Chapter 6
Annexes

6.1 Introduction

In this chapter, we collect several results which are used in the book, but whose
presentation we have preferred to postpone until now. A first section presents
notations and elementary results on matrices. The second section presents some
elements of nonlinear and convex analysis. It is mainly used in Chap.4. The
third section presents Gronwall’s inequality, both in the forward and in the back-
ward time direction, together with various original extensions of this inequality
to stochastic processes. The most important stochastic inequalities are given in
Propositions 6.71, 6.74, 6.80. Section four presents the notion of viscosity solutions
of nonlinear PDEs, and establishes three different uniqueness results for viscosity
solutions of PDEs which appear in previous chapters of this book. These are variants
of more or less known results scattered in the literature. We could not possibly
cover all types of elliptic and parabolic equations (and systems of equations) with
various types of boundary conditions. But we believe that the reader can adapt our
arguments to all situations considered in Chaps. 3-5 of the book.

Finally a last section is devoted to giving hints for the solutions to some of the
exercises from the book.

6.2 Annex A: Vectors and Matrices

Denote by RY*¥ the linear space of matrices A = (a;.;) ;- Where a; j € R. If k =1
then R?*! is the Euclidean space R?. Denote by A* = (a;,),,, the transposed
matrix of A.

Let x = (x;);_17 € R? and y = (;);_77 € R?. The usual inner product on
R? is given by '
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(x,y) =xiy1 + X202+ -+ Xgya = x¥y
and the norm

el = Vi) = (43 o) = Vi

We also introduce the notation x T := (xl‘" ) dx1’
The tensor product of the two vectors x and y is the linear operator x ® y :
R? x RY — R defined by

(x ® y) (u,v) = (x.u) (y.v) = u™ (") v.
Hence one can identify

XQ®y = (xiyj)dxd =xy*.

If4 = (ai~j)d><d and {uy,...,uy} is an orthonormal basis of RY that is

1 ifi =,

wow)=8,=4 "7

0 ifi #j,

we define
d
Tr A = Trace (A) = Z (Au;,u;) .

i=1

The “Trace” is independent of the basis {u;,...,u;} and

d
TrA = Za,, = TrA*.
i=1
Moreover if A, B € R?*4 then one verifies that

Tr (AB) = Tr (BA) = Tr (A*B*) = Tr (B*4%).

Let A = (ai ;) 4y € R B = (bi)
on Rk by

axi € RY*%. We define the inner product

(A, B) = Tr (A* B) = Tr (AB*)
d k
=D aghy
i=1j=1

and the norm
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1/2
d k /

|A| = /Tr (A*4) = /Tr (AA*) = ZZ“:ZI

i=1j=1

We have

a) |AB| < |Al|B],

b) |[Ax| < |A]|x],

c) [A] = |A*],

d) Tr(x ® y) = (x,y),

e) Tr[(x ® y)AB*] = (x,BA*y),
f) Tr((x ® x) AA*] = [A*x|*,
g) |x ® y| = |x|[y].

We note that the above matrix norm is not the operator norm
[All = sup {|Ax] : |x| = 1} < |4],
since || I;]| = 1 # /d = |I4]. Note that
A4l = 14].

We denote by S?*¢ C R?*¢ the set of symmetric matrices. If O, P € S?™¢ we
say that O < P if (Qx,x) < (Px,x),forall x € R4, 0 is semipositive definite if

0 >0.
0 e S?* is semipositive definite if and only if there exists an orthonormal basis
{vi,...,vgtof R and {1}, ..., A4} C [0, ool, such that

QV,‘ = )tiVi, Vi El,_l’l.

d
Then Tr Q = )_ A; and for all 4 € R?*? we have
i=1

d
Tr(AQ) = ) X (Avi.v;) < |4 TrQ < |4| TrQ. (6.1)
i=1

6.3 Annex B: Elements of Nonlinear Analysis

6.3.1 Notations

As references for this Annex, see e.g. [2] or [12]. Throughout in this Annex H is a
real separable Hilbert space with norm |-| and scalar product (-, -).
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Let (X, |||lx) be a real Banach space with dual (X*, ||-|x«). The duality paring
(X*,X) is also denoted (-, -); hence if x € X and x € X*, then by (X, x) and (x, X)
we understand the value, X (x), of X in x.

Given x € X, X € X* and the sequences x, € X, X, € X* we say thatasn — oo

Xp = x (strongly) in X if |x, — x|x = O,

Xy = x (weakly) in Xif (3, x,) = (3,x), forall y € X*,

Xn % (weak star) in X* if (%,,y) — (%,y), forall y € X,

6.3.2 Maximal Monotone Operators

Let X and Y be Banach spaces. A multivalued operator A : X = Y (a point-to-
set operator A : X — 2Y) will also be regarded as a subset of X x Y setting for
ACXxXxY,

Ax={yeY: (x,y) € A}.
Define

D(A) = Dom (A) = {x € X: Ax # 0} — the domain of 4,
R(A) ={yeY:3x € D(A), s.t. y € Ax} —the range of 4,
and define A™! : Y =2 X to be the point-to-set operator defined by x € A~ (y) if

y € A(x).
We give some definitions:

e A:X = X*is monotone if
(yl — Y2, X1 —)Cz) > (, for all (xl,yl) e A, (XZ,yz) € A.

e A : X = X* is a maximal monotone operator if A is a monotone operator and it
is maximal in the set of monotone operators: that is,

(v—y,u—x)>0 V (x,y)e A, = (u,v) € A.
e Jx : X =2 X* defined by
Ty () = {& 1213 = ) = (.0)]

n L n 1 1
&Gy —x) I < P vy ex
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is called the duality mapping; if X = H is a Hilbert space then Jx (x) =
Iy (x) = x forall x € H.

e A:X =2 Yislocally bounded at x, € D(A) if there exists a neighborhood V' of
xosuchthat A(V)={yeY:3x e D(A)NV, s.t. y € Ax} is bounded in Y.

We have:
Proposition 6.1 (Rockafellar). Let X be a reflexive Banach space. Then A : X =
X* is maximal monotone operator if and only if A is a monotone operator and

R(Jx +eA) =X*, foralle > 0.

Proposition 6.2. Let A : H = H be a maximal monotone operator. Then:

(a) A is a closed subset of H x H; moreover if (x,, y,) € A and

X, — x (strongly) in H and y, = y  (weakly)in H, or
Xn X x, and Vp =y, or

Xy =X, ya—y. and Tim, (x,. y,) < (x.y).

then (x,y) € A;

(b) D (A) and R (A) are convex subsets of H;

(c) Axis a convex closed subset of H for all x € D (A);

(d) A is locally bounded on int (D (A)) that is: for every uy € int (Dom (A)) there
exists an ro > 0 such that

B (uo,70) % {uo + rov : [ < 1} € Dom (A)

and

def

At = sup{la| e A(uo + rov), Jv| <1} < c0.

uo,ro

Proposition 6.3. 1. If A : H — H is a single-valued monotone hemicontinuous
operator then A is maximal monotone (A : H — H is hemicontinuous if the
Sunctiont — (A (x +tz),y) : R — R is continuous for all x, y, z € H).

2. If A, B C H x H are maximal monotone sets and int (D (A)) N D (B) # @, then

A+BY {(x,y+2 :(x,y) € A, (x,2) € B} is maximal monotone in H x H.

Let A C H x H be a maximal monotone operator. Then for each ¢ > 0 the
operators

Jox = (I +eA) ' (x) and 4, (x) = é(x — Jex)

from H to H are single-valued. The operator A, is called Yosida’s approximation of
the operator A. In [2, 12] we can find the proof of the following properties:
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Proposition 6.4. Let A : H = H be a maximal monotone operator. Then:
(j) Foralle,§ > 0and forall x,y € H
i) (Jex, Aex) € A,
i) |Jax—sz|§|?i—y|,
iii) |AeX—AEY|S—|X—J’|,
e

iv) |Jex — Jsx| < |e — 6| |Asx],
v)  Jex] = x|+ (1 + [e— 1)) [/10],
vi) Ae : H — H is a maximal monotone operator.

(i) Ifen = 0, x, Xx, A, Xn 5 y and

lim sup (x, — X, Ag, X — Ag, Xm) <0,

n,m—00

then (x,y) € Aand lim (x, — Xp, Ag, Xy — Az, Xm) = 0.
n,m—>o0

(jjj) li\I‘n Jox = PTWX, Vx € H and
e\0

limx,=x€D(A) = limJx,=x.
eN\0 e\0
(Prpy X is the orthogonal projection of x on D (A).)

(jv) lim Aex = Py, {0} Y A0 € Ax, forall x € D (A).
e \0

(v) |Agx| is monotone decreasing in ¢ > 0, and when & \ 0

4°(x)|, if xeDA),
00, if x¢ D(A).

|4e ()]

(vj) |Jex — x| = e|Aex| < ¢ ‘on‘ <elz|, forall (x,z) € A.
(vjj) Forall x € H,

|Jex — x| < [Jex = Je (J1)| + [Je (J1x) = Jix[ + |Jix —x
<2|Jix — x| +<9|A0 (Jlx)|.

(vjjj) Forall x € Hand y € Dom (A)

[Jex — Jsy] < |x — [ + |e = 8] [4sy]
<|x—yl+1le—8|A].
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The operator A is uniquely defined by its principal section A%x “ Pry, {0} in the
following sense: if (x, y) € D (A) x H such that

(y — A%.x —u) > 0, forallu € D (A)

then (x, y) € A.
Proposition 6.5. Let A : H = H be a maximal monotone operator.

I If B (xo,r0) C Dom (A) and

At up i) i A(xo + rov), o] < 11,

X0,70

then

|x — xo| + roA* VY (x,X)€eA.  (62)

ro |X] < (X, x —xo) + A* oy

X0.r0

I If there exist xo € H and aq, g > 0 such that
ro |X] = (X, x — xo) + a0 |x —xo| +do, V (x,%) € 4,
then there exists a by > 0 such that for all x € H, for all ¢ € 10, 1]:
ro |Aex| < (Asx, x — xo) + ag |x — xo| + bo. (6.3)

If xo € Dom (A) and 0 € Axy, then by = ay.

Proof. 1. By monotonicity of A we have V (x,X) € 4,V |v] < 1:

ro (X, v) <ro{X,v) + (X — ¥, x — (x0 + rov))

= (X, x —xo) — (¥, x — x0) + 70 (J,v)

< ()Ac,x—xo)—i—Afil

#
X0.70 |x — xo| + roAxoyro’

which yields (6.2).
II. Since A; (x) € A (J; (x)), it follows that
ro |Aex| < (Aex, Je (x) — xo) + ao |Je (x) — Xo| + do
< (Aex,x — x0) +ao [|Je (x) — Je (x0)| + [/ (x0) — Xol] + do
< (Aex,x — x0) + ao |x — xo| + ao |Je (x0) — xo| + do.
Hence the inequality (6.3) holds for by = ag [2]J1xo — Xo| + |4° (J1x0)|] +do.

If 0 € Axg then J, (xo) = x¢ and by = a.
|
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Proposition 6.6. If A is a maximal monotone set in H x H and A C L? (0, T; H) x
L? (0, T; H) is defined by

A={(x,£) € L>(0.T: H)x L*(0.T; H) : (x (1) .2 () € A, a.e.t €]0,T[},

then A is a maximal monotone set in L? (0, T;H) x L? (0, T; H).

6.3.3 Stochastic Monotone Functions

Let (2, F,P, {F;}:>0) be a complete stochastic basis and
F :Qx[0,400[ x RY x R, — R4

such that

O F (-, ,2) is P-m.s.p. for every (y,z) € RY x Rk,
O forally,y' e R, z,7 e Rk ¢ > 0:

(y _y/7 F(l,%z) - F(l,yl,Z)) < O, P—a.s.;
O forallz,7 e Rk t>0:
y+— F(t,y,2): RY — R?is continuous, P-a.s.:

O there exists a P-m.s.p. £ : Q x [0, 400 — Ry such that for all y € R?,
7.7 e Rkt >0:

|F(t,y,z) — F(t,y,z’)| <Y, |z—z’| , P-as.
Since y — —F(t,y,z) : R — R? is a monotone continuous operator (hence
also maximal monotone operator), it follows that for every ¢ > 0 and (w, ¢, y,z) €
Q x [0, T] x R? x R?*k there exists a unique J, = J, (w,t,y,z) € R? such that

Jo—eF(w,t,Je,2) = .

The Yosida approximation of F' is defined by
def 1
Felt.y,2) = - (Je(t.9.29) = y) = F(t. Je(t.9.2).2).

Note that F, = F,(t, y, z) is the unique solution of

F(w,t,y + eF,,z) = F,. (6.4)
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The functions J, (-, -, ¥,2), Fe (-,-, y,2) : Q x [0, T] = R¢ are P-m.s.p. for every
(7.2) € R? x R¥* and we have:

Proposition 6.7. Foralle,§ >0,Vt€[0,T],V y,y e R,V z,7 € R¥*k:

(Cl) |J8(t,y,z)—J5(t,y/,z’)| S |y_y/| +Ee[ |Z_Z/|5
(h) |Je(2,0,0)| <e]|F (¢,0,0)],

(c) (Fg(t,y,Z)—Fa(t,yCZ’),y;y’>S& lz—=2|ly =y,
(d) |Fe(t.y.2) = F.(t.y".2)| < ;Iy -y +4& -7,

(e) |Je(t,y,2) =yl S elFe(t.y.2)| <e|F (t,y,2)],
(f) gi_lgg)Fs(t,y,Z)=F(tsy,Z)»

(6.5)

|JS(l’y7Z)_J5(t7y/vZ/)| = }y_y/} +8€f ’Z_Z/’ + |8_5| |F(l»y,Z)| (66)
and

(y =Y. F.(t,y.2) = F5(t.y".2)) + e |F. (t, y. ) > + 8 |[Fs (., y". )
<(e+8)(F:(t.y.2), F5(t,y".2)) (6.7)
o [ly =y +elF (. y. 2| +6|F .y . lz—7].

Proof. (a): It J = J.(t,y,2), J = J.(t,y',7), then
7 =7f
=e(F(t,J,0—F(t,J.2),J=J)+{y=y.J=T)
=¢e(F(t.J.o)—F(t.J.2).J - J)
+e(F(t.J . 2)—F(t.J.2).J=J)+(y—y.J =T
selble=2[[/ =]+ ]y =T =7

and (6.5-a) follows.
(b): With the notation J° = J (¢, 0, 0),

|70 = & (F (1,7°,0),J°%) < &(F (1,0,0), J%) < £ | F (1,0,0)| | J°|

which gives (6.5-b).
(c): We have

(Fs(t’y»z)_Fs (l,y’,{),y—y’)

1 1
= - ({.y. )= L@y Dy =y =< |y - '[P
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1 1
== [ly = y'+et|z=2]]|y—y|- " =)
<l|z=Z||ly=|

that is (6.5-b).
(d): From (a) and the definition of F, the inequality (d) clearly follows.
(e): The properties follow from those of the Yosida approximation, 4., of a
maximal operator A (here A, (y) = —F,(t, y, z) for (w, t, z) fixed.
(6.6): Let J, = Jo(t,y,z) and J{ = Js(t, y’,Z'). Then

e = I = (e =8)(F (1, Je.2) , Je — J})
FS(F (1, Je2) = F (6,7}, 2)  Je = I)) + (y = ¥/, J. = J))
< Je =8| |F (t. Je. ) [Je = Jj| + 86, [e= [ [ Je = Ji| + [y = [ | /e = J}]

and (6.6) follows.
(6.7): Now, we have

(Je = Jf, Fe(t, y,2) = F5(t, ', 2)
= (Je = J§. F(t. Jeu2) — F(t.J5.7))
<O0+(J.— J§, F(t.J{.2) — F(t.J{.2))
< |Je = J§| b |e = 7|
< [elF (ty. 9l +8|F (t.y.2)| +]y—y|]|]--7|

and then

(y =y . Fut.y.2) — Fs(t.y".2))
= (Vo = eF, (t.3.2) = J{ + 8F5 (1.5 ) . Fo(t.y.2) = Fy(t.y'. )
< —¢|F (6,7, 91> =8| Fs (1.¥. 2) ] + (¢ + 8) (F. 1.y, 2) . F5(t, ¥, 7))
+ 4 [e|F .y +8|F (.Y ) + |y =yl -7|
that is (6.7). |

If we define

def
Fi (1) = sup |F(,y,0)],
lyl<R
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then we have the following:

Proposition 6.8. Foralle >0, p,a>1,1r0>0,y e R ze R 1 €[0,T]:

ro | Fe (1, 7.2)] + (F. (t..2) . y) < ro (F# () + Vo% (&)2)
P 6.8)

+ (Fj; () + ro— (&)2) 1+ o P 1P+ 22 1P aus.,
np 2n, 2a
where
np YA (p—1).
Proof. Let0 < ry < 1. The monotonicity property of F, implies that for all |u| < 1:
(Fe (t,rou,z) — Fo (¢, y,2) ,rou—y) <0,

and, consequently, V |u| < 1:

ro (Fe (1, y,2), —u) + (F: (¢, ,2) . )

= |F8 (tvr0u7Z)| |y—r0u|

< |Fe (¢, rou, O)[ (|y| 4 7o) + £ |z] (|1y[ + r0)
a n
=< F (6, row, 0) (1] + ro) + 5 — (€)* (1] + 7o) + 52 J2f”
np 2a
The inequality (6.8) follows by taking the sup of the left-hand side over all vectors
u such that |u| < 1. |

Finally we give some convergence results.
Let F : Q x [0, T] x R — R? be a function satisfying

i) F(,-x) isF ® Bjrj-measurable, ¥V x € R4,
ii) F(w,t,-) 1iscontinuous dP ® dt-a.e. (w,t) € Q x[0,T], 6.9)

T
iiiy da > 0such that/ (FE@)" dt < +oo, P-as., YR>O.
0
Proposition 6.9. Assume that F satisfies (6.9). Let
X°. X e L°(Q:C ([0.T]:RY))

be such that

prob.
sup |X; —X;|—> 0.
1€[0.7] >0
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Then

sup
t€[0,T]

t t
/F(s,X;)ds—[ F (s, X,) ds
0

0

T
5/ |F (5. X5) = F (5. X)) as 225 0.
0 £

Moreover if for some p,a > 0:

T p
Croa® sup E( [ |F(t,Xf)|adt) < +oo, (6.10)
0

0<e<egg

then

T P
1) IE(/ |F(t,X,)|“dt) <C,,
T " (6.11)
) IE(/ \F(z,Xf)—F(z,X,)r”dt) —> 0, Vg €]0, pl.
0 &—>
If, in addition, x —> —F (t, x) is a monotone operator and F, = F.(t,x), € > 0, is

the Yosida approximation of F (Fy is the unique solution of F(w,t,x + ¢F;) = F,)
then ¥V g €]0, p[:

T q
E (/ |F. (6. Xf) — F (t. X)|" dt) —0. (6.12)
0 £—>

Proof. Let ¢, — 0 such that

lim sup |X;/" —X,| =0, P-as.
en=01¢[0,7]

Then by the Lebesgue dominated convergence theorem

T
lim |F (s, Xf") — F (s, Xs)|a ds =0, P-as.

en—0 0

Since the convergence in probability is given by a metric, by reductio ad absurdum
we infer that

prob.

T
/0 |F (s, X{) = F (5. X,)|" ds — 0

Also, if C, < oo, then Fatou’s lemma clearly yields (6.11-cy).
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1I.

. Denote by C positive constants independent of ¢,,. Let

T
(A, =) A, dﬁ / |F (s, Xf") — F (s, XS)|0! ds.
0

Then by the Lebesgue dominated convergence theorem A, — 0,
EAP < C.

Since

Ap_q
]EAZ = E (AZIAnfR) +E (AZ RZ_q 1A,,>R)

Cc

< E(Ala,2k) + 257

it follows that

C
i 49 <_~ vy
0 < 11£Ir,1s13pIEAn - R >0,

529

P-a.s., and

that is lim,, ¢ EAY? = 0 and by reductio ad absurdum the full sequence A, has

the property (6.11-c5).
Since |FE (1. Xf)| <|F(t, X£)|, on a subsequence

Jim, Fo, (0. X;) = Jim F (1, X7 + e Fe, (1. X7"))

F(t, X;), P-as.

and then the convergence result, (6.12), follows in exactly the same manner with

Aé'n = fOT |F€ﬂ (S’ X;”) - F (S, Xs)|a ds‘

6.3.4 Compactness Results

Let I C R be an interval. Denote by C (I R4 ) the space of continuous functions
g: I — RYIf I = [a,b] then C ([a, b] ;Rd) is a separable Banach space with
respect to the norm ||-||(, »), Where if g : [a, b] — R? we define

I8l =suptlg ()] :a <s <1}.
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If [a, b] = [0, t] then
def
lgll, = lgllon =suptlg(s)]:0=s =1}.
ForgeC ([0 T] ;Rd) we define forz € [0, T] and ¢ > O:
m, (¢, ¢) = sup{|lg (t) =g (s)|lpa : |t —s[ <& s €[0,T]}
the modulus of continuity at ¢, and

m, (¢) =m(e;g) =sup{lg (1) —g ()| : [t —s[ =& 1.5 €[0.T]}

the modulus of uniformly continuity.
We also introduce the notation

Ro(e) =p(e58) =e+mg(e).

Note that
my) 0=mz(0) <myg(e) <my () <2|gls, V0 < e <,
my) 0=1p,(0) <p,(e) <p,(d), V0 < e <§,
my)  my(e+8) <mg(e) +my(5), Ved=0, (©6.13)

ma) - limmg (2) = lim e, () =0
and
[my (1.€) —my (1.6)| < [my () —my B)] < 2]|g — il + my (Je —8]).
If M C C ([0,T];R?) and & > 0, then
my (1,6) L sup {myg (1.€) : g € M},

1Ml Z=‘”fsup{||g||T g e M},
M) HLigw):geMy,

and
def
m (¢) = sup {my, (¢) : g € M},
pag(®) L e +mug ().

Theorem 6.10 (Arzela-Ascoli). Let M C C ([0, T]:R?). Then the following
three conditions are equivalent:
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(A) M is relatively compact in C ([0, T] ;]Rd);
(B) (B1) (equicontinuity): lirr(l)mM (t,e)=0,Vtel0,T]
e—>

(B2)  (bounded images) for each t € [0, T] the set M (t) = {g (t) : g € M}
is bounded in RY;
(C) (Cy) (uniform equicontinuity): lirr(l) my, (¢) =0;
&>

(Cy) theset{g(t):t €[0,T], g € M} isbounded in R?.

Theorem 6.11 (Kolmogorov—Riesz—Weil). Let p € [l,o0[. A set S C
L? (0, T; Rd) is relatively compact in L? (O, T, ]Rd) if and only if:

(j) (p-equi-integrability)

T—e
lim [supf lg (& +¢&) —g®llp. dt} =0,

&\0 geS

(jj) (boundedness):
T

sup/ lg ()] dt < oo.
0

gES

(For the proofs of these two last theorems see as example the book of Vrabie [70].)
Clearly we have:

Corollary 6.12. Let M > 0 and y, \( 0, &, \, 0 be two sequences.

a) Then the set

T
K= {z e L*(0,T:R%) : / |z(t)|2dt <M,
0

T—e,
sup / lz(t + 60) —z(1)|*dr < y,, Vn € N*
0

0<6<g,

is a compact subset of L*(0, T; R?).

b) IfN, = [1] andt; = GOT for 1 <i < Nyn = 1, then the set

K> = {z € C(O.TI:RY) : |2 (0)] < M,

sup  sup |z (t; +0)—z(t)| < yu, Vn € N*

1<i <N, 0<f<e,

is a compact subset of C([0, T];R?) (here z, is extended outside of [0, T] by
continuity z; = zr, for s > T and z; = zo, for s < 0).
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6.3.5 Bounded Variation Functions

Let [a, b] be a closed interval from R and Dj, ) be the set of all partitions
Aia=ty<ti<---<t,=b, n=npeN"

Define |A|| = sup{ti+1 —¢t :0<i <n-—1}.
Let

n—1
Va (k) o< Z lk (ti+1) — k (t;)]

i=0

be the variation of k corresponding to the partition A € Dy, ;). We define the total
variation of k on [a, b] by

$kSup = sup Va(k)
AE'D[HJ,]

nA—l
= sup{ Z |k (li+1) —k (li)| A€ D[a.b]}

i=0
and if [a, b] = [0, T'] then

$kdr = $k$[0,T] .
Proposition 6.13. Ifk € C ([0, T];R?) and Ay € Dy 1y

S P I N N

then
Va, (k) /" $k3r asN /' oo.

Proof. Clearly Vi, (k) is increasing with respect to N and Vz, (k) < $k{7.
Let A € Dy, 5 be arbitrary

A:O0=tg<t) <<ty =T,
and j; = [%£2"] be the integer part of %2V Then
na—1

Va (k) = Y Ik (tie) =k (1))

i=1
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na—1 . . .
Ji-1T Jir1T JiT
= 2 [+ (557) - (5557) -+ (57)
i=1

ole(5e) v

2N
T
< 2nmg N + VZN (k)

and passing to the limit for N ' co we obtain

Va (k) < Nli/r,noo Vay (k) =3k8r. VA €Dy
H lim Vi, (k) = $ko. [
ence lim 7y (k) = 3kr

Definition 6.14. A function k : [a,b] — R? has bounded variation on [a, b] if
$k8.p < 0o. The space of bounded variation functions on [a, b] will be denoted

by BV ([a.b];RY).
Ifx e C ([a,b] ;Rd) and k € BV ([a,b] ;]Rd) then the Riemann-Stieltjes
integral is defined by

na—l1

b
[ ).k ) = Tim 3 (x(m) k (t41) —k (@)

All—0
lal—-0

where the integral is independent of the arbitrary choice of 7; € [t;, t; +1].
The Riemann—Stieltjes integral satisfies

b
/ (1) dk (0)] < [y DD -

Proposition 6.15. Equipped with the norm
1l (o) = Ik @] + 2By

the space BV ([a, b] ;Rd) is a Banach space. An element k of BV ([a, b] ;Rd) can
be identified with the following linear continuous mapping on C ([a, b] ;Rd):

b
x — (x(a) .k (a)) +/ {(x (1), dk ().

With this identification, BV ([a, b] ;Rd) is the dual of the space C ([a, b] ;Rd).
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Proposition 6.16 (Helly-Bray). Let n € N* x,,x € C([0,T];R9), k, €

BV ([0,T]:R?), k : [0, T] — R, such that

(i) x,—>x inC([0,T];R?),
()  k,(t)—>k(t),Vtel0,T] and
(i) sup $k,$r = M < +o0.

neN*

Thenk € BV ([0,T]:R?), $k¢; <M, and V0 <s <t < T:

() / (x (r) dky (1)) —>/ (x (r),dk(r)), asn — oo,

) / [x ()] d k3, < liminf / o (D) d $had,

In particular k, Y kinBV ([0 T] ;Rd), that is forall y € C ([O T] ;Rd):

T T
/ 0 (0) . dky (1)) — / (v (). dk (1))
0

0

Proof. Firstlet Ay € Dy 1] be a sequence such that

Vay k) 7 3k87  asN /7 oo,
From the definition of §-{; we have

VAN (kn) = $kn$T < M.

Since k,, (t) — k (¢) for all t € [0, T], it follows that VA, (k,) — Va, (k). Hence

Vay (k) <M forall N € N*
and passing to the limit as N ' oo we obtain
Tk, < M.

