Chapter 5
Backward Stochastic Differential Equations

5.1 Introduction

In this chapter we discuss so-called “backward stochastic differential equations”,
BSDE:s for short. Linear BSDEs first appeared a long time ago, both as the equations
for the adjoint process in stochastic control, as well as the model behind the Black
and Scholes formula for the pricing and hedging of options in mathematical finance.
These linear BSDEs can be solved more or less explicitly (see Proposition 5.31
below). However, the first published paper on nonlinear BSDEs, appeared only
in 1990, see Pardoux and Peng [51]. Since then, the interest in BSDEs has
increased regularly, due to the connections of this subject with mathematical finance,
stochastic control, and partial differential equations. We refer the interested reader to
El Karoui et al. [29] and [30], Pham [60] and the references therein for developments
on the use of BSDEs as models in mathematical finance, as well as the connection
of BSDEs with stochastic control (see also [28] and [37]). BSDEs are also an
efficient tool for constructing I'-martingales on manifolds with prescribed limit,
see Darling [19]. The connection of BSDEs with semi linear PDEs was initiated in
Pardoux, Peng [54], see also among the now vast literature on the subject [6,48,52]
and [53].

We shall present both the abstract theory of BSDESs, and the connection of BSDEs
with semilinear PDEs (both parabolic and elliptic). Let us motivate the notion of a
BSDE via an associated semilinear parabolic PDE.

To each (¢, x) € Ry x RY, we associate the Markov diffusion process {X -
s > t} which is a solution of the SDE

S S
et =k [ pexpars [ etnxias,
t t

where the Brownian motion B has dimension k. The associated infinitesimal
generator reads
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354 5 Backward Stochastic Differential Equations

Ap(x) = 3T 570, ) Dp(0)] + (1(6,2), V().

Let T > 0 be an arbitrary final time, k € C(RY) and F € C([0, T] x RY x R x RF),
We consider the following backward semilinear second order PDE

%(I,x) + Au(t,x) + F(t,x,u(t, x), Vug)(t,x)) =0,
(t,x) € [0,T] xRY,
w(T,x) = k(x), xeR,

Suppose that this equation has a classical solution u € C2([0, T] x R?). It then
follows from Itd’s formula that forany 0 <t <s < T,

T
M(S, ng) = K‘(X;,r) +[ F(r, Xr”x,u(r, X'{,x)’ (Vug)(r, X'{Y))

T
—/ (Vug)(r, X*)dB,.

Considering the pair of adapted processes
(Y5, Z0%) = (u(r, X2¥), (Vug)(r. X)),

we have that for each (¢, x) € [0, T] x R¢,

T T
Y = k(X5 +/ F(r, XX, Y, Zﬁ’x)dr—/ Z'¥dB,, s <r <T,
s

A

and Y;"" is a deterministic quantity which equals u(¢, x). The solution u of the above
semilinear parabolic PDE is expressed in terms of the solution of this last backward
stochastic differential equation (BSDE). We will see below that this is indeed an
extension of the Feynman—Kac formula (in the sense that if F is affine, then the
Feynman—Kac formula is a consequence of the above representation). Note that the
above computation can be applied to a system of PDEs, rather than a single PDE.
We shall consider only the case where the same second order PDE operator A is
applied to each coordinate u; of u. A probabilistic representation for more general
systems of semilinear PDEs, with a different A for each coordinate of u, can be
found in [55], see also [52] and [58].

Let us now write an abstract version of the above BSDE. Let t = 0, and
forget about the superscript x. Suppose now that we are given a probability space
with filtration (2, F, F;,P) and for each (y,z) € R x R¥, a measurable process
{F(t,y,2), 0 <t < T} (F being jointly measurable), together with an Fr random
variable 7.

We formulate the problem of solving a BSDE as follows: find a pair of adapted
processes {(Y;, Z;), 0 <t < T} such that
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T T
Y, =1 +/ F(s, YS,ZS)ds—/ Z,dB;, 0<t <T, as.
t t

Note that, since the boundary condition for {¥; : ¢ € [0,T]} is given at the
terminal time 7', it is not really natural for the solution {Y;} to be adapted at each
time ¢ to the past of the Brownian motion {B,} before time ¢. The price we have
to pay for such a severe constraint to be satisfied is to have the coefficient of the
Brownian motion — the process {Z,} — to be chosen independently of {Y;}, hence
the solution of the BSDE is a pair of processes. Note that in the case FF = 0, ¥; =
E(n|F;) and Z is given by the martingale representation theorem from Sect. 2.4.

One may also think of a “backward SDE” as an inverse problem for an SDE,
namely we are looking for a point y € R, and an adapted process {Z;}, such that
the solution {Y;} of

t t
Y=y —/ F(s, Y, Zy)ds + / ZdB;
0 0

satisfies Y7 = 7.

Finally, note that while the above presentation treats 7 as a deterministic
quantity, an important alternative is to replace it by a stopping time (or else by +00).
This is essential when giving probabilistic representations of semilinear elliptic
PDEs.

In this chapter, we suppose given a stochastic basis (2, F, P, {F;},.,) with
{B,;t > 0} a k-dimensional Brownian motion and the filtration {7;},., being
the natural filtration of {B, : ¢t > 0}, i.e. forall t > 0: -

Fo=FFYo((B,:0<s<t)VN.

5.2 Basic Inequalities

For convenience we rewrite in this context the It6 formula (2.14) and we give a basic
inequality. First we introduce a notation used in this chapter.

Notation 5.1. For p > 1 we define
np YA (p—1).

Let (Y,Z) € S,‘,’l [0,T] x A9 . (0,T) satisty forallt € [0, T], P-a.s.

mX

T T
Y, =Yr +/ dK; _/ ZdB;,
t t
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where

O KeSP,
O K. (w) € BVjye ([0, 00[; R™), P-as. w € Q.

5.2.1 Backward Ité’s Formula

If € C'2([0,T] x R™), then P-a.s., forall t € [0, T]:

T (3¢ 1
q)(l7 th)+/ {_(Ss YA)+_'I‘I‘[ZSZ;<¢)/C/)C (S, YS)]} ds
p ot 2 (5.1)

T T
= o (T, YT)+/ (@; (s, Ys)vsz)_/ (90; (s,Ys), ZsdBy) .

From Corollary 2.29 we get for all p € R,

p/2 T »/2
(P +e)" + g/ R Ods + 2 (L9 = 109) = (1¥e +¢)
' (5.2)

T T
i (0 ar)=p [ (099, z.a8.).
t t

where
(p—2)/2
G) U= (P +e)
(p—4)/2
G R =[1ZP P+ =21 Z P (I +e)
R ! (p—9)/2
i 1 =e [z (e
0
(p—1)/2
We have Us(p’s) < (|Y5|2+5) and

(p—4)/2 (p—4)/2
mZP P (NP +e) < R <my 1ZP NP (IGP +e)

wherenpdg 1A (p—1)andm, “ Vip—=1.
Moreover

L[ 2 (1e)
%/o |Zs|" 1y, )< yeds < 2+/2L19.
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In particular for p > 1 and ¢ N\ 0 we obtain

1 /7 1
|Y,|” + 5/ RV ds + 5 (L1 = L)1z = Y7 |
t (5.3)

T T
4 / 7,7 (sen (Y,) . dK) — / Y77 (sen (V) . Z,dB,)
t t

where
0, ifx =0,
sgn: R" — R", sgn(x) =47 X if x # 0
|x| bl b
if Yy =0,

Rip) —

(1Z:7 + (P =212 sen (VP 1%1772, i ¥, #0,

and {L, : ¢ > 0} is an increasing continuous progressively measurable stochastic
process such that for all # > 0 (in the sense of convergence in probability)

1 ! Z?
L= lim / H—s|3/2ds.
T (1P +e)

The stochastic process {L, : t > 0} has the following property:
L, (w) = L; (w), P-as.,

for every interval [s,¢1] C {r > 0:Y, (w) =0}, 0r[s,¢] Cint{r > 0:Y, (w) # 0}.
Moreover, we have

1 T T
lim sup —/ |Z,|? 1y, |<sds < 2+/2L7 and / |Z,|? 1y,—ods = 0.
504 6Jo o 0

Since

t t
0< gn,,/ 1Y, 1P 2 1y, 20 | Z, P dr < /Rﬁp)dr <oo, forall0<s <t <T, as.,

S

it follows that forevery p > land 0 <¢ < T:

2

T
PAL Enp/ 1Y, 172 1y, 20| Zs > ds < | V7|
T 2’ T ,
+p/ ol lys;éo(Ys,dK.s)—P/ 1,172 1y, 40 (Y. Z,dBy) . as.
t t

(5.4)
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In fact we deduce from Lemma 2.37 a more general inequality:
O ify [0, TIxR™ — Ris afunction of class C ', convex in its second argument,
thena.s., Yt €[0,T]:

T T
YY) + / W s s < (T + / (VY (s.Y,), dK.)

T (5.5)
_/ (V (s, Y,), Z,dBy).

t

5.2.2 A Fundamental Inequality

Let (Y, Z) € SO [0, T] x A°

mxk

(0, T') satisfy an identity of the form

T T
Y, = Yr +/ sz—/ Z,dB,, te€[0,T], P-as. (5.6)
t t

where

O KeS2(0,T]) and K. (w) € BV ([0, T];R™), P-as. w € Q.
) Assume that there exist

(a) D,R,N P-m.i.c.s.p., Dy = Ry= Ny=0;
(b) V. P-mb-vcs.p. Vy=0;
(c) A<l1=<p,

such that as measures on [0, T], a.s.

n
dD; + (Y1, dK,) < [1pz0dR: + [Yi]dN, + |Y,PdV,] + A |Zi P de, - (5.7)
where
npdéfl/\(p—l).

By Proposition 6.80, Corollary 6.81 and Corollary 6.82 from Annex C we have:
Proposition 5.2. Let (5.6) and (5.7) be satisfied and moreover

E |Ye"||! < oo.

(A) If p > 1, then there exists a positive constant C), ;, depending only upon (p, 1),
such that, P-a.s., forallt € [0, T]:

T r/2 T r/2
E”" sup [e"Y,|” + E (/ eZVrdD,) + E” ([ eZV’|Z,|2dr)
t t

relt,T] (58)
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T p/2 T P
<C,, E” |:|eVTYT’p + (/ €2V’1p22dRr) + (/ eVrdN,) } :
t t

(B) If p=1(andn, = 0), thenP-a.s., forall0 <t <T

T
e 1Y, <ETie'T Yy +Eff/ e""dN,

t

and for all 0 < a < 1 there exists a positive constant C,, depending only upon

o such that
T /2
sup [E (eVr Ile)]a +E( sup |eVrYr}Of> L E (/ o2V |Zr|2dr)
relt,T] relr.T] ;
a/2

+E ([TeZVr |D,|2dr)
<C, [(]E (" vrl)) + (E/tTeV'dN,)a] .

(C) Ifp>1land R= N =0, then P-a.s., forallt € [0,T]:
e’ Y, |” <BTre'T |Yr|P . (5.9)

Corollary 5.3. Under the assumptions of Proposition 5.2, if there exists a ¢ > 0
such that supyejo 11 1Vs| < ¢, then P-a.s., forall t € [0, T]:

T p/2
E7 sup |Yi|? 4+ E* (/ |ZS|2ds)
t

s€t,T]
2

T p/
<Cpp e E7 | |Yr|” + ( / 1,,22dRS)
t

()]

5.3 BSDEs with Deterministic Final Time

Our main goal in this section is to study backward stochastic differential equations
(abbreviated BSDEs) of the form

_dY[ - F(I,Y[,Zf)dt +G(I,Yt)dA[ _Z[dB[, OE < T,

(5.10)
Yr =n,

or equivalently, a.s. for all # € [0, T]:
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T T T
Y, = r/+/ F(S, Y, Zs‘)ds+/ G(S, Ys)dAs_/ Z,dB;,
t t t

whose solution (Y;, Z;), ¢y 7] takes values in R™ x Rk and where we assume in
this section that:

e T > 0is a fixed final deterministic time;

e 7n:Q — R™, the final condition, is an Fr-measurable random vector;

o F:Qx[0, T]xR"xR™k — R™isa (P, R" x R™)-Carathéodory function,
that is

F (-, y.2) is P-ms.p., V (y,2) € R"xR"™*,
F (w,t,-,-) is a continuous function, dP ® dt-a.e.;

G:Qx[0,T] x R" — R" is a (P, R™)-Carathéodory function, i.e.

G (- y)isP-msp.,VyeR"
G (w,t,-,-) is a continuous function, dP ® dt-a.e.;

e AisaP-m.i.c.s.p., 4o = 0.

Note that, by Exercise 1.1, F is (P ® B, ® Byuxk, By)-measurable and G is
(P ® B,,, B,,)-measurable.
We state the following definition:

Definition 5.4. A pair (Y, Z) € S2 [0, T] x A?

mxk (0, T) is a solution of (5.10) if
T N T

/|F(t,Yl,Z,)|dt+Z/ |G (t,Y,)| dA, < co, P-as.

0 =70

and, a.s. forall r € [0, T']:

T T T
Y, = n+/ F(s,YS,Zs)ds+f G(s,Ys)dAs—/ Z.dB,. 5.11)
t t t

5.3.1 A Priori Estimates and Uniqueness
We now consider the BSDE
T T
Y, =n +/ D (s, Yy, Zs) dQ —/ ZdBy,, t €[0,T], a.s., (5.12)
t t

where
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e 1 :Q — R™, the final condition, is an F7-measurable random vector;
e (0,1,9,2) — P (w,1,y,2) : Qx[0,T] x R" x R™k _ R™:
e (w,t)— QO (w): 2 x[0,T] - Ris aP-m.i.c.s.p. such that Q¢ = 0.

Note that the BSDE (5.10) can be written in this form with

CI)(a),l,y,Z)=Olz(w)F(w»t,y,Z)+,3r(a))G(wyy)’ and
0/ (w) =t + 4 ()

where {o; : ¢t > 0} and {B, : t > 0} are two real positive P-m.s.p. (given by the
Radon-Nikodym representation theorem), o; + B, = 1, such that

dt == a[dQ[ and dA[ == ﬂldQ['

We define for any p > 0

o (1) 2 sup |®(t, y,0)[: i particular B} (1) = |®(z,0,0)|.
lyl=p

The basic assumptions on ® are the following

(BSDE-H,) : (5.13)

¢ Vy € R" z € R the function ®(-,-,y,27) : Q x [0,T] — R" is
P-measurable;
& there exist three P-m.s.p. - QX [0, T] > Rand €, : Q x [0, T] = Ry such
that, P-a.s.
(i) o,dQ, =dt,

T 5.14
[ [ulag, + € dr] <o e

and forall y,y’ € R™ and z,7 € R™* dP ® dQ,-a.e.:

Continuity:
(Cy) y— & (t,y,2) : R" — R™ is continuous;

Monotonicity condition:
(My) (¥ =y, @@,y 2) = P(t, y,2) < ey’ = yI*:

Lipschitz condition: (5.15)
(L) |®@.y.2) =@t y.2)| < 4 —zl;

Boundedness condition:

T
(B,) / & ()dQ, < 0. ¥ p = 0.
0

The assumptions on P yield a continuity behaviour result which we leave as an
exercise for the reader.
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Lemma 5.5. Under the assumption (5.15)
T
/ |®(t,Y,, Z,)|dQ, < 0o, P-as., Y (Y,Z)eS2[0,T]xA%.,(0,T),
0
and the mapping
Y,Z2) — f D(s, Yy, Z5)dO;
0

is continuous from SO [0, T] x A? <« (0, T) into S0 o, 7).

m

We shall show that the monotonicity of ® yields an inequality of the form (5.7).
Let (with @ > 1 arbitrary)

LA p-1 and L+ S @) e
P

We have:

Lemma 5.6. Let a, p > 1~, ro > 0 and the assumptions (5.13-BSDE-Hg) be
satisfied. Let (Y, Z), (Y.Z) € SO[0,T] x A°_, (0,T). Then, in the sense of
signed measures on [0, T]:

dD{ 4 (¥, @ (1,Y,, Z0)dQ,) = [dR™ + |Y;1aN{™ + Y,V |

(5.16)
+ 27, R 1,
2a

and

~ ~ o~ ~ n ~
(Ve = Voo ® (1Y, Z) = (1. T, Z0))dQ, < |Y, — ViPaV: + 32 |2, - Z,[ di
(5.17)
where

t t t
D™ = ry f |® (s, Y5, Zy)| O, Rt‘"°)=r°/ ®F (5)dQ, + 13 f y;"dQ,.
t 0 IO Ol
v :/ V5dQ, N = / o (5)dQ, + 2ro / lys| dO,.
0 0 0
(5.18)

Proof. The monotonicity property of ® implies that for any R”-valued stochastic
process {U; : s > 0}, |Us| < 1:

(rOUS - YSa ® (S, rOU\" Zs) - o (S, Ys, Zs)) dQs = Ms |r0US - YS|2dQS~

Since
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|® (5, 10Uy, Z)| dQy < [@F, (5) + asls | Zs|] dQs = @] (5) dQ; + &, | Zs| ds

it follows that
ro <Um —-® (S, Y, Z?)) dQs + (YS7 ® (S’ Yy, Zv)) dQs
< [roUs—Y;|* uedQy+ |roUs — Y| [®F (5) dOs+L, | Z,| ds]
< |roUs = Y| sdQ + (ro + |Y3]) @4, (5) dQ,

= lroU, — Vo2 (6)2 ds + ~2 | Z,| ds.
2n,, 2a

Hence
ro (USv _CD (S, YSa ZA)) de + (YSs q) (Ss YSv Zs)) dQS
< (ro + |Y;)) @ (s) dQ,
n
+ (3 1P =270 (U Y) + Y,) yd Qo 55 124 ds
a
< [ro®}, () +r3y,"]dO,+ Y[ () () +2r0 |ysl) dOs+ |Ys | y5dQ,
np 2
— | Z,|" ds.
+5, |4l ds
(5.16) follows if we choose

A, 05, Z) #0,

Us = .
0, if®(s, Y, Z;) =0.

The inequality (5.17) is obtained as follows:
(Y =Y, @ (s, Y, Z,) — O(s, Y, Z,)) dOQ,
< [ V=T + b v, - V[ |2, - 2, do,
< |V, =Y, do, + |Y, = V| |Z, — Z,| t,ds
< (usdQs + 2Z_p (és)zds) v, =7 + Z—Z |2, — 2, ds.

Taking into account Proposition 5.2 with dK; = ® (s, Yy, Z;) dQ,, we deduce
from (5.16), first with ro = 0 and then with ry > 0:



364 5 Backward Stochastic Differential Equations

Proposition 5.7. Let the assumptions (5.13-BSDE-H ) be satisfied. Then for every
a, p > 1 there exists a constant C, , such that for all solutions (Y, Z) € S% [0, T] x
Al « (0, T) of the BSDE (5.12) satisfying

mX
E|re' | <o
where again

def

t a t
v, 9 yar / [1,dQ, + 2_/ (€,)? ds.
0 npJo

the following inequality holds, P-a.s., for all t € [0, T]:

T p/2
E7: ( sup |eV"YY|p) + E* (f e?Vs |Z‘Y|2ds)
s€lt,T] t (5.19)

T p
sca.p[Eff el + B7( [ ¥ 06.0.0)140) ]
t

Moreover, if p > 2, then for all ro > 0:

p/2

T
E (rO/ eZVS |q>(s, YSsZ.Y)|dQS)
0

r p/2 r p
+E (/ ezVst§ro)) +E (/ €VSdN§r0)) :|
0 0

Corollary 5.8. Let p = 1. Let the assumptions (5.13-BSDE-H ) be satisfied and
® be independent of z € R™* (¢, = 0and V, = ji; = fot wsdQ,). If (Y, Z) €
SO0, T] x A° <« (0, T) is a solution of the BSDE (5.12) satisfying

m

S Ca,p []E |eVTnip
(5.20)

E sup e |Y,| < oo,
s€[0,T]

then the following inequality holds P-a.s., for allt € [0, T]:

T
T | S B fi| + BT [ o | (5.0) do,
t
Moreover forall 0 < g < 1

_ q ~ T q/2
sup (E (e |YY|)> +E sup |V | +E (/ e |71 ds)
s€[0,7] 5€[0,7] 0

_ q/2 T q/2
<GC |:(E (e’“' |n|)) + (E[ el |CI>(s,O)|dQS) :| .
0
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Proof. Since
(Y1, @ (1.Y:. Z,) dQ,) < |Y;]|®@ (2. 0)|dQ; + |Y:|* d ji,

the conclusions follow by Corollary 6.81. |

From (5.19) we immediately have:

Corollary 5.9. Leta,p > 1. If

E sup |Ytev’|p<oo
t€l0,T]

and there exists a constant A > 0 such that for all t € [0, T]:
T p
E |:|eVT_V’77\p + (/ eV |® (s, 0, 0)|dQS) ] <A, a.s.,
t
then forallt € [0, T]:
T p/2
|Y;|” +E (/ 25—V |Z‘Y|2ds) <AC,,, as.
t
Let (Y,Z) € S)[0,T] x A° ., (0. T) be a solution of the BSDE
T T
Yi=n +/ (s, Yy, Zy) dQ, —[ Z,dB. (5.21)
t t

where ® satisfies (5.13—BSDE-Hg) and (Y, Z) € S°[0,T] x A (0. T)isa
solution of the BSDE

T T
Y, =h+ / d(s, Yy, Z,)dO, — / 7.dB,, (5.22)
t t

where @ (-, +,-,-) : 2 x [0, T] x R™ x R™k _ R™ is P-measurable with respect to
(w,1) € Q x [0, T] and continuous with respect to (y,z) € R” x R”"*k We clearly
need to assume that

T ~ A A
f b5, . 2,)
0

dQ, < oo, P-as.
Note that

T T
n—n=w—m+/dm—/(a—awm
t t
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where
t A~ A A
Kt == / I:(D (Sa YYvZAY) - (D(S, Y&"ZS):I dQs,
0
and by the assumptions (5.13—BSDE-Hy)

N A N ~ ~ ~ ~ ~ |2
(YZ—Y,,dKI)s Y, — Y| |0, ¥, 2) — &, V.. 2) Y, - Y| av,

dQ, +

np ~ 2
— \Z, — Z;|" dt
+2a| = Zi|
with, as above,
a 2
av, = do, + . (€,)"dt.
np

Hence by Proposition 5.2 we have:

Theorem 5.10 (Continuity and Uniqueness). Let a, p > 1 and the assumptions
(5.13—BSDE-Hy) be satisfied. Let

(Y.Z), (Y.Z) e S°[0. T x A° ., (0.T)

mxk

be solutions of the BSDEs (5.21) and (5.22) respectively. If

E sup (ePV’ Y,—f’l

V4
) < 00, (5.23)
t€[0,T]

then there exists a positive C, , such that:

, o r/2
p) LR [(/0 o2V )z‘,‘—z‘\-) dS) } (5.24)

E ( sup e?%s ‘Yx - Y,
T A A~ N A A P
<Cup E[ePVT In— A" + (/ eV (s, Yy, Zg) — D(s, Yy, Zy) dQS) ]
0

s€[0,T]

If<I>=&>,thenforallO§t§s§T,

A |DP A |P
ey, —¥,|" <E” (ngs Y, — Y, ) P-as. (5.25)

In particular uniqueness follows in the space S/, ([O, T]; eV) X A21xk (0,T), where

S,{;([O,T];e")dg {Y €S0, T]:E s;pﬂ‘el/sys‘l’ <oo} .
s€l0,
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Recall the notation

t
He :/MSdQS'
0

Theorem 5.11 (Continuity and Uniqueness). Let p = 1. Assume that P, D Qx
[0, T] x R" x R™k — R™ satisfy assumpttons (5.13) and both are independent of
ze Rk (4, = K, =0).If(Y,Z2), (Y Z) € SV0,T]x A° mxk (0, T) are two solu-
tions of the BSDE (5.107) corresponding respectively to (1, ®) and (1, CD) such that

E sup el
s€[0,T]

s| <00,

and A =4 D(s, }A’X ZS) — <i>(s, )A’S, Zs), then P-a.s., forallt € [0, T]:

et Yt

T
- RSB - il) + B [ e Ialdo,
t
and for every q € (0, 1) there exists a constant Cy such that

sup (E (eﬁ~‘ Y, —
s€[0,T]

— Ay)) +E sup edhs
s€[0,T]

7
o ([ o)
<G, [(IE (e |n— ﬁ|))q + (]E/O els |AS|dQS) } .

Proof. Since

(v- P[0 w20 - b0 7. 2)] o))

= )]l_ ) y Zl)_(\b(t»?hzl) dQl Y[ d/j‘ts

the conclusions follow by Corollary 6.81. |

5.3.2 Complementary Results

In this subsection we generalize the uniqueness result and we shall give a scheme
to obtain the solution as a limit of uniformly bounded solutions of approximate
BSDEs.
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Leta, p > 1 and
t a t
Vet = [ o, + 5o [ @pras
0 2I’lp 0
Define

SP ([0, 7] ;eV“‘”) o {Y €S°[0.7T]:E sup ‘eVSMYS
s€[0,T]

p }
< o0y .
Note that if 1 < a; < a, then V""" < V> and consequently
a.p at.p
S? ([0, T]:e"™ ) cS? ([o, T]:e" ) (5.26)
Let

S,}ﬁr.P ([()’ T];eV) def US’{; ([0’ T];eVa.p) ond
a>1
S (.1 = U SE(0.7]:e).

a, p>1

Remark 5.12. 1f Q, u and £ are deterministic functions, then for all a, p > 1:
Satr (10.T):e") = S5 (10.T):¢"") = S7[0.7)
and

SKE(0.7]:e") = spF 0. 71 E | Sz 0.77.
p>1

Corollary 5.13. Let the assumptions (BSDE-Hg) be satisfied. Then for each p > 1,
the BSDE (5.12) has at most one solution

(Y.Z) € S, 7 ([0,T]:e") x AL, (0.T).

If, moreover,
T
E exp (A/ (,)? ds) < o0, forallA >0,
0
then the BSDE (5.12) has at most one solution

(Y.Z) € S, ([0.T]:€") x AY . (0.T).

mxk
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Proof. Let (Y, Z),(Y,Z) € S%([0,T]) x A® . (0,T) be two solutions of the
BSDE (5.12) corresponding to 7.

(A) Let p > 1 be such that (Y,Z),(Y,2) € Sy™7 ([0, T];e") x A%, (0, 7).

Then from (5.26) and the definition of S, 7 ([0, T];e") there exists ana > 1
such that

p

a,p
E sup ‘eV’ Y; < 00,

t€l0,T]

)4 Va.p A
<oo and E sup ‘e Y,
tel0,T]

i.e. the condition (5.23) is satisfied; consequently the estimate (5.24) follows
and uniqueness too.

(B) If(Y,2),(Y.2) € ShtIt ([0, T eV) x A% . (0, T) then there exist aj, s,
P1, p2 > 1 such that

V,a”” P2

E sup ‘e
t€l0,T]

Y,

P1 ya2:P2 o
<oo and E sup le"" Y;
t€l0,T]

< Q.

Leta>1land 1 < p < p; A p,. Put

o a a;
" 2n, 2n,
Since
t a t )
ver = [wao,+ 5o [ @)
0 npJo
t
— Vb [P
0
we get

E sup ‘erMY, g

t€l0,T]

aj.pi
sup ‘ev, Y,
t€l0,T]

» T
exp |:pbi f (Es)zds}
0
ya pi—=p
pi\ 7 T hi
pi pbi 2

<|E sup ‘evfai'piY,
tel0,T]
< 00.

Similar we have

p
< 0OQ.

E sup ’eV’a'pf’t
tel0,7]

Hence the estimate (5.24) holds and the uniqueness follows. |
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The next Proposition will allow us to extend existence results from situations
where the data satisfy the following strong boundedness condition: there exists a
positive constant C such that for all ¢ € [0, T']:

. T
Inl + @ (1,0,0)| + ‘eVTn +/ ¢’ |®(5,0,0)|dQ, < C < 00, P-as.
0

where
n t a t )
= [urao,+ 5 [ wras
0 2np 0
Let
def t a t
Vi =V = / wsdQy + _f (Es)2 ds and
0 2np 0

def

t t t
B = Qt+/ |/LS|dQS+/ (Ks)zds+/ |® (5,0,0)| dO,.
0 0 0

Wehave V, -V, <V, -V, forall0 <t <s < T.
Define, for n € N*,

n" = n1lpn Br + 10,
Q" (t,y,2) = @(t,y,2) — P (¢,0,0) 1j00[ (B + [P (2,0,0)]),

and the stochastic processes
T
H' = [e" | + / BV |0 (5,0,0)] dQ,.
t

o T
th — }eVT_th” +f eV“'_Vf |<I>” (S,O, 0)|dQ3
t

It is easy to verify that there exists a positive constant M,, , , such that

0= Hy < |H"|, < | A"

<M,r, P-as.
T

Proposition 5.14. Leta, p > 1 and the assumptions (5.13-BSDE-H 3 ) be satisfied.
Also assume that

T
Ee?'T |n|? + E(/ e’ |® (5,0, 0)|dQs)p < o0. (5.27)
0
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If foreachn € N*, (Y",Z") € §510,T] x A%, (0,T) is a solution of the BSDE

T T
Y'=n" +/ ol (s, Y;ﬂZ;’)dQS —/ Z!dB;
t t
such that eV Y" € SP [0, T, then

IY*lr+ |e"Y"|, <M, as., (5.28)

Ir =M, pa

and there exists (a unique!) (Y, Z) € S} ([O, T]; eV) X Aﬁ:xk (O, T; eV) such that

T r/2
[E le" v =]} +E (/ e |Z;‘—ZS|2ds) ] =0 (529
0

lim
n—>oo

and, P-a.s. forallt € [0, T]:

T T
Y, = n+/ ® (s, YS,ZS)dQS—/ Z,dB. (5.30)
t t

Proof. In view of (5.19) we have for all t € [0, T:

e\ Y < M P-as.

n,p.a’

and (5.28) follows.
For all n,i € N*:

T

T
v oyt ==t [Ca k- kv) = [z -z as
13

t

where
t
K!' = / " (s,Y,)", Z) dQ,
0

and similarly for K.
Since

(Y =y d (K — KI)) < [Y) = Y]] @ (5,0,0)| 1g, 41000020 dOs

v =t av,+ 58|z -2 as,
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we deduce from Proposition 5.2 that

E sup e?"
s€[0,T]

) T . r/2
Y-y +E (/0 |z -zt ds)

T P
=< Ca,]?]E (epVT |’7|p lﬁT+|7]|zn) +Ca,pE (/ eVA lﬁs+|<I>(s,0,0)\Zn |(I) (S» 0, O)| dQs)
0

Hence there exists (Y,Z) € Sp ([0.T]:e") x AP, (0.T:e") such that (5.29)
holds. The last assertion follows from Lemma 5.16 below, whose proof is left as an
exercise for the reader. n

Clearly from the construction in Proposition 5.14 we have:

Corollary 5.15. Suppose that the assumptions from (5.13-BSDE-H ¢ ) are satisfied.
Then the existence of a solution under the conditions (5.27) with p = 2 and some
a > 1 implies existence under the same conditions for any p > 1.

We end this subsection with a continuity result, the easy proof of which is left as
an exercise for the reader.

Lemma 5.16. Let the assumptions (5.13-BSDE-Hg) be satisfied. If (Y,Z) €
S0, T]x AY , (0,T), then

T
/ |®(¢,Y;, Z:)|dQ, < oo, P-a.s.
0
and the mapping

. V)—>/ (s, Uy, V,)dQ, : SO [0, T] x A°
0

mxk

0.T) — Sy, [0, T]

IS continuous.

