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Abstract

Porous silicon is a promising template for the preparation of metal
nanostructures by electrochemical deposition. Because porous silicon is a
semiconductive porous electrode, electrochemical deposition of metals occurs
not only at the bottom of pores but also on the pore wall and pore openings.
Thus, the control of electrochemical deposition within porous silicon has been a
challenging issue. Electrochemical deposition on porous silicon is influenced by
illumination conditions. Metal deposition on porous silicon is possible by dis-
placement deposition. Many studies have reported on electrochemical deposi-
tion of metal for practical applications. In this chapter, electrodeposition under
polarization is firstly reviewed. Secondly, displacement deposition on porous
silicon is explained. Finally, the microscopic structure formation by electrode-
position on porous silicon is summarized.
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Fig. 1 Schematic illustrations of typical morphologies obtained in electrodeposition on porous
silicon. Illustrations of (a), (b), and (c), respectively, show pores capped with a metal film, pores
modified with discrete metal islands, and pores completely filled with metal

Introduction

Metal deposition on porous silicon has been studied since the early period of porous
silicon research. The major target started from the improvement of the luminescent
properties (Canham 1997), the formation of an effective heterojunction between
semiconductor and metal for applying the junction to various types of electronic
devices at the time. Afterwards, the target spreads to versatile fields such as optical
diagnostics/plasmonics, fabrication of metal-silicon hybrid materials for catalyst,
microstructure formation of a metal—silicon hybrid material, and low-dimensional
structure formation. These applications utilize the characteristic structure of porous
silicon: (a) fine porous structure with high aspect ratio; (b) easily oxidizable nature;
and (c) neither conductive nor nonconductive, but semiconductive material. Basic
understanding on the deposition behavior on a porous silicon surface is indispens-
able for meeting a variety of requirements depending upon the application (Hyde
and Compton 2003; Oskam et al. 1998; Zhang 2001).

Since application of a wet process for copper wiring was demonstrated by the
IBM group in 1997 (Andrecacos et al. 1998), applicability of the electrochemical
deposition to fine structure formation has been widely recognized. Electrochemical
deposition enables to prepare various types of porous silicon modified with metal as
illustrated in Fig. 1. We confine the topic in this section to the wet processes here.
The processes consist of electrodeposition and displacement or electroless
deposition.

Electrodeposition

Silicon is a semiconductor and it causes specific characteristics which are not
expected in the deposition on a conductive substrate. Metal deposition or reduction
reaction requires the supply of electrons at the conductive band or the hole injection
to the valence band.
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Me™ +ne” — Me or Me"" — Me+nht (1)

where Me stands for metal. The hole-injection process is only possible when the
redox potential or the Fermi level of metal/metal-ion system stays below the energy
level of the valence band. It happens in some noble metal systems. Otherwise
electrons at the conduction band are required for the progress of metal deposition
reaction. n-type silicon meets this requirement, whereas p-type silicon lacks this
condition. Illumination helps the progress of deposition on p-type porous silicon.
Deposition becomes possible even on p-type silicon when breakdown occurs under
very high polarization. Heavily doped silicon or degenerate silicon, n* or p* silicon,
behaves like conductor, where illumination is not the requirement even it is p-type
silicon. It must be noted that cathodic reaction proceeds on a semiconductor surface
following its kinetics at the beginning of deposition, but the surface covered with
deposited metal behaves as a metal electrode. The two kinetics are usually very
different from each other.

Displacement Deposition

Silicon is a less-noble material. The redox potential (2) is difficult to measure
directly in aqueous solution since silicon is easy to be oxidized and cannot stay as
silicon itself. The value estimated from thermodynamic data (Bard et al. 1985) is as
follows:

Si + 2H,0 — SiO, + 4H' + e E, = —0.85 V versus SHE 2)

Porous silicon readily undergoes oxidation in aqueous solution. Electrons
formed by the oxidation reduce metal ions thermodynamically, if the equilibrium
potential stays positive compared with the potential of reaction (2).

