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Abstract

A variety of PSi-polymer composites have been developed, from the perspec-

tives of different polymers, different composite morphologies, and different

targeted applications.

The field is comprehensively reviewed, focusing on the different design and

synthesis strategies, together with a brief discussion of the emerging fields of

application.
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Introduction

The combination of polymers with nanostructured silicon scaffolds, in particular

porous Si (PSi), into a single composite system opens vast opportunities for

developing advanced functional materials. These composites display unique prop-

erties that are culminated by the characteristics of each building block, to allow the

design of highly tunable nanomaterials. Over the past decade, various PSi-polymer

composites were introduced and their application as sensors (chapter “▶ Porous

Silicon Optical Biosensors”), actuators, optical devices (e.g., chapter “▶ Porous

Silicon Optical Waveguides”), drug delivery systems (chapter “▶Drug Delivery

with Porous Silicon”), and tissue-engineered scaffolds (chapter “▶ Porous Silicon

and Tissue Engineering Scaffolds”) was demonstrated.

In this chapter, we will describe the basic considerations in designing functional

PSi-polymer composites, synthesis strategies, and emerging applications of these

nanomaterials. Future prospects and challenges in both fabrication and implemen-

tation of PSi-polymer-based devices will be discussed.

Design of PSi-Polymer Composites

Porous Si-polymer composites may be designed in diverse configurations. Figure 1

schematically illustrates the most common structures: PSi infiltrated with a poly-

mer, polymer-coated PSi, polymer-capped PSi, released PSi film supported by a

polymer, PSi particles encapsulated by a polymer, and composite microparticles.

Each of these structures possesses different properties, which can be further refined

by a proper choice of the polymer constituent and the PSi nanostructure.

The simplest composite structure is that of a polymer-infiltrated PSi substrate

(Fig. 1a), wherein the polymer fills the entire porous volume (Segal et al. 2007;

Massad-Ivanir et al. 2010; Perelman et al. 2010; Massad-Ivanir et al. 2012a;

Krepker and Segal 2013). The polymer is confined within the nanoscale pores,

and its interaction with the pore wall can be enhanced by covalent attachment

(Massad-Ivanir et al. 2012a; Bonanno and Delouise 2010; Bonanno and Segal

2011; Sciacca et al. 2011). To some extent, polymer-coated PSi (Fig. 1b) has a

similar design, where the polymer only forms a uniform layer onto the pore walls,

resulting in an open porous structure (Segal et al. 2009; McInnes et al. 2009).

Polymer-capped PSi is a more sophisticated architecture (Fig. 1c), in which the

polymer only forms a blocking layer on top of the PSi, leaving the greater fraction

of the porous volume unoccupied (Wu and Sailor 2009). The fabrication of these

composites is more challenging, as the degree of polymer penetration into the pores

needs to be precisely controlled. Figure 1d presents a polymeric replica from PSi.

These replicas are usually prepared from polymer-infiltrated PSi by selective

removal of the Si scaffold (Li et al. 2003; Park et al. 2007). The previously

described designs make use of intact PSi substrates. However, the following

PSi-polymer composite configurations require mechanical processing of the PSi.

188 E. Segal and M.A. Krepker

http://dx.doi.org/10.1007/978-3-319-05744-6_87
http://dx.doi.org/10.1007/978-3-319-05744-6_87
http://dx.doi.org/10.1007/978-3-319-05744-6_83
http://dx.doi.org/10.1007/978-3-319-05744-6_83
http://dx.doi.org/10.1007/978-3-319-05744-6_91
http://dx.doi.org/10.1007/978-3-319-05744-6_91
http://dx.doi.org/10.1007/978-3-319-05744-6_92
http://dx.doi.org/10.1007/978-3-319-05744-6_92


A freestanding PSi film supported by polymer is presented in Fig. 1e. In this case,

separation of the porous layer from the bulk Si is typically achieved by

electropolishing (DeLouise et al. 2005). Further fracturing of these porous films

allows us to fabricate particulate composites (McInnes et al. 2012). The resulting

PSi micro-/nanoparticles can be embedded in a polymer matrix (Fig. 1f) or encap-

sulated individually by a polymer layer (Fig. 1g). The latter case is more synthet-

ically challenging.