5.3.3 BSDEs with Lipschitz Coefficients

5.3.3.1 BSDEs with Deterministic Lipschitz Conditions

Consider the backward stochastic differential equation: P-a.s., for all ¢ € [0, T

T T
Yt =1 + f F (S, Ys, Zs) ds — / ZSdBS’ (531)
t t
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under the assumptions

O p>1,
neLr, Fr,P;R"), (5.32)

O the function F (-, y,z) : Q x [0, T] = R"™ is P-measurable for every (y,7) €
R™ x Rk,

O there exist L € L' (0,T), £ € L?>(0,T) such that

(I) Lipschitz conditions:

forall y,y' e R™, 7,7 e R™* 4P ® dt-a.e.:

(Ly) |F(lsy/,Z)—F(fvy,Z)|EL(I)U’/—)’L
(L) |F@t,y.2)=F@t, y. 9l =€) -zl (5.33)
(1) Boundedness condition:

T p
(Br) E(/O |F(t,0,0)|dt) < 0.

We recall the notation

sy sz 0. 7].

p>1

Theorem 5.17. Let p > 1 and the assumptions (5.32) and (5.33) be satisfied. Then
the BSDE (5.31) has a unique solution (Y, Z) € S} [0, T] x Aﬁlxk (0, T). Moreover
uniqueness holds in S\t [0, T]x A° . (0,7T).

mxk

Proof. We first remark that if (Y, Z) € S} [0, T] x A,’;xk (0, T') then

K. ":’/ F(r.Y,.Z,)dr € SP[0.T] and E $K$2 < oc.
0

Indeed, since
|F (r,Y,, Z)| < |F (r,0,0)| + L (r) |Y:| +£(r)|Z,],
then

E sup |K,|” <E$K¢%

t€[0,T]
T P
=E (/ | F (r, Y,,Z,)|dr)
0

T P T p
<C,E (/O |F(r,0,0)|dr) +C, (/0 L(r)dr) E Y|
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T p/2 T p/
+C, (/ Ez(r)dr) E (/ |z,|2dr)
0 0
< Q.

Uniqueness follows from Corollary 5.13.

We prove existence.

Note that a solution of the Eq.(5.31) is a fixed point of the mapping I' :
S0, TIx AP , (0,T) — SH[0,T] x A, (0,T) defined by

mxk

2

Y,Z2)=TX,U),

where
T T
Y, = 77+/ F(r, Xr,Ur)dr—/ Z.dB,, as. t €[0,T].
t t

By Corollary 2.45 the mapping I" is well defined.
i T
LetM eN*and0 =Ty < Ty <--- < Ty =T, with Ty = lﬁ.Then

“(%)d;f sup /[‘l[L(V)+52(F)]dr—>0, as M — oo.

—t <L
O<s—t<y7

We show that T' is a strict contraction on the Banach space S} [Ty—1,T] x
AP (Ty—1. T) with the norm

T p/2 1/p
|||(X9U)”|M:|:]E sup |X,|”+IE(/T |U,|2dr) :|
-1

r€[Ty—1,T] M

for M large enough.
Let (X,U),(X",\U) e S£ [Th—1,T] % Aizxk (Tpr—1,T). Then

T T
Y,-Y,/:[ dK,—/ (Z,—Z])dB,. t€[0,T],
t t
where
t
K, =/ [F (r.X,,U)—F (r,X].U))]dr.
0

Since

(Y, —Y!.dK,) < |F (r.X,,U,) — F (r, X].U})| |Y, = Y/| dr
<[L )X, = X]|+ L) |U, = U/|] 1Y, = Y| dr
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and

E ( sup |Y,—Yr’|p) < 00,
rE[TM_1,T]

we have by (5.8), with D =0, R=V =0,1 =0,

v 2y - (v 25,

T p/2
=E ( sup |Y,—Y,’|")+E ([ |Z,—z;|2dr)
r€[Ty—1.T] Try—1

P

<CE (fT [L(r)|X, —X]|+£(r)|U — U,f|]dr)
Tm—1

T P
SC‘/’(/T L(r)dr)E sup | X, —X]|”

M—1 r€(Ty—1.T]

T p/2 T ) p/2
+C, (/ Zz(r)dr) E(/ U, - U/ dr)
Tm—1 Tr—1

< Cp[ar (L) + e (D] lx.0) - (x". U5,

Let M, € N* be such that

Then T is a strict contraction on S, [Trmy—1, T]x A? mxk (Tmo—1, T) and consequently
the Eq. (5.31) has a unique solution (Y, Z) € S, [TM0 1, T] XAmxk (Tmy—1,T). The
next step is to solve the equation on the interval [7s,—, Ta,—1] With the final value
Y (Tmy—1)- Repeating the same arguments, the proof is completed in M, steps. W

Corollary 5.18. Consider the BSDE: ¥t € [0,T], P-a.s.
T T
Y, :77+ST—SI+/ F(S,Ys,Zs)ds—/ ZdB;. (5.34)
t t

Ifp>1S8 € Y4 [0,T], n € L?(Q,Fr,P;R™) and F satisfies the assump-
tions (5.33), then the Eq.(5.34) has a unique solution (Y,Z) € Sh[0,T] x
AP (0, T).

Proof. By the substitutions Y, = Y, + S, n = n+ Sr and ﬁ(t,y,z)
F (t,y — S, z) the Eq. (5.34) is transformed into
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T T
Y, = f;+/ F(s,YS,ZS)ds—/ Z.dB;.
t t

which satisfies the assumptions of Theorem 5.17. |

We now study the case p = 1, where we restrict ourselves to the case where F
does not depend on z.

Corollary 5.19. IfS € S; [0,T,ne L' (Q,Fr,P;R"and F (¢t,v,2) = F (t,y)
satisfies the assumptions (5.33) with p = 1, then the BSDE

T T
Yi=n+Sr—-S+ / F (s,Y)ds —/ Z,dB; (5.35)
t t
has a unique solution (Y, Z) € S° [0, T] x A° mxk (0. T) such that

t
M, = / ZdB; is a martingale
0

and

/2
sup E|Y;|+E sup |Y;|!+E (fo |Z,] dt) <00, V0O <g<l.
t€[0,T] tel0,T]

Proof. As in the proof of Corollary 5.18 we can reduce the problem to the case
S =0.

Letn,i € N*. By Theorem 5.17 there exists a unique pair (Y, Z") such that for
all p > 1

(Y",Z")y e SE[0,TIx AP, (0,T) (5.36)
and (Y", Z") is solution of the equation
T

T
" = n1jy1<n +/ [F (r. Yr”)—1|F(,..0)\Z,1F(r,0)]dr—/ Z"dB,. (5.37)
t

t
Note that
T
:311 = E |77| 1|ry|>n + E/ |F (S,0)| 1|F(r.0)\2nds —0 asn — oo.

By (5.4) for Y — Y"*" and p = 1 we infer

T
|Ytn — Ytn+i| < B, + / L(s) |st — st+i|ds
; - (5.38)
—[ Y =Yy (V) = YO (2] = 207 dBy).
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Denote by C, C’ generic constants independent of n and i .
From (5.36)

(st _ st+i» (Z;I _ Zl;1+i) dBS)

t
nn+i __ n n+i —1
M, —/ Y =y lY;’—YS"'H;éO

0 f

is a martingale. Then EM,"" " = 0 and, taking the expectation in (5.38) we deduce
from the backward Gronwall inequality (Corollary 6.62):

E|Y - Y| <C B (5.39)

Using the Burkholder—Davis—Gundy inequality (1.18) and Doob’s inequality (1.11-
A3), we deduce for 0 < g < 1:

’ [(fOT |20 - 2| ds)"”}

1 ! .
< —E|[ sup / (z!' —Z!*") dB,
Cq 0<t<T |Jo

)

1 T i q
o n«:/o (28— 2" )dBS:|
<L _IE|Y”—Y”+"] +E/T|F(s Y!")— F (s.Y]")] q
— cq(l—q) i 0 0 0 v TS vty
< _ _IE|Y0" _ Y0n+i| + L (s)/TE|YYn — Yyn+i|ds]q
cq(l_Q) L 0 ' '
=C B}

Recalling that Mt is a martingale then, once again by the Burkholder-Davis—
Gundy inequality

E sup M;z.n—i—i _Mtn,n+i
t€l0,T]

q 4
<2¢E sup ‘M,""H"
t€l0,T]

T L q/2
<CE [(/ |z =z ds) ]
0

<C' B,

)q



378 5 Backward Stochastic Differential Equations

then from (5.38) and (5.39) we obtain forevery 0 < g < 1

T q
E sup |¥"—Y"V|" <BI+E (/ L(s)|Y" - YS”+i|ds) +C' g
t€l0.7] 0

< B!+ (/OTL (HE |, - Y;’+f|ds)q +C' B!
<C B
Hence, there exist Y and Z such that
Y"—Y, inSZ[0,TINC ([0,T];L" (2, F.P)), and
Z" — Z, in Aquk 0,7).

Passing to the limit in (5.37) we deduce that the pair (Y, Z) solves the problem.
t

Now, by Corollary 2.47, M, = / Z,dB; is a martingale, because
0

S.+/F(S,Yy)dse S'0,7].
0

Finally, the uniqueness is obtained in the same manner as the estimates for ¥ —
Y"tiand Z" — Z"t, ]

5.3.3.2 BSDEs with Random Lipschitz Conditions

We now generalize Theorem 5.17 to a class of BSDEs with random Lipschitz
constants.
We consider the BSDE (5.31) in a more general form:

T T
Y, = n+/ ® (s, Yy, Z) dO, —/ Z,dB,, t €[0,T], a.s. (5.40)
t t

We assume that
(BSDE-A0)

(1) n:Q — R is an Fr-measurable random vector,
(i) Q is a P-m.i.c.s.p. such that Qo = 0;

and the function ® : Q x [0, T] x R™ — R™ satisfies

(BSDE-LHg) A forall y € R™, z € R™k the function ®(-,-,y,2) : Q x
[0, T] — R™ is P-measurable;
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A there exist P-m.s.p. L, £, a : Q x [0, T] — Ry, such that
T
@dQ, = dt  and / (L,dQ, T ()? dt) <00, P-as.:
0

forallt €[0,T],y,y € R" and z,7 € R™¥, P-g.s.:

Lipschitz conditions
(l) |q)(t’y/7z)_q>(tvy’z)|SLY|y/_y|9
(”) |CI)(Z, y’Z/)_CD(l, y,z)l Sazﬁtlz’—zl,

7 (541)
Boundedness condition:
T
iy [ ®wdg, <oo. Vo=
0
where
# def
@7 (1) = sup |P(z, y,0)].
Iyl=<p
Note that the condition «,dQ, = dt implies that ®(¢,Y,,Z,)dQ, =

F(t,Y;,Z,)dt + G (t,Y;)dA,, where G does not depend upon z.
We recall the following notations. For each fixed p > 1letn, = 1A(p — 1) and

t 1 t
Vo= = [ Lo, + - [ wyas (5.42)
0 npJo

The stochastic process V' is that from Lemma 5.6 with a = 2. Therefore for all
(Y.Z), (Y,Z2) € S5[0,T] x A%, (0, T) we have

n
(Y. ®(t,Y,, Z,)dQ,) < |Y,||® (¢,0,0)|dQ, + |Y,[’dV, + TP |Z, > dt, (5.43)

and

- L - - n ~ 2
(Y. =Y, @Y., Z) - @(t,Y,, Z,))dQ, < |Y, —Y,[Pav, + Tp ‘Zt _Zt| dr.
(5.44)

Lemma 5.20. Let p > 2 and the assumptions (BSDE-AQ), (BSDE-LHg) be
satisfied. If moreover there exists a constant b > 0 such that

T T
(i) / LydQ, <b and / ()’ ds <b, P-as.,
0 0 (5.45)

T P
@iy En”+E (/ |q)(s,0,0)|dQs) < 00,
0
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then the BSDE (5.40) has a unique solution (Y, Z) € S}h [0, T] x Aﬁ?xk 0, 7).

Proof. We have

! 1 2 ! 2
V, = / (Ldes + — (&) dS) = / (LSdQs + (4,) ds) :
0 n, 0

Since
0<V,<2b, forallt €l0,7T],

it follows that for every § > 0 we can define on Sj [0, 7] x A?

axi (0, T) an
equivalent norm by

o r p/2
Y. 2) 5 £ [E sup e [Y,|” + ( / ¥ |Y, L,dQ, )
s€[0,T] 0
T 1/
+E (/ ez‘W*|ZS|2ds)p/2i| "
0

LetT : Sy [0, T]x AP . (0,T) — Sy [0, T]x A?_, (0, T) be defined by

Y, Z2)=T(X,U)
T T
Y,=r]+/ CIJ(S,XS,US)dQS—/ Z,dB;.
t t

We remark that for all X, U € S} [0, T] x A?

mxk

0.7),
t t t t
/|<I>(s,X.y,Us>|dst] |‘1>(8,0,0)Ide+/ |Xs|LsdQS+/ Ui s
0 0 0 0

t t 1/2
5/ |® (5,0,0)|dQ, + b sup |Xs|+b([ |UY|2ds)
0 0

s€[0,¢]

and consequently S. = /@(S,X, U)dQ, € Sh[0,T]. By the martingale

representation result from Co(%ollary 2.45 it follows that I" is well defined.

The fact that BSDE (5.40) has a unique solution (Y, Z) € Sp [0, T]xA? . (0. T)
will be a consequence of the fact that I" is a strict contraction on the Banach space
(S0, TIx AP, (0.T),|-Il5), for some § > 0.

mxk

Let (Y,Z) =T (X,U)and (Y',Z') =T (X',U’). We have

T T
Yt—Yt’:/ dKS—/ (Z, — Z!) B,
t t
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t
where K, =[ [® (s, X, Uy) — @ (s, X, U
0

527

U/)] dQ; and for all § > 1
Y, — Y!|” L,dQ, + (Y, — Y/, dK,)
< |Y, = Y/)? LydQ, + Y, — Y!|[| X, — X!| LydQ, + |U, — U!| £,ds]

< |YS—Ys/|2 LsdQ,+ [m

X=X/ +@E-1) |YX—YJ’|2] L,dQ,
+ (L U, —U!|* + 8 Y, - Y;|ze§) ds

|U U/ ds + ——— | X, — X" L,dQ, + |Y, — Y!|" 8aV,.

1
=15 4@6-1)

Then by Proposition 5.2-4,
T p/2
E( sup e”|v,—Y/|") +E (f ey, — 1! LsdQs)
0

s€[0,T]
T 5 p/2
+E (/ eV ZS—Z;} ds)
0
/2
Gy ’ 28V, /(2 g
< 53E (/0 VU, — Ul|” ds

CP ! 26V 7|2 o
+ WE e’ ‘X‘ — XA| LsdQs
- 0

< (W |x.0) - (x". V)5,

< 2—p|| (X.U)—(x".U’

Uy

for§ > 1+ 4C;/”. Hence

Irx.0) -1 (x|, = WXW—U’ lsv

and the result follows. |

Theorem 5.21. Let p > 1, n, = 1 A (p — 1) and the assumptions (BSDE-A0),
(BSDE-LHy) be satisfied. Let

of [ 1
v, =y ¥ / (LSdQX + = (4,)? ds).

0 14
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Assume also that there exists § > # such that for ¢ = pp—_;i; andng = 1A (g —1),

T p
(@) Ee"VTIUI”Jr]E(/ eV“'Ifb(&O,O)IdQs) < o0,
0
§/2

T T
(i) E ( /0 LsdQs) +E ( /0 (Zs)zds) < 00, (5.46)

T
(iii) E exp [8 (i — i) / (Ks)zds} < 0.
ng  npJJo

Then the BSDE (5.40) has a unique solution (Y, Z) € S9 x A%xk such that

E{ sup e?"|Y,|” | < 0. (5.47)
1€[0,T]

Moreover there exists a positive constant C, depending only on p such that for all
t€0,7T]

T r/2
E7 sup |e"Y,|" +ET ([ eZVS|ZS|2ds)
t

s€lr.T] (5.48)

T P
¢, Eﬂ[\evm\u(/ "1 (5.0.0)|dQ, ]
t

Remark 5.22. We remark that g = ’% defined in Theorem 5.21 satisfies 1 < g < p.
If g > 2 thenn, = n, = 1 and the condition (5.46-iii) is clearly satisfied.

Proof of Theorem 5.21. Uniqueness follows from Theorem 5.10.
Existence. Let t € [0, T] and

t t t
po=t+0+ [ Lao+ [ @ras+ [ 10600140,
0 0 0
)/,=,3,+|<D(l,0,0)|+Ll+el.
Define, for n € N*,

L} = Lidjom (ve).
O =L (ve),
M = Nl (Br +[700).
D, (t,y.2) = D (t. yljo (¥1)  2hjo.) () — @ (£,0,0) Lu.00) (v) -
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By Lemma 5.20 we infer that the approximating BSDE
T T
Y =, + / @, (s, Y. Z))dQ, — / Z"dB; (5.49)
t t

has a unique solution (Y", Z") € Sj [0, T] x A? , (0,T), forall g > 2.
Let

def |7 1
v éf/ (L;’dQS +— (Zf)zds).
0 np
We have foralln,i € N

; 1
OS‘/[HS‘/IH-‘FZE(n+l)2+_(n+l)3
Mp

Therefore
1/2
VT ynyp n2p
E sup e |Y/'|" < Cpip|E sup [Y/| < 00,
t€[0,T] 1€[0,7]

and since
(Y. @, (¢.Y.Z]')dO,)
n
< (V119 (2,0,0)] Lo () dQ; + Y/ PaVy + =1 |2} dt

; n
< V119 (2,0,0)] Lo () dQ; + ¥/ PaVy™ + =L |21 dt,

we obtain, by Proposition 5.2- A4, that

n—+i T n—+i p/2
EFt sup e?%s Y|P + EF (/ e?Vs |Z;’|2ds)
S€[t,T] t

n—+i r n+i p
<C, Ef'[ePVTJr Innl"+</ o, (s,0,0)Ide) ]

A

n—+i r n—+i p
<C, Eﬁ[el’Vr+ Inl” + (/ et |<1>(s,0,0)|de) }
t

By Beppo Levi’s monotone convergence Theorem 1.9 it follows by letting i — oo
that for all ¢ € [0, T],

T p/2
E”" sup e?s Y|P +E” (/ eVs |Z§’|2ds)
t

s€lr.T] (5.50)

r P
scpEf'[eWT|n|P+(/ e |® (5,0,0)] 40, ) }
t
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Consequently by (5.46—i) for all n € N*,

2

T r/
E sup e’ |Y"|” +E (/ eV |Zf|2ds) <C < 0.
5€l0,T] 0

Let § > %,q = pp—ﬁg € (I,p),ng =1A(@—-1andn, = 1A(p—1)

1 1 e
A=t L / (€)?ds and
ng np 0
t 1
Vl(q) - / [LsdQs + - (Ly)? ds] =Vi+ A,
0 q

we have for all n € N*

()
E sup e |V
s€[0,T]

< E[quT sup e |YS"|q]
s€[0,T]

pq (p—a)/p q/p
< []Eep[Z[qAT] [E sup e?V |YS”|p]
s€[0,T]

(p=a)/p v v
= [Eexp (SAT)] E sup e’ |Y]"|?
s€[0,T]
< oo.

Hence for all n,i € N*

E sup e"vf(q) Y=y < 0.
s€[0,T]

Since
(Y! =Yt @, (1Y), Z]) — ©uyi (5. Y, Z17))dQ,
< (V= YL@ (5. Y o) () - Z{ Ao (7))
—® (5. Y X gi) (75) - Z2 Lo 0 (15))) O,

_ (st _ Ysﬂ+i , P (Z, 0, 0)) [1(,100) (]/S) — 1(n+i,c>o) (Vs)] dQ‘
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= |72 =72 [19.0.0)] L) (1) 4O,
(L 1Y dQ, + 61221 ds) (Vo () = Lot ()] ]
n n+ti|2 1, g | n nti|2
+ Y =Y LedQs + —Lids | + T |z} — Z!™ | ds,
ng
by Proposition 5.2- A, we infer that

L@ - T @ 2 \"?
E sup e/ |Y! —Y"|" +E (/ el |z -z ds)
$€[0,T] 0

(¢)
= Cq E "7 (7, — 77n+i|q

T
+GE[[ s 0 (9 0.0.00d0,+ L |¥71d0, + ¢, 1271 45) |

()
<C,E [e"VT ! 100y (Br + |TI|)]

q

T @
+CE (/ e @ (2,0,0)] 13100 (J/s)de)
0

T q
()
+C,E [(/ LLn.00) (Vs) ds) sup e’ IY.Y”I"}
0 s€[0,T]
T q/2 L q/2
+ CK;E |:(/0 Efl(n,oo) (¥s) ds) (/0 e |Z;1|2ds) :| .

Note that

@
T @ !
[ " i B+ 110+ ([ 10 0.0.0) 1000 (2040,

(p—q)/p q/p
< |Eexp (SAT)] (E [epVT 117 Ln.00) (BT + |77|)])

_ T p4/p
[Eewpan ] [E ([ e 1200 1w 0040,) ]
0

— 0, asn — oo;

+
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(b)
T q
B\ ([ Lloo (0as) sup e i
0 s€[0,T]
_ap_ = (p—q)/p q/p
T P—q
<& ([ Lo o) E sup e |77
0 s€[0,T]
T s2/(p+98) 8/(p+3)
=|E (/ L1 00) (ys)ds) E sup e?" |Y"|?
0 s€[0,T]
— 0, asn — oo;
(c)

T q/2 T q/2
E [( / 11.00) (ys)ds) ( / e |zg|2ds) ]
0 0
’ 5/21 7/ P+ ’ /215 (p+5)
=< |:E (/ Zgl(n,oo) (vs) ds) j| |:E (/ e?”s |Z;l|2ds) :|
0 0

— 0, asn — oo.

Taking into account (a), (b) and (c¢) we deduce that there exists a pair (¥, Z) €
S0, 7] x A°_, (0, T) such that for g = pp—ﬁé

mxk

T q/2
lim E { sup e/ |Y" —Y,|7| +E (/ ez — ZS|2ds) =0.
n—>00 s€[0,T) 0

Now the inequality (5.48) clearly follows from (5.50) by Fatou’s Lemma.
Finally passing to the limit in (5.49) we deduce using Lemma 5.16 that (Y, Z) is
a solution of BSDE (5.40). |

5.3.3.3 BSDEs with Locally Lipschitz Coefficients

For a (forward) SDE, it is not hard to deduce from existence and uniqueness under
global Lipschitz conditions an existence and uniqueness result under local Lipschitz
conditions, at least until a possible explosion time. The reason is that one just needs
to follow each path of the solution.

For BSDEs, the situation is dramatically different. Indeed, in a sense, solving a
BSDE amounts to combining the flow of a backward ODE with the operation of
taking continuously in time the conditional expectation, given the current o-algebra
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Fi. A backward stochastic differential equation is not solved by following each
individual path of the solution. Consequently one cannot a priori deduce an
existence and uniqueness result under local Lipschitz conditions from the same
result under global Lipschitz conditions. However, this is in fact possible, because
we have an a priori bound on the solution. This is what we shall explain in this

section.
We consider the BSDE

T T
Y, = n+/ F(s,YS,ZX)ds—/ Z.dBy, 1 €[0,T], a.s. (5.51)
t t

Assume that

A 1n:Q — R"is an Fr-measurable random vector;

A F:Qx[0,T] xR" — R" satisfies
(BSDE-LL):

A forally e R", z € Rmxk the function F (-,-,y,7) : [0, T] = R" is P-m.s.p.
A there exist measurable functions £,k,p 1 [0,T] > Ry and L : [0,T] x Ry —
R satisfying:

o L is continuous and increasing in the second variable,
(o]

T
/[L(l,q)—l—ﬁz(t)—i-ic(t)—l—p(t)]dt<oo, forallg € Ry,
0

o forally,y' e R", z,7 e R™* dt-a.e.

(i) |F@t.y.2)—=F(t.y.29|l <L&Ily|VvIyDI =yl
(i) |F(t,y,2)=F(t,y.2)| <L) |z —z. (5.52)
@i) |F(t,y,0) <p@)+Kk@)]yl.

Let p>1landn, = 1A (p —1). Define

V)= /0[ (K (s) + niﬁz (s)) ds.
p

Observe that for all Y,Y’ € S9[0,T] satisfying |Y'| < |Y| and all Z €
A° , (0.7),
(Y. @ (.Y, Z,)dt) < (Y, @ (¢.Y/,0) dt) + |Y,| £ (1) | Z,| dQ,

- n (5.53)
<|Y|p@)dt +|Y,*dV, + T” |Z, > dr.
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Note that if (Y,Z) € S5[0,7] x A%, (0,T) is a solution of (5.51), then by
Proposition 5.2-A and the inequality (5.53) there exists a C, > 0 such that, P-a.s.,
forallt € [0, T]

. » T p/2
E* sup ‘eV'Y,’ + E7 (/ eZV'|Z,|2dr)
t

relt,T]
. » T P
<C,E” ‘eV(T)n‘ + (/ e"Mp(r) dr) ,
t
which yields P-a.s., forall ¢ € [0, T']:
p 7 7 def
1v:| < (Cp) "7 eV ™ [(Eff n|7) +/ ,o(r)dri| Z R, (5.54)
0
Define the continuous stochastic processes
_ | T
B =e'D [(]Eff ") ”+f ,o(s)dsi| (5.55)
0

and

t
T, (A):/OL(S,AJrA(JEﬂ |n|P)””)ds, > 1 (5.56)

Theorem 5.23. Let p > 1 and the assumption (BSDE-LL) be satisfied. If there
exists a § > # such that for all A > 1

E [(FT (x))é’] +E (e”“)n(p n ]E(/Te“@) | (2,0,0)| d:)p <00, (557)
0

then the BSDE (5.51) has a unique solution (Y, Z) € S [0, T] x A?nxk (0, T) such
that for all A > 1,
T p/2
E sup e”TM|y)” + E ( / AW 72 ds) < 0. (5.58)
s€[0,7] 0

In particular (Y, Z) € Sy [0,T] x Af;xk (0, T) and (5.54) holds; if n is a bounded
random variable then there exists a constant C > 0 such that P-a.s. v € Q

Y, ()| < C. Vtel0.T].
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Proof. Consider the projection operator 7 : Q2 x [0, T] x R" — R™,

y, if [y <R (0),
T (@, y) =7 (0,1, y) = ﬁRf (@) if [y > R ().
y

Note that for all y, y’ € R"™, 7 (-,-, y) is a P-m.c.s.p., |7, (¥)| < R, and
|7 () =7 (V)| < |y = »'].

The function ® (s, y,z) Y ¢ (s, 75 (¥),z) is globally Lipschitz with respect to
(y.2):

| (5. 3.2) = @ (5.".2)| = [® (5.7, (). 2) — @ (5.7, (') .2)|
< Ly (Im )]V s () ]) 1705 (0) = 7 ()
<L(s.R)|y—|
<[k + LRy =],

and

|&>(S,y,Z)_&>(S,y,Z/)} = |q>(sv7ts (y),Z)_cD(S,NS (y)vz/)}

<L(s)|z—7.

Then by Theorem 5.21 the BSDE
T _ T
Yi=n +/ D (s,Ys, Z;)dO; —/ ZdBg, t €10, T], (5.59)
t t

has a unique solution (¥, Z) € S2[0,7] x A% _, (0,T) satisfying (5.58). Since
by (5.53)
(Y. ® (.Y, Z)dQ,) = (Y, ® (1.7, (V) . Z,) dQ,)

n
< Y| pidQ, + |V, kidQ; + 7 |Zi ) d
we infer by 5.54 that |Y;| < R, and consequently ® (1,Y,, Z,) = ® (¢, Y;, Z,), that

is (Y, Z) is a solution of the Eq. (5.51). The solution is unique since any solution
(Y, Z) of (5.51) satisfies |Y;| < R, and consequently it is a solution of (5.59). M
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5.3.4 BSDEs with Monotone Coefficients

5.3.4.1 The First BSDE: Monotone Coefficient ® (s, Y;) dQ,

We first consider the BSDE

T T
Y, =1 —l—/ D (s, Y,) dO, —/ Z.dBg, t €1[0,T], a.s. (5.60)
t t
We assume that

(BSDE-MHO,) : (5.61)

A 1:Q — R"is an Fr-measurable random vector;
A QisaP-m.i.c.s.p. such that Qy = 0;
A D:Qx[0,00] x R" — R™ satisfies:

(a) VyeR" ®(,-,y):Q2x][0,T] > R" is P-measurable;
(b) the mapping y — ® (¢, y) : R™ — R™ is continuous;
(c) there exista P-m.s.p. u : Q2 x [0, T] — R such that

T
/ |ue|dQ, < oo, P-as.,
0

and forall y,y’ € R", dP ® dQ,-a.e.

2. (5.62)

(y =y @ y) =@ 0)) < |y —y

(d) forallp >0

T
/ ®Y (s)dQy < o0, a.s.
0

where

def
(1)< sup (1, ).
lyl=p

We recall the notations

Sat([0.T]:e) = Up>]S,,f; ([0.T7: )
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and

t t
e = / /’L‘Ydst /lt = f /’Lj_dQs
0 0

Proposition 5.24. Let p > 1 and the assumptions (5.61-BSDE-MH0¢) be satis-
fied. If for all p > 0

T P
E |e"7n|" +E (/ et o (s)dQs) <00 (5.63)
0

then the BSDE (5.60) has a unique solution (Y,Z) ¢€ S,ll ([O T];e’_‘) X
A9 (O,T;eﬁ).Moreover

mxk

T
() V| <EF |efr—iig| 4+ B f T | (s,0)| dO,,
t
vVt €[0,T], P-a.s.,

T q/2
(i) sup (Eeﬂs|Ys|)q+E sup | Y,|" +E (/ 62’15|ZS|2ds) ,
s€[0,T] s€[0,T] 0 g

- q T -
¢, (e ) + (e[ e iow0la) . voeo.
0
(5.64)

and for p > 1 there exists a positive C, (depending only on p) such that, P-a.s., for
allt €[0,T]:

) T r/2
E* sup \e““‘YS|p+]EF’ (/ e2“»"|ZS|2ds)
t

s€[t,T] (5.65)

- T _ V4
< cp[Efr e y|” + B ([ efs |CI>(s,O)|dQS) }

Remark 5.25. 1f (ji;),>, is a deterministic process then the assumption (5.63) is
equivalent to

T )4
E(jnl”) +E ( /0 q’fﬁ(S)dQs) <o

and the inequality (5.65) yields: for all ¢ € [0, T']

B T
|7, < &2l [Eff Inl + Efff |¢>(s,0)|dQs].
t
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Proof of Proposition 5.24. (I) Uniqueness follows from Theorem 5.10 and The-
orem 5.11. If (Y, Z) € SL([0,T];e*) x A, (0,T;e™) is a solution, then by
Proposition 5.2 and

(Y. ® (5. Y) dQ,) < |® (5.0)| |Ys|dO, + ps |Ys|* dO;

the inequalities (5.64-j,jj) follow.
To prove the existence of the solution we write the equation in the form, P-a.s.

T T
Y, =1 +[ [F (s,Y,) + pus Y] dO; —/ Z,dBg, t €10,T], (5.66)
t t
where

F(s,y) = ®(s,y) — usy.

We remark that i, — i, = [{ 1t dQ, = [{ n,dQ, = i — its.
(II-a) Existence in the case: there exist b, ¢ > 0 such that for all t € [0, T]

T
o+ 1@ @Ol + e[+ [ @ (0ld0, <b s 56D
0

and
O + |l + el + (1) < c. a.s. (5.68)

Step 1. Yosida approximation of —F .
Since y > —F (t,y) = w,y — ®(t,y) : R — R” is a monotone continuous
operator (hence also a maximal monotone operator), it follows that for every
(w,t,y) € 2 x[0,T] x R™ and ¢ > 0 there exists a unique F, = F; (w,?,y) €
R™ such that

F(w,t,y + ¢F,) = F,.

From Annex B, Propositions 6.7 and 6.8, recall that F (-,-, y) : 2x[0,T] — R™
is P-m.s.p. for every y € R™ and
Ve, §>0 Vtel0,T],Vy, y eR" a.us.

