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Abstract

The electrochemical formation of macropores in porous silicon is briefly

reviewed. Various morphologies are obtained as a function of the substrate

type and etching conditions. On n-Si, macropores are generally growing along

preferential crystallographic directions. On p-Si, in aqueous conditions far from

electropolishing, the growth direction is rather determined by the current lines

in the space-charge region. A summary of macropore characteristics is given as

a function of the preparation conditions. Various models have been developed

in order to account for the morphologies and characteristic sizes. These joint

experimental and theoretical works have provided a good understanding of

macropore growth, opening the way to many applications, and the most significant
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ones are mentioned. An impressive level of control has eventually been achieved

for the fabrication of regular macropore arrays of high aspect ratio, including the

incorporation of intentional defects or pore-wall shaping.

Introduction

According to the IUPAC standard, macropores correspond to pores exhibiting

characteristic sizes (pore diameter and average distance between pores) larger

than 50 nm. The term “macropore” is usually associated with smooth cylindrical

pores with characteristic sizes on the order of 1 μm.

This kind of pore can be obtained under a variety of conditions and with

differing morphologies (see chapter “▶Routes of Formation for Porous Silicon”).

In this review, we focus on electrochemically etched macropores. The key param-

eters are the electrolyte type (aqueous (aqu), organic (org), oxidant (ox)) the HF

concentration, the surfactant, the Si doping type and level (n, n+, p, p+), and in some

cases the illumination (backside illumination (bsi) or frontside illumination (fsi)).

Detailed reviews regarding their formation are available (Föll et al. 2002; Lehmann

2005; Chazalviel and Ozanam 2005; Lehmann 2002; and handbook chapter

“▶ Porous Silicon Formation by Anodization”).

Current-Line- and Crystallography-Driven Macropores

Two distinct classes of macropores are observed, as summarized in Table 1.

Macropores obtained from n-Si always exhibit a strong growth dependence on

crystallographic orientation. On p-Si, this dependency is lower (Lehmann and

Rönnebeck 1999), and in aqueous conditions at low enough current density

and/or high enough HF concentration, the growth turned to be determined by the

direction of the current lines in the space-charge region Media et al. 2011.

Macropore Formation

Table 2 summarizes the main characteristics of the electrochemically grown

macropores on Si, as a function of the formation conditions.

Figure 1 illustrates the variety of pores obtained for p-Si under different conditions.

Macropore Formation Models

Porous silicon formation models have been reviewed (Smith and Collins 1992;

Allongue 1997; Zhang 2001). A conceptual analysis has been attempted (Zhang

2004). Major theoretical contributions applying to macropore formation are listed

in Table 3.
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Table 1 Macropores classes and their main characteristics

Class of

macropores

Macropore

morphology

Macropore

orientation Remarks Reference

Current-line-

driven pores

Rounded

bottoms

Normal to

the surface

Filled with

microporous

silicon

p-Si, aqu (Wehrspohn

et al. 1998)

Crystallography-

driven pores

(111) Facets at

their bottoms

and (110)

oriented walls

(100)

Preferred

growth

direction

Empty n-Si, aqu, bsi: (Lehmann

and Föll 1990)

n-Si, aqu, fsi: (Lévy-

Clément et al. 1994)

p-Si, org: (Propst and

Kohl 1994; Ponomarev

and Lévy-Clément 1998;

Christophersen

et al. 2000a)

p-Si, aqu: (Lehmann and

Rönnebeck 1999)

Table 2 General conditions for macropore formation. “Passivation power” denotes the degree to

which a given electrolyte can remove interface states in the bandgap of Si by covering a freshly

etched surface with hydrogen

Formation

conditions Specificity of obtained macropores Reference

n-Si (aqu)/

bsi

Grow exclusively in <100>
direction, dependence of the pore

morphology on the sample orientation

(Lehmann 1993, 1995; Rönnebeck

et al. 1999; Kleimann et al. 2000;

Laffite et al. 2011)

SCR limits distances; max. depth >
600 μm achieved obtained for J <
JPSL; arrays with pore diameters

