 256	256, 128	512, and 64	1024, respectively). So the number of
subdomains is 16 with 65,536 unknowns per subdomain in all configurations, but
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Fig. 2 Residual norm of the approximate eigenpair as a function of the Jacobi-Davidson outer
iteration for the different decompositions with GMRES(8) (top) and GMRES(4) (bottom)

the subdomains differ in shape. Figure 2 shows the residual norm of the approximate
eigenpair as a function of the Jacobi-Davidson outer iteration for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for a
fixed number of 8 (top) and 4 (bottom) inner iterations with GMRES. As expected,
the convergence histories for configurations which are mirrored (for instance 2	8
and 8	2) coincide. Decomposition in only one direction needs the least number
of outer iterations for convergence. For the tuning of the coupling between the
subdomains we only took into consideration the one dimensional character of the
error modes. For decompositions in two directions error modes will have a two
dimensional character and are therefore harder to damp. Figure 3 shows the residual
norm of the approximate eigenpair as a function of wall clock time for the different
decompositions. Shown are both enhanced innerloop and enhanced outerloop for
the Lisa 2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations
with GMRES. By comparing the mirrored configurations it can be observed that
the grid ordening may significantly lower the performance. This is mainly in the
construction of the preconditioner with LAPACK (initial horizontal lines in the
figure). Although processors of the H4+ linux-cluster are faster, use of the MKL
implementation of LAPACK resulted in a faster construction of the preconditioner at
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Fig. 3 Residual norm of the approximate eigenpair as a function of the wall clock time for the
different decompositions. Shown are both enhanced innerloop and enhanced outerloop for the Lisa
2012 and H4+ linux-cluster and a fixed number of 8 and 4 inner iterations with GMRES

the Lisa 2012 linux-cluster. After the construction of the preconditioner, the process
at the H4+ linux-cluster goes faster than the Lisa 2012 linux-cluster. At the H4+
linux-cluster communication is between 16 nodes over a relatively slow network, at
the Lisa 2012 linux-cluster communication is fast inside a 16 core node with shared
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Fig. 4 Massively parallel behavior on different hardware

memory. So, we may conclude that the process is dominated by computational work.
This confirms the remarks at the end of Sect. 2 about the minimal communication
overhead.

For the massively parallel behavior, we first extend Fig. 6 from [4] with results
from (weak) scaling experiments on more recent hardware (IBM POWER6 system
Huygens, Curie, and H4+). In Fig. 4 it can be observed that the trend holds, but now
for lower wall clock times as processor speed has increased further for the more
recent hardware.

To further investigate the weak scaling we start with a decomposition in 16
subdomains (on 1 node with 16 cores) on the Curie linux-cluster and increase
everytime the number of subdomains in both directions with a factor 2. From 16,
64, 256, 1,024, 4,096 to 16,384 subdomains (cores), resulting in up to more than
109 unknowns. For an efficient overall method, we will now use (see [1, Sect. 4])

kr.i/k2 < 2�j kr.0/k2 (10)

as a stopping criterion for the inner iterations (GMRES) at the j th Jacobi-Davidson
outer iteration. Here r.0/ is the residual at the start of the inner iterations and r.i/ the
residual at the i th inner iteration. Figure 5 shows the results for Jacobi-Davidson with
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Fig. 5 Massively parallel behavior on the Curie linux-cluster (quadratic scaling of the x-axis)

enhanced outerloop. Note that in this figure we choose the scaling of the x-axis to be
quadratic to have a better impression. The figure indicates that for a large number
of subdomains the wall clock doubles when the number of subdomains increases
in both directions with a factor 2. This can be explained from the local behavior
of the error modes due to domain decomposition: mainly one dimensional near the
interface. The additional work to damp these error modes effectively depends on
this local behavior.
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Low-Rank Update of the Restricted Additive
Schwarz Preconditioner for Nonlinear Systems

Laurent Berenguer and Damien Tromeur-Dervout

We consider the solution of differential equations of the form Eq. (1) for a given
initial condition y.0/ D y0 and suitable boundary conditions.

M Py D g.y; t/ (1)

In Eq. (1), g 2 C1.˝;Rn/ , for ˝ an open set in Rn 	 R� and M 2 Rn�n. This
equation is called a linear differential-algebraic equation (DAE) if the matrix M
is singular. The time discretization of Eq. (1) via backward differentiation formulas
leads to solving a system of nonlinear equations f .y/ D 0 for f W Rn ! Rn at
each time step. These equations are generally solved by Newton-like methods which
require the solution of numerous linear systems of the form:

Jk�xk D �f .xk/ (2)

where Jk 2 Rn�n is the Jacobian matrix of f at xk , or an approximation of it. In this
paper we deal with the solution of these linear systems by a parallel Krylov iterative
method. The condition number of the matrix Jk can be very large, hence, a good
preconditioner is required.

Preconditioners based on the additive Schwarz method are often used to
precondition sparse linear systems. The combination of a Newton method with
a Krylov method preconditioned by a Schwarz method is generally called Newton-
Krylov-Schwarz [6] and has widely be applied to CFD problems (see for example
[7,8,14]). In this paper we deal with the Restricted Additive Schwarz preconditioner
[5]. Computing and solving such linear systems is generally the most time
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consuming part of ODE/DAE integration codes, even if there are usually only
slight changes between two consecutive linear systems. When the analytic Jacobian
matrix is not available, a finite difference scheme is commonly used to approximate
it [12] or its matrix-vector product [15]. Another way to avoid the computation of
the Jacobian matrix is to update it from one iteration to another using quasi-Newton
methods [10] that converge superlinearly [4]. Since Krylov methods are used to
solve Eq. (2), providing a preconditioner is a critical point. A balance must be found
between the ability of the preconditioner to reduce the number of Krylov iterations,
and its computational cost. Then, one may want to update the preconditioner using
the secant condition in order to improve its efficiency. This idea is not new, and has
been widely discussed in [2, 3]. The aim of this paper is to extend these techniques
to domain decomposition based preconditioners such as the Restricted Additive
Schwarz preconditioner. First, we present the Broyden update and its application to
general preconditioners. Then we discuss the practical issues in applying this update
to the RAS preconditioner. The third part is devoted to numerical experiments on
the CFD problem of the lid-driven cavity.

1 The Update of the RAS Preconditioner

The preconditioned linear system of the Newton iterations can be written as:

GkJ.xk/�xk D �Gkf .xk/ (3)

or

J.xk/GkG
�1
k �xk D �f .xk/ (4)

depending on which side the preconditioner is applied.
For the sake of simplicity, we use the notations fk D f .xk/ and�fk D fkC1�fk

in the following. The quasi-Newton update ofGk , that satisfies the secant condition:

�xk D GkC1�fk (5)

is given by:

GkC1 D Gk C .�xk �Gk�fk/ vTk
vT �fk

for some vk (6)

Usually, vk is taken as �fk or GT
k �xk :

• If vk D GT
k �xk , then GkC1 minimizes kG�1kC1 �G�1k kF .

• If vk D �fk , then GkC1 minimizes kGkC1 �GkkF .

In both cases, the proof can be derived in straightforward manner from the proof
of Theorem 4.1 in [10]. In general, it is not possible to give an estimation of
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the effect of the update of the preconditioner in terms of condition number.
Nevertheless, it is possible to give a lower bound of condition number of the updated
preconditioned linear system. Let f�kg and fkg be the singular values ofGkJ.xkC1/
andGkC1J.xkC1/ D GkJ.xkC1/CuwT for wT D vT J.xkC1/. Then, the interlacing
property of the singular values [13, Theorem 6.1] gives:

8

<

:

�2 � 1;
�kC1 � k � �k; 1 < k < n
0 � n � �n�1;

(7)

Then,

	2.GkC1J.xkC1// D 1

n
� �2

�n�1
: (8)

The same results can be derived for right preconditioned linear systems, since a
rank-1 update of the preconditioner linear system leads to a rank 1 modification of
the preconditioned operator. This lower bound gives a limitation of the updating
procedure: it will not be efficient if the preconditioned linear system has a large set
of very high, or very low singular values.

Let us now illustrate the effect of the Broyden update on a manufactured problem.
��FD2 be the second order finite difference discrete 1D Laplacian operator for
homogeneous boundary conditions, associated to the eigenpairs f.Ui ; �i /g1	i	n
such that �i > �iC1. We define the nonlinear function F.v/ vanishing for v D 0

and its Jacobian J.v/ definite positive matrix, of eigenpairs f.�iU1 C Ui ; �i /g1	i	n,
with condition number 	2.J.v// D �1

�n
:

F.v/
defD .v; v/U1U

T
1 v

„ ƒ‚ …

nonlinear

��FD2v
„ƒ‚…

linear

(9)

J.v/h D 2.v; h/U1U
T
1 v C .v; v/U1U T

1 h ��FD2h (10)

�1 D .2.v; U1/
2 C .v; v/C �1/; �i D �i ; 2 � i � n; (11)

�1 D 0; �i D 2.v; U1/.v; Ui /

�i � �1 ; 2 � i � n: (12)

For the sake of simplicity in calculus, starting from X0 D x01U1 and

G0 D J.X0/�1, Newton’s and Broyden’s iterates give the same X1 D 2.x01/
3

�01
U1 and

the eigenvalue of G1J.X1/ associated to U1 is given by:

.G1J.X
1/U1 D �1

3 C 6 .x01/2�12 C 9 �1.x01/4 C 12 .x01/6
�1

3 C 7 .x01/2�12 C 17�1.x01/4 C 19 .x01/6
U1
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Algorithm 1 Time stepper with update of the RAS preconditioner
Require: restart parameter, initial guess x, k D 0

1: for each time step do
2: == Newton iterations:
3: repeat
4: if restart then
5: G0 P

i
QRTi Ji .x0/�1Ri == Local LU factorizations

6: k 0

7: end if
8: solve J.x/�x D �f .x/ with a Krylov method preconditioned by Gk .
9: x x C�x

10: GkC1 D Gk C .�xk �Gk�fk/ f Tk
f Tk �fk

11: k k C 1
12: until convergence
13: end for

These results suggest that Z1 is a good preconditioner for J.X1/ if X0 is close to
the solutionX D 0, (G1J.X1/ have the same .n�1/ eigenpairs .Ui ; 1/; 2 � i � n).

2 Application to the RAS Preconditioner

The Restrictive Additive Schwarz preconditioner of the linear system J.x/�x D
�f .x/ decomposed in s overlapping subdomains, is given by:

M�1RAS D
s
X

iD1
QRTi J i .x/�1Ri (13)

where Ri is the restriction operator of the i th subdomain including the overlap, and
QRi is the restriction operator except that only interior nodes have a corresponding

nonzero line. The matrix J i .x/ is the submatrix of J.x/ corresponding to the i th
subdomain including the overlap. We propose to performing Broyden’s updates
starting from the RAS preconditionerG0 DM�1RAS D

P

i
QRiJ i .x/�1RTi .

Algorithm 1 gives an overview of the method for (vk D �fk) within a time-
stepper. Finding an optimal restarting criterion is out of the scope of this paper. One
should notice that the restart may not happen at each time step. Hence, two simple
strategies could be (1) to restart every r time steps, or (2) to restart when a maximum
number of Krylov iterations has been reached for the solution of the previous linear
system.

Therefore, even if G0 is a sparse matrix, Gk is not. Consequently, the matrix
Gk is never formed, we only compute its application to a vector. Let uk be
.�xk �Gk�fk/ =.vT �fk/ then the application of Gk to an arbitrary vector x
depends on the choice made for vk :



Low-Rank Update of the RAS Preconditioner for Nonlinear Systems 853

• For vk D �fk the application of the preconditioner can be rewritten as:

GkC1x D G0x C
k
X

iD0
ui v

T
i x D G0x C Œu0 � � � uk�Œv0 � � �vk�T x (14)

Hence, the additional cost of the application of Gk compared to G0 is roughly
two matrix-vector products of n 	 k matrices. Furthermore, the computation
of uk involves one application of Gk . One should also notice that the local
LU factorizations can also be computed asynchronously, continuing Newton
iterations during the computation of the restarted preconditioner.

• For vk D GT
k �xk , the explicit computation of vk should be avoided because it

involvesGT
k , soM�TRAS which cannot be easily computed. ThenGkC1x is usually

rewritten as in Eq. (15).

GkC1x D
 

0
Y

iDk
.I � ui�xi

T /

!

G0x (15)

Following an idea of Martínez [16], Bergamaschi et al. proved in [2, Theorem 3.6]
that for G0 and x0 good enough initial guesses, the norm kI � GkJ.xk/k can be
made arbitrarily small. Since the preconditioner is also reused from one time step
to another, it slowly loses its efficiency and the algorithm must be restarted, which
means recomputingG0.

In terms of condition numbers, the preconditionerGk is not expected to be more
efficient than the RAS preconditioner M�1RAS of the current Jacobian matrix J.xk/,
but it’s computational cost is less important: computing GkC1 form Gk does not
involves LU factorizations unlike the computation of a new M�1RAS .

The efficiency of the updated preconditioner is expected to decrease from one
time step to another, but this decrease should be slowed by the update. This decrease
can be roughly explained by the fact that the convergence of Broyden’s method is
slower than the convergence of Newton’s method. Thus, a restart of the algorithm
is needed. This restart (Algorithm 1, step 4) consists in the computation of a new
G0 D M�1RAS (i.e. new local LU factorizations).

One of the main drawbacks of the method presented here is the increase of the
memory cost by two vectors per update. A few techniques can be used to reduce this
memory cost: the simplest one consists in restarting the algorithm when a maximum
number of updates is reached. One may also compress the updates using a truncated
SVD of Œu0 � � � uk�Œv0 � � �vk�T [18].

The parallelism of Eqs. (14) and (15) should also be discussed:

• The application of the preconditioner in Eq. (14) to a vector x involves global
communications since the matrices Œu0 � � � uk� and Œv0 � � �vk� are dense, and
distributed over the processors. Then, depending on the implementation, Eq. (14)
requires an additional global reduction of k values, or k reductions where the
k � 1 first are overlapped by computations.
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• The parallel implementation of Eq. (15) requires k sequential collective reduc-
tions. Hence, one should not use vk D GT

k �xk for a parallel implementation on
distributed memory computers.

3 Numerical Experiments

Let us first give a numerical illustration of the model problem F.v/ D c where F is
from Eq. (9), c 2 R100 an arbitrary vector, and starting fromG0 D M�1RAS .��FD2/.
Then, the condition numbers are: 	2.J.X1// D 1:8	109, 	2.G0J.X1// D 1:7	108
and 	2.G1J.X

1// D 1:2 	 103 when the preconditioner G0 is updated with
Broyden’s update. This suggests that the update of the preconditioner has efficiently
reduced the effect of the first eigenvalue of J.X1/. We now consider the lid-
driven cavity problem on the unit square. The PETSc library [1] was used for
the implementation. In particular, the implementation of the following .u; v; !; T /-
formulation is provided as a PETSc example [9]. The linear solver used in these
experiments is a BiCGstab [17] and Jacobian matrices are approximated by a
coloring method.

8

ˆ

ˆ

<

ˆ

ˆ

:

��.u/� ry.!/ D 0
��.v/Crx.!/ D 0
P! ��.!/Cr � .Œu 	 !; v 	 !�/ � rx.T / D 0
PT ��.T /Cr � .Œu 	 T; v 	 T �/ D 0

(16)

Where u and v are the two components of the velocity field, ! D �ryu C rxv
is the vorticity and T the temperature. The space discretization is performed on
a regular grid with a five-point stencil and the time discretization is a backward
Euler scheme. The lid-velocity u.x; 0/ is a nonzero constant, the other boundary
conditions satisfy u D v D 0, T D 0 on the left wall, and T D 1 on the right
wall, @T=@y D 0 on the top and the bottom. A fixed time step length has been
used for the simulation, excepted for the very first time steps. The initial solution is
zero everywhere excepted on the walls, and the solution at the previous time step is
used as the initial guess for the current time step. In the following results, the linear
systems are right preconditioned and G0 is the RAS preconditioner of the current
approximation of the Jacobian matrix, and the overlapping size is one. The reason is
that when the left preconditioning technique is used, the natural stopping criterion
of the Kyrlov method is based on the norm of the preconditioned residual. Hence, in
order to compare two different preconditioners, one should use a stopping criterion
based on the norm of true residual. The Newton iterations are stopped (i.e. the time
step is accepted) when the absolute norm of the residual is lower than 10�6.

Table 1 compares the total number of BiCGstab iterations with and without the
rank-1 update, for different frequencies of restarting. A frequency of restarting fr of
10 means that 100 local LU factorizations have been computed on each processors
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Table 1 Comparison of the updated and the frozen preconditioner for a 512 � 512 grid
decomposed in 8� 8 subdomains

With update Without update Saved Saved
fr BiCGstab it. Walltime BiCGstab it. Walltime iterations (%) walltime (%)

1 34;483 4;729 34;882 4;744 1:144 0:309

5 34;572 3;820 35;230 3;850 1:868 0:779

40 35;165 3;609 35;946 3;649 2:173 1:085

60 35;785 3;619 36;249 3;625 1:280 0:159

80 36;110 3;653 36;693 3;670 1:589 0:461

The lid velocity is u.x; 0/ D 500 and the time step length is 10�3. 1;000 time steps are performed,
and the sum of all the BiCGstab iterations is given. The algorithm is restarted every fr time steps,
and the walltimes are given in seconds

Table 2 Number BiCGstab iterations for the updated and the frozen preconditioner

Processors Grid size Lid velocity With update Without update Saved .it (%)

8 1282 100 9;009 9;474 4:908

8 1282 300 16;358 16;748 2:329

16 1282 100 12;724 13;275 4:150

16 1282 300 17;961 18;345 2:093

16 2562 300 20;011 20;805 3:816

64 2562 300 28;408 30;114 5:665

64 2562 500 32;599 32;889 0:882

The grid decomposition is regular, using the same number of subdomains in each direction.
1;000 time steps of length 10�3 are performed. The algorithm is restarted every 40 time steps

during the 1;000 time steps. There is actually between one and three Newton
iterations per time steps. This results show that the total number of Krylov iterations
is slightly reduced by the updating method. If we take into account only the 580
time steps for which three Newton iterations have been performed, then 3:79% of
the Krylov iterations have been saved. the additional cost of the application of the
preconditioner is the reason why the proportion of Krylov iterations that are saved
is greater than the proportion of saved computational time.

Table 2 compares the number of BiCGstab iterations for different sizes of grid
and lid velocities. This results show that the Broyden update of the preconditioner
may leads to a significant reduction of the number of Krylov iterations. For a
restarting frequency of 40, the percentage of saved iterations generally decreases
when the lid velocity is increased. This suggests that a more appropriate restarting
algorithm should be designed in order to preserve the efficiency of the update. It
should be noticed that the results presented above are obtained for a fixed time
step length. The efficiency of the update is expected to change if an adaptive time
stepping algorithm is used since the step length is present on the diagonal of the
Jacobian matrix.
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4 Conclusions

We presented a very simple procedure to update the RAS preconditioner without
loss of parallelism. This update leads to a decrease of the number of Krylov
iterations, especially for the time steps that requires the largest number of New-
ton iterations. However, further developments are needed to achieve an efficient
method. This quasi-Newton update of the preconditioner should be used with a
well-parametrized restarting procedure, since the efficiency of the preconditioner
decreases from one iteration to another. A natural extension of this work is to use
higher-rank updates, like the multisecant update [11]. Techniques such as partial
updates, or relaxed updates should also be investigated since they are expected to
significantly improve the numerical efficiency of the updated preconditioner.
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GMRES Acceleration of Restricted Schwarz
Iterations

Francois Pacull and Stephane Aubert

We present here an analysis of the Richardson iterations preconditioned by either
the restricted additive [2] or multiplicative Schwarz [7] operators, and the associated
GMRES Krylov sub-space acceleration. The framework of study is purely algebraic
and general sparse unsymmetrical and indefinite matrices are considered. This paper
can be seen as an extension of [1, 10], in which a block preconditioned system is
downsized to an interface system. The following study is circumscribed to restricted
Schwarz preconditioners.

At first, the equivalence between the primary and interface iterations is described.
Then, the interface system operator is depicted as a Schur complement of the
permuted preconditioned global matrix. Finally, the benefit of the Krylov sub-space
acceleration of the interface iterations, over the primary ones, is exhibited. Note that
exact solves of the sub-domain problems is assumed throughout.

The linear system to solve is:

A u D f (1)

with A 2 Rn�n, u 2 Rn and f 2 Rn. We assume that A is close to
structurally symmetric, which is a common property of matrices originating from
PDE problems.

As a preparatory step, we start by introducing the vertex-based partitioning
process and the notations used hereafter.
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1 Introduction

1.1 Graph Partitioning and Overlap

We denote G the adjacency graph of matrix A, V D f1; 2; : : : ; ng the nodes of G ,
and E the edges, which correspond to the non-zero off-diagonal elements of A. The
graph G is considered to be undirected: given an unordered pair of distinct nodes
.v1; v2/ 2 V 2, we have .v1; v2/ 2 E if and only if A.v1; v2/ ¤ 0 or A.v2; v1/ ¤ 0.

A non-overlapping partition of V with p sub-domains corresponds to p non-
empty sub-sets, fVi g1	i	p , such that V D [piD1Vi and Vj \ Vk D ¿ for 1 �
j < k � p. The usual goal when performing this graph-partitioning task is to
minimize the overall edge cut, which is the total number of edges .vi ; vj / 2 E
with vi and vj belonging to distinct sub-domains, while equilibrating the number
of nodes per sub-domain to approximatively n=p. Dealing with p equal sub-sets
aims at balancing the distributed computational and memory load per processor.
Minimizing the number of edges crossing the partition boundaries results in a
reduced communication volume between processors.

Increasing the ı-overlap is beneficial regarding the convergence rate of Schwarz
methods (see [7] for example): starting from Vi;0 � Vi , this consists in growing
recursively each sub-set Vi;ı by adding some of the adjacent nodes, in order to form
a larger set Vi;ıC1.

For each sub-domain and for each ı level, ni;ı � jVi;ıj refers to the cardinality
of the node sub-set.

1.2 Notations Regarding Restrictions Operators

Similarly to what is done in [9], three different sub-sets of nodes are defined in
association with a given sub-domain Vi;ı: V int

i;ı , V loc
i;ı and V ext

i;ı . The internal nodes
V int
i;ı are the nodes of Vi;ı that have their graph neighborhood fully included in Vi;ı.

The local interface nodes V loc
i;ı are the nodes of Vi;ı that have a least one of their

neighbors outside of Vi;ı. Finally, the external interface nodes V ext
i;ı are the nodes

that do not belong to Vi;ı, but which have at least one of their neighbors within Vi;ı.
Note that V ext

i;ı is the set of candidate nodes for growing the sub-set Vi;ı: Vi;ıC1 �
Vi;ı [ V ext

i;ı .
An important sub-set of nodes for our study is the global set of external interface

node, simply called the interface nodes hereafter: V ext
ı � [piD1V ext

i;ı , with cardinality

next
ı � jV ext

ı j. The complementary sub-set of V ext
ı is denoted by NV ext

ı � V nV ext
ı .

In the following, notations from [6] are used to describe the different operators
associated with the algebraic Schwarz preconditioners. For the i -th sub-domain,
we denote Ri;ı 2 Rni;ı�n the restriction operator associated with Vi;ı. Rext

i;ı is the
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restriction operator associated with V ext
i;ı . The special restriction operator used in the

restricted Schwarz iterations, is defined as follows: QRi;ı � Ri;ıRTi;0Ri;0 2 Rni;ı�n.

The node sub-set NVi;ı refers to the following set difference: NVi;ı � V n Vi;ı, and
NRi;ı to the restriction operator associated with NVi;ı. Rext

ı and NRext
ı are the restriction

operators associated with V ext
ı and NV ext

ı respectively.
The local parts of the operatorA are the following ones:Ai;ı � Ri;ıARTi;ı for the

inner coupling, and Aext
i;ı � Ri;ıARextT

i;ı for the outer coupling.
Finally, the vector y stands for the vector of interface node unknowns

y D Rext
ı u 2 Rn

ext
ı (2)

while x D NRext
ı u 2 Rn�next

ı stands for the complementary unknowns, located at the
non-interface nodes NV ext

ı .