(@) (F.(t,y)—F; (t,y’),y;y’) <0,
(b) |F.(t.y)—F.(t.y)| = ;Iy—y/l,
() |F@y)|=I|F @y, lim Fe (1, y) = F (t,),
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and

(y =y F(t,y) — Fs(t.y")) < (e + 8) (F. (t.y) , Fs(t.)")).
Moreover, if |y| < b then
|Fe(t, )] < el b+ @F (2). (5.69)

Step 2. Approximating equation.
Let0 < & < 1. Since y —> F,(r,y) + i,y is a Lipschitz function with the

Lipschitz constants L; = — + ¢ and £, = 0 we infer by Theorem 5.21 that the
€

approximating equation

T T
Yi=n+ / [Fs (r, Yrs) + M’Yrg] do, —/ Z;dB, (5.70)
t '

has a unique solution (Y¢, Z%) € S5 [0, T] x A? ,
Step 3. Boundedness of (Y*, Z¢)y_.<-
We denote by C, C’ generic constants independent of ¢, § €]0, 1]. Since

(0,T) forallg > 1.

E sup e?" |Yf|? < edE sup |Yf|? < o0
t€f0,7] 1€[0,7]

and

(YE[Fe (5, YE) + i YE]dOQ,) < |Fe (5,0)| |Y| Qg + py |YE dO,
< |® (5. 0)| |Y,| dO, + ps |YET dO,
< |®(5,0)] |Y£1dO, + u) |YE dO,

we deduce, by Proposition 5.2, that for p > 1 and for all ¢ € [0, T]:

» T p/2
+ E7 (/ eus|Z§|2ds)
t
P T P
+(/ e““‘|<I>(s,O)|dQS) < C,b?,
t

and (5.65) with (Y, Z) replaced by (Y¢, Z¢).
By Corollary 6.81, for p = 1, we have P-a.s., forall t € [0, T]:

E”* sup ‘eﬁf Ye
s€[t,T]

(5.71)

<C,E* |:‘ef”n

Y7| < el |¥f| <ET |efiry

T
+1Eff/ e’ |® (5,0)|dQ, <b.  (5.72)
t



394 5 Backward Stochastic Differential Equations

Now from (5.69) we deduce

|Fe (rY7) + o Y| < | Fe (r X)X
< @ (1) + 21| b
<c +2ch.

Step 4. (Y?,Z?) is a Cauchy sequence in Sy, [0, T] x A?

mxi (0.T7), g > 0.
Let0 < ¢,§ < 1. We have

T T
vi-v) = [ akt - [z~ 20 am.
t t

where

K = /Ot (Fo(s, Y) + p, Y — Fy(s,Y)) — u, YY) dO,.
Note that
(Y7 -y} dKke’)
= (Y = Y] Fu(s.Y0) = Fy(s, YD) dQ, + i ¥ = ¥E| do,
< (e + 8) [Fu(s, Y7), F3(s, YO))dQ, + s |YF — Y}| do,
< (e +8) c2dQ, + ¢ |[vF — YI[* do,.
Since 0 < Q, < c and for every g > 1

E sup e
t€l0,T]

e 5|4
YP=Y)|" < o0,

we infer from Proposition 5.2 with D = N = 0, A = 0, that for ¢ > 2,
T 5 q/2
E sup |¥)—Y}| —i—E(/ |zt - Z}| ds) <C(e+8)"7.
s€[0.T] 0
For 0 < ¢ < 2 we have

T 5 q/2
E sup |¥)—Y}| +E(/ |zt - Z}| ds)
s€[0,T] 0

q+2 q/(q+2)

s q/(q+2) T , >
<(E sup |ve-vi*" + E(/ |12;-Z]] dS)
s€[0,T] 0

<C'(e+8)77.
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Hence there exists (¥, Z) € (.o Sm [0, T] x A}, (0,T) such that

T q/2
E sup |Yf—YS|q+IE(/ |Z§—Zs|zds) < C g2,
s€[0.T] 0

Note that

FE (r’ Yre) +/’L"Yr€

O (r,YS +eF (rY)) —em Fe (r. YY)
and }Fa (r, Yf)} +|uYF < C.

Passing to the limit as ¢ — 04 in the approximating equation (5.70), we infer,
by Lebesgue’s dominated convergence theorem, that (Y, Z) is a solution of the

BSDE (5.60). Moreover passing to the limit on a subsequence, by Fatou’s Lemma
we clearly infer that (Y, Z) satisfies (5.65), (5.64) and

i » T p/2
(j) E sup ’e"st‘ +E (/ e#s|zs|2ds) < Qb if p > 1,
s€[0,T] 0 (5.73)
G Y| < ‘eﬁfY,‘ <b, foralls €[0,T], P-as.,
since the same inequalities hold for (Y ¢, Z?).

(II-b) Existence under the assumption (5.67), but without (5.68).
Let

7, =inf{t €[0,T]: O, >n} and Qf = Qirs,.

Letl = QO + | + || + q>§(t) and i, = f()t wdo.
Since

(u -0, ®(r,u) 1y — P (r,v) 1§r<,,) < prlycp lu— v|2

< ju—vp?
by the step (/I-a) the BSDE

T T
Y' =+ / ® (r,Y") 1, ,dQ, — / Z"dB,
t t
T T
=n+ / (o} (r, an) 1;}_<ndQ': —/ Z;.ldBr, t e [0, T]
t t

has a unique solution (Y",Z") € ﬂq>0 s? [0,T] x Afnxk (0, T). The solution

(Y™, Z") satisfies (5.65), (5.64) and (5.73) with (Y, Z) replaced by (Y", Z"). Note
that from (5.73) written for (Y, Z") we have for p > 1,
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E sup )eﬁs (Y =y " < 0.

s€[0,T]

Since
(V7774 [0 (V) Ly — @ (0 ) 1y s ] )
< (Y =Y* 0 (1,Y)") (L en—Tg <ni ) dQs+ 1t L, ni |Y) = Y4 dQ,
< |V =Y 15,9 (1) dQ, + ui” |Y" = ¥/ *'| dO,,
we conclude by Corollary 6.81, that for g = pif p > 1and g € (0,1)if p = 1

there exists a constant C;; such that P-a.s.,

E sup it
s€[0,T]

) T . q/2
st _ st+l |‘1 +E (/(; P Z;l _ Z;‘l+l} ds)

q

T q T
§Cq[(IE / R P (s)dQS) 1,0 +E ( / 1,5, (s)dQs) 1]
0 0

Taking into account (5.63) we deduce that there exists a pair (Y,Z) €
S ([0, T] ;ef‘) x A L (0, T;eﬁ) such that as n — oo

T q/2
lim E sup e/ |Y! —Y|"+E (/ e | Zm — ZS|2ds) =0.
0

=00 el0,7T]

Now using Lemma 5.16 we infer that (Y, Z) is a solution of the BSDE (5.76). We
deduce by Fatou’s Lemma from the inequalities (5.65), (5.64) and (5.73) written for
(Y, Z") that the same inequalities hold for the limit (Y, Z).

(II-c) Existence without the two assumptions (5.67) and (5.68).
Let

def

ﬂ,=Qf+/0 IMsldQer/O 1@ (5.0)|dQ, .

Define, for n € N*,

M =7 1[0,11] (ﬁT + |77|) s
Q, (1,y) =P, y) = P(,0) Ly oo (Br + [P (2,0)]).

The condition (5.67) is satisfied:

T
il + 12, 0.0 + 77 on, | 4 [ e o, s.0) g,
t

<b,=n+n+eée'n+e'nT
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and consequently by part (II-b) of this proof there exists a unique pair (Y", Z") €
Sk ([O, T] ;e’i) x A? (O, T: eﬁ) such that

mxk

T T
Y =n, +[ ®, (s, st) do, —[ ZldBs, t €10,T], a.s. (5.74)
t t
and the inequalities (5.65), (5.64) for (Y", Z") in the place of (¥, Z) hold. Since
<st - st—H’ qD” (S’ st) dQs - CD’H‘i (S’ st""i) dQS)
< |st N st+i| |q) (s, O)| l[n,oo[ (,Bv + |(D (S,0)|)dQS + g |le1 _ Y;1+i |2dQS

we deduce from Corollary 6.81 that in the case p > 1 we have

E sup e’/
s€[0,T]

- r/2
zZr =z ds)

T
st _ YSn—H |P +E (/0‘ €2MS

B T _ V4
< CE (e |y — util”) + CHE (/ e’ 1g 4 10(0)zn [P (5,0)] dQs)
0

and in the case p = 1

sup (E e/'_‘.&' |YSVI _ YSVI-H' Dq + E sup eqﬁx
s€[0,T] s€[0,T]

T 1 q/?
+E (/ e |zl -z ds)
0

_ q T _
S Cq (Ee#T |}7” p— nn+i|) + Cq (E/O eM»YlﬂS_HcD(S.O)lzn |q> (S,O)| dQS)

n n+i |4
Y- Y,

q

forall0 < g < 1. i i
Hence for every p > 1 there exists (¥, Z) € S ([0 T] ;e“) X A:ixk (0, T;e“)
(withg = pif p > 1,and 0 < g < 1 if p = 1) such that

T q/2
lim E sup e/ |Y - Y|” +E (/ e |zt — Zs|2ds) =0.
0

=00 sel0,7]

Using Fatou’s Lemma, the inequalities (5.65) and (5.64) follow from the same
inequalities written for (Y, Z"). By Lemma 5.16 we infer that (Y, Z) is a solution
of the BSDE (5.60). [ ]

Corollary 5.26. Let p > 1. Ifin Proposition 5.24 we replace the assumption (5.63)
by
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T p
E e? T |n|? + E (/ sup }e’_‘scb(s,e_’_‘sy)—usy|dQs) <00, Vp >0,
0

lyl=<p
(5.75)
then the same conclusions follow.

Proof. We remark that (Y, Z) solves the BSDE (5.60) if and only if (Y., Z,) :=
(et Y;, e Z,) is solution of the BSDE

T T
Y, =7 +/ d (s, Y,) dO, —/ Z.dBs, t€[0,T], a.s.
t

t
with

i =elry,
D(t,y) = —y + et D(t, e M y).

Note that 7 and ® satisfy the same assumptions (5.61-BSDE-MHO04) as 1 and ©,
respectively, but with (5.62) replaced by

(y =y @@ y)— @t y)) <0, P-as.
and consequently the corresponding i and /i for ® are equal to 0. Therefore the
condition (5.63) for (i, ®) means precisely (5.75). ]
5.3.4.2 The Second BSDE: Monotone Coefficient F (¢,Y;, Z,) dt

In this subsection we study the BSDE

T T
Y, = n+/ F(s,YS,ZS)ds—/ Z.dB,, a.s., t €[0,T]. (5.76)
t t

We shall assume:

(BSDE-MH;) : (5.77)

¢ 1n:Q — R"is an Fr-measurable random vector;

& the function F (-,-,y,z) : Q x [0, T] = R™ is P-measurable for every (y,7) €
R™ x R'"Xk;

& there exist some deterministic functions p € L' (0, T;R) and
£ e L?(0, T;R) such that
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(I) forall y,y’ e R", 7,7 e R"™k dP® dt-a.e.:
Continuity:
(Cy) y — F (t,y,2) : R" — R" is continuous;
Monotonicity condition:
(My) (' =y F(t.y". ) = F(t.y.9) < p @Y =3P (50
Lipschitz condition:
(L) [F(t.y.2) = F(t.y.9)| =€) 2 —z|;
(II) Boundedness condition:

T
(BF)/ F/f(t)dt<oo, a.s., Vp=>0,
0

where
Fi(t) = sup{|F(t,,0)| : |y| < p}.

Theorem 5.27. Let p > 1 and the assumptions (5.77-BSDE-MH ¢ ) be satisfied. If

forall p > 0:
T p
E n” +E (/ Fj‘(t)dt) < 00,
0

then the BSDE (5.76):
T T
Y :n—f—/ F(s,YS,ZS)ds—/ ZdBg, a.s.
t t

has a unique solution (Y, Z) € S} [0, T] XAII;Xk (0, T'). Moreover, uniqueness holds
in S} [0, T] x A?nxk (0,T), where

sy, 11 sz .71

p>1

Proof. The uniqueness is proved in Corollary 5.13. Let us prove existence.

We use again a contraction argument, which is slightly different from that in the
proof of Theorem 5.17.

Note that a solution of the Eq.(5.76) is a fixed point of the mapping I' :
Sml0.T]x AP , (0,T) = Sh[0.T] x A? _, (0,T) defined by

Y,2)=T(X,U),

where

T T
Yi=n +/ F(r, Yr,Ur)dr—/ Z,dB,, a.s. t €[0,T].
t t
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By Proposition 5.24 and Remark 5.25, with ® (w,?,y) = F (w,t,y, U, (w)), the
mapping I is well defined since for all p > 0

T p
E(/O cb*;(z)dt)
T T
E F (¢, v,0)|d L) |U|d
< (/0 @Tlfp,,' (,y,0)] t+/0 () |Ui] t)

T P T p/2 T p/2
<27 'E (/ Fj(z)dz) + 277! (/ Zz(t)dt) ]E(/ |U,|2dz)
0 0 0

< Q.

p

T
LetM eN*and0=Ty < Ty <---< Ty =T, withT; = lﬁ Since the function
t

t —> [ £>(r)dr:[0,T] — Ry is uniformly continuous, we see that
0

U

S
a(%)éf supT/t‘KZ(r)dr—>0, as M — oo.

O<s—t<37

First, we show that the Eq. (5.76) has a unique solution on [T);—_1, T'] in the Banach
space Sy [Ty—1, T] x Af;xk (Ty—1,T).
Let

i) = fo () dr.

To this end it is sufficient to prove that I' is a strict contraction on the space
ShTy-1,T] x Aﬁqu (Tr—1, T) with respect to the (equivalent) norm [|(Y, Z)||,,

T p/2
WL L E | sup ey, +(/ e2”<”|zr|2dr) ,
r€[Ty—1,T] Ty—1

for M large enough.
Let (X,U). (X", U') € Sh[0.T]x A? , (0,T). Then

T T
Y, —Y,’ =/ dK, —/ (Z, —Z;)dB,., teTy-1,T],
t t
where

t
K, :/ [F (r.Y..U)— F (r.Y].U)]dr.
0
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Since

(Y, =Y/, dK,) < (Y, =Y/, F (r.Y/,U;) = F (. Y., U))dr + . (r) |Y, = Y/*dr

s Ly My

<t U, =U/||Y, =Y/|dr + |Y, =Y/ dja (r)

and

E | sup ePA") |Y, — Yr’\p < 00,
relo,7]

we have, by Proposition 5.2 with [¢, T] replaced by [Ty—;,T]and D = R = 0,
A =0,

T p/2
E ( sup ep/;-(r) |Yr _ Yr/|p) +E (/ ezl_l(r) |Zl _ Z;|2dr)
r€[Ty—1.T] Tv—1
T ~ P
<C,E (/ e (r) U, — U dr)
Ty—1

T r/2 T } 5 r/2
<C, ( / 2 (r) dr) E ( / 0 U, - U dr)
Tym—1 Tym—1

Cple G lx.0) = (x".U)I5-

Let My € N* be such that

Cp I:Ol (Mlo):lp/z = Zip

IA

Then

1

IF vy = 1 (0, < 2 vy = (20,

Hence the Eq.(5.76) has a unique solution in the space Sh [Tary—1,T]
X Af; <k (Isgp—1,T). The next step is to solve the equation on the interval
[Tmy—2, Tmy—1] with the final value Y (7Ty,—1). Repeating the same arguments,

the proof is completed in M steps. ]

Corollary 5.28. Consider the BSDE: ¥Vt € [0,T], P-a.s.
T T
Yo =n+8r-5 +/ F (s, Y, Zy)ds —/ ZdB;. (5.79)
t t

Ifp>1 8 € Sk [0,T], n € L?(Q,Fr,P;R™), F satisfies the assumptions
(MHp), and for all p > 0
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T p
E / sup |F(t,y — S;,0)|dt ] <oo
0 lyl=p

then the Eq. (5.79) has a unique solution (Y, Z) € S} [0,T] x Aflxk (0, 7).

Proof. By the substitutions Y, = Y, + S, n = n+ Sr and ﬁ’(l,y,z) =
F (t,y — S;,z) the Eq. (5.34) is transformed into

T T
Y, = ﬁ+/ F(s,YS,ZS)ds—/ Z.dB,,
t t

which satisfies the assumptions of Theorem 5.27. ||

5.3.4.3 The Third BSDE: Monotone Coefficient ® (s, Y;, Z;) dQ,

We now generalize Theorem 5.27 to the case of the general BSDE (5.12) which we
recall here:

T T
Y, = n+/ ® (s, Yy, Zy) dO, —/ Z,dBs, 1 €[0,T], a.s. (5.80)
t t

The assumptions will be those from the beginning of Sect. 5.3.1.
Let p,a > landn, =1 A (p — 1). Define

~ t t a t
He = / HusdQg and V, = Vt(a.p) - / wsdQs + 2_/ (&)2 ds.
0 0 npJo

We say that Y € Spy ([0, T];e”) if Y € S}, [0, T] and

E sup e’ |Y,|P < co.
s€[0,T]

p
In the same manner Z € A, .

T p/2
E (/ e |Z‘Y|2ds) < 0.
0

We first prove the following:

Lemma 5.29. Let p>1 and the assumptions (5.13-BSDE-Hg) (i.e. (5.14)
and (5.15)) from Sect. 5.3.1 be satisfied. Moreover assume

(0.T:e")if Z € A?

mxk

(0,T) and

(i) € e L*(0,T) is a positive deterministic process,

(i) E [eFry|” (/T i )" (5.81)
" +E (| e |®(s.0,0)]dQ; ) < oo
0
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If in addition

T
(h) E ( sup ieﬁr(p (s,e_’_"y,o) — u,y| th)p < 0o, forall p > 0, or
0 |yl=p

T
(hy) w>0andE (/ e’ sup |<I>(t,y,0)|dQS)p < oo, forall p > 0,
0

lyl<p
then the BSDE (5.80) has a unique solution

(Y.Z) e SE([0.T]:e™) x AZ (0, T;e™).

Proof. Uniqueness follows from Theorem 5.10. To prove the existence we shall
use the Banach fixed point theorem. Let T : S, ([0, T]:e”) x AP, (0, T:e?) —
Sm([0.T]:e”) x A? ., (0,T;e") be defined by (Y, Z) = T' (X, U), where

mxk

T T
Yi=n+ / d (s, Y, Us) dO, —/ Z,dB;. (5.82)
t t

(A) T is well defined. )
Let (X,U) € Sy ([0, T];e™)xA?

P & (0, T;e"). The function @ (w,1,y) =
® (w,t,y,U, (w)) is monotone

(y =y @y U) =@ (rny U)) < |y =],

Under (/1) the assumptions of Corollary 5.26 are satisfied, because we have

, ] ] p
E (/ sup ]e"’@(l,e“’y, U;) —Mty|sz)
0

lyl=<p

p

T ) ) T
<E (/ sup |e’“<I>(t,e“fy,0)—/L,y|dQ, +/ e’“ﬁ(t)|Ut|dt)
0 |yl=p 0

and

T p
E (/ et |U,|€(t)dt)
0
T r/2 T r/2
< (/ Kz(t)dt) E ([ e2“’|U,|2dt)
0 0

< 0.

Under (/,) the assumptions of Proposition 5.24 are satisfied because for u > 0
t

13
we have i, = / utds = [ Wsds = fi; and
0 0
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; P
E (/ e sup CI)(t,y,Uz)sz)
0 [yl=p
P

T T
<E (/ el sup (1, y,0)dQ, +/ e”’ﬁ(l)|Ul|dt> < 0.
0 0

lyl<p

(B) T is a strict contraction. Let M € N* and 0=Ty < Ty < --- < Ty =T, with
i T
T, = lﬁ To prove the existence on [Ty;—1, T'] of the solution it is sufficient

to prove that I' is a strict contraction on the space Sy ([Tay—1,7T];e) x
Amxk (TM 1, T; e“) with respect to the norm ||(Y, Z)||,,

T /2
I, 205 % ' sup e |Y, [P +(/ ez”’lzrfdr) ,
r&[Ty—1.T] Tyv—1

for M large enough. The proof continues exactly as in Theorem 5.27.
Iteratively the existence follows on every interval [T;_y, T;], fori = M, M —1,
., 2, 1, and finally we get the existence on [0, T]. |

Theorem 5.30. Let the assumptions (5.13-BSDE-H ) (i.e. (5.14) and (5.15)) from
Sect. 5.3.1 be satisfied. Let p,a > 1 be fixed, n, = 1A (p—1)

t def ) ! a [°
e = / wdQ, and V; Ly = / MsdQﬁz_/ (6" ds.
0 0 npJo

Assume there exists a § > # such that for ¢ = p”st,

T P

(i) Ee’'1|n’ +E (/ eV |<I>(s,0,0)|dQs) < 00,
0
32

i) E ( / («) ds) < oo, (5.83)
(iii) Eexp[% (L / (45)* ds] < oc.
If in addition
T _ _ p
(h) E (/ sup |e1 @ (s, ey, 0) — i y| dQ,) < o0, forall p > 0, or
0 |yl
= _ ;
(hy) w=>0andE (/ e sup |d>(t,y,0)|dQs) < o0, forall p > 0,
0 lyl<p

then the BSDE (5.80) has a unique solution (Y, Z) € S? ([0, T])x/\mxk 0,7)
such that
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T p/2

E sup e’ |Y,|” + R (/ eV |Zs|2ds) < 00.

0

t€l0,T]

Moreover, forallt € [0, T]:

T p/2
EF: sup e?"s |Y,|? 4+ EF (/ e |ZS|2ds)
t

s>t

. (5.84)
P
<c, Ef'[el’VTMV’—i-(/ "1 (5.0.0)|dQ, ]
t

Proof. Uniqueness follows from Theorem 5.10.
Existence. By Lemma 5.29 we infer that the approximating BSDE

T T
Y!=n+ / d (s, Y, Z{1 (Zs)) oy —/ Z7dB; (5.85)
t t

has a unique solution (Y", Z") € Sp ([0.T]:e”) x AL, (0,T;e™).
Let £ = €10, ({s) and

e ! a
v ‘g/ (,uSdQ.Y + — (Zf)zds) .
0 2I’lp
We have foralln,i € N
A<V <V <+ (i) T
2n,

Therefore

1/2
n—+i _
E sup e”" |Y)P < Cp; (IE sup e*PH |Yt"|2p) < 00.
1€[0.T] 1€[0.7]

Since
(Y. @ (.Y, Z/ 1, (L)) dO,)
< |Y/||® (1,0,0)|dQ, + |Y" 2dV" + Z—” 2" dt
a

. n
< |Y"||®(¢,0,0)|dQ, + |Y"[PaV"F + ﬁ |Z"* dt



406 5 Backward Stochastic Differential Equations

we obtain, by Proposition 5.2-A, that

i T " p/2
n-—i n-Ti
EF sup ePVs |YY”|”+]Ef’ (/ e2Vs |Z§’|2d_v)

t

S€[t,T]

n—+i T n—+i p
<G, ]Efr|:ePVT+ Inl? + (/ et |<I>(s,0,0)|de) ]
t

By Beppo Levi’s monotone convergence Theorem 1.9 it follows for i — oo that for
allt € [0, 7],

T r/2
E7" supe?"s |Y")? + B ( / e |Zg|2ds)
1

szt T (5.86)
p
< C, EF [e”vT | + (/ e 19 (5,0,0)| d0,) }
t
Consequently by (5.83-i) for all n € N*,
T r/2
E sup e’ |Y"|? +E (/ e |Zg|2ds) <C < .

5€[0,T] 0

Letd > l,q = plfs*”q = 1/\(q —1)andn, X 1A (p — 1) satisfy (5.83-i, iii).

Clearly 1 <g < pand0 < ny <n,.If we define

Alzg(———)/(ﬁ)ds and
Vo = (o, + 2 0.y ds| = v + A
t = A Hsadls 2n, s)as| =V t

we have, for all n € N*,

T (a.q) a/2
E sup qu\ |Y”|" +E (/ e |z;1|2ds)
s€[0,T] 0

T q/2
<E|e?% sup e |y +E[quT (/ e |Z;’|2ds) ]
5€[0,7] 0
7 T p/2
(EeMT) [ E sup e?" |Y” +|E (/ eV |Z;’|2ds) ]
s€[0,7] 0

<C < o0.

=
ol
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Hence for all n,i € N*

E sup qu‘(M) Y=y < oo,
s€[0,T]

Since
(Y'Y @ (s, Y] Z0 o () — D (s, Y Z0 g 41 (£5))) dO,
= |st - YS'H_[ ’2 MsdQg + |st - st+[ ’ £ |Z;11[(),n] (£s) — Zg+i1[0,n+i] (es)| ds
= ‘Y,yn - Y.gn+i | Zs |Z;l| |1[0.n] (es) - 1[0.n+i] (Zs)| ds

n n+i|2 a n n+i |2
+ Y =y (usdQs—l—EE?ds) +ﬁ\z;’—zs+l\ ds,

by Proposition 5.2-A, we infer that

V(a,q) g T 2‘/(“-‘/) 12 92
E( sup e Y=Y | +E / eV |z =z ds
s€[0,7] 0

T (a.q) !

=< Cq E ([ 1(1.00) (&) e” Ly |Z;1|ds)
0

s

T q/2 T (@q) q/2
sch[( [ Etom@as) ([ & izipa) ]
0 0
T 5/27 758 T p/27] v
2 2w D 2
<, |E ([ 21 &) ds E([ &% 272 as
0 0

— 0,
asn — oo.
We deduce that there exists a pair (Y, Z) € Sy [0, T]x AY _, (0, T) such that for
8
q="15

. p @) T Hylaa) 5 a/2
lim E [supe?™ |Y!—Y|!|+E e | Z = Z,|" ds = 0.
n—00 50 0

Now the inequality (5.84) clearly follows from (5.86) by Fatou’s Lemma.
Finally passing to the limit in (5.85) we deduce via Lemma 5.16 that (Y, Z) is a
solution of BSDE (5.80). |
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5.3.5 Linear BSDEs

Let m = 1 and consider the BSDE

T T
Y,=n+ / [(asYs + by) dQ, + {cy, Z) ds] —f (Z,dBy) , (5.87)
t t

where

e 7 1is an Fr-measurable random variable;

* (Qisa’P-m..c.s.p. such that Q¢ = 0;

o (a1);>0> (b1);>0 are R-valued P-m.s.p. and (¢, ), is an RF-valued P-m.s.p.;
« for some p > 1 and for all A > 0, -

() IE3[(1T+ nl”) exp (AV7)] < oo,

5.88
G B[ lewarade)” <. (58

where

t 1 t )
V; 2/ las| dQ, + —f lcs|” ds.
0 npJo

By Theorem 5.21 the BSDE (5.87) has a unique solution satisfying

T r/2
E sup |¢"Y,|" +E ([ e2V3|ZS|2ds)
s€[0,T] 0

T
scplE[!eVTn\”+(/ e |bs|de)"].
0

t 1 t
I =exp |:/ (a,dQ, -~ e ? dr) + / (c,-,dB,)} .
0 2 0

drz == Fta,th + F, (Ct,dBt) N

Let

Then

ar;' =1 (_afth + |ct|2dt) — I {er. dBy) .

Since for all § > 0, E [exp (6A71)] < oo we have E sup |FS|8 < oo forall § > 0.
s€[0,T]
Consequently there exists 1 < g < p such that
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q

E < o0. (5.89)

T
FT”/"’/ F:b:dQs
0

By the representation Theorem 2.42 there exists a unique stochastic process R €
A’ka (0, T') such that

T T T
Tro+ / I\byd0, =E(Frn+ / rsbsde) + / (R, dB,) .
0 0 0

Proposition 5.31. Let the assumption (5.88) be satisfied. Then the solution of the
BSDE (5.87) is given by

T
— 1Tl wF
(@ Y, =T7"E |:FT77+/Z FsbsdQs]v (5.90)
(b) ZfZFZ_IRt_CIY[.

Proof. 1t is sufficient to verify that (Y, Z) given by (5.90) is a solution of (5.87). We
have

T
Y, =TI EX [Fm + / Fsbsde}
t

t
= [E(FTnJr/ rbdQ)+/ (R, dBy) /FsbsdQs}
0 0
¢ t
w7 e [[raaa) [ i o),
0 0

Consequently, from Itd’s formula,

4y, = [r;l (—a, do, + |c,|2dz) - (ct,dB,)] Iy,

+ 7 (Y e, + Ty Z,,dB,) — Tib, dQ) — T (e e, T Y, + T2 Z,) dt
== [_a[}][ th _bl th — <C[, Z[) dt] + (Z[,dB[) .

Since, moreover, Y7 = 7, we conclude that (Y, Z) is a solution of the BSDE
(5.87). [ |

5.3.6 Comparison Results

In this section we again restrict ourselves to the case m = 1.
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5.3.6.1 Lipschitz Case

Let (Y, Z) € S°[0,T] x A (0, T) be a solution of the BSDE

T T
Y, = 77+/ D (s,Ys, Zy) dQ, —/ (Zs, dBy) (5.91)
t t

and (Y, Z) € S°[0,T] x A? (0, T) a solution of the BSDE
~ T ~ ~ ~ T ~
Y, = ﬁ+/ D (5. Yy, Zy) dQ —/ (Z,.dB,). (5.92)
t t

Assume that the functions ®, d:Qx [0,00[ X R x R¥ — R are (P,R X Rk)-

Carathéodory functions (P-m.s.p. with respect to (w, ¢) and continuous with respect
to (x,z) € R x R¥) such that

T T
/ | (s, YS,ZS)|dQS+/ |® (s.Y;, Z,)| dQ, < oo, as. (5.93)
0 0

We give a comparison result in the case when one of the two functions ® and P
satisfies some Lipschitz conditions.

Let p > 1. Without loss of generality we assume that ® satisfies the assumptions
of Theorem 5.21. Then the Eq. (5.91) has a unique solution (Y, Z) satisfying

T p/2
E sup |¢"Y,|" +E (/ e2V5|ZS|2ds)
s€[0,7] 0

T p
gcpE[erTnV’Jr (/ er|<I>(s,0,0)|dQs) }
0

Proposition 5.32. Let p > 1 and the assumptions of Theorem 5.21 be satisfied.
Assume that (Y, Z) is a solution of the BSDE (5.92) and for all § > 0,

T
B (In— ilexp@Vr) + [ |07 20 - 8. 7. 20 [ exp 6 d0,)” < o0,
0

If

(i) n=1mn, P-as and
(i) ®. Y, Z)=®1.Y,,Z), dPQdQ,-a.e. on 2 x R.

(a) ThenP-as.w € Q, Y, (w) > Y, (»), forall t € [0, T).
(b) If moreover there exists a ty € [0, T [ such that P-a.s.
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T
(-7 + / [0(s. T, Z,) — B(s. . Z0)] dQ, > 0

to

then Y;, > Ym P-a.s. In particular if n > 7, P-a.s., then Y, (0) > Y, (»), for
allt €0, T], P-a.s. w € Q.

Proof. Observe that Y; — f’, can be written in the form

T
Yt - Yt = (77 - ;}) + / {[as (Ys - Ys) + bs] dQA + (cs» Zs - Zs>ds}
! T
_/ (Zs - Zs) dBS7

where

1 ~ -
~ q)s»Ys,Zs _®s7YS72X ) ifo_Ys 0»
4 = xy—n[( ) — &( )] #

0, ifY,—Y, =0,
by = ®(s, Yy, Zy) — ®(s, Yy, Z,), and

Z,—7 . .- .
| 5[0, Y, Z) - OG5, Y, Zy)], ifa (Z - Z;) #0,
¢ =\ a5 |Zs — Z|

0, ifo (Z, — Z5) =0,
(recall that « is a P-m.s.p. such that o, dQ; = ds).