The diversity in the design of these composites highlights the possibility to select

a suitable configuration for tailoring specific mechanical, chemical, and optical

properties for a desired function. Rational selection of the polymer component, PSi

substrate nanostructure, and fabrication strategy are of utmost importance in tuning

the behavior of the resulting composite.

Fabrication Methods of PSi-Polymer Composites

There are many synthetic approaches for integrating polymers with PSi. Figure 2

summarizes the main methods that are practiced for the fabrication of PSi-polymer

composites. In general, these techniques can be divided into two main categories.

The first is incorporating a preformed polymer with the Si scaffold. The second

involves in situ polymerization of monomers within/on the PSi. Herein, we will

focus only on the main techniques for the fabrication of PSi-polymer composites.

Polymer-coated PSi

Polymer-capped PSi

Polymer infiltrated PSi

PSi particles encapsulated
in polymer matrix

Composite microparticles

B

G

A

C
Polymeric replicaD

Freestanding PSi film
supported by polymer

E

F

Fig. 1 Common structures of PSi-polymer composites. Insets in A illustrate interfacial chemistry

where the polymer is not attached to PSi (right) and is covalently attached to the PSi surface

through different linkers. Schematics are not drawn to scale

Polymer - Porous Silicon Composites 189



Incorporation of a Preformed Polymer with PSi

Solution casting (Fig. 2a) is probably the simplest route for fabricating

PSi-polymer composites, and thus, it is widely implemented (Wu and Sailor

2009; Park et al. 2007; McInnes et al. 2012; Gao et al. 2008; Orosco et al. 2006;

Shang et al. 2011; De Stefano et al. 2009; Schwartz et al. 2006; Kim et al. 2008;

Koh et al. 2008; Sychev et al. 2009; Whitehead et al. 2008; Li et al. 2005). In this

case, a polymeric solution is prepared and cast onto the PSi. This procedure is

usually followed by a subsequent spin-coating step to remove excess solution and to

distribute the polymer evenly on the surface of PSi (Gao et al. 2008; Shang

et al. 2011; Schwartz et al. 2006). The extent of polymer solution penetration into

pores plays a vital role in determining the final structure of the composite. Gener-

ally, polymer infiltration into the porous scaffold depends on several key parame-

ters: the molecular weight (MW) of the polymer, the solution viscosity and its

surface tension, pore dimensions and morphology, and the pore wall surface

chemistry. In addition, the small size of pores can trap air or other gases, inhibiting

the penetration of the polymer solution into the pores. In this case, degassing under

vacuum and PSi conditioning with the solvent is recommended. Overall, this

technique is relatively straightforward, as it does not involve complex synthetic

steps and specialized experimental setups. Moreover, the use of a preformed

PSi + Polymers

Solution/melt castingA

C D

E

F

B

Dispersion Electrospinning

“Grafting to”

“Grafting from”

In-situ polymerization

PSi + Monomers

PSi-polymers composite
fabrication

Voltage

Fig. 2 Common practiced methods for the fabrication of PSi-polymer composites
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polymer, which its characteristics are already defined (e.g., MW and chain config-

uration), offers significant advantages in terms of the properties and behavior of the

final composite. Capping layer on PSi film (Wu and Sailor 2009; Gao et al. 2008;

Orosco et al. 2006; Shang et al. 2011), PSi infiltrated with polymers (McInnes

et al. 2012; De Stefano et al. 2009; Schwartz et al. 2006), polymer replicas of PSi

templates (Li et al. 2003; Park et al. 2007; Kim et al. 2008), and a freestanding PSi

film supported by a polymer (Koh et al. 2008; Sychev et al. 2009) are the most

common designs of PSi-polymer composites prepared by solution or melt casting.

Another simple technique for preparation of PSi-polymer composites is by

dispersing PSi particles within a molten polymer or a polymeric solution

(Fig. 2c). Further processing of these dispersions is required in order to form

coatings (Svrcek et al. 2009), monoliths (McInnes et al. 2012; Mukherjee

et al. 2006), and fibers (Fan et al. 2011; Kashanian et al. 2010).