100 μm–250 nm can be obtained

n-Si (aqu)/fsi Well-developed macropores oriented

<100>
(Lévy-Clément et al. 1994;

Outemzabet et al. 2005)

Not much investigated

n-Si (org)/bsi Prone to pore branching and strange

morphologies, but regular

macropores arrays can be obtained

(Christophersen et al. 2000a, 2000b,

2001; Izuo et al. 2002)

Not much investigated

p-Si (aqu) Obtained at current densities <JPSL
and for low-to-medium HF

concentration. Easy to make; arrays

of high aspect ratio can be obtained

(Lehmann and Rönnebeck 1999;

Chao et al. 2000; Chazalviel

et al. 2002; Urata et al. 2012)

p-Si (org) Large macropore observed; decisive

parameters are electrolyte resistivity,

oxidizing power, and “passivation

power”

(Ponomarev and Lévy-Clément 2000;

Christophersen et al. 2001; Lust and

Lévy-Clément 2002)

n+-Si (aqu +

oxidant)

Small diameter (60–100 nm), high-

aspect-ratio macropores

(Christophersen et al. 2000c;

Ge et al. 2010)
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Principal Application of Macropores

Macropore arrays found applications in various fields, some of which are listed in

Table 4.

Fig. 1 Morphologies for (100) p-Si in 0.05MHF, 0.05MNH4F, and 0.9MNH4Cl, pH¼ 3, V¼ 0.15

V for 48 h: (a) Plan view and (b) cross section (After Slimani et al. 2009). (c)Macropores on p-Si (aqu),

view after cleavage, for samples prepared from p-Si (400 Ω cm, (100)-oriented), 100 mA/cm2, 6 min,

15 % ethanolic HF (After Chazalviel et al. 2002). Macropores on (100) n-Si etched in ethanolic

hydrofluoric solution with frontside illumination and with an anodization current J ¼ 20 mA/cm2 for

t¼ 45 min. (d) Cross-section and (e) plan view (After Outemzabet et al. 2005). (f) Macropore on p-Si

(org) prepared from p-Si (100 Ω cm, 20 mA/cm2, 40 min, HF/ethylene glycol 50/50 by vol)
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Table 3 Major theoretical contributions to macropore formation analysis

Pore

formation

models Basis of model General review

Hole

focusing at

pore tips

Hole transport across space charge (Lehmann and Föll 1990; Lehmann

1993; Lehmann and Rönnebeck 1999)

Surface

chemical

reactions

Pore initiation through limited

diffusion of reaction intermediates

(Kooij and Vanmaekelbergh 1997 ;

Vyatkin et al. 2002)

Linear

stability

analysis

Quantitative assessment of the effect

of transport across space charge and

reaction kinetics on interface stability

(Kang and Jorné 1993, 1997; Valance

1997; Wehrspohn et al. 1999;

Chazalviel et al. 2000, 2002)

The Current

Burst Model

(CBM)

Spatial and temporal inhomogeneity

of current, hydrogen surface

passivation

(Carstensen et al. 2000;

Föll et al. 2002)

Table 4 Main application domains of macropore arrays

Specific design Applications area Reference

Densely spaced regular

macropore arrays

“Brownian motor” or

pumps

(Schilling et al. 2000a)

Macropores with a sawtooth-

like cross section

Membrane (pump of

particles)

(Kettner et al. 2000; Schilling

et al. 2000b)

Macropores filled with lead,

scintillating guide

X-ray imaging (Lehmann and Rönnebeck 2001;

Kleimann et al. 2000)

Macropores coated with

(immobilized) biomolecules

Detection of specific

biomolecules, DNA, etc.