From |ag| < Ly, |cg| < £y, the assumption of the Proposition, and the argument
of the preceding section, we deduce that

T p/2
sup [|Yx—)73|pexp(81/x)]+E (/ |Zs—Zs|zexp(8Vs)ds) < 00,
5€[0.T] 0

for all § > 0. Hence by Proposition 5.31

T
Yt_YtzI‘t_lE]:r[FT(n_ﬁ)—i_/ FsbsdQsi|7
t

which clearly yields the conclusions of Proposition 5.32. |

5.3.6.2 Monotone Case

We now give a comparison result for the solutions of the Egs.(5.91) and (5.92)
in the case when one of the two functions ® and @ satisfies a monotonicity
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condition. To be precise we assume without loss of generality that @ satisfies the
assumptions (5.13-BSDE-Hg). Let

V, = / (ufdQ, + i(&)zdr).
0

2n,
Then fora,p > landn, = (p—1) A1,
(7, —Y,) [@(n Y. 2,) - @ (r.Y,. Z,)] dO,
~ 2 ~ ~
=< |:/L;’_ ((Yr - Yr)+) + grar (Yr - Yr)+ |Zr - Zr|i| er
~ 2 ~
<[ =0 ] v+ 321512 - 2] ar
Proposition 5.33. Let the assumptions (5.13-BSDE-Hg) be satisfied. Let (Y, Z)
€ 8°00, T] x A{ (0, T) be a solution of (5.91) and (Y, Z) € S°[0, T] x A (0, T)
be a solution of (5.92), such that (5.93) and the condition
E “(f’ - Y)—‘_eVH[7 < 00
T
are satisfied. Assume that P-a.s.:

@ nz, )
(i) ®(1,y,2) > ®(t, y.2), forall (t,y,2) € [0,T] x R x R¥.

Then P-a.s., Y; (w) = Y, (w), forallt € [0, T].

Proof. Recall from Proposition 2.33 that if

Xm = dK[ + (Gt»dB[) ’

then
dX" =0(X,)dK, + 0 (X,) (G,,dB,) + dP;,
where
0, ifx <0,
0(x) =13 ifx=0,
1, ifx >0,

and {P, : t > 0}, Py = 0, is an increasing continuous stochastic process defined
by (2.33).
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We have

d(Y,—-Y)=—[®(1.Y,.Z,) - @(t. Y. Z)]dQ, + (Z, — Z,.dB,),

and therefore

T T

(Y~vt_Yt)+:(ﬁ_n)++/ dKr_/ Q(Yr_Yr)(Zr_erdBr),
t t

with

dk, =0 (Y, - Y,) [(® (. Y,. Z,) = ® (. Y,, Z,)) dQ,] — dP,,

and (see (2.33))

1 Y=Y 2
Pi=1lim — | p ‘ZS—ZS’ ds.
=04 2¢ Jo £

Since fora, p > landn, = (p — 1) A 1,
~ + ~ + ~ ~
(YI - Yr) dKr = (Yr - Y;) [CD (r, Yr» Zr) - @ (r’ Yrv ZI)] er
~ 2 ~ ~
<[ =0) ] v, + 520 (5 - v) |2, - 2 ar,
a
we obtain, by the inequality (6.107) from Proposition 6.80, that forall0 <¢ < T
~ P
e’ [(Y, — Y,)+] < EFiel"r [(F) — 17)4']]7 =0, DP-as.
Consequently forall0 <t < T
Y, > 17,, P-a.s.
]
We now give a strict comparison result in the case of monotone coefficients.
Namely, we consider a solution (Y, Z) € S°[0, 7] x A (0, T') of the BSDE
T T
Y =1 —1—/ D (s, Y, Zs)dQ, —/ (Zs,dBs), a.s., t€[0,T], (594)
t t

and a solution (¥, Z) € S°[0, T] x A{ (0, T') of the BSDE

T T
Y, =i+ / ® (s, Yy, Z,) dQ, — / (Z;.dBy), (5.95)
t t
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where ®, ® : Q x [0, T] x R x R¥ — R satisfy:
(CR1)

o &(,1,y,2), ETD (.1, y.72) are F,-measurable for all (t, y,z) € [0, T] x R x R,
e d(w,+-,"),P(w,-,-,-) are continuous P-a.s. w € 2,
o & satisfies the assumption (5.13-BSDE-Hg).

We have

T T
Y, - Y, =(m—-17)+ / [b5dQ, + (c5, Zy — Z,)ds| — / (2, - Z,) dB,,
t t

with by, = ®(s, Yy, Z,) — D(s, Yy, Z,) and

Zs— 7, - , -
22 (@ (s, Y, Z) =D (s, Y, Zy)], ifa, (Z, — Z,) # 0,
Cs = O |Zs - ZS|2 [ (S s S) (S S S)] o ( S S) ?é

0, if o, (Z, — Z) = 0,

(recall that « is a P-m.s.p. such that a;dQ, = ds). Note that |c;| < £;.
Assume that
(CR2)

* nand 1 are Fr-measurable random variables;
e forsome p > 1 and forall § > 0,

T
G B[+ m-i)ew (5[ wrar)] <o
0
G B[ 106,720 -8 20w (s [ @7 ar)ag)] <o,

Then by Proposition 5.31, for all § > 0
/2

T . P
E sup [|Y.y — 1|7 e “’)2"’] +E (/ |Z, — Zs|2e"’)/0 “r)zd’ds) < o0,
s€[0,T] 0

and for any stopping times 0 <0 <o <T

Ty (Y6 - f@) =E% |:Fg (Ya - Ya) + [ Ty (Q(S7 Y, Z\) - (i)(S, Ys, Zs)) do, |,
0

(5.96)
where

t tl
I', = exp |:/ (c,,dB;) —/ - |cr|2dri| .
0 02
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Proposition 5.34. Let (Y, Z) € S°[0,T] x A (0, T) be a solution for (5.94) and
(17, Z) € S°[0,T] x A2 (0, T) be a solution for (5.95), such that

E “(Y —Y) exp (/Opde,)

Assume that the assumptions (CR1), (CR2) are satisfied and Z is a continuous
stochastic process.
Ifo<ty<T, AecF,and

p
< 0Q.
T

@ n=n P-as.,
(i) ®(t,y,2) > P, y,2), ¥V (1,y.2) €[0,T] x RxRF, P-as.,
(iii) q) ((U, tO’ Yt()7 Zt()) > @ (w9 tOv th()s Zt()) ) P'a's' w € As
(iv) Qn < Q;, forto<t<T, P-as.,
then

() Y, (@)=Y, (w), Vte[0,T], PaswecQ, and
() Yy (w)>Y, (), P-as oeA.

Proof. By Theorem 5.33 we have
P-as., Y;(w) > f’, (w), forallt e[0,T].
Assume that P ({Y;, = ¥,,} N A) > 0. Let the stopping time
T = inf {s € [to, T] :T [fb(s, Yy, Z,) — ®(s, Y5, ZY)]
1 ~ ~ -~
S zrto [d)(a), tO» )It()’ Zto) - (D(Q), th )It(y Zto)] }a

if the set under inf is non-empty and © = T if the set is empty. Clearly T > 7y a.s. on
{Y:, = Y4, }. Setting in (5.96) 6 = 1y and 0 = 7 we obtain

0> E%o (1{”0:;[0}M/ T, (s, Yy, Z) — O(s, Yy, Zy)) dQS)
]

1 ~ - -
= EI{Y,():Y,O}OAFH) [CIJ(a), fo, Yto* Zto) - CI)(Q), fo, Ylm Zto)] E]:’O (Qr - Qto)

>0, as.on{Y; = 1?,0} NnA,

which is a contradiction. Hence P ({Y;, = ¥;,} N A) = 0 and the conclusion (jj)
follows. u
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Unlike in the Lipschitz case n > 7 does not imply that ¥; > Y, forallt € [0, T],
as the following example will show. Let F (x) = F (x) = —+v/x ™.
Clearly

(Y,.z,)=(*,0), t>0,

is the unique solution of the BSDE

1 1
Yl=1+/ (—2 Yj)ds—/ Z,dBs;, te]0,1],
t t

and (Y;, Z;) = (0,0),¢ > 0, is the unique solution of

1 1
Y,=o+/ (—2 Y;r)ds—/stBs, refo1].
t t

Wehave Y = 1> 0= Y, but ¥y = ¥,.

5.4 Semilinear Parabolic PDEs

We need to put our BSDE into a Markovian framework: the final condition 1 and
the coefficient I of the BSDE will be functionals of B as “explicit” functions of the
solution of a forward SDE driven by {B;}.

Let f : [0, T] xR — R be continuous and globally monotone in x, uniformly
with respect to ¢, g : [0, 7] x RY — R?4*? be continuous and globally Lipschitz
in x uniformly with respect to ¢. Let {X s” ; t < s < T} denote the solution of the
SDE

s N
Xs”“" =X ~|—/ f(r, X dr+/ g(r,X!"")dB,, t <s <T, 5.97)
t t
and consider the backward SDE

T T
Y/N = k(X5 + / F(r, X' Y™, Z) dr — / ZYdB,. t <s<T. (598)
:

N

where k : R - R” and F : [0, T] x RY x R” x R"*¢ — R™ are continuous and
such that for some K, u, p > 0,

lk(x)| < K1 + [x]7),
sup |F(t,x,y,0)| < y(p, x),

lyl=p
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(y_y/, F(I,X,y,Z)—F(f’xay/’z))f#(t»x)|y—y/|2’
|F(I,X,y,Z)—F(I,X,y,Z/)| = E(t,x)||z—z’||,

where for each p > 0, there exists a K, > 0 such that y(p, x) < K,(1 + |x|”) and
one of the two following conditions hold:

© 1f( 0]+ gt x)] < K(1 + |x]) and [u(t, x)| + (2, x) < K;
o S|+ 0]+ £(t.x) < K(1+ |x]) and [g(7. x)| < K.

In the case m > 1 we reinforce one of the above conditions into

|F(t,x,y,2) = F(t,x,y",2)| < €(t, x)|y —»'].

This is necessary for our uniqueness proof of the viscosity solution of systems of
PDEs, see Theorem 6.106 in Annex D.

Finally the following additional assumption is needed again for the uniqueness
of viscosity solutions

|F(t,x,r,p)—F(t,y,r,p)| fl’l’lR(|X—y|(1 +|p|))’

for all x,y € R? such that [x| < R, |[y| < R, r € R", p € R?, where for each
R > 0,mg € C(Ry) is increasing and mg(0) = 0.

Remark 5.35. (i) Clearly, foreacht <s <T,Y' is Fl = g{B, — B;,t <r <
s} v N measurable, where \ is the class of the P-null sets of . Hence ¥;"* is
a.s. constant (i.e. deterministic).

X"
(i) It is not hard to see, using uniqueness for BSDEs, that Ytt _:h = Ytt_:_h itk
h>0.
We shall denote by

Z(gg Wit g Zf(z x)—

the infinitesimal generator of the Markov process {X/*; t <s < T}.

5.4.1 Parabolic Systems in the Whole Space

We first consider the following system of backward semilinear parabolic PDEs

o
S (1) + A (8. %) + Fi (1., u(t, %), (Vug) (1.3)) = 0,

(t,x) €[0,T] xR, 0<i <m;
u(T,x) = k(x), xeRY;

(5.99)
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where F € C([0, T] x R? x R” x R4 R™), and k € C(R?,R™) grows at most
polynomially at infinity.
We can first establish the following:

Theorem 5.36. Let u € CY2([0, T] x RY;R™) be a classical solution of (5.99).
Then for each (t,x) € [0, T] x RY, {(u(s, X'*), (Vug)(s, X¥));t <s < T} is the
solution of the BSDE (5.98). In particular, u(t, x) = Y,"*.

Proof. The result follows by applying It6’s formula to u(s, X*). |

We now want to connect (5.97)—(5.98) with (5.99) in the other direction, i.e.
prove that (5.97)—(5.98) provides a solution of (5.99). In order to avoid restrictive
assumptions on the coefficients in (5.97)-(5.98), we will consider (5.99) in the
viscosity sense. This imposes just one restriction. Indeed for the notion of viscosity
solution of the system of PDEs (5.99) to make sense, we need to make the following
restriction: for 0 < i < k, the i-th coordinate of F depends only on the i-th row of
the matrix z. Then the first line in (5.99) reads

%(I,x) + Au; (¢, x) + Fi(t, x,u(t,x),(Vu; g)(t, x)) =0,

which we rewrite in the form
Bu,- 2
—W(I,x) + ®; (¢, x,u(t,x), Du; (t,x), D7u; (t,x)) = 0,
where
®:Ry xRYxR" xR xS — R™

is defined by

1
cpi(tvx’r’pv X) = —ETI'[(gg*)(l,X)X] - (fvp) - Fi(t,x,r,pg(t,x)),

foralll <i <m, (t,x) €[0,T] xR, reR" peR? X S’
We add the following assumptions. For each p > 0, there exists a K, such that
for some p > 1,all (t,x) € [0,T] xR, p > 0,

sup |F(t,x,y,0)| < K,(1+ |x|?),
{Iy|<p}

and there exists a K > 0 such that for all (¢, x) € [0, T]xR?, y,y’ e R™, 7,7 € R¢,
|F(l,x,y,z)—F(l,x,y/,z)|+|F(l,x,y,z)—F(l,x,y,z’)| S K(|y—y/|+|z—z/|).

The definition of the viscosity solution of a system of elliptic PDEs is given in
Definition 6.94 in Annex D. The adaptation to systems of parabolic PDEs is obvious.
We now establish the main result of this section.
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Theorem 5.37. Under the above assumptions, u(t, x) & Y"* is a continuous
function of (t,x) and it is the unique viscosity solution of (5.99) which grows at
most polynomially at infinity.

Proof. Uniqueness follows from Theorem 6.106 in Annex D.

The continuity follows from the mean-square continuity of {Y/*, x € R4, 0 <
t <s < T}, which in turn follows from the continuity of X’ with respect to ¢, x
and Theorem 5.10. The polynomial growth follows from classical moment estimates
for X'*, the assumptions on the growth of f and g, and Proposition 5.7.

To prove that u is a viscosity sub-solution, take any 1 <i < k, ¢ € C'2([0, T] x
R?) and (¢, x) € [0,T) x R? such that u; — ¢ has a local maximum at (¢, x). We
assume without loss of generality that

u;(t,x) = o(t, x).
We suppose that
dg 2

and we will find a contradiction.
LetO <a <T —tbesuchthatforallt <s<t+oa,|y—x| <a,

ui(s,y) < ¢(s. ),
dg 2
—o; &)+ Qils. y.uls. ). Dos. ). D7¢(s. ) > 0,
and define
T=inf{s > 1; | X" —x| > a} A (t +@).
Let now
(Y5, Zs) = (Y3  Apqg()(Ze)), 1 <s <t +a.
It follows from the statement in Remark 5.35(ii) that
Y = ult +h X[

We hence have that (first approximating t by a sequence of stopping times taking at
most finitely many values)

Y2 =u(r, X).
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Consequently (Y, Z) solves the one-dimensional BSDE

Y =wi(t, X" + fSH_a Lo (r) Fi (r, X%, u(r, X!, Z,)dr
—[*Z,dB,, 1 <s <t +a.

On the other hand, from 1t6’s formula,
(Y5, Zs) = (9(5. X3 Lo () (V@) (s. X)) t s <t + e

solves the one-dimensional BSDE, for all s € [¢,¢ + «]

R t+a a(p t+a
fo= e X = [ 1000 GE + A0 e [ 2,am,.
N r N

From u; (7, X!**) < ¢(z,X*) and the choices of o and 7, we deduce from
Proposition 5.34 that Y, < Y;,i.e. ; (¢, x) < ¢(t, x), which contradicts our standing
assumption. |

Remark 5.38. Suppose that k = 1 and F has the special form:
F(t,x,r,2) = c(t,x)r + h(t, x).

In that case, the BSDE is linear:
T T
Y = k(X7 +/ [e(r, X[OYYY + h(r, X)) dr—/ Z"" dB,,

hence it has an explicit solution (see Proposition 5.31):

s

T
Y = (XiF)eh X dr 4 / h(r, X!™)el c@Xa™)de g,

A

T
— [ efsr c(oz,Xé‘x)thzi,x dB,.

A

Now Y,"* = E(Y,""), so that
T 1,x T X} 1,x
Ytt.x _F [K(X;V)ef, c(s, X5 ) ds + / h(S, Xé‘vc)ef, c(r. X! )drds:| i
t

which is the well-known Feynman—Kac formula.
Clearly, Theorem 5.37 can be considered as a nonlinear extension of the
Feynman—Kac formula.
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Remark 5.39. We have proved that a certain function of (¢, x), defined via the

solution of a probabilistic problem, is the solution of a system of backward parabolic

partial differential equations. Suppose that b, g and f* do not depend on ¢, and let
v(t,x) = u(T —1,x), (t,x) €[0,T] x R?,

Then v solves the system of forward parabolic PDEs:

v
a—li(t,x) — Avi(t, %) + F (x, v(t, ), (Vo 0) (6, %)), 1 <i <m,t > 0,x € RY:

v(0,x) = k(x), x € RY.
On the other hand, we have that
T—t,x v 1,X
v(t,x) =Y, =Y,

where {()7;”‘, ZA{“‘); 0 < 5 < t}, solves the BSDE
—_ [ —_ -
VI = k(X) + / F(XX, Y1, Z1)dr
N
t -
—/ ZYdB,,0 <s <t.
N

So we have a probabilistic representation for a system of forward parabolic PDEs,
which is valid on R4 x R¢.

5.4.2 Parabolic Dirichlet Problem

We now combine the situation of the preceding subsection with that of Sect. 3.8.3,
and we consider the following system of parabolic semilinear PDEs with Dirichlet
boundary condition

ou;
—a—”;(r,x) 4 ®;(t, x, u(t, x), Du; (¢, x), D2u; (¢, x)) = 0,

(t,x)e[0,T]xD, 0=<i<m; (5.100)
w(T,x) = k(x), xe€D;
u(t,x) = x(t,x), (t,x)el0,T]xaD;

where in addition to the situation in the previous subsection, we give ourselves a
function y € C([0,T] x dD). We assume that

x(T,x) =«k(x), Yx € dD.
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Now, together with the SDE (5.97), for each (¢, x) € [0, T] x D we consider the
BSDE, forall s € [t, T]

T T
Y = p(ua AT XSS ) + f Voo  F(r XI5, Y5, Z0% ) dr — / Z'"dB, .

(5.101)
Again It6’s formula allows us to establish the following:

Theorem 5.40. Suppose that the above conditions on the coefficients and the
domain D are satisfied. Let u € C'2([0,T] x D;R™) N C([0,T] x D;R™) be
a classical solution of (5.100). Then for each (t,x) € [0, T] x D,

(s AT, XIY,  Lgar, 3 (Vug) (s, X)), t <s < T}

SAT x

is the solution of the BSDE (5.101).

We now wish to prove that u(z, x) := Y,"* is a viscosity solution of (5.100). From
the discussion in Sect. 3.8.3, we deduce that the condition (3.111) is necessary for u
to be continuous.

We now prove the following:

Theorem 5.41. Under the above conditions, including those OL Theorem 5.37 and
(3.111), u(t,x) := Y/"* is a continuous function from [0, T] x D into R™, and it is
the unique viscosity solution of (5.100).

Proof. Uniqueness follows from the arguments developed in Annex D. The conti-
nuity of u follows from Proposition 3.45 and the argument at the beginning of the
proof of Theorem 5.37.

Let us prove that u is a viscosity sub-solution. Let 1 <i <k, ¢ € Cl'z([O, T] x
R?) and (¢, x) € [0,T) x D be such that u; — ¢ has a local maximum at (¢, x),
and u; (¢, x) = ¢(t,x). If x € D, then the argument in the proof of Theorem 5.37
(with @ < d(x, dD)) establishes the required inequality. The same is true if (¢, x) €
[0, T] x dD\A (this time choosing & < d((¢,x),A)). Finally if (¢,x) € A, then
T,x =1, a.s., hence u(t, x) = x(t, x). The result follows. |

5.4.3 Parabolic Neumann Problem

We use again the notations from Sect.5.4.1, and we add a nonlinear Neumann
condition on the boundary of the bounded open connected subset D of R, whose
boundary 9D is assumed to be of class C2.

Let

G € C([0,T] x 0D x R™; R™)
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be such that for some p > 0,
G(t.x.y) — G(t.x.y)| < K|y = ¥'I. (5.102)

forall (¢,x) € [0,T] x oD, y,y’ € R™.
We now consider the following system of semilinear parabolic PDEs with
nonlinear Neumann boundary condition:

ou;
—a—ul(t,x) 4 ®;(t, x,ult, x), Du; (1, x), D?u; (1, x)) = 0,

(tvx)G[O,T]XD, Oflfm’
D .1
u(T,x) = k(x), x € D; (5.103)

o
al(r,x) —Gi(t,x,ut,x) =0, 1<i <m, (1,x)€[0,T] x aD.
n

Let X" be the process solution of the reflected stochastic differential equation,
foralls € [¢,T.,], P-a.s.

s

N h
X K = [ e+ [ g xids,,
R t t
X'+ e D, (5.104)
S
Kiv = / (X0 (X07) d $K'3, .
t

To each (¢, x) € [0, T] x D we associate the BSDE

T
Y=+ [ e Y 2z (5.105)

T T
+/ G(r. X, Y!)d TK™T, —/ ZdB,, t <s <T.

1t6’s formula again allows us to establish the following:

Theorem 5.42. Under the above assumptions on the coefficients and the domain D,
ifue CY2([0, T]x D;R™)NC*([0, T]x D;R™) is a classical solution of (5.103),
then for each (t,x) € [0, T] x RY, {(u(s, X'*), (Vug)(s, X!¥));t < s < T} is the
solution of the BSDE (5.104).

Inspired by [59] we now prove:

Theorem 5.43. Under the above conditions, including those of Theorem 5.37, if in
addition either G does not depend upon its third argument, or else the additional
assumptions from Proposition 5.83 below are satisfied, then u(t,x) = Y"" is a
continuous function from [0, T] x D into R™, and it is the unique viscosity solution
of (5.103).

Proof. Uniqueness follows from a combination of the arguments in the proofs of
Theorems 6.106 and 6.112. If G does not depend upon its third argument, then
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the continuity of u follows from Corollary 4.56 combined with the argument at the
beginning of the proof of Theorem 5.37. In the other case, we refer to [46] for the
proof of the continuity of u. We now prove that u is a viscosity sub-solution. Let
1<i<k,¢eC2(0,T] xR? and (¢t,x) € [0, T) x D be such that u; — ¢ has
a local maximum at (¢, x), and u; (¢, x) = (¢, x). The case where x € D is treated
as in the proof of Theorem 5.37. Suppose now that x € dD. As usual we argue by
contradiction. Suppose that for some o > 0, all (s, y) € B((t, x), &) N D satisfy

dg
_E(& y) + qu(S, y,M(S, y)» D¢(55 y)v Dz@(s’y)) > 07
d
a—w(s,y) —Gi(s,y,u(s,y)) >0, if y € aD.
n

The contradiction can now be established as in the proof of Theorem 5.37, making
use of the strict comparison result from Proposition 5.34. |

5.5 BSDEs with a Subdifferential Coefficient

5.5.1 Uniqueness

We extend the estimates and the uniqueness result in the case of the multivalued
BSDE

—dY, + dp (Y;) dt + 0y (Y;) dA;
>3 FtY,,Z)dt+G(t,Y;)dA, — Z,dB,, 0<t <T, (5.106)
Yr =n,

where again 7' > 0 is a fixed deterministic time and d¢ and 9y are subdifferential
operators attached to the convex lower semicontinuous functions ¢, ¢ : R” —
]—o0, +0o9].

Such multivalued backward stochastic differential equations are also called
backward stochastic variational inequalities (BSVI).

It is natural here to assume there exists a uyg € R” such that d¢ (up) # @ and

Y (uo) # 9.
If 0, (w) “y + A; (w) and {«; : t € [0, T} is a real positive P-m.s.p. (given by
the Radon-Nikodym representation theorem) such that 0 < o < 1 and

dt =0,dQ, and dA, = (1 —0o,)dQ,,
then the Eq. (5.106) becomes

—dY, + 0,V (t,Y,)dQ, > ®(t.Y,.Z,)dQ, — Z,dB,, 0 <1 <T,

(5.107)
Yr=n,
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where
® (.6, % a (@ F (1,52 + (-0 @)G (@),
V(.69 Lo @)+ 0 —a @)y ().

(we use the convention 0 - oo = 0 and write W for 9, ¥).
We also remark that if uy € Dom (d¢) () Dom (3v), itg1 € 9¢ (up) and &g, €
81& (u()), then

iy (@) = oy (W) itor + (1 — a; (@) g2 € 9,V (@, 1, u) .
We shall assume that the following assumptions hold:
(BSVI-H, o) : (5.108)

@) n: Q2 — R™ is an Fr-measurable random vector;

(i) QisaP-m.i.c.s.p. such that Qp = 0;
i) (w,t) — a; (w) : Q x [0, T] — [0, 1] is P-m.s.p. such that «,;dQ, = dt;
(v) @ :Qx[0, T]xR" xR™* — R™ satisfies the assumptions (5.13-BSDE-Hy);
V) U:Qx][0,T] x R" -] — 00, +<] satisfies

A V(- y)isP-msp. forall y e R™,
A y+— VY(w,t,y):R" ] — o0, +00] is a proper convex Ls.c. function,
A Fug € R™ and an R™-valued P-m.s.p. (it;),[o 71 Such that

(uo, i) € 0,V (w,t,-), dP®dt-ae. (w,t) e Q2x[0,T].

|

Definition 5.44. A pair (Y,Z) € S5 [0,T] x A°_, (0, T) of stochastic processes
is a solution of the backward stochastic variational inequality (5.107) if there exist
K € S,% [0,T], Ko = 0, such that

T

(@) K3+ [T | (¢, Y;)| dO, +[ |®(t,Y;, Z,)| dQ, < o0, as.,
(b) dK, € By\IJO(t, Y;)dQ,, as. that i(s): P-a.s.,

[0 -veak)+ [wev0ae, < [ w0y,

t tVyeC([O,T];R"Z), VO<t<s<T,

and P-a.s., forall r € [0, T]:
T T
Y+ Kr—K, =n +/ D (s,Yy, Zy) dO, —/ Z.dB;, as. (5.109)
t t

(we also say that the triple (Y, Z, K) is a solution of the Eq. (5.107)).
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Remark 5.45. If K is absolutely continuous with respect to dQ,, i.e. there exists a
progressively measurable stochastic process U such that

T t
/ |U;|dQ; < o0, a.s.and K, = / UsdQ,, forallt € [0,T],
0 0

then dK; € oW (¢, Y;) dQ, means, P-a.s. w € €,
U ed¥, (YY), dQ;-ae.

In this case we also say that the triple (Y, Z, U) is a solution of the Eq. (5.107).
If dK, € 3%, (t,Y,)dQ,, dK, € dW,(t, Y,)dQ, and

T T
/ W (1, Y,)| dQ, + / (1. T)ldQ, < o, as.
0 0

then, using the subdifferential inequalities

/ Y dKy) + / W Y,)dO, < / W 7,)do,.
t

s t s t s
/(Y,-ff,,dl%,)Jr/ U(r, f’,)dQ,f/ U(r,Y,)dO,,
t t

t

we infer that, forall0 <t <s < T
S ~ ~
/ (Y, —=Y,.dK, —dK,) >0, a.s. (5.110)
t

Leta, p > 1 and

de ! a _ t
vV, =V =f/ |:/~‘LSdQs + T (Zs)2 ds:| and i, = / UsdQ;.
0 np 0

Recall the notations
Sp([0.T]:e") = {Y € S5 ([0.T]) : €Y € S5 ([0.T])}
and

S, ([0.T7; e’l) = U Sy ([0,T] ;e‘_‘) )
p>1
Note that if 1 is a determinist process then S}, ([0 T; eﬁ) = Sh ([0, T)).

Proposition 5.46. Let the assumptions (BSVI-H,,AI,@) be satisfied. Then for every
a, p > 1 there exists a constant C, , such that for all solutions (Y, Z) € S% [0, T] x
Aomxk (0, T) of the BSDE (5.107) satisfying
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v,
E sup e |Yy —up|’ < oo,
s€[0,T]

the following inequality holds P-a.s., for allt € [0, T:

T p/2
EF sup eV |Yy —ug|” + EF (/ e |ZS|2ds)
S€E[t,T] t

T p/2
LE ( [ e v, Ys)—w,uo)sz)
! T P
<, [Effef”wn—uaul@f' ([ o [|as|+|<1>(s,uo,0>|]dQS)
t

(5.111)
Proof. We have

T T
Yt — Uy =1 — U + / [q) (S, Yx» ZY) dQs - dK?] - / ZYdBY
t t

Note that
(Y'l _M()v(b(t?Y[’Zl)) dQ[
= (Yt _u()’(@ (tv thzt) _¢(t7u07zt))) th
+ (th — U, Q(ls Uugp, Zl‘) - q)(lsu()so)) dQl + (YZ‘ — Uy, ¢(l‘al’t070)> th
<Y, —uol 11:dQ; + |Y; — uo| |Zy| Ldt + |Y, — uo| | (¢, uo, 0)| O,

n
< 1Yo = ol |® (20, 0) dQ, + Y, —uo[*dV, + 22 |Z, [ dr,

wheren, = (p —1) A 1.
From the subdifferential inequalities we have

|W(t,Y,) — W (tu)| <W(t,Y,)— V(¢ u) +2|i||Y; —uol, and
[‘I’(l‘7 Yl‘)_\P(t’MO)] th = (Yt _MO’dKf) ’

SO
W, Y,) — W (1, u0)| dQ, < (Yi — utg, dK,) + 2 |iu| Y, — uo| Q.
Hence
|W(t,Y:) — W (t,uo)|dQ, + (Y; —uo, ®(t,Y:, Z;) dQ, — dK;)

A n
<Y, —uo| 2 || + |® (¢, u0,0)[1dQ; + |Y: — uol” dV: + ﬁ |1Z, | dt.

Now (5.111) follows from Proposition 5.2. |
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Corollary 5.47. Let p = 1. Let the assumptions (BSVI-H,,.\p.q)) be satisfied and
O(t,y,2) = O(t,y) forallt € [0,T], y € R” and z € R"™* (® is independent of
sl =0andV, = i, = [j p,dQ,). Let

dN; = [lits| + [® (¢, u0, 0)]] 4O, .

If(Y.Z) € S°[0,T] x A°

mxk

(0, T) is a solution of the BSDE (5.107) satisfying

E sup e |Yy — ug| < oo,
s€[0,T]

then the following inequality holds P-a.s., for allt € [0, T]:
- - T -
e |Y, — o) < B el |y — ug| + B / esdN,.
t
Moreover for every q € (0, 1) there exists a constant C, such that

_ q _
sup (B (e [¥;)) +E sup esi |1, |?
s€[0,T] s€[0,T]

T q/2 T q/2
+E (/ ezl‘“‘|Zs|2ds) +E (/ ez“S|lIJ(s,YS)—lIJ(s,uo)|dQs)
0 0

<C, |:(E (e |1 — uo|) )q + (E/OTeﬁdes)q} )

Proof. From the proof of Proposition 5.46 we have

|W (. Y,) =W (t,u0)| dQ, + (Y —uo, @ (1, Y, Z;) dQ, — dK,)
<Y, —uo| [2 || + |® (¢, u0, 0)[1dQ, + |Y: — uo|* d ji,

and the conclusions follow by Corollary 6.81. |

Remark 5.48. A consequence of (5.111) is the following. Denoting

O =e'T |n—uo| + /OTEVS [lits] + 1P (s, u0, 0)[] 4O,
then for all ¢ € [0, T]:
Vi < luol + CY7 e (&7 0%), as. (5.112)
Corollary 5.49. Let p > 2, ro > 0 and

() L sup {W (1. ug + rov) : [v] < 1}

uo,ro
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Then

T /2
P ([ eraska) <o |Eenin-wp

T p/2
+E ( / 2V [Wh(5) = W (s, up)] dQs) (5.113)
0
T P
+E (/ eVs [|ig] + | (S,uo,0)|]dQs) :|
0

Proof. Letv € C ([0, T]; R™) be arbitrary. From the subdifferential inequality

(uo +rov () = Y;,dK;) + W (t,Y;)dQ, < W (t,up + rov (1)) dO;,
we deduce

rod $ K 3 +W(1,Y,)dQ, < (Y, —uo.dK;) + ¥} . (1)dOQ,.