Lete >0

A:s=t<t)<---<ty=t, NZNAEN*,

with t; € [0,T], |A|| = sup{ti+1 —t :0<i <N —1} < & For x; = x(t;),

k; = k (t;), define

=

.
Sa (x,k) = (xi kiv1 — ki)

i

Il
S



6.3 Annex B: Elements of Nonlinear Analysis 535
and my,, : [0, co[ — [0, o0
m, (¢) =sup{|x () —x(s)|:|r—s|<e rsel0,T]}

the modulus of continuity of x on [0, T].
We have

/ (x (r) . dk (7)) — S (x. k)

<my(e) Tklr . (6.14)

Indeed

/ (x (r),dk(r)) — Sa (x,k)' =

N-1 atigy Lit1
(x (r) .dk(r)) — (xi.dk (r))
X J

N—-1
=2
i=0

ti41
/ (5 (r) = x;. dk (1))

t

N—1

<m, (JAD Y $kSp, ]
i=0

f my (8) ¢k¢T .

Then

/ (x (r).d (kn (r) =k (r)) = Sa (x, ky — k)‘ =m, (|A]) $kn = k37
=my (¢) [Tkl + Tk7].

Now we obtain the estimate

/ (o (1) <l (7)) — / (x () dk (7))

[ (xn () — x (1) by (1)) + f (x () ok () — dk (1)

< o —xlly kady + / (x (F) 2 dkn () — dk (1)

< lxn = xllz $knlr +my (&) [$hnlr + ThE7] + |Sa (x Ky — k)|

Since k,, (t) — k (¢) for all ¢t € [0, T], it follows that lim,, .o |SaA (x,k, — k)| =0
and
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lim sup <2Mm, (¢), Ve>O0.

n—>oo

/ (o (1) <k (1) — / (x () dk (1)

t
Hence the limit lim / (xn (r),dk, (r)) exists, as does
n—>oo s

t

din [t e o) = [ ake).
Now, leta € C ([0, T]:R?), |la[l; < 1. Then
[ 0ok = tim [ 0o 0)dk o)
< timint [ 3 1 d P,

and passing to supj, . <; We obtain

[ bl g, <timin [, 0 d k3,

We now give some other auxiliary results used in the book:
Proposition 6.17. Let A : R = RY be a maximal monotone operator and A :
C (R+; Rd) = BV, (R+; Rd) be defined by:

(. kye A if xeC (R+;D(A)), k € BV o (Ry:RY) and

t
/ (x(r)—z,dk(r)—12zdr) =0, V (z,2) €A, VO<s<t. (6.15)

Then the relation (6.15) is equivalent to: for all u,it € C(Ry;R?) such that
(u(r),u(r)) e A,Vr=0

/t (x(r) —u(r),dk(r) —u(rydry =0, VO0<s<t, (6.16)

and A is a monotone operator, that is:

forall (x,k),(y,0)e A

[t (x(r)—y(@r),dk(r)y—dl(r)) >0, VYO<s<t.

Moreover A is a maximal monotone operator.
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Proof. (6.15) —> (6.16):
Let Vu,it € C (Ry;RY) be such that (u(r),ii(r)) € A, ¥V r = 0. Then

[ (x(r) —u(r),dk(r) — u(r)dr)

|nr| nr|
n n

!
= lim / <x(r) —u(—=),dk(r) — ﬁ(—)dr> > 0.
n—>o0 s
(6.16) = (6.15):
The implication is obtained for u (r) = zand & (r) = Z.

Let (x,k),(y,£) € A be arbitrary. Then for all u,it € C(Ry;R?) such that
(u(r),u(r)) € A, ¥Yr >0wehaveforall0 <s <t¢,

/l (y(r) —u(r),dt(r)—u(r)dr) = 0,
/l (x(r) —u(r),dk (r)—i(r)dr) > 0.

We put here
. — Ja(x(r)+y(r)) _ x4y ) _EAS(X(r)er(r))
2 2 2
and
b = 4, (KR,

1
where J.(z) = (I +e4)7'(2), A; (z) = —(z— J: (z)). Since A4 is a maximal
— 8 —
operator on R¢ it follows that D(A) is convex and liII(l) gA; (u) = 0,V u € D(A).
Also foralla € D (A)

eld: )] < e]Ae () — A: (@)| + e ]4: (@)] < |u—al +e[A° (a)].

Adding the inequalities term by term we obtain:

x(r)+y ()

0<1/ <y<r)—x(r),de(r)—dk(r>>+g/ <Ag( ;

=3 ), dl(r) +dk(r)>.
13
Passing to lim,\, we obtain / (y(r)—x(@),de(r)—dk(@)) = 0. Ais a

maximal monotone operator since if (y,£) € C (R+; D(A)) X BV pe (R+; Rd)
satisfies
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/t (y(r)—x(r),dl(r)—dk(r)) >0, V(x,k)eA,

then this last inequality is satisfied for all (x, k) of the form (x (¢) ,k (¢)) = (z,2t),
where (z,Z) € A, and consequently (from the definition of A) (y,£) € A . The
proof is complete. n

Remark 6.18. Often we restrict the realization to
C (R4+:RY) x [C (R4 RY) () BVose (R+:RY)

and we write (for this case) dk (t) € A (x (t)) (dt) if

(@)  xeC(Ry:Dom(d)),

(a2) keC (R+;Rd) ﬂBVloc (R+;Rd) s k (0) =0,
(as) (x (t) —u, dk(t) —udt) >0, onRy4, V (u,i)€ A.

Proposition 6.19. Let A C R? x RY be a maximal subset and A be the
realization of A on C (R+; Rd) X BV jpe (]R+; ]Rd) defined by (6.15). Assume that
int (Dom (A)) # 0. Let uy € int (Dom (A)) and ry > 0 be such that B (ug, ry) C
Dom (A). Then

de ~ N —
Al éf sup {|ia| : &t € Au, u € B (ug,ro)} < 00,

and for all (x,k) € A:

rod $k$, < (x (1) —ug, dk (1)) + (AL . |x () —uo| + roAl ,)dt  (6.17)

uo,ro uo,ro

as signed measures on R. Moreover there exists a constant by > 0 such that

ro [ |Aey ()] dr < / O () — o, Aoy (1)) dr

0 (6.18)
+A§0,r0[ |y (r) —uoldr + by (t — ),

forallOSsSt§T,y€C(R+;Rd)and0<5§1.

Proof. Since A is locally bounded on int (Dom (A)), it follows that for uy €
int (Dom (A)), there exists an ro > 0 such that uy + rov € int (Dom (A)) for all
|v| <1 and

dej Al LA o
at sup {|z| :z7€ Az, z€ B (uo,ro)} < 00.

up,ro

LetO<s=1t <t <...<tn=t§T,maxi(t,-+1—ti)=8,1—>0.
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We putin (6.15) z = uy + rov. Then
lit1
/ (x (r)— (uop +rov),dk(r)y—2zdry >0, V|v|<1, VO<s<t<T,
t
and we obtain
ro(k (ti+1) —k (&), v)
ti41 4 lit+1 #
< / (x (r) — up,dk (r)) + Amm)/ |x (r) —uo|dr + roAy, ,, (tit+1 — 1),
ti t
for all |v] < 1. Hence
ro |k (ti+1) — k ()|

li41 li41
< [ ko) AL, [0 - wldr ol G - )
ti 1

and adding term by term fori = 0 toi = n — 1 the inequality

n—1

o 3 ) = K@) = [0 = 0.k ()
i=0 s

t
+ AﬁO,m/ |x (r) —uoldr + (t —s) roAﬁO,,O,
N

holds and clearly (6.17) follows.
Setting in (6.3) x = y(r), xo = up and integrating from s to ¢ the
inequality (6.18) follows. |

Often in the book we use some energy type equalities that we describe in the next
lemma.

Lemma 6.20. Let x,k,m € C ([0,00[;R?), k € BV, ([0,00[:R?), k (0) =
m (0) = 0 such that
x®)+k@)=xo+m@), Vit=>0.

Then
(@): Forallt > 0and forallu € R?:

lx (1) —m (1) — ul? +2/t (x (r) — u, dk (r))
o, (6.19)
= |xo — ul? +2/0 (m (r),dk(r)).
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(II): Forall0 <s <t:
x (1) = x (s) —m (1) + m ()] +2/ (x(r) = x(s).dk(r))

S

7 (6.20)
= 2/ (m(ry—m(s),dk(r)).
Proof. (I): We have

x (6) = m (1) —ul®

= |xo —k (¢) — ul?

= o=l 2 [ (ro—k ()~ ud o~k 1) )
0

- |X0—M|2+2/ (x (r) = m (r) — u, —dk (r))
0
=|x0—u|2+2/0 (m(r),dk(r))—Z[O (x (r) — u, dk (r)),

that is (6.19).
(II): From (6.19) we have for u = 0

e (1) =m @) = |x (5) —m (5)|* + 2/ (x (r).dk(r))
= 2/ (m (r),dk(r)).
Butk (1) —k(s)=m(@)—x({t)—m(s) + x(s),

e (1) =m (O] = |x (1) = x () =m (t) +m ()" + |x () —m (5)|*
—2(x(s) —m(s).k (1) =k (5))

and
2/ (m (r),dk (r))=2/ (m(r)—m(s) . dk(r)) +2{m(s) .k (t) =k (s)) .

2/ (x (r),dk (r)):2/ (x (r)—x(s),dk(r)) +2(x(s),k@)—k(s)).

Hence, the equality (6.20) holds. ]

Finally we give an approximation result via Stieltjes integrals.
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Lemma 6.21. Let

e Q:[0,T] = R be a strictly increasing continuous function such that Q (0) = 0,
e £y :[0,T] = RY be bounded measurable functions,
o ¢ :R? =] — 00, +00] be a proper convex lower semicontinuous function.

If

t

fg(t)—f(O)eQ<(>+ﬁ T () do(r), t€[0.T],e> 0

then as ¢ — 04

() f)— f (), aerel0.T],
() / o (f. (M) y (1 dQ (r) — / o (f (M) y (). Vt.s] C [0.7].

If f 1[0, T] — RY is a continuous function it moreover follows that

sup | fe (1) —f ()] — 0.

1€[0,T]
Remark 6.22. The same conclusions are true if we replace f; (¢) by

g )= f (a4 MY do (), 1€ 0.7,

Proof of Lemma 6.21 (j). Obviously we have

0
Ql /Q(I)e”f (07" wQ(e) + 0 (1)) du
Q(e)
/ 0 WQ(e) + 0 (1) — £ (071 (0 (1)))] du+f(,)/ B i
(6.21)
But

0
lim sup ‘/fgm e [f (Q_l @0 () + 0 (f))) - f (Q_l (0 ([)))] du‘
0()

e—>0

0
< limSUP/_ e[S (7 (@@ (e) + Q1) vO) — f (07 (Q (1)]du

e—>0

—n 0

< 2C/_ e”du+/ e | (7 (W () + Q () V0) — £ (07 (Q (1)) du
00 -,

<2Ce™ + limsup/_ (7 (@Q (&) + 0 (1)) v 0) = f (07 (Q (1)))] du

e—0
<2Ce™, foralln,
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since

B
(%i_IE(l)/a | £ (Q7" (s +8w) — f(Q7" ()| du=0, ae.

Therefore the following limit exists
0
tim | [, e[/ (07 @)+ Q @) ~ f )] du| = .
006
and () follows. In the case where f is continuous, it is sufficient to write

L om—o0w)

£ = £ O 4 o [ p a0 )
-0 | le Q(r())fQ(t) . I o(m—0@)
= £ O 4ol [ a0+ gl [ r a0,

where 7, := Q7! (Q t)—+v0 (8)) —t,ase — 0,and ¢, < t.
(jj) We have

/, o () y () dO ()

S -0
< / ¢ 0T o (£ (0)y (r)dQ (r)

s rq W0
+/[ (/0 0 (8)8 0@ o (f (w)dQ (M)) y (r)dQ (r)

S -0
=0 (f (0) / ey (1) dQ (r)

Qw—0(r)

s Ky 1
+ /0 (/(; 0 (8)6 0@ o (f ()1, (u) dQ (u)) y (r)dO (r)
w

O ow—on
—/O (/0 Q(g)e 00 @ (f W) 1, (u)dQ(u)))/(r)dQ(r)

S -0
— 0 (f (0) / ¢ Ty (r)dQ ()

s (er [ G T a0y ) dw
t t 1 oW
[ (e [ 56

e 2T 1 (1) y (r) dQ (r)) dQ (u).
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Using Remark 6.22 we have

1 0W—0(r)

s rndeo.

=y (u), ae.

. Sl QU0 J i !
l_rgg)/ AL Q(V)—Sg}(l)/u

By Lebesgue’s dominated convergence theorem and the lower semicontinuity of ¢
we conclude that

[ oy aee <timint [o sy a0 )

< lim sup [ o (f. () y () dO(r)

e—0 t

5/ o (f M)y (Nd ().

6.3.6 Semicontinuity

Let (X, p) be a metric space.

Definition 6.23. A function f : X — R is lower semicontinuous (1.s.c.) at x € X if
S (x) <liminf f (y),
y—x

i.e. for all & > O there exists a § = § (¢, x) > 0 such that p(x,y) < § implies
S (») = f (x) — & The function f is Ls.c.if itis Ls.c. atall x € X.
A function g : X — R is upper semicontinuous (u.s.c.) if —g is L.s.c.

Proposition 6.24. The following assertions are equivalent:

(i) f:X—> R is lower semicontinuous;
(ii) the set{x € X: f (x) <a}isclosedinX foralla € R.

It is easy to prove that:

A Ifg,: X— R, n € N, are Ls.c. functions and

g(x) = sup{gy(x) : n € N},

then g : X — R is a Ls.c. function.
A If f: X —]—00,+00]is als.c. function, then f is bounded from below on
compact subsets of X.
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Lemma 6.25. Let (X, p) be a metric space. If f : X — R is bounded below on
bounded subsets of X, then there exists a continuous function u : X — R such that

wx) < f(x), forallx e X.
Proof. Letn € N* and a € X. Define
pn = n Ainf{ f(x) : p(x,a) < n}.

Then p, € R. Define p : X — R such that, if n — 1 < p(x,a) <n

1 +
m(x) = —2 [p (x,a) — (n - 5)] (Un — Hnt1) -

The function w is continuous on X and
wx) < f(x) forallx eX.

Proposition 6.26. Let (X, p) be a separable metric space. If f : X —] — 00, +00]
is a ls.c. function and p : X — R is a continuous function such that

nwx) < f(x), forallx eX, (6.22)

then there exists a sequence of continuous functions f, : X — R, n € N*, such that
forallx e X

p) =) == fu(x)=...=f(x) and  lim_ f, (x) = f(x).

Proof. Using only the boundedness from below (6.22) we shall show that there
exists a sequence of continuous functions f, : X — R, n € N*, such that

LM =fimMm=...2fiM=...=2f(y), forallyeX, (6.23)

and such that for all x € X there exists a sequence y, — x satisfying
1
nA (f (yn) — —) < sup fj(x) < f(x), forallne N* (6.24)
n jeN*
Then the result follows using the lower semicontinuity of f':

£ (x) < liminf [n A (f () — 1)} < f; (0= ().
n——+o00 n jEeN*
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Let us prove (6.23) and (6.24). Let n,i € N* and a € X. Define
. i
o = s @) = ninf | £ )5 p ) < .

Then —oco < w;, < +o0. Define ¥, (+,a) : X — R such that, if % <p(y,a) <
L,i € N*, then

o117t
Wn(yva)ZM(J’)VM,n—M[p(y,a)—(z—E);}

X[ )V i) = (@ (¥)V itra)l-

For each a € X the function ¥, (-, @) is continuous on X and

Y, (y,a) < f(y) forally € X.

Let Ay C Ay C ... C A, C ... be finite sets such that A = | J A, is a dense
neN*
subset of X. Define f, : X - R

Jn () = max [Crlréilix Vi (y,a)i| , yeX

kel,n

Clearly f,,, n € N*, are continuous functions and

fiM=...=fiy=...=f()., VyeX

Let x € X be arbitrary. Then there exist a,, € A and k,, > n such that
1
p(x,a,) < — and a, € Ag,.
2n

If win(a,) € R, then from the definition of w;, (a,), there exists y, €
B(a,, %) such that

1
nA (f (yn) - ;) =< Min (an) = WH (x»an) = fk,, (x) = SuI\II) f_/ (x) =< f (x) .
JEeN*

If w1, (ay) = —oo then, once again from the definition of u ,(a,), there exists
yn € B(ay, %) such that

nA(f(yn)—%) S fi0) = s f (05 f ().
JEN*
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We remark that

3
p(yn,X) =< P(Yn,an)4'P(an7X9 =< 5;

and consequently y, — x. The proof is complete. ]
We also have the following:

Proposition 6.27. If f : X — Ris a continuous function and f, : X — R, n € N*,
are lower semicontinuous functions such that for all x € X:

fi@=fhE@ == fi)=...=f () and Tim f, (x) = f(x),

then for every compact set K C X

—>00

lim [sup | fu ()= f (x)|] =0. (6.25)
n xX€K

Proof. Foreache > 0,G, = {x € X: f (x) — f, (x) < &} is an open subset of X
and

KcX= 1G,.

neN*

Hence, by the compactness of K, there exists an n € N* such that K C G, and the
uniform convergence (6.25) follows. |

We now give some examples (as exercises for the reader) of lower semicontinu-
ous functions that are used in the book.

Example 6.28. Let (X, p) be a separable metric space and £ C X. Then E is a

closed subset of X if and only if the function

0, ifxekE,

I =
£ (x) +00, otherwise,

is a 1.s.c. function on X.

Example 6.29. Let (X, p) be a separable metric space. Let 0 < s <t < T.1If
f X =] — 00, +0o0] is a Ls.c. function bounded below on bounded subsets of X
and @ : C ([0, T];X) =] — 00, +00] is defined by

P (x) = /stf(x(r))dr, if f(x)eL'(0,T)

+00, otherwise

then ® is a l.s.c. function.
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LetO <s <t < T.Let D, be the set of partitions A : s =ry <r; <:-- <
r, =t,and

n—1
Va () 2" p(k (1) .k (r41).
i=0

Define the total variation of k on [s, t] by

kg = sup Va(k).

A€Dyy p)

Then as a sup of continuous functions:

Example 6.30. The mapping k +—— $k$, @ C ([0,T];X) — [0,00] is a Ls.c.
function.

Finally we present Ekeland’s principle (see [26], or [4], p. 29, Th. 3.2):

Lemma 6.31 (Ekeland). Let (X, p) be a complete metric space and J : X —
] — 00, +00] be a proper lower-semicontinuous function bounded from below. Then
for any &€ > 0 there exists an x, € X such that:

J(x;) < ig}fg J(x)+¢e and
J(xe) < J(x) + ep(xe, x),  Vx € X\ {x.}.

6.3.7 Convex Functions

6.3.7.1 Definitions: Properties

Let (X, |||]) be a real Banach space and (X*, ||-|,) its dual. A function ¢ : X —
] — o0, +0¢] is convex if

e(1=MDx+Ay) <(1-=Vep(x)+rp(y), forall x,y € X and A €]0, 1].
Denote by
Dom(p) = {x € X: ¢p(x) < 400}
the domain of ¢ and
dp(x) ={f e X*: (X,z2—x) + 0(x) =9(2), Vz€X}

the subdifferential of the function ¢ at x. We say that ¢ is proper if Dom(p) # 9.
Clearly if ¢ is a convex function then Dom(¢) is a convex subset of X.
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Theorem 6.32. If X is a Banach space and ¢ : X —]—00, +09] is a proper convex
Ls.c. function then

Dom (3¢) ¥ {x € X : dg(x) £ 0}

is non-empty and 3¢ : X = X* is a maximal monotone operator.

If K is a convex subset of X then the function /¢ : X —] — 0o, +00] defined by

0, if x € K,

Ix (x) = .
400, ifx e X\K,
is a convex function called the convex indicator function of K.
Recall, from [71] Chapter 2, the following:

Proposition 6.33. Let g : R —] — 00, +00] be a convex function. Then:

(a) Dom(g) is an interval in R;
(b) the left derivative g’ : Dom(g) — [—o0, 4-00] and the right derivative g', :
Dom(g) — [—o0, +00] are well defined increasing functions and they satisfy:

() g ) <8080
s—r

(i) 8- (r) =gy (r), ¥YreDom(g):
(Jij) gL is left continuous and g', is right continuous on int(Dom(g));

() uelgl().gL(MN]NR <= u(s—r)<g@s)—g(r), VseR;
(v) {r € Dom(g) : g_ (r) # g’ (r)} is at most countable;

<g' (s), Vr,s €eDom(g), r <s;

(c) g is locally Lipschitz continuous on int (Dom(g));
(d) A C R xR is a maximal monotone operator if and only if there exists a convex
function j : R —] — 0o, +00] such that 8 = 9j.

Note that if ¢ is a proper convex lower semicontinuous (l.s.c.) function then:
* ¢ is bounded from below by an affine function, that is 3v € X* and a € R such
that
¢ (x) > (v,x) +a, forall x € X,

and, moreover, if X is reflexive and|| 1”1m ¢ (x) = 400 then there exists an
X|[|—00

xo € Dom(¢) such that

¢ (x) > @ (xg), forall x € X
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* (Fenchel-Moreau theorem on biconjugate functions)
@ (x) = @™ (x) = sup {{x,x*) —p* (x*) : x* € X*},
where ¢* : X* — R is the conjugate of the function ¢, i.e.
@* (x*) = sup {{u, x*) — ¢ (u) : u € Dom(¢)}
¢ ¢ is continuous on int (Dom(¢));

e d¢ : X = X* is maximal monotone;
 int (Dom (¢)) = int (Dom (d¢)) and Dom (d¢) = Dom (p).

We have the following instance of Jensen’s inequality.

Lemma 6.34. Let ¢ : RY —]— 00, +00] be a proper convex lower semicontinuous
function. Ifa,b € R, a < b, y € L™ (a,b;R?) and p € L' (a,b;Ry) such that

fab p(r)dr =1, then

b b
w(/ p(r)y(r)dr)s/ (e () dr.

Proof. Since there exists a set ' € R¢ x R such that
¢ (x) =sup{(v.x) +y:(v.y) €I},
we have

b b b
(v,[ p(r)y(r)dr)+y=/ p(r)[(v,y<r)>+y]drs/ P e (v (r)dr

and the result follows passing to sup, ,)er- |

6.3.7.2 Regularization of Convex Functions
Let (H, |-|) be a real separable Hilbert space and ¢ : H —] — 0o, +00] be a proper

convex l.s.c. function. The Moreau regularization ¢, of the convex L.s.c. function ¢
is defined by

1
@e(x) = inf Elz—xlz—l—qo(z);ze]}]l, e>0.

The function ¢, is a convex function of class C! on Hj the gradient Ve, is a
Lipschitz function on H with the Lipschitz constant equal to ¢~. If we define:
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Jex = x — eV (x),

then one can easily prove (see e.g. Brezis [12], Barbu [2], Rockafellar [65] or
Zidlinescu [71]) that for all x € Hand ¢ > 0:

L p.(x) = 5Vg. (0P + p(J.x).
2. 9(Jex) < ge(x) < p(x),
3. Vo (x) = d¢. (x) and
P(Jex) = @e(x)
= @e(2) + (x — 2. Ve ()
<)+ {(x —z,Ve:(x)), Yz eH,

4. Vo (x) € dp(Jex) i.e.
(Voe(x), 2= Jex) + ¢(Jex) < 9(z), Yz € H.

Hence J.x = (I + ¢d¢)~! (x) and Vg,(x) = A, (x), where A is the maximal
monotone operator d¢; V¢, is called the Moreau—Yosida approximation of

ag.
5. If (ug, tig) € d¢, then for all y € H

(@) Ve (uo)| = lio]

(b) 0 < @) — @ (uo) < ¢ (uo) — ¢ (Jeuo) < ¢ i),

() eI = |y —uol + elito| + |uol, (6.26)
(d) g(sz) > ¢ (o) — |fio] |y — uo| — & [fio]” .

(©) 5 1Vge I* = e () = ¢ (o) + lito| [y — ol + & [

Indeed |V, (up)| = |Ae (up)| < |A0 (x)| and

—e|ig]* < —& (fto, Vpe (uo))
= {ng, Jeuo — up)
< ¢ (Jeuo) — ¢ (uo)
< ¢ (o) — ¢ (uo)

<0.

For the inequality (c) we have

[Je V)] < [Je (¥) = Js (uo)| + | I (uo) — uo| + |uo] »
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and therefore

@ (Jey) = ¢ (1) + (ito, Je () — uo)
> @ (uo) — |io| | J: (¥) — Je (uo)| — lito| |Js (o) — uo|

which yields (d).
For the last inequality, (d), we have

e
B Ve ()’)|2 =@ (¥) — ¢ (Jey)
< 0e () = @ (o) + liwo| |y — uo| + & ||
6. If 0 = ¢(0) < ¢(x), Vx € H, it is easy to verify that, moreover

J) 086 99 (0), 0= ¢.(0) < ¢c(x), J:(0) = Vg, (0) =0,
i) EIV%()C)I2 S @e(x) < (Vee(x),x), VxeH,

1 1
i Vel = —lxl, and 0 < ¢ (x) = ZIXIZ, Vx € H,

) (Voe(x), x —y) = —9(Jex) — & (Vpe(x), Vo (), Vx,y € H.
6.27)

If forafixeda >0
()%_y,\’x_y) zal-x_y|2’ v (X,)?),(y,ﬁ) € 8§0’
or equivalently the function

Y (@) = (0= P

is convex, too, then by the definition of J, and the monotonicity of the operator d¢
we have Vr €10, 1[:

—1e¥0.06) ~ 8503

a[(l—r)|x—y|2—

< alJex — Jsy|?

< (V@e(x) = Vs(y), Jex — Jsy)

= (Ve (x) = Vos(3), x — y) — eV (x)|> = 8| Vs (n)|*
+ (e + 6) (Ve (x), Vs(y))
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and then
a) (Vee(x) = Vo (y).x —y) = a(l —r)|x — y|?

b) (Vee(x) = Ves(y).x —y) = a(l —r)lx — y? (6.28)
—(e+8) [Vo:(0)[[Ves(y)]

for all x,y € H, r € (0,1), &8 > Osuchthat 0 < a(l1 —r)e < r, 0 <
al—r)¥<r.
Let uy € H and ro > 0 be such that

{ug + rov : |v| < 1} C Dome.

Note that if

def
903010 (: sup {g (ug + rov) : |v| < 1}) < 00,

then we have for all (x, X) € d¢

a) rolX| 4+ @(x) < (X,x —uo) +¢f ;. ¥ (x.%) € g,
b) rolX| + o(x) — @ (uo)| < (¥, x —uo) (6.29)
+2|09)° wo)| 1x = ol + ¢, — @ ()

and in particular for rp = 0
[0 = ()| = (.3 = 10) +2|(09)° (o) | [x —w] . (630)
Let us prove (6.29). For (x, X) € d¢ and |v| < 1 we have
(.10 + rov = x) + 9(x) < @((wo + rov) < ¢l
and consequently
o (£.0) + @(x) < (£, x — o) + @), ,

which yields (6.29-a) taking the supy,| ;.
On the other hand for all arbitrary ity € d¢ (1),

(itg, x — uo) + @ (uo) = p(x),
which yields

lo(x) — @ (uo)| < ¢(x) — ¢ (uo) + 2|ito| [x — o -
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Hence for all |v| < 1:
ro (X, v) + lo(x) — ¢ (uo)| = (X, x —uo) + 2 ito] |x — ug
+ @y — @ (u0)

which yields (6.29-b).
Observing that V. (x) € dp(J.x), we have

70l Ve ()] + [9(Jex) — @ (uo)| = (V@e(x). Jex —uo) + 2 ito] | Jex — uo
+ @ . — @ (ug) .
But
(Voe(x). Jox — o) = (Voo (x), X —ug — £| Ve (x)
and

|Jex — ug| < |Jex — Jeug| + |Jeuo — ug

< |x —uo| + & litg] .
Hence for all € €]0, 1], x € H and &1y € d@(ug):

1ol Ve (0] + lo(Jex) — ¢ ()| + & Ve (x)

A A 6.31
< (V) x — o) + 2l [x ol + [210 + ¢, 9 )] .V

In particular for uy = 0 and &ty = 0 we obtain

¢ Ifo(x)>¢(0)=0,forall x € Hand
o = sup{p (rev) : [v] < 1} < oo,
then:
a)  rol¥+e(x) < (Xx)+ef, VY (x, %) € dg,
b)  rolVe:(0)| + ¢(Jox) + €|V (X)]* < (Ve (x). x) + 9ff . (6.32)
Ve>0,Vx e H.