2 Richardson Iterations with a Restricted Schwarz
Preconditioner

The preconditioned Richardson iteration u.kC1/ D u.k/ C M�1.f � Au.k//, is
expressed as the stationary iteration

u.kC1/ D F u.k/ C g (3)

where F D I �M�1A and g D M�1f are the iteration matrix and vector. We
only consider here the restricted additive (RAS) and multiplicative (RMS) Schwarz
preconditioners, as defined for example in [7]:

FRAS;ı D I �
p
X

iD1
QRTi;ıA�1i;ı Ri;ıA (4)

FRMS;ı D
1
Y

iDp

�

I � QRTi;ıA�1i;ı Ri;ıA
�

(5)

As pointed out in [1,10], under some specific conditions, the primary iteration (3)
can be reduced to an equivalent interface iteration, in terms of the unknown y
defined in (2):

y.kC1/ D Gy.k/ C h (6)

In order to gain more insight into this interface system, let us derive the
iteration (6) starting from (3). If the restriction Rext

ı is applied to (3), we get the
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following iteration: y.kC1/ D Rext
ı F x

.k/ C h, with h � Rext
ı g. We now make use of

the following relation:

Ri;ıA D Ri;ıA.R
T
i;ıRi;ı C NRTi;ı NRi;ı/

D Ai;ıRi;ı CRi;ıA NRTi;ı NRi;ı
D Ai;ıRi;ı C Aext

i;ıR
ext
i;ı (7)

Thus, in the restricted additive Schwarz case, we have:

FRAS;ı D I �
p
X

iD1
QRTi;ıA�1i;ı .Ai;ıRi;ı C Aext

i;ıR
ext
i;ı /

D I �
p
X

iD1
QRTi;ıRi;ı �

p
X

iD1
QRTi;ıA�1i;ı Aext

i;ıR
ext
i;ı (8)

Using the following equality,
p
P

iD1
QRTi;ıRi;ı D

p
P

iD1
RTi;0Ri;0R

T
i;ıRi;ı D

p
P

iD1
RTi;0Ri;0 D

I , we get:

FRAS;ı D �
p
X

iD1
QRTi;ıA�1i;ı Aext

i;ıR
ext
i;ı (9)

This shows that the iteration matrix FRAS;ı only depends on the interface nodes.
For the multiplicative case, by using (7), we get:

FRMS;ı D
1
Y

iDp

�

I � QRTi;ıA�1i;ı Ri;ıA
�

D
1
Y

iDp

�

I �RTi;0Ri;0 � QRTi;ıA�1i;ı Aext
i;ıR

ext
i;ı

�

(10)

For simplicity reasons, we call ai the left term in the parentheses and bi the right
term: ai � I � RTi;0Ri;0, bi � QRTi;ıA�1i;ı Aext

i;ıR
ext
i;ı . By noticing that

Q1
iDp ai D 0 and

that ai bj D bj if i ¤ j , we get:

FRMS;ı D
p
X

kD1

X

p�i1>:::>ik�1
.�1/kbi1 : : : bik (11)

The important thing is that the bi terms only depend on the interface nodes, and so
does FRMS;ı consequently.
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Hence we have, in both restricted Schwarz cases:

F D FRextT
ı Rext

ı and F NRextT
ı
NRext
ı D 0 (12)

Indeed we know from [10] that k belongs to NV ext
ı (that is, k is not an interface node)

if and only if the k-th column of F is null, and if and only if the k-th column of M
is equal to the k-th column of A.

We can now state that with the coherent initial interface conditions y.0/ D
Rext
ı u.0/, the following relation between u.k/ and y.k/ holds:

y.kC1/ D Rext
ı u.kC1/ D Rext

ı




F u.k/ C g� D Gy.k/ C h for k � 1 (13)

The iteration matrixG can be expressed as follows:G D Rext
ı FR

extT
ı . Note that this

relation holds whatever the initial condition x.0/ D NRext
ı u.0/ is.

We now focus on the interface system: .I �G/y.1/ D h.

3 Restricted Schwarz and Schur

In [3, 8], it is shown that a multiplicative Schwarz iterate is identical to a block
Gauss-Seidel sweep applied to the Schur complement system on the interface
unknowns, provided that coherent initial conditions are used. Similar results also
holds between the additive Schwarz iterate and a block Jacobi sweep of the Schur
complement system. The considered Schur complement S is related to the interface
nodes of the non-overlapping partition. In the overlapping case, it is possible to
decompose the sub-domains into smaller disjoint parts and express the global matrix
as a preconditioned version of S , thanks to block Gaussian elimination. As stated
in [4]:

the overlapping method is equivalent to a non-overlapping method with a specific interface
preconditioner. One can think of the overlapping method implicitly computing the effect of
this preconditioner by the extra operations performed on the overlapping region.

We observe that in our case, the interface unknowns may not correspond to
the interface nodes of the non-overlapping partition. If we consider the permuted
matrix PıM�1AP T

ı , with M being a restricted Schwarz preconditioner, and PT
ı D


 NRext T
ı Rext T

ı

�

, we get the following linear system:

PıM
�1AP T

ı

�

x

y

�

D
� NRext

ı g

h

�

(14)

We note that the matrix PıM�1AP T
ı is a 2 	 2 block matrix:



864 F. Pacull and S. Aubert

PıM
�1AP T

ı D
� NRext

ı M
�1A NRext T

ı
NRext
ı M

�1ARext T
ı

Rext
ı M

�1A NRext T
ı Rext

ı M
�1ARext T

ı

�

(15)

In the previous section, we saw that F NRextT
ı D 0, which implies that

NRext
ı M

�1A NRext T
ı D I (16)

Rext
ı M

�1A NRext T
ı D 0 (17)

We also have the following equalities:

NRext
ı M

�1ARext T
ı D � NRext

ı FR
ext T
ı (18)

Rext
ı M

�1ARext T
ı D I �Rext

ı FR
extT
ı D I �G (19)

Plugging these equalities into (14), we get:

PıM
�1AP T

ı

�

x

y

�

D
�

I � NRext
ı FR

ext T
ı

0 I �G
� �

x

y

�

D
� NRext

ı g

h

�

(20)

The matrix I�G can be seen as a Schur complement ofPıM�1AP T
ı with respect to

the identity operator applied to the non-interface nodes. The inverse of PıM�1AP T
ı

can be expressed in this way:

�

PıM
�1AP T

ı

��1 D
�

I NRext
ı FR

ext T
ı .I �G/�1

0 .I �G/�1
�

(21)

Also, (20) gives us some information about the spectrum of I �G:

�
�

M�1A
� D � �PıM�1AP T

ı

� D �.I / [ �.I �G/ (22)

The spectrum of I �G is the spectrum of M�1A augmented with the eigenvalue 1,
which has a multiplicity of n � next

ı .
We remark that the cost of explicitly building the I � G matrix is prohibitive,

regarding the significant resources required. In the RAS case, the matrix G writes:

G D �Rext
ı

p
X

iD1
QRTi;ıA�1i;ı Aext

i;ıR
ext
i;ıR

ext T
ı (23)

This represents jV ext
i;ı j local systems to solve for each sub-domain, which solution is

dense. This is why iterative methods are preferred.
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Algorithm 1 GMRES resolution of .I �G/y D h
r0 D Rext

ı M
�1.b � Ax0/; ˇ D kr0k; and v1 D r0=ˇ

for j D 1; : : : ; m do
w Rext

ı M
�1ARext T

ı vj
for i D 1; : : : ; j do
hi;j  .w; vi /
w w� hi;j vi

end for
: : :

end for
: : :

Compute zm D argminzkˇe1 � NHmzk and ym D Rext
ı x0 C Vmzm

If satisfied y.1/  ym else restart with x0 D Rext T
ı ym

4 Krylov Acceleration

Since matrix A is assumed to be unsymmetrical and indefinite, the GMRES Krylov
sub-space method [8] is used to accelerate the iteration (6), as proposed in [1]. The
GMRES method is chosen over some other Krylov techniques for its monotonous
convergence property. The algorithm used to solve the interface system is presented
next, in a left-preconditioned version.

An important point is that Algorithm 1 only differs from the usual one by the use
of the restriction and prolongation operators Rext

ı and Rext T
ı . Also, one extra step is

required to solve the global solution from the interface solution y.1/:

u.1/ D .I �M�1A/Rext T
ı y.1/ C g (24)

In this last step, the preconditionerM�1 can differ from the one used in the GMRES
algorithm. For example, if M�1RAS;ı is chosen, we get:

u.1/ D
p
X

iD1
QRTi;ıA�1i;ı Ri;ı

�

b � A NRTi;ı NRi;ıRext T
ı y.1/

�

D
p
X

iD1
QRTi;ıA�1i;ı

�

Ri;ıb � Aext
i;ıR

ext
i;ıR

ext T
ı y.1/

�

(25)

Algorithm 1 represents less floating point operations and also requires less
memory to store the Arnoldi vectors than when GMRES is applied to the primary
unknowns, with almost no extra work regarding the implementation.

Figure 1 presents the GMRES convergence of both primary and interface sys-
tems. Matrix GT01R from the UF sparse matrix collection [5] is used. We observe
that the convergence behaviors are similar, but slightly differ because of the non-
interface nodes. The size of the global system is 7,980, while it is 420 for the
interface system.
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Fig. 1 Full GMRES convergence of the global and interface systems. GT01R matrix from the UF
sparse matrix collection is used. Initial condition is x.0/ D f1; : : : ; 1gT . The domain is divided into
2 parts (p D 2) with an overlap of ı D 1 (all the adjacent nodes are included). The number of
primary and interface unknowns is 7,980 and 420 respectively

Also, the new vector w  Rext
ı M

�1ARext T
ı vj in the outer loop of Algorithm 1

is equivalent to this one: w  .I � Rext
ı FR

ext T
ı /vj , in which only local “homoge-

neous” problems are solved. For example in the RAS case, we have:

w 
 

I CRext
ı

p
X

iD1
QRTi;ıA�1i;ı Aext

i;ıR
ext
i;ıR

ext T
ı

!

vj (26)

The local operatorA�1i;ı is applied to Aext
i;ıR

ext
i;ıR

ext T
ı vj , which only concerns the local

interface nodes of the sub-domain, V loc
i;ı . This means that for the local problem

in (26), the right-hand side is null for the internal nodes V int
i;ı . Thus, a local Schur

complement approach may be used to deal with each local problem, associated to
an iterative local solver and the LU factorization of the two diagonal blocks of Ai;ı
corresponding to the internal and the local interface nodes.

5 Conclusion

The restricted Schwarz iterations have been described in details. It appears that the
restricted Schwarz operators benefit from the indirect preconditioning effect of the
overlap, but also from the non-overlapping property of the restricted local operator
images. We have seen that solving the interface system instead of the primary one,
is advantageous regarding memory usage and floating point operation count. This
represents only a slight modification of the global algorithm, but requires exact local
solves. Another advantage is that the local problems can be treated as homogeneous
problems.
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A Nonlinear Domain Decomposition Technique
for Scalar Elliptic PDEs

James Turner, Michal Kočvara, and Daniel Loghin

1 Introduction

Nonlinear problems are ubiquitous in a variety of areas, including fluid dynamics,
biomechanics, viscoelasticity and finance, to name a few. A number of computa-
tional methods exist already for solving such problems, with the general approach
being Newton–Krylov type methods coupled with an appropriate preconditioner.
However, it is known that the strongest nonlinearity in a domain can directly impact
the convergence of Newton-type algorithms. Therefore, local nonlinearities may
have a direct impact on the global convergence of Newton’s method, as illustrated
in both [3] and [5]. Consequently, Newton–Krylov approaches can be expected to
struggle when faced with domains containing local nonlinearities.

An attempt to resolve this issue was considered in [4] by Cai and Li. Here, a
method based on an overlapping decomposition of the domain was proposed, which
involved the development of a nonlinear restrictive additive Schwarz preconditioner
for the treatment of high nonlinearities. Effectively, their proposed method ensured
that the distribution of nonlinearities was balanced throughout their system, building
on earlier work in [9]. While positive results were obtained, it is noted that their
numerical experiments display a logarithmic dependence with regard to the mesh
size. Additionally, in the situation of the unavailability of sufficient processors, it
was found that subdomain problems could become computationally demanding,
due in part to the need for a region of overlap. An alternative approach would be to
instead consider applying a nonoverlapping decomposition of the domain directly
to the nonlinear problem, avoiding the linearisation on a global scale. Methods
have been proposed to this effect by both Pebrel et al. [12] and by Sassi [14]. In
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[12], the resulting algorithm involved the solution to local nonlinear subproblems,
as well as a global interface problem solved by a Newton-type algorithm. As
a result, local nonlinearities could be dealt with much more effectively without
having a major impact on the solution across the whole domain. While the paper
reported speed up in the CPU time when compared directly to a Newton–Krylov
approach, the method proposed involves the solution of a global interface problem,
which can be both expensive and time consuming to compute. In comparison,
[14] considered a preconditioned modified Newton algorithm, which was found to
converge independently of the mesh size. However, the diameter of each subdomain
was found to have a direct influence on the condition number of the involved
operator, and as a result the proposed algorithm struggled with an increasing number
of subdomains.

We propose a splitting of a class of nonlinear problems into a three step procedure
wrapped around a fixed point iteration. Section 2 will provide a description of the
model problem, before the application of domain decomposition to the nonlinear
problem in Sect. 3. A three step procedure can then be devised by applying an
appropriate Picard linearisation (Sect. 4), which will be wrapped inside a global
fixed point iteration. The corresponding weak formulation and finite element
discretisation of the problem are given in Sect. 5, with results from the proposed
method illustrated in Sect. 6.

2 Model Problem

We begin by considering the following problem posed on a two dimensional open
and simply connected domain˝:

(

N .u/ ..D��uC c.u/ D f in ˝

u D 0 on @˝;
(1)

where the function c.u/ is nonlinear and N is assumed to be positive. We also
assume that (1) has a unique solution. A number of real life situations can be
simulated by the nonlinear diffusion equation (1); in particular, notable applications
can be found when modelling flow through porous material, in biochemistry, and in
the transport of radiation.

An established approach for dealing with problems of type (1) is to employ
Newton–Krylov methods and use domain decomposition methods as precon-
ditioners. A number of preconditioning strategies have been considered (e.g.
additive-Schwarz [7, 11], approximate-Schur [8, 13]), giving rise to numerous
different Newton–Krylov type approaches, which have been applied to a wide
range of problems mainly due to the quadratic convergence of Newton’s method.
However, for domains containing high local nonlinearities, the global convergence
of Newton’s method becomes entirely dependent on the local phenomena contained
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within the domain. Therefore, a substantial number of iterations can be expected
for certain problems solved using such approaches, even for domains containing
predominantly smooth areas, and so it is desirable to consider alternative approaches
for determining solutions to systems of the form (1).

3 Nonlinear Domain Decomposition

We consider an approach that applies domain decomposition directly to the
nonlinear problem. To do this, we divide our domain ˝ into N nonoverlapping
subdomains ˝i with boundary @˝i with outer normals ni . We denote by � the
resulting skeletal interface � D SN

iD1 �i , where �i ..D @˝in@˝: The restriction of
a function w to a subdomain ˝i is denoted by wi . Assuming ui j�iD �i is given,
problem (1) can then be seen to be equivalent to the following subproblems

8

ˆ

ˆ

<

ˆ

ˆ

:

N .ui / ..D��ui C c.ui / D fi in ˝i

ui D 0 on @˝in�i
ui D �i on �i :

Let u D u1 C u2 and assume that the nonlinear function c.u/ can be written as
c.u1 C u2/ D c1.u1 C u2/ C c2.u1 C u2/. The reason for splitting u and c in this
way is to attempt to form homogeneous Dirichlet subdomain problems around u1.
The remaining components will then form subdomain problems around u2.

Problem (1) can be viewed in terms of the following subproblems

� ��u1i C c1.u1i C u2i / D fi in ˝i

u1i D 0 on @˝i
(2a)

(

N
X

iD1

�

ni � r.u2i /
� D �

N
X

iD1

�

ni � r.u1i /
�

on � (2b)

8

<

:

��u2i C c2.u1i C u2i / D 0 in ˝i

u2i D 0 on @˝in�i
u2i D �i on �i :

(2c)

The nonlinear subproblems presented in (2a) correspond to obtaining solutions
to local copies of (1) with homogeneous Dirichlet conditions enforced on local
boundaries @˝i . In comparison, the nonlinear subdomain problems presented in (2c)
use interfacial data found in the intermediate step (2b) to obtain local solutions.
The main motivation for considering such a splitting, and indeed for considering a
nonoverlapping decomposition of ˝ is that each subproblem in both (2a) and (2c)
can be solved independently of other subdomains. In the following, we will assume
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that solution operators exist for problems of the form (2c); these will be denoted by
Ei ; in particular, we have u2i D Ei.�i /. We will denote by Fi�i any other linear
extensions of a given function �i defined on �i to ˝i .

4 Picard Linearisation

We decouple (2a), (2b) and (2c) via the following Picard linearisation

(

N1.u
1;k
i /

..D��u1;ki C c1
	

u1;ki C u2;k�1i

�

D fi in ˝i

u1;ki D 0 on @˝i

(3a)

(

N
X

iD1
ni � r.Ek�1

i �ki / D �
N
X

iD1
ni � r.u1;ki / on � (3b)

8

ˆ

<

ˆ

:

N2.u
2;k
i / ..D��u2;ki C c2

	

u1;ki C u2;ki

�

D 0 in ˝i

u2;ki D 0 on @˝in�i
u2;ki D �ki on �i :

(3c)

Given uk�1, N nonlinear subproblems are first solved independently in (3a).
The solution to these subproblems is then used in (3b) to obtain the interface
update �ki . Finally, the solutions to each nonlinear subproblem in (3c) are obtained
independently using the updates from the previous two steps. Note that it is possible
to solve each of the two sets of N nonlinear subproblems in (3a) and (3c) in
parallel. Equation (3b) is a linear Steklov–Poincaré equation involving the operator
Sk WH1=2

00 .� /! H
�1=2
00 .� / defined as

hSk�k; �i ..D
N
X

iD1

Z

�i

.ni � r/.Ek�1
i �i /�i ds D

N
X

iD1
hSki �ki ; �i i;

where Ek�1
i are linearizations of the nonlinear extension operators Ei correspond-

ing to (3c). We summarize below the proposed iterative scheme for computing the
exact solution u�, given an initial u0.

1. Run through the following three steps to compute the solution uk D u1;kCu2;k :

(

N1.u
1;k
i / D f in ˝i

u1;ki D 0 on @˝i

i D 1; : : : ; N: (4a)
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(

Sk�k D �
N
X

iD1
ni � r.u1;ki / on � (4b)

8

<

:

N2.u
2;k
i / D 0 in ˝i

u2;ki D 0 on @˝in�i
u2;ki D �ki on �i :

i D 1; : : : ; N: (4c)

2. Compute the residual Rk D N .uk/ � f . If kRkk <  , set u� D uk and
terminate. Else, set k D k C 1 and return to step 1.

5 Finite Element Discretisation

Define now local bilinear forms

ali .v;w I z/ ..D
Z

˝i

rvrw dx C
Z

˝i

cl .v C z/w dx;

for l D 1; 2. Using the above notation, the weak formulation of (4) is

(

Find u1;ki 2 H1
0 .˝i/ such that 8vi 2 H1

0 .˝i/

a1i .u
1;k
i ; vi I u2;k�1i / D .fi ; vi /

(5a)

8

ˆ

ˆ

<

ˆ

ˆ

:

Find �k 2 H1=2
00 .� / such that 8� 2 H1=2

00 .� /

s.�k; �/ D
N
X

iD1
.fi ; Fi�i / � a1i .u1;ki ; Fi�i I u2;k�1i /

(5b)

(

Find u2;ki 2 E.�ki /CH1
0 .˝i / such that 8vi 2 H1

0 .˝i/

a2i .u
2;k
i ; vi I u1;ki / D 0:

(5c)

Let now Vh � H1
0 .˝/ \ C0.˝/ be a space of continuous piecewise polyno-

mials of degree m defined on an isotropic subdivision of ˝ into simplices of
maximum diameter h. In our tests we choose m D 1, though other values
are equally possible. Let the corresponding basis be denoted by f r g. Let B
denote the index set corresponding to basis elements  r with support on � .
Let Sh ..D span f�0 .� / r W r 2 Bg where �0 denotes the trace operator. The finite
element discretisation of the systems in (5) can then be written for i D 1; : : : ; N as

(

Find u1;ki;h 2 Vi;h such that 8vi;h 2 Vi;h
a1i .u

1;k
i;h ; vi;h I u2;k�1i;h / D .fi ; vi;h/

(6a)
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8

ˆ

ˆ

<

ˆ

ˆ

:

Find �kh 2 Sh such that 8�h 2 Sh
s.�kh; �h/ D

N
X

iD1
.fi ; Fi�i / � a1i .u1;ki;h ; Fi�i;h I u2;k�1i;h /

(6b)

(

Find u2;ki;h 2 .E�/ki;h C Vi;h such that 8vi;h 2 Vi;h
a2i .u

2;k
i;h ; vi;h I u1;ki;h / D 0:

(6c)

The system (6) can be represented systematically by matrices and vectors in the
usual way. In particular, the Schur complement of the system matrix corresponds to
the matrix representation of s.�; �/ in the basis of Sh. We can therefore describe our
proposed method as follows:

1. Run through the following three step procedure to determine u.

a. Solve theN decoupled nonlinear subdomain problems (6a) written in matrix
form as

A
i;1
II .u

1;k
I;i /u

1;k
I;i D f1I;i ; (7a)

using a Newton–Krylov method with line search and adaptive tolerances 1;i .
b. Calculate interface values ���k using

Sk���k D f� �
N
X

iD1
A
i;1
� I .u

1;k
I;i /u

1;k
I;i : (7b)

c. Solve theN decoupled nonlinear subdomain problems (6c) written in matrix
form as

A
i;2
II .u

2;k
I;i /u

2;k
I;i D �Ai;2I� .u2;kI;i /���ki ; (7c)

using a Newton–Krylov method with line search and adaptive tolerances 2;i .

2. Set uk D u1;k C u2;k , where u1;k D Œu1;kI ; 0�T and u2;k D Œu2;kI ;���k �T . Assemble
the global stiffness matrixAk.u/ and compute the residual Rk.uk/ D A.uk/uk�
f. If kRkk <  set u� D uk and exit; else, return to Step 1.

The subindices I and � indicate permutations involving the index sets correspond-
ing to the interior and boundary nodes in the subdivision of ˝ . The adaptive
tolerances 1;i ; 2;i are chosen in relation to the norm of the global nonlinear residual
kRkk, following the strategy in [6].

We solve the system (7b) using iterative methods of Krylov type with precon-
ditioning. The matrix Sk is the interface Schur complement corresponding to the
reaction-diffusion problem ��u2;k�1 C c2.u1;k�1 C u2;k�1/; as such, it can be
preconditioned by any domain decomposition preconditioner designed for elliptic
problems. The preconditioner employed in this work is based on [1], where discrete
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norms corresponding to finite element discretisations of fractional Sobolev spaces
are presented. In particular, it was shown that a discrete norm on Sh � H

1=2
00 .� /

which is spectrally equivalent to Sk is given by

H1=2 D M�

�

M�1� L�
�1=2

:

In [1], M� and L� correspond to the mass and Laplacian matrices, respectively,
assembled on � . We adapt the definition of H1=2 to include the contribution from
the reaction term as suggested in [2]; this involves replacing L� with

Lk� D L� CMk
� ;

where Mk
� is the mass matrix assembled on � and weighted by the trace on the

interface � of c2
�

u1;k�1 C u2;k�1
�

. For more details, see [15].
Note thatM� ;L

k
� are assembled globally on� and henceH1=2 is a dense matrix.

However, in our computations we use sparse techniques to circumvent this issue. In
particular, the application of both Lanczos and inverse Lanczos factorisations has
been considered in [1], and will be applied in this work in a similar manner.

6 Results

In this section, we will consider a number of examples to highlight the benefits of
our proposed method. In particular, we will consider models for which

(a) c.u/ D uqC1; and (b) c.u/ D uqC1 sin.10u/;

where q is a positive integer. For both choices, we note that by substituting u D
u1 C u2 into the function, we can write

c.u1 C u2/ D .u1 C u2/qC1 D .u1 C u2/qu1 C .u1 C u2/qu2:

Table 1 displays performance comparisons of our proposed method to the stan-
dard Newton–Krylov approach for two test problems. We used piecewise linear
discretizations for a range of mesh parameters h. Each nonlinear problem was
solved with a zero initial guess. We consider four different representations for
the preconditioner QS , namely the exact Schur complement, the exact discrete
fractional Sobolev norm H1=2, and both the Lanczos .L/ and inverse Lanczos .I /
approximations to H1=2.