Since
(YI _u07’jl[) + ‘IJ(I,MO) f \p(t7 Y[)a
we see that
rod § K $,< (Y, — uo, dK;) + i | |Y; — uol dQ, + [V . (1) — W (¢, u0)] dQ,.
Therefore
rod § K3 + (Y, —uo, @ (.Y, Z,) dQ, — dK;)
< [Wi . () =Y (t,u0)]dQ, + |Y; — uo|[|it;| + |® (. u0.0)]] dOQ,
n
+ 1Y, —uo)*dv, + £ 17, dt.
2a
(5.113) now follows by Proposition 5.2. ||

Proposition 5.50 (Uniqueness). Let a, p > 1. Let the assumptions (5.108-BSVI-
H, o) be satisfied. If (Y, Z) ,(Y,Z) € SO [0, T] x Af;xk (0, T) are two solutions
of the BSDE (5.107) corresponding respectively to n and 1 such that

E sup e?Vs
s€[0,T]

AP
YY_YS‘ < 00,

then P-a.s., forallt € [0, T]:

A | P
e Y, = Y| <E7 (e In—A") (5.114)
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and there exists a constant C, , such that, P-a.s., for all t € [0, T]:

» T 2 \P/?
+E*% (/ s ds)
t

= Ca,p EF[ eva |r/ - ﬁ|p

E7 sup e”" |Y, — Y, Zs— 7,

s€[t,T]

(5.115)

Uniqueness in the space S ([O T] ;eV) X Agmk (0,T) follows. Moreover, if
(¢)seo.r) is a deterministic process, uniqueness of the solution (Y,Z) of the
BSDE (5.107) holds in S)* ([0, T]:e") x A%, (0.T).

Proof. Let (Y,Z), (Y, Z) € S2([0,T]0) x A® . (0,T) be two solutions corre-
sponding to 1 and 7 respectively. Then

T T
Yt_Yt:n—fH-/ dLS—/ (ZS—ZS)dBS,
t t

where
L = /0, [(@ (5, Vs, Zy) — ® (s, 7, z)) o, — (sz - dl?s)] .

Since by (5.110) <Ys —¥,.dK, — df(s> > 0, we have forall a > 1:

2

<Yt_?l,st>§ Yt_?l ndQ, + Yt_?l Zt_Zt Lidt
- |2 a 2 np A |2
<|v, = 0| | do, + -2 (0,2 dr +—‘ZI—Z, dt,
2n, 2a

where n, = (p—1) A 1. (5.114) and (5.115) follow from Proposition 5.2 and,
consequently, uniqueness follows, too. o

Let now (£,),¢(o.7) be a deterministic process. If (Y, Z), (Y. Z) € S, ([0.T]:
") x A%, (0,T), then there exists a p > 1 such that ¥, ¥ € S}, ([0, T];e") and
the uniqueness follows from the first step. |

Proposition 5.51 (Uniqueness). Let p = 1. Let the assumptions (5.108-BSVI-
H) g o) be satisfied and ® be independent of z € R™k (¢, = 0and V, = ny =
fot usdQy). If (Y, Z2), (?, Z) e SO0, T] x A?nxk (0, T) are two solutions of the
BSDE (5.107) corresponding respectively to 1 and 1) such that

E sup elts ‘Ys—f’s < 00,

s€[0,T]

then P-a.s., forallt € [0, T]:

e |Yo =¥, < EZ (7 |y — i)
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and for every q € (0, 1) there exists a constant Cy such that
Ys - ?s Ys

_ f/s
2 \4/
ds)

q _
) ) +E sup eit
s€[0,T]

T -
+E (/ e%its
0

<C, (IE (e |n—1l) )q-

sup (E (eﬁf
s€[0,T]

q
2

Z,— 7,

Proof. Following the proof of Proposition 5.50 we now have

~ ~ |2
(¥ fi.ar) < |v, - 1,[ o,

and the conclusions follow by Corollary 6.81. |

5.5.2 Existence

We consider the following backward stochastic variational inequality (BSVI)

—dY; +dp (Y,)dt > F (t,Y;,Z,)dt — Z,dB;, 0 <t < T,

(5.116)
Yr =n,

and we suppose that the following assumptions hold:

(A)) n: Q2 — R"is an Fr-measurable random vector.

(Ay) F:Qx[0,T] x R" x R™* — R™ satisfies the assumptions (5.77-BSDE-
MHpy) (from Sect. 5.3.4).

(Az) ¢ : R™ — (—o00, +09] is a proper, convex Ls.c. function.

Recall that the subdifferential of ¢ is given by

dp(y) =1y eR": (J,v—y)+o() <¢(), YveR"},

and by (y, y) € d¢p we understand that y € Dom (d¢) and y € d¢ (y).
We define

Dom (p) ={y € R" : ¢ (y) < o0},
Dom (d¢) = {y € R" : d¢ (y) # @} C Dom (¢) .

Let ¢ > 0 and denote the Moreau regularization of ¢ by

def . 1 m 1
e (y) = inf Zly—vlzﬂa(v):v eR™ = Zly—Js(y)lzwLw(Js(y)),
(5.117)
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where J; (¥) = (Inxm + €3¢) " (). Note that ¢, is a C' convex function and J,
is a 1-Lipschitz function.
We mention some properties (see Annex B: Convex Functions): for all x, y € R™

_J&‘
@ Vo) =g 1) = 20 gy,

1
(D) |Vee(x) = Vo (y)| < glx—ylv (5.118)

() (Vge(x) = Ve(y),x —y) =0,
(d) (Vee(x) = Vps(y), x —y) = —(e + 8) (Ve (x), Vps(y)) .

Throughout this subsection we fix a pair (uo, ity) € d¢. Then by (6.26) from Annex
B we have

(J) Ve (wo)| =< lito] .

Gy P &2l (5.119)
i e

< 0. () — ¢ (uo) + |ito| |y — uo| + € |fio]* .

We will make the following assumption:

(Ay) There exist p > 2, a positive stochastic process B € L' (Q x(0,T)), a
positive function b € L' (0, T) and real numbers k > 0, A €0, 1[ such that

forall (u,n1) € 0 and z € R™* -
(i, F (t,u,2)) < Aiaf* + B + b (1) [ul? + « |z (5.120)
dP ® dt-ae., (w,t) € 2 x[0,T].

We note that if {it, F (¢, u,z)) < 0 for all (u, 1) € d¢, then the condition (5.120)
is satisfied with 8; = b (¢) = k = 0.If for example ¢ = I (the convex indicator of
the closed convex set D) and n, denotes any unit outward normal vector to Daty e
Bd (D), then the condition {n,, F (7, y,z)) < 0 for all y € Bd (D) yields (5.120)
with 8, = b(t) = « = 0 (for example). In this last case by Itd’s formula for

W (17) = [disty (Y)]z, where

~dY, = F (t.Y,.Z,)dt— Z,dB,, 0<t<T,

Yr =n,

and by the uniqueness of the triple (Y, Z,U) satisfying (5.107) we infer that
(Y. Z,U)=(Y.Z,0).

Theorem 5.52 (Existence - Uniqueness). Let p > 2 and assumptions (A1—Aq4) be
satisfied with this p. Suppose moreover that, for all p > 0,

T P
Elnl”+1E¢+(n)+JE(/ F:(s)ds) < oo
0
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Then there exists a unique pair (Y,Z) € Sh[0,T] x Apxk (0,T) and a unique
stochastic process U € A2, (0, T) such that

T
(@) / \F(t.Y,, Z,)|dt < 00, P-a.s.,

b) Y(t) (w) € Dom (d¢), dP @ dt-a.e. (w,t) € 2 x[0,T],
(c) U (w)edp¥;(w)), dP®dt-a.e (w,t) e Q2x][0,T],

and forallt € [0,T]:

T T T
Y, +/ Usds = 17+/ F(s,YS,ZS)ds—/ ZdBs, a.s. (5.121)
t t t
Moreover, uniqueness holds in S}* [0, T] x Aglxk (0,T), where
Sk, sz 0.7
p>1

Proof. Let (Y,Z), (Y.Z) € S0, T] x Aomxk (0,T) be two solutions. Then
Y,Y € Sh[0,T], for some p. Uniqueness follows from Proposition 5.50.
The proof of the existence will be split into several steps.

Step 1.  Approximating problem.

For ¢ € (0, 1] consider the approximating equation: P-a.s., for all ¢ € [0, T,

T T T
Yf+/ Vo, (YE)ds = n+/ F(s,Yj,Zf)ds—/ Z¢dB,,  (5.122)
t t t

where Vg, is the gradient of the Moreau regularization ¢, of ¢. It follows
(without assumption (A4)) from Theorem 5.27 that Eq.(5.122) has a unique
solution (Y¢, Z%) € SH[0,T] x A? . (0,T).

mxk

Step 2. Boundedness of Y*® and Z°.
Let (ug, p) € dp, a > 1 and

Vy=ver¥ /0 [u (s) + %62 (s)i| ds = /0 [u (s) + %ez (s)] ds
p

(p>2yieldsn, =1A(p—1)=1).

Let (ug, ity) € d¢ be fixed. From Proposition 5.46 with W replaced by ¢, and
dQ; by ds, there exists a constant C, , (depending only on a and p) such that the
following inequality holds P-a.s., for all ¢ € [0, T:
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T r/2
EZ sup e/ |Y? — upl? +E” ( / 1Y) — g, (Mo)|d5)
t

s€t,T]

T p/2
+E7: (/ e |Z§|2ds)

t

T 14
<., [Eﬂel’”m—uovmﬂ ( [ [|V</)s(uo)|+|F(S»M0»0)|]d5) }
t

(5.123)
Note that |V, (uo)| < |ito] and |@. (uo)| < ¢ (uo) + |iio|*. Hence there exists a
constant C independent of ¢ such that

2
@ E|Ye)3 < EY)5)7" <c,

T R T N 2/p
o 5[ iz dss[na(/o i ds) } -, 5100

2/p

@ =[ wonas<[s([ woo)] <

Throughout the proof we shall fix @ = 2 and therefore

v, =/01 [;L(s)—i-ﬁz(s)]ds

Step 3. Boundedness of V. (Y?).
Using the following stochastic subdifferential inequality given by Lemma 2.38

T
0u(Y5) + / (Ve (). d¥°) < 0.(YE) = 0.(n) < @(),

we deduce that, for all ¢ € [0, T],

T 5 T
(Y9 + / Voo (Y)P ds < o(n) + / (Vo (Y), F (5. Y. Z¢)) ds
t

! T
— / (Vo (YE), ZEdBy) .
’ (5.125)

1 N
Since [V (V)] = Ve (v) = Ve (o) | +[Vee (uo)| = — |y — to] + |ito] and

e / Vo (1) P12 s

1/2
< E|:sup Ve (Y{) / |Z£2d i|
& s€[0,7]

1/2
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< 2E Yé 24 20aP | +E TZS 24

< | ZE sup |Y{ —uo|” + 2lio|” | + |Z5 | ds
&% s€0.7] 0

< 00,

we have
T
E/ (Ve (Y7), Z:dB,) = 0.
t

Under assumption (Ay), since Vo (Y°) € dg (Jg (Yf)), it follows that

<Vg015(YS£), F (s, Y, Z5))
(Y= L (V) F (5. Y5, Z0) = F (5. : (¥)) . Z9)

+ (Ve (Y), F (s, Je (Y5) . Z5))

IA
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1
g;ﬁ () [YE = Jo (YE) ] + X VoY + B + b (s) | Je (Y) |7 + k|22

(5.126)

Using here the inequalities (5.119), then from (5.125) we infer that for all ¢ € [0, T,

T T
Eg.(Y?) + (1 — \)E [ Vo (YE)P ds < Eg(n) +2 [ Wt (s) Ege (Y2)ds

t

+C IE/T ([1 + B +b(s) (14 Y —up|”) +« |z;|2]) ds

which yields, via estimates (5.124) and the backward Gronwall inequality (Corol-
lary 6.62), that there exists a constant C > 0 independent of ¢ € (0, 1] such that

T
(@) Eg.(¥f)+E / V(Y52 ds < C.

0
(b) E|ve—J.(Y7)|]" < Ce.

Step 4. Cauchy sequence and convergence.

Lete, 6 € (0,1].
We can write

T T
YE—Y“’—/ dKS’S—/ Z¢dB
t r s s S
t t

where

(5.127)

t
Kt&g = / [F (S’ ng’ Zf) - F (S, YSS’ Z(j) - V(ﬂp (YXS) + V(p5 (YVS)] ds'
0
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Then
& § £,8 £ 8 & 512 1 e 812
(Y7 =Y. dK,") < (e+8) (Vo (Y,)). Vos (X)) dt + Y, — Y[ dVi + 7| Z; — Z/ [ d.

and by Proposition 5.2, witha = p = 2,

T
E sup |Y;-Y§|2+E/ |ze — 23| ds
$€[0.7] 0

T
<CE / (e +8) (Ve (Y{), Vs (Y})) ds
1 ' ! &2 ! INK
< 1ce+9) [E/O Vot as+E [ (Ve ds}
<C’'(e+9).

Hence there exist (Y, Z,U) € S2[0,T]x A2, (0,T) x A2, (0, T) and a sequence
&x \ 0 such that

Y& — Y, in S2[0,T] and as.in C ([0, T]; R™),

Z — Z,in A2, (0,T) and as. in L? (0, T; R™F) |
Vg:(Y®) — U, weakly in A2 (0,T),

Je, (Y®) — Y, in A2 (0,T) and as.in L? (0, T;R™).

Passing to the limit in (5.122) we conclude that

T T T
Y; +/ Ugds =1 +/ F (s, Y, Z)ds —/ Z.dBy, as.
t t t

Since Vo, (Y¢) € d¢ (J. (Y¢)) it follows that forall A € 7,0 < s <t < T and
veSio,T],

t t t
IE/ 14 (Voo (YE), v, — YE) dr + E/ Lag(J. (Y7))dr < E/ L4¢(v,)dr.
s S S

Passing to liminf for ¢ = ¢, Y\ 0 in the above inequality we obtain that U; €
d¢ (Yy). Hence (Y, Z,U) € SH[0,T] x AL . (0,T) x A% (0,T) and (Y, Z, K),

mxk
t
with K, = / Uids, is the solution of BSVI (5.116). The proof is complete. |
0

Remark 5.53. The existence Theorem 5.52 is well adapted to the Hilbert space
setting, since we do not impose an assumption of the form

int (Dom (¢)) # @.
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which is very restrictive for infinite dimensional spaces. In the context of Hilbert
spaces Theorem 5.52 holds in the same form (see [57] where some examples of
partial differential backward stochastic variational inequalities are given too).

Let (up, ity) € d¢ be fixed. From the inequality (5.123) we have fora = p =2
eZV(I) |Yt8 _ M0|2 < Ca.p |:E.7:,82V((T) |77 _ M0|2
2

T
+ E7 (/ e’® [|a0|+|F(s,u0,0)|]ds) }

t

T
and consequently if || 4 [ | F (s,up,0)| ds < My, then a.s. for all ¢ € [0, T,
0

Y] < Ro = |ug| + C VT (Jug| + T |itg| + Mo) . (5.128)

Corollary 5.54. If in Theorem 5.52 we replace the assumption (A4) by
(As) There exist My, L > 0 such that:

@) 0<¢ <L,ae,tel0,T],
T
@@ | —i—/ |F (s,up,0)|ds < My, a.s.,w € Q,
0
(iiiy 3Ry > O sufficient large such that

T
E / (Ff (5))* ds < oo,
0

(in the proof Ry is defined by (5.128)) the conclusions of Theorem 5.52 hold.

Proof. Let R\ be defined by (5.128). The proof follows the same steps and com-
putations as in Theorem 5.52 with the modification of Step 3: the estimate (5.126)
now takes the following form (considering (5.128)),

(Vo (YO), F (5. Y5, Z5)) < Vo (YOI | F (5. Y. 0)| + Vo (Y)| L | ZE|

2
Vo (Y + (Fj ()" + L* | ZE .

=

N =

Using this inequality in (5.125) we directly obtain (5.127). |

Remark 5.55. We note that if F (w,t,y,z) = F (y,z), then the assumption (Aj;)
becomes |n| < My, a.s., w € Q.
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Remark 5.56. In the particular case where ¢ is the convex indicator of a convex
subset D C R™, the BSDE (5.116) is a reflected BSDE. As first noted in [34], the
process K which maintains the solution inside D is absolutely continuous, unlike
in the case of forward SDEs. The intuitive reason for this is that K does not need
to fight against the martingale term. The situation is probably quite different in the
case of nonconvex sets, but reflecting BSDEs at the boundary of nonconvex sets
remains an open problem. The theory of reflected BSDEs was initiated in [25],
where reflection in R above a given continuous adapted process was considered.

5.6 BSDEs with Random Final Time

5.6.1 BSDEs with a Monotone Coelfficient

Let us now discuss the existence and uniqueness of a solution to an equation which
we would like to write as

o0 o0
Y, = n+/ @ (5, Ys, Z,) dO, —/ Z.dB,, a.s., Yt >0 (5.129)
t t

In most cases the above integrals will not make sense. For this reason we shall give
below a weaker formulation of the above BSDE.
We formulate the following assumptions:

(BSDE-H,) (5.130)

@) pa>lLn,=1A(p—1),
(@) n € L? (R, Foo, P;R™) and (£,¢) € 55 X Agxk (0, 00) is the unique pair
such that

o0
& = 77—/ {dBg, t >0, a.s.,
t

(in particular (&), is given by &§ = E*ip).
(iii) (w,t) —> Q; (w) : Q x [0, co[— R is a P-m.i.c.s.p. such that Qo = 0.

¢ VyeR" z e R™ the function ®(-,-,y,2) : Q x [0,00[— R™ is
P-measurable;

@ there exist £ € leoc (R4:Ry) (a deterministic function) and two P-m.s.p
w2 x[0,00[— R, @ > 0, such that a,dQ, = dt and

T
/ | |dQ, < oo, forallT > 0,P-as.;
0
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& forally,y' e R"and z,7 € R™*, dP® dQ,-a.e.:

Continuity:
(Cy) y— & (t,y,2) : R" — R™ is continuous;

Monotonicity condition:
(My) (' =y, @,y 2) =@, y.2) < ply' =y

Lipschitz condition: (5.131)
(L) @@, y,7) =@, y,2)| <o L(2) ]2 —2l;

Boundedness condition:

T
(8) [ ®r61d0, <cc. VT 20
0
where @ (t) = sup {|®(z, y,0)| : [y| < p}.
Define
t
ljl’[ Z/ /'LsdQs
0
and

Y € S,g :E sup |e‘_‘>‘Ys|p <ooforall T > 03 .
s€[0,T]

Note that

s + t
fir < i < |aT], = sup (/0 urer) 5/0 o, .

s€[0,]

Finally we recall the usual notation

t t
V, = ver ”Q/ 11,dO, + %/ 0 (s) ds. (5.132)
0 p JO

Theorem 5.57. Let p,a > 1 and V be defined by (5.132). Let the assumptions
(BSDE-H,) be satisfied and

(i) E| sup e? |n|’| < oo < oo, forall T >0,
1€[0,T]

o] r
(i) E(/{; €V'|q)(t»§:ta§t)|th) < o0.
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If, moreover, for all p > 0

r _ _ P
(h)) E (/0 sup |ef @ (s, ey, 0) — ju;y| dQ,) < 00, or

Iyl=<p
T P
(h) w=0andE (/ et sup |<I>(t,y,0)|dQS> < 00,
0 lyl=p

then there exists a unique solution (Y;, Z;),5 € Sy, X AY ., of the BSDE (5.129) in

mxk

the sense that (here YO <t < T means forallt and all T suchthat0 <t <T)

T T
() Y =YT+/ q)(s,YS,ZX)dQS—/ ZydBs, a.s., V0<t<T,
t t
() E sup e?"|Y|? < oo, forallT >0, (5.133)

0<t<T

(i) Jim E e?"T Yy —&r|” = 0.
Moreover

T p/2?
E (/ e |ZS|2ds) < oo, forallT >0,
0

and there exists a constant C, , depending only on (a, p) such that for all t > 0,

00 p/2
/ e | Zs — &) ds)

t

E7 sup|e” (Y, — &)|” + E7

s>t o » (5.134)

< Ca,,,E}-' ([ e |(I>(s,$‘y,§y)|dQs) , a.s.
t

Proof. Uniqueness. If (Y, Z) and (I? Z ) are two solutions of (5.133) in the space

Sm(e") x A%, = Sh(e”) x A% . Then from (5.24) there exists a positive
constant C, , depending only on (a, p), such that

2 r/2

ds)

P r A
+E (/ ezV“’ZS—ZS
0
—0, asT — oo,

A |P
< CopEer' |¥r - 71|

Y, - Y,

E | sup e?"
t€[0,T]

where we have used ((5.133)(j;j)). Uniqueness follows.

Existence. Note that

n
& = ]Ef”n—/ LdBs, t €[0,n], a.s.,
t
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and since E (sup, o771 ¢”* [n|”) < o0, by Corollary 6.83
B T p/2 .
E sup e’ &P + E (/ e |§[|2dt) <C,E| sup e |n|”] < oo.
t€l0,T] 0 1€l0,T]
(5.135)
Hence

(6.0) € S5 ([0.T]:e7) x AL, (0.T: )

mxk

=582([0,T];e") x AP, (0,T;€").

mxk

For any fixed n € N*, we consider the approximating equation

n n
Y = EFny +/ CD(S, YS”,Z;T) dQ, —/ Z'dBs, t €0,n], a.s.
t t

By Lemma 5.29, this equation has a unique solution (Y", Z") € Sk ([() n] ;eﬁ) %
AP i (0.n3el). We set Y = & and Z" = ¢, for s > n.

Since the approximating equation can be written in the form: P-a.s., for all 7 €
[0, n],

n n
Ytn — él‘ = / d (S, ‘i:.? + (YYn - Ev) 5 é‘x + (Z:l - ;v)) dQs _/ (Z:’l - ;v) dBm
t t
we deduce from (5.19) that P-a.s., forall 0 < ¢ < n,
00 r/2
E7 supe?’ |Y)' — 7 + B (/ ez}~ m“")
s>t t

n p
< C,pE” (/ eVS|CI>(s,§S,§'S)|dQX) (5.136)
t
0 p
ECa_pE}—f (/ eVS|CI>(S,£:S,§S)|dQ‘Y)
t

where C, , is a constant depending only upon (a, p). In particular for i € N*:

oo ) p/2
Esup|e" (Y7 —&)|" + E (/ eV | Zit — g ds)
s=>n n

00 » (5.137)
< CopE (/ es |‘1>(S,$s,§s)|dQs) — 0, asn — oo.

Note that by uniqueness

n n
Yt =yt +f D (s, xyn+f,zgf+f)dgs—/ Z'dB;, t €[0,n], a.s.
t

t
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Using the inequality (5.24) in this context we infer that

E sup epV, |Yln+i _ Ytn|1’ +E (/ eZVS
t€[0,n] 0

< CypE PV |yt —S,,|p — 0, asn — oo.

. ) r/2
Znti— 71| ds)

Hence

o0
E (SupepVX YSn+i _ st|[7) + E (/ eZVS
s>0 0

n
<E ( sup e |yt — 1’;’|p) +2P’E ([ e
0

s€[0,n]

) ) p/2
AR ds)

p/2
Z;l"rl _ Z;1|2ds)

) [} ) 5 p/2
+E (supe”VS Yyt —Ss}p) + 2P°F, (/ e | znt —{s’ ds)
s>n n
— 0, as n— oo.

This shows there exist progressively measurable stochastic processes ¥ : R4y xQ —
R” and Z : Ry x Q — R such that

n—>oo §>0

00 p/2
lim E [supe” |Y" -~ Y,|” | + E (/ e |zn —ZS|2ds) =0. (5.138)
0
From (5.136) we deduce by letting n — oo that for all + > 0, P-a.s.,

o0 r/2
E}-t sup |eVS (Ys - és)ip + EJ:I (/ e2Vy |ZS - é'slzds)
s>t t

J ) (5.139)
< C, B ( / eV-v|d>(s,ss,cf>|dQs) .

Since (£,¢) € Sp ([0.T];€") x A?

Pk (0.T;e"), forall T > 0, it clearly follows
from (5.139) that

T r/2
E sup ‘eVSYSV7 +E (/ eV |ZS|2ds) < 00.
s€l0,T] 0

Let0 <t <T < n.Now by Lemma 5.5 we can pass to the limit in

T T
Y = Y2 +/ CD(s,YS”,Zg)dQS—/ Z'dB,, as. 1 €[0,T]  (5.140)
t t
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and taking into account (5.139) we deduce that (Y, Z) satisfies (5.133). The proof
is complete.

Remark 5.58. If, moreover, there exists a constant 4 such that sup,5o V; = b,
P-a.s., then the conditions (5.143-(jjj)) can be replaced by the stronger statement
than (5.133):

(i)~ Jlim E e [Yr —n|” =0. (5.141)

Indeed using the backward Burkholder—Davis—Gundy inequality (2.51) we have
00 r/2 00 p/2
o ([ lefar)  <mswln-ar<cE ([Cika)
t s>t t

Let t : Q — [0, o0] be a stopping time and n € L? (2, F,,P;R™), p > 1. We
now consider the BSDE

|

T

T
Y, = n+/ <I>(s,YS,Zs)dQS—f Z.dB,, a.s., ¥Vt>0, (5.142)
t

AT INT

in the sense which will be made precise in the next theorem. Plainly the
BSDE (5.142) a particular case of Eq.(5.129) where ® is of the form 1 P,
since by Lemma 2.43 Z, = O forall 7 > 7.

Recall that the unique pair (§,¢) € S 5 X AS <« (0,00) such that

o0
& = ’I—/ {dBg, t >0, a.s.,
t

satisfies & = EX~rpand ¢ = 1y, (1) &
Define

def INT a INT INT
V.= / MsdQy + —/ 0 (s)ds and i, = / HsdQs.
0 2np Jo 0

We deduce from Theorem 5.57:

Corollary 5.59. Leta,p > 1l and v : 2 — [0,00] be a stopping time. Let the
assumptions (BSDE-Hyo) with ® (s, y,2) = 1) (s) P (s, y.2) be satisfied and
ne L?(Q,F,,P;R™). Assume moreover

@) E(e'””’ﬁ”rm |;7|”) < oo, forall T >0,

T p
i) E (/0 er|<1><z,a,z,)|dQ,) < o,
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and forall p > 0
sup |eﬁzq> (s,e™H1y,0) — /L,y| dQ,)p < 00, or

TAT
() % <~/0 lyl=<p

Tnt )
(hy) ,uanndE(/ et sup |<I>(t,y,0)|dQS) < oo.
0 IyI=<p
(A) Then there exists a unique solution (Yy, Z;),;5 € Sy x A% . (Y1, Z;) = (1,0)
ift > t, of the BSDE (5.142) in the sense that

T T
(]) Yt = YT +/ (D(S, Ym Z?) dQs _f stBm a.s.,
t t

forall0 <t <T,

() E sup e?Vs|Ys|? < oo, forall T >0,
s€[0,T]

(i) Jim B e [V —Eracl” = 0.

(5.143)

Moreover

T p/2
E (/ e2V‘|ZS|2ds) <00
0

and there exists a constant C, , depending only on (a, p) such that for all
t >0,

T p/2
E sup }eVs(Ys—a>|”+E(f e2V5|zS—§S|2ds)
t

INT<S<T AT

T V4
<Cy )E ( / eVs|<1><s,§s,§s>|dQs) .

AT

(5.144)
(B) If, moreover, there exists a constant b such that SUpg<,; < Vi < b, P-a.s., then
the conditions (5.143-(jjj)) can be replaced by
.o . V AT _
(i) JNim E e [Yra — |7 =0. (5.145)

|

5.6.2 BSVIs with Random Final Time

In this section we are interested in the following generalized backward stochastic
variational inequality (BSVI for short):
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T T
Vot [dko=n+ [ 1F 60 Z0ds+ G YAl
t t

AT AT T
_/ Z.dB.. 1> 0, (5.146)
t

AT

dK[ (S 8(p (Y[) dt + aw (Y[) dA[ on R+,

where d¢, 0 are the subdifferentials of the convex lower semicontinuous functions
@, ¥, {A; 1t > 0} is a progressively measurable increasing continuous stochastic
process, and t is a stopping time.

In fact we will define and prove the existence of the solution for an equivalent
form of (5.146):

o0 (o) o0

Y +/ dK, = n +/ qD(Sv Yy, Z\) dQs _/ ZydBg, t >0,
t t t

dK, € 3, (1.Y,)dQ,, on R,

(5.147)

with O, ® and W adequately defined.

We mention that the presence of the process A is justified by the possible
applications of Eq. (5.146) in obtaining a probabilistic interpretation for the solution
of PDEs with Neumann boundary conditions; since 7 is a stopping time the
BSVI (5.146) can be used for elliptic PDEs.

Because (5.146) is quite a complicated equation, in order to simplify the
presentation we shall restrict ourselves to p = 2. The case p > 2 can be found
in [47].

We begin to give the main assumptions for this section.

(A|) The random variable t : 2 — [0, 00] is a stopping time.
(A,) The random variable n : @ — R™ is F,-measurable, E |n|* < oo and the

stochastic process (£,¢) € S2 x A’znxk (0, 00) is the unique pair associated to

n given by the martingale representation formula (Corollary 2.44)

oo

& = 77—/ LdBs, t >0, a.s.,
t
'i:t = E]'-rn — E]‘—t/\tn and ;'t — 1[0’1] (Z) gz-

(Az) The process {A; : t > 0} is a progressively measurable increasing continuous
stochastic process such that Ay = 0,

0 (w)=t+ A4 (w),

and {a, 1t > 0} is a real positive p.m.s.p. (given by the Radon—Nikodym
representation theorem) such that a € [0, 1] and

dt =0,dQ, and dA; = (1 —ay)dQ,.
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(A,) The functions F : Q xR xR" xR™* & R" qnd G : @ xRy xR” — R”
are such that

F (9.2, G(.-y) are p.m.s.p., forall (y,z) € R" x R"*k
F(w,t,-,-), G(w,t,-) are continuous functions, dP ® dt-a.e.,

and P-a.s.,
T T
/ Fj(s)ds+/ G;f(s)dAs <00, Vp,T >0,
0 0

where

F; (w,s8) := sup |F (w,s,y,0)], Gf; (w,s) := sup |G (w,s,y)].
[yl=p lyl=<p

(As) Assume that there exist three progressively measurable positive stochastic
processes (L, v, £ : Q x Ry — Ry such that

T T
/ (M n (es)z) ds + / VA, < oo, forall T > 0, P-a.s.,
0 0

and P-as. w € Q, forallt € [0,7 ()], y,y' € R™, z,7 € R"™k,

() =y Py = F.v.2) < |y = v,
@@ (Y =y.Gt,y)=G@t, y)=v |y =y, (5.148)
@) |F(t,y,2)—F(t,y,2)| <4 |7 —z.