6.3.7.3 Convex Functions on C([0, T]; R¢)

Proposition 6.35. If ¢ : R —] — 0o, +od] is a proper convex L.s.c. function and
®:C([0, T];RY) =] — o0, +00],
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T
o = | [ o o € L., 633)
400, otherwise,
then

c1) D isaproper convex Ls.c. function,

¢) d0(x) ¥ %k e BV([0, T];RY):

T
[0 (y(r) = x(r),dk(r)) + @(x) < ®(y), ¥y € C([0,T];RY)

is a maximal monotone operator.

Proof. We shall prove only the maximal property of the operator d®, since the other
properties are immediate. Let X = C([0, T]; R). Then the dual space is X* =
BV([0, T]; RY). Let

(k—¢,x—2z) >0, forall (z,¢) € 0®. (6.34)

1
The function ¥ (z) = ®(2) + 5 |z — x||% — (k,z) defined on X is a proper convex

Ls.c. function. Furthermore, there exists a ¢ € R such that ®(z) > ¢,Vz €
X. By Ekeland’s principle there exists a z, € X such that

Y(ze) = inf{Y(z) : z € X},
V(z2) <V @+ vVeli— zlly =v(@), Yze X

Then 0 € 0¥ (z.), which means
00(z.) + F(ze —x) —k + /€6, 30, (6.35)

where F' : X =3 X* is the duality mapping and ||6,||x~ < 1. Multiplying by z, — x
we have ({; —k, 7z —x) + || z¢ —x||§g + /e {0,, zz —x) = 0, for some ¢, €

d®( z.), which implies by (6.34) || z. — x|x < +/¢. Hence z. S x, and by (6.35)
e x k, as ¢ — 0. From the definition of the subdifferential operator: ({., y — z.) +

®d(z,) < ®(y), Vy € X and passing to the limit as ¢ — 0 we obtain (x, k)
€ 9. |

Proposition 6.36. If ¢ : RY —] — 00, +00] is a proper convex Ls.c. function, ® is
defined by (6.33), x € C([0, T];R?) and k € C([0, T];RY) N BV([0, T]; R?), then
the following assertions are equivalent:
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ar) / (e — x(r). dk(r)) + / o (M)dr < (t - 5)p(2),
' ' VzeRY, VO<s<t<T,

t

w [ () — x(r), k() + / (e ()i < | et
VyeC(0,T];RY), VO<s<t<T,
as) /t (x(r) —z,dk(r) —2zdr) =0, V (z,2) € d¢,
' VOo<s<t<T,
as) [ (x(r) = y(r),dk(r) = $(r)dr) = 0, ¥y, § € C([0, T]: RY),
(y(r), y(r)) €9p, ¥Yr €[0,T], VO<s <1 =T,
as) (x,k) e d®, thatis, Vy € C([0, T],R?) :

T T T
/ (O (r) — x (). dk(r)) + / o(x()dr < / o(y(r)dr.
0 0 0

(6.36)

Proof. We shall show thata| & a; = a3 = a4 = as = as.
a, = ay: is evident.
ay = axylety e C ([0 T] ;Rd). We extend y () = y (0) fort < Oand y (¢) =
y(T) fort > T. The same extension will be considered for the functions x and k.
To prove a,) it is sufficient to consider the case 0 < s <t < T.

Since ¢ is bounded from below by an affine function, from @) we deduce that
@ (x)e L'(0,7T).

Let ny € N* be such that 0 < % <s<t< t—}—t < T and n > ng. Let
u € [s,t]. From (a;) we have for z = y (u)

u

/ LW —x () .dk () + / 0 () dr = - p(y(w)

—1/n u—1/n

Integrating on [s, ¢] with respect to u we deduce that

[ (n i G ) = % () e (1)) ) i+ [ (7 110 (x () dr)
< [o

s

(6.37)

By Fatou’s Lemma we have

/;90 (x () du < i‘ﬂ&f[ (n /u:/n o (x(r)) dr) du.
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On the other hand by the Lebesgue dominated convergence theorem

/ (n/ (y (u)—x(r),dk(r))) du
K u—1/n

+oo +oo
:/_ (/_ nlg ) () Lyt jng (r) (y ) — x (r) . dk (r») "

oo (o.¢]

+o0 +o00
= /_ </_ ns ) () Ly rpr/n) (W) [y (W) — x (r)] du, dk (r)>

+o0 r+1/n
_ /_ <n / 1) () [y (u)—x(r)]du,dk(r)>

+o0
_>/_ 1 () (y (r) =x (r),dk(r)), asn — oo.

Passing to liminf,_, o in (6.37) (a,) follows.
a; = as: is obtained by adding the following inequalities term by term:

/ (e — x(r). dk(r)) + / (e (r)dr < / o(@)dr

/ ) -z ar+ gt < / )

asz = ay :is proved in Proposition 6.17 since A = d¢ is maximal monotone.
ay = as: Let (X,k) € 0® be arbitrary. Hence for all y, y € C([0, T];Rd),
(y(r), y(r)) € 3¢ we have: (y, [, ydr) € 9P and

T
/ <)?(r) —y(r).dk (r) = (r) dr> >0 (0% is monotone),
0

T
/0 (x(r) — y (). dk (F) — § (F) dr) > 0 (by as).

Since A = d¢ is maximal monotone, by Proposition 6.17 we have

T
/ (x (1) —x (1), dk (1) — dk (z)) >0,
0

where (X, lg) € d® is arbitrary. But by Proposition 6.35, d® is a maximal monotone
operator. Hence (x, k) € 09.

as = ay: Leta,b > 0 such that ¢(y) + a|y| + b > 0. From as) it follows that
@(x) € L'(0,T). Let o, € C([0,T); R),0 <, < 1,and &, /" 1j5,1. In as) we
puty (r):= (1 —a, (r))x (r) + o, (r) y (r). So we have
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T T T
/ (> = X, dk(r)) + / ¢ (x)dr < / (1 =) ¢ (x) + awp () dr
0 0 0

and furthermore
T T
[ w-nanaen+ [ apwa
0 0

T
< / w0 () dr
0

T T
s[ an<¢(y)+a|y|+b)dr—f oy (a|y] + b)dr
0 0

T T
s/ 1[5.,](r)(¢<y)+a|y|+b)dr—/ &, a]y] + by dr
0 0

t T
s/w(y)dr+/0 (L) — ) (@ |y + b)dr.

Passing to the limit as n — 0o, a) follows. |

Proposition 6.37. If ¢ : R? —] — o0, +00] is a proper convex Ls.c. function and
®: L2(R; C([0, T;; RY)) —] — 00, +00),

T
- : 1
by = | B[ vt ifo € Li@xio.T, 639)
+00, otherwise
then
a) isa proper convex L.s.c. function,

b) ad(x) ¥ {K e L2(Q; BV([0, T]: RY)) : IE)/T (Y, — X,.dK,)
0

T T
+E / o(X)dt <E / o(Y)dr, ¥ Y € L2(Q: C([0. T} RY))
0 0

is a maximal monotone operator,
¢) K € 0®(x) iff K. (w) € 00(X.(w)), P-a.s. w € 2, with P characterized in
Proposition 6.36.

Proof. The assertions a) and b) are obtained in the same manner as ¢;) and ¢,) from
Proposition 6.35. The point c¢) follows from b) putting ¥ := X14 + Y14, where
A € F is arbitrary. u

Proposition 6.38. Let ¢ : RY —]—o00, +00] be a proper convex Ls.c. function such
that int (Dom (¢)) # 0. Let
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®: C([0, T]; R?) =] — 00, +00] be defined by (6.33). Let (ug, ity) € ¢, ro > 0 and

def
gDfo,ro = sup {g (uo + rov) : |v| < 1}.

Thenforall 0 <s <t <T and (x,k) € 0®:

ro (bk, — Dk ) + [ (e (r)dr

t (6.39)
= [ 0=tk () + =),
Moreover for all0 <s <t < T and for all (x,k) € 0P:
ro ($k$, — kT +/ lp(x(r)) — @ (uo)| dr < / (x (r) — uo, dk (1))
s s (6.40)

t
+ / (2 o] 1% () — ol + ¢, . — ¢ (o)) .
S

Proof. Let0 <s =ty <t <...<t, =t <T,max; (ti+1—t) = 6, — O.
By (6.36-a;) for z = ugy + rov. We obtain

ti 41 ti41
o (k (r41) — k (1) ) + / o (r)dr < / (x(r) — o, dk(r))
+ (g1 — 1) @) 0
for all |v] < 1. Hence
ti41 ti41
rolk (t41) — k ()] + / o(x(M)dr < / (x(r) — o k()

#
+ (ti-‘rl - tl) (puo,ro

and adding term by term fori = 0toi = n — 1 we have

n—1 t t
P Y-k G~k @)+ [ oo = [0 - 10.dkO) + @ =94l
i—o s s

which clearly yields (6.39). The second inequality (6.40) now follows, using the fact
that

lo(x) — @ (uo)| < @(x) — ¢ (uo) + 2|ito] [x — uo] .

for all x € R? and (uo, ity) € 0. [ ]
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Remark 6.39. Since ¢ is locally bounded on int(Domg), it follows that for
up € int(Domg) [= int (Dom (d¢))],
there exists ro > 0 and M, > 0, such that

sup {|@ (uo + rov)| : [v| < 1} < My.

6.3.8 Semiconvex Functions

Let ¢ : RY — |—o0, +00].
Define

Dom (¢) = {v eRY ) < +oo}.

We say that ¢ is a proper function if Dom (¢) # @ and Dom (¢) has no isolated
points.

Definition 6.40. The (Fréchet) subdifferential of ¢ at x € RY is defined by

()= l2eRl: liminff P =W =Ky —x)

ZO ki
yox ly — x|

if x € Dom (¢), and 0~ ¢ (x) = @, if x ¢ Dom (¢).
Example 6.41. 1f E is a non-empty closed subset of R? and

0, ifxekE,

COO=Te) =\ L ifx ¢ E

then ¢ is l.s.c. and (by a result of Colombo and Goncharov [17] we have for any
closed subset E of a Hilbert space)

0 Ig (x) ={x eR?: limsup Ky =x) <0}
y—>x, yEE |y—X|
0, if x €int(FE),
={ Ng(x), ifxeBd(E),
a, ifx ¢ E,

where Nz (x) is the closed normal cone at £ in x € Bd (E)

ef d
Ne (x) 4 ueRd:li\r‘nsz
&\0 &
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and
dg (Z)dginf{lz—xl :x e E}

is the distance of a point z € R? to E.
Denote

a) Dom(d7¢) = {x e R : 97 ¢ (x) # 0},
by 0 ¢ ={(x,X): x €eDom (07 ¢), x €9 ¢ (x)}.

Definition 6.42. A closed set E C R? is y—semiconvex, y > 0, if for all x €
Bd (E) there exists an X # 0 such that

(%,y =x) <y|X||y — x>, forally € E.
Note that if E£ is a semiconvex set, then
3 Ip(x)={xeR: (&, y—x) <y|&|ly —x|*, forallye E}.
Definition 6.43. ¢ : RY —] — 0o, +00] is a semiconvex function if there exist

0,y > 0 such that

(a) Dom (@) is y—semiconvex;
(b) Dom (37¢) # @;
(c) forall y € R? and forall (x,%) € 97 ¢

Fy—x)+o@ <O+ @+yIE]y—xI.

A function ¢ satisfying the properties of this definition will sometimes be
called a (p, y)—semiconvex function, or a y—semiconvex function (since the second
parameter is the most important one).

Note that a convex function is a (p, y)—semiconvex function for all p, y > 0.

A set E is y—semiconvex iff I is a (0, y)—semiconvex function.

If we write the definition of semiconvexity for a fixed (x¢, Xo) € 0~ ¢, then it is
clear that we have:

Proposition 6.44. If ¢ : RY — ]—o0, +00] is a semiconvex function, then there
exists an a > 0 such that

¢(y)+aly+a>0 VYyeR.

In particular ¢ is bounded below on bounded subsets of R.

The following properties also hold:
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Proposition 6.45. Let ¢ : RY — |—00, +00] be a semiconvex function. If there
exist uy € Dom (@), ro, My > 0 such that

@ (uo +rov) < My, V |v| =1,
then there exist py > 0 and b > 0 such that
polX| < (Fox—up) +b+b(1+ %) |x—ul®, V (x.5)ed ¢  (641)
and moreover there exist M > 0 and 8 €]0, ro] such that
|£] < M, Y x € B (up,8) C Dom () and X € 9" ¢ (x). (6.42)
Proof. Let (x,X) € 0~ ¢. Then forall [v]| < 1and A € [0, 1]:
(&, (o + rodv) — x) + ¢ (x) < @ (g + rodv) + (p + ¥ R]) (o + rodv) — x[*,
which yields
roA (R, 0) < (£, % — uo) + (a Ix 2 +a) + Mo+2(p+y %) [|x — ol + rg)@].

Taking the supy,|<;, we deduce for A = 1/(1 + 2yro):

A ~ ~ A~
(lToyr)z|x|5(x,x—uo)+C+C(1+|x|)|x—u02
0

that is (6.41).
Moreover if [x —up| < 8 =1 A % A 19, then

po|%| < (R.x —uo) +b+b(1+ %)) |x —uo)
< (80 + b&3) |X| + b + bS]
<8 (1+b)|%| +2b

£0 | A
< — 2b
< 18+

and (6.42) follows. |

Let E be a non-empty closed subset of R? and & > 0. We denote by

Ue(E) < {y e R? 1 di () < e}
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the open e-neighbourhood of E and

UE(E)déf{ze]Rd:dE(z)is}

the closed e-neighbourhood of E.

Given z € R?, we denote by IT; (z) the set of elements x € E with |z — x| =
dg (). We remark that [T (z) is always non-empty since £ is non-empty and
closed. We also note that if z € RY and Z € ITg (z), then z — %2 € Ng (3). This
follows from the fact that for 0 < ¢ < 1 we have

dp C+e(z—2)=dp () +dg C+e(z—2) —dg (2)
>z—2—|z24+¢e(z—2) —7

=¢lz—7|
and

dp Z+e(z—2)=drZ+e(z—2)—de ()

<elz—17|.
We recall the notations
B(y.r)={ueR’:ju—y|<r}, and
B(y.r)={ueR’:|ju—y|<r}.

Definition 6.46. We say that E satisfies the “uniform exterior ball condition”
(abbreviated UEBC) if

* Ng(x) # {0} forall x € Bd (E),
* drp>0Osuchthat,Vx € Bd(E)and Y u € Ng (x), |u] = ro:

dg (x +u) =ry orequivalently B (x +u,r9) N E =0,

(in this case we say that E satisfies rp-UEBC).

Note that for all v € Ng (x), |v] < ry, we also have
dg (x +v) =|v]. (6.43)
Indeed since

0<dp(x+v)=dpg(x+v)—de(x) <|v
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and
[v| = ro + (Jv| —ro)
= dp (x + |’;)—0|v) + (lv] = ro)
s(n(x+ﬁ%0—dEu+v>+@xx+w+qw—m)
< (%= 1) 01+ de 0+ ol =)
=dg (x +v),
then (6.43) follows.

It is clear that, under the uniform exterior ball condition with ball radius r(, for
all z € R? with dg (z) < ry, the set ITg (z) is a singleton. The unique element of
IIg (z) is called the projection of z on E, and it is denoted by 7 g (z).

We have the following characterization of the notion of the uniform exterior ball
condition:

Lemma 6.47. Let E be a non-empty closed subset of R. The following assertions
are equivalent:

(i) E satisfies the uniform exterior ball condition;
(ii) E is a semiconvex subset of RY, that is Ay > 0 and for all x € Bd (E) there
exists an X # 0 such that

(X,y—x) < y|)?||y—x|2, forally € E,

(in this case X € Ng (x) follows);
(iii) 3y > 0,Vx,y € Bd(E),VA €]0, 1[:

de (1= x +Ay) <4r (1 =Ny |x — y[*;
(iii') Iy > 0,Vx,y € E, VA €]0, 1[:
de (1= x+Ay) <4r(1 =Ny lx -y

(iv) Iy > 0,Vx,y € Bd(E):

X +
@( 2y)syw—ﬂ%

(v') 3y >0,Vx,y € E:

X+
de (52) <vlx—sP,



564 6 Annexes
(v) 38 > 0and > 0 such that the function

x— ) L dy () + plxP: Us () > R

is convex on each convex subset of Us (E).

Proof. We first remark that the conditions (i), (iii) , (iii’) , (iv) , (i') are satisfied
for y = 0 if and only if E is convex; the convex sets satisfy the r-UEBC for all
r>0.

Step I. (i) < (ii)

(i) = (ii): Let x € BA(F) and X € Ng (x), X # 0. Then there exists an ry > 0

such that
de (x + rTOfc) = ry.
x|

We have forall y € E and y = 5

2ro

IRy —x[" = (£, y — x)

v I
o
5 =
— —
Q‘ —
oy o ~<
/? |
/N
—+ =
=l _*
= ><>|5
SN———" _><>
N——
St
[

(if) = (i): Let ryp > 0 be such that 2yry < 1. Let x € Bd(E) be arbitrary and

X
u = ro—. Then

x|

lu|” =r;
27‘0 N N
<7+ g [y =2 = (85 = )]

<ly-G&x+w]’. VyekE.
Hence
lul =19 < dg (x +u) < |u],

that is £ satisfies the ro-uniform exterior ball condition.
From this equivalence we have that

1
Eisrg— UEBC & E is 2——semic0nvex. (6.44)
o
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Step I1. (iii) < (iif’).

We have to prove only (iii) = (iii’). Letx,y € Eand 0 < A < 1. Letuy =
1-XM)x+Ay=x4+A(y —x).Ifu, € E, then

dg(1=X)x+Ay) =0<4r(1-A)y|x—y|°.
If u; ¢ E, then there exist 0 < @ < A < 8 < 1 such that
u,=x+p(y—x)¢ E, foralla <p<§p
and
ug=x+a(y—x)ekE, ug=x+p(y—x)eckE.

We have

ulzua—i-/g_Z(u,g—ua)

and consequently

dp (1 =2) x + Ay) = dg (u3)

A—a A—a
= O =) L

<4Q-a)(B-Nyly—x|
<4r1-N)y|x—y].

Step 11 (iii') = (V) = (iv) = (i) = (iii).

(ii") = (iv') = (iv) as particular cases: (iv') for (iii") and (iv) for (iv').

(iv) = (i): We prove by contradiction. We can assume y > 0. We suppose
that there is some z € RY in the ro-neighbourhood of E such that, for two different
x,y € Bd(E),

1
z—x|=lz—yl=de (@) <rp= —.
2y

Under this hypothesis the vectors z — % x+y = % [(z—y) 4+ (z—x)] and
2(x —y) =2[(z—y) — (z — x)] are orthogonal and, consequently,

2

1
dﬁ-(z)=|z—x|2= z—z(x+y) +4|y—x|2.
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Letu € I1g (% (x + y)). Then, from condition (iv) we obtain

yiv=yPzde (300) = (36 0) -

z—(%(x—i—y))’
(o)

2
+ 4|y —x)*—

> |z—u| —

> dg (2) —

2

Z—(%(x—i—y))‘.
1 2
z—(§u+y0},

1
Z—E(x—i-y)

Hence, we have

+4w—xfs[yw—yﬁ+

1
Z—E(x—i-y)

from which we easily deduce that

4<y?ly—x +2y

1
z—z(x—i—y)‘

<Y llz=x|+lz=yP +vllz— x|+ |z— yI]

<2,

which is a contradiction. Consequently, condition (iv) implies the %—uniform
exterior ball condition.

(i) = (iii): Let us now suppose that E satisfies the uniform exterior ball
condition with an ry-ball. Let x,y € Bd(E). In a first step we assume that x, y
are two different elements such that 0 < |x —y| < ry. Let A €]0, 1] be such
that x, = x + A(y —x) ¢ E (if there is not such a A, we are done), and let
X, € g (x)). We fix any uy € Ng (X2), |ux| = ro and put zy = X, + uy. Then,
due to condition (i), |[v — 73| > r¢, for all v € E. In particular, we have

|x =zl = ro, and |y —zi| = ro.
We also observe that
lxr =Xl =de () < | —x| =Aly —x| =ro =[x —Xal,
and

X—z1,y—
OQ_( .Y — )

= e [o,1].
lx —zal [y — 2l
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Hence,

|xx — X2

=719 —|za — Xzl

=ro— \/(1—1)2 X =P+ A2y =zl +20 (1 =) |x =zl |y — 2zl

§r0(1—\/(1—A)2+AZ+ZA(1—A)a)

=r0(1—\/1—2)&(1—k)(1—a)>
<r[l-(0-220-D(-a)]=2rA(1-21)(1-0).
On the other hand, for y > 1/ (2r),
4 (1=1)ylx =yl
=2 (1=Dy (K =ul +ly—al -2k —ally -2ula)
>8(1-Vylx—zully—zul(-a)

>8A(1—A)yr(1—a)>2rA(1-2) (1 —0a).

Consequently, dg (x)) = |xp — X3 <4A (1 —-A)y|x — y|2, if y > 1/ (4rp).
In order to complete the proof, we still have to consider the case of x, y € Bd (E)
with |x — y| > ro. In this case, for y > 1/ (2r), we have
dp(x +A(y—=x))(=de(y —(1=2) (y —x)))
SAAA=Dlx=y[=220=2) |x —y|

1
s4x<1—x)2—m|x—y|2.

This proves that under the ry-uniform exterior ball condition the statement (iii) holds
with y > 1/ (2r¢).

Step III. (v) = (iii)) = (v).

(v) = (iii): Let A € (0,1) and x,y € Bd(F) with |[x —y| < 8. Then x,y €
B (x;8) = {z eR?: |z —x| < 8} C Us (E), and, consequently,

dpAx+ (1 =) y)+ulAx +A=1)y)
=Yk Ax+(1=2)y) <Ak (x) + 1 =) ¥k (»)
=AplxP+ A=) ply.
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By subtracting 1 |[Ax 4+ (1 — ) y|* on the left-hand and the right-hand sides of this
inequality we obtain

dgQx+(1=2)y) <A1 =N plx—y.

On the other hand, if x, y € Bd (E) are such that |x — y| > §, then
2 2
de(Ax+ (A=) y) =AAd=D]|x—y| = gk(l—k)lx—yl .

This shows that (iii) is fulfilled for y > ZLB v E.

(iii)) => (v): We fix any 8 € (0,r), and we recall that 7z : Us (E) — E is
Lipschitz continuous with Lipschitz constant Ls = ro/ (rg — 8). Let A € (0, 1) and
u,v € Us (E) be such that (1 — 1) u 4+ Av € Us (E). For simplicity of notation we
putx =ng W),y =g (v),zz = (1 —A)u+Av,and7, = (1 — A1) x + Ay. Then,

deg (1= u+ Av) =dg (zp)

<l|a—7me @)

<z =zl + 12 — e (2]

S =A)dg () + Adg (v) +dE (z3)

< (1= dg W)+ Ade (0) + 41 (1= Dy [x =y’

< (1= A dp () + Adg (V) + 44 (1= A) L2 Ju— v]?.

Hence, for > 4)/L2,
Y (1= u+ Av) =dg ((1 — D u+rv) 4+ p|(1—A)u+ rv)?

< (=) [dp @) + e ful?] + 2 [de @) + ool

= (1= Vi @ + Mg (V).

This proves that /% is convex on each convex subset of Us (E). ]

Corollary 6.48. If E is a closed subset of RY and satisfies the ro-uniform exterior
ball condition, then for all x € E

1
Ng (x) = )GERd:()?,y—x)§2—|)E||y—x|2; VyeE
o

1
and o = Igisa (0, z—r())—semiconvex Ls.c. function. Moreover Ng (x) = 0~ Ig (x).
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Let ro > 0. The set E satisfies the ry-uniform exterior ball condition if and only
if E is z—io—semiconvex.
We recall the following well-known property of the projection.

Lemma 6.49. Suppose that E satisfies the uniform exterior ball condition with ball
radius ro and & €)0, ro[. Then the projection wg restricted to U, (E) (the closed -
neighbourhood of E) is Lipschitz with Lipschitz constant L, = ro/ (ro — €), and the
function d3 is of class C' on U, (E) with

V@ =mme (). and 27 Q) € Ne (e ().

forallz € U, (E).

Proof. To simplify we denote 7 = 7z andd = dg. Let x,y € U, (E). Then we
have x — 7w (x) € Ng (7 (x)), y — 7 (y) € Ng (7w (y)) and

T @) =7 P =y =7 ()7 () = () + (x — 7 (). 7 (¥) — 7 (x))
+{x—y.m(x)—m ()
sf—0|n(x)—n<y>|2+|x—y||n(x>—n<y>|.

Hence

.
28 Ix — yl. (6.45)

() =7 )] = -

To obtain the second part of lemma it is sufficient to show that there exist a positive
constant C = C, ,, such that

—Cly—xPP<d*(y)—d*(x)—2{(x —m (x),y—x) <Cly—x|*. (6.46)

We have
d*(y) —d* (x) =2 {x =7 (x).y — x)
= —0)+@x—7 @)+ @) -7~ lx—7 )
—2{(x =7 (x),y —x)
=y —xP+lr @) —x P +2(y —x, 7 (x) =7 ()
+2(x—m(x),w(x)—m ().
Since

(x =7 ()7 () =7 (1) = =5 |7 () =7 ()
0
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and
(¥ =7 (%), 7w (x) =7 ())
==, 7)) =)+ x =y 7))
= 2% |7 () = 7 (P + Jx =yl |7 () =7 ()]
the inequality (6.46) follows from this and (6.45). |

6.3.9 Differential Equations

Let H be a separable real Hilbert space. If A : H = H is a maximal monotone
operator, uy € D (A), f € L'(0,T;H), then the strong solution of the Cauchy
problem

dudgl) +Au(t)3 f (). ae.1€]0.T], (6.47)
u (0) = uy,

is defined as a function u € C ([0, T'] ; H) satisfying:

i) u(t)e D(A) a.e.t€]0,T],
if) 3h=h® e L' (0, T;H) suchthat h (1) € Au(t),a.e.t €]0,T[, and

u(t)—i—/oth(s)ds:uo—i—/otf(s)ds, Vtel0,T],

and we shall write u = S (A4;up, /). Note that the strong solution is unique
when it exists. Indeed if u, v are two solutions corresponding to (ug, f), (vo, &),
respectively, then

(1) —v (1) + 2[t (W (s) = h® (s),u(s) —v (s)>ds
0

:|Mo—00|2+2/0 (F (5) — g (5) u(s) — v (s)) ds

and by the monotonicity of A it follows that

lu(t) = v ()]* < Juo — vol? +2/0 |/ () =g () u(s) — v (s)]ds.
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Using Gronwall’s inequality (Lemma 6.63, Annex C) we obtain

|u(t) —v ()] < [uo — vo +/(; |f () — g ()] ds. (6.48)

We recall from Barbu [3], p. 31, that the following proposition holds:

Proposition 6.50. If A is maximal monotone operator on H, uy € D (A) and [ €
WU ([0, T]; H), then the Cauchy problem (6.47) has a unique strong solution u €
W ([0, T];H). Moreover if A, is the Yosida approximation of the operator A
and ug is the solution of the approximate equation

du
7; + Agu, = fv Ug (0) = Uuop,

then for all (xo, yo) € A there exists a constant C = C («, T, xo, o) > 0 such that

cr)  lueleqorym < € (1+ luol + 1./ 12107 :m)) and
) li\r‘n u, = uin C ([0, T]; H).
e\o

We introduce the notation
Whr([0,T];H) = {f :da €M, ge L? (0, T;H) such that
t
f(t)=a+/g(s)ds, V1 e[O,T]}.
0

From Barbu [2] (Chap. IV, p. 197, Theorem 2.5) we recall:

Proposition 6.51. Let A be a maximal monotone operator on H such that

int (D (A)) # 0.
Ifuy € D(A) and f € WU ([0, T]; H), then the Cauchy problem (6.47) has a
unique strong solution u € Wb ([0, T]; H).