Fibrous PSi-polymer systems can be fabricated by electrospinning (Fig. 2d)

which is an established method for the production of large area networks of

thin flexible fibers. In this case, the PSi-polymer dispersion or melt is squeezed

through a nozzle, to which a strong electrical field is applied. The applied

voltage causes a cone-shaped deformation of the drop of polymer solution/melt

and a jet is formed. As the spurt makes its way to the counter electrode, the melt

solidifies or the solvent evaporates and a polymer fiber is formed (Greiner and

Wendorff 2007). The resulting properties of electro-spun fibers are controlled by

the process parameters, e.g., electrical conductivity, electrode separation and

geometry, temperature, concentration, and the polymer characteristics. Coffer

et al. (Fan et al. 2011; Kashanian et al. 2010; Fan et al. 2009) have applied this

technique to produce electro-spun fibers of PSi particles encapsulated within a

polycaprolactone matrix.

Grafting involves covalent attachment of the polymer to a surface. Grafting

provides a versatile tool for surface modification and functionalization in a highly

controllable manner. Two main grafting categories can be identified. The first is

termed “grafting to,” in which a preformed polymer is attached to the surface. In the

second approach “grafting from,” polymerization is initiated from the substrate

surface by the attachment of initiating groups (Minko 2008). The latter method will

be discussed in the following section, dealing with polymerization techniques.

In the “grafting to” method (Fig. 2b), end-functionalized polymer chains are

reacted with complementary functional groups located on the PSi surface to form

tethered polymer chains (Minko 2008). The versatile chemistry of Si/SiO2 allows

functionalization of the PSi surface with a wide repertoire of reactive groups

(Buriak 2002; Ciampi et al. 2008; Kilian et al. 2009a; Alvarez et al. 2009;

Jarvis et al. 2012). Some of the most common PSi functionalization routes are

presented in Fig. 3.

The advantage of the “grafting to” method is that the end-functionalized polymers

with a predetermined configuration (e.g., MW and functional groups) are employed

for grafting, and, as a result, well-defined layers can be readily obtained. It should be

mentioned that a disadvantage of this method is the limited grafting density that can

be achieved (Zdyrko et al. 2006). Thus, this technique was implemented for grafting
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poly(n-isopropylamide) (polyNIPAM) (Segal et al. 2009), chitosan (Sciacca

et al. 2011), and gelatin (Kilian et al. 2009b). “Grafting to” is typically used for

fabricating polymer-coated PSi surfaces and nanostructures (see Fig. 1b).

Polymerization Within PSi

In many cases, when using high-MW polymers, these macromolecules are size

excluded from the nanoscale pores, or their efficient infiltration into the PSi

nanostructure is impaired. Thus, to circumvent these issues, in situ polymerization

of low-MWmonomers (or oligomers) within the PSi scaffold can be applied (Segal

et al. 2007; Massad-Ivanir et al. 2010; Perelman et al. 2010; Krepker and Segal

2013; Massad-Ivanir et al. 2012b; El-Zohary et al. 2013). The PSi nanostructure is

commonly filled with a prepolymer solution, which may contain a composition of a

solvent, monomers, cross-linking agents, initiators, and catalysts. When the poly-

merization reaction is initiated, the polymer is formed inside the pores of PSi,

resulting in a uniform and high pore filling. In certain cases, polymerization can be

initiated from the PSi surface, generally termed as a “grafting from” technique, or

the growing polymer chains can be tethered to the pore walls.

There are many different polymerization routes that have been employed for the

fabrication of PSi-polymer composites, including free-radical polymerization (FRP),

photopolymerization (Segal et al. 2007; Massad-Ivanir et al. 2010; Perelman

et al. 2010; Krepker and Segal 2013; Massad-Ivanir et al. 2012b), atom transfer radical

polymerization (ATRP) (Vasani et al. 2011; Yang and Choi 2010; Pace et al. 2013),

ring-opening polymerization (McInnes et al. 2006, 2009, 2012; Yoon et al. 2003), and

electro-polymerization (Belhousse et al. 2010; Jin et al. 2009; Chiboub et al. 2010;

Fukami et al. 2009; Harraz et al. 2008; Betty 2009; Urbach et al. 2007a, b; Nahor

et al. 2011; Badeva et al. 2012; Dian et al. 2013). Polymerization method has a

profound effect on the resulting PSi-polymer composite structure and its properties.