The performance recorded in the table indicates that our method delivers
promising results when directly compared to the corresponding Newton–Krylov
method. In particular, it can be seen that the results indicate independence with
respect to both the mesh size and the number of subdomains used. By comparing
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Table 1 Nonlinear iterations (total GMRES iterations) for a global tolerance  D 10�7

(a) q D 2 (b) q D 9

Newton-Krylov 3-Step procedure Newton-Krylov 3-Step procedure
QS h 4 16 64 4 16 64 4 16 64 4 16 64

1/16 4 (8) 4 (8) 3 (6) 4 (8) 4 (8) 3 (5) 11 (22) 10 (20) 10 (20) 6 (12) 5 (10) 5 (10)

S 1/32 4 (8) 3 (6) 3 (6) 4 (8) 3 (6) 3 (5) 10 (20) 10 (20) 9 (18) 5 (10) 5 (10) 5 (10)

1/64 3 (6) 3 (6) 3 (6) 3 (6) 3 (6) 3 (5) 10 (20) 9 (18) 8 (16) 5 (10) 5 (10) 4 (8)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H1=2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103) 6 (47) 4 (28) 4 (43)

1/16 9 (24) 11 (35) 6 (48) 6 (29) 6 (26) 5 (35) 15 (66) 16 (89) 12 (110) 7 (48) 8 (60) 6 (47)

H
.L/

1=2 1/32 12 (38) 7 (42) 5 (49) 6 (36) 5 (25) 4 (30) 17 (79) 12 (103) 10 (110) 7 (53) 6 (49) 5 (52)

1/64 6 (33) 4 (29) 4 (42) 5 (28) 4 (25) 4 (41) 11 (75) 9 (96) 8 (103) 6 (47) 4 (28) 4 (43)

1/16 17 (39) 106 (148) 7 (51) 6 (31) 6 (34) 5 (39) 21 (78) 132 (193) 12 (102) 8 (64) 7 (56) 6 (58)

H
.I/

1=2 1/32 11 (40) 6 (35) 4 (36) 6 (37) 5 (35) 4 (33) 14 (77) 11 (92) 5 (53) 7 (54) 6 (49) 5 (55)

1/64 6 (37) 4 (34) 4 (40) 5 (36) 4 (27) 3 (27) 11 (76) 9 (90) 8 (92) 5 (40) 5 (44) 4 (45)

the columns in Table 1, an indication is given on how well both methods adapt to
the increase in nonlinearity. Notably, it is clear that the Newton–Krylov method
struggled when faced with the increased nonlinearity, confirming results noted
earlier. However, in comparison our method was found to deal with the increase in
nonlinearity in a much more efficient manner. This would suggest that our method
would adapt quite well to domains containing high local nonlinearities confined
to a particular region of the domain. It is also noted that by directly inverting the
Schur complement, an adaptation of the result presented in [10] is also shown for
our method, namely that the interface problem (7b) solved with GMRES can be
expected to converge in a number of iterations no more than the dimension of˝ per
fixed point iteration.

7 Conclusion

In this paper, we introduced a three step procedure for solving a class of nonlinear
PDEs. We have demonstrated that our method is able to deliver results independent
of both the mesh size and the number of subdomains used. Furthermore, we
have shown that our procedure is competitive when directly compared to the
corresponding Newton–Krylov method. Future work will involve further testing to
include problems that contain a high nonlinearity confined to a particular region of
the domain together with an appropriate analysis of the method. We will also adapt
our method to problems in topology optimization [15].
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A Non Overlapping Domain Decomposition
Method for the Obstacle Problem

Samia Riaz and Daniel Loghin

1 Obstacle Problem

The obstacle problem is to determine the equilibrium position of an elastic
membrane in a domain ˝ � R2 with closed boundary @˝ , which lies above an
obstacle function  W ˝ ! RC under the vertical force f . The classical solution
u of this model problem is the vertical displacement of the membrane. Since the
membrane is fixed on @˝ , we have boundary conditions of Dirichlet type (say
u D 0). The problem can be written as

8

<

:

��u � f � 0 in ˝;
u �  � 0 in ˝;

u D 0 on @˝;
(1)

subject to the pointwise complementarity condition .u �  /.��u � f / D 0.
Let C D fx 2 ˝ W u.x/ D  .x/g denote the coincidence set. Then the

complementarity conditions yields the PDE ��u � f D 0 in ˝ n C : The weak
formulation of (1) can be written as [4]

�

Find u 2 K such that 8v 2 K;
a.u; v � u/ � .f; v � u/;

(2)
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which can be shown to be equivalent to the following minimization problem

�

Find u 2 K; such that 8 v 2 K;
J.u/ � J.v/;

whereK D fv 2 V WD H1
0 .˝/ W v �  in ˝g is convex and

J.v/ D 1

2
a.rv;rv/ � .f; v/; .f; v/ D

Z

˝

f vd˝; a.u; v/ D
Z

˝

ru � rvd˝:

An important class of solution techniques for (2) is that of multilevel and multigrid
methods for constrained minimization problems, first introduced by [7] and [2] some
variants of these method were studied in [5] and were analyzed in [6]. A challenging
task for multigrid is the representation of the coincidence set on a coarse grid, as
shown in the review paper [3]. Some multi-grid and two level domain decomposition
methods are given in [9, 10] in which it is shown that the overlapping DDM has a
linear convergence for constrained obstacle problem if the obstacle and computed
functions decomposed properly. Some more variants of multi-grid method are given
in [1], where the decomposition of the closed convex set for minimization problem
is introduced as a sum of closed convex level subsets; the convergence rate is shown
to depend on the number of levels.

2 A Non-overlapping Domain Decomposition Method

Let ˝i denote an open subset of ˝ containing the coincidence set C and let
˝e D ˝ n N̋ i . Let � denote the interface between˝i and˝e. This decomposition
allows us to reformulate our problem into two subproblems: one which is a partial
differential inequality (PDI) in subdomain ˝i and the other which is a partial
differential equation (PDE) in ˝e:

Let z D uj˝e ;w D uj˝i ; f e D f j˝e and f i D f j˝i be the restrictions of u and
f to˝e and˝i respectively; let also � D uj� be the trace of u on � . Assuming for
now that � is known, problem (1) decouples into the two subproblems

PDE:

8

ˆ

ˆ

<

ˆ

ˆ

:

��z D f e in ˝e;

z D 0 on @˝ n �;
z D � on �;

PDI:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

��w � f i in ˝i;

w �  i in ˝i;

w D 0 on @˝ n �;
w D � on �:

with .��w�f i /.w� i / D 0 satisfied in a pointwise sense in˝i . The subproblem
PDE can be further decoupled as follows:
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PDE1 W

8

ˆ

ˆ

<

ˆ

ˆ

:

��z1 D f e in ˝e;

z1 D 0 on @˝ n �;
z1 D 0 on �;

PDE2 W

8

ˆ

ˆ

<

ˆ

ˆ

:

��z2 D 0 in ˝e;

z2 D 0 on @˝ n �;
z2 D � on �;

(3)

where zj˝e D z1 C z2 with z2 D E� where E is the harmonic extension operator to
˝e. Writing the weak formulation (2) as

ae.z; v � z/C ai .w; v � w/ � .f e; v � z/˝e C .f i ; v � w/˝i ; (4)

where

ae.z; v/ D
Z

˝e

rz � rv d˝e and ai .w; v/ D
Z

˝i

rw � rv d˝i

the variational formulations of (3) and PDI are

8

<

:

find z1 2 H1
0 .˝

e/ such that 8v 2 H1
0 .˝

e/

ae.z1; v � z/ �
Z

�

n1 � rz1 � .v � z/ d� D .f e; v � z/˝e ;

8

<

:

find z2 2 H1.˝e/ such that 8v 2 H1.˝e/

ae.z2; v � z/ �
Z

�

n1 � rz2 � .v � z/ d� D 0; (5)

8

<

:

find w 2 H1.˝i/ such that 8v 2 H1.˝i/

ai .w; v � w/ �
Z

�

n2 � rw � .v � w/d� � .f i ; v � w/˝i :
(6)

For i D 1; 2; ni ; is the normal direction from ˝e and ˝i respectively. Adding the
above weak formulations, where z1 D 0; z2 D � D w on � and using the weak
formulation (4) yields a partial Steklov–Poincaré inequality for � (corresponding to
the splitting of PDE)

.S e�; � � �/ � .g.�/; � � �/:
Using the assumption that the interface � lies outside the support of the obstacle we
obtain the following nonlinear equation on the interface

.S e�; �/ D .g.�/; �/: (7)

The Steklov–Poincaré operator S e W �! �0 (where � D H1=2.� /; H
1=2
0 .� / or

H
1=2
00 .� / depending on the nature of the problem) is defined as
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.S e�; �/ WD
Z

�

.n1 � r.E�//� d�;

and

.g.�/; �/ WD �
Z

�

.n1 � rz1 C n2 � rw/� d�

Applying Green’s formula we get the alternative representation of S e

.S e�; �/ WD ae.E�; F�/ 8�;� 2 �

where F denotes an arbitrary extension operator to ˝e. By using the above
definition of S e , our classical problem can be written as an ordered sequence of
three decoupled problems involving Poisson problem on subdomain ˝e together
with a problem set on the interface � which is coupled with the problem on ˝i:

8

ˆ

ˆ

<

ˆ

ˆ

:

��z1 D f e in ˝e;

z1 D 0 on @˝ n �;
z1 D 0 on �;

.i/
˚

S e� D �n1 � rz1 � n2 � rw; .i i/

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

��w � f i in ˝i;

w �  in ˝i;

w D 0 on @˝ n �;
w D � on �;

8

ˆ

ˆ

<

ˆ

ˆ

:

��z2 D 0 in ˝e;

z2 D 0 on @˝ n �;
z2 D � on �;

The resulting solution in ˝e; is uj˝e D z D z1 C z2: The solutions of .i/; .i i/, i.e.
� and w can be approximated in an iterative manner by using a fixed point iteration
(see Sect. 2.3). The weak formulations of the above problems are given below.

�

find z1 2 H1
0 .˝

e/ such that 8v 2 H1
0 .˝

e/;

ae.z1; v/ D .f e; v/˝e ;
(8a)

8

<

:

find � 2 �and w 2 E�CKi such that 8� 2 �and v 2 Ki;

.S e�; �/ D ..f e; F e�e/ � ae.z1; F e�e//C ..f i ; F i�i /� ai .w; F i�i //;

ai .w; v � w/ � .f i ; v � w/˝i ;

(8b)
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�

find z2 2 E�CH1
0 .˝

e/ such that 8v 2 H1
0 .˝

e/;

ae.z2; v/ D 0; (8c)

whereKi D fv 2 V WD H1
0 .˝

i / W v �  g.

2.1 Finite Element Discretization

Let˝ � R2 be a bounded open convex subset and let Th be a conforming isotropic
subdivision of ˝ into simplices t. Let V e

h ; V
i
h denote the spaces of continuous

piecewise polynomials defined on the corresponding subdivision of ˝e;˝i .

Ke
h WD fvh 2 V e

h W vhj@˝e\@˝ D 0g; Ki
h WD fvh 2 V i

h W vh �  ; vj@˝i\@˝ D 0g:

Let N e;N i ;N � denote the sets of nodes located, respectively, in the subdomains
˝e;˝i and on the interface �: Let

Ke
h D spanf�k; k 2 N eg; Ki

h D spanf�k; k 2 N i g ; K�
h D spanf�k; k 2 N � g

and let

Sh D spanf�0.� /�k; k 2 N �
i g:

By using above definitions, we have the following finite element discretization for
the two-domains method:

�

find zh1 2 Ke
h 8vh 2 Ke

h

ae.zh1; vh/ D .f e; vh/;
(9)

8

<

:

find �h 2 Sh and wh 2 Ki
h such that 8vh 2 Ki

h; 8 �h 2 Sh;
.S e�h; �h/ D ..f e; F e�eh/� ae.zh1; F e�eh//C ..f i ; F i�ih/� ai .wh; F i�ih//;

ai .wh; vh � wh/ � .f i ; vh � wh/
(10)

�

find zh2 D .E�/h CKe
h such that 8vh 2 Ke

h;

ae.zh; vh/ D 0: (11)

2.2 Matrix Formulation

To obtain the matrix formulation of the above discrete formulation of the domain
decomposition problem let us denote the unknown vectors by ue;ui ;u� and the
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right hand side vectors by fe; fi ; f� of lengths Ne;N i ;N � respectively, such that
N D NeCN i CN� ; with A 2 RN�N and f 2 RN : Then the matrix representation
of (1) can be written as

�

Au � f;
u � �;

subject to the complementarity conditions .f � Au/j .u� �/j D 0, with

0

@

AeII O AeI�
O AiII A

i
I�

Ae�I A
i
�I A� �

1

A ; u D
0

@

ueI
uiI
u�

1

A ; f D
0

@

feI
fiI
f�

1

A ; (12)

where we have partitioned the degrees of freedom into those internal to ˝e and to
˝i and those on the interface �: By using this notation, the above discrete weak
formulations have the following matrix form

AeIIue;1I D feI ; (13a)

Seu� D f� � Ae�Iue;1I � Ai�IuiI ; (13b)

AiIIuiI � fiI �AiI� u� ; (13c)

AeIIue;2I D �AeI� u� ; (13d)

subject to conditions .fiI � AiIIuiI � AiI� u� /j .uiI � �I /j D 0, which represent the
complementarity conditions for (13c).

The set of equations (13a)–(13d) could be seen as a partial Schur complement
approach for the system (12). The solutions uiI and u� will be approximated in an
iterative manner. The resulting solution is then Œue;1I C ue;2I ;u

i
I ;u� �:

2.3 Domain Decomposition Algorithm

Equations (13b) and (13c) form a coupled system which we solve by using a fixed
point iteration. We note here that, given uiI , the solution of (13b) involving the Schur
complement matrix Se can be implemented by using a Krylov subspace solver with
domain decomposition preconditioning, corresponding to some partition of˝e into
several subdomains. On the other hand, (13c) is a standard linear complementarity
problem posed on a small subdomain˝i . The proposed algorithm is included below.
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2.3.1 Picard Reduced QP Algorithm

1: step 0: Find an initial guess by using coarse mesh solution
2: step 1: find uef1gI D .AeII /

�1feI ;
3: step 2:
4: for k D 0; 1; 2; : : : ; till convergence do
5: Solve Se.u� /kC1 D .f� � Ae�Iuef1gI �Ai� I .uiI /k/
6: Find .uiI /

kC1 2 Ki such that

J..uiI /
kC1/ 	 J.v/ 8v 2 Ki

7: where

J.v/ WD 1

2
.v/T AiII v� .v/T .fiI � AiI� ukC1

� /

8: If converged, set u� D ukC1
� and exit

9: end for
10: step 3: Compute

uef2gI D �.AeII /�1AeI� u�

11: The resulting solution is then

u D Œuef1gI C uef2gI ; uiI ; u� �:

3 Numerical Experiments

3.1 Test 1: One Obstacle

For our first test problem, we consider an elastic membrane which lies above an
obstacle of height 1 centered at the origin with square cross-section with side length
`o D 0:3 under the forcing function f D 1 with ˝ D .�1; 1/2: We choose
˝i to be a square region with side-length `i which contains the support of the
obstacle such that the interface boundary � lies outside of the obstacle support.
In the given algorithm we solved PDI, in the step 2(ii) by using the matlab function
quadprog, a built-in quadratic programming solver. The PDI is coupled together
with the interface equality problem in step 2(i) in an iterative manner. The relation
to constrained minimization problems with quadratic programming problem can
be found in [8]. We apply fixed point DD algorithm with global complementarity
condition as a stopping criterion max

1	i	n j .Łu � f/i .u � �/i j� 10�3: The initial

guess was computed on a fixed coarse mesh with n0 nodes. Note that the variational
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Table 1 Fixed point iterations for test problem 1

`i= 0.4 0.5 0.6
n = 1,089 8 10 10
4,225 12 16 17
16,641 17 25 26

−1

0

1

−1

0

1
0

0.5

1

1.5

−1 −0.5 0 0.5
−1

−0.5

0

0.5

Fig. 1 Test problem 2: the choice of ˝i for `i D 0:4 and the corresponding solution

inequality problem is now posed over a small subdomain, and hence has low
complexity—we therefore decided not to report on it. Table 1 displays the number
of fixed point iterations required to solve the coupled equations (13b), (13c). We see
that the number of iterations grows logarithmically as we increase the level of
refinement. On the other hand, reducing the size of˝i leads to a smaller number of
iterations, while preserving the dependence behaviour on the refinement level.

3.2 Test 2: Three Obstacles

For the same domain ˝ we consider the obstacle problem with three square
obstacles of height 1 with centers located at .0:5; 0:5/; .�0:5; 0:5/; .0;�0:5/ and
equal sides `o D 0:3. We performed the same investigation, where we chose ˝i to
be a multiply-connected domain consisting of square regions of side-length `i (see
Fig. 1. The numerical results are displayed in Table 2. For this harder problem, the
number of iterations displays a logarithmic dependence for `i sufficiently small, but
deteriorates for larger˝i . However, this is not the context we devised our algorithm
for. Finally, we note that for this test problem the variational inequality in step (ii)
decouples into three independent variational inequalities.
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Table 2 Fixed point iterations for test problem 2

`i= 0.4 0.5 0.6
n = 1,089 9 14 14
4,225 14 21 24
16,641 19 32 38

4 Summary and Future Work

We described an algorithm for the solution of obstacle problems using a two-
domain formulation. In the larger subdomain we solved a PDE, while in the
smaller region containing the coincidence set we solved a variational inequality
using a minimization formulation. The solution of the PDE, as well as the solution
involving a reduced Schur complement problem can in practice be achieved via a
parallel implementation of a Krylov method coupled with a domain decomposition
preconditioner. Work in progress includes a Newton–Krylov solution of the non-
linear problem (7). Future work is expected to include results validating this
approach as well as an analysis of our algorithm. We are also interested to implement
this method on general elliptic and parabolic problems.
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A Domain Decomposition Algorithm for Contact
Problems with Coulomb’s Friction

J. Haslinger, R. Kučera, and T. Sassi

1 Introduction

Contact problems of elasticity are used in many fields of science and engineering,
especially in structural mechanics, geology and biomechanics. Many numerical
procedures solving contact problems have been proposed in the engineering liter-
ature. They are based on standard discretization techniques for partial differential
equations in combination with a special implementation of non-linear contact
conditions (e.g., see [3, 5, 6, 8]).

The use of domain decomposition methods turns out to be one of the most
efficient approaches. Recently, Dirichlet–Neumann and FETI type algorithms have
been proposed and studied for solving multibody contact problems with Coulomb
friction (see for example [1, 2, 7]).

In this paper, the Neumann–Neumann algorithm is extended to two-body contact
problems with Coulomb friction. The main difficulty is due to the boundary
conditions at the contact interface. They are highly non-linear, both in the normal
direction (unilateral contact conditions) and in the tangential one (Coulomb’s law).
A fixed point procedure is introduced to ensure the continuity of the contact stresses.
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Numerical results illustrate that an optimal relaxation parameter exists and its value
is nearly independent of the friction coefficient and the mesh size.

2 Setting of the Problem

Let us consider two plane elastic bodies, occupying bounded domains ˝˛, ˛ D
1; 2. The boundary � ˛ WD @˝˛ is assumed to be piecewise continuous, and it is
split into three non empty disjoint parts � ˛

u , � ˛
p and � ˛

c such that � ˛
u \ � ˛

c D ;.
Each body ˝˛ is fixed on � ˛

u and subject to surface tractions �˛ 2 .L2.� ˛
p //

2 on
� ˛
p . The body forces are denoted by f ˛ 2 .L2.˝˛//2. In the initial configuration,

both bodies have a common contact portion �c WD � 1
c D � 2

c . In other words,
we consider the case when the contact zone cannot grow during the deformation
process and there is no gap between˝1 and ˝2. Unilateral contact conditions with
local Coulomb’s friction are prescribed on �c . The problem consists in finding the
displacement field u D .u1; u2/ (the notation u˛ stands for uj˝˛ ) and the stress tensor
field � D .�.u1/; �.u2// such that:

div�.u˛/C f ˛ D 0 in ˝˛;

�.u˛/n˛ D �˛ on � ˛
p ;

u˛ D 0 on � ˛
u ;

9

>

=

>

;

(1)

˛ D 1; 2. The elastic constitutive law, is given by Hooke’s law for homogeneous
and isotropic material:

�ij .u
˛/ D A˛ijkhekh.u

˛/; e.u˛/ D 1

2

	

ru˛ C .ru˛/T
�

; (2)

where A˛ D .A˛ijkh/1	i;j;k;h	2 2 .L1.˝˛//16 is the fourth-order elasticity tensor
satisfying the usual symmetry and ellipticity conditions and e.u˛/ is the respective
strain tensor. The summation convention is adopted.

Further the normal and tangential components of the displacement u and the
stress vector on �c are defined by

u˛N D u˛i n
˛
i ; u˛Ti D u˛i � u˛Nn

˛
i ;

�˛N D �ij .u˛/n˛i n˛j ; �T ˛i D �ij .u˛/n˛j � �˛N n˛i ;

)

(3)

where n˛ denotes the outward normal unit vector to the boundary. On the interface
�c , the unilateral contact law conditions are prescribed:

�N WD �1N D �2N ; �T WD �1T D �2T ; (4)

ŒuN � � 0; �N � 0; �N ŒuN � D 0; (5)
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where ŒvN � D v1 � n1 C v2 � n2 is the jump across the interface �c of a function v
defined on ˝1 [˝2. Coulomb’s law of local friction reads as follows

j�T j � F j�N j;
j�T j < F j�N j H) ŒuT � D 0;
j�T j D F j�N j H) 9� � 0 ŒuT � D ���T ;

9

>

=

>

;

(6)

where F 2 L1.�c/, F � 0 on �c is the coefficient of friction and ŒuT � stands for
the jump of the tangential displacements.

Weak solutions of the contact problem obeying Coulomb’s law of friction can
be defined as a fixed point of the mapping ˚ W � 7! �, where � D f� 2
H�1=2.�c/; � � 0g and ˚.g/ D ��N .u/ with u 2 K being the unique solution
of the variational inequality:

u WD u.g/ 2 K W a.u; v� u/ChFg; jŒvT �j � jŒuT �ji � L.v� u/; 8v 2 K: .P/

Here

K D fv 2 Vj ŒvN � � 0 on �cg; V D V1 	 V2;

V˛ D fv˛ 2 .H1.˝˛//2 j v˛ D 0 on � ˛
u g; ˛ D 1; 2:

The bilinear and linear form a.�; �/, L.�/ represent the inner energy of the system,
and the work of applied forces, respectively:

a.v;w/ D a1.v1;w1/C a2.v2;w2/; L.v/ D L1.v1/C L2.v2/; v;w 2 V;

where

a˛.v˛;w˛/ D
Z

˝˛

A˛ijkhekh.v
˛/eij .w

˛/ dx;

L˛.v˛/ D
Z

˝˛

f ˛ � v˛ dx C
Z

� ˛p

�˛ � v˛ ds;

˛ D 1; 2. The symbol h�; �i stands for the duality pairing between H�1=2.�c/ and
H1=2.�c/ or for the scalar product in L2.�c/, if g 2 L2.�c/.

3 Domain Decomposition Algorithm for Contact Problems
with Given Friction

We present the continuous version of the domain decomposition algorithm for
solving .P/. The mathematical justification of all results presented below can be
found in [4]. We introduce the following notation: by �˛ W .H1=2.�c//

2 7! V˛ we
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denote the extension mapping defined for � 2 .H1=2.�c//
2 by

�˛� 2 V˛ W a˛.�˛�; v˛/ D 0 8v˛ 2 V˛0 ;

�˛� D � on �c;

)

(7)

where

V˛0 D fv˛ 2 .H1.˝˛//2j v˛ D 0 on � ˛
u [ �cg: (8)

Further for ' 2 L2.�c/ given, we define:

K2.'/ D fv2 2 V2j v2 � n2 � �' on �cg

and the frictional term j W V 7! R by

j.v/ WD j.v1; v2/ D
Z

�c

gjŒvT �j ds; v D .v1; v2/ 2 V:

The algorithm is based on the following result.

Proposition 1. A pair u D .u1; u2/ 2 V is a solution of .P/ if and only if u1 2 V1,
u2 2 V2 solve the following problems:

Find u1 2 V1 such that

a1.u1; v1/ D L1.v1/� a2.u2; �2v1/CL2.�2v1/ 8v1 2 V1

)

(9)

and

Find u2 2 K2.u1 � �1/ such that

a2.u2; v2 � u2/C j.u1; v2/� j.u1; u2/ � L2.v2 � u2/ 8v2 2 K2.u1 � �1/;

)

(10)
respectively.