By the continuity property (6.48) one can generalize the notion of the solution of
Eq. (6.47) as follows:

4 uis a generalized solution of the Cauchy problem (6.47) with
up € D(A), felL'(0,T;H),

(and we shall write u = GS (4; ug, f)) if

& ueC([0,T];H) and
& there exist ug, € D (A), f, € W1 ([0, T];H) such that
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U, —> Uy in H,
fu— f inL'(0,T;H),
u, =S (A;up,, fn) >u inC ([0,7];H).

Proposition 6.52. If A is a maximal monotone operator on H, uy € D (A) and
f € L' (0, T;H), then the Cauchy problem (6.47) has a unique generalized solution
u e C ([0, T];H). Moreoverifu = GS (A;ug, f) andv = GS (A4; vy, g) then

|u () = v ()] =< uo — vol +f0 |f (s) =g (s)|ds (6.49)

and for all (xo, Xo) € A there exists a constant C = C (T, x¢, Xo) > 0 such that

lullcqoryzm < € (1 + luol + 1 f Il 2rorm) - (6.50)

In the case when int (D (A)) # @ one can give supplementary properties of

generalized solutions.

Proposition 6.53. Let A C H x H be a maximal monotone operator such that

int (D (A)) # .

Letuy € D (A) and f € L' (0, T; H). Then:

L. there exists a unique pair (u, k) such that

(Py) :

a)
b)

¢)
d)

ue C(0,T;H), u(t)e D(A) YVt €[0,T], u(0) = uy,
k € C([0, T]; H) ﬂBV([O T];H), k(0) =0,

u(t) +k(t) =uoy +/ f(s)ds, Yt €0,T],

t
/ (u(r) — x,dk (r) — xdr) > 0,
N
VO<s=<t=<T V(x,X) €A

II. u=GS (A;uy, f) if and only if u is solution of the problem (P4);
1II. the following estimate holds:

2 2 2
el 0.7 + 1K Lavio.rim = € (14 ol + 1/ 11 0.7 -

where C is a positive constant independent of ug and f.

Proof. Uniqueness. If (u,k) and (v,£) are two solutions of the problem (Pj,)
corresponding to (ug, f), (vo, ) respectively, then
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lu(t) —v (1)) +2/0t (dk (s) — d L (s) ., u(s) — v (s)) ds

=|Mo—00|2+2/0 (F () — g (5) o (s) — v (s) ds.

But by Proposition 6.17, the monotonicity of A and (P4 — d) we have

/l (ke (5) — d.5) 1 (s) — v (5)) ds > 0.
0

Hence
u (1) — v () < |uo — vol? +2/0 |/ (s) —g ()] [u(s) —v(s)|ds,

which yields (6.49) and, in particular, the uniqueness follows.
Existence. Let uy, € D (A), f, € W' ([0, T]; H) such that

Uy — o inH and f, — f inL'(0,T;H).

Letu, = S (A4;ug,, f,) be the strong solution corresponding to (A4; ug,, f,). Hence
there exists an h, € L' (0, T;H) such that h, (t) € Au, (t), a.e. t € 10, T[ and
!

denoting k,, (z) = / hy () ds we have
0

a) u,,(t)+kn(t)=u0n+/0tf,,(s)ds, Vtel0,T],

t
b) f (uy (r) — x,dk, (r) — xdr) > 0,
‘ VO<s<t<T VY(x,%) e A

6.51)

Let xo € int (D (A)) and Xy € A (xp). Then

|uy (£) — xo0|* + 2/1 (hy (8) . uy (5) — xo) ds
0

t
= |uon — xo|* + 2/ (fo (5) 1y (5) — x0) ds.
0
Since

(hn (8)  un () = X0) = (Ko, un (5) — xo) »
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we infer
2 2 '
| (1) — xo” =< |uon — Xo|” + 2/ [1/n ()] + |Xo[] [un (5) — xo| ds.
0
By the Gronwall type inequality from Lemma 6.63, Annex C, we obtain

T
ity (£) — x| < ltton — o +[ | fo ()| ds + T ||
0

T
SC[1+|M0n|+/O |fn<s)|ds]

where C = C (xg, X9, T) > 0.
By Proposition 6.5 we have a.e. t €10, T[:

1o |hn ()| < (B (t) ,uy (1) — Xo) + Mo |u, (t) — xo| + roMy,

and then

t
2r0f |y, (s)] ds
0

1
< Juon —xol? + 2/ (Lo (5)] + Mo) |y (s) — xo| ds + 2rMyT
0

T 2
<C |:1 + |I"0n|2 + ([ | fn (S)lds) :|
0

with C a constant depending on xg, Xo, T, My, ro.
t
Hence k, (1) = / hy (s)ds is bounded in BV ([0, T'] ; H). Then there exists a
0
k € BV ([0, T]; H) such that on a subsequence also denoted by k, we have

k, ">k inBV([0,T]:H).

The sequence (u,),cn+ 1S @ Cauchy sequence in C ([0, T];H) since if u, =
S (A; uom, fm) then

T
sup uy (£) = up (1)| < |u0n_”0m|+/(; | o (8) = fm (5)] ds.

t€[0.T]
Then there exists a u € C ([0, T'] ; H)) such that

U, = u in C([0,T];H).
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Passing to the limit in (6.51), we obtain that (u, k) satisfies (P4). The proof is
complete. |

If the assumption int(D (A)) # @ has a smoothing effect as we saw in
Proposition 6.51, the maximal monotone A = d¢ also has a smoothing effect.
Consider the differential equation

dudgt) +0pu(t)> f(t), ae.tel0T],

u (0) = u,

(6.52)

where

¢ : H —]—o00,+00] isaproper convex l.s.c. function.

Proposition 6.54. If u, € D (99) (: Dom (90)) and f € L2(0,T:H), then the

Cauchy problem (6.52) has a unique strong solution. Moreover u € w2 (6, T;H),
di

Vé > 0, \/fjbtt € L?>(0,T:H), ¢ (u) € L' (0,T) and if uy € Dom (¢), then

d
?b: € L2(0, T:H) and ¢ () € L (0, T).

Consider now the Cauchy problem

dy(r) .
74—3 o(x@)>g@), ae.t€[0,T] (6.53)
x (0) = xo,
where
(i) ¢ : RY — =00, +00] is a proper Ls.c. (p, y) —semiconvex function,
(if) Dom (¢) is a locally closed subset of R,
(6.54)
and
() xo€Domfg). 659

(i) geL*(0,T;RY).
Hence for all (x,x) € 07 ¢
(Fz-x)+o@) <@+ (+yIED)lz—x, VzeR’
We denote here by 0~ ¢ (x) the Fréchet subdifferential given in Definition 6.40.

Recallthat ECR? is locally closed if for all x € E, there exists a § > 0 such that
E N B (x,6) is closed.
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From Degiovanni—-Marino—Tosques [21] and Rossi—Savaré [66] we have:

Proposition 6.55. Let the assumptions (6.54) and (6.55) be satisfied. Then there
existh € L? (O, T; Rd) and a unique absolutely continuous function x : [0, T] —
Dom (¢) such that:

T

@ [ [ or e o<

b) x (t) € Dom (0~ ¢), ae.t€]0,T[,
(c) h(t) e "o (x (1)), ae.te€]0,T],

and

X O+h@)=g@), ae. t €]0,T[
(Pe) : {x (0) = xo.

Moreovera.e. t,s €0, T[, s <t:

t t
2
[ W oPar=ewo -oao)+ [ (o). o)
N N
and there exists a positive constant Cp (independent of xo and g) such that
! 2 2 ! 2
el + o @l + [ 15 @) ar< ¢ (o + o )+ [ e @Par).

Remark 6.56. If we put

k(1) = /Oth(s)ds

then
J) kGBV([O,T];Rd), k (0) =0,
t
) x(z)+k(z)=xo+/g(s)ds, Vie[.T],
0
v) VYOo<s<t, Vy:|[O0, R9 conti :
Gsp): 17V <s =t Vy:[0.00[ > R continuous

/ 5 (r)—x(r),dk(r))—i—/<p(x(r))dr
5/90()/ (r))dr+/ D () = x ()2 (odr + yd $K3,).

that is (x, k) is the solution of the generalized Skorohod problem (xg, m, 9~ ¢) with
t
m(t) = / g (s) ds (see Definition 4.29).
0
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6.3.10 Auxiliary Results

Proposition 6.57. Ifg € L' (0, T) and

t
or(t) = e /0 lg (s)|e*ds, te[0,T], A>0,

then

lim |: sup P (t):| =0.

A=>00 | te[0,7]

t
Proof. Let the continuous function t — G () = / |g (s)| ds and mg (¢) be the

0
modulus of continuity of G on [0, T']. We have forall t € [0, T] and A > 0:

1 (—vi7m)* A ! A
0=p=c| [ g@lPds s [ gt
0 (t-—v17%)
(—vim)*
< e—*fel('—mff g ()] ds + e eMmg (v/1/2)
0

< e VAG (T) + mg (V1/2),

which yields the result. ||
We now give a variant of the Banach fixed point theorem.
Let {(V,,d,) : a > 0} be a family of complete metric spaces such that for all
0<a<b:
Vv, C V,
with a continuous embedding. Let

V= maZOVa = ﬂaEN*Va’

and assume V # (). Then V is a complete metric space with respect to the metric

1 di(x,y)

PXY) =) ey
21 4da(x,y)

andif x,,x € V,n € N* thenas n — oo,
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X, >xinV <<= x,—>xinV,, Ya=>0.

Lemma 6.58. Let ' : V — V be a mapping satisfying:
there exists an ag > 0 and for all a > aq there exists a §, €]0, 1] such that

d;, (T (x), T (y)) <6b.d,(x,y), forallx,y € V.
Then T has a unique fixed point, i.e. there exists a unique x € V such that
x=I(x).

(Banach’s fixed point theorem corresponds to the case (V,,d,) = (Yo, dy) for all
a=>0)

Proof. We define

x0€V, x,41=T1(xy).
Then by recurrence we deduce that

x, €V, foralln eN,

and

n

da (-xl‘l+p7 xn) = = da (.X],XQ) s
1—64

for all @ > ag, n, p € N*. Hence there exists a unique x@ e V, such that as
n— oo

Xp = x9 invV,.
Moreover by the continuity of the embedding V, C V,, for 0 < b < a, we infer

x, = x9 inV,.

d
Consequently x@ = x@0) forall g > ap, X 4 x(@) ¢ V and for a > ap

da (X, r (X)) =< da ()C, xn+l) + da (F (xn) ) r ()C))
=< du (X, xn+l) + 8ada (xn, JC)

— 0, asn — oo,
which yields

x=T(x).
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The fixed point x is unique, since if x, y € V are two fixed points, then for a > ag

da (x,y) = do (T (x), T (y)) < 8ada (x,y)

and x = y follows. |

6.4 Annex C: Deterministic and Stochastic Inequalities

6.4.1 Deterministic Inequalities

Proposition 6.59 (Stieltjes—Gronwall Inequality). Ler K : [0,7] — R be a
continuous increasing function, a : [0, T] — [0, co[ be an increasing function and
x : [0, T] — R be a measurable function such that

T
/ |x (r)| dK (r) < oo.
0

If

t

x (1) 5a(t)+/ x(r)dK(r), Vtel0,T],

0

then
x(t) <a()eXO7KO vielo,1]. (6.56)

Proof. 1. Note that if «, B, B1,...,Bn and 29,21, . . . , 24 € R satisfy

20 = «,
z <a+ Pozo+ Prz1 + -+ Bicizie, 1 <i <n,

then
7 < qePothittpi—1+pi
Indeed, associating the sequence
Xo=0o, X;=a+ PBoxo+pfix;+ -+ Bicixi—1, 1 <i <n,
by recurrence

Z<xi=a(l+B)A+B1)-(14+Bi-1) =< aePotBittpizi

follows.
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Let
t
gt)y=a(@) +/ xT (r)dK (r).
0
Clearly g is an increasing function and
t
OERMUEFDENIORY WY ICY
0
LetO<# <...<t, =t besuch that
1 > max {K (t;) — K (t;—1) : i € 1,n} (@yn) — 0, asn— oo.

Letg; = g (ti),co=0,¢; = ftf’_l dK (r) = K (t;) — K (t;—1) < y». We have

,»<a(r,>+2/ ¢ (1) dK (r)

ca+Y g [ ako

j=1 Jj—1

<a(t)+ (cogo+cig1 + -+ ci—18i—1) + Vu&i,

which yields
a(t) Co cl
l_l_yn+1_J/I1g0+l_Vgl+ 1
foralli € {1,2,...,n}. Hence
a(t)
() Sg () =gn < T -exp l_yan,

:1"(’) exp[ ! [K(t)—K(O)]]
—Vn 1=y

The inequality (6.56) follows by letting n — oo. ]

For K () = fof b (r)dr, where b : [0,00[ — [0,00][ is a locally integrable
function, the following lemma holds.

Corollary 6.60 (Gronwall Inequality). Lera : [0, T] — [0, co[ be an increasing
function and x,b : [0, T] = R, b > 0, be integrable functions such that
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/OTb(z)|x(t)|dt<oo.
If
x(t)fa(t)—l—/olb(s)x(s)ds, Vielo,T],
then
x(t)fa(t)exp(/olb(s)ds), Vielo,T]. (6.57)

Corollary 6.61 (Backward Stieltjes—Gronwall Inequality). Ler K : [0,T] — R
be a continuous increasing function, a : [0, T] — [0, oo[ be a decreasing function
and y : [0, T] — R be a measurable function such that

T
fo ly ()| dK (r) < oc.
If

T
y(r)sa(r)+/ Y dR (). Yielo.T],
then
y(t) <a()eKD=K0O  vielo,T]. (6.58)

Proof. Letx (1) = y(T —t),a(t) =a(T —t)and K (t) = K(T) — K (T —1).
Then

t
x (1) 5a(t)+/ x(r)dK(r), Vtel0,T],
0
and by Proposition 6.59
x () <a(t)eXOKO vielo, 1],

that is (6.58) replacing # by T —t. |
In particular for K (¢) = fot b (r) dr, we have:

Corollary 6.62 (Backward Gronwall Inequality). Leta : [0,7T] — [0, 0c0[ be a
decreasing function and y,b : [0, T] = R, b > 0, be integrable functions such that
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T
/0 b )|y (t)] dt < co.
If

T
y(t)i&(t)+/ b(s)y(s)ds, Vtel0,T],

then

y (@) <al(t)exp (/Tb(s)ds) , Ytelo,T]. (6.59)

We now give some other deterministic inequalities used in the book.

Lemma 6.63. Leta,f € L} ([0, o0|).

loc

L If « >0a.e. and x : [0,00] = RY is an absolutely continuous function such
that

@O xO)sa@xOI+ @O IxOF, aer=0,

then

1 ! 1
Ix ()] < |x (v)] ls PO 4 / a (s) el FOrgg (6.60)

T

forall0 <t <t.
II. Ifa,B > 0a.e., a:|0,00] — [0,00[is an increasing function and ¢ : [0, co[ —
[0, 00| is a continuous function such that V't > 0

t

¢2(t)fa(l)+2/ a(s)qo(s)ds+2/lﬂ<s>¢2<s>ds,
0 0

then
l 4 t
¢ (1) < Va (t)eh PO 4 / a(s)els POrgs vt > 0. (6.61)
0

Proof. 1. Letu, (t) = |x (t)]>e 2/ B 4 ¢ & > 0. Then

WL (1) = 205 (1) . x () e 2R BOB 2 (1) x (1) =2 01
< 2 (1) |x (1)) =2 o PO

<20 (1) Vue (¢ e_ffﬁ Bls)ds
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which yields
d o, (1)
—(Vu: (1)) = ——=
dr ( ( )> 2\/ Ug (t)
<a(t)e” fs Bls)ds
Hence

'
Vi (1) < Mg(‘l.')—l—/ a(s)e_foﬁ(’)drds'

Passing to the limit as ¢ N\ 0 the inequality (6.60) follows.
II. Let O € [0, T] be fixed and

t t 1/2
x(t)=(a(9)+2/0oz(s)go(s)ds+2/0,B(s)<p2(s)ds) .

Then for all ¢ € [0, 0]:

& (1) 5a<9)+z/fa(s)¢(s>ds+2/’ﬁ(s)<p2(s>ds=x2(t>,
0 0
and

X () x (@) =a@®) e @)+ @) 1)
sa@®x @)+ B2 (),

which implies, by the first part, that for z € [0, 6]:
t t 1
@ (t) < x (1) < x(0) el PO 4 / a (s) el B g,
0

which is (6.61) if we choose t = 6. [ |

Corollary 6.64. If o, > 0a.e.,a:[0,T] — [0,00[ is a decreasing function and
¥ 1[0, T] — [0, oo is a continuous function such that ¥Vt € [0, T]:

T

T
1//2(7,‘) S&([)—i-Zf ot(s)W(s)ds—i—Z/ ﬂ(s)wz(s)ds,

then

T T S
V(1) < Va (el POS 4 / a(s)el POrgs Vi eo,T]. (6.62)

t
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Proof. Note that V¢ € [0,T]:

Y (T —1)
T

T
5&(T—t)+2/ a(s)y (s)ds +2 B (s) ¥ (s)ds
T—t

T—t
t

=d(T—t)~|—2[ oz(T—s)l//(T—s)ds—{—Z/t,B(T—s)wz(T—s)ds.
0 0

Hence by (6.61)

" t .,
W (T —1) <a(T —1) e PT=9d / a (T —s) eh BT=ndrgg
0

which clearly yields (6.62) replacing T — ¢ by ¢. |

If f,g € BV ([0,00]) (= BV ([0, 00[; R)), we say that df (s) < dg (s) as
signed measures on [0, oo if

dl1.
/@(r)df(r)ffso(r)dg(r),

for all 0 < ¢t < s and for all continuous function ¢ : [0, 00 — [0, oo, or

equivalently
a2. f(s)— /()

equivalently
d3. i (s) = f (s) — g (s) is a decreasing function on [0, co|.

Lemma 6.65. Let x, N,V € BV, ([0, o). If

Jdf(r) = [[dg(r) = g(s)—g(t), YO<t<s0r

x (s) 5x(l)+/S[dN(r)+x(r)dV(r)], VO<t<s,
or equivalently
dx(r) <dN (r)+ x (r)dV (r)

as signed measures on [0, oo, then for all 0 <t < s:

e Vx(s)<x@)e " + /S e "dN (r). (6.63)

t
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Proof. We have
d(x(r)e ") =edx(r)—e "x (r)av(r)
< e "dN (r)
and the result follows. |

Corollary 6.66. Let o, € L} ([0,00[) and y : [0,00[ — R be a continuous
function such that

y(r)sy(s)+/ o () + B (r)y (N]dr. YO<r<s,
then

t 5 s rr
efo ﬁ(“)duy (1) <y (s) efo Bu)du + / o (r) e(/o Bwdu g, (6.64)

t

Proof. By Lemma 6.65 and

(=y () = (=y @) +/t [ (r) = B (r) (=y ()] dr,

the result follows. |

Finally we have:

Proposition 6.67. Let x € BV, ([0.00[:R?) and V € BV, ([0,00[:R) be
continuous functions. Let R, N : [0,00] — [0,00[ be continuous increasing
functions. If

(x (1), dx (1)) < dR (1) + |x (1) dN (1) + |x ()*aV (1)

as signed measures on [0, oo, then for all0 <t < T:

1/2

le ™ x]r =2 |:‘e—V(t)x (t)‘ + (/T VO R (s))

t

T
+ / e VN (s):|

and

¥l = 262400 [1x O] + VRT) = R@) + (N (T) = N (1))].

If R =0thenforall0 <t <s:

s
Ix ()] < e"O7VO |x (1) + / e"OVOUN (r) . (6.65)

t
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Proof. Letu, (r) = |x (r)|* e +&, & > 0. We have as signed measures on [0, oo]
dus (r) = =272 |x (1) av (r) + 2¢72 0 (x (r) . dx (r))
<2¢2YOUR (r) + 2¢72 D |x (r)|dN (r)
2¢7VdR (r) + 2¢77 O \/u, (r)dN (r).
If R = 0 then

du, _

and consequently

Ve (5) < Vue (1) + / V4N (r),

which yields (6.65) passing to the limit as ¢ — O.
If R # 0 then

e x ()]

s s
< e_2V(t) |)C (t)|2 + 2/ e—ZV(r)dR (r) + 2/ e—ZV(V) |X (r)| dN (r)

t t
e |x (1) +2 / eYOdR () +2 eV x|, / e N (1)
2 2 T 2
< ‘efv(”x (t)‘ +2/ e VR r)y+ = ||e x|| (7] +2 (/ e VOan (r)) .
t t

Henceforallt <t <T

eV Ix (7)] < ”e—vx”[iﬂ

T T 2
<270 Ux () + 4 / e2"VdR (s) + 4 ( / e "Wan (s))
4

t

and the results follow. ]

6.4.2 Stochastic Inequalities

In this subsection {B, : ¢t > 0} is a k-dimensional Brownian motion with respect to
a given stochastic basis (2, F, P, {F; }/>0).
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Proposition 6.68 (Stochastic Gronwall Inequality). Ler

O a,b 0,00 = [0, 00 be measurable deterministic functions and
O H,o,B,y,6 : Q x[0,00] = [0,00[ be stochastic processes, where H is a
continuous stochastic processes. If for allt > 0

t t
|Xz|+|uz|s|H,|+/ <as+a(s)|xs|>ds+‘[ GydB,| . P-as. (6.66)
0 0

where

i) X.UeS) GeAYy,.
i) |G| <B +b@)|X|, dP®drae.

then for all ¢ > 1 there exists a positive constant Cy such that for all T > 0:

T q
E sup |X;|?+E sup |U|? < |E|H|% +E (f asds)
1€[0.7] t€[0.7] 0

+E (/OT,des)q/z:| X exp { C, |:1 + T‘f_I/OT (a‘f (s) +b% (s)) ds:“ .

(6.67)
In particular if the right-hand side of the inequality (6.67) is finite then

X.U € S4, GeAl,.
Proof. Clearly we can assume that the right-hand side of the inequality (6.67) is
finite. Denote by C, different constants depending only ¢ and which can be changed
from one line to another. For each n > 1, we define the stopping time

7, () = inf{t > 0: |X; (w)| > n} An.

Note that for all positive stochastic processes Z,

tAT, ATy !
/ | Xs|P Zsds =/ | Xsnz,|” Zsds 5/ sup | Xy, |? Zsds.
0 0 0 relo,s]

By the convexity of the function ¢ (r) = |r|? we have

q
| Xing, 11+ [Uin, |7 < 27 | H || g, + 4

tAT,
/ G,dB;
0

AT,
/ (o5 + ag | Xs|) ds
0

q
+ 47
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By the Burkholder—Davis—Gundy and Holder inequalities:
49K sup

SATy q ATy q/2
/ G,dB,| <C,E ([ |GS|2ds)
s€lo,f] [JO 0

t t q/2
<CE (2/0 ﬁszds + 2/(; b* (s) | Xsar, |2ds)

' q/2 t /2
<CE Bds + C,E| sup |Xsar |97 b%(s) sup |Xons |ds
q K q p n p n
0 s€[0,1] 0 rel0,s]

1 t q/2 t 4
< Z]E sup |Xsar, |7 + C,E ( / ﬂfds) + C,E / b*(s) sup |X,nq,|ds
0 0

s€[0,1] re€l0,s]

1 t q/2
< -E sup |Xsnr, |7 + C,E (/ ﬁfds)
4 el 0

t
+th"_1/ b* ()E sup |Xar,|* ds.
0 relo,s]

Also

q
49

AT,
/ (o5 + as | Xs|) ds
0

! q t 4
C, (/ asds) +Cy ([ a () | Xsnq,| ds)
0 0

t q t
<C, (/ asds) + thq_l/ a? (s) sup | Xrnq,|? ds.
0 0

relo,s]

IA

Hence, defining

t q t q/2
K, =E ||H||? +E |:(/ asds) + (/ ﬁszds) :| ,
0 0

E sup |Xs/\rn|q + E sup |Us/\rn|q < 2E sup [|XsAtn|q + |Us/\rn|q]
s€[0,1] s€[0,¢] s€[0,1]

we have

t
<C,Ky; + quq_]/ (a? (s) + b* (s))E sup |X,nq,|? ds.
0 rel0,s]

Using Gronwall’s inequality (6.57) we obtain

E sup |[Xsnq,|? < C K, e < oo, (6.68)
s€[0,]



6.4 Annex C: Deterministic and Stochastic Inequalities 589

where
Ay () =177! f t (a? (s) + b* (s)).
0

Since 1 + xe® < e@tDx forall x > 0, it follows that

E sup [Usnq, |7 < Cy [Kygi + Ay (1) CyKy o€ ®]
s€[0,r] (6.69)
< C K, ¥4 < 0o,

We also have

[AT, q/2 .
E ( / |GS|2ds) < (<00 (6.70)
0

for some (:’q,t independent of 7. Passing to the limit in (6.68)—(6.70) as n — oo, we
obtain X, U € S7[0,T], G € A?_, (0,T) and (6.67) follows. [ ]

Proposition 6.69. Let § € {—1,1}. Let {B, : t > 0} be a k-dimensional Brownian
motion. Let Y K,V : Q xRy — Rand G : @ x Ry — RF be progressively
measurable stochastic processes such that

i) Y, K,V are continuous stochastic processes,
iiy V,K €BVy ([0,00[;R), Vo =Ky =0, P-as.,
s

iif) / |G,.|2dr < oo, P-as., VO<t <s.
t

Ifforall0 <t <,
N N
§ (Y, —Yy) 5/ (dK,+Y,dv,)+/ (G,,dB,), P-as.,
t t
then
§ (Ve — v,e'™) 5/ e‘W'dK,—i—/ " (G,,dB,), P-as.
1 t

Proof. Denoting
s ~
M; =/ (Gr.dB,), Yy = =M, — §Y, (6.71)
0

we obtain

Y, <Y, +/ [dK, + (—8Y, —8M,)dV,].
t
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Hence

. s
s L, 4y, —/ [aK, + (—8Y, — M,)dV,]
0

is a decreasing function and then

d (Yye®") = {dL, + [dK; + (=8Y, — M) dV,]} e®" + § Y,e®"av
< —3M,e?"dv, + eV dK,

and integrating from ¢ to s

s N
YtV < ¥, —/ M,V av, +/ AVrdK,

t t

S S
=Y,e% — M + M, +f eV (G,,dB,) +/ eV dK,.

t t

Now by (6.71) we obtain the conclusions. [ |

6.4.3 Forward Stochastic Inequalities

In this subsection { B, : t > 0} is a k-dimensional Brownian motion with respect to
a stochastic basis (2, F, P, {F; }i>0)-
We shall derive some estimates on the local semimartingale X € Sg of the form

t
X, =Xo+ K, + / GydBy, t >0, P-as., (6.72)
0
where
O K €S89 K. €BVy ([0,00[;RY), Ky =0, P-as.;
O GeAY,.