For example, FRP typically results in time invariant degrees of polymerization and a

high polydispersity index (a wide MW distribution). ATRP, on the other hand, allows

for achieving a controllable molecular weight and low polydispersity, as the polymer

Fig. 3 Commonly practiced

surface chemistries for the

functionalization of PSi.

These end groups can be

reacted with a wide variety of

polymers
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chains preserve their ability to grow for a long time and their degree of termination or

chain transfer is very low (Braunecker and Matyjaszewski 2007).

When “grafting from” approach is applied for polymer synthesis, an appropriate

initiator is commonly immobilized onto the pore walls followed by polymer chains

growth via different possible mechanisms (Jarvis et al. 2012; Vasani et al. 2011;

Xu et al. 2004; Chen et al. 2009). The main advantage of the “grafting from” methods

is the possibility to form polymer layers of high density in comparison to the

“grafting to” approach.

It should be emphasized that in situ polymerization within nanostructures is a

complex process in which nano-confinement conditions may affect the polymeri-

zation kinetics and the resulting properties of the polymer (Massad-Ivanir

et al. 2012a; Alcoutlabi and Gregory 2005; Keten et al. 2010; Kruk et al. 2008;

Liang et al. 2000; Uemura et al. 2010; Gorman et al. 2008). Recent studies have

shown that the imprisonment of hydrogels in PSi nanoscale pores induces signif-

icant changes in the confined polymer properties, e.g., volume phase transition

(VPT) kinetics, compared to those observed for the bulk “free” polymers (Segal

et al. 2007; Massad-Ivanir et al. 2010; Perelman et al. 2010; Bonanno and Segal

2011). Moreover, significant differences between the thermal degradation behav-

iors of the confined polymers, poly(acrylamide), and polyNIPAM and neat polymer

and thin polymer films deposited onto planar Si surfaces were observed. The

confined polymers have inferior thermal stability than the neat polymers. These

findings indicate that the in situ polymerization and the polymer confinement

conditions have a profound effect on the nanostructure and resulting behavior of

the polymeric phase (Massad-Ivanir et al. 2012a).

We expect that investigation and characterization of the properties of different

polymeric systems confined within nanostructured porous Si hosts will allow to

finely tune the polymer properties by controlling the confinement conditions and

interfacial interactions between the polymer and the host material. This will expand

the possibility for rational design of new PSi-polymer nanomaterials with tailored

properties and functions.

Applications

As PSi-polymer composites exhibit unique properties that are culminated by the

characteristics of each building block, they can be rationally designed to display

highly tunable properties, e.g., mechanical, chemical, optical, and electrical. Over

the past decade, these attractive nanocomposites have been studied as platforms for

designing different devices. Applications of these composites range from drug

delivery systems, sensors, and actuators to optoelectronics and photovoltaics.

A recent review (Bonanno and Segal 2011) provides an updated overview on the

biomedical applications of these materials, highlighting the construction of smart

drug delivery systems (Wu and Sailor 2009; Vasani et al. 2011; Godin et al. 2011),

improved label-free optical biosensors (Massad-Ivanir et al. 2010; Massad-Ivanir

et al. 2012b; Holthausen et al. 2012), or sensors (Bonanno and Delouise 2010) for
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“point-of-care” applications such as temperature sensors to monitor wound healing

(Pace et al. 2012), lab-on-chip systems (Chen et al. 2009), and tissue engineering

scaffolds (Coffer et al. 2005). In addition to the vast biological applications,

PSi-polymer composites are being investigated as chemical sensors for different

targets (Belhousse et al. 2010; Jin et al. 2009; Wang et al. 2012; Levitsky

et al. 2007; Pang-Leen and Levitsky 2011), optoelectronics devices, photovoltaics

(Svrcek et al. 2009; Badeva et al. 2012; Halliday et al. 1996; Mishra et al. 2008;

Nguyen et al. 2003a, b; Gongalsky et al. 2012), and energy storage (Ge et al. 2012).

Thus, the versatility of polymers in combination with the unique properties of PSi

offers a wealth of opportunities for the design of new functional materials for a

range of applications. We have yet to see the widespread translation of these

composite-based devices into commercial application, and only the future will

reveal the true impact of these materials.
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