Suppose that � 2 .H1=2.�c//
2 is given and u1, u2 are the solutions of the

following decoupled problems:

Find u1 WD u1.�/ 2 V1 such that

a1.u1; v1/ D L1.v1/ 8v1 2 V10

u1 D � on �c

9

>

>

=

>

>

;

.P1.�//

and
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Find u2 WD u2.�/ 2 K2.� � n1/ such that

a2.u2; v2 � u2/C j.�; v2/ � j.�; u2/ � L2.v2 � u2/

8v2 2 K2.� � n1/:

9

>

>

=

>

>

;

.P2.�//

If � 2 .H1=2.�c//
2 was chosen in such a way that �1N D �2N and �1T D �2T on

�c , then the couple u D .u1; u2/ 2 K would be a solution of .P/. To find such �
ensuring continuity of the normal and tangential contact stress across �c , we shall
use the following auxiliary Neumann problems defined in ˝1 and ˝2:

Find w1 2 V1 such that

a1.w1; v1/ D 1
2
.�a1.u1; v1/C L1.v1/ � a2.u2; �2v1/C L2.�2v1//

8v1 2 V1

9

>

>

=

>

>

;

.P3.�//

and

Find w2 2 V2 such that

a2.w2; v2/ D 1
2
.a2.u2; v2/ �L2.v2/C a1.u1; �1v2/ �L1.�1v2//

8v2 2 V2;

9

>

>

=

>

>

;

.P4.�//

where u1 WD u1.�/, u2 WD u2.�/ are the solutions of .P1.�//, and .P2.�//,
respectively. The algorithm consists of the following five steps:
ALGORITHM (DD) Let �0 2 .H1=2.�c//

2 and � > 0 be given. For k � 1 integer,
define u˛k , w˛k , ˛ D 1; 2 and �k by:

Step 1. u1k 2 V1 solves .P1.�k�1//;
Step 2. u2k 2 K2.�k�1 � n1/ solves .P2.�k�1//;
Step 3. w1k 2 V1 solves .P3.�k�1//;
Step 4. w2k 2 V2 solves .P4.�k�1//;
Step 5. �k D �k�1 C �.w1k � w2k/ on �c.

The convergence property of this algorithm follows from the next theorem.

Theorem 1. There exist: 0 < �� < 4 and functions �� 2 .H1=2.�c//
2, u˛�;w˛� 2

V˛, ˛ D 1; 2 such that for any � 2 .0; ��/ it holds:

�k ! �� in .H1=2.�c//
2;

u˛k ! u˛�
w˛k ! w˛�

)

in .H1.˝˛//2; ˛ D 1; 2;

9

>

>

=

>

>

;

k !1 (11)

where the sequence f.u˛k;w˛k ; �k/g is generated by ALGORITHM (DD). In addition,
the couple .u1�; u2�/ solves .P/.
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A discrete version of algorithm is obtained by a finite element approximation of
Steps 1–4. In [4] we used piecewise linear functions on triangulations of˝1 and˝2.
These triangulations are supposed to be compatible on the contact part �c . Using a
similar technique as in Theorem 1, one can prove the convergence property of the
discrete version with �� independent of the mesh norm.

4 Numerical Experiments

In this section, we shall test the performance of variants of ALGORITHM (DD)
for solving contact problems with Coulomb friction. For this reason, we combine
ALGORITHM (DD) with the method of successive approximations that enables us to
compute fixed points of the mapping ˚ . To get an efficient algorithm, we perform
only one iteration of ALGORITHM (DD) in each step of the method of successive
approximations. In other words, we update the slip bound g in each Step 2 using the
result of the previous iteration, i.e., g D ��N .u2k�1/ (and g D 0, if k D 1). This
algorithm will be called ALGORITHM I in this numerical part.

Note that Step 2 in ALGORITHM I treats simultaneously both, the non-penetration
and the friction conditions. A natural idea occurs, namely to split these conditions
between Steps 1 and 2. This modification of ALGORITHM (DD) will be called
ALGORITHM II.

In both, ALGORITHM I and II, one can perform splitting of the Gauss–Seidel type
so that computations of the normal and tangential contact stresses are decoupled by
performing one Gauss–Seidel iteration; see [4] for more details. In the respective
columns of Tables 1 and 2 we show the results without (column without) and with
the Gauss–Seidel splitting in Step 1, 2, and in both these steps.

Example 1. Let us consider two plane elastic bodies

˝1 D .0; 3/ 	 .1; 2/ and ˝2 D .0; 3/ 	 .0; 1/

made of an isotropic, homogeneous material characterized by the Young modulus
2:1	1011 and the Poisson ratio 0:277 (steel). The decompositions of @˝˛, ˛ D 1; 2
are as follows:

� 1
u D f0g 	 .1; 2/; � 1

c D .0; 3/	 f1g; � 1
p D @˝1 n � 1

u [ � 1
c ;

� 2
u D f0g 	 .0; 1/; � 2

c D .0; 3/	 f1g; � 2
p D @˝2 n � 2

u [ � 2
c :

The volume forces f ˛ D 0 in ˝˛, ˛ D 1; 2 while the following surface tractions of
density �1 D .�11 ; �12/ act on � 1

p :

�11.s; 2/ D 0; �12.s; 2/ D �12;L C �12;R s; s 2 .0; 3/;



A Domain Decomposition Algorithm for Contact Problems with Coulomb’s Friction 895

Table 1 Characteristics of ALGORITHM I without and with splitting

njm without in Step 1 in Step 2 in Step 1+2
#i ter jnA #i ter jnA #i ter jnA #i ter jnA

Œtimejeff � Œtimejeff � Œtimejeff � Œtimejeff �

504j18 60j667 61j1075 59j742 60j1146
Œ0:80j18:53� Œ0:98j29:86� Œ0:67j20:61� Œ0:70j31:83�

6072j66 61j1044 61j1492 61j824 60j1236
Œ8:19j7:91� Œ8:35j11:30� Œ4:63j6:24� Œ6:91j9:36�

17784j114 62j1313 63j1816 61j855 63j1365
Œ31:73j5:76� Œ43:71j7:96� Œ33:24j3:75� Œ32:89j5:99�

35640j162 61j1839 62j1819 61j892 62j1377
Œ126:94j5:68� Œ133:30j5:61� Œ59:59j2:75� Œ91:82j4:25�

59640j210 60j1583 61j2336 61j876 61j1377
Œ238:32j3:77� Œ341:33j5:56� Œ127:42j2:09� Œ196:11j3:28�

89784j258 60j1627 59j2333 60j864 61j1421
Œ405:31j3:15� Œ585:25j4:52� Œ216:09j1:67� Œ359:08j2:75�

Table 2 Characteristics of ALGORITHM II without and with splitting

njm without in Step 1 in Step 2 in Step 1+2
#i ter jnA #i ter jnA #i ter jnA #i ter jnA

Œtimejeff � Œtimejeff � Œtimejeff � Œtimejeff �

504j18 37j530 36j520 37j714 38j770
Œ0:19j14:72� Œ0:16j14:44� Œ0:19j19:83� Œ0:19j21:39�

6072j66 36j987 37j586 37j964 38j829
Œ5:76j7:48� Œ3:29j4:44� Œ5:35j7:30� Œ4:59j6:28�

17784j114 36j1417 38j626 37j1347 35j794
Œ34:32j6:21� Œ15:16j2:75� Œ32:81j5:91� Œ19:00j3:48�

35640j162 37j1864 36j608 36j1399 36j863
Œ119:50j5:75� Œ38:74j1:88� Œ89:79j4:32� Œ54:83j2:66�

59640j210 37j2132 37j624 37j1401 35j851
Œ290:71j5:08� Œ93:40j1:49� Œ191:30j3:34� Œ115:64j2:03�

89784j258 37j2532 37j619 37j1806 36j877
Œ631:80j4:91� Œ154:52j1:20� Œ451:65j3:50� Œ225:59j1:70�

�11.3; s/ D �11;B.2 � s/C �11;U .s � 1/; s 2 .1; 2/;

�12.3; s/ D �12;B.2 � s/C �12;U .s � 1/; s 2 .1; 2/;

where �12;L D �6 	 107, �12;R D �1=3 	 107, �11;B D 2 	 107, �11;U D 2 	 107,
�12;B D 4 	 107, and �12;U D 2 	 107. The coefficient of friction is F D 0:3.

We compare performance of ALGORITHMS I and II with different splittings
of Gauss–Seidel type for various values of � and degrees of freedom n (twice
the number of nodes) and m (the number of the contact nodes). In the tables
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ALGORITHM I

ALGORITHM II
θ

θ

# iter

# iter

Fig. 1 For each � we display the number of iterations #i ter satisfying the terminating precision
as above (n D 1;872, m D 36)

we report the computational time in seconds, the number #i ter of the (outer)
iterations, and the total number of actions nA of the inverses to the stiffness
matrices. Further we quote the total efficiency of the method assessed by the ratio
eff WD nA=.2m/ which gives a comparison of our algorithms with the realization
of “similar linear problems” by the standard conjugate gradient method. It is
well-known that the number of conjugate gradient iterations, i.e. the number of
matrix-vector multiplications, is bounded by the size of the problem. Therefore, one
can say that our algorithms exhibit the complexity comparable with the conjugate
gradient method when eff is less than two. All computations are performed in
Matlab 8.2 on Intel(R)Core(TM)2 Duo CPU, 2 GHz with 3 GB RAM. We set the
relative terminating precision on the computed contact stresses to tol D 10�4. The
inner problems in Step 1 and 2 are solved by optimization algorithms based on
the conjugate gradient method with the adaptive precision control respecting the
accuracy achieved in the outer loop; see [4] for more details.

Figure 1 illustrates the sensitivity of the different variants of our algorithms
with respect to � . From these results one may conclude at least two facts: (1)
ALGORITHM II without splitting is more stable than ALGORITHM I in sense that it
converges for larger values of � ; (2) splitting used Step 2 of ALGORITHM II leads to
the convergent process for all � 2 .0; 1�.
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Hybrid Dual-Primal FETI-Schur Complement
Method for Stokes

Ange B. Toulougoussou and François-Xavier Roux

1 Discrete Stokes

The algebraic Stokes is of the following saddle point form: Find .Uh; Ph/ 2 Vh	Qh

such that

�

Ah B
T
h

Bh 0

��

Uh

Ph

�

D
�

Fh

0

�

: (1)

We suppose that the system (1) arises from the mixed finite-element discretization
of Stokes on a domain ˝ . We consider spaces Vh and Qh that satisfy the inf-sup
condition and whose elements are continuous. Such spaces can be found in [5] and
include Hood–Taylor and Mini elements. Under the inf-sup condition and assuming
a mixed boundary condition on the velocity there exists a unique solution to (1).

2 Hybrid Dual-Primal FETI-Schur

Stokes is a bottleneck in the analysis of incompressible fluid flows and is the subject
of many researches. The numerical solution of the system (1) that arises from its
discretization is a challenging problem because of the indefiniteness of saddle-point
problems [1]. Memory space storage is an other important issue to deal with for
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large three-dimensional problems. An overview of solution methods to solve saddle-
point problems is given in [1]. We focus on iterative methods such as FETI and
BDD that save memory space and have proved efficiency for many linear systems.
The domain ˝ is split into N non-overlapping subdomains f˝.s/gsD1;��� ;N with

interface �I D [Ns;qD1f˝
.s/ \ ˝.q/g. Degrees of freedom of each subdomain ˝.s/

are split into internal degrees of freedom designated by subscript i and degrees of
freedom designated by subscript� that correspond to the interface of the subdomain
˝.s/ with other subdomains. Related to the splitting above, FETI and BDD split
the original linear systems into subproblems whose solutions are flux and trace
continuous respectively [3, 9]. FETI addresses these compatibility requirements
by introducing a unique Lagrange multiplier on the interface to ensure the weak
continuity of the subsolutions. FETI is dual to BDD that imposes a unique trace to
the subsolutions on the interface. The original system is thus reduced in both cases
to interface problems to be solved by Krylov methods that nullify the residual at
convergence. The residuals in FETI and BDD are the jump of the solutions and of
the flux on the interface respectively. These domain decomposition methods have
been successfully extended to solve the system (1) when the discrete pressure is
discontinuous. Their interface systems become mixed problems when the discrete
velocity and pressure are both continuous. The spectral distribution of the interface
operators slows down the rate of convergence of FETI and BDD that is proven
to be optimal for systems arising from the discretization of elliptic problems. The
interface unknowns resulting from the combination of FETI and BDD should be
physically homogeneous [6] and well-suited for saddle-point problems such as (1)
that arise in many applications [1]. We split the system (1) into N subsystems,
renumber the unknowns starting with the internal ones to get the following system:

Local systems

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

! 

U
.s/
i

P
.s/
i

!

C
�

Ai�
Bi�

�

U
.s/
� C

 

B
.s/
i�

T

0

!

P
.s/
� D

 

F
.s/
i

0

!

, (2)

interface problems

	

A
.s/
� i B

.s/
i�

T
�

 

U
.s/
i

P
.s/
i

!

C A.s/� � U .s/
� C B.s/T

� � P
.s/
� D F .s/

� , (3)

incompressibility conditions

	

B
.s/
� i 0

�

 

U
.s/
i

P
.s/
i

!

C B.s/
� � U

.s/
� D 0; s D 1; � � � ; N . (4)

Systems (2)–(4) supplemented with continuity conditions on the velocity and on the
pressure through the interface are equivalent to system (1).
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Introduce notations:

M.s/
uu D A

.s/
� � �

	

A
.s/
� i B

.s/
i�

T
�

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
A
.s/
i�

B
.s/
i�

!

,

M.s/
up D B

.s/T

� � �
	

A
.s/
� i B

.s/
i�

T
�

 

A
.s/
i i B

.s/
� �

T

B
.s/
i i 0

!�1  
B
.s/
i�

T

0

!

,

M.s/
pu D B

.s/
� � �

	

B
.s/
� i 0

�

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
A
.s/
i�

B
.s/
i�

!

,

M.s/
pp D

	

B
.s/
� i 0

�

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
B
.s/
� i

T

0

!

;

QF .s/
� D F

.s/
� �

	

A
.s/
� i B

.s/
i�

T
�

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
F
.s/
i

0

!

,

QFi .s/ D
	

B
.s/
� i 0

�

 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
F
.s/
i

0

!

; s D 1; � � � ; N .

Lemma 1. The subdomain Schur complements M.s/
pp and M.s/

uu are symmetric,
positive semi-definite.

Proof. Matrices M.s/
pp are clearly symmetric. Systems (2) are well-posed algebraic

problems although they are not the usual Stokes because of the Dirichlet boundary
condition on the pressure [2]. Therefore, for any given P .s/

� , there exists

 

U
.s/
i

P
.s/
i

!

D �
 

A
.s/
i i B

.s/
i i

T

B
.s/
i i 0

!�1  
B
.s/
i�

T

0

!

P
.s/
� :

By Gaussian elimination, we have

0

B

@

A
.s/
i i B

.s/
i i

T
B
.s/
� i

T

B
.s/
i i 0 0

B
.s/
� i 0 0

1

C

A

0

B

@

U
.s/
i

P
.s/
i

P
.s/
�

1

C

A

D

0

B

@

0

0

�M.s/
pp P

.s/
�

1

C

A

: (5)

Therefore,

� P .s/T

� M .s/
pp P

.s/
� D

0

B

@

U
.s/
i

P
.s/
i

P
.s/
�

1

C

A

T 0

B

@

A
.s/
i i B

.s/
i i

T
B
.s/
� i

T

B
.s/
i i 0 0

B
.s/
� i 0 0

1

C

A

0

B

@

U
.s/
i

P
.s/
i

P
.s/
�

1

C

A

D U
.s/T

i A
.s/
i i U

.s/
i C 2P .s/T

i B
.s/
i i U

.s/
i C 2P .s/T

� B
.s/
� i U

.s/
i : (6)
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From (5), we have

B
.s/
i i U

.s/
i D 0 and B

.s/
� i U

.s/
i D �M.s/

pp P
.s/
� :

Then from (6) and the positivity of the matrix arising from the discretization of the
Laplace operator by finite elements, we have

P
.s/T

� M .s/
pp P

.s/
� D U .s/T

i A
.s/
i i U

.s/
i � 0:

We also have

0

B

@

A
.s/
i i B

.s/
i i

T
B
.s/
� i

T

B
.s/
i i 0 0

B
.s/
� i 0 0

1

C

A

0

B

@

0

1
.s/
i

1
.s/
�

1

C

A

D
0

@

0

0

0

1

A (7)

where 1.s/i and 1
.s/
� are constants in the subdomain ˝.s/ and on its boundary

respectively. By equality (7) one can show that in general there exists R.s/p such

that M.s/
pp R

.s/
p D 0.

It is well-known that the subdomain Schur complements M.s/
uu are symmetric,

positive semi-definite in general [7].

Eliminating the internal degrees of freedom from local systems (2), the interface
systems (3) and the incompressibility conditions (4) can be written as

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

M.1/
uu M.1/

up 0 0 � � � � � � 0 0

M .1/
pu �M.1/

pp 0 0 � � � � � � 0 0

0 0
: : :

: : :
: : :

:::
:::

0 0
: : :

: : :
: : :

: : :
:::

:::
:::

:::
: : :

: : :
: : :

: : : 0 0
:::

:::
: : :

: : :
: : : 0 0

0 0 � � � � � � 0 0 M .N/
uu M.N/

up

0 0 � � � � � � 0 0 M .N/
pu �M.N/

pp

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

U
.1/
�

P
.1/
�
:::
:::
:::
:::

U
.N/
�

P
.N/
�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

QF .1/
�

� QFi .1/
:::
:::
:::
:::
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. (8)

We introduce a unique Lagrange multiplier � to ensure the weak continuity of the
velocity on the interface as in FETI transforming the system (8) into
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(9)
where fT .s/gsD1;N are boolean matrices of elements �1, 0 and 1. The application of
the matrix T .s/ to a matrix or a vector extracts and signs the interface components
of that matrix or vector [3]. We next introduce the 0–1 matrix L.s/

T

that maps the
interface degrees of freedom of subdomain ˝.s/ into global interface degrees of
freedom belonging to the interface �I [9]. we develop the system (9) imposing a
unique pressure on the interface as in BDD as P .s/

� D P� to obtain:

M.s/
uu U

.s/
� CM.s/

up P� C T .s/
T

� D QF .s/
� , (10)

M.s/
pu U

.s/
� �M.s/

pp P� D � QF .s/, (11)

N
X

sD1
T .s/U

.s/
� D 0. (12)

We can then eliminate the degrees of freedom associated to the velocity in (10)
as in FETI taking into account the possibly singularity of the matrices M.s/

uu ; s D
1; � � � ; N . Using the previously obtained velocity into (11) and (12) we get the FETI
type interface system:

�

FDP �GI
�GT

I 0

��

�

˛

�

D
�

d

�eT
�

(13)

where
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, FDP D
N
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.s/
DPB

.s/T ,

B.s/ D
 

T .s/ 0

0 L.s/
T

!

; GI D
 

T .1/R.1/u � � � T .Nf /R.Nf /u

0 � � � 0

!

; � D
�

�

P�

�

;
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Nf the number of floating subdomains, R.s/u ; s D 1; � � � ; Nf store the basis of the
kernel of the matricesM.s/

uu and ˛ a combination of them. The interface system (13)
derives from a substructuring strategy using one-level FETI on the velocity and
the primal Schur complement method on the pressure and shares some common
ideas with previous methods. Indeed, the idea of combining dual and primal Schur
complement method to solve algebraic systems has been introduced in [4]. A
generalization of FETI and primal Schur complement has been obtained using A-
FETI, a three-field variant of FETI [6]. In [8], the authors use FETI-DP on the
velocity and the primal Schur complement on the pressure to solve the algebraic
system arising from the discretization of Stokes with a modified Hood–Taylor
element.

Interchanging the role of U .s/
� and P .s/

� we obtain the matrix

F
.s/
PD D

0

@
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uu CM.s/
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pu
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�

1

A ; s D 1; � � � ; N: (14)

We have

Lemma 2. Matrices F .s/
DP ; s D 1; � � � ; N are symmetric positive semi-definite.

Proof. Matrices F .s/
DP ; s D 1; � � � ; N are clearly symmetric. For any
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We have shown that matricesM.s/
pp are positive semi-definite and matricesM.s/C

uu are
known to be positive semi-definite [3]. We can then conclude by (15) that matrices
F
.s/
DP ; s D 1; � � � ; N are positive semi-definite in general.

The FETI type operator FDP is thus positive semi-definite in general and we can
solve the system (13) by projected preconditioned conjugate gradient [3]. The
suitable projector P is a matrix that projects � onto the null space of GT

I . The
preconditioner we choose is BDD with a local component defined as a weighted

sum of matrices F .s/
PD and a coarse problem using the possibly kernel

 

�M.s/
up R

.s/
p

R.s/p

!
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of matrices F .s/
DP . Define weights

˚

D.s/
u

�

sD1;N and
n

D.s/
p

o

sD1;N associated with

velocity and pressure respectively and the matrices

C D
 

�D.1/
u M.1/

up R
.1/
p � � � �D.N/

u M.N/
up R

.N/
p

D.1/
p R

.1/
p � � �D.N/

p R.N/p

!

;

B
.s/
D D

 

D.s/
u T .s/ 0

0 L.s/
T

D.s/
p

!

; s D 1; � � � ; N:

The BDD algorithm is defined as follows.

(i) Balance the original residual

�

ru

rp

�

by solving the auxiliary problem

CT P T FDPPC� D CT

�

ru

rp

�

, (16)

(ii) Compute the matrix-vector product

 N�.s/
NP .s/
�

!

D F
.s/
PDB

.s/
T

D

��

ru

rp

�

� PT FDPC�

�

, s D 1; � � � ; N; (17)

(iii) Balance the residual by solving the coarse problem

CT FDPC� D CT

 

�

ru

rp

�

� PT FDPP

N
X

sD1

B
.s/
D

 N�.s/
NP .s/
�

!!

, (18)

(iv) Average the solutions on the interface

M

�

ru

rp

�

D
N
X

sD1

B
.s/

D

 N�.s/
NP .s/
�

!

C C� . (19)

3 Theoretical Analysis of the Condition Number

Define T D PN
sD1 B

.s/
D F

.s/
PDB

.s/T

D and P0 the PT FDPP� orthogonal projection on

the kernel of F .s/
DP . Following [9] one can prove
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Lemma 3. The algorithm returns z D M
�

ru

rp

�

, where

M D �.Id � P0/ T
�

PT FDPP
�

.Id � P0/C P0
� �

PT FDPP
��1

: (20)

We have

Theorem 1. The algorithm above returns z D M

�

ru

rp

�

, where M is a symmetric

positive definite matrix and cond
�

M;PT FDPP
� � c, where

c D sup

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

PN
sD1











B.s/T P
PN

rD1 B
.r/
D

 O�.r/
OP .r/
�

!











2

F
.s/
DP

PN
sD1











 O�.s/
OP .s/
�

!











2

F
.s/
DP

W GT
I

 O�.s/
OP .s/
�

!

D 0;

* O�.s/
OP .s/
�

!

;

 

O�.s/
OQ.s/
�

!+

D 0;8
 

O�.s/
OQ.s/
�

!

2 Ker.F .s/
DP /; 1 � s � N

)

: (21)

We omit the proof of the theorem above because it essentially follows [9].

4 Conclusion

We have combined FETI and BDD to solve the discrete Stokes with continuous
pressure. The original system is reduced to an interface system whose matrix is
symmetric positive semi-definite in general and whose unknowns are physically
homogeneous. We have given the operator form of the preconditioner and a result
from which a bound for the condition number could be derived.
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Stable Computations of Generalized Inverses
of Positive Semidefinite Matrices

A. Markopoulos, Z. Dostál, T. Kozubek, P. Kovář, T. Brzobohatý,
and R. Kučera

1 Introduction

Due to the rounding errors, effective elimination of the displacements of “floating”
subdomains is a nontrivial ingredient of implementation of FETI methods, as it can
be difficult to recognize the positions of zero pivots when the nonsingular diagonal
block of A is ill-conditioned. Moreover, even if the zero pivots are recognized
properly, it turns out that the ill-conditioning of the nonsingular submatrix defined
by the nonzero pivots can have a devastating effect on the precision of the solution.

Most of the results are related to the first problem, i.e., to identify reliably the
zero pivots. Thus [6] proposed to combine the Cholesky decomposition with the
singular value decomposition (SVD) of the related Schur complement S in order
to guarantee a proper rank of the generalized inverse. A natural modification of
their method is to carry out the Cholesky decomposition as long as sufficiently large
pivots are generated, and then to switch to SVD of S. The dimension of S is typically
small, not greater than four for 2D problems or 3mC 3 for 3D problems of linear
elasticity, wherem is the number of the last nodes that can be placed on a line.