Notation 6.70. Let p > 1 andm, v (p—1.

Proposition 6.71. Let X € Sg be a local semimartingale of the form (6.72).
Assume there exist p > 1, a P-m.i.c.s.p. D and a P-m.b-v.c.s.p. V, Dy = Vo =0,
such that as signed measures on [0, oo[

1
dD; + (X, dK) + Sm, |G, |*dt < |X,|?dV,, P-a.s., (6.73)

then forall0 <t <s:
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s
E7 e X,|" + p ﬂ«:ff/ e PV |X, |77 dD, < |e7" X,|" . P-as. (6.74)
t

Moreover forall § > 0,0 <t < s:

e Vs ? § —rVr -
]E]:t|—XS|)p/2 + p E]:I/ ( e PV |X,|” 2 dD
t

\
(+ale=tsx tafeton 1) (6.75)
— P .
< Ltlzﬂ/l’ P-a.s.
(1+8]e=v x,[7)

The proof of this Proposition is contained in the proof of the next Proposition.

Remark 6.72. Since by (2.27)
1x,—0|G;[*dt = 0,
we see that the condition (6.73) yields
1x,—0dD; = 0.

We now formulate a more general assumption.
(FB)  There exist

c p=21,42>0,
e three P-m.i.c.s.p. D, R, N, Dy = Ry = Ny =0, and
e aP-mb-vcsp.V,Vy=0,

such that, as signed measures on [0, ool

1
D, + (X,,dK,) + (Emp +9p1) |G/ di
= lpzzdRz + |Xt|sz + |X,|2dV,.

(6.76)

Remark 6.73. From the condition (6.76), we deduce that

1x,—odD, =0, if1<p <2, and
1Xt=0th < 1Xz=0th < dR;, lfp > 2.

Proposition 6.74. Let X € Sg be a local semimartingale of the form (6.72).
Assume that there exist p > 1 and A > 1 such that (FB) is satisfied. Then there
exists a positive constant C,  depending only on (p, A) such that for all § > 0, and
0<t<s:
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e x| S e
E7i bl 1 EF e 2 |X, dp
/2 + r

(sl x[12,)” ¢ (1sfevrx, )7

s p/2
/ e 2Vr . ZdDr)
o (148l x,|7)
s o ) p/2
t

1+8]e="r X, |*)

|87V’X[|p K} p/2
< Cp,,\|:—7p/2 + E* (/ e_zv"lpzzdRr)
t

(1+8]e=v x|
K P
+ EX (/ e_VrdN,) :|, P-a.s.
t

If we set § = 0 in (6.77), we obtain the following:

Corollary 6.75. Under the assumption (FB), for all0 <t < s:

s
E7 He’VX”ﬁ.S] + ]Ef’/ e PV |X,|”72 dD,
t

K /2
+ E* ( / e—ZVrdD,)
t

s r/2
+ EF ( / e 2 |G, | dr) (6.78)
13

s p/2
< Cp,)t[ |e_VtX[|p + ]E]:t ([ €_2Vr1p22dRr

t

K P
+ E* (/ e_V’dNr) :|, P-a.s.
t

Proof (of Proposition 6.74). In view of the monotone convergence theorem it suf-
fices to treat the case § > 0, which we assume from now on.
To simplify, we define

J def |e_VrX’i
r= NIE
L+ 8le X, )

N

IA

Sl

3

and

™" X, |7 1, 20
)(]1+2)/2

(1 Fle VX,

Lx, %0

= Jr? .
(1+ 51 x.T")

r
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We remark that

2(p) —Vr -1 2(p) =2V, 2

JPe VX, | < JP My, 4o and TPV X, > < JP.

Step 1. General calculation.
We begin by assuming a condition which is more general than the assump-
tions (6.73) and (6.76), namely that there exists a y > 0 such that

m
dD, + (X,,dK,) + (7” +7)1G,*dr

(6.79)
<1,52dR, + |X,[dN, + |X,2dV,.

Since by Itd’s formula
t t
e X, = X, +/ (e7""dK, —e™"" X,dV,) +f ¢”""G,dB,,
0 0

it follows from the inequality (2.28) in Corollary 2.28 that for all 0 < ¢ < s and any
stopping time 6

s
Jho<Jho+p [ 1.9 JPe ™ (X,,G,dB,)
t
s n 1
+ p/ 1,0 J,('”)e_wf |:(X,,dK, - X,dV,) + Em,, |G,|2] dr, a.s.
t
But

p .
Jspls<0 = Js,\g,

hence we deduce that
s R s R
I+ p / 1.0 JPe=2%dD, + py / 1y JPe2 G, dr
t s t
<l 0 [ L BV (X, G B

s t
o 1
—l—p/ 1, J,(”)e_zv' |:dDr + (X,,dK, — X,dV,) + (Emp + y) |Gr|2} dr,
t

and using the assumption (6.79) it follows that for any stopping time 8 and for all
0<t<s,P-a.s.:
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s s
Jsp1s<9 + p/ 1.2 Jr(p)e_zvrdDr + p)// P Jr(P)e—ZV, |Gr|2dr
t t

s
= JtI;\O +p 1,9 Jr(P)e_ZVr <Xr» G,dB,)

t

s s
+[7/ 1,26 er_ler?éOe_ZVYIPZﬂJRr + P/ 1,9 er_llXﬁéOe_VrdNr-
t t

(6.80)
Since forall T > 0:

T, 2 T
/ ‘J,(”)e_ZVfX,*Gr dr < sup [e_pV’ |X,|P—‘] / G, | dr
0 re[0.7] 0

< o0, P-as.,

it follows that forall 0 < ¢ < s:

/ JPe=2Vrdp, + y/ J e |G, P dr < 00, a.s.
t t
For each n € N* we define the stopping time
Lo ' 1
9,1 = inf%t >0: / er_ IX’,¢0€_2Vr1p22dRr +/ er_ lxﬁéoe_V’dNr

o ) 0 6.81)
+/ )J,(”)e—erX,*G,) dr> n}.
0

Note that for 6 = 6,
t
M!'=p / 15,07 (7" X,,e™" G,dB,)

0

is a martingale and consequently, for all 0 < ¢ <'s:

N R N R

Ef’/ 1,0, Jr(p)e_zv’dD, + y]E}—’/ 1,20, Jr(p)e_zvf |Gr|2dr < 00, a.s.
t t

Step 2. Proof of the inequality (6.75).
In view of the first step, the assumption (6.73) yields (6.80) with y = 0 and R =
N = 0, from which we deduce

s
E7 JP1,g, + pET / 1o, JPe™?7dD, < J], . as., (6.82)
t
and passing to the limit as n — oo (the first two terms converge monotonically and
the third one converges a.s.) the estimate (6.75) follows in view of Remark 6.73,
since R = 0.
Step 3. Proof of the inequality (6.77).
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(A) Let y > 0. From (6.80) we have

N
E7" sup (erl,-<9n) + pIEf’/ 1,0, Jr(p)e_w’dD,
t

relft,s]

+ pyE” / 126, /P eV G, | dr

t
<2JP, +2pE” /t 1<0, J7 21y, 20¢ 2" 1 ,52dR,

s
+2pE / 1o, 7 1y, o~ "dN,
t

+ 2pE%" sup

u€lt,s)

/ 1,.9,J e " X*G,dB,
t

By the Burkholder—Davis—Gundy inequality

2p BTt sup

u€lt,s

gspEﬁ\//‘
t

s
<6pE” \/sup Jr(p)e*ZVr |X,|2 1,0, \/[ 1<, Jr(p) le=Vr G,|2dr

reft,s) t

/ 1"<9n jr(p) (e_VrXr’ e_Vr GrdBr)
t

~ 2
1r<9n Jl‘(p)e_ZVrXr*Gr‘ dr

=

N
B sup (J/1,4,) + 9p*A EF / 126,57V G, " ar,
t

reft,s)

> =

for all A > 0. Hence

1 S N
(1 — —) E7 sup (J71,<0,) + p]Ef’/ 1,20, /" e 2" dD,
A reft,s) t
N
+p (y — 9pA) EF [ L, /7 |G, | dr
t
N
< 2.][1;\9" + 2p ]E]:’[ 1r<0,, er_zlxr?g()e_zv’ 1p22dRr
t

K
+2p E]:l/ 1r<9,,er_llX,-aé()e_VrdNr-
t

Let y = 9pA, A > 1. By Holder’s inequality
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N S
2pES / 1,20, J7 21y, 20¢ 72" 1 )>0dR, + 2pE”" / 1,20, J 7 "1y, 20¢”"7dN,
t t

reft,s]

s
= sz}-t |:Sup (er_le,#01p221r<9,,)/ e_zvrlpzzdRr]
t

+ 2PE]:’ |:Sup (er_ler7é()1r<0n) / e_VrdNr:|
¢

relt,s]

1 1 F F Rt P2
< 3 1-— T E”" sup (J,p1r<9n) + Cp E e ""1,52dR,
t

reft,s)

s P
+ C,,E” ( / e_V’dN,)
t

We deduce from the above that

s
E]:z sup (erll-<9,,) =+ ]E]:t/ 1r<<9,, Jr(P)e—erdDr
t

relt,s]

s p/2 s P
<Cpa Jt’j\en + E* ([ e_ZVflpzzdR,) + E7 (/ e_V’dNr) .
t t

(6.83)

The argument used in order to take the limit in (6.82) yields as n — oc:

E]:t sup le +Eft/ jr(p)e_zvrdDr < Cp,)t [Jtp

relt,s] t

K r/2 s P
+E7 (/ e‘zV’IpzzdRr) + E* (/ e_V’dN,) ]
t t

(B) From (6.80) for p =2,y = 1 and 8 = 6, we have

(6.84)

JZAO,, +2/ 1,9, f,(Z)e_ZV'dDr +2/ 1,4, jr(z) ‘e_V'Grlzdr
t t )

N

s s
< Jt2/\9,, + 2/[ 1,0, 1Xr7é()€_2VrdRr + 2/[ 1,0, J,~1Xr;é0€_V’dNr

s
+2 [ Lo, JP (e X,,e7""G,dB,).
t

which yields

s /2 s p/2
i ([reainemn) s ([niticvor)
t t

s p/2
<C,J+C,E" ( / e—ZVrl,,szR,)
t
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s p/2
+ CP E]:t sup (er/21r<9u) (/ e_VrdNr)
relt,s] t
p/2
+C, E7 sup

u€lt,s)

/ 1’<9n jr(z) <e_Vr Xra e_Vr G,«dB,)
t

By the Burkholder—Davis—Gundy inequality (2.8)

p/2?
c, E7 sup

u€lt,s]

S
< ) B ( / 1,2,
t

K
< C;]Ef[ sup (er/21r<9n) (/ 1"<<9n jr(Z) |e_VrGr|2dr)
t

relt,s]

/ 10, fr(z) (e_V’ X, e " G,.dB,)

t

R 2 p/4
JPe X6 dr)
p/4

1 $ - p/2
<C,/E” sup (J/1,.4,) + EETH (/ 1,20, J@ |€_VrG,|2dr)
t

relt,s]

Hence

s . p/2 1 s . 5 p/2
E” ( / 1r<9nJ}2’e‘2Vder) + B ( / 1,20,/ eV G, | dr)
r t

s p/2 s 14
<C, |:]Eff sup J/ + E7 (/ e‘zvflpzzdR,-) +E% (/ e_V’dN,) :|
relt,s] t t

(6.85)

We take the limit as n — oo in the last inequality and the estimate (6.77) follows
from (6.84), (6.85), Remark 6.73 and the identity

le™" X Iz

p/2’
relt.s] (1 +4 ”e_VX"[Zt,s])

This last fact follows from the increasing monotonicity of the function

rp
rl—)m . [0,00[—)[0,00[
+or

The proof is complete. n

We shall give a supplementary result in the case when R, N, V' are deterministic
functions.
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Corollary 6.76. Let X € S((z) be a local semimartingale of the form

t
Xt = X() + Kl‘ +/ GSdB_y, t 2 0, P‘a.s.,
0

where

O K €89 K. €BVi([0.00[;RY), Ko =0, P-as.;

O GeAd,.

Assume that there exist

s p> l,mpglv(p—l);

e two continuous increasing deterministic functions R, N : [0,00] — [0, 00],
R (0) = N (0) =0, and

* a continuous deterministic function with bounded variation V : [0,00[ — R,
V(0) =0,

such that as signed measures on [0, co|:
1
(X;, dK:) + 5m, |G, dt <1,52dR (1) + | X,|dN (t) + | X,[?dV (t).  (6.86)

Define

Q@) =2R(1) 1=+ N (1),
PO)=(p-2)RMO1p=+(p-DN@)+pV () and

t
M) = f e "a0 (r).
0
Then forall§ > 0and 0 <t <s:

|X5|pe_P(S) < |Xz|p e~
p/2 — /2
(1+81X.F) (1+381x.P)

In particular for § \(Oand 0 =1t < s:

+ M (s)— M (1). (6.87)

@ e "UE X7 <E [Xo|” + M (s),
1

oo 1 )
(b) / e—P(S)—alM(S)—)LS (E |Xs|p) ds < X (E |X0|p + _) (6 88)
0 o

forall o, A > 0.

Proof. We follow from (6.80) the first steps from the proof of Proposition 6.74 but
now
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X .
J, = le and Jr(p) -

(1 +5|X,|2> ! (1 81X,

1 X" 7% 1y, %0
)(P+2)/2

and 6 = 6, is defined similarly.
From the inequality (2.28) in Corollary 2.28, we have forall0 <7 <

E (JYIJIAY<9")
<EJ?

SAOy
N A 1

<EJ], + pE/ 1,9, JP [(X,,dl(,) + 5y |G,|2} dr
t

<EJ?

tAB,
s
+ pE / Lo, [J7721x, 20, 1p22dR (r) + JP "1y, 20dN (r) + JFaV (r)].
t
Taking into account that

2 p-2 1 p-1
Iy o< =+ 27200 and JP My g0 < — + 2
P p p

JP,

r

and passing to the limit as n — oo we have forall 0 <t < s:

s N
EJ <EJ"+ 2/ 1,52dR (r) + / dN (r)
S ! t

+/ [(p—2)1,52dR(r) + (p — 1)dN (r) + pdV (r)|E(J/). as.,
t
that is
S S
EJ? <EJ/ +/ do (r) +/ E(er)dP (r).
t t
By Gronwall’s inequality (Proposition 6.69), we have forall 0 <7 < s:

N
e PORJP < e POE P + / e~ P0ago (r),

t

and the inequality (6.87) follows. The inequality (6.88-b) clearly follows from (6.88-
a) using the elementary inequality

1
—e ™, forall x,y,8,A>0and o > 0.

o

ye—x—ay—h <
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Let X, X € Sg be two semimartingales given by

X, = Xo+ K, + [, GsdB,, t >0,

NN p 6.89
X; = Xo+ K, + [, GydBs, t >0, (6.89)

where
O K,Ie e SO
O K. (0), K. () € BV ([0,00[;RY), Ko (w) = Ko () =0, P-as. w € Q;
O G.GeAl,.
(FB'): Assume there exist p > 1 and A > 0 and a P-m.b-v.c.s.p.V,Vy = 0,
such that as measures on [0, oo[:

2 ~
dr < | X, — X,|*dv,.
(6.90)

. A 1 ~
(X, = Xk, —dR) + (zmp + 9pA) 6. -6,

Corollary 6.77. Let p > 1 and A be a P-m.i.c.s.p., Ay = 0.
(I) If the assumption (6.90) is satisfied with A = 0, then forall § > 0,0 <t <s:

e Vst )| x, %, |7 P $ e=PWrtan |y, %, |
AL A
(1+8€ 2(V;<+Ar)|Xr_Xr| ) t (1+5€72(V,+Ar)|Xr_Xr| )

e—P(Vi+Ar) |Xr_)2r |p

EF:

< , P—a.s.
(|+5(,—2(Vr+Ar) |X,—)?, |2)p/2
In particular for § = 0
Fi = p(VitA o7 mE [ —p+a o |7
EFte—p(Vst+4s) ’Xs —X,| +EF | e~pit DX, — X,| dA,
t
S e_p(Vt+At) ‘X[ — )2[ B P'a.s.,

forall0 <t <s.
(Il) If the assumption (6.90) is satisfied with A > 1, then there exists a positive
constant Cp, ;. depending only on (p, A) such that forall § > 0,0 <t <s:

—V—A(x_$)II? S 2t | x, %, p/2
I L )||M)m LR ( / . | lz)sz,)
t

(1+8||e*V*A (x—%) ||[2m] (1+8e*2Vr*2Ar |Xr—A)?,|
e—p(Vet+Ar) IXt_Xt |F

<Cpa P-a.s.

B (]+8e—2(Vr+A!)|X,—)?,|2)p/2’

In particular for § = 0
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R P K 12 r/2
EF ( eV (x - X) oy TE (/ e 20t | x, _ X, dA,)
t,s ¢

o |P

< Cp.)t e_p(V[+At) Xl - X[ B P'a.s.,
forall0 <t <s.
Proof. Since the assumption (6.90) is equivalent to
A N 1 ~ |2
dD; + (X, = X, dK, — d R} + (Em,, + 9p/\) (G, — G| ar

<X, = X/)2d (V, + A)),
with

.2
X, —X,| dA,,

t
Dlz/
0

the results clearly follow from Propositions 6.71 and 6.74 applied to the identity

X,—)?,=X0—)20+(K,—IQ,)—i—/Ol(GS—CA?S)dBS.

Since

1
E(r/\l)f Al, Vr=>0,

1+r?) /
we have:

Corollary 6.78. If the assumption (6.90) is satisfied with A > 1 and p > 1, then
there exists a positive constant C,  depending only on (p, 1) such that P-a.s.

1

E” [1 A He_V (X — X)

' } = Cpa[1n ’e_Vf (X - %)

[£.5]

forall0 <t <s.

6.4.4 Backward Stochastic Inequalities

Let {B, :t > 0} be a k-dimensional Brownian motion with respect to a given
stochastic basis (2, F, P, {F},>), where Ff is the natural filtration associated
to{B, : t > 0}.
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Notation 6.79. For p > 1 define

npdgl/\(p—l).

In this subsection we shall derive some estimates on (Y,Z) € S0 x A% .
satisfying forall 7 > O and ¢ € [0, T]:

T
Y, = Yr + (Kr — K)) —/ Z.dB,, P-as., (6.91)
t

where K € S0 and K. (w) € BV, (Ry;R™), P-as. w € Q.
We note that if the interval [0, T'] is fixed then the equality (6.91) will be extended
toRy by Y, =Yr,Ks = Krand Z; =0foralls > T.

Proposition 6.80. Let (Y, Z) € S, x A0, satisfy
T T
Y, = Yr +/ dK, —/ Z.dB,, 0<t<T, P-as.,
t t

where K € S° and K. (w) € BVjpe R4;R™), P-a.s. w € Q.
Assume given

A three P—m.i.c.s.p. D, R, N,Dyg=Ry=Ny=0,
A aP-mb-vesp. V,Vy=0,
A 1two stopping times T and o such that0 <t < o < oc.

(A) If A <1,q > 0and
2 A 2
dD; + (Y;,dK,) < dR, + |Y,|dN, + |Y,|*dV, + > |Z:|" dt,

then there exists a positive constant Cy 5, depending only on (q, A), such that

o q/2 o q/2
E* ( / e2VrdD,) +E% ( / ezV"|Z,|2dr)

o q/2 o q
92
< C,:E” |: sup |eV5Ys}q + (/ ez‘/des) + (/ eVSdNS) :| , (6.92)
s€lr.0] T T

P-a.s.

(B) IfA <1< p,

n
(i) dDy + (Y, dKy) < (1p=0dR, + [Yi[aN, + Y, PdV,) + A |Z, [ d.

(i) E sup e?"|Y;|? < oo,
s€lr,0]

(6.93)
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then there exists a positive constant C, ;, depending only on (p, L), such that
P-a.s.,

o p/2
E*: | sup }eVSYS]p + E7 (/ eZVdeS)
s€[r,0] T
o p/2
+E7 ( / e2V.v|zS|2ds)

o

47 [ 1y adD, + B e 1 1y 0|2, ds
T

T
o /2 o P
=Cpa E7 |:|eVaYa|p + (/ eZVSlpzﬂlRS) + (/ evsts) :|
T T

(6.94)
Proof. Step I.
By the It6 formula, we have forall 0 <t < s:
S S
Y[+ / N Z, P dr = |V, + 2] ' (¥, dK,) = 1Y, av, )

t t

N
—2/ eV (Y, Z.dB,), a.s.
t
Since
(Y,.dK,) —|Y,[*dV, < —dD, + dR, + |Y,|dN, + = |Z| dr,

we get

Y, |? €2V +2/ e?VrdD, +(1—A)/ 2\ Z, | dr

g s (6.95)
< |Y,|* &2 +2f 2" dR, +2/ Vr|Y,|dN,—2/ e (Y,, Z,dB,).
t

t t

Let the stopping times 0 < 7 < 0 < oo and

sVt

6, =0 /\inf{s > HeVY —erYf“S +/ e?dD, + fj 2V |Z,|2dr

S\/‘L'T sVT
+/ e?VrdR, +f edN, = n}.
T T

We have 7 < 6, < o and 6, /' o P-a.s. Replacing in (6.95) ¢ by  and s by 6, we
obtain
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9,, 9/1
2/ eZV’dDr—i-(l—)k)/ e\ Z. ) dr

ell
< |Yg, |* ¥ + 2] e?"" (dR, + |Y,|dN,)

T

011
— 2/ e?V (Y,, Z.dB,)
T

On
< |Yg,|*e*n 4 sup 1pq, (r) e Y,|2 + 2[ e*Vr dR,
] T

refr,o

2
6, o
+(/ eVrdN,) —2/ 116, (1) &2V (Y,, Z,dB,) .

Moreover, by Minkowski’s inequality we infer for all ¢ > 0

0,, 0n
E7 ( / eZV»-dD,) + B ( / e |Z,|2dr)
T T

I q/2
< Cq.AE]:’ sup |eVrYr‘q + Cq.AE]:’ (/ ezv’dRr)
T

relr,ol

q/2 q/2

o q q/2
—i—Cq.)LE]:f (/ €V’dNr) + Cq,)L]EfT
T

/ Lio,) (r)e*" (Y,, Z,dB,)

T

(6.96)

But by the Burkholder—-Davis—Gundy and Cauchy—Schwarz inequalities, we get

o q/2
C, E” / 16, (r) €2 (Y,, Z,dB,)

T

o q/4
= Cq,AEFT (/ l[r,Gn] (r) e4Vr |Yr|2 |Zr|2dr)

F Vv 14/2 ’ 2, 2 av
< CpuE” sup](l[f,e,l](rnerm (] teon e 1z P ar

relt,o

q/2
1 b
< Cé’AEFf sup |eV'Yr|q + EEE ([ eV |Zr|2dr) .

ré€(r.0,]

On
Since f e2r | Z,.|? dr is finite, from (6.96) we infer
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On t]/2 1 O
EF: </ eZV’dDr) + EE}} (/ eV |Zr|2 dr)
o q/2 o q
< Cya |ET* sup | Y, |" + E7r (/ eZVrdR,) + E* (/ eV’dN,) :
r€fz.o] T T

(6.97)

q/2

By the monotone convergence theorem as n — oo the inequality (6.92) follows.
Step II. Let us first assume that p > 1.
Noting that

t t
ey, = YO—/ e’ (dK,—Y,dV,)—}—/ e Z,dB,,
0 0

then by the inequality (2.30) from Corollary (2.30) we get, for p > 1 and for all
stopping times ¢ € [, 0]

On
PN+ By [ e 87 1y 012, P < e 11y,
t
6n
+p/ L ALES W ((Y,,dK,.) - |Y,|2dv,) (6.98)

t

1vo,
—p/ e?Vr 1Y, " 1y, 40 Yy, Z,dB,) .
t
We note that the right-hand side of (6.98) is finite P-a.s. and consequently
9/1
0< np/ eP Y|P 1y, 0 | Z, )P dr < 00, P-ass.
By the assumption (6.93)
2 np 2
(Y,.dK,) — |Y,|*dV, < —dD, + (1,52dR, + |Y;|dN,) + 7)& |Z,|” dr.

It follows that

o
e?V |V, + P/ 16, (r) e |V, P72 1y, 2odD,
t

P ’ - 6.99
2, =2 [ty 0 141 g0 Z, Par O
t
< 7 ¥y, |7 + Uy, — U~ (M, — M),

where

N
U, = p / Lirg,) (r) €”" Y, P2 1y, 20 (1,22dR, + |Y,|dN,) (6.100)
0
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and
g 2
M, =p / 1) () e Y72 1y, 4o (Vy. Z,odB,)
0

Note that {M; : s € [0, T']} is a martingale since

1/2
On
Ey<M>7 < pE (/ eV |Yr|2p_4 1y, 4o |Y;-|2|Zr|2d’")

0, 1/2
< pE (|erYf|+n)”‘1 (/ eV |z,|2dr>

= C, (Ble" ¥ +nr7) Vi
Therefore from (6.99),
e’V Y|P < EBTrePYon |Yy |P + BT (U, — U,). (6.101)

From here we assume that p > 1. From (6.99) we also get

0“
pE7 [ e %1772 1y o,

6,
n _ 6.102
#2n, = nE [yt iz par O

T
< 7t ePVon |Ye,|? + E7~ Uy,
Since

sup |My — M| <2 sup [M, — M| =2 sup [M,],

t€r,0] t€r,0] telr,o]

we obtain from (6.99) that

E7* sup (e?" |Y;]”)
t€[z.,6,]
6.103
< B o?Vo Yy, [P + B Uy, — Up) + 285 sup (b, O

telr,6,]

By the Burkholder-Davis—Gundy inequality (2.8) and (6.102):

E” sup |M,|

t€[r,0]

o 1/2
<3pE* ( / 1js, (r) eV |V, P74 1Y,¢0|Yr|2|zr|2dr)
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1/2

O

<3pE% | sup e/ |y, P (/ P Y, 1P 1y, 40 | Z, d”)
relr.0,] T

IA

1 On
JE7 sup (" [Y,|7) + C) B / P Y P Uy, 0| Z, | dr

relr.0,] T

1
< -E”* sup o' |V, |7 + C, BT eV |Yy, |P + Cp a7 (Up, — Uy).
relr,o,]

Plugging this last estimate into (6.103) we obtain with another constant C), ,

EF* sup e?V|Y,|? < CpaE7 PV Yy |P + CpaE7* (U, —U,). (6.104)

r€lz,0,]

We deduce from (6.102) and (6.104)

On
EFc sup eP" |Y, |7 + Efff e |Y,|P7* 1y, 20dD;
relr,0,] T
9”

+u<:fr/ PV Y, 1P 1y, 20 | Z, | dr
< CP_AE]:T ePVon |Y9n|p + CPTAE]:T Uy,

But
C],’AE]:’ (U@n — Uf)
= CP.)LE]:T |: sup I:e([)—Z)Vr |Yr|p_2 IYﬁéOlpzz:I/ ZV' p>2dR :|
relr.o,] T
+ET | sup [ =DV |y, |7~ IIY;AO]/ e"dN,
relr,0,]
1= ¥, ! mF o2V P/
< ZE7 sup ™ |V, |7+ C) ]Er( ’1p>2dR)
relr,0,]
+C1’)_A]Eff ([ eran,)".
T
Hence

6n
E7: sup ePVr Y, | —}-E]:’/ ePVr |Yr|p_2 1y, £odD;,
refr.6,] T

9}1
+ H«:fr/ eP Y|P 1y, 20| Z, | dr
T
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o r/2
< CP.AEJ-‘I epVen |Y0n|1) + Cp,/\Efr (/ eZV"I,,szR,)
T

+ Cp BT (/Uev’dN,)p .