Let us introduce the functions
H (a)9t’ .y’ Z) = 1[0,1’(&))] (t) [at (w)tF (C(), Z, y9Z) + (1 — ((l))) G ((l), [ y)] ’
o= / 1o (5) psds, v, 1= / Ljo.1) () vsdAs,

0 0

!
o; =1 @) [meoy + v (1 —a)], 07 := / 1. (8) 05dQs = 1, + vy,
0 IAT

t
Mo=1g Ok, A= / Ljo (5) (45)* &, dQ = / (£s)* ds.
0 0

(5.149)
The relations (5.148) yield

@ =y H@ Y. )= HEy.9) <oy =P, (5.150)
() |HG.y.2) = H(t.y.9 <4, [~ |

Let

Vi = / 1[0.1] (S) [ (H’S + (Kv)2> o + vs (1 —ay) ]dQs =0 + i)ﬁ (5.151)
0
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Concerning ¢ and { we shall assume:

(Ag) o, ¥ : R™ — [0,+o00] are proper convex lower semicontinuous (L.s.c.)
functions, 0@ and 0V are the subdifferentials of ¢ and Vr, respectively, and
there exists a ug € R™ such that 0 € 3¢ (up) N Y (up) (wWhich is equivalent

to ¢ (o) < ¢ (y) and ¥ (ug) < ¥ (y) forall y € R™). Define
V(w,1,y) = 1) (1) [on (@) o () + (1 —a () ¥ ()]

(A7) If P(t > N) > 0, for all N € N*, then for every i) € N, uy = conv{n, ug}
there exist two progressively measurable stochastic processes €V, E® such
that E,(I) € dop (Ef’ ﬁ), ,(2) € Y (E}—' ﬁ) a.e.t > 0and

T _ 2 T _ 2
E (/ er|g§1>|ds) +E (/ eV‘|§S(2)|dAS) < 00;
0 0

if & = 11,0 (5) [EWey + EP (1 — )], then & (0) € 0V (w, 5, E™1) and

T 2
E (/ e's |§X|dQs) < 00
0

(in the case ) = n we define & = E}—fn and in the place of (é(“, 5(2)7 g) we
shall use the notation (EV, £® | £)).

Remark 5.60. In place of the assumption (A;) we can consider two particular
cases:

(A) n:Q — O, where O is the closed convex set defined by

0L (y eR" 19 (y) = ¢ (o) and ¥ (y) = ¥ (uo)}:

or
(A7) there exist rp > 0 and vy € Dom (¢) N Dom (yr) such that

(i) 1n:Q — B(vg,r9) C int(Dom (¢)) N int (Dom (v)),
@@ E (er (r + AT)) < o0.

Indeed:

(A}) =(A,): since § = EZifj e Oforallt > 0wecanset ) =@ =§ =0
for every 1 € 1, up;

(A7) = (A;): by Proposition 6.2-(d) there exists an My > 0 such that
dp (u) C B(0,My) and 0y (u) C B (0, M) for all u € B (vy,ry) and
consequently |§t(1)| + ’5,(2)| < 2M, for all 7} € 7,1y because E*'7j € B (vo, o)
for all £ > 0. Observe that from (Af-ii) it follows that P (t = c0) = 0.
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Definition 5.61. By the notation dK; € dv (Y;) dA, we shall understand that:
e K is an R™-valued locally bounded variation stochastic process;

T
e Y is an R™-valued continuous stochastic process such that / ¥ (Yy)dA, < oo,
0

as. VT > 0; and
e P-as., forall0 <t <s

[ o-v.aky+ [vma = [ oo enaa.vyec @iz,

(we have an analogous definition for dK; € d¢ (Y;) dt).

Remark 5.62. The condition 0 € d¢ (1) N 0¥ (up) does not restrict the generality
of the problem because from Dom (dp) N Dom (dy) # @ it follows that there
exists ug € Dom (dg) N Dom (0v) and g, € d¢ (up), gy € 0y (up) ; in this case
equation (5.146) is equivalent to

Y, +/ dR, = n+/ [ﬁ (s, Yy, Zo)ds + G (s, YS)dAs]
INT t

AT T
—/ ZydB;, t >0,
INT

dK, € 3 (Y,)dt + 0y (Y;)dA,, on Ry,

where F (s,3,2) = F (t,9,2) — oy, G (s,9,2) = G (1,) — b, § () =9 —
(o1, y —uo), ¥ (y) = ¥ (y) — (o2, y — uo), 3¢ (y) = 99 (y) — tior, Y (y) =
81// (y) — g and d K, = dK, — g1 dt — tgpdA;.

Let £ > 0 and define the Moreau—Yosida regularization of ¢ by
: 1 2 m
0 () i=inf) = [y =P + 9 (v) v e R

which is a C! convex function and Vg, (x) = d¢, (x) € d¢ (J,x), where Jox =
x — &V, (x). (For further properties see Annex B, Section “Convex Functions™.)
Since 0 € d¢ (1) we deduce that ¢ (1) = @ (uo) < @ (1) < @ (u), J: (uy) = ug
and Vo, (ug) = 0.

We introduce the compatibility conditions between ¢, Y and F, G:

(Ag) There exists a ¢ > 0 and two progressively measurable stochastic processes
f.g: Q2 xRy — Ry satisfying

T T
IE/ ezV"|ﬁ|2ds+IEl/ e? g5 P dAy < o0,
0 0
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such that foralle > 0,t >0,y € R”, z € R"™* P-as.

(@) (Ve (»), Ve (»)) =0,
@) (Ve (¥).G (t,y)) <c VY- WIG . )| + gl. (5.152)
@iy (Ve (¥), F(t.y.2) <c|Vo.WIIF (t,y.2|+ fi].

and

(iv) (Ve (v) . =G (t.uo)) = c[VY WIIG (1. uo)| + &1

5.153
) (Ve () —F (to0.0)) < ¢ Vg DI [IF (o0, 0)] + 1. O

Example 5.63. (e;) If ¢ = ¥ then the compatibility assumptions (5.152) and
(5.153) are clearly satisfied.

(e2) Letm = 1. Since Vg, and V. are increasing monotone functions on R, we
see that, if G (¢, ug) = F (¢, up,0) = 0 and

(y —ug)G(t,y) <0 and (y —up) F(t,y,2) <0, Vi,y,z,

then the compatibility assumptions (5.152) and (5.153) are satisfied.
(e3) Letm = 1.If ¢, ¥ : R — (—o00, +00] are the convex indicator functions

0,ify € [a,b],
400, if y ¢ [a, b],

0,if y € [c,d],

and 1/f(y): +oo,ify¢[c»d]’

()=

where —00 < a < b < 400 and —00 < ¢ < d < +oo are such that
[a,b] N [c,d] # @ (see the assumption (Ag)), then

1
Vo () =-[0 =BT —(@=»7], and
Vo) = [0 -d) — -0,

The assumption (Ag-i) is clearly fulfilled; the next compatibility assumptions
(Ag-ii, iii, iv, v) are satisfied if for example G (t,uy) = F (¢, up,0) = 0 and

G(t,y)=>0, fory <a, G(,y)<0, fory=>b,
and, respectively,

F(t,y,2) >0, fory <c, F(t,y,2) <0, fory>d.
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We complete the assumptions with some general boundedness conditions
(Ag) Forallp >0

(i) E e (In = uol” + 9 (1) = p(uo) + ¥ (1) = ¥ (o)) < oo,
2

T 2 T
(i) E (/o eVSF:(s)ds) +E (/0 eV-Yfo(s)dAs) < 00,

T 2 T 2 (5.154)
(iii) F U e | (s)( ds + / e |Gt (s)‘ dAs:| < o0,
0 , ) 0
(v) E (/ eVSdQX) < oo, forall T > 0;
0
and some special boundedness conditions
(Ayo) There exist L,b > 0 such that for all0 <t < t, P-as.
@ t+ [ €rast
0 (5.155)

T
®) eVr|n—uo|+|H<r,uo,0)|+f e |H (s.u0.0)|dQ, < b.
0

where again H is defined by
H(t.y.2) = F(t.y.2) + (1 —a)G(t. y).

We also recall the definition of
U, y) =ap(y) + (1 —a)y(y).
Since V' > 0, we remark that under (A;,) we have

In—uol < |e" (n—uo)| < b
and for all r > 0,

& —uol <" |& —uol =BT (" & —uol) < b

Therefore by Proposition 6.80-A, for all ¢ > 0

T q/2
E (/ eV |§S|2ds) < Cpp. (5.156)
0

Using the definition of O, H and ¥ we can rewrite (5.146) in the form

00 o0
Y, + / dK, _,,+[ H (5. Yy, Z;)dO, — [ ZsdBs, 120, (5 157)
dK, € 9,V (s,Y,)dQs on R
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Definition 5.64. We call (Y;, Z;),- a solution of (5.157) if
(d) (Y,Z) e S2 xA°

mxk?

(dr) (Yi,Z;)=(&.8) = (n,0),ift > 7,
(d3) P-as., forall T >0,

T T
; [ F(s. Y, Zo)| + Iw(Ys)I]dS+A [1G (5. Y)| + [y (Y))[] dAs < o0,

(d4) there exists a K € S° such that P-a.s.

(i) K%y <oo. ¥T >0,
(i) dK, €3,V (1.Y,)dQ,.

o0
rob.
(ds) e2VT|YT—gT|2+/ 2V |Zy—&Pds 225 0,88 T — oo,

T
(dg) P-as.,forall0 <t <T,

T T
Y, + Kr — K, = Yr +/ H (s,Y,, Zs) dO, —/ ZdB;  (5.158)
t t

(we also say that the triplet (Y, Z, K) is a solution of (5.157)).

Remark 5.65. 1f there exists a constant C such that sup,¢p1|V: (@) < C,
P-a.s. w € Q, then the condition (d5) from Definition 5.64 is equivalent to

o0
rob.
Y7 —nf? +/ 1ZPds 2250, as T — oo. (5.159)
T

In the rest of this book, a constant depending upon p > 0 is denoted by C,;
in this section since we are only considering the case p = 2 we will denote the
corresponding constant by C».

We now give the main result.

Theorem 5.66. Let the assumptions (A1-Ayo) be satisfied. Then the backward
stochastic variational inequality (5.157) has a unique solution (Y, Z,K) € S% x
A% . x SO such that

mxk

o0
(j) Esupe® Yy —upl* + E/ e | Zy|* ds < oo,
0

5>0

00 (5.160)
Gy fim B[ Y —grP o [ e |z Pds] =0
T—o00 T

Moreover there exists UV U@ € AY with UV € d¢p(Y,) dP ® dt a.e. and
UP € 9y (Y,) dP ® dA, a.e., so that with U, = 1y ()| UM + (1 — ) U2,

dK, = U,dQ, € 0,¥(t,Y,)dQ,,
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Ui = 1o 0 [0 + (1 —a) U]
andforall0 <t <T,
T T T
Y: —}—/ U dQ, =Yr —i—/ H (s, Ys, Z;)dO, —/ ZdB;.
t t t

The solution also satisfies for some positive constants:

(A) forallt > 0andall g >0,

() Y —uo| < e"|Y: —ug| < Cy,

00 4/2 5.161
() E( / eZVr|zr|2dr) <Cpi (.16
0

(B) forallt >0,

o0
E7 sup |e" (Y, — uo)y2 + E% (/ e?Vs |ZS|2ds)
t

s>t
o0
+E / 1. (5) [l (Y2) = ¢ (o) | ds + | (Y2) = ¥ (o)| dA]
t
T 2
< G E% |:ezvf I —uol® + (/ e (IF (5. 40,0 ds +1G (5. w0)] dAy) ) |:
! (5.162)
(C) forallt =0,
o0
EsupeZVS|YS—§S|2+E/ 32K|Zs_§s|2ds
s>t o t
+IE/ e?Vs |W (s, Y,) — W (s, )| dO;
: (5.163)

< GE ([ 100 ) X610, + (F(5.6.0) + . &) dx
F1G(.£)1dA])
(D) forallt =0

E [e2" (%) ~puo) + ¥ (1)~ ¥ (u0))]
+§E /, 1. (5) eZV"< |U;U|2ds + |US(2)|2 dAx)

<E[e* (p(n) — w(ozgo) + ¥ () — ¥ (uo))] (5.164)
+(1+c¢)? E/ L. (s) €V (IF (s, Y5, ZO)1* + | f5|?) ds

t

o0
+ (1 +c)? Ef Lo, (5) 2" (G (s, Y;)|* + |g,1?) dA,.
t



5.6 BSDEs with Random Final Time 453

Proof. Uniqueness. It (Y,Z,K), (Y',Z’,K') are two solutions, in the sense of
Definition 5.64, that satisfy (5.160), then

E sup 2" |¥, — Y/ < cc.
t€l0,T]

Applying the monotonicity and Lipschitz property of the function H and taking into
account that

(Yy—Y/.dK; —dK}) = 0
for dK; € 9,W(s, Y;)dQ, and dK;, € 0, W (s, Y,)dQ;, then
(Y, =Y/, [H(s.Ys, Zy) — H(s.Y/, Z)| dQ, — dK + dK},)
< |V, ~ /v, + 412, - ZiPds

Using Corollary 6.82 from Annex C, it follows that

T
E sup e*"|Y, — YS/|2 + E/ ez, - Z;|2ds
s€[0,T] 0
< GE (2 [vr - ¥{[") —0,
—00

which yields the uniqueness.
The proof of the existence will be split into several steps.

1
A. Approximating problem. Letn € N* and e = —.
n

Let

U (.1, y) = o) @) (o (@) g (¥) + (1 —a; (@) Ye (¥)]
VoW (0,1, ) = Toancw) (1) [ (@) Vy0: (0) + (1 = e (0) Vy ¢ ()]
H, (w,1,y,2) = 1 (1) H (®,1,,2)
= Yo unc() () [ (@) F (0.2, y,2) + (1 =0 (0)) G (0,1, y)]

and
®, (w,t,y,2) = Hy(w,t,y,2) —V,¥" (0,1, ).
We note that

|q>i’l (ta Uo, 0)| th
= 1[0,I1/\T] (t) [lH (Zv M070)| th + |vy\p” (ts Lt())| th]
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= I[O,n/\r] (t) |H (l, Uop, 0)| dQl
= Yound () [|F (t.u0,0)[ dt + |G (2, uo)| dA;]

and

\qujn(s’ y) - Vy\Ijn(s’ y,)| = nl[(),n/\t] (t) |y - y/| .

We consider the approximating stochastic equation: for all ¢ > 0,

[e ) o0 (o)
Y + / VW (s, Y")dQ, = 1+ / H,(s. Y], Z"dQ, — / Z"dB,, (5.165)
t t t

or equivalently

Y —up = (EFn — uo) + f D, (s, uo + (Y — up) , Z")dQ,
t

n
—/ Z'dB,, Vtelo.n], (160
t

Y2 = (.8), Vi >n.

To show the existence of a solution (Y”,Z") of (5.166) we intend to use
Lemma 5.29-(h;).

Since (¥’ — y, V. (') — Vo, (y)) > 0 (and similarly for Vi) we notice that
®,, satisfies the inequalities

(@ (' =y Pult, ¥ 2) = Pult, y.2)
< Ljoung () (e + v (1 —a)] |y — J’|2 <oy - J’|2
(b) |q>n(ls Y, Z/) - (I)n([, Vs Z)| = 1[0,'1/\1] (t) Etat |Z/ - Z| <ol |Z/ _Zl .
(5.167)

Consequently the corresponding assumptions (5.13-BSDE-Hy) for ®,, are satisfied.
We have

E (ez‘_’"

BTy — u0|2) <E (826" |n — u0|2) < b? < oo.
For the assumption (/,) from Lemma 5.29 we have for all p > 0,

no_ 2
E (/ e% sup |, (s,y,O)Ide)
0

[yl=p

nAT
<E (/ e%
0

nAT 2
+f e% sup |Vy\IJ”(S,y)}dQs)
0

[yl=p

nAT _
# Oy
F) (s)’ ds +/(; e

G! (s)) dA,



5.6 BSDEs with Random Final Time 455

nAT 2 nAT
<3E (/ e | F* (S)‘ds) +3E (/ ¢
0 0

nAT 2
+ 3E (/ e”n(p+ |uo|)dQS) <00
0

2
G* (s)) dAs)

because V,W" (s, up) = 0 and

sup |V (s, y)| = sup |V W (s, y) = V,¥" (s, uo)} <nsup |y —upl.
lyl=p lyl=p lyl=p

By Lemma 5.29-(h,) Eq. (5.166) has a unique solution (Y”, Z") € S? x A?nxk such
that

E sup |e ‘( —u())| +E[ 2%|z§’|2ds<oo.

s€[0,n]

Consequently for all T > n,

E sup |e (v, —uo)|2
s€[0,T]

<E sup |e" (Y] —uo | +E sup |e" (IElffr)—uoH2
s€[0,n] s€[n,T]

<E sup |eV‘Y (YJ” — uo)|2 + 5% < oc0.
s€[0,n]

Now we remark that

|\Ij”(s, y) - wn(sau0)|dQs = (lIl”(S’ y) - \pn(s9uo))dQs
= (y_MOvqujn(S’y)),

and therefore
[P (s, Y)") — W' (s, u0)| dQy + ( —ug, ®, (s, Y;’,Z;’) dQS)
1
= 1Y) = wol [H (s,u0,0)| dQ; +Y" = uol* dVs + 7| Zds.

By Proposition 6.80 we have forall g, T > 0

T q/2 T q/2
E (/ eZVs|xp"(s,Yf)—xp"(s,uo)ugs) +E (/ eZVx|zg|2ds)
0 0

T q
<CE| sup |e" (Y —uo)|" + (/0 e’s |H (s, up,0)] dQS)

s€[0,7T]
(5.168)



456 5 Backward Stochastic Differential Equations

and

T
E* sup |eV" (YX” - uo)|2 +E* (/ e?Vs |Z§’|2ds)
S€[t,T]) t
T
+EF (/ eV | W (s, Yy — Wi (s, up)| dQs) (5.169)
‘

2 r 2
<G Eft[wr (Y2 —uo)| +(/ eV-"|H(s,uo,O)|dQs) ]
t

B. Boundedness of Y" and Z".
Ifn < T, then

EF [eVr (Y] —uo) | = BT [e"TETT (n — uo)|” < b2

Passing to the limit as 7 — oo in (5.169) we infer (by the Beppo Levi monotone
convergence theorem) that for all # > 0

o0
E*t sup |eV»" (st — uo)|2 + E* (f eV |Z§’|2ds)
s>t t

+E (/wem |Wn (s, Y1) — \IJ”(S,uO)|dQs) (5.170)

F v, X 2 v 2
SCz]E‘[|ef(n—uo)} +(/ es|H(s,uo,0)|dQs)].
t

In particular, using the assumption (5.155), we deduce that for all # > 0

Y/ —uo| < e |V —uo| < C:6* Z R. (5.171)
Moreover from (5.168) for all g > 0
) q/2
E (/ eV |Zf|2dr) <Cyp. (5.172)
0

C. Estimates on |Y" — &/| and |Z]' — (| for large t > 0.

If there exists an Ny > 0 such that 7 (w) < Ny, P-as. w € Q,thenY,” =§ =7
and Z] = ¢ = O0forall t > Nj.

We next consider the case where P (t > N) > 0 forall N € N*,

Since

— —/”zsst,w € 0.1,
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we infer, from (5.166), that (Y", Z") satisfies for all ¢ € [0, n] the equality

Y/ & = / O, (5.5 + (Y —£) .6 + (2" — &) dQ, — / (Z" — ¢,)dB;.
We have
W (t,ug) < W"(t, &) < W(t, &) = W, E ') < EXw(r, ).

From (V,W" (t,&).,y — &) < W' (t,y) — V" (t.&) < (y — &.V,¥" (1, y)) we
infer that

(W (2, p) = W" (£, 6)] < W' (6, ) = V" (0,6) + 2|V, V" (0. 8)| 1y — &l
Sy =& VW (6, ) + 2|V, 0" (. 8)| |y — &

< (y =&V, 0" (6, ) +2|& ||y — &|

where ét € d,W (1, &) is given by the assumption (A;). Using the inequality (5.167))
it follows that, as signed measures on R,
[Wr (1, Y) = W (t,€)]dQ, + (Y — &, D, (1. Y], Z}")) dQ,

,, 2 " ) L., ) (5.173)
<177 =& [261+ |H@.6.8)1]| a0 + 1Y — &PV, + 5127 = LPdr.

Since

E sup e |y — El|2 <2E| sup e Y — u0|2 + sup e |& — u0|2
tel0,T] t€l0,T] t€l0,T]

<2R;+E sup e [E7ip— u()’z <2R2+E sup EZ (eZV’ In — u0|2)
+€[0.T] t€[0.7]

<2Rj+b?

by Proposition 5.2 we deduce that for0 <t < T,

T
E sup e V! — & +E / 2|z — ¢, Pds
t

SE€[t,T]

T
—HE/ e | W (s, Y1) — W (5. &)| dO; (5.174)

<G, [E (e lre &)+ 2 ([ e 81+ 1HG. 6.5 dQ.y)z}

Recall that (Y]", Z7) = (&, ), Vs > n. Passing to the limit 7 — oo in (5.174),

S
we obtain by the Beppo Levi monotone convergence theorem
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o0
Esupe?”s |Y" — &> + Ef e |21 — ¢,|Pds

s>t t

oo
+E [ 2%

W (s, Y]") — W' (5, &)| O, (5.175)

o0 At 2
e ([ e [+ 1H6.6. 0] d0.)
D. Boundedness of Vo (Y/") and Vi.(Y,").

By the stochastic subdifferential inequality from Lemma 2.38 and Remark 2.39, for
al0 <t <T

eV [@sT(Ytn) — Qe (“0)] <e¥r [@a(Y#) — Qe (uo)]]_
[ e e o6 v z0) a0, - [ (Vo). Z1as)

(and a similar inequality for v.). We infer that

T
eV [@s(Yt”) — @ (o) + Ve (Y") — @e (MO)] + / Li<pnce® [aS|V¢£(YS”)|2

(Vg (V). V(X)) + (1= o) [V ()P |d 0,
<e¥r [‘PS(Y#) — @e (uo) + Ve (Y7) — ¢ (”0)]

T
+ / 1o, (5) €2 (Vo (Y™) + Vo (Y2, H(s, Y7, Z)) dO,

T
_/ e (Vo (Y + Ve (YD), Z'dBy) .
t
(5.176)

Using the definition of the function H(t, y,z) given in (5.149), the compatibility
assumptions (5.152) yield

(Voo (y), H(t, y,2)) = 1 () (Vo (), o, F(t, y,2) + (1 — ;) G(2, y))

= 0. ) [ VeI F (e, 3. + ¢ (1 = ) [VY) (G )] + 80|
(5.177)
and respectively

(VYe(y), H(t, y,2)) = Ljo.q0 (1) (VYe(¥), 0 F(t,y,2) + (1 — ;) G(2,Y))
<1y (1) [c o |Vo-WI (| F (&, y, 29| + f) + (1 —a) |G(2, y)IIVI/fg(y)I]-
(5.178)

Recall that ¢ (y) = ¢c(uo) = ¢(uo) and ¥ (y) = Ye(uo) = ¥ (uo).
From (5.152), (5.176-5.178) and the inequality a (x + y) < %az + x2 + y> we
obtain
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" (@:(Y)") — (uo) + Yo (¥;") — ¥ (uo))

1 T
45 [ Noana ©) [ 10,000 Pas + V9P
!

< P [ (V) = plu) + VoY) = o)
FA+0? [ Noana @ (P10 ZDP + 14F)ds (5179

T
L+ / Touna 5) 2% (1G(s. YD+ |,]2) dA,
t

T
—/ Vs (Vo (Y + Ve (Y]), Z"dBy) .
t

The stochastic integral from this last inequality has the property
T
EE/ 2 (Vo (V)) + VY (Y)'). Z1dB,) = 0,
t

because by Vo, (1p) = V. (ug) = 0 we have
|V(p8(Yxn) + Vl/fé‘(anN = 2n |st - I/t()|

and by (5.171) and (5.172)
1/2

T
E (/ e |V (YD) + Vi (Y] |Z§1|2d5)
t

T 1/2
<2nRyE (/ e2VS|Z§’|2ds) < 00.
0
Let T > n. By Jensen’s inequality it follows that

E[e* (¢:(Y]) + ¥ (Y]))] < E[e*'" (p(ér) + v (67))]
<E['T (p(n) + v ()]

Now from inequality (5.179) we infer by Beppo Levi’s monotone convergence
theorem for 7 — oo

E[e (01 = 0l) + Ve)) = ¥ ) |
3B [ Hoan 0 [V (r) P + 99,07 P,

= E[e?" (p(n) — p(uo) + ¥ () = ¥ (u0))] (5.180)
+(1+¢) ]E/t Lo (s) €* (|F (s, Y, ZDI* + | f?) ds

o0
FO4 B[ Toq () (G610 + 1)
t



460 5 Backward Stochastic Differential Equations

By (5.171), (5.168) and the assumption (5.154(iii)) we deduce that there exists a
constant C independent of n such that

o0
E / Lo () €2 (IF(s. Y ZD P + | £,) ds
t

0 2
< IE/ 1o (5) €2 [2 ‘onﬂuol (s)’ +2L2 2 + Ifslz]ds <C
t
and

o0
E / Lo (5) " (IG(s. Y)P + |, [?) dA,
t

<E[ 1000 |64 1 Of +le P ar <

Therefore from (5.180) we have

E [82% (0e(Y") — @(uo) + Ve (Y,") — ¥ (up))| < C, forallt >0 (5.181)
and

o0

B [ toana O [V DPar + Ty Far] s €. s

Since
0 () = 0u0) = 5 V9. (I + [ (v = £V, () = (o)}
we see from (5.181) that, for all > 0,
IE[ 2 (|8V¢£(Y")| + eV (Y] )] <2Ce (5.183)

(recall that e = 1/n).
E. Cauchy sequences and convergence.

Note that by assumption (A,) and (5.156) we have |&; — 1| < b and

o0 2
E (/ Ljo.7) (s) evxzs <] ds)
<E [(/"01[0,1] (s) (ﬁs)st) (/001[0’{] (s) &2 Iislzds)} L0, @57 co.
n 0
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Hence by assumption (5.154ii)

B ([ enne.a.sla0.)

n

00 2 00 2
<3E ( / Lo () e Ff o (9) ds) +3E ( / Ljo. (8) e Gl 0 (9) dAs)
n n
oo 2
+3E (/ eVSl[O.T] (s) £ |§'S|ds) — 0, asn — oo,
n
and by (5.175),
. o0 .
Esupe?s|Y i — &> + E/ e?Vs|ZmH — ¢ |2ds
s>n oo n
+E / Vs [t (s, YIH) — Wt (5,£0)| d O, (5.184)
n

&+ 1H0.6.61]40,) — 0.0 o0,

§C,,]E(/Ooe“v[

n

By uniqueness it follows that, for all ¢ € [0, n],
Yy i —yr = yrt g, +/ dK"! —/ (ZM — ZM)dBs, a.s.,
t t

where on [0, 1]
dKy"
= [Huti(s. YT Z2)—H, (5. Y], Z) =V, 0" (5, Y )+ V, W (5, Y]")] O,
= [H(s, Y, 20 — H(s, Y, Z") =V, ¥(s, Y + V,W(s, Y1) ] dQs.
By (6.28, witha =0, e = 1/nand § = 1/ (n +i))
(Yt (VyW(s, YY) — Vs, YY) dO,)
< (e + )10 () (Ve (V). Vips (Vs + (Vo (7). Vs (V1) ).
and using (5.150) we have on [0, n]
<st+i _ st’ng.i)
= 2000 6) [ (9000 + Ve 7) ds
+ (IVUXDP + [V (1)) dA |
+|Y Y Pav, + %|zg+i — Z"|%ds.
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Since by (5.171),

B sup e Y0 = ¥ < 2F sup e[|V — ol + 1Y) — uof’]

s€[0,n] s€[0,n]

<2R} < o0,

we obtain by Proposition 5.2 that

n
E sup,cio € YT —Y? + E / e | Zit — Z2|2ds
) 0
<C ]EeZI/,,lynn-i-z _ En|2

nAT A 5.185
+(s+6) CE/ eV (IVe (Y + (Vs (Y] T)I?) ds O
0

nAT
+He+8)C E[ e (Ve ()P + [Vs(Y) ) P) dA,.
0
The estimates (5.182) and (5.184) give us

n
E sup ezV“|YS”+i - YS”|2 + ]E[0 e2V“|Z;’+i — Z;’|2ds

s€[0,n]

. C
<Esupe?s|Y"H — £+ — — 0, asn — oo.
s>n n

Hence
2Vsyyn+i _ yn|2
Esup e Y] Yy
5>0
<E sup 2" |Y"* —Y"]> + Esupe?s|Y " —£]> — 0, asn — oo

s€[0,n] s=n

and
00 .
]E/ eZVvlz;1+z _ Z?|2ds
0

n o0
§E/ e?Vs|znti —Z;’|2ds+]E/ e |2 — ¢ |2 ds — 0, asn — oo.
0 n

F. Passage to the limit.

Consequently there exists (Y, Z) € S9 x A%, such that

m

o0
]EsupezVS|Ys” - Y ~|—IE/ e2V5|Z;’ — Z|?ds — 0, as n — oo.
0

>0

We have that (Y, Z;) = (n,0) fort > r,since Y =& =nand Z] = {; = 0 for
t>r.
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Taking into account (5.183) and

[P (s, y) — W (s, uo)|
= 1[O,n/\z] (S) [a‘\' ((ps ()’) — Pe (MO)) + (1 - a‘\') (% ()’) - ws (MO))]
= Lound () s [9 (v — Ve () — @(uo)]

+1[0,n/\1:] (S) (1 - (XS) W (y - 3V‘/fs (y)) - 1/f (u0)| ’

the inequality (5.162) follows from (5.170) by Fatou’s Lemma.

Also by Fatou’s Lemma from (5.175) we obtain (5.163) and from (5.171)
and (5.172) we deduce (5.161).

From (5.182) there exist two p.m.s.p. U) and U?, such that along a subse-
quence still indexed by n, we have for ¢ = % —0

e Vo, (Y jprnn — " UMy, weaklyin L (2 x Ry, dP ® dt;R™),
e VY (Y opm — " UP1p,), weaklyin L2 (Q x Ry, dP ® dA;;R™).

Using (5.183) and applying Fatou’s Lemma we have

B¢ [p (Y) = p(uo)] ) = liminfE(e>" [¢ (¥ = eV (1)) = p(u0)] )

+o00

< 1iminf1E(e2Vf [0 (Y]") — @(uo)] )

n—+o0o

and similarly for ¥. Passing to liminf,,_, 4 o in (5.180) we obtain (5.164).
From (5.165) we have forall0 <t < T <n, P-a.s.

T T T
Y +/ VU (s, Y)dQ, = Y} +/ H(s,YS",Z;’)dQS—/ Z"dB,,
t t t

and passing to the limit we conclude that

T T T
Y, +/ UydQg = Yr +/ H(s, YS,ZS)dQS—/ ZdBg, as.  (5.186)
t t t
with
Us = 114 () [ U + (1 — ) UZ], fors > 0. (5.187)

By (5.118—b), we see that, forall E € 7,0 <s <tand X € S2

m?

t t
E f (2 Vo, (Y1), X, — Y\ pdr + E [ (Y] — eV (Y!)1pdr
N

S

t
< ]E/ e?Vro(X,)1gdr.
s
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Passing to liminf for » — oo in the above inequality we obtain US“) € dp(Ys),dP®
ds-a.e. and, with similar arguments, U® € 0y (Y;), dP® dA;-a.e. Summarizing the
above conclusions we conclude that (Y, Z, U) is a solution of the BSVI (5.157).

We want to highlight the fact that the assumption (A;y-b) is too strong for many
applications. The next two results are concerned with the existence of a solution for
the backward stochastic variational inequality (5.146) recalled here for convenience:

Y, +[ dK; =1 +/ [F (.Y, Zs)ds + G (s, Y) dA;]
t t

AT AT -
—/ Z.dB;, fort >0, (5.188)
t

AT

th (S a(p (I][) dt + al/f (Y[)dA[, on R+,

without the boundedness conditions from (A).
Consider the closed convex sets

Oy ={y eR" : 9 (y) = ¢ (u0)},
Oy ={y eR" : ¢ (y) =¥ (w0)}, and
0= 0, NOy.
Since every point of O is a minimum point for ¢ and ¥, it follows that Vo, (1) =
Vi, (u) =0 forallu € O.