Here we review our results [2, 4] related to the solution of SPS systems arising
in FETI methods. In particular in the Total FETI, a variant [5] of the FETI domain
decomposition method that implements both prescribed displacements and interface
conditions by the Lagrange multipliers, so that the kernels of the stiffness matrices
of the subdomains, i.e., their rigid body motions, are known a priori. We show,
using a suitable (left) generalized inverse, how to reduce the solution of local
SPS systems to the decomposition of an a priori defined well-conditioned positive
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definite diagonal block AJJ of A and application of a suitable generalized inverse of
its Schur complement S. Since the Schur complement S in our approach is typically
very small, the generalized inverse can be effectively evaluated by the SVD. If the
rank of A or a lower bound on the nonzero eigenvalues of A are known, as happens
in the implementation of TFETI, then the SVD can be implemented without any
“epsilon”. Moreover, if the kernel of A is known, then the SVD decomposition can
be replaced by effective regularization. Alternatively, we show [4] that the kernel
can be used to identify a reasonably conditioned nonsingular submatrix of A of
the maximal order, so that S D O. Our method can be considered as a variant of
the regularization method or the LU–SVD method of [6] with a priori choice of
the well-conditioned nonsingular part of A based on a combination of mechanical
and combinatorial arguments. Related methods which use an information from the
kernel to determine the positions of zero pivots were also proposed by [1, 10].

We review also results of [9], where we proposed a regularization technique
enabling us to define a non-singular matrix A% whose inverse is the generalized
inverse to A. It avoids the necessity to identify zero pivots. The favorable feature of
our regularization is that an extra fill-in effect in the pattern of the matrix may be
negligible.

2 Cholesky Decomposition and Fixing Nodes

We assume that A is an SPS stiffness matrix of a “floating” 2D or 3D elastic body,
such as a subdomain in the TFETI method. If we choose M of the total N mesh
nodes that are neither near each other nor placed near any line, M < N , M � 2 in
2D, and M � 3 in 3D, then the submatrix AJJ of the stiffness matrix A defined by
the set J with the indices of the displacements of the other nodes is “reasonably”
nonsingular. This is not surprising, as AJJ can be considered as the stiffness matrix
of the body that is fixed in the chosen nodes. It is natural to assume that if fixing of
the chosen nodes makes the body stiff, then AJJ is well-conditioned. We call the
M chosen nodes fixing nodes and denote by I the set of indices of corresponding
displacements. In this section, we show how to combine this observation with the
regularization of the Schur complement [11] or with the LU–SVD method proposed
by [6].

Our starting point is the following decomposition of the SPS matrix A 2 Rn�n

QA D PAPT D
� QAJJ QAJI
QAIJ QAII

�

D
�

LJJ O
LIJ I

� �

LTJJ LTIJ
O S

�

; (1)

where LJJ 2 Rr�r is a lower factor of the Cholesky decomposition of QAJJ, LIJ 2
Rs�r , r D n� s, s D 2M in 2D, s D 3M in 3D, LIJ D QAIJL�TJJ , P is a permutation
matrix, and S 2 Rs�s is the Schur complement matrix defined by

S D QAII � QAIJ QA�1JJ
QAJI:
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To find P, we proceed in two steps. First we form a permutation matrix P1 to
decompose A into blocks

P1APT1 D
�

AJJ AJI

AIJ AII

�

; (2)

where the submatrix AJJ is nonsingular and AII corresponds to the degrees of
freedom of the M fixing nodes. Then we apply a suitable reordering algorithm on
P1APT1 to get a permutation matrix P2 which leaves the part AII without changes
and enables the sparse Cholesky decomposition of AJJ. Further, we decompose
PAPT as shown in (1) with P D P2P1. To preserve sparsity we use any sparse
reordering algorithm such as symmetric approximate minimum degree, symmetric
reverse Cuthill-McKee, profile and wavefront reduction etc. The choice depends on
the way in which the sparse matrix is stored and on the problem geometry. It is easy
to verify that

AC D PT
�

L�TJJ �L�TJJ LTIJSC
O SC

� �

L�1JJ O
�LIJL�1JJ I

�

P; (3)

where SC 2 Rs�s denotes a left generalized inverse which satisfies

S D SSCS:

Since s is small, we can substitute for SC the Moore–Penrose generalized inverse
S� 2 Rs�s computed by the SVD. To see that S� can be evaluated effectively, first
observe that the eigenvectors of S that correspond to the zero eigenvalues are the
traces of the vectors from the kernel of A on the fixing nodes. Indeed, if QAe D o,
then

QAJJeJ C QAJIeI D o; QAIJeJ C QAIIeI D o;

and

SeI D . QAII � QAIJ QA�1JJ
QAJI/eI D QAIIeI � QAIJ QA�1JJ .� QAJJeJ / D o: (4)

Thus if we know the defect d of A, which is the case in the problems arising from
application of the TFETI method, we can replace d smallest nonzero eigenvalues
of S by zeros to get the best approximation of S with the correct rank s � d . Alter-
natively, we can identify the zero eigenvalues correctly if we know a lower bound c
on the smallest nonzero eigenvalues of A. Due to the Schur complement eigenvalue
interlacing property proved by [12], it follows that the nonzero eigenvalues of S
are also greater or equal to c, so we can replace the computed eigenvalues of S
that do not exceed c by zeros to get an approximation of S that complies with our
information on A. If neither is the case, it seems that the best we can do is to choose
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some small " and to replace the eigenvalues that are smaller than " by zeros (see,
e.g., [6, 10]).

It follows from (4) that the kernel of S is spanned by the trace of a basis of the
kernel of A on the fixing nodes. Assume that the kernel of A is known, i.e., we know
R 2 Rn�d whose columns span the kernel of A. Assembling RI� by I th rows of R,
we define the orthogonal projector onto the kernel of S by

Q D RI�
�

RT
I�RI�

��1
RT
I�

and we replace SC in (3) by

S� D .SC %Q/�1 D S� C %�1Q; % > 0:

We use % � kAk. To see that S� is a left generalized inverse, notice that

SS�S D S .SC %Q/�1 S D S
�

S� C %�1Q�S D SS�SC %�1SQS D S:

Such approach can be considered as a variant of regularization by [11]. In the next
section, we show how to carry out the regularization directly on A.

3 Regularization

This section deals with generalized inverses, for which the necessity to recognize
zero pivots is avoided. We regularize A 2 Rn�n using the known matrix R 2 Rn�d
whose columns span the kernel of A. Although our regularization is general, i.e., it
works for rectangular matrices (see [9]), we confine ourself to the SPS matrix A.

Let us introduce the matrix M 2 Rn�d so that M>R is nonsingular. Let us
assemble to A the regularized matrix A% as follows:

A% D AC �MM>; (5)

where � > 0 is fixed. The following results are proved in [9].

Theorem 1. The matrix A� is symmetric, positive definite (and non-singular) and
its inverse A�1� is the generalized inverse to A.

Remark 1. If M D R, we can get the Moore–Penrose inverse A� to A by

A� D A�1� PImA; (6)

where PImA D I �R.R>R/�1R is the orthogonal projector on the image of A.

Remark 2. If AC is an arbitrary generalized inverse to A, then the Moore–Penrose
inverse A� is given by
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A� D PImAACPImA (7)

where PImA is the same as in Remark 1.

Using (7), one can prove that FETI type algorithms are invariant to the choice of
generalized inverses in the sense that each generalized inverse is internally adapted
to the Moore–Penrose one [9]. On the other hand, the Moore–Penrose inverse may
be directly used in computations via the formulas (6) and (7). Although it should
not affect the behavior of the FETI algorithm, it may stabilize computations for
numerically unstable problems; see [8] for the experimental example.

Let us return to computational aspects of the regularization (5). To construct the
regularization term, we use again fixing nodes, in which we fix only some DOFs to
keep the sparsity pattern of A in A% as small as possible (see Fig. 1). Let us denote
the set of indices of the fixing DOFs by I and the set of remaining indices by J . We
assemble M as follows:

M D QMT; QMi;W D
�

Ri;W; i 2 I;
0; i 2 J; ; i D 1; : : : ; k; (8)

where Ri;W denotes the i th row of R and T is a nonsingular matrix which orthonor-
malizes columns of QM to protect the condition number of A�. Obviously, T can be
efficiently computed as the upper triangular factor of the Cholesky decomposition
of QM> QM. Finally, � is chosen as the maximum diagonal entry of A that lays between
the minimum and maximum nonzero eigenvalues of A.

The factorization A% D LL> can be computed by the Cholesky algorithm for
nonsingular matrices. The inverse A�1� (and the generalized inverse) is given by
A�1� D L�>L�1. The computational complexity for band matrices is analyzed
in [9]. For the sparse matrices we use a sparse Cholesky factorization in the form
A� D PLL>P>, where P is the permutation matrix minimizing fill-in using a
suitable reordering algorithm. The action of A�1� on a vector v is implemented
as follows: A�1� v D P.L�>.L�1.P>v///; where the actions of L�> and L�1 are
evaluated efficiently using backward and forward substitutions, respectively.

4 Choice of Fixing Nodes

To get M uniformly distributed fixing nodes we combine a mesh partitioning
algorithm with a method for finding mesh centers. The algorithm reads as follows.
ALGORITHM ([2]) Given a mesh and M > 0.

1. Split the mesh into M submeshes using the mesh partitioning algorithm.
2. Verify whether the resulting submeshes are connected. If not, a graph post-

processing may be used to get connected submeshes.
3. Take a node lying near the center of each submesh.
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Step 1 can be carried out by a code for graph decompositions such as METIS,
while Step 3 can be efficiently performed using the so-called Perron vector (a
unique nonnegative eigenvector corresponding to the largest eigenvalue of the mesh
adjacency matrix) whose maximal entry enables us to approximate the center of the
submesh. For more details see [2, 3].

The number of DOFs given byM fixing nodes may be larger than the dimension
of the kernel of A. It is useful for engineering problems with complicated geometry.
The usage of M instead of R in the regularization technique of Sect. 3 enables us
to analyse cases when the most rows of R are replaced by zeros in M. Then the
regularization term in A� influences only few entries of A.

5 Cholesky Decomposition and the Kernel of A

If the kernel of A is known, then we can use it to identify a submatrix AJJ of A of a
maximal order. Since the Schur complement of AJJ is the zero matrix, the solution
of a consistent system with A reduces to the Cholesky decomposition of AJJ. The
following estimate proved in [4] indicates that we can use information obtained from
the kernel of A to identify suitable zero pivots.

Proposition 1. Let A 2 Rn�n denote a symmetric matrix whose kernel is spanned
by the full column rank matrix R 2 Rn�d with orthonormal columns, so that d is
the defect of A. Let I D fi1; : : : ; idg; 1 � i1 < i2 < � � � < id � n; denote a set of
indices, and let J D N � I; N D f1; 2; : : : ; ng: Then

�min.AJJ / � �min.A/ �4min.RI�/; (9)

where �min.A/ and �min.RI�/ denote the least nonzero eigenvalue of A and the least
singular value of RI�.

This strategy chooses d fixing DOFs by the orthonormalization of R and apply-
ing the Gaussian elimination with complete pivoting to transform orthonormalized
matrix R into the column-wise echelon form. The position of the first nonzero entry
in each column gives the degree of freedom which will be fixed. For more details
we refer to [4].

6 Numerical Examples

The performance of our strategies is tested on the stiffness matrix A of the elastic
three-dimensional cube (provided by the MatSol library [7]) made of steel and
discretized by trilinear bricks with the Neumann boundary conditions (see Fig. 1a).
To illustrate the effect of fixing nodes, we carried out the computations for different
strategies of choosing fixing nodes depicted in Fig. 1. Here Geometrical strategy is
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a b c d

Fig. 1 (a) No strategy, (b) GP strategy, (c) geometrical strategy, (d) uniform strategy

Table 1 Characteristics of A and AC in dependence on the distribution of fixing nodes

No strategy GP strategy Geometrical strategy Uniform strategy

cond.A/ 4.91E+02 4.91E+02 4.91E+02 4.91E+02
cond.AJJ / 2.90E+07 3.52E+05 9.92E+03 1.90E+03
cond.AC/ 2.55E+07 3.52E+05 1.32E+04 1.90E+03

Table 2 Characteristics of A and A�1
% in dependence on the distribution of fixing

nodes

GP strategy Geometrical strategy Uniform strategy

iter 22 22 22
iter� 22 22 22
cond.A/ 4.91E+02 4.91E+02 4.91E+02
cond.A�1

� / 3.53e+05 1.30e+04 3.02e+03
chol (s) 0.2897 0.2750 0.2567
action (s) 0.0215 0.0209 0.0210
nnz_chol 2775956 2762089 2690104

the simplest one and is based on finding fixing nodes using simple geometrical and
combinatorial arguments: choose M mesh nodes that are mutually as far apart as
possible and that are not placed near any line.

In Table 1, we report the regular condition number cond.A/ (ratio of the largest
and the smallest nonzero eigenvalues), the condition number of the nonsingular part
AJJ decomposed by the Cholesky decomposition, and the regular condition number
cond.AC/. The results of experiments agree with the intuitive rule that fixing nodes
distributed in a more regular pattern improves the conditioning of AJJ . In particular,
comparing variants (c) and (d), we can observe that placing the eight fixing nodes
inside the body can result in more stable generalized inverse than placing them at
the corners. It follows that the matrices arising in the original FETI method or its
TFETI variant are typically better conditioned than those arising in the FETI–DP.
Notice that the worst conditioning of AJJ and AC can be observed in variant (a)
which is a possible result of the default strategy used by Farhat and Géradin [6].

Table 2 shows results of numerical tests based on the regularization. The rows iter
or iter� report iterations of the TFETI algorithm for the regularizations computed by
strategies (b)–(d) or by the Moore–Penrose inverse obtained from them using (7),
respectively. It confirms invariancy with respect to the choice of the generalized
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inverse. The condition numbers in the next two rows agree with the same heuristic
as in Table 1, i.e., the conditioning of A�1� is improved when the fixing DOFs
are distributed in a more regular pattern. The CPU times in the fifth and sixth
rows required for computing the Cholesky decomposition and the actions of the
generalized inverses, respectively, illustrate the computational invariancy that is due
to the negligible fill-in. It is seen from the number of non-zero entries in the last row
of the table.
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Parallel Implementation of Total-FETI DDM
with Application to Medical Image Registration

Michal Merta, Alena Vašatová, Václav Hapla, and David Horák

1 Introduction

The main task of image registration is to determine an optimal spatial transformation
such that two (or more) images become, in a certain sense, similar. Therefore, it
plays a crucial role in image processing if there is a need to integrate information
from two (or more) source images. These images usually show the same scene, but
taken at different times, from different viewpoints or by different sensors.

Image registration is used in various areas. In medical applications it serves to
obtain more complete information about the patient (e.g., to monitor a progression
or regression of a disease, to align pre- and post-contrast images, or to compare
patient’s data with anatomical atlases), to compensate a motion of a subject during
medical scanning, to correct calibration differences across scanners etc. [10, 12].
For more examples of usage of medical image registration see [8].

The first attempts at medical image registration focused mainly on the processing
of brain images. Hence, a rigid body approximation was sufficient, because of a
relatively small possibilities for deformation inside the skull. Later, it was extended
to the affine registration. However, rigid or even affine approximations are usually
not sufficient for a registration of a human body. Therefore, the research in medical
image processing is now focused on the development of non-rigid registration
methods. One of them is the elastic registration introduced by Broit [1]. In this
method, images are considered to be 2D elastic bodies. Volume forces defined
from “differences” of the two images then deform one image so that it becomes
similar to the other. The disadvantage of this linear model is that it assumes
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small deformations. For large deformations it can be replaced by the viscous fluid
model [2].

With the increasing amount of data provided by medical instruments like CT or
MRI, a parallel implementation of image registration seems to be necessary. In this
work we combine the method of elastic registration together with the Total-FETI
method [3] to obtain scalable algorithm for registration of medical images.

2 Elastic Registration

Image registration usually consists of three parts: choosing an appropriate transfor-
mation model, choosing a distance (similarity) measure, and optimization process.
Let us use the notation from [10] and briefly describe the process.

In order to find a transformation of the template image T , such that after its
application it becomes, in a certain sense, similar to the reference image R, we
define a suitable distance measure D and minimize the distance between R and T
with respect to searched transformation ':

min
'WR2!R2

D ŒR; T I'� ; (1)

where D ŒR; T I'� WD D



R; T'
�

.
However, this approach has its drawbacks: a solution is not necessarily unique

and it actually may not exist. Thus, the problem (1) is ill-posed. Moreover, additional
implicit constraints can emerge, e.g., in medical images no additional cracks or
folding of the tissue are allowed (the transformation should be diffeomorphic). Both
these situations can be solved by adding a regularizer [10].

Transformation model of elastic registration is based on a physical motivation
that the images are two different observations of an elastic body, one before and one
after a deformation. The transformation ' W R2 ! R2 is split into the identity part
and the displacement u W R2 ! R2:

'.x/ WD x � u.x/: (2)

As the regularizer we use the linearized elastic potential

P Œu� WD
Z

˝

�

4

2
X

jD1

2
X

kD1

�

@xj uk C @xkuj
�2 C �

2
.div u/2 dV; (3)

where � and � are the Lamé parameters. The regularizer has the meaning of volume
forces, which implicitly constrain the displacement to fulfill a smoothness criteria.
We obtain the following regularized problem which is more suitable for a numerical
realization:
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J Œu� D min
vWR2!R2

J Œv� ; where J Œv� WD D ŒR; T I v�C ˛P Œv� : (4)

Here, the parameter ˛ 2 RC controls the strength of the smoothness of the
displacement versus the similiarity of the images. In the case of the elastic
registration it is usually omitted, since it can be included in the Lamé parameters.
Therefore, let us assume ˛ D 1 in what follows.

A distance measure is a cost function which determines a similarity of two
images. We choose the so-called sum of squared differences (SSD):

D ŒR; T I u� WD 1

2
kTu �Rk2L2.˝/; (5)

where Tu.x/ WD T .x � u.x//. The volume forces

f .x; u.x// WD .R.x/ � Tu.x//rTu.x/; (6)

f W R2 ! R2, derived from its Gâteaux derivative, push a transformed image into
the direction of a reference.

Images are represented by the compactly supported mappings R; T W ˝ ! R,
where ˝ WD .0; 1/2. T .x/ and R.x/ denote the intensities of images at the spatial
position x; we set R.x/ WD 0 and T .x/ WD 0 for all x … ˝ .

By applying the Gâteaux derivative to the elastic potential (3) we obtain the
Navier–Lamé operator of classical elasticity. The displacement of the elastic body
and therefore the transformation of the image T is then obtained as the solution of
the partial differential equation with zero Dirichlet boundary condition:

�

��u.x/C .�C �/rdiv u.x/ D �f .x; u.x// in ˝;
u.x/ D 0 on @˝:

(7)

There are several possibilities how to overcome the non-linearity of the previous
equation. In the simplest case, when the difference between the reference and the
template image is small enough, we set

f .x; u.x// WD f .x; 0/ D .R.x/ � T .x//rT .x/; (8)

and obtain a linearized problem. Otherwise, we solve the problem iteratively using
the Algorithm 1. The similar algorithm is presented in [10], where the finite
difference method is used for the solution of the linearized problem.

We discretize the linearized problem using a finite element method with piece-
wise affine basis functions on triangular elements. To approximate the gradient of
Tu, which is necessary for the evaluation of forces f , we use a convolution with an
appropriate kernel of the Sobel operator (see, e.g., [11]). The solution can be easily
parallelized by the Total-FETI method described in the following part.
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Algorithm 1 Fixed-point iteration for the solution of (7)
T0.x/ WD T .x/

f0.x/ WD .R.x/� T0.x//rT0.x/
for k D 1 to K do

solve (7) for uk with f .x; u.x// WD fk�1

Tk.x/ WD Tk�1.x � uk/
fk.x/ WD .R.x/� Tk.x//rTk.x/

end for

3 Parallelization Using Total-FETI Method

The numerical solution of the linearized version of the problem (7) can be effectively
parallelized by the Total-FETI (TFETI) method which is a variant of the FETI
method originally proposed by Farhat and Roux [5]. The method is based on
the decomposition of the spatial domain into non-overlapping subdomains. The
continuity of the solution among subdomains is enforced by Lagrange multipliers.
Total-FETI by Dostál et al. [3] simplifies the inversion of stiffness matrices of
subdomains by using Lagrange multipliers also to enforce the Dirichlet boundary
condition. Using this approach, all subdomains are floating and their stiffness
matrices have the same kernels formed by the vectors of the rigid body modes.

To apply the FETI based domain decomposition, we partition the rectangular
domain ˝ , representing the processed image, into N geometrically identical
rectangular subdomains˝s (see Fig. 1). We denoteKs, fs , us , andBs the subdomain
stiffness matrix, the subdomain load vector, the subdomain displacement vector,
and the subdomain constraint matrix, respectively. Let us also denote Rs as the
matrix with columns forming the basis of the kernel of Ks . Notice, that because
of this regular decomposition, the matrices Ks, as well as Rs , are the same for all
subdomains. Therefore, they are computed only once and then redistributed among
processors. Eventually, they can be stored in a shared memory.

After the decomposition we obtain the quadratic minimization problem with
equality constraints

min
1

2
uTKu � uT f s. t. Bu D c; (9)

where

K WD

2

6

4

K1

: : :

KN

3

7

5

; f WD

2

6

4

f1
:::

fN

3

7

5

; u WD

2

6

4

u1
:::

uN

3

7

5

; B WD ŒB1; : : : ; BN � :

(10)
Applying the duality theory to the equivalent saddle-point problem and establish-

ing the notation



Total-FETI for Medical Image Registration 921

F WD BK�BT ; G WD RTBT ; d WD BK�f; e WD RT f;

where K� denotes a generalised inverse matrix satisfying KK�K D K (see,
e.g., [4]), and R denotes the block-diagonal matrix with blocks Rs , we obtain the
following minimization problem:

min
1

2
�T F� � �T d s.t. G� D e: (11)

We can further homogenize the equality constraints G� D e to G� D 0 by
decomposing � into � 2 KerG and Q� 2 ImGT as

� WD �C Q�: (12)

We get Q� easily by Q� D GT .GGT /�1e. To enforce the condition G� D 0

we introduce the projector P WD I � Q to the null space of G. Here Q WD
GT .GGT /�1G is the projector onto the image space of GT . The final problem for
� reads (note that P� D �):

PF� D P.d � F Q�/: (13)

This problem can be effectively solved by the conjugate gradient method.
One of the advantages of the approach based on the Lagrange multipliers is the

possibility to include other constraints to the matrix B than “gluing” and Dirichlet
conditions. One possibility is to use it to enforce the rigidity of certain parts of
the processed image. These rigid parts can represent, e.g., bones. As mentioned in
Sect. 2, the new coordinates '.x/ of any point x after transformation are

'.x/ WD x � u.x/: (14)

Using rigid body motions with a linearized rotation, this transformation can also be
described by

x � u.x/ D Rxa; (15)

where

Rx WD
��x2 1 0

x1 0 1

�

; (16)

and a is the vector of motion parameters (shifts and rotation). Conditions necessary
to enforce a rigidity of a motion of two point Qx; Qy can be derived from the following
system of equations
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Fig. 1 Total-FETI domain decomposition of the 2D rectangular area. Dirichlet boundary condi-
tions are enforced by Lagrange multipliers

� Qx � u. Qx/ D RQxa;
Qy � u. Qy/ D R Qya:

(17)

We eliminate a and obtain

� ou1. Qx/ � pu2. Qx/C ou1. Qy/C pu2. Qy/ D p2 C o2; (18)

where p WD Qy2� Qx2, o WD Qy1� Qx1, and u.x/ WD .u1.x/; u2.x//. These conditions are
added to appropriate positions in the matrix B . To reduce the number of additional
constraints, one can enforce the rigidity only on the boundaries of given areas.

4 Data Parallelization and Implementation Using Trilinos
Framework

Parallelization of FETI/TFETI can be implemented using SPMD technique—
distributing matrix portions among the processing units. The distribution of primal
data is straightforward because of the block-diagonal structure of the system
stiffness matrix. Each processor is assigned one rectangular part of the images R
and T , and the corresponding primal data—one block of the global stiffness matrix
K , one block of the kernel matrix R, and corresponding parts of the constraint
matrix B , solution vector u, and right-hand side vector f . On the other hand, if
we want to accelerate also the dual actions we have to distribute the dual objects as
well. We distribute the matrixG into vertical blocks. All dual vectors are distributed
accordingly to this (for more details see [9]).