T

Now letting n — oo, by the Beppo Levi monotone convergence theorem for the
first member and by the Lebesgue dominated convergence theorem for the right-
hand side of the inequality, we conclude (6.94) (using of course the first step:
inequality (6.92)).

The proof is complete. |

Corollary 6.81. Let (Y,Z) € S5 x AY . satisfy
T T
Yi=Yr —i—/ dK; —/ ZydBg, 0 <t <T, P-as.,
t t

where K € S0 and K. (w) € BV o R4;R™), P-a.s. w € Q.
Assume given

A D and N are P-m.i.c.s.p., Ny = 0,
A VaP-mb-vcsp., Vy=0,
A 1, 0 and o are three stopping times such that0 <t < 0 < o < co.

If
(a) dD; + (Y. dK,) < |Y;|dN, + |Y;|*dV,,
b) E sup |eV»"Yx| < 00,

s€lr,0]

then

o
e’ |Y,| <ETte" |Y,] +]Efr/ e""dN, (6.105)

T

andforall 0 < a < 1

o a2
sup [E (" [Yo)] + B sup [e"Vi[" | + E(/ eZV’IZrIZdV)
f€lr.o] s€lr,0] -

o /2

([ )

T

<c, [(E (" |Yg|)) + (E/Taev"dN,)a} .

(6.106)

5
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Proof. From (6.101) for p = 1 we deduce, using the definition (6.100) of U, that
e Y| < EF eV |, | + BT U,

o
<Ee"n |Y,, | + ET* / e""dN,
and the inequality (6.105) follows as n — oo. Moreover
a
sup E(eV" [Ys]) < E(ev“ 1Ys]) + E/ e""dN,
f€lr,o] T

and by the martingale inequality (1.11-A3) from Theorem 1.60 we infer

a 1 o *
E| sup ]eVSY5| < — |:IE (ev" |Ys| +/ eV’dN,)j| .
s€[r,0] l -« T

The inequality (6.106) is now a consequence of (6.92). |
Corollary 6.82. Let (Y, Z) € S5 x AY . satisfy

m
T T
Y, =7Yr +/ dK —/ ZdB;, 0<t<T, P-as.,
t t

where K € S and K. (w) € BV o (Ry;R™), P-a.s. 0 € Q.
Assume given

A aP-mb-vcsp.V,Vy=0,
A 1, 0 and o are three stopping times such that 0 < t < 0 < ¢ < o0.

IfA<1<pn,=1A(p—1)and

@  (Y.dK,) < |Y,[2dv, + ’%PA \Z, P dt,
(b) E sup e?" |Y,|? < oo,

s€[z,0]
then foralll < q < p,
eV Y |7 < EF e |Y, |7, P-a.s. (6.107)

If p > 1then

o p/2
E sup e’ |Y,|” + E ([ eV |Z,|2dr) < C,,,,\E(epv” |Ya|]’),

s€[r,0]
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and if p =1 (andn, = 0) then for all 0 < a < 1,

o o a/2
sup (Ee" |Yg] ) +E sup e |¥|" +E (/ e”’lzrfd’)

felr,o] s€lt,0]

sca(JEeV”lYal)

(6.108)

o
Proof. Since

q/p
E sup e/ |Y|? < (E sup e?" IYsI”) < 00,

s€lr.o] s€lr,0]

the inequality (6.101) with p replaced by ¢ yields (6.107). The next two inequalities
follow from Proposition 6.80 and Corollary 6.81, respectively. |

Corollary 6.83. Let p > 1 and (V}),~, be a bounded variation continuous
progressively measurable stochastic process with Vo = 0. Let T > 0 and
n : Q — R be a random variable such that E (sup,cp ) e?" [n|’) < oc. If
(£,0) e SH[0,T] x A?_ [0, T] satisfies

mxk

T
& = E}-Tn—./ {dB,, s €[0,T], as.
N

(the pair (€,0) exists and it is unique by the martingale representation: Corol-
lary 2.44), then there exists a C = C (p) > 0 such that for all t € [0,T], for
p>1

T p/2
E7t sup e?"s |& |7 + E” (/ s |{‘S|2ds) <C, ES ( sup PV |77|”)
t

it rel0.7]
(6.109)
and for p = 1
. o Ve | ! 2V, 2 o
s (Ee5|§5|) +E supepoqy e"&|" +E (fo e 14| ds) (6.110)

o
< Cu (B (supyepo.ry " Inl)) . forall0 <o < 1.

Proof. We see at once that the stochastic pair (&, ¢) satisfy the equation

T
£ =t — [ tudB,. 1 € [0.T]. as.
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The stochastic process V, = SUP,efo,] Vss V is increasing continuous progressively
measurable and V) = 0. Since for all 7 € [0, T']

B [eVg| = [efis| = e [En] < BFel gl <EFeT @11

by Proposition 1.56 we infer for all p > 1

E |¢e Hm] (%)pE(epVT|ﬂ|p)<oo

and consequently by Proposition 6.80-B (for (Y, Z) = (§,{) withA =0, K = R =
N = 0,dD, = |&]*dV) the inequality (6.109) follows; we also use that V < V
and

E”

_ .
evrér‘ =E” UeVTE}—Tr]

14
] < EF |o'r

In the case p = 1 we have for all 0 < « < 1, by Proposition 1.56

E sup e |§]° <E sup ’5 ) < — <EeVT |n|> (6.112)
t€l0,T] t€l0,T]

and by Proposition 6.80-A

T /2 5 o
E (/ e |§S|2ds) <CE sup |e"g (6.113)
0 t€f0,T]
Also we can see that from (6.111) E ‘6‘7’%} <E (eVT |r]|> and therefore
Vi Vr
sup E |e &’ §]E(e |n|> (6.114)
tel0,T]

From (6.112)—(6.114) the inequality (6.110) follows. |

Let (Y, Z),(Y,Z) € S0 [0,T] x A°

mxk

(0, T) satistying for all ¢t € [0, T]:

T T
Y, =Yr +/ dK —/ Z,dB;, P-as.,
t t

and respectively

T T
Y, =Yr —|—/ dK; —/ ZdB;, P-as.,
t t
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where
O K.KeSP,
O K. (), K. (®) € BVjpe ([0, 00[; R™), P-as. w € Q.

Assume there exist A < 1 < p and V a P-m.b-v.c.s.p., Vo = 0, such that as signed
measures on [0, T]:

~ A ~ ~ |2
(Y, — ¥, dk, —dK,) < |Y, = V,Pav, + Z2A |z, - Z,| a, (6.115)
2

wheren, = 1A (p —1).

Corollary 6.84. Let A < 1 < p be given. Let the assumption (6.115) be satisfied
and {A; : t > 0} be a P-m.i.c.s.p., Ay = 0, such that
P

) < 00.

E sup (ep(A,+m Y, - ¥,

1€[0,T]

Then forall0 <t <T,

€th YT—YT

A |P
Y, — Yt‘ < E7 (ePVT

p
) , P-a.s.

Moreover if p > 1, then

P
dAg

A

E7 ( sup eP AtV |y, — ¥ Y, — Y,

s€t,T]

P T
+ ]E]:I / eP(A:+Vs)
I3

2 p/2 T 2 r/2
dAs) + E% (/ XAV ‘Z‘Y - ZS‘ ds)
t

< Cp.)kE]:t eP(AT+VT)

T
LR (/ Q2A V) ‘yX _7,

t

A |P
YT—YT‘ s ]P-Cl.S.,

where C, ; is a positive constant depending only on (p, A).

Proof. The results clearly follow from Corollary 6.82 and the inequality (6.94) from
Proposition 6.80, applied to

T T
Y- ¥, =YT—YT+/ d(KS—KS)—/ (2.~ 2.)as..
t t
satisfying

N N ~ ~ 12
D, + (Y, — V,.dK, —dK,) < |Y, — V,[’d (A, + V}) + %’A)Zt ~ 7, ar
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with

dD, = |Yt - );t|2dAt~

6.5 Annex D: Viscosity Solutions

The aim of this section is to introduce the notion of viscosity solutions to second
order elliptic and parabolic PDEs and give uniqueness results for such solutions.
This notion, which was invented by Crandall and Lions, allows us to state that a
continuous function satisfies a PDE, without any differentiability requirement on
that function. This notion has been invented specifically for nonlinear equations, for
which the notion of weak solutions in the sense of distributions is not convenient.
We use this notion here for linear and semilinear equations.

This section is divided into four parts. In the first part, we state the main
definitions of viscosity solutions to elliptic and parabolic PDEs (or systems of
PDEs). We prove three uniqueness results in the next three parts. We do not prove
any existence results, since such results for the equations considered in this book
are provided by our probabilistic formulas. Concerning uniqueness, it would be too
long and repetitive to give a uniqueness result for each PDE considered in this book.
The last three parts of this section give uniqueness results, corresponding to three
large classes of semilinear PDEs or systems of PDEs. All other relevant results can
be proved by combining the arguments given in those three proofs.

The first uniqueness result concerns an elliptic PDE with Dirichlet boundary
condition at the boundary of a bounded set. We shall also explain how the proof
can be adapted to the parabolic case. The second result treats the case of a system
of parabolic PDEs in the whole space. Finally the third result concerns a parabolic
PDE with subdifferential operators and nonlinear Neumann boundary condition.

We refer to the well-known “user’s guide” of Crandall et al. [18] for more details,
which complements the material presented here.

6.5.1 Definitions

Let O be a locally closed subset of RY, that is for all x € O there exists a § > 0
such that O N B (x, §) is closed.

A function 7 : © C R? — R is lower semicontinuous and we write 2 € LSC (O)
if there exist {h,, n > 1} C C(O) such that

By (x) < <hy(x) <-- < h(x) and lim hy(x) = h(x), ¥ x € O.
n—>o0
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The function 7 : © C R? — R is upper semicontinuous and we write i €
USC (O) if —h is lower semicontinuous.
In particular for all R > 0 we have

() inf  h(x) > —oo, ifh € LSC(O),
x€0, |x|<R

(if) sup  h(x) < oo, ifh e USC(O).
x€0, |x|<R

6.5.1.1 Elliptic PDE
Consider the PDE
®(x, u(x), Du(x), D*u(x)) =0, x € O, (6.116)
where
®:OxRxR!xS! > R,

and S? denotes the set of symmetric d x d matrices.
Definition 6.85. (i) u € USC(O) is a viscosity sub-solution of (6.116) if for any
@ € C?(0) and £ € O alocal maximum of u — ¢:

(£, u(), Dp(), D*¢(%)) < 0.

(i) u € LSC(O) is a viscosity super-solution of (6.116) if for any ¢ € C%(O) and
X € O alocal minimum of u — ¢:

D(%, u(%), Do(%), D*¢(%)) = 0.

(iii) u € C (O) is viscosity solution if it is both a viscosity sub- and super-solution.
In these definitions we can also assume that u(X) = ¢ (X) since we can
translate ¢.

Note that the class of PDEs for which probabilistic formulas are given in this
book is the class of semilinear equations, where the function ® has the following
particular form

1
o(x.r, p, X) =—>Tr [¢()g"N)X] = (f(x).p) = F (x.r.p).  (6.117)

In the Definition 6.85 we can replace local maximum (minimum) by strict global
maximum (minimum).
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Remark 6.86. Let O be an open subset of R? and u € C%(0O).

(1) If u is a viscosity solution of (6.116), then u is a classical solution.
(i) If u is a classical solution of (6.116) and ® satisfies the degenerate ellipticity
condition

X <Y = d(x,r,p,X) > D(x,r,p,Y), Vx,rp,

then u is a viscosity solution.

Definition 6.87. A function u € USC(O) satisfies the maximum principle if for all
@ € C?(0) and all open subsets D C O the inequality

®(x, ¢(x), Do(x), D*p(x)) > 0, Vx € D
implies that at every X € D which is a local maximum of u — ¢:
u(x) <o (x).
Proposition 6.88. Let O be an open subset of R¢ and
r<s = ox,r,p,X)<o(x,sp,X),Vx,p, X.

Then each viscosity sub-solution u satisfies the maximum principle.

Proof. If we assume that there exist ¢ € C2(Q), an open subset D C O such that
®(x, u(x), Do(x), D*p(x)) > 0, Vx € D,
and X € D alocal maximum of u — ¢ such that u (X) > ¢ (X) then
(%, (%), Dg(%), D*¢(R)) < ®(%, u(%), Do(%), D*¢(%)) < 0,

since u is a sub-solution. Hence necessarily u(x) < ¢(X). |

We next introduce the notion of a proper function (in the sense of the theory of
viscosity solutions, which should not be confused with the notion of proper convex
function), for which the notion of a viscosity solution makes sense.

Definition 6.89. A continuous function
®:OxRxR!xS! >R

is said to be proper, if ® satisfies:
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(1) Monotonicity condition
r<s = ox,r,p,X)<®x,s,p, X)), Vx,p, X,

and
(2) Degenerate ellipticity condition

X <Y = ®(x,r,p,X) > O(x,r,p,Y), Vx,r,p. (6.118)

Definition 6.85 of a viscosity solution can be reformulated in terms of subjets
and superjets of u.
Definition 6.90. Let O be a locally closed subset of R, u:0O —>Randx € O.

() (p.X) € R? x S? is a superjet to u at x if

u(y) =) —(py—x)= 3 (X(y=x).y=x) _ 0
[y—x[? -

lim sup
O3y—>x

The set of superjets to u at x will be denoted Jé’+u(x).
(i) (p,X) € R? x S is a subjet to u at x if

liminf"(“V)_"(x)_@'y_x)_%(X(y_x)’y_x) >0
Osy—x ly=x]? -

The set of subjets to u at x will be denoted Jé’_u(x).
If © = RY, then the index @ will be omitted.
Proposition 6.91. Let O be a locally closed subset of RY.
(i) Letu € USC(O) and x € O.
(a) If (p,X) € J(29’+u()~c), then there exists a ¢ € C*(O) such that u(x¥) =
(%),
(P X) = (¢(5). 911, ()

and X is a strict global maximum of u — ¢ in O.
(b) If ¢ € C*(0) and % is a local maximum of u — ¢ in O, then

(92 (). 91, (D) € J5Tu(®).

(ii) Letu € LSC(O) and x € O.

(@) If (p,X) € Jé’_u(fc), then there exists a ¢ € C2(O) such that u(¥) =
¢ (%),
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(p. X) = (¢} (%). ¢}/, (%))

and X is a strict global minimum of u — ¢ in O.
(b) If ¢ € C*(O) and % is a local minimum of u — ¢ in O, then

(¢1(3). ¢ (D)) € I5Tu(®).
Proof. 1t is sufficient to prove (i) since J(Zo’_u(fc) = —Jé‘+ (—u) (x). Also the
equivalence is clear if X is an isolated point of O.
Let X be a non-isolated point of O.

(=): Let (p, X) € Jé’+u()~c). Then there exists a strictly increasing function
p = p% 1[0, +oo[— [0, +00[, p(0+) = O such that Vy € O

- - 1 - - - -
u(y) =u®) +{p.y = X) + Xy =)y = %) + oy — DIy — X[ (6.119)
One can define p by

(u(y)—u(@®)—(p,y—5)— L (X (y—%),y—7))
[y—%/? )

p(r)=r+ sup
y€O0, |y—X|<r

Let

1 2r 2r2 2}’1
B(r) = ﬁ/ / / ) (\/?) dtdridr,, forr >0,
r r r

and B8(r) = 0if r < 0. Then rp(/r) < B(r) < 8rp(8/r) forall r > 0, B €
C2(]0, oc[), B(0+) = B'(0+) = 0 and

}1\13(1) rB” (r) = 0.
Define ¢ € C2(RY) by
of . S| - - -
() L u®) + (poy =) + 3 (X = .y =8 + Blly - ).
Then

@L(X)=p and @] (¥) =X

and X is a strict global maximum of u — ¢ since for y € O \ {X}:

u(y) —o(y) < p(ly —%Dly — 2> = B(ly — %"
<0 = o(F) — u(®).



618 6 Annexes

(<): Let ¢ € C?(O) and ¥ be a local maximum of u — ¢. Let

V) =90 —e ) tu(x).

By Taylor’s formula
0= lim Y=Y =L (D) y—T)—3 (Y, D)y —5).y—F)
y—X [y—%[?
> limsup () —u®) (¢} (3).y—=%) = 3 (@l D) (y=F).y =)
- 712 .
y—=>Xx,yeO ly=%|

Corollary 6.92. Let O be a locally closed subset of R?.

(i) u € USC(O) is a viscosity sub-solution of (6.116) iff for any x € O and
(p.X) € J& u(x)

D(x,u(x), p, X) <0.

(ii) u € LSC(O) is a viscosity super-solution of (6.116) iff for any x € O and
(. X) € J5 u(x)

®(x,u(x), p, X) > 0.
2§&nition 6.93. Le_tzu_: O —Randx € O.
J & u(x) (respect. J 5 u(x))is the set of (p, X) € RY x S¢ such that there exists a
sequence (X, pu, X;) € O x R? x S, n € N*, with the properties
(pn, X)) € Jé’+u(xn), (respect. (pn, X,) € J5 u(x,)), ¥ n € N*,

and

(en, u(x), pus Xn) — (x,u(x), p, X), asn — oo.

6.5.1.2 Systems of PDEs

Backward stochastic differential equations naturally give probabilistic formulas for
systems of PDEs, not just for single PDEs.

Let O be an open subset of RY, ® € C(O x R” x R? x S¢;R™). We want to
explain what we mean by the fact that u € C(O,R™) solves in the viscosity sense
the following systems of PDEs

®; (x, u(x), Du; (x), D*u; (x)) =0, 1 <i <m, x € O. (6.120)
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Note that the various equations are coupled only through the vector u(x). The i-th
equation depends upon all coordinates of u(x), but only on the i-th coordinate of
Du(x) and D?u(x). This is essential for the following definition to make sense.

Definition 6.94. Let O be a locally closed subset of R¢.
e (i)u € USC(O) is a viscosity sub-solution of (6.120) if

D;(x,u(x),p,X) <0 forxeO, 1 <i<m, (p,X) € 739'+u,-(x).
e (ii) u € LSC(O) is a viscosity super-solution of (6.120) if
®;(x,u(x),p,X)>0 forxe O, 1 <i<m, (p,X) e 7é_ui(x).
o (iii) u € C(O) is a viscosity solution of (6.120) if it is both a viscosity sub- and
super-solution.
6.5.1.3 Boundary Conditions
We now discuss the formulation of the boundary condition in the framework of
viscosity solutions. Suppose for simplicity that the boundary dO of the open set

O is of class C! and that @ satisfies the uniform exterior ball condition. We shall
consider two types of boundary conditions, namely:

 Dirichlet boundary conditions, of the form
u(x) —k(x) =0, x€90;
e Nonlinear Neumann boundary conditions, of the form
(n(x),Du(x)) + G(x,u(x)) =0, x €d0O,

where n(x) denotes the outward normal vector to the boundary 0O at x.

Consider the function
Ir:90xRxR! >R
defined in the case of the Dirichlet boundary condition by
L'(x,r,p) =r—«(x),
and in the case of the Neumann boundary condition by

F(X,V,p) = (n(x),p) —G(x,r),
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where G € C(00 x R) and r — G(x,r) is assumed to be nonincreasing for all
x € 00. The correct formulation of the boundary value problem

®(x, u(x), Du(x), D>u(x)) =0, x € O,

F(X, Lt(x),Du(x)) = 0, X e a(’)’ (6121)

is as follows.

Definition 6.95. Let O be an open subset of R, ® € C(O x R x R? x S%) be
proper and I' € C(O x R x R?) be as defined above.

e (i)u € USC(O) is a viscosity sub-solution of (6.121) if

®(x, u(x), p. X) <0 forx € O, (p,X) € T3 u(x),
®(x, u(x), p. X) AT (x.u(x), p) <0 forx € 00, (p.X) € T o u(x).

e (ii) u € LSC(O) is a viscosity super-solution of (6.121) if

O(x,u(x),p,X)>0 forx e O, (p,X) € 725'_14()6),
®D(x,u(x), p, X) vI(x,u(x),p) >0 forx € 90, (p,X) € 7%_u(x).

e (iii)u € C(@) is a viscosity solution of (6.121) if it is both a viscosity sub- and
super-solution.

6.5.1.4 Parabolic PDEs

One might think that a parabolic PDE is an elliptic PDE with one more variable,
namely time 7. However, because we are considering equations with first derivatives
in ¢ only, the variable ¢ plays a specific role. In particular, there will be a boundary
condition either at the initial point or at the final point of the time interval, not at
both.

Given O C R? and ® € C([0, T] x O x R x R? x S?), we consider the parabolic
equation

9
a—?(l,x) + ®(t, x, ut, x), Du(t, x), D2u(t,x)), 0 <t < T, x € O,
u(0,x) = k(x), x € O,

(6.122)

where as previously, Du stands for the vector of first order partial derivatives with
respect to the x;’s, and D?u for the matrix of second order derivatives with respect
tox; and x;, 1 <i,j < d.Only in the case O = R4 can we hope that the above
parabolic PDE is well posed. If © # R?, some boundary condition is needed. This
will be discussed later.
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We denote by 73(29’Jr and 73(29’_ the parabolic analogs of J(29,+ and Jé’_. More
specifically, for O a locally compact subset of RY, T > 0, denoting O7 = (0, T) x
O,ifu:0r > R,0<s,t<T,x,ye0,(p.q,X) e RxR? xS we say that
(p,q,X) € 73(29’+u(t,x), whenever

1
u(s,y) <u(t,x)+ p(s—1)+{q.y —x) + §<X(y —X),y —X)
+o(ls —t|+ |y —x|2).

Moreover Pé_u = —73(29’+(—u). The corresponding definitions of 7_3§Q'+u(t, x) and
52_u(t, X) are now clear.
We now give a definition of the notion of a viscosity solution of equation (6.122).

Definition 6.96. With the above notation:

. (i) u € USC(]0, T') x O) is a viscosity sub-solution of Eq. (6.122) if (0, x) <
k(x), x € O and

p+ O, x,u(t,x),q,X) <0, for (t,x) € Or, (p.q. X) € Py u(t, x).

. (ii) u € LSC([0, T)x ) is a viscosity super-solution of Eq. (6.122) if u(0, x) >
k(x), x € O and

p+ Ot x,u(t,x),q,X) >0, for (t,x) € Or, (p,q, X) € P u(t, x).

. (iii) u € C([0, T) x O) is a viscosity solution of (6.122) if it is both a sub- and
a super-solution.

We remark that u(t, x) solves the parabolic PDE (6.122) if and only if v(z, x) =
e*u(t, x) solves the same equation with ® replaced by ® + Ar, which in the case
where ® has the form (6.117) is proper iff r — Ar — F(¢, x, r, q) is increasing for
any (¢, x, ¢). The fact that this is true for some A is one of our standing assumptions
on I for existence and uniqueness of the solution to the associated BSDE.

Note that we also consider parabolic PDEs with a final condition (at time ¢ = T')
rather than an initial condition (at time ¢ = 0). In that case, the equation becomes

_%(I,x) + ®(t, x, u(t, x), Du(t, x), D*u(t, x)) = 0,

and the condition u(0, x) < k(x) (resp. u(0, x) > «(x)) becomes u(7T, x) < x(x)
(resp. u(T, x) > k(x)).
Finally we explain what we mean by a viscosity solution of the parabolic PDE

%(l,x) + O(t, x, u(t, x), Du(t, x), D*u(t, x)) + dp(u(t,x)) 30,
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where d¢ is the subdifferential of the convex lower semicontinuous function ¢ :
R — (—o00, +00].

A sub-solution is a function u € USC(Or) which is such that for any (¢, x) €
Or, u(t, x) € Dom(p) and whenever (p, g, X) € Pé*u(t, X),

p+ @@, x,ult,x),q,X)+ ¢ (u,x)) <0,
where ¢’ (r) is the left derivative of ¢ at the point r. A super-solution is defined

similarly with the usual changes, the left derivative of ¢ being replaced by its right
derivative.

6.5.2 A First Uniqueness Result

Let O be an open subset of R? and ® € C(O x R x R? x §%).
The basic assumptions of this subsection are:

(Ay) Super-monotonicity: there exists a § > 0 such that for all x € O, p € R,
XeS rsekR:

r<r = Ox,rnpX)-dx,r,p,X)>(2—11) 6,
and

(Ay) Super-degenerate-ellipticity: for all R > 0 there exists an increasing function
mg : Ry — Ry, mg (04) = Osuch thatife > 0, X, Y € S and

X 0 I -1
(0 —Y) 530{(_1 7 ), (6.123)

(Xz.2) — (Yw,w) <3a|z—w]*, VzweR?,

or equivalently

then forallx,y e ON B (0, R), r € R:

O(y.ra(x = ).Y) = 0. ralx = ). X) <mg (jx =y +alx—yP).
(6.124)

Note that if X and Y satisfy (6.123) then Y < X (setting z = w).

In the particular case of the function ® given by (6.117), the super-monotonicity
of @ is a consequence of the same property for —F. As for the super degenerate
ellipticity, we have the following:

Lemma 6.97. If g is globally Lipschitz, f is globally monotone, and —F satis-
fies (6.124), then ® is super-degenerate-elliptic.
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Proof. The global monotonicity of f implies that

—(f() — f(x),a(x = y)) < palx -y

Now consider the term involving g. We take advantage of (6.123) and the Lipschitz
continuity of g:

Tr[gg* (X)X | —Tr[gg*(»)Y] = Tr[g*(x)Xg(x) — g*(»Yg(»)]
d

[(Xg(x)ei, g(x)ei) — (Yg(y)ei, g(y)ei)]
1

1

d
<3 lgx)e —gel’

i=1

<Clx -yl
m

Theorem 6.98 (Comparison Principle). Let O be a bounded open subset of R?
and assume that ® : O x R x R? x S¢ — R satisfies (A1) and (A,). If

(j) uelUSC (5) is a sub-solution of ® = 0in O,
(jj)) ve LSC(@) is a super-solution of ® = 0in O,
() ux) <v(x), Vxeado,

then
ux)<v(x) YxeO.

We first prove auxiliary results.