When porous silicon is immersed in an aqueous solution containing noble
metal ions such as silver and copper, the metal is deposited on porous silicon.
Oxidation of the porous silicon surface is confirmed by IR spectroscopy (Hilliard
et al. 1994) and XPS spectroscopy (Jeske et al. 1995). In contrast, displacement
reaction does not take place in deposition of less-noble metals such as nickel and
iron (Tsuboi et al. 1998; Ronkel et al. 1996). Deposition behavior does not show a
significant difference between n-type and p-type silicon substrates (Tsuboi
et al. 1999). The potential is determined by a mixed potential of the cathodic
and anodic reactions. The rate of reaction (2) slows down in progression since the
reaction leaves insulative SiO, resulting in the decrease of active silicon surface.
It leads to the decrease in metal deposition rate. In some cases, holes participate
in place of electrons. The deposition and oxidation do not necessarily take
place at the same site. Produced charge carriers can migrate in silicon or metal,
and they can be consumed at the different sites from the electron source
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(Harraz et al. 2002). The deposition ceases after the silicon surface exposing to
electrolyte is completely oxidized.

There are competitive reactions to metal deposition. The most influential
reaction is hydrogen evolution reaction. The reaction competes with metal depo-
sition reaction. As a result, noble metal is deposited, but less-noble metal is
difficult to be deposited. The potential of hydrogen evolution reaction shifts
toward negative with increasing solution pH. One can deposit less-noble metals
in solution of high pH (Takano et al. 2000; Harraz et al. 2003). Solution
containing fluorides is also used for the displacement solution. Presence of
fluorides reduces it to a binary system eliminating the oxides (Harraz
et al. 2003). The oxidized silicon dissolves or silicon directly dissolves away
into the solution.

Micro- and Nanostructure Formation

Metal deposition creates a hybrid material of metal and semiconductor
and the new material is expected to develop a new function, where
microstructuring is crucial. A variety of techniques have been utilized for pro-
ducing the 2D and 3D structures. They are controlled physically, mechanically,
optically, and electrochemically. Some examples of the 2D or position-selective
local deposition are summarized in Table 1. The optical control is only
possible on p-type silicon and deposition of less-noble metal. Illumination
creates charge carriers and the illuminated spot undergoes deposition.
Otherwise, excess free electrons and displacement deposition hinder the selective
deposition.

The advantage or uniqueness arises from the micro- and nanostructures. It is
often preferred that deposition copies precisely the porous silicon structure. The
hybrid structure or the structure after removing the porous silicon substrate can be
utilized in a wide variety of applications. Metal deposition in these structures and
the successive silicon dissolution have been utilized to form the 3D structures.
Many interesting results have been obtained (Table 2).

Conclusions

Electrochemical deposition enables wide applications of porous silicon in many
fields such as optics, sensing, microfabrication, and catalysis. Fine tuning in
morphology of deposits, which is crucial for applications, has been desired. As
reviewed in this chapter, control of metal electrodeposition has greatly improved in
the recent decades. However, there still exist many open questions, such as nucle-
ation and growth and mass transfer for 3D structure formation. They are doubtlessly
important and seem to be future issues.
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Table 1 2D structure formation of deposits on porous silicon

Type Deposit | Technique Remarks References
Optical Ni, Cu DP, 532 nm laser | Smallest diam. Kordas et al. (2001),
irradiation 5 pm with P ion Scheck et al. (2004)
implantation
Ni, Cu ED, Ar" laser, Metal patterning Sasano et al. (2003;
scanning without mask or 2004)
resist.
Suppression of
DP is necessary
for Cu. 20 pm
Au Laser heating Laser heating Koynov et al. (2006)
with its after uniform Au
interference deposition. Etch
pattern, alloying | pattern
formation: pit,
ring, line
Physical Au, Cu | ED, Si** ion High deposition Schmuki and Erickson
implantation rate at the (2000)
defected sites.
Patterning
Ag,Cu | DP, porous Natural Ono et al. (2007)
Al,O;5 or lithography,
polystyrene 50-100 nm size,
colloidal crystal starting from flat
as mask Si
Ag DP, inkjet Direct patterning | Chiolerio et al. (2012)
printing on porous silicon.
SERS
applications
Mechanical Pd ED, Defects, Santinacci
AFM-scratching sub-100 nm et al. (2003)
through the SiO, | width
layer
Au, Ag | DP, nano- Defects, Kubo et al. (2005)
Co indentation 30-50 nm
resolution
Electrochemical | Cu ED, Roughened Trimmer et al. (2005)
electrochemical surface accept
machining with the nucleation,
ultrashort 500 nm size.
voltage pulses Starting from flat
Si
Cu ED, Pure Staemmler
electrochemical electrochemical, et al. (2004)
scanning 200 nm size,
capillary using a flat Si
microscope

DP displacement deposition, ED electrodeposition
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