For the parallel implementation we use the Trilinos framework [7] which is
a collection of relatively independent packages developed by Sandia National
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Table 1 Performance of the TFETI implementation for varying decomposition and discretization

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 808 2,424 8,080
CG time (s) 0.50 1.53 4.35
CG iterations 25 39 47
Time per iteration (s) 0.02 0.04 0.09

Example 1: Without rigid body parts

Number of subdom. 1 4 16
Primal dimension 20,402 81,608 326,432
Dual dimension 903 2,641 8,254
CG time (s) 41.01 34.54 57.44
CG iterations 2,467 990 665
Time per iteration (s) 0.01 0.03 0.08

Example 2: With rigid body parts

Laboratories. It provides a tool kit for basic linear algebra operations (both serial and
parallel), direct and iterative solvers to linear systems, PDE discretization utilities,
etc. Its main advantages are object oriented design, high modularity and use of
modern features of C++ language such as templating. It is currently in version 11.

In our codes we use the Epetra package as a base for linear algebra operations.
It provides users with distributed dense vectors and matrices, as well as sparse
matrices in compressed row format (Epetra_CrsMatrix), linear operators,
distributed graphs, etc. As the object-oriented wrapper to direct linear system solver
SuperLU, which is used for the solution of the coarse problem (application of
.GGT /�1) and the application of the pseudoinverseK�, we use the Amesos package.

5 Numerical Experiments

The numerical experiments were performed on the cluster consisting of 16 SMP
nodes, each of the nodes is equipped with two Intel Xeon QuadCore 2.5 GHz
CPUs and 18 GB of RAM. Table 1 shows the results of the scalability tests for
the data obtained from Department of Oncology of University Hospital of Ostrava.
We perfomed two experiments—one with no additional constraints, and the second
on the same data but with a rigidity of the bones enforced by additional Lagrange
multipliers. The processed data are depicted in Fig. 2.

The problem is linearized using the approach (8). For the first experiment, the
number of CG iterations is relatively low. For these numbers of dual variables the
coarse problem (which is usually the main bottleneck of the FETI methods) is not
big enough to affect the scalability and the increasing time per iteration is caused
mainly by the communication and vector redistribution routines within the Trilinos
framework. The second experiment shows that the additional constraints lead to the
increase of the number of CG iterations. To reduce this number we can use the cheap
lumped preconditioner F�1 D BKBT (see [6]).
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Fig. 2 Processed data—computer tomography of patient’s chest. We search for a transformation
' of the image T (in exhalation) so it becomes similar to the image R (in inflation). For this
experiment, we set � D 5�105 and � D 0. (a) ImageR. (b) Image T . (c) Image T' . (d) Difference
between R and T . (e) Difference between R and T' . (f) Boundaries of rigid parts (bones)

6 Conclusion

We have demonstrated the applicability of the Total-FETI method to a paralleliza-
tion of a process of image registration. Our implementation was tested on 2D
computer tomography data obtained from University Hospital of Ostrava. Because
of relatively low resolution of the images the total number of unknowns in the
resulting systems did not exceed hundreds of thousands. However, these results
enable us to focus on the development of domain decomposition-based methods
for the image registration of 3D data, where the number of unknowns can easily
reach tens or hundreds of millions.
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Finite Element Analysis of Multi-Component
Assemblies: CAD-Based Domain Decomposition

Kirill Pichon Gostaf, Olivier Pironneau, and François-Xavier Roux

1 Introduction

Computer aided design (CAD) and finite element (FE) modeling are standards
in a concept to manufacture industrial chain. Realistic FE simulations require
huge computational resources and may last unacceptably long. In this paper, we
present a comprehensive framework, based on domain decomposition algorithms,
that allows to automate and parallelize numerical simulations of multi-component
CAD assemblies. We refer to the work of Pironneau et al. [4], where the authors have
proposed to use constructive solid geometry modeling as a basis for spatial domain
decomposition; see [5–9] for related work on three dimensional contact problems in
solid mechanics.

The novelty of our research is the CAD-based domain decomposition method.
We consider design parts as independent sub-domains. Then we reuse assembly
topology to define regions where the interface boundary conditions should be
applied. Our motivation is to automate FE management of an existing CAD data,
i.e. to update only the concerning meshes when CAD parts are modified. In
addition, the method aims to regularize mathematical models when using various
material properties (steel, cooper, rubber etc.). The method is inherently parallel and
therefore perfectly suited for hight performance computing. The Dirichlet-Neumann
[1], Neumann-Neumann [2] and FETI [3] methods for non-matching triangulations
have been studied. We endorse the proposed framework with numerical experiments
and we focus on the essence of its parallel implementation.
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Fig. 1 An assembly-driven
domain decomposition.
Design parts are considered
as independent computational
sub-domains

2 CAD-Based Domain Decomposition

Generally, a FE model of an entire CAD prototype takes several days to be properly
defined. Once a pre-processing stage is completed (a global mesh, loadings and
constraints are generated), adaptive refinement procedure requires communication
with CAD kernel at each computational iteration. Meanwhile, engineering design
changes are made on a daily basis at the CAD level, and the mesh generally may not
follow the changes. Hence, the FE model cannot be updated within such timespan.

2.1 Assembly-Driven Decomposition

The application of assembly driven domain decomposition allows to automate
the above framework. We consider each component of a CAD assembly as an
independent sub-domain. Triangulations are generated independently and could
be further updated. Variational formulations are then explicitly written for each
sub-domain. Inter-domain continuity conditions are set according to the domain
decomposition algorithm.

Let fP1; : : : ; Psg refer to a set of assembly components (design parts), with
s � 2. We define f˝1; : : : ;˝sg to be a set of the corresponding computational
sub-domains. An illustration is given in Fig. 1.

2.2 Modeling Accuracy

Solid parts are generated independently of the FE process, yet they are manipulated
by FE algorithms after discretization. For a manifoldM (a boundary of a solid part),
we define

H D diam.M/ D sup
x1;x22M

jx1 � x2j
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along with the “smallest feature length” l (the smallest hole, fillet, chamfer etc.).
According to the CAD documentation [10], parts are initially created with the
relative accuracy ırCAD which satisfies

10�6 6 l=H < ırCAD 6 10�2

CATIA modeling platform [11] allows to design parts with

10�6 6 l; H 6 103

however an option

10�8 6 l; H 6 1

is available to design small parts, but the module has limited implementation.

2.3 Initialization of Inter-Component Contact Regions

We propose to reuse “assembly constrains” (data on parts relative position stored
in a CAD assembly file) in order to generate an initial list of the contact regions
(called contact faces). Let S denote a set of initial contact faces between all adjacent
assembly components (solid parts)

S D fPi \� Pj g 1 � i ¤ j � s

where\� stands for a Boolean cut operator (intersection of manifolds). The number
of all possible contact pairs is bounded by the binomial coefficient

dim.S/ �
�

s

2

�

In practice, for CAD assemblies, the number of inter-component contact faces is
much smaller than the binomial coefficient and often satisfies

dim.S/ 
 O.s/

Definition 1. Two objects A � Rd and B � Rd , d � 1 are geometrically equal if
the set A is equivalent to the set B .

Definition 2. Topological equivalence - Two objects are topologically equivalent if
there is a homeomorphism between them.
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In the following, a contact face F is a set of patches; a patch is defined by
four NURBS or B-spline curves. Let Fi;j and Fj;i be the opposite contact faces
belonging to the adjacent components Pi and Pj , respectively. Then, Ti;j and Tj;i

be a discretization of the above contact faces. In order to build

Ti;j D Tj;i (1)

we require both geometrical and topological equivalence of Fi;j and Fj;i . How-
ever, (1) is hard to achieve, since solid models are built with only a fixed accuracy.

Remark. Obviously, matching triangulations Ti;j D Tj;i might be generated within
an additional computational cost. Unfortunately, for simulations involving sliding,
mixed finite elements (shape, order) or discontinuities in material coefficients
matching triangulations are hard to maintain.

2.4 Geometric Discontinuities Across Contact Faces

In practice, most contact regions are either non-planar or have curved boundaries.
When meshes are generated independently, Ti;j and Tj;i often appear different,
owing to round-off errors. As a result, geometric discontinuities are certain for non-
matching triangulations, which is clearly seen in Fig. 2.

Let u1h and u2 h be discrete functions defined on the triangulations T1;2 and T2;1,
respectively. For T1;2 ¤ T2;1 the computation of a jump operator

u2h.x/ � u1h.x/

on contact faces is not properly defined (not unique). Indeed, when ˝h is a
polygonal approximation of˝ , numerical integration of boundary integrals will not
be equal on T1;2 ¤ T2;1. In this context, we are interested to compute the value of
a finite element function uh.y/ slightly outside its domain of definition, namely at
y 2 R3 close to ˝h in the sense

min
x2˝h
j x � y j < c h

where c 2 RC, and h is the discretization parameter (mesh size).
Assume that ˝h is triangulated into tetrahedral elements. Let fv0; : : : ; v3g be

the vertices of a tetrahedral element T close to y. The barycentric coordinates
f�0; : : : ; �3g of y with respect to T satisfy

3
X

iD0
�i D 1 and y D

3
X

iD0
�i vi
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Fig. 2 Geometric discontinuity across the contact region in case of non-matching triangulations

When a point y does not belong to the discrete domain, we shall define

uh.y/ D
3
X

iD0
�i uh. vi /

where the vertices vi are those of the nearest tetrahedral element. We use the same
approach for a P2 or higher Lagrangian finite element.

2.5 Parallel Implementation

Depending on the computer architecture, we propose two implementation schemes:
the first is suitable for small commodity clusters; the second fits massively parallel
architecture (HPC). Let Ncpu be the number of available CPUs, processor cores,
that are used for a FE simulation. Let s be the number of assembly components.
Reasonably, one can expectNcpu 
 s for small or intermediate commodity clusters
and Ncpu >> s for HPC machines. Figure 3 (left) illustrate the case, where three
sub-domains are assigned to a single process, i.e. cpu2, and solved in sequence;
the right chart in Fig. 3 shows the case, where each sub-domain is treated in parallel.
Inside one sub-domain either algebraic mesh partitioning or multi-threading is used
to parallelize a local solver.

Assume that one MPI process lives on each multi-core unit, and OpenMP
parallelization occurs below, i.e. inside the multi-core NUMA unit [12,13]. Actually,
a good practice for computational performance is to set the number of OpenMP
threads equal to the physical number of cores inside one NUMA node. Figure 4
depicts the scalability results of a multi-threaded CG solver running on a Cray XE6
node (left) and SGI Altix UV 100 shared memory cluster. We observe almost linear
speed-up,	6 and 	8, respectively, for threads placed inside a single multi-core die.
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Fig. 3 Parallel implementation for small commodity clusters (left) and HPC systems (right)
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Fig. 4 Scalability results of a multi-threaded CG solver: Cray XE6 (left), SGI Altix UV (right)

3 Numerical Experiments

We consider the case of a linear elasticity. The model problem allows to describe
the displacement u D .u1; u2; u3/t of an elastic body in its equilibrium position
under the action of an external body force f D .f1; f2; f3/

t and a surface charge
gN D .gN1 ; gN2 ; gN3/

t distributed on @˝N . Without getting technical about the
spaces involved, i.e. the displacement weighting and trial solution W and V , for
details see [14], the weak formulation for a problem of linear elasticity reads: find
u 2 V such that for all w 2 W

a.u;w/ D F.w/

with

a.u;w/ D
Z

˝

� .r � u/.r � w/ dx C
Z

˝

2� 	.u/ W 	.w/ dx
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Fig. 5 A three component assembly. Non-matching triangulations are clear

F.w/ D
Z

˝

f � w dx C
Z

@˝N

gN � w ds

where � and � are the Lamé parameters, and 	.u/ is the infinitesimal strain tensor.
We have discretized the above problem using a P2 finite element. The FE model

consists of three sub-domains, each triangulated independently, see Fig. 5. When
working with fine meshes, the finest sub-domain contains roughly 3.6 million
unknowns. We have used 4 computational nodes of a Cray XE6, with a total of
96 cores. The tasks were executed by 4 MPI processes each with 24 OpenMP
threads, see Fig. 3 (right) (one MPI for a global continuity solver, one MPI per
sub-domain). Three domain decomposition algorithms for non-matching meshes
(Dirichlet–Neumann, Neumann–Neumann and FETI) have been implemented using
a modified version of the integrated environment FreeFem++ [15].

For simplicity reasons (to avoid floating sub-domains), we have set that each sub-
domain has a part of its boundary belonging to a Dirichlet datum u D gD on @˝D

(bolt holes of the left and right components, a back face of the middle component).
All components are subject to the gravitational force. Portion of a front face of the
right component is subject to a surface charge. We have set E D 210GPa, � D 0:3,
E D 105GPa, � D 0:34 and E D 117GPa, � D 0:33 for the left, middle and
right component, respectively; recall: � D � E

.1C�/ .1�2�/ and � D E
2.1C�/ . For each

sub-domain, we have set the initial solution u.0/i h D .0; 0; 0/t .
On Fig. 6, we have visualized the computed displacements at iterations 1, 2 and

10; the computational time was 73 s per a single global iteration in the FETI method
(fine meshes). The rate of convergence is shown in Fig. 7 for the Dirichlet–Neumann
and Neumann–Neumann methods, respectively. The FETI method exhibits perfor-
mance similar to the Neumann–Neumann method. The computations have been
repeated for quasi-uniform coarse, medium and fine triangulations; for the mixed
test we have used coarse, fine, medium triangulations for the left, middle and right
component, respectively.
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Fig. 6 The FETI method for non-matching triangulations. Lineal elasticity problem. Displace-
ment field at iterations: 1, 2, 10
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Fig. 7 Relative L2 error for the Dirichlet–Neumann (left) and Neumann–Neumann (right)
methods. The curves depict different levels of component mesh resolution H=h

4 Conclusions

We have introduced a comprehensive framework that allows to automate numerical
simulations of multi-component CAD assemblies in the sense that meshes can
be independently updated for each component. This paper has presented the
CAD-based domain decomposition method. We have implemented the Dirichlet–
Neumann, Neumann–Neumann and FETI methods for non-matching triangulations.
Numerical results have indicated that all above methods are highly accurate finite
element approximations for problems of linear elasticity. We have compared con-
vergence properties of the three methods. The Dirichlet–Neumann method exhibits
better convergence and is the most simple to implement.
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A Finite Volume Ventcell–Schwarz Algorithm
for Advection-Diffusion Equations

Laurence Halpern and Florence Hubert

1 Introduction

Consider a two-dimensional domain ˝ , and the boundary value problem

L u WD �div.�.x/ru/C div.b.x/u/C �.x/u D f; (1)

with homogeneous boundary condition u D 0 on the boundary @˝ . The
Ventcell–Schwarz iterative method has been introduced in [9] for the resolution
of (1) in parallel. A nonoverlapping decomposition of ˝ into two subdomains ˝j

is given, with common boundary � . The algorithm defines a sequence of solutions
unj of (1) in˝j , related by two transmission conditions, for .i; j / D .1; 2/ or .2; 1/:

.�@nj �
1

2
b � nj C�/ unj D .��@ni C

1

2
b � ni C�/ un�1i on �:

The boundary operator � involves second order derivatives along the boundary. In
the case where � is a vertical line, it can be written as�� D p��q@y.�@y�/, with
two real parameters p and q to be chosen adequately. By Lax–Milgram theorem,
if � � �0 > 0 and � C 1

2
div.b/ > 0, the well-posedness of the boundary

value problem is ensured as soon as p and q are positive. If q D 0, � reduces
to Robin operator, first used in [10]. Numerical evidences with a finite element
scheme were given in [9] that these transmission conditions outperform significantly
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the Robin–Schwarz algorithm. Further analysis has been conducted in [5] in a
model case, where the coefficients p and q were obtained by optimization of the
convergence factor of the algorithm, defined for two half planes, in the Fourier
variables. Asymptotic values in terms of the discretization parameters were given
(see Sect. 4).

The discrete counterpart of the algorithm in the Robin case q D 0 has been
analyzed first in [1] and extended in [3] and [2] in the finite volume framework.
For an analysis in the finite element context see [6]. The study of the Ventcell case
(p; q > 0) is, as far as we know, new. The scheme is fully described for the first
time in this paper, and simulations are presented. The error analysis and the proofs
of well-posedness and convergence will appear in an extended paper [7].

The first step, in Sect. 2, is to write a finite volume scheme for the discretization
of the subdomain problem. We use a two point flux approximation for the diffusive
flux and a family of discrete convective fluxes as in [4], specially designed to handle
the boundary condition. The discretisation of the boundary operator appearing in (1)
is performed. Non conforming meshes on the interface are considered as they can
be useful for local refinement, see [8] for large scale computations.

The discrete Schwarz algorithm is described in Sect. 3. In opposition to the Robin
case, the convective flux on the interface has to be modified to get the convergence
towards the approximation of (1) on ˝ .

Finally, numerical examples illustrate the properties of the scheme , among which
the improvement of the algorithm over the Robin algorithm.

2 Finite Volume Discretization for Ventcell Transmission
Condition

We first introduce the necessary tools for finite volume design in the case of elliptic
equation with mixed boundary conditions, Dirichlet on �D � @˝ and possibly
Ventcell (2) on � � @˝ (see [3] for the standard part of the notations).

2.1 Admissible Meshes

Let˝ be an open polygonal set, M a family of polygonal control volumes such that
N̋ D [K2MK, with K \ L D ; if K ¤ L:M is an admissible finite volume mesh if

there exists a family of points .xK/K2M that satisfies .xK;xL/ ? � if � D @K \ @L.
If all control volumes K are triangles, the family of circumcenters of the triangles
satisfies this orthogonality condition. The set of all edges � of control volumes is
denoted by E . It is divided into three sets: the edges located inside the domain ˝ ,
E int D f� 2 E =� D @K \ @Lg, the edges E D located on an external Dirichlet
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Fig. 1 Notations for an admissible mesh

boundary �D , and the edges E � located on � . Finally, for any K in M, E K stands
for the edges of its boundary @K.

For any � 2 E K, nK� is the outward-pointing unit vector orthogonal to � ,
dK;� > 0 the distance from xK to � , d� D dK;� if � 2 E D[E � and d� D dK;�CdL;�

is the distance between xK and xL if � D @K \ @L 2 E int.
Let jE � j be the cardinality of E � , the edges of E � are reordered as f�i g, with

�i \�iC1 reduced to a single point denoted by xiC 1
2
. The control volume associated

to �i is denoted by Ki .
For each K 2M or � � � , jKj denotes the area of K, and j� j is the length of � .
The complete admissible finite volume mesh for the boundary value problem is

T DM [ E � . Figure 1 summarizes these notations.

2.2 Composite Meshes

The subdomains ˝j are endowed with admissible meshes Tj D Mj [ E j
� , with

two different meshes on � . The meshes T1 and T2 are said to be compatible if they
coincide on � or equivalently if E 1

�
D E 2

�
. We then define E � D E 1

�
D E 2

�
. Any

non compatible couple of meshes (T1, T2/ is made compatible by redefining the
edges on � : in the example of Grid # 2 in Fig. 2, #E K D 5 for any control volume
K 2M1 touching � . An edge of E � is @K1 \ @K2 with Ki 2 Ti .

Finally a composite mesh associated to ˝ D ˝1 [ ˝2 is a quadruplet T D
.M;M1;M2;E � / such that each mesh Mj is an admissible mesh for ˝j , M1 and
M2 are compatible, and M D fK 2M1 [M2g.
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2.3 A Two-Points Flux Approximation for Ventcell Boundary
Conditions

On each subdomain˝j , we approximate the problem L uj D f with homogeneous
Dirichlet boundary condition on � j

D D @˝j \@˝ , and Ventcell boundary condition
on � D @˝1 \ @˝2:

.�@nj �
1

2
b � nj C�/ uj D gj : (2)

For sake of clarity, the dependency on the index of the subdomain ˝j will be
omitted in this paragraph.

We introduce two sets uM D .uK/K2M and uE � D .u�/�2E � of unknowns, one
for the control volumes, one for the edges of the boundary E � . We define uT D
.uM;uE � /. The discrete volume equations will be obtained, first by integrating
the volume equation on a control volume K, second by integrating the boundary
condition on the boundary control cell �i .
Equation on K 2M. Integrating (1) on the control volume K, we get:

X

�2E K

�

�
Z

�

�ru � nK� dsC
Z

�

b � nK�u ds

�

C
Z

K

�u dx D
Z

K

f .x/dx:

The volume term
R

K
�u dx can be approximated by �KuK with �K D 1

jKj
R

K
�. The

total flux in K is the sum on the edges of K of the diffusive fluxes� R
�
�ru � nK� ds

and the convective fluxes
R

�
b � nK�u ds, that can be approximated respectively by

the discrete fluxes F d
K;� ; F

c
K;� to be defined below. Defining the total discrete flux on

the edge � as FK;� D F d
K;� C F c

K;� , the equation on K 2M can be approximated by

8K 2M;
X

�2E K

FK;� C jKj�KuK D
Z

K

f .x/ dx: (3)

We use the classical diffusive discrete flux

F d
K;� D j� j��

uK � Nu�
d�

with Nu� D
8

<

:

uL if � D @K \ @L 2 E int;

0 if � 2 E D;

u� if � 2 E � ;

(4)

with �� D 1
j� j
R

�
�.s/ ds or �� D �.x�/, (x� center of �) in the case of regular �.

We introduce a general discrete convection flux in the form

F c
K;� D

1

2
j� jbK� .uK C Nu� /C j� j��

d�
B�

�

d�bK�

��

�

.uK � Nu� /; (5)
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where bK� D 1
j� j
R

� b � nK� , and for all edge � , B� is an even Lipschitz continuous
function such that

B�.0/ D 0; B�.s/C 1 > c > 0 for s ¤ 0: (6)

This frame, introduced in [4], includes the centered scheme B�.s/ WD Bc.s/ D 0,
the upwind scheme B�.s/ WD Bup.s/ D 1

2
jsj, and the Scharfetter-Gummel scheme

B�.s/ WD BSG.s/ D 1
2
. s
es�1 � s

e�s�1 /�1. Each of these approximations can be seen
as a stabilization of the centered scheme. We will take advantage of this flexibility
in the convergence analysis of the algorithm (see Theorem 2).
Equation for � 2 E � . Integrate the Ventcell boundary condition (2) on the edge
�i 2 E � to obtain

Z

�i

�ru � nKi �i ds� 1
2

Z

�i

b � nKi �i u dsC p
Z

�i

u dsC q 
��@yu
�

x
iC 1

2
x
i� 1

2

D
Z

�i

g.s/ ds:

Define the discrete 1D flux FiC 1
2

as an approximation of �� @u
@y
.xiC 1

2
/, given by

FiC 1
2
D ��.xiC 1

2
/

u�iC1
� u�i

d.xiC1;xi /
for i D 0; � � � ; jE � j; (7)

with the convention u�0 D 0 and u�jE� jC1
D 0. We obtain for all � 2 E � the

equation

� FK;� C 1

2
bK�m�u� C .�E� uE � /� D

Z

�

g.s/ ds; (8)

where the discrete boundary operator�E� is defined by

.�E � uE � /� D pj� ju� � q.FiC 1
2
� Fi� 12 /; for � D �i : (9)

2.4 Properties of the Scheme

By construction�E� is a symmetric and positive definite matrix. Therefore classical
a priori estimates together with assumptions (6), induce the well-posedness of the
scheme (3)–(8), see [7]. Furthermore, the scheme is of order 1.
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3 A Discrete Schwarz Algorithm for Ventcell Transmission
Conditions

3.1 Discrete Schwarz Algorithm

Given a composite mesh T D .M;M1;M2;E � /, the discrete Schwarz algorithm
consists, with suitable initial data, in finding for all n � 1, the solutions uTj ;n D
.uMj ;n;uE

j
� ;n/ of the linear system

8K 2Mj ;
X

�2E K

.FK;� /
n
j C jKj�K.uK/

n
j D

Z

K

f .x/ dx; (10-a)

8� 2 E � ;
�.FK;� /

n
j C

1

2
j� jbKj ;� .u� /

n
j C .�E� uE

j
� ;n/�

D .FK;� /
n�1
i � 1

2
j� jbKi ;� .u� /

n�1
i C .�E� uE i� ;n�1/� :

(10-b)

3.2 Limit of the Discrete Schwarz Algorithm

Assume that the algorithm (10) converges as n tends to infinity. The limit uTj ;1 D
.uMj ;1;uE

j
� ;1/ is solution of the scheme

8K 2Mj ;
X

�2E K

.FK;� /
1
j C jKj�K.uK/

1
j D

Z

K

f .x/ dx; (11-a)

8� 2 E � ;
�.FK;� /

1
j C

1

2
j� jbKj ;� .u�/

1
j C .�E

j
� uE � ;1/�

D .FK;� /
1
i �

1

2
j� jbKi ;� .u� /

1
i C .�E� uE i� ;1/� :

(11-b)

3.3 The Expected Limit

However, we expect the convergence towards the classical two point flux finite
volume scheme, associated to the mesh M for the problem (1) on˝ , which consists
in finding uM D .uK/K2M solution of the discrete problem

8K 2M;
X

�2E K

FK;� C jKj�KuK D
Z

K

f .x/ dx: (12)
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If the composite mesh M is non admissible in the neighborhood of � (Fig. 2 right),
the solution uM still approximates the solution u of (1), but with an error of order
size.M/

1
2 only (See [3]).