Theorem 5.67. Let the assumptions (A,), ..., (Aq) be satisfied and assume that
there exists a 8o > 0 such that

B (uo, 80) C int (0). (5.189)

Assume moreover there exists § € (0,00l and g =1+ 2% (withqg =2if§ = o0)
such that

(o] 146
(i) for0<68<oo: E (/ (ﬁs)zds) < o0,
0
(o)
(@) ford =o0: (€s)s= is a deterministic process and/ (£,)* ds < oo,
- 0

@ Jim B ([ o 6)XI1FG.6.0lds + 160,61 da,) " =
(5.190)

Then the BSVI (5.188) has a unique solution (Y, Z,K) € SBL X A%xk X S,?l in the

sense of Definition 5.64 such that forq = 1 + 2% and g =2 if § = oo,
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o0
(j) Esupe?s |Y, — ug|* —i—E/ e | Z | ds < oo,
0

§>0
[ele) q/2
() lim [Equer—muE(f e”wzs—zsﬁds) }:0.
T—o00 T

(5.191)
Moreover the inequalities (5.162) and (5.163) hold.

Proof. (I) Uniqueness. The proof of uniqueness is similar to that given for
Theorem 5.66 except that now by Corollary 6.82 from Annex C, we have

T
E sup e YX—YS’|q+E (/ e
s€[0.7] 0

< GE (e |Yr = Y7[) ———0.

5 q/2
Z,—Z]| ds)

(IT) Existence. Step 1. Approximation of the problem’s data to satisfy (Ayg). Let
Oy = 1[0,1'] (S) [//Lsas + vy (1 - as)] s dQs =ds+ dAS’

AT IAT INT
B, = Oune +/ 0.dQ, +/ |F (5. 100, 0)| +/ G (5. u0)| dA,.
0 0 0
Yo =1+ B+ 4 + |F (t,uo,0)] + |G (¢, u9)| and
A’t =1 + e,.
Define, for n € N*,
0 =L, (M),
M = (N —uo) Lo (Br + |n — uol) + uo € 7, uo,
Fn (l, y,z) =F ([, J’»Zl[o,n] (At)) - F ([s Uo, 0) 1(n.oo) (Vt) s
G (t.y) =G (t,y) — G (t,up) Ln.o0) (1)
By (t.9.2) = By (.20 + (1 =) G (4.) | 10 ).

and

INT

AT
= / [Mds + () ds + vsdAS] =V - / (£)? 14n00) (As) d.
0 0

Let (7, ") be given by the martingale representation theorem (Corollary 2.44): for
allt >0, & =E”p, and
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o0
tn Znn_/ ;:ldBAs
t
or equivalently, forall 7 > 0
T
g =Ry, —f {"dBs, te€l0,T].
t

It is easy to verify that

IEsupeZV’ |11 —uol2 < Esupezv’ |17—uo|2 < E(ezvf |n — u0|2> < 00,
>0 >0

Esupe?’ |n, —n* <E [e”’ In — uol® lﬂr+\r/—u0\>n] :
>0

Applying Corollary 6.83, first on [z, T'] and then letting 7 — oo, we infer that for
allt >0

o
(a) B sup e |& — upl* + ]EE./ e g ds < C, BT (eZVT [n— u0|2) ,
§>1

t

o0
() 57 supe™ € —wf + BT [ 0P ds < GBS (¢ o - woP).
s>t

1

(c) E7t supe?s &7 — &> + EF [ |¢n — ¢, ds

s>t
< GE” [62” 1= uol® 1ﬁr+|n—uo|>ﬂ:| :
(5.192)
Since the assumptions (A1, ..., Ay) are satisfied by (n, F, G, ¢, ¥, V, u, v, £) it
follows that the same assumptions are satisfied replacing (n, F, G, ¢, ¥, V, , v,
O by (s Fuy Gy @, ¥, Vv, 4.
With respect to (A;g) we have

(e} n
E’,’—i—/ (Zg)zds§n+/n2ds:n+n3
0 0

and

H,, (s, uo, 0)‘ dQs

T
eVt [Ny — uo| + ‘H,, (l,uO,O)‘ +/ eV
0 T
< e’ [ —uo| + | H (t.u0.0)| Loy (v1) +/ e’ |H (s,u0.0)| Lo, (v) Qs
0
<n+e'n+e"n®>=hb,.
Hence (f]n, N AT V”) satisfies (Ap).

Step 2. Approximating equation and estimates. By Step I we are in the conditions
of Theorem 5.66 and therefore the approximating equation
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oo oo

00
Ytn +/ UsndQs =1, —|—/ H, (S, st» Z:’) dQA —/ Z;ldBS,
t t t
ng = UY”dQY € 3y‘~11 (S, YX") dQy

has a unique solution (Y",Z", K") € S9 x A°

mxk

s>tand U" = o,U} + (1 — ;) U2" such that

xS0 (¥2.22) = (€1.0) for

o0
(j) Esupe? |Y! —upl* + IE/O e | 2" ds < oo,

5>0

%0 (5.193)
(i) Jim_ E[eZVHYT"— ';{2+/T eZV-v"|Z;’—§§’|2ds] =0.

Moreover the inequalities (5.161), (§.1§2), (5.163) and (5.164) hold with (n, F, G,

(pa W, V, /’L9 U, ea Cb’ Cq.b) by (nn’ Fn, Gn’ (p’ W, VVI’ /'L’ \), gn, Cn’ Cq,n)-
Using in (5.193) V""" — (n 4+ i) < V" we get foralli € N

. o0 .
8] EsupeZVfﬂ_ﬁ |YS”—u0|2+E/ 2t |Z7* ds < oo,
0

s>0

neti > 0t (5.194)
() Jim B[ vp—gf v ez -gpa) -0

Since (Y' — up, U —0) > 0 and
WG, Y1) = W(s,u0) | A + (V' o, (5. ¥ Z) = U} dQ,
. 1
<Y — uy| (H,, (s,uO,O)) A0, +1Y;' =l Vi + 7122 ds
< Y] —uo| Lo, () (|F (5,u0,0)| ds + |G (s, uo)| dAy) + |Y]" — uo|” avi ™+
1 n|2
+Z|ZS| dS,

we infer by Corollary 6.82 for p =2and0<¢ < T,

F vit (yn 2 7 Lot
E”* sup )e (Y —uo)‘ + E7 e’ |Z!|"ds
s€[t,T] t

T .
R (/ 2T (s, Y — lIJ(s,uo)Iﬂle)
t

n4+i 2
<G Eﬂ“eVr (Y}’—uo)‘
T V"‘H 2
+(/ 1o (5) ¥ (|F(s,u0,0)|ds+|G(s,u0)|dAs)> .
t
(5.195)
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But by (5.192-b) and V;'*' < V7 we have
n+i 2 1/2
|:Efr (‘eVTJr (Y7 —uo)‘ )i|
F(,2vi iy en2\]Y? Fo (,2Vr (en 2
< [E7 (X7 v —P) |+ [E (27 1gh —wl) ]

nti 1/2 1/2
=[5 ()] " [ (e )

1/2

Using Beppo Levi’s monotone convergence theorem and (5.194-jj") we can pass to
the limit in (5.195), first lim sup;_, ,, and then lim; _, o,. We obtain

o0
E7 sup |e"s (Y — u0)|2 +E% (/ e’V |Z?|2ds)

s>t t
(]

o

e2Vs |W(s, Y") — W(s, up)| dQS)

' (5.196)
< G E | e [ —up|
o0 2
+</ Ljo.o] (s) € (|F (s.uo.0)| ds + IG(S,uo)IdAs)) }
t
and, in particular,
E supe®”s |Y! — up|* < oo. (5.197)

5>0

Step 3. Cauchy sequence and convergences. Let

Ky = /Ot EAR AR
We have forany j > 1 > 1
(v =y d (K - K5))
(V' =YTUH (.Y Z{ 100 (A9) = H (5. Y Z0 o044y (As))) Qs
— (¥ =Y H (5,10,0)) [Ljn.00 (¥5) = Lpnticof (v5)] 4O
= ¥ = [1H (5,10, 0)] 1pnoog () 4O,

+1[0,r] (S) gs }1[0,11] (Ax) - 1[0,n+i] (As)| |Zfl | dS]

n n+i|2 1 n n+i|?
V=Y (00d Qs + Loy (9) Lo () (€)ds) + 5 | 2020 s
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then for all T > 0, by Proposition 5.2 withg = 1 + % € (1,2)and g = 2 if
8 = oo,

n+j R T ntj ) q/2
s€[0,T] 0

n+j iq
<SC Ee!T Y-yt

T oy q
B ([ oy 00 18 0,00 4.+ 10 ) 11271 a5] )
0

But

q

r V"+j n
E ([ oo 090" 1 (51,127 ds]
0

T q/2 T ) q/2
fE[([ 1[o,f](s)(mzl(n,oo)(xods) (/ o2 |z:|2ds) }
0 0
T 1
sAn,sx[E (/ e?Vs |Z;’|2ds)] :
0

with

1
2446

T 1+6
|:IE ( / 1.1 (5) (€5)* 1(1.00) (As)ds) } , if0 < § < oo,
0

o0
/ (£,)* 141.00) (As)ds, ifg =2 (8 = oo, £ is deterministic);
0

An,S =

the last inequality is obtained by Holder’s inequality since ﬁ + ﬁ = 1. Thus

n+j g T n+j .2 a/2
E ( sup e " Y=Y " +E ( f eV | zr -zt ds)
s€[0,T] 0

T
n+j .
< CquqVT ' |Y# _Y#+I|q +CqE (/ eVS[|H(tsu0a0)| 1(n,c)o) (ys)dQs)
0

q
T 2
+C, An,gx[E (/ e2V5|Z§|2ds)} .
0

(5.198)

q
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Here we have

n+j . 1/2
2V. n n+i
(B vy —vpi]?)

ntj 1/2 ntj N 1/2
< (B vp—gr) "+ (B g -6t

-+ n+i n+i|? 12
+ (B gt - i)

n+j 1/2 n+j . . 1/2
< (BT 1vp—gP) "+ (BT gt - vy T)

1/2
+ [E (eZVT |77_’/‘0|2 1ﬂ1+\r]—u0\>n):| ,

and as T — oo we infer

. 2V”+‘/ n n+i |2 2V, 2
limsupE e“'7 |YT -Y; | <E (e [n—uol™ g 4jp—uol>n ) -
T—o00

o0
Using (5.196) for the boundedness of ]E[ e?Vs|zn |2 ds we get from (5.198) as
0
T — oo and then passing to the limit as j — oo:

n n+i|4 Wy (o n+i|2 vz
Y-y +E eV |z =zt ds
0

q/2
=< C [E (eZVf |77 - ”0|2 1|7]—ug|>n)]

E (sup et"s

5>0

T q
+CE (/ eVYI:|H (t, u0’0)| l(n.oo) (¥s) dQs) +C Ay,
0

which yields by (5.190) the existence of a pair (Y, Z) € S2 x A%, such that

m

) q/2
lim [IEI supe?” |Y! — Y| + E (/ ez — ZS|2ds) ] =0. (5.199)
n—o00 0

s=>0

Now by Fatou’s lemma from (5.196) we obtain (5.162) and consequently (5.191-).
To verify (5.191-jj), following the proof of Theorem 5.66, we have

|\IJ (S’ YSn) -V (S’ g:5)| dQs + <st - gSv I:I,, (S7 st’ Zg) - Usn>dQS
< 177 =& [1&] + 16,601 [dO,
Y BV 4 120~ s,
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By (5.192-a) and (5.197) we have

"
E sug 2 Y"—&)<E sug X Y — &) < .
5> 5=

Furthermore, using (5.194-jj") and (5.192-c), we have

n—+i
limsupE &> |Y) —&7)* <E (e”f I — uol® l,sf+|n—uo|>n) -

T—o00

In the same manner as above when we proved (5.196) we obtain, by Corollary 6.82
for p € (1,2], similar inequalities with (&, {;) in place of (up,0) and passing
successively to the limit 7 — oo and i — oo we get that for all > 0

00 p/2
Esuper 17 ~&l7 + & ([ 127 - tas)
t

s>t
o0
+E (/ e?Vs
t

< Cp|E (V" |n—uo|” 1g, 4 1y—uol>n)

+E (/ Lo (S)evs[|§s| + |I—}n(sv§s’ Zs)|]dQs)pi|

p/2
W(s, Y") — W (s.&)| dQs)
(5.200)

Since |Hy (s, 5. §)| = [H(s, &, 0)| + €5 |8+ H (s, uo, 0)[1(n,00) (¥s), from (5.200)
with Fatou’s Lemma applied to the left-hand side and the Lebesgue dominated
convergence theorem applied to the right-hand side we infer by taking the limit
asn — oo

0o p/2
EsupepVY|Ys_é§_s|p+]E (/ eZVS|Zs_§s|2dS)
= ) ' p/2
w8 ([ o - vegldo.) (5201
(o] ! N P
=GR ([ Mo e [Elag. + 1HG. 010 + ¢ sl s])

which yields (5.163) if we choose p = 2.
Inthecase p =qg =1+ 2% € (1, 2), by Holder’s inequality, we have

E (/tool[o,,] () €" 4yl lds)"
<& ([Tt o @) ([T pa) ]
<[e([ 1000 (&)zds)qu% =/ °°e2V-v|zs|2ds]g.
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In the case p = ¢ = 2,5 = oo and £ is a deterministic process

00 2 o) 00
E ( / lo (s)e“mws) 5( / (zs)zds) E( / e”wzsﬁds).

Using the assumptions (5.190) and (5.154-ii), from (5.201) we infer (5.191-jj).
Step 4. Estimates on the subdifferential term dK;, = U'dQ, € 0,V (s, YS”) dg.
We now use the assumption (5.189) on the interior of Dom (¢). From the proof of
Corollary 5.49 we have
Sd K" 3+ (Y —uo, B, (1Y), 2}) dO, - dK? )
< [Wh 5, (0 =W (. 10)] dQ: + 1¥," = uol [liu] + | (¢.0,0)| | 0,
1
+ 1Y) —uol*av, + 1 1z dt

where

W¥ (1) = sup {10 (0) [ (o + 8ov) + (1 — ) ¥ (g + Sov)] : |v] < 1}

= sup {101 (1) | (o) + (1 — o) ¥ (uo)|}
= \I} (t, I/t()) s

andit, =0 € 0,V (w, t, up). Hence
Sod § K" 3, +<K” —uo. H, (1. Y, Z") dQ, —dK7>
<1V~ ol [H (100, 0)[ dQ, + 1Y) — ol av, + 12 di.
By Proposition 6.80-B we obtain

T
(SOIE/ e?Vsd § K" 3
0

2

T
< |:IE AT |Y7 —u0|2 +E (/ eVs |H (s,u0,0)|dQs)
0

]SC.

t t
Y+ K=Y/ +/0 H, (s, Y], Z!)dQ, —/0 Z!dB;, V1t >0,

From the convergence (5.199) and the equality

it follows, via Lemma 5.16, that there exists a K € S,% such that

n prob.
K" — K||; — 0, as n — oo.
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As in Proposition 1.20 and Corollary 1.22 we obtain

T T
E/ e?d § K < liminf]E/ e?d § K" ;< C
0 n—-+00o 0
and
dK; € 0,¥ (t,Y;)dQ, onR.

Finally passing to the limit in
T T
Y'+ K} —K'=Y] +f H, (s, Y], Z!)dQ, —[ Z"dB,
t t

we complete the proof. |

Remark 5.68. In this last theorem, in contrast to the results in Theorem 5.66, we
have not been able to show that the process K is absolutely continuous.

To end this section we discuss a particular case of BSVI (5.146) that we recall
here for the convenience of the reader:

T T
Y, + / dK;, = n+ f [F (s,Y, Zs)ds + G (s, Yy) dA;]
t t

AT AT r
_ Z.dB,. 1> 0. (5.202)
INT
dK[ (S 3(0 (th) d[ + 31# (Y[) dAt, on R+,
where the assumptions (A), ..., (A;) from the beginning of this section will to be

replaced by

(Ly):  (A) + (Ay) + (Az) are satisfied;
(L,):  the functions F : Q xRy xR"xR"™* 5 R™ and G : QxR4 xR" — R™
satisfy

F (-, v.2), G (.- y) is p.m.s.p., foreach (y,z) € R" x R™*k

and there exists an L > 0 such that, P-a.s. w € Q, a.e. t > 0, for all y,
y/,Z, Z/

() (Y =y Ft.y.9—F(t.y.2) <%y -y’
@) |F(ty.2)— F@.y.9l < /51~
(i) |F (w,1,9,0] <L +1y]), i (5.203)
) (V'=y.Gt,y)=Gty) =Ly -y,
v G (w,t,y)| =LA +]|y]).

s
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We remark that in this case u, = %l[o.z] @), = \/gl[oyf] (), vi = Ll ()
and

INT
v, = / [12sds + v, + (€)? d5] = LOsne,
0
. L
FJ(s) = sup |F(t,y,0)] < 5(1 +p),

[yl=<p

Gh(s)=sup [G(t.y)| <L(1+p).

[yl=p

(L3):  (Ag)+(Ay)+(Ayg) are satisfied;
(Ls): assume that

E 20 (1+ [l + o + [¥(m)]) < oo, (5.204)

We highlight that under (L;),...,(Ls), the assumptions (A;),..., (Ag) are
satisfied. Also from (Ls) we have

L)

- E[(1+Af)j] <Ee*9% <00, forall j € N*,
j!

and consequently T < oo, P-a.s. Moreover it is not difficult to verify that by (L),
(Ls) and (5.192-a) the condition (5.190) is satisfied for all § € (0, co) and for all
q =1+ % € (1,2). Hence with the exception of assumption (5.189) on the
interior of Dom (¢) all other assumptions of Theorem 5.67 are satisfied.

Theorem 5.69. Under the assumptions (L1),...,(Ls) the BSVI (5.202) has a
unique solution (Y, Z, K) € S x quxk x SO in the sense of Definition 5.64 which
satisfies for all g € (1,2):

o0
() EsupeZLlem—uo|2+E/ 2103 | Z,2 ds < oo,
s=>0 0

00 q/2
() lim []E el \Yr —gr|! + E (/ 20| Z — ¢ dS) } =0.
T—o00 T

Moreover there exist UV, U? e AY, Ut(l) € 0o (Y;) and U,(z) e Iy (1),
dP®dt-a.e. such that dK; = U;dQ, € 0,V (t,Y;) dQ;, where

Ur = 1o 0 [0 + (1 —a) U]
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and

T T T
Y, + / Usde =Yr+ [ H (s, Y, Zy) dQs _[ ZdBy, a.s.
t t t

The inequalities (5.162), (5.163) and (5.164) hold with V, = LQ,.

Proof. The proof is similar to that of Theorem 5.67: the Steps -3 are exactly the
same. To pass to the limit in the approximating equation

oo 0o oo
Y +/ UrdQy = n, +[ a, (s,YS”,Z;’)dQS—/ Z"dB;,
dK" = lUndQ — Ul’nds + bZ,ndA ! (5205)
s T Vs s My K S
with U"ds € d¢ (Y") ds, UX"dA, € 9y (Y]") dA;,

we need a new argument for Step 4 since now the interior condition (5.189) is not

satisfied.
Step 4'. Estimates on subdifferential terms U'" and U*" . By Theorem 5.66 we have

E [ezl’r” (Q"ng") — ¢(uo) + v (¥") = ¥ (uo))]
cle ot oe-F )

< B[ @0m) — () + ¥ (m) — 0]
14K f 1.0 (5) 2V [|F,, (.Y, Z")2ds + |G (s, Yv")|2dAS].

t

INT
Note that V" =V, — 6", where 6, = / % 1(1.00) (As) ds. Since
0

() — (o) = (¢ (1) — @(uo)) 1.y (Be + 1 — uol)
Y (1) =¥ (o) = (W (1) — ¥ (u0)) Lo (Be + |0 — o).
|Fas, Y], Z0)] < % (1+171) + \g 1Z2 1 Vo1 (i) + | F (5,10, 0)] 1po.n) (35) ,
1Gu(s, Y| < L(1+1Y)]) + |G (s, u0)| Lo (35) -
we obtain
E[e (o) = plw) + v () =y ()| = C.

and

o0
B[ toa@ e [[u s+ v aa] < c
0
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Consequently there exist two p.m.s.p. U") and U®, such that along a subsequence
still indexed by n,

e"UMe 1 — " UM}y,  weakly in L (2 x Ry, dP ® dt; R™),
e"Ue" 1) — " UP1yp,), weakly in L2 (2 x Ry, dP ® dA,;; R™).

Passing to the limit in (5.205) the result follows in a standard manner (see the proof
of Theorem 5.66). ]

Remark 5.70. If t = T < oo is a deterministic final time, then the assertions of
Theorem 5.69 are also true with ¢ = 2 (and § = 00) by setting £; = \/g 1j0.77 (5).

5.6.3 Weak Variational Solutions

In this subsection we discuss again the existence and the uniqueness of a solution
(Y, Z) of BSVI (5.146) that we recall here:

Y, + dK; = n+ [F(S.YS,ZS)dS-f-G(S,YS)dAS]—/ ZdBy, t > 0,
AT AT AT (5.2006)
dK; € 3¢ (Y;)dt + 0y (Y;)dA;, on Ry,

under the assumptions (A)), ..., (Ag) presented in Sect. 5.6.2. Adding the assump-
tion (A;y) we have Theorem 5.66. Replacing the assumption (A;y) by (5.190)
and the interior condition (5.189) we have Theorem 5.67. Furthermore if the
stochastic processes ({4r);>o> (Vt);z0 (£1),;>( are constants and some boundedness
assumptions (5.203-iii, v) and (5.204) are satisfied then we can renounce assumption
(Ap), and obtain the existence and uniqueness of a solution (Y, Z) for (5.206): see
Theorem 5.69.

The aim of this subsection is to obtain existence and uniqueness under the
assumptions (A;), ..., (Ag) and (5.190), i.e. to see what happens in Theorem 5.67
without the interior condition (5.189). It is not clear how we can obtain some
estimates on the subdifferential term dK! = U"dQ, € 9,V (s,Y/") dQ, except
for the particular case treated in Theorem 5.69. For this reason we shall give a
weak variational formulation for the solution as in [47]. The stochastic variational
formulation for forward SDEs was introduced by Riscanu in [62].

Let us define the space Lr. p > 0, of continuous semimartingales M of the form

t t
M, = y—/ A,dQ,+/ ®,dB;,
0 0

where y € R”, A and ® are two p.m.s.p. such that on every interval [0, T] C R4,
AeL?(QL"0.T;R™),® e LP (2 L* (0, T;R"’Xk)).
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For an intuitive introduction, let M € £ and (Y,Z,K) be a solution

1
of (5.157), in the sense of Definition 5.64. By 1td’s formula for 3 |M, —Y,|* and
the subdifferential inequality

/tT (M, — Y,.dK,) + /,T‘I’ (r.Yr)dQ: = /;T\Ij (ratder

we obtain the inequality

1 1 T T
5|Ml—x|2+5f |®,~—zr|2dr+/ W (r,Y,)dQ,
t t

T T
|MT_YT|2+/ ‘Ij(r’Mr)er“'/ <Mr_YrvAr_H(raYr,Zr))er
t

t

T
_/ (M, —Y,,(©, — Z,)dB,).

Therefore, we propose the following weak formulation for the solution.
Definition 5.71. We call (Y;,Z,),5, a weak variational solution of (5.206) if
(Y.Z)e SO x A . (Y:,Z,) = (&,&) = (,0) fort > 7 and

mxk?

T
(i) / (H (r, Y, Z)|+ ¥ (r,Y,)dQ, < oo, P-as., forall T > 0,

0
1 1 [° $
@) 51 -P 4 [ 10,z ar+ [(winr)ae,
s !
1 2
s 5
+/ (Mr - Yr, Ar - H (r7 Yr, Zr))er _/ (M) - Yr, ((n)r - Z,)dBr),
t t
VO<t<s<t, VM =y— [[AdQ, + [,0,dB, € L),
[e @]
rob.
@iy 27 |Yr — Z§T|2 + / eV | Z, — é“y|2 ds 22 0, asT — oo.
T
Theorem 5.72. Let the assumptions (A, ...,Aq) and (5.190-(i") and (ii, with

q = 2)) be satisfied. Then the BSVI (5.206) has a unique weak variational solution
(Y,Z) € SO x A° < i1 the sense of Definition 5.71 such that

m

oo
(j) Esupe?™s |Y, — up|* +E/ e | Z | ds < oo,
§>0 0

- (5.208)
() lim [E AV Yy — £ +E / ezV"IZS—Eslzds} —o0.
T—00 T

Moreover the inequalities (5.162) and (5.163) hold.
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Proof. Existence We remark that we are in the conditions of Theorem 5.67 without
the interior condition (5.189). Therefore we start with the same approximating
equation as in the proof of Theorem 5.67

oo oo

o0
an +/ UsndQs = T +/ H" (S’ YSn’ Z;I) dQ3 _/ Z;ldBA’
t

1 t (5.209)
dKy =Ul'dQ, € 0,¥ (s, Y;’) dQs = 1)1 (s) dp (YX”) dQ;

and we follow exactly the same Steps /-3 as there.
We obtain the existence of (¥, Z) € S9 x A&X « such that

>0

o
E |:supezV"|Ys” —Y,? +[ VA ZS|2ds:| — 0, asn — oo,
0

Y:,Z,) = (n,0) fort > v and (Y, Z) satisfies (5.208), the inequalities (5.162)
and (5.163), and (5.207-1, iii).

Let M. = y — [;A,dQ, + [;0,dB, € L. By It&’s formula for 1 |M, — Y¥"|?
we deduce that, forall0 <t <,

1 1 [ $ 1
= viP S [le - ziPars [ (ryy)ag, < JEIM, - 1P
t

+[ ‘P(r,Mr")deL/I( —YX Ay —H, (Y], Z1)dO,
_/ (Mr_an,(Gr—Z;?)dBr).

Passing to the lim inf it follows that the pair (Y, Z) satisfies the inequality (5.207-ii).

Uniqueness. In order to prove the uniqueness of the solution, let (1? Z ) € SY x

ASD(k and (I? , Z) € S0 x A° mxi D€ two weak variational solutions of (5.206)
corresponding to 7 and 7, respectively. Therefore for all M. = y — fOA o, +
[0©,dB, € L

m?>

~ ~ 1 [* ~ -
2 _ 2 - _ 2 _ 2

2 (1M =22+ v, Y|)+2/ (18, = 2P +10, - Z,1*) ar
+/ (\If(rY)+\IJ(rY))dQ,

! N
<5 (M~ 0+ 1~ TF) +2[ WM dQ,
2 S
+/ ((Mr_?raAr_H(ra?r,Zr»+(Mr_?rvAr_H(r’fWZr)))er

t

—/ ((M, —7,,(©, — 2,)dB,) + (M, — ¥,,(®, — Z,)dB,))  Y0<r1<s.
t
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- s s 1 A - -
LetY = B8 7 = 22 and b, = 5 [H(r 9. 2) + Hr ¥ 2,) .
From the convexity of ¢ we see that

20(Y,) < o(Y,) + o(¥,),

and using the identity

) Slu—v. f—g)=(uf)+(v.eg).

2<u+v f+g>+;

we obtain

) ( ?raA _H(r ?r’Z))

(M, =Y, A, — H(r.Y,, Z,
+ (¥, — Y,,H(r Y. Z,)— H(r Y, Z,)),

)
1
=2<Mr_YrvAr_hr> 5

and

/ (M, —Y,,(®, — Z,)dB,) + / (M, —Y,,(®, — Z,)dB,)
t t

K 1 s 5 R B
- 2/ (M, —Y,,(©, — Z,))dB, + E/ ¥, - Y., (Z, — Z,)dB,).
t t

Therefore, since

1 u+v
§(|m—u|2+|m—v2>=|m | + —v)?

4

)

we have forall M. =y — [(A,dQ, + [,0,dB, € L),

7, -7 +[S|2, 7, [dr < 8B, (M) + |V, — T,
t

+2/‘ F, — ¥, H(r V.. 2,)— H(r V., 7,))dO, (5.210)

tos

—2/ (Y, =Y. (Z, — Z,)dB,), Y0<t<s,

t

where
B (M) = 3 IM, - Y|+/\v(rM)dQ,
§ 1
+ | My =Y, Ay —h)dQ; — S |M -1

——ﬁ 18, — Z,? dr—/ \IJ(r,Y,)dQ,—/S(M,—Y,,(@,—Z,)dB,).
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Let

s o 1 (" o
M? = e 0 Y0+—/er Y,dO, |. (5.211)
Qa 0

t ) t

Clearly, M® € L9, since M = M{ + [ydM? = Yo + / TSdQ, + / 0dB, .
0 ¢ 0

By Lemma 6.21 it follows that forall 0 < ¢t <s < T

(Cl) lim [SuprE[O,T] |]‘4r‘s - Yl|] =0,

e—>04

®  tim [ 1n () e(M)dr = / 1o. () (¥, )dr.
t t

e—>04

(c) EE}&/{ Ljo. (r) ¥ (M;)dA, =[

s

Lo (r) ¥ (Y;)dA,

and consequently

limsup B, s (M®) <0,
e—>04

because W (r, M£) dQ, = 1y (r) [@(MS)dr + ¥ (Mf)dA, ].
Using the inequality

>

~ A oA -~ o~ A~ - 1 4 -
(Y, =Y., Hr Y. Z,)—H( Y, Z,))d0O, < |Yr_Yr|2dVr + —|Zr_Zr|2dr
4

from (5.210) with M = M?, ¢ — 04, we obtain that forall 0 < ¢ <,

N ~ 1[5 4 - ~ ~ S ~
=0 45 [ N2 2fdr < 7=V 2 |7, = Ty,
t t

S
—2/ (Y, = Y,.(Z, — Z,)dB,),

t

which yields, by Proposition 6.69

552

2, —Z,[dr < &%V, - 1,

A ~ 1/*
eZV”Yz—Yt}z-i-—/ eV
2J;
$ A ~ A ~
— 2/ e (Y, =Y, (Z, — Z,)dB,).
t

Taking the expectation and then passing to the limit as § — 0o uniqueness follows
(see the properties of the solutions given in (5.208)).
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5.7 Semilinear Elliptic PDEs

5.7.1 Elliptic Equations in the Whole Space

We will first consider elliptic PDEs in R?, and then in a bounded open subset of R?,
with Dirichlet boundary condition.
Let {X;*; t > 0} denote the solution of the forward SDE:

t t
X' =x+ [ f(X)ds +/ g(XX)dB;, 1 >0, (5.212)
0 0

where f : R? — R? is continuous and globally monotone, g : R? — R?*9 is

globally Lipschitz, and consider the backward SDE
T T
Y=Y} +/ F(X;, Yf,Z:f)ds—/ Z; dBy, forallt, Tst.0<t <T,
t t
(5.213)

where F : RY x RF x R¥*4 — Rk is continuous and such that for some K, K’,
u<0,p>0,

[F(x,y. )l = K'(1+ [x]” + [y] + |2]),

(y =y F(x,y.2) = F(x,y".2)) < uly = y'I*,
|F(x,y.2) — F(x,y.2)| < Kllz—Z||.

We assume moreover that for some A > 2u + K 2 and all x € RY,
o
E/ M F(X;,0,0))%dt < oo, (5.214)
0

which essentially implies that A < 0.

Under these assumptions, the BSDE (5.213) has a unique solution, in the sense
of Theorem 5.27.

It is not hard to see, using uniqueness for BSDEs, that

Y =Y, >0 (5.215)

Denote by

Z(gg i) g * Z fi (x)
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the infinitesimal generator of the Markov process {X,*; t > 0}, and consider the
following system of semilinear elliptic PDEs in R?

Aui (x) + F;(x, u(x), (Vug)(x)) =0,x e RY, 0 <i <k. (5.216)

As in Sect. 5.4, one easily establishes the following:
Theorem 5.73. Letu € C*(R?;R™) be a classical solution of (5.216) such that for
some M,q > 0,
lu(x)| = M(1 + [x]%), ¥Vx € R”.
Then for each x € R4, {(w(X[), (Vug)(XX)); t > O} is the solution of the
BSDE (5.213). In particular u(x) = Y.