(Bengtsson et al. 2000;

Yoo et al. 2013)

Macropores coated with a

catalyst

Chemical reactor (Lehmann et al. 1999)

Macropores coated with

high-quality dielectrics

Capacitors (Lehmann et al. 1996)

Macropores on

multicrystalline Si

Solar cell – antireflection

layer

(Föll et al. 1983; Lipiński

et al. 2003; Ao et al. 2012)

Macropores filled with a

succession of different

metals

Metallic barcodes (Nicewarner-Pena et al. 2001)

Optimized macropore

lattices

Photonic bandgap (PBG)

materials for optics and

sensing

(Gr€uning et al. 1996; Birner

et al. 2000; M€uller et al. 2000;
Wehrspohn et al. 2013)

Matrix-embedded Si

nanowires or particles made

from macroporous Si

Lithium-ion batteries (Föll 2010; Thakur et al. 2012)

Sacrificial or template

macroporous Si layer

Micromachining or

microelectronics

(Steiner and Lang 1995; Defforge

et al. 2013)
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Design of Regular Macropore Arrays

The fabrication of regular macropore arrays requires prestructuring of the Si

substrate using lithography and alkaline etching (Chao et al. 2000; van den

Meerakker et al. 2000; Starkov 2003). The pitch of the prestructured hole array

has to match the average spacing of random macropore arrays grown on the same

substrate under similar electrochemical conditions. The width of the walls of the

porous structure (which depends on the pitch structure and the pore lateral size) is

mostly determined by the width of the space-charge layer (i.e., mostly dependent on

substrate doping level) and the pore diameter by the etching conditions. Figures 2

and 3 give some design rules in the case of p-Si. In the case of n-Si, the pore

diameter is mostly determined by the current density, i.e., the illumination level,

according to Lehmann’s model (Lehmann 1993). However, diffusion effects in the

liquid phase, as theoretically modeled (Barillaro and Pieri 2005), must be taken into

account in order to keep the fluoride concentration stationary at the pore tips.

Figure 4 gives the typical pore-density range accessible on n-Si under usual

backside illumination conditions or p-Si in the dark.

Fig. 2 Comparison of

characteristic macropore sizes

on p-Si in the current-line-

driven regime, when

changing current density for a

substrate resistivity of 100 Ω
cm (a) and silicon doping for

an applied current density of

10 mA/cm2 (b) (After
Chazalviel et al. 2002).

Triangles refer to the wall

width and diamonds to the

pore diameter; the closed

(open) symbols refer to the

data obtained in 35 % (25 %)

ethanolic HF. The solid lines
refer to the theoretical

prediction (Chazalviel

et al. 2002) for the pore

diameter, and the dotted line
is two times the space-charge

width λ

108 N. Gabouze and F. Ozanam



Conclusions

Since the first report of Theunissen (Theunissen 1972) and the pioneering work of

Lehmann in the 1990s, many efforts have been devoted to macropore fabrication

by electrochemical etching. Impressive macropore arrays have been achieved, with

high aspect ratios and smooth or patterned vertical walls. Examples are shown
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Fig. 3 Effect of changing

electrolyte resistivity on

average macropore diameter

on p-Si 1,500 Ω cm, for J0 ¼
10 mA/cm2 in an electrolyte

made of 50 % aqueous HF

mixed with ethylene glycol in

variable proportions (After

Chazalviel et al. 2002)

Fig. 4 Pore density versus silicon electrode doping density for porous silicon layers of different

geometries. Notice that macropores are essentially obtained on low to moderately doped sub-

strates. The dashed line shows the pore density of a triangular pore pattern with a pore pitch equal
to two times the SCR width for a 3 V applied bias. Note that only macropores on n-type substrates

may show a pore spacing significantly exceeding this limit. The regime of stable macropore array

formation on n-Si is indicated by a dot pattern. Doping type and etching current density

(in mA/cm2) are indicated in the legend (After Lehmann 1993)
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in Fig. 5. Alternative techniques have been proposed such as galvanic etching

(Xia et al. 2000), stain etching (Mills et al. 2005), and metal-assisted (electro)

chemical etching (Li et al. 2013). These techniques are separately reviewed in

this handbook (see Chapters “▶Porous Silicon Formation by Galvanic Etching,”

“▶Porous Silicon Formation by Stain Etching,” and “▶Porous Silicon Formation by

Metal Nanoparticle-Assisted Etching”).
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