The solutions of the schemes (12) and (11) can coincide only when the fluxes in
(11) are modified, as stated in the next theorem.

Theorem 1. Let uM be the solution of (12), with a convective flux in (5) defined by
a function B� , satisfying

B�.0/ D 0; B� .s/ > �1C 1

2
jsj: (13)

Define for � 2 E the functions NB� by

NB�.s/ D
(

B�.s/ if � 62 E � ;
1
2
.1 � B�.2s//˙ 1

2

p

.1� s C B�.2s//.1C s C B�.2s// if � 2 E � :

(14)

Then, for this modified choice of fluxes NB� , there exists uTj ;1 D .uMj ;1;uE � ;1/
for j D 1; 2, solution of (11), and uM

K D u
Mj

K for K 2Mj .

Proof. Let u
Mj ;1
K D uK for all K 2 Mj . First for K such that E K \ E � D ;,

equation (11-a) is nothing but (12). However, the construction of the edge unknowns

uE
j
� requires some care.
For � 2 E � , (11-b) written for .j; i/ D .1; 2/ and .2; 1/ yields

�E � uE 1� ;1 D �E� uE 2� ;1:

Thus, using the invertibility of �E� , we obtain that uE 1� ;1 D uE 2� ;1 D uE � ;1 and
.FK;� /

1
1 D �.FK;� /

1
2 . Finally (11-a) coincides with (12) if

FK;� D .FK;� /
1
1 : (15)

Define dK1� , dK2� and s by s D bK1� dK1�

�K1�
D � bK2� dK2�

�K2�
D bK1� dK1K2

2��
. We then have

for jD 1,2

.FK;� /
1
j D

j� j�Kj �

dKj �

.u1Kj � u1� /.1C NB�.s//C
1

2
j� jbKj � .u

1
Kj
C u1� /:

Identifying .FK;� /
1
1 to �.FK;� /

1
2 defines u1� , then (15) is equivalent to

B�.2s/ D NB�.s/C 1

4
s2.1C NB�.s//�1: (16)
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Hence, to express NB�.s/ in terms of B�.s/, we solve the equation X2 C .1 �
B�.2s//X C

�

1
4
s2 � B�.2s/

� D 0; Under condition (13), there exists a unique
solution satisfying NB�.0/ D 0, which is given in (14).

In this case, any solution of (11) is a solution of (12), which has a unique solution.
ut

Remark 1. Assumption (13) is satisfied by the upwind scheme, the
Scharfetter–Gummel scheme and the centered scheme if jsj < 1. In the case of
the Scharfetter–Gummel scheme, NB� D B� .

3.4 Convergence of the Schwarz Algorithm

Theorem 2. Let Tj be two compatible meshes of ˝j , j D 1; 2 and T the
associated composite mesh. With the assumptions in Theorem 1, the solution
.uMj ;n/jD1;2 of the discrete Schwarz algorithm (10) converges to uM solution
of (12) as n tends to infinity.

Hint on the Proof. The proof is too long to be developed here, and will appear
in [7]. By Theorem 1 the convergence of the Schwarz algorithm is equivalent to

the convergence to 0 of the solution uTj ;n D .uMj ;n;uE
j
� ;n/ of (10) when f is

identically zero. That convergence is then obtained by an extension of P.L. Lions
trick in [10], using the fact that�E � is a symmetric positive definite matrix.

4 Numerical Experiments

The domain ˝ D� � 1; 1Œ	�0; 1Œ is split into ˝1 D� � 1; 0Œ	�0; 1Œ and
˝2 D�0; 1Œ	�0; 1Œ with an interface � at x D 0. We compare the convergence
behaviour of the optimized Schwarz algorithm for Robin and Ventcell transmission
conditions. Define the mesh size on the interface, h D min.max.j� j; � 2 E j /; j D
1; 2/. Asymptotically optimal parameters (for small h) are taken from [5]. They have
been determined to produce the smallest convergence factor over all frequencies
supported by the grid.

Robin W p? D h� 1
2

2

q

2��.b2x C 4��/
1
2 ; q? D 0:

Ventcell W p? D h� 1
4

2

4

r

��.b2xC4��/
3
2

2
; q� D h

3
4

2

4

r

8�

�3
.b2x C 4��/�

1
2 :

The corresponding theoretical convergence factor of the algorithm (i.e. the factor of
reduction of the L2 norm of the error in one iteration) is
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Fig. 2 (Left) A 6�2i �6�2i square grid on both˝1 and˝2 . (Right) A 4�2i �4�2i grid on˝1

and a 8 � 2i � 8 � 2i grid on ˝2. Robin vs Ventcell. L2 norm error w.r.t. iterations for increasing
mesh refinements

Robin: 1 �O.h
1
2 /; Ventcell: 1 � O.h

1
4 /;

showing an improvement from Robin to Ventcell, since it is less dependent of the
size of the mesh.

We choose � D 0:1, b D .1; 1/t , � D 1. The source f is such that the exact
solution of (1) is u.x; y/ D sin.3�x/ sin.3�y/. The Scharfetter–Gummel scheme
is used for all edges. The algorithm is initialized with random data .uMj ;0/jD1;2. We
illustrate our results on two families of grids presented in Fig. 2, one is conforming
(Grid # 1), the other non conforming (Grid # 2) at the interface � . We draw the
convergence history for increasing mesh refinement, given by i D 3; 4; 5; 6. We

stopped the algorithm as soon as
	

P

jD1;2 kuMj ;nC1 � uMj ;nk2
L2.˝j /

�

1
2 � 10�7:We

can see the drastic improvement obtained by using the second order transmission
condition, for which the convergence lines seem almost independent of h. The
numerical convergence factor behaves in 1 � O.h˛/ with ˛ D 0:43 for Robin-Grid
# 1, ˛ D 0:44 for Robin–Grid # 2, ˛ D 0:17 for Ventcell–Grid # 1, ˛ D 0:19 for
Ventcell–Grid # 2.
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Domain Decomposition with Nesterov’s Method

Firmin Andzembe, Jonas Koko, and Taoufik Sassi

1 Introduction

Nesterov’s method is a first order convex minimization method with convergence
rate O.1=k2/, see e.g. [3, 4]. The method can be used with either smooth or
nonsmooth convex optimization problems. For constrained minimization, if the
projection onto the constraints set is easy to compute, a projected gradient variant
of the Nesterov method can be derived, see e.g. [1, 7].

In this paper we apply Nesterov’s method to the domain decomposition. The
model problem is the Poisson equation. As a first order optimization method,
the Nesterov method needs, per iteration, only matrix/vector multiplications while
standard domain decomposition methods need matrices inversion through solution
to linear systems, see e.g. [5, 6]. The Nesterov method is therefore well-suited for
Graphics Processing Unit (GPU) architecture for which the (direct of iterative)
linear solvers using complete or incomplete factorizations are inefficient, see,
e.g., [2]. Moreover, the Nesterov method can be (theoretically) used for domain
decomposition of nonsmooth problems (i.e. problems with L1 terms).

The paper is organized as follows. In the next section we recall the Nesterov
method for convex programming problem. The model (Poisson) problem and the
domain decomposition are presented in Sect. 3. The Nesterov domain decomposi-
tion method is presented in Sect. 4 followed by preliminary numerical experiments
in Sect. 5.

F. Andzembe • J. Koko (�)
LIMOS, Université Blaise Pascal – CNRS UMR 6158, 63000 Clermont-Ferrand, France
e-mail: andzembe@isima.fr; koko@isima.fr

T. Sassi
LMNO, Université de Caen – CNRS UMR, 14032 Caen, France
e-mail: sassi@univ-caen.fr

J. Erhel et al. (eds.), Domain Decomposition Methods in Science and Engineering XXI,
Lecture Notes in Computational Science and Engineering 98,
DOI 10.1007/978-3-319-05789-7__92,
© Springer International Publishing Switzerland 2014

947

mailto:sassi@univ-caen.fr
mailto:koko@isima.fr
mailto:andzembe@isima.fr


948 F. Andzembe et al.

2 Nesterov’s Method

LetF be a convex function defined on a finite dimensional spaceX . The subgradient
of F at x is defined by

@F.x/ D fp 2 X j F.y/ � F.x/C .p; y � x/; 8y 2 domF g:

If F is differentiable, then @F.x/ D frF.x/g.
Let ı > 0 and assume that F is convex, lower-semicontinuous function on X . It

is easy to show that the problem

min
y
ıF.y/C 1

2
k y � x k2

always has a unique solution, verifying the equation

ı@F.y/C y � x 3 0
that is, formally

y D .I C ı@F /�1.x/:

The mapping .I C ı@F /�1, called “proximal map of ıF ”, is well defined and
uniquely defined. If K is a closed and convex set and F D 1K (i.e. F is the
characteristic function of K), then .I C ı@F /�1 is a projection onto K .

Consider the following optimization problem

min
x
˚.x/ D F.x/CG.x/; (1)

where we assume that

• F is C 1;1, i.e. the gradient rF is Lipschitz with some constant L;
• G is “simple” in the sense that the “prox” operator .I C ı@G/�1 is easy to

compute (e.g. projection)

The most straightforward Nesterov method is the projected gradient (Beck and
teboulle [1]), an adaptation of the gradient descent algorithm due to Nesterov [4].
The projected gradient method is outline in Algorithm 1. The rate of convergence
of Algorithm 1 is given by the following theorem due to Beck and Teboulle [1].

Theorem 1. Let fxkg be the sequence generated by Algorithm 1 with ı D 1=L.
Then

˚.xk/� ˚.x�/ � L

2k
k x0 � x� k2;

for any k � 1 and for any x� solution of the minimization problem (1).
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Algorithm 1 Nesterov’s projected gradient algorithm
(i) k D 0: Choose x0 and ı > 0

(ii) k � 0: Compute xkC1 D .I C ı@G/�1.xk � ırF.xk//

Algorithm 2 Accelerated Nesterov’s Algorithm
k D 0 x0, y1 D x0, t1 D 1, ı > 0

k � 0 Compute xk and yk as follows

(i) zk D yk � ırF.yk/
(ii) xk D .I C ı@G/�1.zk/

(iii) tkC1 D 1
2

�

1C
q

1C 4t2k
�

(iv) ykC1 D xk C .tk � 1/.xk � xk�1/=tkC1

To overcome the slow rate of convergence of Algorithm 1, Nesterov proposes
in [3] an acceleration variant of the gradient descent. For solving minimization
problems of the form (1), Beck and Teboulle propose Algorithm 2, variant of the
Nesterov accelerated algorithm.

The rate of convergence of Algorithm 2 is given by the following theorem due to
[1].

Theorem 2. For any minimizer x� of (1), the sequence fxkg generated by Algo-
rithm 2 with ı D 1=L is such that

˚.xk/ �˚.x�/ � 2L

.k C 1/2 k x
0 � x� k2; (2)

for any k � 1.

3 Model Problem and Domain Decomposition

3.1 Model Problem

Let ˝ be a bounded domain in Rd (d D 2; 3) with Lipschitz-continuous boundary
� . We consider in ˝ the Poisson problem

��u D f; in ˝; (3)

u D 0 on �: (4)



950 F. Andzembe et al.

Ω1

S

Ω2

Fig. 1 Domain
decomposition of ˝ into two
subdomains with S as the
common interface

Setting

V D H1
0 .˝/; f .v/ D

Z

˝

f vdx and a.v; v/ D
Z

˝

rv � rvdx;

the Poisson problem (3) and (4) can be reformulated as the following convex
minimization problem

min
v2V J.v/ D

1

2
a.v; v/ � f .v/: (5)

3.2 Domain Decomposition

Let f˝1; ˝2g be a partition of ˝ , as shown in Fig. 1, and let S D @ N̋ 1 \ @ N̋ 2,
vi D vj˝i and

�i D � \ @˝i ; Vi D
˚

v 2 H1.˝i/; vj�i D 0
�

:

It follows that

a.v; v/ D
2
X

iD1
ai .vi ; vi /; f .v/ D

2
X

iD1
fi .vi /; J.v/ D

2
X

iD1
Ji .vi /

and the minimization problem (5) becomes

min
.v1;v2/

J1.v1/C J2.v2/ (6)

Œv� WD .v1 � v2/jS D 0 on S: (7)

With the formulation (6) and (7), the continuity of the normal derivative across S
is ensured (implicitly) by the Lagrange multiplier associated with (7). Indeed, if
.u1; u2/ is the solution of the constrained optimization problem (6) and (7), then
there exists � 2 L2.S/ such that
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ai .ui ; vi / D fi .vi /C .�1/i .�; vi /S ; 8vi 2 Vi ; i D 1; 2
.�; Œu�/S D 0; 8� 2 L2.S/;

or

��ui D fi in ˝i and
@ui
@ni
D .�1/i� on S

so that

� D � @u1
@n1
D @u2
@n2

: (8)

3.3 Finite Dimensional Problem

Finite element or finite difference approximations of the above Poisson problem
leads to the quadratic forms

Ji .vi / D 1

2
vTi Aivi � f T

i vi ; i D 1; 2

where Ai are symmetric positive definite matrices. For vi we use the following
decomposition

vi D
�

viI

viS

�

where viS D vi jS (the subvector of interface unknowns) and viI D vi j.˝nS/ (the
subvector of interior unknowns). Let us introduce the set K , defining the continuity
condition

K D f.v1; v2/ W Œv� D v1S � v2S D 0g:

It is obvious that K is closed and convex. The finite dimensional constrained
optimization problem is therefore

min
.v1;v2/2K

J.v1; v2/ D
2
X

iD1
Ji .vi /: (9)
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Algorithm 3 Nesterov domain decomposition algorithm

k D 0: u0i , q
1
i D u0i , t1 D 1, ı D 1=L

k � 0: Compute uk and qkC1 as follows

(i) zki D qki � ı.Ai qki � bi /, i D 1; 2

(ii) uki D
�

zkiI
.zk1S C zk2S /=2

�

, i D 1; 2

(iii) tkC1 D 1
2

�

1C
q

1C 4t2k
�

(iv) q
kC1
i D uki C .tk � 1/.uki � uk�1

i /=tkC1 , i D 1; 2.

4 Nesterov Domain Decomposition Method

Let us introduce the functions

F.v/ D J1.v1/C J2.v2/
G.v/ D 1K.v/:

G is the characteristic function of K . The finite dimensional (constrained) min-
imization problem (9) can be rewritten as the following convex unconstrained
minimization problem

min
v
F.v/CG.v/ (10)

Note that F is a convex function and G is a characteristic function of a closed
convex set. Then the proximal map .I C ı@G/�1 is easy to compute. Indeed, for
p D .p1; p2/

.I C ı@G/�1.p/ D arg min
q

1

2
k q � p k2 CıG.q/ D . Qp1; Qp2/

where

Qpi D
�

piI
1
2
.p1jS C p2jS /

�

; i D 1; 2; (11)

the projection of .p1; p2/ onto to K . The minimization problem can then be solved
by the Nesterov Algorithm 2. The resulting domain decomposition method is
described in Algorithm 3. The parallelizability of the method is obvious.
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Since the domain decomposition is an optimization based, the jumps in a
coefficient is not an issue. If in (3), the Laplacian operator is replaced by r �
.˛.x/ru.x//, then the continuity condition, i.e. (11), does not change while (8)
becomes

� D �˛1 @u1
@n1
D ˛2 @u2

@n2
;

assuming ˛i D ˛j˝i , i D 1; 2.
In the case of a decomposition with intersection of more than two subdomains,

a special procedure must be carried out to ensure the continuity condition (11). For
instance, in the case of an intersection of four subdomains, with fpiSgiD1;:::;4 the
value of p at the corner of each subdomain, we must have

p2S � p1S D 0; p3S � p2S D 0; p4S � p3S D 0:

A straightforward calculation (using optimality conditions) yields

QpiS D 1

4

4
X

`D1
p`S ; i D 1; : : : ; 4:

5 Numerical Experiments

The domain decomposition algorithm presented in the previous sections was imple-
mented in Fortran 90, on a Linux cluster, using an MPI library. We use P1 finite
element method for the discretization. The Lipschitz constant L is approximated
in the initialization step using the power method. Indeed, for the model problem
L D �.A/, the spectral radius of the Laplacian matrix. The stopping criterion is
.J.uk/� J.uk�1//=h < 10�6 where h is the size of the mesh.

We consider the domain ˝ D .0; 1/ 	 .0; 1/ and the right-hand side in (3)
is adjusted such that the exact solution is u.x; y/ D .x � 1/y sin.x/ cos.2�y/:
Table 1 shows the number of iterations and CPU times (in seconds) for several mesh
sizes and number of sub-domains. The CPU times given include the approximation
of L by the power method. We notice that, for the largest problem (h D 1=256),
the standard speed-up (i.e. the number of degrees of freedom is constant while the
number of sub-domains varies) obtained with the projected gradient Algorithm 3 is
significant: about 43 for 32 sub-domains.

In Table 2 we report the results for the scaled speed-up, i.e. the number of sub-
domains varies while the number of nodes in each sub-domain is kept fixed to 100	
100 (10,000 degrees of freedom). We notice that the number of iterations increases
with the number of sub-domains: the number of iterations is multiplied by about 4
while the number of subdomains is multiplied by 36.
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Table 1 Standard speed-up: NSD: number of subdomains; h: mesh size; IT:
number of iterations; CPU: CPU times in seconds

h D 1=16 hD 1=32 h D 1=64 h D 1=128 h D 1=256
NSD IT/CPU IT/CPU IT/CPU IT/CPU IT/CPU
1 134/0.01 270/0.14 284/1.11 416/5.57 834/45.78
2 40/0.00 79/0.08 154/0.21 309/2.11 611/26.77
4 78/0.00 109/0.08 159/0.30 312/1.28 613/6.07
16 122/0.03 300/0.18 361/0.20 320/0.26 847/2.10
32 165/6.056 310/6.12 369/0.15 595/0.38 637/1.05

Table 2 Scaled speed-up with 100 � 100 nodes in each
sub-domain: NSD: number of subdomains; IT: number of
iterations; CPU: CPU times in seconds

NSD 1 4 9 16 25 36
IT 440 486 730 974 1,218 1,461
CPU 2.84 3.28 5.32 14.40 7.55 8.76

6 Conclusion

A Nesterov domain decomposition algorithm for the Poisson problem has been
introduced. The continuity condition on the interface is enforced using projection.
This approach is easy to implement and preliminary numerical experiments show
that a significant speed-up is obtained. Nevertheless, it leads to a h-dependent
algorithm. Further work is under way to improve the algorithm (preconditioning,
restarting strategy, etc.)
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Total-FETI Method for Solving Contact
Elasto-Plastic Problems

Martin Cermak and Stanislav Sysala

1 Introduction

Contact problems with elasto-plastic bodies can be solved for example by
primal-dual active set strategy, see e.g. [12]. In this paper, we propose a numerical
method that combines the semi-smooth Newton method with the Total-FETI
(TFETI) domain decomposition method and SMALSE method [1].

We consider a frictionless contact boundary condition between two bodies
denoted as ˝1;˝2 � R3, see Fig. 1. We assume that the bodies are fixed on the
parts � 1

U ; �
2
U ¤ ; of the boundaries. The load is represented by surface (prescribed

on the boundaries parts � 1
N ; �

2
N ) and volume forces. The material of the bodies is

described by the elasto-plastic constitutive model with the von Mises yield criterion
and linear isotropic hardening [2]. For the sake of simplicity, we confine ourselves
on one-step problem formulated in displacement. It leads to a minimization of the
convex and smooth functional on a convex set. However the stress-strain relation is
not smooth.

The problem is approximated by the finite element method. The finite element
partition will be denoted as Th D T 1

h [ T 2
h and consists of simplicial elements.

In particular, displacement fields are approximated by continuous, piecewise linear
functions and strain (stress) fields are approximated by piecewise constant functions.
We will not investigate in detail the influence of domain and load approximation.
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Fig. 1 Scheme of the geometry and domain decomposition

Since we will apply the TFETI domain decomposition method [4], we tear
the bodies from the part of the boundary with the Dirichlet boundary condition,
decompose it into subdomains, assign each subdomain by a unique number, and
introduce new “gluing” conditions on the artificial intersubdomain boundaries and
on the boundaries with imposed Dirichlet condition. In particular, the domain
˝i
h � ˝i is decomposed into a system of si disjoint polyhedral subdomains

˝i;p � ˝i , p D 1; 2; : : : ; si , i D 1; 2, see Fig. 1. The partition is conforming
with the finite element partition Th.

The discretized problem can be classified as an optimization problem with
simple equality and inequality constraints. In Sect. 2, we introduce and describe
an algebraic formulation of the problem. We use the semi-smooth Newton method
to approximate a non-quadratic functional by a quadratic one, see Sect. 3. The
corresponding problem of quadratic programming is solved by the Total-FETI
domain decomposition method in combination with SMALSE method, see Sect. 4.
The elasto-plastic problem with contact was implemented into the MatSol library
[9]. We illustrate the performance of our algorithm on a 3D benchmark problem in
Sect. 5.

2 Algebraic Formulation of the Contact Problem
for Elasto-Plastic Bodies

Algebraic formulation of the problem will be related to the domain decomposition.
It means that a displacement vector v 2 Rn has the following structure:

v D �vT1;1; vT1;2; : : : ; vT1;s1 ; vT2;1; : : : ; vT2;s2
�T
;

where vi;p denotes the displacement vector on˝i;p , i D 1; 2. We define the space

V WD fv 2 Rn j BEv D og ; (1)
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and the set of admissible displacement

K WD fv 2 Rn j BEv D o; BI v � cI g : (2)

Here the equality constraint matrix BE 2 RmE�n represents the gluing conditions
among neighbouring subdomains and the Dirichlet boundary conditions. The
inequality constraint matrix BI 2 RmI�n represents the non-penetration condition
on the contact zones. Notice that K is convex and closed.

Let Ke 2 Rn�n be a block diagonal matrix consisting of the elastic stiffness
matrices Ki;p

e defined on each subdomain ˝i;p, i D 1; 2, p D 1; : : : ; si . Due to
the presence of the Dirichlet boundary conditions on both subdomains and the Korn
inequality, we can define the energy norm on V :

kvke WD
p

vTKev D
v

u

u

t

2
X

iD1

si
X

pD1
vTi;pKi;p

e vi;p;

v D �

vT1;1; : : : ; v
T
1;s1
; vT2;1; : : : ; v

T
2;s2

�T 2 V :

Notice that the using of this norm is suitable from mechanical and mathematical
points of view since some of the below estimates (mainly (6)) are independent of
the domain decomposition and the discretization parameter h of the mesh.

The algebraic formulation of the contact elasto-plastic problem can be written as
the following optimization problem [1]:

Find u 2 K W J.u/ � J.v/ 8v 2 K ; (3)

where

J.v/ WD �.v/� fT v; v 2 Rn: (4)

Here the vector f D �

fT1;1; : : : ; f
T
1;s1
; fT2;1; : : : ; f

T
2;s2

�T 2 Rn represents the load
consisting of the volume and surface forces, and the initial stress state. The
functional � represents the inner energy and has the structure

�.v/ D ��1;1.v1;1/T ; : : : ; �1;s1 .v1;s1 /T ; �2;1.v2;1/T ; : : : ; �2;s2 .v2;s2 /T
�T
:

Further � is a potential to the non-linear elasto-plastic operator F W Rn ! Rn, i.e.
D�.v/ D F.v/, 8v 2 Rn. The function F is generally nonsmooth but Lipschitz
continuous. It enables us to define a generalized derivative K W Rn ! Rn�n of F
in the sense of Clark, i.e. K.v/ 2 @F.v/, v 2 Rn. Notice that K.v/ is symmetric,
block diagonal and sparse matrix. Moreover the following properties of F and K
hold [11]:
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1.

F.vC w/� F.v/ D
Z 1

0

K.vC �w/w d� 8v;w 2 Rn: (5)

2. K.v/ is uniformly positive definite and bounded with respect to v 2 V :

9� 2 .0; 1/ W �kwk2e � wTK.v/w � kwk2e 8v;w 2 V : (6)

3. F is strongly semismooth [10] on V , which yields that for any v 2 V and any
of sufficiently small w 2 V :

F.vC w/� F.v/�K.vC w/w D O.kwk2e/: (7)

Notice that (5) and (6) yield that � is coercive and strictly convex on V . Hence the
problem (4) has a unique solution and can be equivalently written as the following
variational inequality:

Find u 2 K W F.u/T .v � u/ � fT .v� u/ 8v 2 K : (8)

The estimate (7) will be important for showing that the semi-smooth Newton method
defined in the next section has a local quadratic convergence.