Lemma 6.99. Givenu,v € C (@), o > 0, we define
a 2
Vo(x,y) = u(x) —v(y) — Elx -y~

Let (X, $) be a local maximum in O x O of Wy. Then there exist X,Y € S such
that

() @& =9).X) € J5Tu(®),
(i) (@& —79).Y) e J5 v(),

(X 0 1 -1
(iji) (0 _Y)§3a(_l 1)'
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Proof. We shall use the notation

I -1
A—a(_l I)'

It is sufficient to prove the proposition in case © = R, ¥ = § = 0, u(0) = v(0) =
0, (0,0) is a global maximum of v, u and —v are bounded from above. Hence we
may assume that for all x, y € R¢,

u(x) —v(y) < %<A (;) (;)> (6.125)

and we need to show that there exist X, Y € S; such that

(j) (0.X) € J>Fu(0),
(i) (0.Y) € J>*v(0),

i) (3( _f) <34
With the notations & = ( ) ( ) we deduce from Schwarz’s inequality
that (with the notation | A < sup{| (4€, €)|: |&] < 1}):
(A%, %) = (A&, E) + (A(X — §). ¥ — &) + 2(x — £, 4¢)
<(AE.E)+ AEP + (o + 1 ADIT P
< (A + S ADEE) + @t DL - B

Henceif BY 34 = A+ 142 2 ¥

implies

a + ||A]], and w(x) = u(x) —v(y), (6.125)

w(x) — %W — £ < %(Bé, ). (6.126)
We now introduce inf- and sup-convolutions. Let
36 L sup(ui) — 17 - )
= i(§) — 0(n),
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where
. A P
u(§) = sup(u(x) — §|x —£9),
A
B(n) = infw(y) + 1y = nl?).
Yy

Since a supremum (resp. an infimum) of convex (resp. concave) functions is convex
(resp. concave), the mappings

_ - A - . A
§—w() + EISIZ, and § — u(§) + EISI2
are convex, while

X A
n— (n) — Elnl2

is concave. Hence w, it and —0 are “semiconvex”, i.e. they are the sum of a convex
function and a function of class C 2. Note that the hyphen is here on purpose, in order
to distinguish this notion from the notion of semiconvex functions, as introduced in
Chap.4.3.

Moreover:

w(0) = w(0) =0,

and from (6.126)

hence

and consequently
I
w(0) = max; (W(é) ~5 (BE. S)) .

If w is smooth, we could deduce that there exists an X € S,; such that
0,X) € J?W(0), and X < B. Since W is semiconvex, it is possible to show,
using Alexandrov’s theorem (which says that a semiconvex function is a.e. twice
differentiable), and a lemma due to R. Jensen, which states that the above is
essentially true in the sense that it is true provided the first condition is changed
to (0,X) € J?w(0). We refer to the user’s guide [18] for more details. Now,
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since fv(g) = u(§) — v(n), it is not hard to deduce that X = (())( ;))’ and

0, X) € J2(0), (0,Y) € J?*5(0).

The magical property of sup-convolution is that this is enough to conclude that
(0,X) € J>Tu(0) and (0,Y) € J> v(0), which is a consequence of the next
Lemma. |

Lemma 6.100. Ler A > 0, u € C(RY) be bounded from above, and

A
a(¢) = sup (u(x) — S|x = ¢ ).

x€R4 2

Ifn,g eRY, X € Sy and (9, X) € J>Ti(n), then (g, X) € J>Tu(n + q/1).
Proof. We assume that (¢, X) € J>Ti(n). Let y € R? be such that

. A
i) = u(y) =1y —nl*
Then for any x, { € R?,
A 2 A
u(x) = S = ¢ < )
N 1
< i) + (g, ¢ =) + 5 (XE = m. & —n) +o(lg =)
A 2
=u(y) = 5ly—nl"+{q.¢—n)
1
+ 3 (XE=m.¢ =) + ot —nP)
A 2 2
=u(y) = 5ly =0 +{g.Z=n) + O(¢ —nl).
If we choose { = x — y + 1, then we deduce from the above that
1
u(x) =u(y) +{g.x —y) + 5 {(X(x = y).x —y) +o(lx — P
On the other hand, choosing x = y and { = n+ «(A(n— y) + ¢g), we obtain that

0<ald(n—y)+ql* + 0.

The first inequality says that (¢, X) € J*>Vu(y), while the second, with & < 0 small
enough in absolute value, implies that y = 5 4 £. The result is proved. ]

We shall also need the following:
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Lemma 6.101. Let O be locally closed subset of R?, ® € USC(O), ¥ € LSC(O),
Y >0¢>0and

M, = sup {CD(x) — llll(x)% .
x€O €

If liII(l] M, exists in R and x, € O satisfies
&>

1
lim |:M‘s — d(x,) + —W(xg)] =0,
e—>0 &

then

. l’p(xe)
lim ——= =

0. (6.127)
e—>0 &

Moreover if X € O and there exists an €, — 0 such that x.,, — X, then

¥(x) =0, and li_IR) M, = ®(x) =sup{P((x): x € O, ¥ (x) =0}. (6.128)

1
Proof. Leta, = M, —®(x,) + —¥(x,). Note that for 0 < ¢ < § we have M, < M;
£

and
1 1
My > ®(xg) — =W (xg) = Mg —a, + —W (x,).
2¢e 2¢e

Then

U (x,
% fz(MZS_Ms'i'O[s)

and (6.127) follows. Moreover by the lower semicontinuity of ¥

0 <y¥(x) <liminf¥(x,,) = 0.
&y —0

Using now the upper semicontinuity of & we have

d(x) > limsup D(x,,)

&n —0
] 1

= limsup | M,, — o, + —¥ (xs,)
g,,—)O 8”

= lim M,

e—>0
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>sup{®(x):x € O, ¥ (x) =0}
> d(x).

The result follows. ]

Proof of the comparison principle. Assume that

M sup {u(x) —v (x)} > 0.
x€O

Let e > 0 and

def 1
M s )=o) = o b=y
(x,y)€OXO €

Clearly for § > &, Ms > M, > u(x) — v(x), YV x € O and consequently M,
converges in R as ¢ — 0,

M.>M >0 and lim M, > M.
e—>0

Since O is compact and (x, y) > u(x) — v(y) is upper semicontinuous on Ox0,
there exists (xg, y) € O x O such that

1
u(xe) = v(ye) = 5 xe = yel = Me.
e
1
By Lemma 6.101, with ®(x, y) = u(x)—v(y) and ¥(x, y) = 3 |x — y|* we obtain

Jim . 2=0
o g eyl =0
We now conclude that there exists an gy > 0 such that

Xe, Ve € O, forall0 < & < g.

Since u (x) < v (x), Vx € 0O and whenever ¢, — 0 and x,,, y,, — X, it follows
that

lim M, = u(X) — v (%)

e—>0

sup{CD(x,y) C(x,y) € OxO,¥ (x,y) =0}
sup {u (x) —v (x)}

xe®
> 0.
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By Lemma 6.99, for 0 < ¢ < g there exist X, ¥, € S“ such that

1 _
_lp;(xg,yg),Xg) € J§9'+u(x£), and
€

1 L (6.129)
_gllf;(xg,yg),Yg) eJo v(ye)

and the inequality (jjj) in Lemma 6.99 reads here

Xe 0 _ 3(1 —1
0 -Y.)] " e\-11)
Let R > 0 such that O C B (0, R). From (4,) with & = ¢!, we deduce that

— e

Xe — )
<y57v(ys) 7Ys) _q)(xs~v(ys)» %7)(5)
1 2
Smg | |xe—ye| + = |xe Yel” )

and since u(x,;) > v(y,) for ¢ small enough, we deduce from (A4,) that

@ (xé" v(yé‘)’ YT ys ) XS) - q) (xé" M(Xg), u’ XS)
& &

< 8[v(ye) — ulxe)]

— 2

—8|: |Xe — Vel —}—M{|.
It follows that
q) (yE’ U(yb‘)v u’ YS) - @ (-x€1 u(xé‘)v uv XE)
& &

1
= mg (|x€ Vel + = |x£ y8|2) ) |: |xe — ys|2 + ng| .

Since u is a viscosity sub-solution and v is a viscosity super-solution of the equation
® = 0, we deduce from (6.129) that

Xe — Ve

@ (xg, u(x.), ,Xs) <0<® (ya, v(ye), = ; Y Ye) :

Hence

1
0 <mp (|x£ Vel + = |xa Vel ) 8|: |xe — y£|2+Msj|’
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then also

1 §
O<5M§5Mg§mR(|x5—y5|+—|x£—y£|2)——2 lxe — vel?
£ £

and letting ¢ — 0, we infer the contradiction
0<éM<0O.

The Theorem is established. |

We deduce from this theorem the uniqueness of the viscosity solution for the
Dirichlet problem.

Corollary 6.102. Under the assumptions of Theorem 6.98, ifu,v € C (5) are two
viscosity solutions of ® = 0 on O then

u(x)=v(x),Vxed0 = u(x)=v(x),VxeO.

This Corollary proves that our probabilistic formula provides the unique solution
of the corresponding elliptic PDE, satisfying the Dirichlet boundary condition in
the classical sense. However it follows from Theorem 7.9 in [18] that it is also
the unique solution in the larger class of those solutions satisfying the Dirichlet
boundary condition in the (relaxed) viscosity sense.

Let us now indicate how the above proof can be modified, in order to treat the
case of a parabolic PDE with Dirichlet condition at the boundary of a bounded set.

Let O be a bounded open subset of R?. Consider the Cauchy—Dirichlet problem

9

Lo xud i) =0 in 10, T[x O,

o ' (6.130)
u(t,x) = x(t,x), (t,x)€]0,T[x00, ’

u(0,x) =k (0,x) x € 0,

where ¥ € C([0, T[xO).

The notion of a viscosity solution to (6.130) is expressed as in Definition 6.96,
adding the requirement u(¢, x) < «(¢, x) (resp. >) for (¢, x) € (0,T) x 0O for u to
be a sub-solution (resp. a super-solution).

We have the comparison principle:

Theorem 6.103. Ler ® € C([0,T] x O x R x R? x S%) be a proper function
satisfying (A1) and (A,) for each fixed t € [0, T|, with the same § and mg. If
u € USC([0, T) x O) is a viscosity sub-solution of (6.130) and v € LSC([0, T) x O)
is a viscosity super-solution of (6.130) then

u(t,x) <v(tx), forall (t,x)€0,T)xO.
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An essential tool for the proof of this Theorem is the parabolic analog of
Lemma 6.99, which is as follows:

Lemma 6.104. Given u,v € C(O7), a > 0, let
a 2
Valt,x,y) = u(t,x) —v(t, y) — Elx -y~

Let (£, %, §) be a local maximum of ¥, in (0, T) x O x O. Suppose moreover that
there is an r > 0 such that for every M > 0 there is a C with the property that
whenever (p,q, X) € 73(29‘+u(t,x), |x—2|+|t =] < rand |u(t,x)|+|g|+|X| < M,
then p < C, and the same is true if we replace 73(29’+u(t, x) by —’Pé’fv(t, x). Then
there exist p € R, X, Y € S such that

0 (Pl —5).X) e Py uli.9)
() palE=9).Y) Py v(i.2)

X 0 1-1
(i) (0 _Y)§3a(_l 1).

Proof of the Theorem. We only sketch the proof. We first observe that it suffices to
prove that u(t, x) = u(t,x) —e/(T —t) < v(t,x) for all (¢,x) € (0,T) x O and
all ¢ > 0. Now u satisfies

-
S (1.%) + @t x.ii(r, ). Dir(e, ). D1, x)) < _(Ti—t)T
lim u(t, x) = —oo.

t—>T

From now on we write u instead of #. We want to contradict the assumption that
max(.yxolu —v] = § > 0. Let (7, £, ) be a local maximum of ¥, (7, x, y) from
Lemma 6.104, and write

PN A A o ~
M, =u(t,x)—v(t,y)—§|x—y|2.

From our standing assumption, M, > § > 0. It is not hard to show that for « large
enough, 0 < 7 < T, %, € O. Arguing as in the proof of Theorem 6.98 with the
help this time of Lemma 6.104, we conclude that there exist p € R, X,Y € N
¢ > 0 such that

p + Cb(f,fc,u(f,)e),a(fc _,),}\7X) S —C,
—p+ @@, P, v, ), a(x —3,Y) >0,

while
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We deduce that

c <Oy, v, ), a(x =P, Y) = O, %, ut, ), a(X -9, X)
<m(a|f — P>+ |2 — 7,

from which a contradiction follows. |

6.5.3 A Second Uniqueness Result

We are given a continuous and globally monotone f : R? — R? and a globally
Lipschitz g : RY — R?*4 together with

k€ CRY:;R™), and F € C([0, T] x RY x R™ x R"™; R™)

such that, foreach 1 <i <k, F;(t, x, y, z) depends on the matrix z only through its
i-th column z;. As already explained, this assumption is essential for the notion of
a viscosity solution of the system of partial differential equations to be considered
below to make sense. We assume specifically that for some constants C, p > 0:

(A21) |F(t,x,0,0,0)] < C( + [x]?), |kx)] =<CA+ |x|?),
(A.2ii)) F = F(t,x,y,z)is globally Lipschitz in (y, z), uniformly in (¢, x).
Remark 6.105. In the case of systems of equations, it does not seem possible to

weaken the Lipschitz continuity of F in y to a monotonicity condition as we do in
the case m = 1.

Under the assumptions (A.2i) and (A.2ii), for each t € [0, T] and x € RY, we
consider the system of PDEs

ou;
—a—L;(t,x) + @, (1, x, ult, x), Dui (¢, x), D2u; (¢, X)) = 0,

(t.x) € [0,T]xRY, 1<i<k, (6.131)
(T, x) =ki(x), xeRY, 1<i<m,

where

1
dD,-(t,x,r,q,X) = —ETV[gg*(X)X] - <f(x)’CI) - E(l’xvr’q)'

The notion of a viscosity solution for such a system is easily deduced from a
combination of Definitions 6.94 and 6.96.

We can replace “global maximum point” or “global minimum point” by “strict
global maximum point” or “strict global minimum point”. The proof of this claim
is very simple and we leave it as an exercise for the reader.
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Now we give a uniqueness result for (6.131). This result is obtained under the
following additional assumption:

(A21]1) |F(t’x»r7p)_ F(tvy’rvp)| SmR(|X—Y|(1 + |p|))»

for all x,y € RY such that |[x| < R, |y| < R, r € R™, p € RY, where for each
R > 0, mp € C(Ry) is increasing and mg(0) = 0.
Our result is the following:

Theorem 6.106. Assume that f,g satisfy (A2). Then there exists at most one
viscosity solution u of (6.131) such that

lim  |u(t, x)|e oDl — @ (6.132)
|x]—>+o00

uniformly for t € [0, T], for some § > 0.

Remark 6.107. Notice that any function which has at most a polynomial growth at
infinity satisfies (6.132).

The growth condition (6.132) is optimal to obtain such a uniqueness result
for (6.131). Indeed, consider the equation

_______ =0 in(0,T) x (0, 400), (6.133)

then u is a solution of (6.133) if and only if the function v(z, y) = u(t,e”) is a
solution of the Heat Equation

v 10%

——=-— =0 in(0,7) xR. 6.134

or  20x o 0.7) (0139
But it is well-known that, for the Heat Equation, the uniqueness holds in the class

of solutions v satisfying

lim  |u(r, y)le " = o0, (6.135)
lyl—>+o0

uniformly for ¢ € [0, T'], for some § > 0. And (6.135) gives back (6.132) for (6.133)
since y = log(x).

Let us finally mention that, in our case, the growth condition (6.132) is mainly a
consequence of the assumptions on the coefficients of the differential operator and
in particular on ¢ = gg*; under the assumptions of Theorem 6.106, the matrix a
has, a priori, a quadratic growth at infinity. If a is assumed to have a linear growth at
infinity, an easy adaptation of the proof of Theorem 6.106 shows that the uniqueness
holds in the class of solutions satisfying

lim |u(t,x)|e_‘s|"‘| =0,
[x|—=>400

uniformly for ¢ € [0, T'], for some § > 0.
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Proof of Theorem 6.106. Let u and v be two viscosity solutions of (6.131). The
proof consists of two steps. We first show that u — v and v — u are viscosity sub-
solutions of an integral partial differential system; then we build a suitable sequence
of smooth super-solutions of this system to show that |u — v| = 0in [0, T'] x R?.
Here and below, we denote by | - | the sup norm in R™.

Lemma 6.108. Let u be a sub-solution and v a super-solution of (6.131). Then the
function w := u — v is a viscosity sub-solution of the system

b _
—a—cj—Aa),-—K[|w|+|Vw,»g|] —0in[0,T] x RY, (6.136)

for1 <i <k, where K is the Lipschitz constant of F in (r, p).

Proof. Let ¢ € C%([0,T] x R) and let (¢, xo) € (0,T) x R? be a strict global
maximum point of w; — ¢ for some 1 <i < k.
We introduce the function

Ya(t,x.y) = u;(t,x) —vi(t,y) — n|x — y|> — (1, x),

where 7 is devoted to tend to infinity.

Since (ty, xo) is a strict global maximum point of u; — v; — ¢, by a classical
argument in the theory of viscosity solutions, there exists a sequence (t,, X, ¥)
such that:

(i) (tn, Xn, yn) is a global maximum point of v, in [0, T] x (B g)?, where By is a
ball with a large radius R;
@) (ty, xn), (tu, yn) = (to, X0) as n — 00;
(iii) n|x, — y,|? is bounded and tends to zero as n — oo.

It follows from a variant of Lemma 6.104, see also Theorem 8.3 in the user’s guide
[18], that there exist X, Y € S¢ such that

d
(B_(f(tn»xn), qn + Dgo(tn,xn),X) € P> u(ty, x,)

0,9:.Y) € ,Pz’ivi (s yn)
X 0 I -1 D%¢(t,, x,) 0
<
(O—Y)—4”(—1 1)+( o o)

qn = 21’1()(,, - YH)‘

where
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Modifying if necessary v, by adding terms of the form y(x) and y(y) with supports
in Bj /o> W€ may assume that (¢,, x,, y,) is a global maximum point of v, in

([0, T] x R?)?2. Since u and v are respectively sub and super-solutions of (6.131),
we have

0 1
_a_(f(tnwxn) - ETr(a(xn)X) —(f(xn), gn + Do(tn, x1))

_Fi(tmxn’ u(tm Xn), (Qn + D‘P(ln, xn))g(xn)) <0

and

1
—zTr(a(yn)Y) —{(fn),qn) — Fi(tn, yn, v(tns Yn)s Pn€(yn)) = 0.

The computation of Lemma 6.97 yields

S Trlgs™ (o) X] = S Trlgg™ m)Y ]+ /(o) — ). 40)
< nlx, = yul* + Trlgg™ (x2) D*p (8, x)].
Finally, we consider the difference between the nonlinear terms
Fi (tw, Xn, u(ty. Xn), (qn + D@(tn, xn))& (Xn)) — Fi(tw, Yus V(tns Yn): 4ng(Yn))

= m(|xn - yn|(1 + |png(Yn)|)) + Iglu(tnvxn) - U(tn, Yn)|
+I€|Qn(g(xn) —gWn) + Do(tn, xn)g(xn)|.

The first term on the right-hand side comes from (A.2 iii): we have denoted by m
the modulus my which appears in this assumption for R large enough. The two last

terms come from the Lipschitz continuity of F; with respect to the two last variables.
We notice that

|91 (8 (xn) — g(¥n))| = Cnlx, — yn|27
because of the Lipschitz continuity of g and that
%0 — Yl - 1gng(yn)] < Cnlx, — ynlz-

Now we subtract the viscosity inequalities for « and v: thanks to the above estimates,
we can write the obtained inequality in the following way

0 -
_8_(f(tnyxn) — Ap(tn, xn) — Kl|uty, x4) — v(ty, ya)| < w1(n),
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where we have gathered in w, (n) all the terms of the form n|x, — y,|* and |x, —
Yul; @1(n) — 0 when n tends to oco. To conclude we let n — oo. Since (t,, x,,),
(tn, yn) = (20, x0), we obtain:

dp ~ .
—; (o-X0) = Ap(to. o) — Kl (to. x0)| — K[ Dg(to. x0)g (x0)| = 0.
and therefore w is a sub-solution of the desired equation. |

Now we are going to build suitable smooth super-solutions for the equation
(6.136).

Lemma 6.109. For any § > 0, there exists a C; > 0 such that the function
x(t,x) =exp [(C((T —1) + 8 (x)]

where

Y(x) = [log ((IxP? + 1) + 1],
satisfies

P - _
—8—f—AX—Kx—K|ng| > 0in [, T) x R?

for1 <i <k wherety =T —§/C).

Proof. We first estimate the term K y, the main point being its dependence in x. For
the sake of simplicity of notation, we denote below by C all the positive constants
which enter into these estimates. These constants depend only on § and on the
bounds on the coefficients of the equations.

We first give estimates on the first and second derivatives of i: easy computa-
tions yield

_ 2]

Dy (x)| < W <4 inR?,
and
2 C(+ [y (x)]'?) d
|D Iﬂ(x)| = W n R* .

These estimates imply that, if ¢ € [¢1, T']

Dy (. x)| < (Ci(T —1) + 8) x(1. )| DY (x)]

[y (012

=< CX(I’X)(|x|2+—1)1/2 .
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and, in the same way

¥ (x)

D%y(t,x)| < Cy(t, )
[D"x (2, x)| = Cx( X)|x|2+1

It is worth noticing that, because of our choice of 7, the above estimates do not
depend on Cj.
Since gg* and ( f(x), x) grow at most quadratically at infinity, we have

0 - -
- 3—);(&)6) —Ax(t.x) = Ky(t,x) = K|Dy(z, x)g (x)]|

¥ (x)

Pl K—-CK[y(x)V*-CK

[y ()]
>xlC -C -C — .
= 1o - v e
Since ¥ (x) > 1 in RY, by using the Cauchy—Schwartz inequality, it is clear enough
that for C; large enough the quantity in the brackets is positive and the proof is
complete. |

To conclude the proof, we are going to show that w = u — v satisfies
lw(t, x)| < ay(t,x) in[0,T] x RY

for any @ > 0. Then we will let « tend to zero.
To prove this inequality, we first remark that because of (6.132)

lim  |o(r, x)|e " TosxP+DP
|x]—>+o00

uniformly for ¢ € [0, T'], for some § > 0. From now on we choose § in the definition
of x such that this holds. Then |w;| — ay is bounded from above in [t;, T] x R for
any 1 <i <k and

M = max maxd(|a)i| —a)()(t,x)e_lz(T_”

1<i<m [1) T]xR

is attained at some point (g, Xo) and for some ij.
We first remark that, since | - | is the sup norm in R"”, we have

M = max (o —a)()(l,x)e_k(T_t)
[t1.T]xR4
and |wj, (fo, X0)| = |w(fo,X0)|. We may assume without loss of generality that

|wi, (fo, X0)| > 0, otherwise we are done.

There are two cases: either w;,(fo,xo) > 0 or wj,(fo,Xo) < 0. We treat the
first case, the second one is treated in a similar way since the roles of # and v
are symmetric.
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From the maximum point property, we deduce that

Wiyt %) = ax(t, x) < (@, — ax)(to, xo)e K1

and this inequality can be interpreted as the property for the function w;, — ¢ to have
a global maximum point at (¢, x¢), where

o(t,x) =ay(t,x) + (wi, — a)()([o,xo)e—k(f—fo)'

Since w is a viscosity sub-solution of (6.136), if #y € [t;, T[, we have

d - -
—8—(f(lo,xo) — Ag (1o, x0) — K|w(to, x0)| — K| D¢ (o, x0)g(x0)| < 0.

But the left-hand side of this inequality is nothing but

0 - -
! [_B_)t((lo’ xo) — Ax(to, x0) — K x(t0, x0) — K| D (10, xo)g(xo)|] ;

since wj, (ty, Xo) = |w(ty, Xo)|; so, by Lemma 6.109, we have a contradiction.
Therefore ftp = T and since |w(T, x)| = 0, we have

lo(t, x)| —ay(t,x) <0in[t,, T] x RY.
Letting o tend to zero, we obtain
lo(t,x)| = 0in[r, T] x R?.
Applying successively the same argument on the intervals [, ;] where t, =
(t1 — 8/Cy)™ and then, if £, > 0, on [t3,1,] where 13 = (£, — §/C;)" ... etc, we
finally obtain that

lw(t,x)] =0 in [0, T] x R?

and the proof is complete.

6.5.4 A Third Uniqueness Result
Let D be an open connected bounded subset of R? of the form
D={xeR’:¢(x) <0}, Bd(D)={xeR!:¢(x)=0},

where ¢ € C? (RY), V¢ (x)| = 1, for all x € Bd (D).
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We define the outward normal derivative of v at the point x € Bd (D) by

d

v (x) Z d¢ (x) dv (x)

3 = (V¢ (x), Vv (x)).
Xj Xj

The aim of this section is to prove uniqueness of a viscosity solution for the
following parabolic variational inequality (PVI) with a mixed nonlinear multivalued
Neumann-Dirichlet boundary condition:

du(t,
ui‘)t x) —Aju(t,x) + 0o (u(t,x)) > F (¢, x,u(t, x), (Vug)(t, x)),
du(t. x) t>0, xeD, 6.137)
3, + oy (u(t,x)) > G (t,x,u(t,x)), t >0, x € Bd(D),
n —
u(0,x) =k(x), x €D,
where the operator A4, is given by
Av(x) = —Tr[g(t x)g* (1, x)D*v(x)] + (f(t, x), Vo(x)).
We will make the following assumptions:
(I) The functions
f :[0,00) x RY — RY,
g :[0,00) x RY — R*4
F:[0,00) x D x RxR? - R, (6.138)
G :[0,00) xBd(D) xR — R,
k:D—>R

are continuous.
We assume that for all 7 > 0, there exist@ € Rand L, 8,y > 0 (which can
depend on T') such that V¢ € [0, T], Vx,% € R¢:

(f(t,x)—f (%), |— t4lgt.x)—g (. )| < Llx—X|, (6.139)

and Vt € [0,T],Vx e D ,x' e Bd(D), y,7 e R,z,z € R%:

(i) (=3 (Ft,x,y,2) = F(t,x,7,2) < aly - %,

(i) |F(t,x,y,2) — < Blz—13l,

(iii) (1+[y1), (6.140)
) (=3 (Gt,x',y)=G@.x',7) <aly -7,

W G Xy <y d+]y).
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In fact, the conditions (6.140-i) and (6.140-iv) mean that, for all 7 € [0,T],
x €D, x eBd(D),zeR?,

re>ay—F(t,x,ry,z) and rar—G(t,x'.r)

are increasing functions.
(I) We assume that

(i) ¢,¥ :R — (—o0, 400] are proper convex l.s.c. functions,

6.141
(i) () =9 =0mdy()=yp©=0vyer M
and there exists a positive constant M such that
(i) |o(k()| =M. vxeD.
(6.142)

(ii) w(K(x))’ <M, Vx eBd(D).

Remark 6.110. Condition (6.141-ii) is generally satisfied after a translation of both
the functions ¢, ¥ and their arguments.

We define

Dom (¢) ={u e R: ¢ (1) < oo},
dpw)={ueR:a(v—u)+ew <e@),VveR},
Dom (d¢) = {u € R : d¢ (u) # 0},

(u, 1) € dp < u € Domdy, u € I (u)

and we will use the same notions with ¢ replaced by .
At every point y € Dom (¢) we have

dp(y) =RN[e_(»). ¢ (M].
where ¢’ (y) and ¢/, (y) are resp. the left and right derivatives of ¢ at y.

For the reader’s convenience we recall here from Sect. 5.8 the definition of a
viscosity solution of the parabolic variational inequality (6.137). We define

1
©(t,x.r.q. X) == =5 Tr ((g8") (1. ) X) = (f(t,%). q) = F (¢, x,7,4g(t, %)),

r'¢,x,rq):=(Vo(x),q) —G(t,x,r).

Definition 6.111. Letu _[0 0) x D — R be a continuous function, which satisfies
u(0,x) =k (x), VxeD.
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(a) uis a viscosity sub-solution of (6.137) if:

u(t, x) € Dom (¢), V(t,x) € (0,00) x D,
u(t,x) € Dom (), V(z,x) € (0,00) x Bd(D),

and for any (¢, x) € (0,00) x D, any (p,q, X) € P>tu(t, x):

p+@(t, x,ult,x),q. X)+ ¢ (ut.x)) <0 if x € D,
min {p + @ (1. x.ut. x). q. X) + ¢ (u(t,x)), (6.143)
T, x,ult, x), q) + V' (u(t,x))} <0 if xeBd(D).