3 Semi-smooth Newton Method for Optimization Problem

The investigated problem (3) contains two nonlinearities—the non-quadratic
functional J (due to � ) and the non-penetration conditions including in the convex
set K . By the semismooth Newton method, we will approximate � by a quadratic
functional similarly as in the Taylor expansion:

�.u/ � �.uk/C F.uk/T .u � uk/C 1

2
.u � uk/TK.uk/.u� uk/;

for a given approximation uk 2 K of the solution u to the problem (3). Let us
denote fk D f � F.uk/, Kk D K.uk/ and define:

Kk WD K � uk D ˚v 2 Rn I BEv D o; BIv � cI;k; cI;k WD cI � BIuk
�

;

Jk.v/ WD 1

2
vTKkv � fTk v; v 2 Kk: (9)

Then the Newton step is following:

ukC1 D uk C ıuk; ukC1 2 K ;
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where ıuk 2 Kk is a unique minimum of Jk on Kk :

Jk.ıuk/ � Jk .v/ 8v 2 Kk; (10)

or equivalently ıuk 2 Kk solves the following inequality:

�

Kkıuk
�T
.v � ıuk/ � fTk .v � ıuk/ 8v 2 Kk: (11)

Notice that if we substitute v D ukC1 2 K into (8) and v D u � uk 2 Kk

into (11), then by adding we obtain the inequality

�

K.uk/ıuk
�T
.u � ukC1/ � �F.u/ � F.uk/�T .u � ukC1/;

which can be arranged into the form

.ukC1 � u/T K.uk/.ukC1 � u/ � �F.uk/� F.u/�K.uk/.uk � u/
�T
.u� ukC1/:

Hence one can simply derive local quadratic convergence of the semi-smooth
Newton method by (6) and (7) provided that uk is sufficiently close to u.

4 TFETI Method for the Inner Problem

Notice that the structures and properties of the matrices Kk 2 Rn�n, k D 0; 1; 2; : : :,
are very similar to the corresponding elastic matrix Ke as follows from Sect. 2.
Therefore we can solve the inner problem (10) in the same way as a contact problem
with elastic bodies, see e.g. [5, 6].

Here we use the TFETI domain decomposition method for solving (10). For more
detail see e.g. [3] and [1]. The method is based on enforcing all the constraints by
the Lagrange multipliers. In particular, we use two types of Lagrange multipliers,
namely 
I 2 RmI ; 
I � o related to the non-penetration condition, 
E 2 RmE

related to the “gluing” and Dirichlet conditions. To simplify the notation, we denote


 D
�


E


I

�

; B D
�

BE
BI

�

; ck D
�

o
cI;k

�

;

and

� D f
 D .
TE;
TI /T 2 RmECmI W 
I � og:
Then the Lagrangian associated with problem (10) reads as

Lk.v;
/ D 1

2
vTKkv � fTk vC 
T .Bv � ck/; v 2 Rn; 
 2 �: (12)
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Using the convexity of the cost function and constraints, we can use the classical
duality theory to reformulate problem (10) to get

Jk.ıuk/D min
v2Kk

Jk.v/Dmin
v2Rn sup


2�
Lk.v;
/Dmax


2� inf
v2Rn Lk.v;
/Dmax


2�f��k.
/g;
(13)

with

�k.
/ D
(

1
2

TBK�

kBT
 � 
T .BK�

kfk � ck/; RT
k .fk � BT
/ D o;

C1; otherwise;

where K�

k is a pseudoinverse matrix to Kk and Rk 2 Rn�l represents the null space

of Kk . More details to implementation of BK�

kBT can be found in [7]. Thus the
corresponding dual problem has the form:

find 
k 2 � W �k.

k/ � �k.
/ 8
 2 �: (14)

We solve the dual problem by algorithm SMALSE-M [3]. The algorithm is based
on active set strategy and it combines three steps: CG with preconditioning based
on orthogonal projectors, expansion, and proportioning.

Once the solution 
k of (14) is known, the solution of (10) can be evaluated in
this way:

ıuk D K�

k.f�BT 
k/CRk˛k; ˛k D .RT
k B

T
BRk/

�1RT
k B

T
.ck�BK�

k.fk�BT
k//;

where the matrix B and the vector ck are formed by the rows of B and ck
corresponding to all equality constraints and all active inequality constraints.

Notice that we use in fact the inexact Newton method with respect to computing
of ıuk .

5 Numerical Experiments

In this section we illustrate the strong parallel scalability and the performance of
numerical scalability of our approach on a numerical example. The geometry of the
problem is depicted in Fig. 1. The sizes of the bodies are 3000 	 1000 	 1000. We
use regular meshes generated in MatSol [9]. The Young modulus, the Poisson ratio,
the initial yield stress for the von Mises criterion, and the hardening modulus are
Ei D 210;000, �i D 0:29, �iy D 450, and Hi

m D 10;000, i D 1; 2, respectively.
The indicated traction force prescribed in the vertical direction is g.x/ D 150,
x 2 � 2

N . The initial stress (or plastic strain) state is equal to zero.
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Table 1 Strong parallel scalability

Number of cores 3 7 14 28
Number of plastic elems. 151,300 151,300 151,300 151,300
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 67 67 67 67
Total number of multi. by Hessian 3,726 3,726 3,726 3,726
Time for last Newton iter. 6,976 1,259 778 537
Total time (s) 26,828 6,481 4,091 2,926

Table 2 Performance of “the numerical scalability”

Mesh level 1 2 3 4
Mesh nodes 7,502 53,802 174,902 406,802
Mesh elements 6,000 48,000 162,000 384,000
Number of subdomains 6 48 162 384
Number of cores 4 25 28 28
Primal variables 23,958 191,664 646,866 1,533,312
Dual variables 2,453 33,933 130,189 326,969
Number of plastic elems. 6,624 48,141 151,300 356,384
Number of Newton iters. 6 6 6 6
Total number of SMALSE-M iters. 153 88 67 67
Total number of multi. by Hessian 1,951 3,106 3,726 5,375
Time for last Newton iter. 41 141 537 1,758
Total time (s) 287 683 2,926 9,318

The proposed algorithms were parallelized using Matlab Distributed Computing
Server and Matlab Parallel Toolbox. For all computations we use 28 cores with 2GB
memory per core of the HP Blade system, model BLc7000. The stopping criterion

of the Newton method is kukC1�ukke
kukC1keCkukke < 10�4 (see e.g. [8] or [11]). The stopping

criterion for the SMALSE-M algorithm is described in [3]. We use the tolerance
10�7 for SMALSE-M.

The strong parallel scalability is depicted in Table 1. Here we consider the mesh
with 174,902 nodes and 162,000 hexahedrons. The bodies are decomposed into 162
subdomains by MatSol. The number of primal variables is 646,866 and the number
of dual variables is 130,189.

In Table 2 we report “the numerical scalability” for different mesh levels. The
most important is row with total number of multiplication by Hessian, where we
can see, that the number of iterations grows only moderately. The total times are not
mutually comparable since we could not keep a constant number of subdomain per
one core due to the limitation on maximal number of the core.

Distribution of the von Mises stress and the total displacement for the finest mesh
are depicted in Figs. 2 and 3.
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Fig. 2 von Mises stress
distribution

Fig. 3 Total displacement

6 Conclusion

In this paper, we proposed a numerical method for solving contact elasto-plastic
problems based on TFETI method and demonstrate its parallel and numerical
scalability on a numerical example. The numerical realization and implementation
of the problem were newly included into the MatSol library. In fact, the proposed
method can be used or can be as a part of other contact inelastic problems than
the considered frictionless contact problem of von Mises’ elasto-plastic bodies with
isotropic hardening.
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Nonlinear Transmission Conditions for time
Domain Decomposition Method

P. Linel and D. Tromeur-Dervout

1 Introduction

We developed parallel time domain decomposition methods to solve systems of
linear ordinary differential equations (ODEs) based on the Aitken–Schwarz [7] or
primal Schur complement domain decomposition methods [6]. The methods claim
the transformation of the initial value problem in time defined on �0; T � into a time
boundary values problem. Let f .t; y.t// be a function belonging to C 1.RC;Rd /
and consider the Cauchy problem for the first order ODE:

n

Py D f .t; y.t//; t 2�0; T �; y.0/ D y0 2 Rd : (1)

The time interval Œ0; T � is split into p time slices Si D ŒTCi�1; T �i �, with TC0 D 0
and T �p D T �. The difficulty is to match the solutions yi .t/ defined on Si at the

boundaries TCi�1 and T �i . Most of time domain decomposition methods are shooting
methods [1] where the jumps yi .T �i / � yiC1.TCi / are corrected by a sequential
process which is propagated in the forward direction (i.e. the correction on the
time slice Si�1 is needed to compute the correction on time slice Si ). Our approach
consists in breaking the sequentiality of the solution’s initial value updating for each
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time slice. For this, we transform the initial value problem (IVP) into a boundary
values problem (BVP) leading to a second order ODE:

Ry.t/ D g.t; y.t// defD @f

@t
.t; y/C f .t; y.t//@f

@y
.t; y.t//; t 2�0; T Œ; (2a)

y.0/ D y0; (2b)

y.T / D ˇ: (2c)

Nevertheless, the difficulty in solving (2) is that ˇ is not given by the original
IVP. To overcome the lack of knowledge of ˇ, we proposed to set this value by
using an iterative Schwarz domain decomposition method with no overlapping. For
sake of simplicity, let us consider only one domain S1. Given a; b in RC with a < b,
we denote Œa; b� to indicate that the time interval must be traveled in the backward
direction. We first symmetrize the time interval S1 providing NS1 D Œ0C; T ��.
A symmetric time integration scheme, like the second order implicit Störmer–Verlet
symmetric scheme, is then required to perform a backward time integration onto
the symmetrized interval to come back to the initial state. Then classical domain
decomposition methods can be applied such the multiplicative Schwarz method with
no overlapping time slices with Dirichlet–Neumann (associated to the Laplacian
in time) transmission conditions (T.C.) for linear system of ODE (or PDE [8]).
As proved in [7] the convergence/divergence of the error at the boundaries of this
Schwarz time DDM can be accelerated by the Aitken technique to the right solution
when f .t; y.t// is linear.

This paper treats the case where f .t; y.t// is nonlinear. Then the multiplicative
Schwarz algorithm generates at the boundary of time slices a nonlinear vectorial
sequence. We replaced in [5] the Aitken’s acceleration of the convergence by the
"-topological algorithm [3] that has been designed to extrapolate the convergence
of such nonlinear sequences. Some enhancement of the convergence have been
obtained but the number of Schwarz iterations is still too large to obtain an efficient
method. This leads us to think again about the transmission conditions between
time slices. When systems of nonlinear ODEs are under consideration, we show in
the next section that the Dirichlet–Neumann T.C. (associated to the time Laplacian
operator only) at boundary time slices are not the right choice. The Neumann
boundary condition has to be replaced by a nonlinear boundary condition preserving
an invariant of the solution. These nonlinear T.C. differ from the optimized nonlinear
T.C. present in the waveform relaxation of [4]. In Sect. 3, we show the pure linear
behavior of the multiplicative Schwarz with a combination of the nonlinear T.C. and
the Dirichlet condition by demonstrating that the operator associated to the error
does not depend of the iteration. This operator links the transmission conditions of
all the time slices, allowing to solve the problem on all time slices in the same time
using the Aitken acceleration of the convergence. Some perspectives of this work
are given in the conclusion.
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2 What are the Right T.C. in the Nonlinear Case?

Let us first give a new formulation of (2) assuming that f .t; y.t/ is scalar and
f �1.t; y.t// exists. Then one can consider the problem:

� d
dt
Œ�f �1.t; y.t// d

dt
y.t/� D � d

dt
.�1/ D 0; t 2�0; T Œ; y.0/ D 0; (3a)

y.T / D 1: (3b)

where we imposed a Dirichlet B.C. at the time t D T for the sake of simplicity. Then
the multiplicative Schwarz with Neumann (associated to the Laplacian operator)-
Dirichlet T.C. applied to Œ0; T � D Œ0; 1� D Œ0; � � [ Œ�; 1� with � D 3=5 writes:

� d
dt
Œ�f �1.t; ynC 1

2

1 .t//
d

dt
y
nC 1

2

1 .t/� D 0; t 2�0; � Œ; ynC 1
2

1 .0/ D 0; (4a)

ynC11 .� / D ˛n D yn2 .� /; (4b)

and

� d
dt
Œ�f �1.t; ynC12 .t//

d

dt
ynC12 .t/� D 0; t 2��; 1Œ; ynC12 .1/ D 1; (5a)

d

dt
ynC12 .� / D ˇnC1 D d

dt
y
nC 1

2

1 .� /: (5b)

Let us consider f .t; y.t// D p

y.t/ then the exact solution is y.t/ D t2 and
y.3=5/ D N̨ D 9=25. The exact solution of the Neumann-Dirichlet writes:

y
nC 1

2

1 .t/ D 25

9
t2˛n ! d

dt
ynC11 .

3

5
/ D 10

3
˛n: (6)

ynC12 .t/ D

8

ˆ

<

ˆ

:

25

4
r21 t

2 C 5

2
r1t.�5r1 � 2/C 1

4
.�5r1 � 2/2;

25

4
r22 t

2 C 5

2
r2t.�5r2 C 2/C 1

4
.�5r2 C 2/2:

(7)

where r1 (respectively r2) is the root of 3r21 C3r1C2˛ D 0 (respectively 3r22 � r2C
2˛ D 0). The sequence .˛n/ satisfies one of the equation that follows:

˛nC1 D
(

f1.˛
n/ D 1=2� .1=6/p9 � 24˛n � .2=3/˛n;

f2.˛
n/ D 1=2C .1=6/p9 � 24˛n � .2=3/˛n: (8)

If ˛nC1 D f1.˛
n/ then the sequence converges toward the fixed point

N̨1 D f1. N̨1/ D 0 as jf .1/1 . N̨1/j < 1. But N̨1 ¤ N̨ . If ˛nC1 D f2.˛
n/ then
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N̨2 D f2. N̨2/ D N̨ , but jf .1/
2 . N̨2/j > 1 and the function is not contractive.

In both cases the multiplicative Schwarz will not converge with these transmission
conditions.

If we replace (5b) by (9b):

� d
dt
Œ�f �1.t; ynC12 .t//

d

dt
ynC12 .t/� D 0; t 2��; 1Œ; ynC12 .1/ D 1; (9a)

f �1.�; ynC12 .� //
d

dt
ynC12 .� / D ˇnC1 D f �1.�; ynC 1

2

1 .� //
d

dt
y
nC 1

2

1 .� /: (9b)

The sequence .˛n/ of the Dirichlet condition satisfies:

˛nC1 D

8

ˆ

<

ˆ

:

0; ˛n >
9

4
;

4

9
˛n � 4

3

p
˛n C 1; 0 � ˛n < 9

4
:

; thus ˛n ! ˛ D 9

25
:

This result shows that we can not simplify the T.C. by only taking the matching of
the time derivatives between time slices, even if the nonlinear function f �1.t; y.t//
is continuous.

Coming back to the original formulation of the Schwarz algorithm for the second

order ODE (2), the T.C. to replace the transmission condition
d

dt
y
mC 1

2

1 .T �/ D
d

dt
Nym1 .T �/ should be the flux or co-normal derivative

f �1.ymC
1
2

1 .T �//
d

dt
y
mC 1

2

1 .T �/D � f �1. Nym1 .T �//
d

dt
Nym1 .T �/, if f �1.ynC11

.T �// ¤ 0, else
d

dt
y
mC 1

2

1 .T �/ D 0. Moreover, this invariant of the problem,

allows us to simplify the methodology too. We can impose (with assuming

f �1.T �; y.T �// ¤ 0) the B.C. f �1.T �; y.T �//
d

dt
y.T

�/ D 1. Consequently,

we do not need to symmetrize the time interval and then saving by a factor 2 the
computational resources needed.

Figure 1 represents the numerical convergence of multiplicative Schwarz with
the discretized nonlinear T.C. for the discretizing scheme associated to (3) with

f �1.t; y.t// D f.py.t//�1; exp.�y.t//; 1

1C y2.t/g. It exhibits that the conver-

gence behavior is purely linear for this problem with two time slices and one

artificial interface. The T.C. with imposing the matching of
dy

dt
.t/ only does not

converge as expected by the theory. The combining of the Dirichlet and relaxed
flux for T.C. converges faster. We show in Sect. 3 the pure linear behavior for the
convergence of the multiplicative Schwarz for the time decomposition with this kind
of nonlinear T.C.
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Fig. 1 Convergence/divergence of the multiplicative Schwarz with respect to the T.C.

f �1.t; y.t//
d

dt
y.t/ with f �1.t; y.t// D f.py.t//�1; exp.�y.t//; 1

1C y2.t/ g, or
d

dt
y.t/

3 Pure Linear Convergence of the Time Schwarz DDM
with Nonlinear Flux Transmission Conditions

Let us consider the problem (3a) with Dirichlet B.C. at t D 0 and the invariant flux
B.C. equal to 1 at t D T . Then we split the time interval Œ0; T Œ into p time slices of
size H D T=p and we apply the multiplicative Schwarz algorithm with Dirichlet
B.C. at t D TCi�1 and a combination of a Dirichlet and the invariant flux B.C. at
t D T �i times a parameter � :

d

dt
f �1.t; ynC

1
2

i .t//
d

dt
y
nC 1

2

i .t/ D 0; t 2 Si ; (10a)

y
nC 1

2
i .TCi�1/ D yni�1.T �i�1/; (10b)

y
nC 1

2
i .T �i /C �f �1.T �i ; ynC

1
2

i .t//
d

dt
y
nC 1

2
i .T �i / D yniC1.TCi /C

�f �1.TCi ; y
n
iC1.TCi //

d

dt
yniC1.TCi /: (10c)

Following the idea of [2], we use the Kirchoff transformation by introducing new
variables ui .t/ such that

ui .t/ WD 
.yi .t// D
Z yi .t/

f �1.t; z.t//d z a.e. in Si : (11)
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Then f �1.t; yi .t//
d

dt
yi .t/ D d

dt
ui .t/. Here the f �1.t; z.t// is taken sufficiently

continuous such that the value of 
.y.t�// D 
.y.tC// and an equality on “y”
traduces an equality on “u”. Schwarz Algorithm (10) can be rewritten as:

d2

dt2
u
nC 1

2

i .t/ D 0; t 2 Si ; (12a)

u
nC 1

2

i .TCi�1/ D �ni
defD uni�1.T �i�1/; (12b)

u
nC 1

2

i .T �i /C �
du

nC 1
2

i

dt
.T �i / D �ni defD uniC1.TCi /C �

duniC1
dt

.TCi /: (12c)

We can show that the B.C. of this multiplicative Schwarz converge purely linearly
to the B.C. associated to the solution. The error ei D ui � u satisfies

d2

dt2
e
nC 1

2
i .t/ D 0; t 2 Si ; (13a)

e
nC 1

2
i .TCi�1/ D eni�1.T �i�1/ D ˛ni

defD �ni � �1i ; (13b)

e
nC 1

2

i .T �i /C �
de

nC 1
2

i

dt
.T �i / D eniC1.TCi /C �

deniC1
dt

.TCi / D ˇni
defD �ni � �1i :

(13c)

The error ei .t/ writes ei .t/ D ai t C bi with:

ai D ˇni � ˛ni
� CH ; and bi D � .ˇ

n
i � ˛ni /
� CH TCi�1 C ˛ni : (14)

For the sake of simplicity, let us take p D 6. We have ˛n1 D 0 and ˇn6 D 0. Then

one can write: )
nC 1

2

1 WD .ˇnC 1
2

1 ; ˛
nC 1

2

3 ; ˇ
nC 1

2

3 ; ˛
nC 1

2

5 ; ˇ
nC 1

2

5 /T D P1)
n
2

and )n
2 WD .˛n2 ; ˇn2 ; ˛n4 ; ˇn4 ; ˛n6 /T D P2)

n� 12
1 with:

P1 D 1

� CH

0

B

B

B

B

B

@

�1 1 0 0 0

� H 0 0 0

0 0 �1 1 0

0 0 � H 0

0 0 0 0 �1

1

C

C

C

C

C

A

and P2 D 1

� CH

0

B

B

B

B

B

@

H 0 0 0 0

0 �1 1 0 0

0 � H 0 0

0 0 0 �1 1
0 0 0 � H

1

C

C

C

C

C

A

:

(15)

The matrices P1 and P2 do not depend on the iteration n, and are invertible with an
appropriate choice of � . The matrix P D P1P2 links all the B.C. associated to the
odd time slices as follows:
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P D 1

.� CH/2

0

B

B

B

B

B

@

�H �1 1 0 0

� H �H H 0 0

0 �� �H �1 1

0 �2 � H �H H

0 0 0 �� �H

1

C

C

C

C

C

A

: (16)

Consequently the multiplicative Schwarz algorithm converges or diverges purely
linearly and the right B.C. associated with the solution can be extrapolated with
the Aitken’s acceleration of convergence technique using this convergence or

divergence behavior. By setting �
nC 1

2

1

defD .�
nC 1

2

1 ; �
nC 1

2

3 ; �
nC 1

2

3 ; �
nC 1

2

5 ; �
nC 1

2

5 /T , the

Aitken’s extrapolation, with the identity matrix I, writes: �11 D .I � P/�1.�
3
2

1 �
P�

1
2

1 /. ForH D 1 and � D 0:5 the eigenvalues of P are with four significant digits:
f�0:1413˙ 0:2478 i; �0:2608 ;�0:2221˙ 0:1496 ig which shows the conver-

gence of the multiplicative Schwarz.

Remark 1. We can not impose the flux T.C. only at the end of time slices because
the flux B.C. at the last time slices then will impose ai D 0;8i . Consequently we
would have a sequential propagation of the right B.C. at each Schwarz iterate.

Remark 2. As we have d
dt u

n
iC1.T

C
i / D 1 then (10c) can be replaced by:

u
nC 1

2

i .T �i /C �
d

dt
u
nC 1

2

i .T �i / D �ni defD uniC1.TCi /C �: (17)

4 Numerical Implementation and Result

In order to implement the multiplicative Schwarz, we still use (2a) with using the
Störmer–Verlet second order in time implicit scheme. Considering N C 1 regular
time steps�t on each time slice Si , and zj ' yi .TCi�1Cj�t/, the flux T.C. given by
(17) is discretized in time with the second order scheme with f �1N D f .T �i ; zN /�1:

yi .T
�
i /C �f .T �i ; yi .T �i //�1

dyi

dt
.T �i / ' zN C �f �1N .

3

2
zN � 2zN�1 C 1

2
zN�2/:

(18)

The local problem on each time slice consists in searching the zero of the function
F.z0; : : : ; zN / D 0 including the two T.C. for j D 0 and j D N with a Newton
method with a stopping criterion set to be 10�7. The Jacobian matrix of F is mainly
a tridiagonal matrix when we applied a Gaussian elimination of the term in position
N;N � 2. Moreover the nonlinearity is concentrated in the scheme only on the
diagonal of the Jacobian and on the last row. An initial solution is computed on
a regular coarse time mesh with the Newton stopping criterion set to be 9:10�2.
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Fig. 2 Maximum of relative error between the Schwarz Dirichlet B.C. of odd time slices with the
exact solution (dash line) and its acceleration by Aitken technique (solid line), with respect to the
Schwarz iterations for f .t; y.t// D exp.y.t//. Number of time slices is p D 12, N D 81, � D 20

Then the Kirshoff transformation 
 is applied to the T.C. Y i (of odd time slices)
in order to obtain the acceleration matrix P
 . Next, the Aitken acceleration is
performed in the transformed space (associated to the Kirshoff transformation) and
the accelerated T.C. Y1 on odd time slices are retrieved with applying 
�1 as
follows:

Y1 WD 
�1. .I � P
/
�1.
.Y 2/� P

.Y

1// /: (19)

Remark 3. This formula generalizes to the nonlinear case the Aitken-SVD [9]. In
this last case,
.Y / D UY is the linear change of variable where U comes from the
singular value decomposition U˙VT of the T.C. arising in the Schwarz iterations
(Fig. 2).

5 Conclusion

We obtained new nonlinear transmission conditions for our time domain decom-
position which consists to apply classical multiplicative Schwarz algorithm on
non-overlapping time slices. These T.C. make the multiplicative Schwarz algorithm
having a pure linear convergence that allows it to be extrapolated to the T.C. satisfied
by the searched solution. The method is for the moment applied to scalar problem,
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some extension to system of non linear ODEs is under investigation by using the
definition of the inverse of a vector used in the "-algorithm.
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