(b) The viscosity super-solution of (6.137) is defined in a similar manner as above,
with P> replaced by P*~, the left derivative replaced by the right derivative,
min by max, and the inequalities < by >.

(c) A continuous function u : [0, 00) X D is a viscosity solution of (6.137) if it is
both a viscosity sub- and super-solution.

We now present the main result of this section.

Theorem 6.112. Let the assumptions (6.138)—(6.142) be satisfied. If moreover the
function

r — G(t,x,r) is decreasing forallt > 0, x € Bd(D), (6.144)

and there exists a continuous function m : [0, 00) — [0, 00), m (0) = 0, such that

’F(t,x,r,q)—F_(t,y,r,q)} Sm(lx_y|(1 +|CI|))’ (6 145)
Vi>0,x,yeD, geRY, '

then the parabolic variational inequality (6.137) has at most one viscosity solution.

Proof. 1t is sufficient to prove uniqueness on a fixed arbitrary interval [0, T].

Also, it suffices to prove that if u is a sub-solution and v is a super-solution such
that u(0, x) = v(0,x) =k (x), x € D, then u < v.

Clearly by adding a constant we may assume that ¢(x) > 0 on D.

ForA =at 4+ 1and$, e, ¢ > 0let

u(t,x) =e u(t,x)—8¢(x)—c

v(t,x) =e Mvo(t,x) +8¢p(x) +c + TL—Z
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Let

~ 1
D (t,x,r,q,X)=Ar — ETI[ (gg™) (t,x)X] - (f(t,x),q)

—e_MF(t,x, eMr,eMgg (1, x) )7 (6.146)
L@, x,r q) = (Vo (x),q) —e™™G(t, x, e r).

Clearly r — ® (¢, x,r, ¢, X) is an increasing function for all (7, x, ¢, X) € [0, T] x
R? x R? x S¢. Moreover, since

sup  {l¢ () [+ [Dp ()| + D¢ (x) | + | £, 0)| + |g(t, 0)|} < o0,
(t,x)€[0.T]1xD

then for any 6 > 0, we can choose ¢ = ¢ (§) > 0 such that ¢(§) — 0 as § — 0 and
forall 8, ¢ > 0,

&J(Z,x,r,q,X) < &)(Z,x,r +8¢p +c,q+8Dp, X +5D2¢),
&)(f,xd‘—&b—c_%sq—SDqﬁ,X_SDzd’) = &)(tsx»r’qu)'

We will prove that u < v forall § > 0, ¢ > 0, ¢ = ¢(§). This will imply u < v on
[0, T) x D by letting §, ¢ — 0. The result will follow, since T is arbitrary.

Using the two last properties, assumption (6.144) and the fact that the left and
right derivative of ¢ and v are increasing we infer that u satisfies in the viscosity
sense:

ou -
a—?(r,x) + @ (1, x,@(t, x), Dii(t, x), D (¢, x)) + e Mg (eMii(t, x)) < 0
ifxeD,t>0

ou -
min 8—1;(1,x) + @ (¢, x,u(t, x), Du(t, x), D*u(t, x)) + e Mol (eMu(r, x)),

[ (t,x,u(t, x), Di(t,x)) + & + e My’ (eMi(t, x)); <0
if x € Bd(D),t > 0.

(6.147)
Analogously we see that v satisfies in the viscosity sense:

g—';(t,x) + @ (¢, x,5(t, x), Di(t, x), D*0(t, x))

+€_M(Pg_(e)ttl_}(l,X)) - rgty >0,ifxeD,t>0,

v -
max a—lt}(t,x) + @ (1, x,0(1,x), DU(1,x), D*5(t, x)) + e Mg/, (¥ (1, x))

&

T T (t.x,0(t,x), Dv(t,x)) — 8 + e My, (e’“f;(t,x))} >0

if x € Bd(D),t > 0.
(6.148)
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For simplicity of notation we write from now on u, v instead of &, v respectively.
We now assume that

max_ (u—v)" > 0. (6.149)
[0.T]xD

By an argument similar to that of Theorem 6.103, see Theorem 4.2 in [56] for more
details, there exists (7, £) € (0, T] x Bd (D) such that

u(, %) —v(f,%) = max (u—v)T > 0.
[0,T]1xD

We now let

U (6, x,y) =u(t,x)—v(t,y)—py (t,x,y), with (£,x,y) € [0,T] x D x D,
where

n T I A N N
on(t,x,y) = > lx —y[* + e_MG(t,x,e’“u(t,x))(qu x),x— y) + |x — &*
e =71t = Myl (e Mu(d, 2)) (Ve (), x — y).
(6.150)

Let (¢,, x,, y») be a maximum point of ,,.

We observe that u (1, x) — v (£, x) — |x — X|* — |t — 7]* has (7, X) as its unique
maximum point. Then, by Lemma 6.101, we have that as n — oo

~ A ~ 2
by > 1, Xy = X, Yo = X, n|x, — yu|” =0,

~ ~ 6.151
u(ty, x,) = u(t, %), v(ty, x,) > v(,X). ( )

But the domain D satisfies the uniform exterior sphere condition:
Arg > OsuchthatS(x +r0V¢(x),r0) ND =@, forallx € Bd(D),

where S (x, rg) denotes the closed ball of radius ry centered at x.
Then

|y—x—r0qu(x)|2>r§, forx e Bd(D),y € D,

or equivalently

1 _
(V¢(x),y—x)<2—|y—x|2 forx e Bd(D),y € D. (6.152)
ro
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If x, € Bd (D), we have, using the form of p, given by (6.150) and (6.152), that
P (b X010 s 60) « D (s 3) ) = Dt %1 b 5) 1 (5 = 32)

+ TGI8, M )V (8) + 4 1xy = 2 (v — )

— YL (Mulh, )V (2) )
> _Ziro by — yul> + e MG (£, 2, M u(E, £)) (Ve (R), Ve (x))

— €M G (g0, € u (1, 30) ) + 4130 = X (Ve (0) s — £)

—e My’ (e”u(f, D)V (X). Ve (xn)).

Then (6.151) and the lower semicontinuity property of ¥’ implies that along a
subsequence {x, } which belongs to dD:

lim inf I:f (tn, Xp, U (ln, Xn) , Dxpn ([nv Xns yn)) +8+ e_M” 1//_ (emnu(tn, Xn)):l > 0.
n—00
(6.153)

Analogously if y, € dD we infer

lim sup[f“ (tns Yus ¥ (tns V) s =Dy o by Xy ) =8+ 4y, (X vy, x,,))] < 0.
n—00
(6.154)

From Lemma 6.104 we deduce that there exists
(p.X.Y) e RxS? xS,
such that

2.+
(P, Dxpn (t}’l’xna yn) ’ X) € 7) ) u(tn»xn)v
(P.=Dypn (tn. X, y0) . Y) € P7 v(ty, yu).

and

X 0 I,
<A+ —-A4°, 6.155
(O_Y)_ T (6.155)
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where A = D?c,ypn (4, Xn, yn). From (6.150) we have
—1I

A—n( [)+0(|xn—x|)

1
1
—2n2( ])—i—O(n X — % + [x0 — £[*).

Then (6.155) becomes

X 0 I -1 I 0
<
(0 _Y)_3n(_1 ])+8n(0 1), (6.156)
where §, — 0.

Then from (6.147), (6.148) together with (6.154) and (6.153), we deduce that for
n large enough

p + é(l‘l‘lv-xi'lvl’t(l‘nv-xf’l)7D)Cpn (tnaxm yll)’X) At”(p ( Atnu(tnvxf’l)) = O

and

p + é(l‘n’ Yn, v (Zna yn) ’ _Dypn (Zn’ Xn, J’n) ’ Y) + e_/\t”goif— (e/\[n U([n, yn))
€
>
(T - tn)z
Subtracting the last two inequalities, we deduce that

&
(T = &) (6.157)
= qz(tn»yn»v(tnv Vn) = D, py, (tns Xns Yn) » Y) + e~Hn +( M"v(tn»yn)) ’

=D (1, X e (g Xn) « D (tn, X, yn) s X) — e Mgl (e uty, x,)).

By (6.149) and (6.151) there exists an N > 1 such that for all n > N, the above
holds together with

u(ty, Xn) > v(tn, yn), (6.158)
and consequently

e Mg (e)""u(t,,, xp)) = e Mgl (eM"v(t,,, Yn))-
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Combining this with (6.157), we deduce that

& ~
T=n)y < D (tys Yuo v (T, ) - =Dy o (tn X2 Yu) . Y)
n

_? (tn»xnau(tnsxn)anpn (Zi’laxn9 yf’l)aX)
= ETr[ (gg") (tn, xn) X — (gg™) (tu, yn)Y] + Cnlx, — yn|2 + Wy,

where w, — 0 as n — oo. Note that we have used the assump-
tion (6.145), (6.151), (6.158), the fact that r — Ar — F(t,x,r,z) is increasing,
and the Lipschitz continuity of F' with respect to its last variable.

From (6.156), YV ¢q.G € R?,

(Xq.q) = (Yq.q) =3nlg = 31" + (lgI” + 141" ).
Hence by the same computation as in Lemma 6.97 we obtain
Te[ (g8") (tn, Xn) X — (88”) (tas ya) Y ]

<3C nlxy = yal* + (18t x0)* + 18t ya)I* )30,

and consequently taking the limit in the above set of inequalities yields

&
— <
(T —1)?

’

which is a contradiction.
Then

u(t,x)<v(t,x), V(t,x)el0,T]xD.

6.6 Annex E: Hints for Some Exercises

Chapter 1
Exercise 1.7
By Proposition 1.34 we have

B (Br)17) = 5 (5 (ST =1+ B) 17

= /Rg (x\/ﬁ+ B,)p(x)dx.

Setting here g (4) = 1(—c0,q] (), the second assertion follows.
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Exercise 1.15: Let N > 0 and a sequence &, \ 0 as n — oo. Then

P (limsup IBHE;—_BA > N) =P (ﬂPI J (Uk>n (|Bt+£k — B/ > Nak)>)
n = =

n——+oo
— lim P (Um (1Bise, — B/ > Nek))

n—00

> liminfP (| B;4,, — B:| > Ne,)

n—-+o00

= liminfP (|B| > N /)
o0

n—>+
=P (|B:] > 0)
=1.
Exercise 1.16: Let us write S,Ep ) = S(Ai ) (B.;[s,t]). The results are consequences

of the following inequalities (see Proposition 1.86 for the first one) combined with
Proposition 1.14 and Proposition 1.7:

E[s® - (- s)]2 = Var (5@) =21, ¢ = 9)

and
SP <SP x (my (|A)72, forp>2, and
S < S x (mp (A7, forl<p<2,
where

mp (§) = sup{|B, — By| 1 u,v € [s,t], |u—v| <48},

is the modulus of continuity of {B, : u € [s,t]}.

2
Exercise 1.17: Applying the inequality (1.25) with o = -
€

deduce that for all 5,7 € [0, T

1 £ _
3 Eandp— , We

1X; (@) = X (0)| <& () T° |t _S|%—E’
where

0. ifT =0,
E@=kr@=1C /T/TlBu@)—Br(w)'gdudr i£7 >0
T \Jo Jo , '

Sk

1
lu—r|e
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Letl <g < % < p. By Lyapunov’s inequality and Minkowski’s inequality (1.24)
from Exercise 1.2 we obtain

1€l s 7p) < 1§llr@.7p)

/ / T dud
lu— r| Ler/2(Q, F P)

i85
o e e,
T lu—rle

= Ca,p»

€
2

[STE)

since

2

1B, — 5. = (B|B,— B,I")"

LeP/2(Q,F.P)
2
= (Cplu—r)7.

Exercise 1.19: Deduce from the proof of Theorem 1.40 that forany 0 < § < b/a,
there exists a constant K = K(M, T, a, b, §) such that for all &, A > 0,

Py (2100, 7]) = 1) = 2B (m, (5[0, 7]) < 3¢

and conclude that (ii) in Theorem 1.46 is satisfied.

Exercise 1.20 (2) By Lemma 1.73 and Proposition 1.65, we infer that
(U,(A));e[o,r] and (Z ,(A) )tefo,r] are continuous martingales.

(3) Let the stopping time 7, = inf{t >0:|M;|+ <M >,> n}. Then
{Zt(i)rn;t > O} is a martingale and for all0 < s <7t

EFSZ(A) < liminf E” Z,(j\\), = hmlanEA) Zfl).

n—+o00

(5) By Proposition 1.59 with ¢ (x) = e**, {e“M’W;t > 0} is a sub-martingale
and the inequality follows by Doob’s inequality (Theorem 1.60) and Holder’s
inequality.

(6) The inequality yields that {Z @

ing, 1 E N*} is uniformly integrable and

consequently E Ztm =lim, o EZ W =1,

NG, T
(7) In the inequality from (6) with A= 2, one passes to the limit as n — oo

and then A 7 1.
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(8) We have E(e%MT) - ]E(ﬁTe%<M>T) < E ZT)2E(e%<M>T) <
E (e%<M>T) < oo.

Chapter 2

Exercise 2.1: («=): From the theory of the Riemann—Stieltjes integral we know
that if g € BV[0,T], then S, (f) converges (to the Riemann—Stieltjes integral

fo f (1) dg ().
(=): Let S, (f) be convergent forall f € C[0,T]. Then S, : C[0,T] - Risa
bounded linear operator such that

sup [, (f)] < o0,

n>1
and by the Banach—Steinhauss Theorem

sup || Syl = M < o0,

n>1

where ||S,|| = sup{|S, (/)| :lfll; <1}. For a fixed n we can construct s, €
C [0, T'] such that &, (tl”) = sign {g (ti”H) —-g (ti”)} and ||4,]|; = 1. Hence

Zw,ﬂ (") = Sy (hy) < |Sa]l < M,

and as a consequence g is of finite variation.

Note (Banach—Steinhauss Theorem). Let X be a Banach space and let Y be a
normed linear space. Let S; : X — Y, i € I, be a family of bounded linear
operators. If for each x € X the set {S; (x):i € 1} is bounded then the set
{ISi|| : i € I} is bounded.

Remark: This is not a contradiction since the subsequence {rn;} depends on f.
Exercise 2.3: If £ is the linear subspace of L?(R) consisting of those functions
f of the form:

f =Za,«1[ti7ti+l[, neN0=t<t<---<ty;a €R,i<n,
i=0

then H|[B] is the closure of {B(f), f € £}, which coincides with {B(f), f €
L*(R4)}. Moreover the set {B; = B(1y,). ¢ > 0} is total in H[B].
Exercise 2.4: Let s € [0, T]. We have

[(/ f(t)dB,+/ f(t)B,dt) :| [ f(l)dt+/ G A1) dr

= f(T)s.
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Since E|B;| = \/g, it follows that fooo | £/ ()| B:|dt < o0 a.s., and

£y di = / (L Lo (0) 7 (0) it A l[t.oo[(v)f’(v)dV) dt

0 0

5/0 /0 A @] )] ducdy
s/owfow Sl f )| ()] dudy

_ (/Ooo Jal @) du)z < oo,

Exercise 2.5: Note that
g (x)=30x—122=x)?>0 and g’ (x)=60(x—1)(2—x)(3—2x).
and for x € [1,2]

x—1+2—x)2_1

Of(x—l)(2—x)§( . L

and therefore for all x € [1, 2],
0<g'(x) <2, |¢"W)]=15

The relation (2.67) follows by taking the limit as ¢ — 0 in 1t6’s formula for ¢, (X;).
Chapter 3
Exercise 3.1: Consider the equation

X, =&+ [y F(s,Xy)ds

t
+/0 (—M ()= 520 6) - %) Xods + [ G (5. X, aB,. O

By Theorem 3.27, it has a unique solution X € Sg and from the inequality (3.18)
we clearly have (3.131)

U = (—u ()= 222 (1) - 3) X, (6.160)
2 p

where X € S[? is the solution of the Eq. (6.159). The inequality (3.132) shows us

that Y, = eat#'fz)m is a super-martingale and then (3.134).
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Exercise 3.3: First deduce the following from the stochastic Gronwall inequali-
ties (Annex C)

T p .
E sup |X— X,|? < C,E ([ |F. (r. X,) — F (r, X,)| dr) eCrlo [M+(r)+12(r)]dr.
t€[0,T] 0

Exercise 3.9: (1i) We clearly have

1 b |u|2
b
Eexp(C|x+B,|>_( )/Z/Jexp(c‘x—l—ﬂu‘ )du<oo,

forall C,t > Oifand only if 0 < b < 2.
(1i)) If 0 < a < 2, then by Jensen’s inequality

t 1 t
E exp (C/ |x + B‘Y|“ds) < ;/ E exp (Ct |x + B‘Y|“)ds < 00.
0 0
If —1 < a < 0, then by Corollary 2.30 we have

+ By|“ ds.

t 2 1 P
|x + B,|*T? = (a+2)/ |x+B|* (x_i_BS’dBS)_i_(a—i—)zi—i—)/ x
0 0

Hence by (2.62-b)

t
Eexp (C/ |x + Bs|” ds)
0

1/2 t 1/2
< [Eexp (C] |x + B,|“+2)] |:Eexp (Cz/o |x + By|* (x + BS,dBS)):|

1/2 f 1/2
< [Eexp (c1 Ix + B,|“+2)] |:Eexp (202/ Ix + By[2t? ds)}
0

< Q.
(1iii)

E {exp [C log® (|x + B:])]}

>/ oClogll Ly g,
= JoaF Qm1)k/?

1 2 -
> We—(k+\x|) /21/ A o § 108 () g
T [0,1]*
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1

2
> Cirx eClog “du

o0 2
= Crix e eV dy

S—

= 00.
(1iv) Observe that for every « €]0, 1], there exists a C, > 0 such that
log? [x| < Cu + [x] + |x| ™

and consequently (iii) follows from (if).
(2). Existence follows in both cases from Lemma 2.49 and Girsanov’s Theo-

rem 2.51. Uniqueness in law on (2, F, ,7 ) (resp. (Q JF AT,,)) follows again from

n
Girsanov’s Theorem, where

t
T, =inf{t >o:/ |g(XS)|210g2(|XS|)ds>n},
0
R t
T, =inf{t >0:/ |g(XS)|2|XS|“ds>n}.
0

It remains to note that Tn — 00, f,, — 00, as n — 0Q.

Exercise 3.10 The function F : R — R, F (x) = f (x) \/ESign (x) is locally
monotone and x F (x) < 0, but it is not locally Lipschitz.

Chapter 4

Exercise 4.1

1. The existence and the uniqueness of the solution X" € S? [0, T] follows from
Theorem 3.17; by the comparison result from Proposition 3.12 we have X" +! >
X/, forallt € [0,T], P-a.s.

2. Let L and £ be the Lipschitz constants of f and, respectively, g. We have

t t
X -1 =(X—1)+/ ng+/ g(X!)dB;,
0 0
with dK" = [ f(X?) 4+ n(X")"]ds and G = g(X”). Since
dD} + (X;' — 1) dK} + |G/'|*dt < dR, + |X]' — 1> dV,.

where D7 = [ [0 Pasn [ xyas k= (517 WOF 421 OF )
0 0

1
and V,= (L + 5 + 2@2) t, it follows by (6.78) (with p = 2 and A = 1/18)
that
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T 2 T
E sup |X' —1?+E (/ n[(x"7] dt) +E (/ n(Xf)—dt) <G
tel0,T] 0 0

3. Since, moreover, (X')” > (X/'T')” forall ¢ € [0, T], P-as., it follows that

lim, o (X/')” = 0, dP ® df — a.e. By 1t0’s formula for [(Xl”)_]2 (see
Proposition 2.35), we deduce E sup | (X)) |* — 0, as n — oo.
0<t<T
4. Since

(X! = X" [ (X7) = f (X") + (X)) —m(X[") "] di
+ g (X)) — g ()| e
< (n+m) [((X))”" (X7 ]de+ (L + ) |X] = X[ dr,

we see, by (3.138), that

E sup |X"—X"|* < CE/T (n+m)[(X)~(X")"]at
1€0,7] 0
1/2 T 2
<CE (IE sup [(X,m)_]z) |:E (/ n(Xt")_dt) :|
t€f0,7] 0
1/2 T 2
+CE (]E sup [(th)_]z) |:]E (/ m(X,m)_dt) :|
tel0,7] 0

— 0, asn,m — oo.

1/2

1/2

9. Itis sufficient to prove that the SDE

X, = x+ f (f (X)) + Lf O] Ly.—o) ds + / ¢ (X,)dB,

has a unique positive solution X € S2[0,T]. The uniqueness of positive
solutions follows from

(X = R) [£ QO+ 1 OF Ly — £ (£) = [f O 14—,
+ ‘g (Xs)—¢g ()25)

~ 12
< (L+£2)‘XJ—XS

and Corollary 6.77. The existence of a positive solution follows from the
approximating equation
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Xf=x+/0t |:f (X5 +[f O] (1_@)+}ds+/otg(X§)st.

Note that X¢ = 0 is the unique solution of the SDE
3 oo 1%\ oo
Xf=0+/ fX)-foOf1-— ds—l—[g( J) dB;,
0 € 0

+
and £ (0)+[f (0)] (1 - %) > 0, which yields (by Proposition 3.12) X* >

10. By Remark 2.27 we have for all# > 0,

t t
0= / 1y,—, g% (Xy)ds = g% (y) | 1x,=,ds.
0 0

Exercise 4.2: On each interval I the equations from the schema (4.149) have
unique adapted solutions U”, V" and Y", respectively; U” is absolutely continuous;
t

d
H' = F(-,U") — EU- e L'(2x]0, T]). Let K = / Hds. To prove (4.150)
0
the steps are:
LE(UP+IV2E IR+ X0+ $K787) < € (1 + ElHolY):

C
2. B sup [V = U = -5 (1 + ElHol');

t€[0,T]
C
3. E sup |Y—U*+E sup |X'—U/|* < = (1+E|Ho|*);
1€[0,T] 1€[0,T) n
C
4. E sup |Y" —U"? < — (1 4+ E|Ho|*);
reo.r] ! «/ﬁ( )

5. Lett € I'. By It¢’s formula for |Y," — X; |* and the above estimates we obtain
(4.150).

Exercise 4.3: In the same manner as the estimate from Proposition 4.8 is
obtained, we derive using Proposition 6.74 the boundedness of approximating
quantities. Then estimating, via the same Proposition 4.8, X® — X and X¢— Xand
using Proposition 6.9 the convergence results follow.

Exercise 4.4: For the first four questions, choose the control in feedback form as
follows:

Us=- (/’L (s) + lInpZz (s) + g) (Xy — xo) .
2 p

For the last question, choose
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== [+ (5mp +902) £+ 4 | (% 0.

Exercise 4.5: The equivalence follows easily from Example 4.79.
Exercise 4.6: 1&2 Letx € I1g (x) and y € ITg (y). Then

di(x)—dz(y) < |x =P =y =5
=|x—yP+2(x—y.y—7)
<lx=yl(x=yl[+2]y—al.

3. LetO <A< landx,y € RY. Putz = Ax + (1 — A)y. Then there exists a
7 € E suchthat dg(z) = ||z — Zz||. Hence

o —di(2) = |z — lz—2
=2(z,2) — 2
=2 (202 - 7) + 1= (2(0.2) - )
= A(xPP = x =2+ A=y =1y =2
< A(Ix]? = dz(x) + (1= )|y = dz ().

4. According to Alexandrov’s Theorem (1939),' the function x + |x|* — dZ(x)
is almost everywhere twice differentiable, consequently so is x > dz(x).
Chapter 5
Exercise 5.1
Let p > 2, § > 0 and the Banach space

V2R (0,T) Y (Y. Z) € SO[0,T] x A

mxk

0, 7): I(Y, Z) 5 < oo},

where

T p/2
MKZMQ@EswemﬂnV+E(/e@“waﬂg)
s€[0,T] 0
T p/2
+E (/ ez‘WS|ZS|2ds) ,
0

. 8,
and the complete metric space Vf;,k 0, 7)=N 550 Vm{’ . (0. 7).

! Alexandrov, Alexandr Danilovich (1939) The existence almost everywhere of the second differen-
tial of a convex function and some associated properties of convex surfaces. (in Russian), Ucenye
Zapiski Leningrad. Gos. Univ. Ser. Math. Vol. 37, N. 6, pp. 3-35.
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Using Lemma 6.58 we show that the mapping I" : Vf’;’,k 0,7y - V? mi (0.T)
given by

Y,Z2)=T(X,U)
T T

Y, = 77"’_/ <I>(s, X, Us)de _/ ZdB;
t t

has a unique fixed point in Vf;.k (0,T). First I is well defined because by
Corollary 2.45 E sup, ¢ 7 e?1 1Y,|? < oo and by the inequality

|YS|2 LSdQs + (YS7 CI) (S» XS» US)) dQv
< 105 | X5 LodQy + 55 | Ul ds + [Y,| | (5,0,0)[ dQ; + [Y,[* 8dV, V8 > 1

and Proposition 5.2 we get || (Y, Z)||§V < oo forall§ > 1.
From the inequality

|Ys — Y|LdQY (v, — Y/QD(SXS,U)— (s, XU, ))dQY

< % U= U/ ds + 155 1Xs — X LydQ, + Y, — Y/[" 8dV,, V6 > 1

and Proposition 5.2 we obtain

!/ C /7
|0 =2 = 20}, = o [0 = () i

which tells us there exists a §, > 1 such that " is a strict contraction on
(Vﬁl’k ©,7),| - ||5V>, for all § > &, and consequently, by Lemma 6.58, T" has

a unique fixed point in V) (0, T).
Exercise 5.3: Since

(Y, =Y)(Ge (1, Y. Z]) = Gs (1. Y/, Z7))
< LY =Y @+ 1Y+ Y| +1Zi | +Z0))

we obtain, by Proposition 5.2, with N = 0, V = 0, A = 0, that

T ) r/2
E( sup |Y;—Yf|”> +E (/ |ze - Z?| ds)
s€[0,T] 0

T p/2
<CE (/ LY = V2| (2 |YE] + V2] 412 + |Z§|)ds)
0
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1/2
<c,|e( wp vy
s€[0,T]

X |:IE (/(;TL (2+ YE|+ |Ys8| 1z + |Z§Dds)p]

1/2

Exercise 5.5: We apply the existence and uniqueness result from Theorem 5.27
and the comparison result from Theorem 5.33 for the BSDE

T T
Y, = n+/ Y, (1 —YS+)ds—/ (Z,,dBy)
t t

with0 <n < 1.
Exercise 5.7: Assume that E is not convex. We shall show there exists a bounded
continuous function g : R¥ — E such that

P {Y, ¢ E}) >0, forsomet € [0, T].
If E is not convex, we can find a,b € Bd(FE) such that ¢ # b and a +

A(b—a) ¢ E forall A €]0,1[. Let § = 1dp(“t2) > 0. Define g : RF — E
by g (x(“, x@ . ,x(k)) =a+(b—-a)l e (x(l)). By Exercise 1.7 we have

(1)
1-B
(1) _ _ t
(e (1) 2) =+ om0 (1225
where
r ‘2
®(r) := —/ e zdx, r € R.
We also have

<E <M(T —1) =<4,

Y, —Elg (87 1]

T
/ Fyds|F,

t

ift € [T — % T], where M > 0 denotes the bound of F'.
Then forall 7 € [T — 2. T,

a+b
2

a+b
2

Y, - =<

v, 5lg (") 17|+ [Ble (") 17 -

T —t 2

<8+1|b—al
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0)
0<P||® 1-5 _ESL
T—t) 2|7 |b—al
5@( “+b520

<P, ¢E).

Therefore

Yl_
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