We now want to prove that (5.212)—(5.213) provide a viscosity solution to (5.216)
Again, for the notion of a viscosity solution of the system of PDEs we
need (5.216) to make sense, therefore we need to make the following restriction: for
0 <i <k, the i-th coordinate of F depends only on the i-th row of the matrix z.
Define the mapping

O RIxR" xRY xS¢ - R™

by

1 .
;(x,r, p. X) = —ETr[g(X)g*(x)X] —(f(x), p) = Fi(x,r, pg(x)), 1 =i <m.
Then the system (5.216) reads
®; (x, u(x), Du; (x), D?*u;(x)) =0, x e R4, 0 < i < m.

All the assumptions from Theorem 5.37 are assumed to hold below (with of
course f, g and F independent of the time variable 7). The notion of a viscosity
solution of (5.216) is defined by Definition 6.94 in Annex D.

We can now prove the following:

. ds . . .
Theorem 5.74. Under the above assumptions, u(x) Yy, o is a continuous function
which satisfies

o0
1Yy < c\/IE[ eM|F(XF,0,0)|2d1, (5.217)
0

forany A > 2u + K2, and it is a viscosity solution of (5.216).

Proof. The continuity follows from the mean-square continuity of {¥.*, x € R?}.
The inequality (5.217) follows from (5.134) with n = 0 (hence £ = 0 and ¢ = 0).
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To prove that u is a viscosity sub-solution, we take any 1 <i < m, ¢ € C2(R?)
and x € RY such that u; — ¢ has a local maximum at x. We assume without loss of
generality that

ui (x) = @(x).
We suppose that
@; (x, u(x), Dg; (x), D?¢; (x)) > 0,

and we will find a contradiction.
Let o > 0 be such that whenever |y — x| < «,

ui (y) < @(y),
cpi(yvu(y)» D(pl(y)v Dz(ﬁz()’)) >0,

and define, for some T > 0,
t=inf{t > 0; | X} —x|>a} AT
Let now
Y. Z) = (V3 Mg (0)(Z)), 0<t <T.

(Y, Z) solves the one-dimensional BSDE
Y, =u (X)) —i—/ 1. (s) Fi (X[, u(X)), Zs)ds—/ ZsdB;, 0 <t <T.
! t

On the other hand, from It6’s formula,

(Y. Z) = (9(X}) Lo ()(Veg) (X)), 0 <t < T

solves the BSDE

T T
P = p(X3) - / 10.(5) Ap(X)ds — / 2udB,, 0<1<T.
t

t

From_ u < ¢, and the choice of @ and 7, we deduce with the help of Proposition 5.34
that Yo < Yo, i.e. u;(x) < ¢(x), which is a contradiction. ||

5.7.2 Elliptic Dirichlet Problem

We now give a similar result for a system of elliptic PDEs in an open bounded
subset of R?, with Dirichlet boundary condition, following [20]. Let D C R¢ be
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a bounded domain (i.e. D is an open bounded subset of R9), whose boundary dD
is of class C''. We are given a function y € C(R?) and we consider the system of
elliptic PDEs

®; (x,u(x), Du(x), D*u(x)) =0,1<i <m, x € D;

21
ui (x) = xi(x), 1<i<m, xe€dD. (5.218)

The process {X;*; t > 0} is defined as in the preceding subsection. For each
x € D, we define the stopping time

T, = inf{t > 0; X" ¢ D}.

Let {(Y,*, Z]); 0 < t < t,} be the solution, in the sense of Corollary 5.59, of
the BSDE

Tx Tx

F(X;,Yj,z;,‘)ds—/ Z¥dBg. 1 > 0. (5.219)

I ATy

Y = 2(XD) + [

ATy

Using It6’s formula, it is not hard to establish the following:

Theorem 5.75. Letu € C*(D;R™)NC(D;R™) be a classical solution of (5.218).
Then for each x € RY, {(u(X]),(Vug)(X¥)); t > 0} is the solution of the
BSDE (5.219). In particular u(x) = Y.

We now assume that P(t, < co) = 1, forall x € D, that the set
A ={x€dD; P(t, >0) =0} isclosed, (5.220)
and that for some A > 24 + K2, and all x € D,
Ee*™ < oo.

We again define u(x) = Y. Besides some arguments which we have already
used, the continuity of u also relies on the following:

Proposition 5.76. Under the condition (5.220), the mapping x — 7ty is a.s.
continuous on D.

Proof. Let {x,, n € N} be a sequence in D such that x,, — x, as n — oo. We first
show that

limsupt,, <7, as. (5.221)
n—o0

Suppose that (5.221) is false. Then

P(zy <limsupz,,) > 0. (5.222)

n—>o0
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For each ¢ > 0, let
r; = inf{t > 0; d(X;", D) > &}.
From (5.222), there exists € and T such that

P(t{ <limsupt,, <T)>0.
n—>oo

But since X — X~ uniformly on [0, T'] a.s., this implies that

P(lim sup r;{z <7t <limsupt,, <T) >0,

n—>o0 n—o0

which would mean that for some n, X* exits the £/2-neighbourhood of D before
exiting D, which is impossible.
We next prove that

liminfz,, > 7, as. (5.223)
n—>oo

For this part of the proof, we will need the assumption (5.220) that A is closed.

It suffices to prove that (5.223) holds a.s. on 2, = {t, < M}, with M arbitrary.
From the result of the first step, for almost all w € Q,,, there exists an n(w) such
that n > n(w) implies 7., < M + 1. From the a.s. (on £2,/) uniform convergence
of X*» — X on the interval [0, M + 1], X hits the set

{(X:;neN}CA=A

on the random interval [0, liminf, z,,] a.s. on Q. The result follows, since X*
exits D when it hits A. [ |

We now prove the following:

Theorem 5.77. Under the assumptions of Theorem 5.74, the above conditions on

D and the condition (5.220), u(x) o Yy is continuous on D and it is a viscosity
solution of the system of Eq. (5.218).

Proof. We only prove that u is a sub-solution. Let 1 <i < m, ¢ € C*(R?) u; — ¢
have a local maximum at x € D, such that u; (x) = @(x). If x € A, then 7, = 0,
and hence u(x) = y(x). If however x € D U (dD\A), the result follows by the
same argument as in the proof of Theorem 5.74.

5.7.3 Elliptic Equations with Neumann Boundary Conditions

The data and assumptions are the same as in Sect. 5.4.3, except that we suppress the
dependence of all coefficients upon the time variable. Moreover we also assume that
all assumptions of Section 5.4.1 are satisfied.
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Consider the following system of semilinear elliptic PDEs with nonlinear
Neumann boundary condition

®; (x, u(x), Du; (x), D*u;(x)) =0, x e D, 0<i<m;

ou; ) (5.224)
a—(x) —Gi(x,u(x)) =0, xeadD, 1 <i <m.
n

Let X* be the process solution of the reflected stochastic differential equation, for
allt >0, Pa.s.

t t
X+ K ' =x+ [ f(r. X} )dr+ / g(r, X;\)dB,,
o 9 0 (5.225)
XfeD. K} = / n(X) L (X7) d K7,
0

To each x € D we associate the BSDE

r

T T
YF =Y +/ F(r, Xj‘,er,Z")dr—i—/ G(r.X'.Y")d $K*},  (5.226)
t t

T
—/ Z7dB,, forall pairs0 <t < T.
t

1t6’s formula again allows us to establish the following:

Theorem 5.78. Letu € C2(D;R™)NC'(D;R™) be a classical solution of (5.224).
Then for each x € R?, {(u(X]),(Vug)(X}")); t > 0} is the solution of the
BSDE (5.226). In particular u(x) = Y.

We now have:

Theorem 5.79. Under the above conditions and those of Theorem 5.43, u(x) :=
Yy is a continuous function of x, and it is a viscosity solution of (5.224).

The proof of this Theorem is easily done by combining the arguments in the
proofs of Theorems 5.74 and 5.43.

5.8 Parabolic Variational Inequality

The aim of this section is to prove the existence of a viscosity solution for the
following parabolic variational inequality (PVI) with a mixed nonlinear multivalued
Neumann-Dirichlet boundary condition:
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du(t, x)

o + Au(t,x)+ F (t,x,u(t,x), Vug)(t, x)) € dp (u(t, x)),

1€(0.7), xeD,
_3ugt’;x) + G (t,x,u(t,x)) € 0y (u(t,x)), t €(0,T), x € Bd(D),
M(T’ X) = K(X), X € 5,

(5.227)
where the operator 4, is given by

1
Av(x) = ETr[g(t,x)g*(t,x)Dzv(x)] + (/. x), Vo(x)),
and D is an open connected bounded subset of R4 of the form
D={xeR:¢(x) <0}, Bd(D)={xeR!:¢(x)=0},

where ¢ € C} (R?), [V¢ (x)] = 1, for all x € Bd(D). The outward normal
derivative of v at the point x € Bd (D) is given by

d

g (x) _ 3 09 (x) dv (x) _ (Ve (x), Vv (x)) .

on dx;  0x;

The functions f : Ry x R - R, g : Ry x R? — R4 F : Ry x D x
RxR! - R, G : Ry xBd(D) xR — Rand k : D — R are continuous.
Assume that for all 7 > 0, there exist a, L > 0 (which can depend on T') such that
vVt €[0,T], Vx, ¥ € R?:

|f(t.x) = f .0+ g x)—g.X)] <alx—X], (5.228)

and V¢ € [0,T],Vx € D,x’ e Bd(D),y,7 € R, 7,z € R?:

() (V=D I[F@t.x.y.2)—Ft,x,3.29]< 5y -5

i) IF(x.2) = Fe.x.9.9] < 5=,

(i) |F(t,x,y.0 <%0+ |y]). (5.229)
) (=G x",y)—G@t.x",7)] = Lly -,

O G X"y =LA+]y).

We also assume that

(i) ¢, ¥ :R — (—o0, +00] are proper convex l.s.c. functions,
(i) 0=¢0)=<¢(y)and0=y0) =y (y).VyeR, (5.230)
(iti) Kk (x) € int (Dom (¢)) N int (Dom (y)) forall x € D,
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and the compatibility conditions: o
foralle >0, >0,x e Bd(D),X € D,y e Randz € R?

(1) Vo () G (t,x,y) < |V IG (t.x, )], (5.231)
(@) Vye (») F (t,X,y,2) < |[Vo: (V)| |F (2, %,y,2)],

where at = max {0, a} and Vo, (y), Vi, (») are the unique solutions U and V,
respectively, of equations

dp(y—eU)>U and dy(y—¢eV)sV

(for the Moreau—Yosida approximations Vg,, Vi, see section “Convex function”
from Annex B and for the compatibility conditions see Example 5.63). We mention
that in the one dimensional case (which is our case here)

dp () =[¢_ (»). ¢y ] and 3y (y) =[v. (). ¥, (].

Since D is bounded and « is continuous it follows from (5.230-iii) that there
exists an My > 0 such that

sup [ic(x)] + sup ¢ ((x)) + sup ¥ (k(x)) < Mo
x€D x€D x€D
Let (t,x) € [0,T] x D be arbitrarily fixed. Consider the stochastic basis
(Q’f’ P, (]:;)XZ()

motion as follows: 7! = N'if 0 < s < and

), where the filtration is generated by a d -dimensional Brownian

Fl=0{B, —B;:t<r<s}VN, ifs>r.

s

From Theorem 4.54 and Theorem 4.47 we infer that there exists a unique pair
(X5, A7)+ Q x [0,00] — RY x R? of continuous progressively measurable
stochastic processes such that, P-a.s.:

(j) X! € D and X[\, = x forall s > 0,

(0= A <A < A" forall0 <u <t <s5 <,
S N
(i) Xy + / Ve (X;*)dAy = x + / f (Xt ar
t s t
+/ g(r.X!*)dB,, Vs=>1,
t

(jy) A* = / le(ﬁ) (Xr['x) dAYY, Vs >1.
!

(5.232)

Then by Proposition 4.55 and Corollary 4.56 we have for all p > 1, A > 0 and
s>t,
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(/) E sup [X0¥— X7 +E sup A0 — A7 |7 < CeCO0 |x — y)?,

relt,s] relt,s]

rx C22?
(ji) Ee*s” <exp (CA +CAt + 5 t) ,

(5.233)

and for every T > 0, p > 1 and continuous functions Ay, h, : [0, T'] x D — R, the
mappings

(t.x) > (X", A") [0, T]x D — S7[0,T] x S} [0, T]

and
T T .
(t,x) —~ IE/ hy(s, X2)ds + Ef ho(s, XP¥)dAYY [0, T] x D —> R
t t

are continuous.
We consider the backward stochastic variational inequality (BSVI):

T T
Y+ / dK* =k (X77) + / Ly (r) F (r, X1 Y5, Z5Y) dr,
S s

T T
+ / Ler) (7) G (r, XI5, YY) dALY — / (Z'~.dB,), ¥ s €[0,T].
YIE =Y, 2 =0, K = Ul = VX =0,V s €[0.1],
N

K> = [ (UM~dr + V/*dAY™), Y se[0,T],
0

Ul € d¢ (Y!™) and V™" € 9y (Y/¥) a.e.on Qx[1,T].

(5.234)

Note that the backward stochastic variational inequality (5.234) satisfies the assump-
tions of Theorem 5.69 and Remark 5.70 with t = T, n = k (X;") satisfying (A%),

s = Sy (9), &5 = \/gl[o,r] (), vs = L1o7y (), Vs = LOgp g = 0, where
Oy =s+ Ay and E (e*Qtfx) < 0o, forall A > 0.

Therefore (5.234) has a unique solution (Y**, Z**, K'*) of continuous progres-
sively measurable stochastic processes such that

T
E sup e*<r |Y,.”‘|2 +E(/ eor Zﬁ”‘fdr) < o0,

relt,T] t
and dK* = U!*“ds + V!*dA.*, where U'*, V¥ are progressively measurable
stochastic processes and U/ € d¢ (Y/*), V/* € 3¢ (Y/*) dP®dt — a.e. on
Qx[t,T]
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Moreover by (5.162) and (5.164) the solution satisfies for all s € [¢, T']:

T
EFs sup eZLQfIx |er.x|2 + EF (/ ezLQi.x |thx|2dr)
rels,T] s

T
+B7 [0 [y (1) dr ot [y (1) aap)

< C2E‘7:5 [eZLQ'T‘X " (X;:x)‘Z

(5.235)

r 1.x 2
#([ e (1F (rx00) | ar 16 (e 0.) | ang) ) |

X X X 2
<G Es |:e2LQtT" My + (eLQtf — eLQ.{-' ) i|

< Cy, B (210F)),

and
1.x 1 T 1%
E [eZLQ~v e(Y!) + w(Y;’x)] + EE[ e or (|Urt’x|2dr + |V,’vx|2dA,.)

< B[22 (ot (x3)) + e (x5))
T T
+4E / L0 (|F(r, Y", ZL¥)?) dr + 4E [ Lo (1G(r YY) P) dA,
N s

t.x
< CMO,LEBZLQT .

(5.236)
We define
u(t,x) =Y, (t,x)e€[0,T] x D, (5.237)
which is a deterministic quantity since ¥,** is F! = N -measurable.
From the Markov property, we have
u(s, X1y =y,
By (5.236) we infer that
u(t, x) € Dom (¢) N Dom (y) forall (t,x) € [0,T] x D. (5.238)

In the sequel we shall prove that u defined by (5.237) is a viscosity solution
of (5.227). Reversing the time by u(¢t,x) = u(T —t,x), the PVI (5.227)
becomes (6.137) and the uniqueness of the viscosity solution follows from Theo-
rem 6.112.

We now give the definition of the viscosity solution of the PVI (5.227).

Atriple (p,q, X) € RxR? xS is a parabolic super-jet to u at (¢, x) € (0, T)x D
if forall (s, y) € (0,T) x D
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u(s, y) < u(t,x) + p(s —1) + (g, y = x) + 3(X(y = x), y — x)
+o(ls —t] + [y —x[*);
the set of parabolic super-jets is denoted P>V u(z, x). The set of parabolic sub-jets

is defined by Py u = —Pg " (—u).
Let

®(t,x,y,4,X) = —%Tr((gg*)(t,X)X) —(f(t,x),q) = F (t,x,y,98(t,x)),
F(tvx’ y9q) = (vd)(x)’Q) - G(Z,X, y)

We clearly have
@ (s,y,7, Vo(y), D*v(y)) = —Av(y) = F (5, 5,7, Vo()g(s,y)) . (5.239)

Definition 5.80. Let u : [_O, T] x D — R be a continuous function, which satisfies
u(T,x) =«(x), VxeD.
(a) uis a viscosity sub-solution of (5.227) if:

u(t,x) € Dom(¢), V(t,x) € (0,T)x D,
u(t,x) €e Dom(y), V(t,x)e€ (0,T)xBd(D),

and for any (t,x) € (0,7) x D and any (p,q, X) € P>Tu(t, x):

d) p+®@ x,ul.x).qg.X)+ ¢ (u(t,x)) <0 ifx € D,
(d) min {p + (1 x,ut.x). . X) + ¢ (u(t,x)) . (5.240)
T(, x, ult, x), q) + ¥’ (u(t,x))} <0 ifx € Bd(D).

(b) The viscosity super-solution of (5.227) is defined in a similar manner as above,
with P> replaced by P>, the left derivative replaced by the right derivative,
min by max, and the inequalities < by >.

(c) A continuous function u : [0,00) x D is a viscosity solution of (6.137) if it is
both a viscosity sub- and super-solution.

Theorem 5.81. Let the assumptions (5.228), (5.229), (5_.230) and (5.231) be
satisfied. If u defined by (5.237) is continuous on [0, T| x D, then u is a viscosity
solution of PVI (5.227).

Proof. We show only that u is a viscosity sub-solution of (5.227) (the proof of the
super-solution property is similar).
Let (t,x) €[0,T] x D and (p,q, X) € P>Tu(z, x).
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Cases. (t,x) €[0,T] x Bd(D).
Aiming to deduce a contradiction we suppose that

min {=p-+® (£, u(t, %), q, X)L (u(t, %)), (0 %, u(t, %), )+Y (u(t, ) | >0.
It follows by continuity of F, G, u, f, g, ¢, ®, I' left continuity and
nondecreasing monotonicity of ¢’ and Y’ that there exists ¢ > 0, § > 0 such
that for all (s,x’) € [0, T] x D, |s —t] <6, |x' — x| <6,
—(p+e)+P(s.x" uls,x), g+ (X +el) (x'—x), X +el)+ ¢ ((u(s.x")) >0
(5.241)
and

L(s.x u(s,x"),q + (X +el) (x —x)) + ¢/ (u(s, x")) > 0. (5.242)

Now since (p,q, X) € P2 Fu(t, x) there exists 0 < 8’ < § such that for all s €
[0,T], s#¢t, x'eD,x"#x,|s—t| <&, |x —x| <8 we have

u(s, x') < (s, x") 2 u(t,x) + (p + &) (s — 1) + {g. x' — x)
—i—%((X +el) (X' —x),x" — x).

By (5.239) the condition (5.241) becomes

8,\ ’ ! A A ! A !
— u(;tx ) —Aiu(s, x") = F (s, x", u(s, x"), Vit(s, x")g (s, x")) + ¢ ((u(s, x")) > 0.
(5.243)
The condition (5.242) can be written as follows
(Vit(s, x"), Vo (x")) = G (s, x", u(s, x')) + ¥ (u(s, x")) > 0. (5.244)

Let

gd=ef(t+8’)/\inf{s>t: | X, — x| =6}

We note that (Y/*, Z!*), t < s < 6, solves the BSDE

¢ 0
(F(r X" Y15, Z1%) = Uf¥)dr / Z1+dB,
0 s

—i—/ (G(r. X[*, Y¥) — V)AL,

s

U™ € do (Y)™) and V!> € 9y (Y)) dP®dt-a.e.

Yo = u (6. X57) + /

A
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Moreover, it follows from It6’s formula that

(Y1, 20%) = (a(s, XI), (Vig) (s, XI™)), t <5 <6

satisfies

A O a0(r. X1 0
Y= 0. X5 ~ [ [% + Acir, X{) |dr — / 2!~dB,
s P s
[ (920 X Vo) an

N

Let (Y, Z%) = (Y15 — Y1, 21 — Z!). We have

0 > tx
yer = [ae, Xy —u (6. X57) ] + / [- % — A, X!)

0
—F(r X[ YIS ZE) 4 U Jdr = / 7!%dB,
N

%
n / [(int(r, X1), V(X)) = G(r, XI5, Y1) + V,’*X]dA;".
s

Let
Bs = Asii(s, XY + F(s, X2, Y, ZY) and

Bs = Ajii(s, XIY) 4 F(s, XI*,Y!Y, 209,

Since |;§Y Bs| < \/g |Z€x — Z!*|, there exists a bounded d -dimensional p.m.s.p.

{¢s;t < s < 0} such that /§S — Bs = (&, fo) and therefore

o o Bagr, X .
7= 0. X~ 0. X + [ [ = D 1 g 260 = B+ U Jar

N

[%
n / [(VXﬁ(r, X1, Vo (X1)) — g(r, X%, V1) + V,"x]dAf:x - / Z1%dB
S S

Let

N 1 N
Aszexp(/ ({,,dB,)—E/ |;,|2dr), 1<s<89.
t t

Then by It6’s formula,

s
AS=1+/ A, (¢ ,dB,), t <5 <0,
t
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and so

du(r, X1)
at

+ A,[ — (Veia(r, X1), V(X)) + g(r, X5, ¥)¥) — V,”x]dAj.'x.

AT A,) = A,[ + B — U,.‘"‘]dr + AZ + T, dB,)

Then

9 ~ 1x ~
P = E[Ag (i(6. X5) — u(®. Xé’x))] + E/ Ar[— W) _ B, 4 Ur”x]dr
t

0
+E / A,[(Vxﬁ(r, X1%), V(X)) — g(r, X%, Y1) + V,”]dA’,’x.
t (5.245)
Since U/ € d¢ (Y,*) and V,"* € 3y (Y,*), we have
U dr = @ (u(r, X)°))dr,  VIYdAYS = ! (u(r, X[°))dAL™,
and therefore by (5.243) and (5.244)

_31)(1’, X

— B, + U™ >0,
ot bt U >

T
and

(e, X5), VO(X[)) = g X[*, ) + Vi |aa = o.
Moreover, the choice of §’ and 6 implies that u(0, X;*) < (6, X;™). Hence
0=it(t.x) (e, x) = V" = E[Ag (a6, X;") — u®. X)) | > 0.

which is a contradiction. It follows that (5.240-d,) holds.

Cases. (t,x) €[0,T] x D.

The proof follows the same steps from Case 5.8, where we now choose § and §’
such that B (x,8’) C B (x,8) C D and, by condition (5.232-iv), A.* = 0 for all
t<r<8@.

This proves that u is a viscosity sub-solution of PVI (5.227). Symmetric
arguments show that u is also a super-solution; hence u is a viscosity solution of
PVI (5.227).

Corollary 5.82. We have

u(t,x) € Dom (dp), V(t,x)e[0,T]x D.
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Proof. Let (t,x) €[0, T] x D be fixed. We have two cases:

(1) Dom (d¢) = Dom (¢), and so, from (5.238), u(z, x) € Dom (d¢).

(2) Dom (d¢) # Dom (¢). Let b € Dom ¢ \ Dom (d¢). Then b = sup(Dom ¢)
or b = infDomg. If b = sup(Domg) and u(z,x) = b, then (0,0,0) €
P2Fu(t, x) since

uls,y) <u(t,x)+o(ls —t|+ |y — x|*)

and from (6.143-d)) it follows that ¢’ (b) = ¢_ (u(t, x)) < oo and consequently
b € Dom (d¢); a contradiction which shows that u(¢, x) < b. Similarly for b =
inf(Dom ¢). |

The problem now is to see when (¢, x) —> u(t,x) = Y/* : [0,T] x D — Riis
continuous. A recent result of Maticiuc and Rascanu [46] gives a sufficient condition
for u to be continuous. The idea is to show that if (,, x,) — (¢, x) then (Y.*n), e+
is tight in the Skorohod space D ([0, 7], R) of cadlag functions endowed with the
S-topology (introduced by Jakubowski in [41]). This topology makes the mapping
y — f(; G (r,y (r)) dA, continuous from D ([0, 7], R) into R. The result is the
following:

Proposition 5.83. Let the assumptions (5.228), ..., (5.231) be satisfied. If more-

over there exists an Lo > 0 such that

(i)  F is independent of z,
(i) g (t,x) is an invertible matrix, for all (t,x) € [0,T] x D,
(@) |G (t,x,y) =G (', X", y)| = Lo (It =¢'| + |x =x"| + [y = »'])
forallt,t’ €0, T], x,x’ e Bd(D), y,y' e R
(5.246)

then the function
(X))~ u(t,x)=Y"":[0,T]xD—-R

s continuous.

Finally let f, g, F,G be independent of ¢ and (X, Ay, Y,*', ZY', U},
V5" o<s<s be defined by

(j) X € D foralls >0,

(/) 0= A} < A} < AX forall0 <u <,

() X5+ /0 Vo(X[)dA; = x + /0 SXH)dr + /0- g(X7)dB;,

Vs>0,

(jv) A = /0 () (X7)dAT. Vs > 0.
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and

t t
)?”+/(MWW+VW%ﬂy=M&ﬂ+/1F@ﬁj%ﬁzﬂwn

t t s
+/ G(X[, Y ¥")dA} —/ (Z5',dB,), Vs €0,1],
UM € dp(Y¥") and V5" € 0y (Y,"') a.e.on 2 x[0,1].

Summarizing Theorem 5.81 and Theorem 6.112 we have:

Theorem 5.84. Let the assumptions (5.228),...,(5.231) be satisfied. Assume there
exists a continuous function m : [0, 00) — [0, 00), m (0) = 0, such that

(i) yG(x,y)<0, VxeBd(D) andy € R,

— 24
(i) \F(x,y)—F(x’,y)|§m(|x—x’|)Vx,x’eDandye]R. (5:247)

If (t,x) —> ul(t,x) o YOW : [0,T] x D — R is continuous (this is true in

particular under the assumptions of Proposition 5.83), then u is the unique viscosity
solution of the parabolic variational inequality

ult, x)

8148 X) + 0y (u(t,x)) > G (x,u(t,x)), t >0, xeBd(D),
u(O x)_/c(x) xeD,

—Au(t,x) +0¢ (u(t,x)) 3 F (x,u(t, x), (Vug)(t,x)), 1 >0, x € D,

where the operator A is given by

Av(x) = ST (08 () D] + (), Vo).

5.9 Invariant Sets of BSDEs

Let {B; : t > 0} be a k-dimensional standard Brownian motion defined on some
complete probability space (2, F,P). We denote by {F;:t > 0} the natural
filtration generated by {B,,7 > 0} and augmented by the P-null sets of F.

Letx € R?,0 <t < T < T. Consider the SDE

t,x
XS

s 5
1.x X ) < <
x+[ b(r. X! )dr““[ o X dB t=s ST 5 o4g)

Xr=x 0<s<t,
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and the BSDE

T T
Y/ =X+ | F(r X5 Y, Z8%Ydr — | Z24dB,,
S T P r r r r
t<s<T, (5249
Y/r = (X2, T
N

s <T,
Y!* =Y, 0=<s=<t

A TA

The aim of this section is to state necessary and sufficient conditions which
guarantee that the solution of the BSDE (5.249) does not leave a given set

={E(t,x) CR"™: (t,x) € [0,T] x R%},
i.e., under which we have that forall 0 < ¢t < 7 < T, x € R and K(th’x) €

E(T,X;’X) a.s.w € Q:

Y!* € E(s,X!") as.0ef, VseltT]

As a by-product, we will derive a result on the existence of constrained viscosity
solutions to some PDEs. Together with the Eqgs. (5.248) and (5.249), we consider
the following system of semilinear parabolic PDEs

W + A (t,x) + fi(t,x,u(t,x), 0", x)V,eu; (¢, x)) =0,

w(T,x) =k(x), (t,x)e[0,T]xR? 1<i<n,

(5.250)

with the second order differential operator

A0)e(x) -TI‘[UU (t,x) D)+ < b(t,x), Vip(x) >

—Z(oa)]g(tx) (p()—i-Zb(t (p()’ goECZ(Rd),

j =1 X

where b : [0, T]xR? - R, ¢ : [0, T] xRY — Rk and f; : [0, T] x R? x R” x
RF >R, 1<i<n.
We make the following standard assumptions:
(AV}) We assume that the functions b : [0, T]xR? — R?, o : [0, T|xR¢ — R4*k,
F:[0,T]xRY xR" x R™* — R™ and f : [0, T] x R x R” x Rk — R”
are continuous and such that, for some constants L > 0 and ¢ > 2,

b(t.x) =b(t. %)+ llo(t.x) =0 (. X)] < Lx—X[,
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i) |Ftx,p,29 <L+ |x7+ |y + z]).
ii) |F(t,x,y,2)— F (@, x,y,2)|<Ll|z-7,
iii) (F(t,x,9,2)— F(t,x,7,2),y—3) < L]y —

and

P @x.yw)] < L(1+]x17+ [y] + |ul),
i 1f@x,y,u)y— ft x,y,u) < Llu—iul, ,
gD (f @ x,yu)— f@,x,y,u),y—=y)<L|y—y|",

forallz € [0,T], x,¥ e RY, y,5 € R”, and 7,7 € R™* u, it € RF.
(AV,) We assume that « : RY — R” is a Borel measurable function of at most

polynomial growth, i.e., there are some a > 0,g > 1 such that, for all
x e R,

lk(x)] <a(l+|x|7), Vx € R
We shall now recall some basic properties of forward and backward stochastic
differential equations.

Proposition 5.85. Under the assumptions (AV)) and (AV,):
1. Equations (1.1) and (1.2) have unique solutions X' € Sﬁ [0, T] and

(Y, Z") € Sp[0. T x A} [0, T

with Z!* = 0 for s € [0,¢] U [T, T) and the solutions satisfy:
I1. Forall p > 2, there exist some constants C, > 0, g € N*, which don’t depend
ont,t' €10,T] and x,x’ € R™, such that

a)  E(supser |1 XIH1P) < Cp(1 + |x]7),
by E (S“Pse[o.r] X — Xﬁ/’x/l”) < (5.251)
< Cp(1+ |x|P 4 |x/|P) (|t — £'|P/? + |x — x'|7),
and
) E(supery 1Yi¥1P) < Cp(1 + |x]79),
d) E <Supse[0,T] |YSI'X - YS[/’X,|2) < CQ[E|K(X;;X) — K(X;#X )|2’
+E [ () F(r, X125, Y, ZEY)
—1y 7 (r)F(r, Xﬁ/,x’7 Yrt.x’ Zi’x)|2dr].

III. There are some Borel measurable functions u : [0, T] x R? - R™, and v :
[0, T] x RY — R"™ such that forall0 <t <s <T <T
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N

tx __ T t.x tx __ T t,x _
Y'Y =u (s A T,me> . Z" = (vo) (s A T,me> , dP®ds—a.e.

(see [30]).

For the convenience of the reader we recall the definition of a viscosity solution
corresponding to the PDE (5.250).

Definition 5.86. a) A lower semicontinuous function u : [0, T] x R — R™ is a
viscosity super-solution of (5.250), if, firstly, u; (T, x) > k; (x), for all x € R4,
1 <i <n,andsecondly, forany 1 <i <n,¢ € C'2((0,T) x R?) and (¢, x) €
[0, T] x R4 such that u; — ¢ achieves a local minimum at (¢, x), it holds that

%go(t,x) + A@®)e(t, x) + fi(t,x,u(t,x), (c*Vo)(, x)) <O0.

b) An upper semicontinuous function u : [0, T] x RY — R™ is a viscosity sub-
solution of (5.250), if, firstly, u; (T, x) < k; (x), for all x € RY 1 <i <n,and
secondly, forany 1 <i <n,¢ € Ch2((0,T) x Rd) and (¢,x) € [0,T] x R? such
that u; — ¢ attains a local maximum at (¢, x), we have that

a%go(t,x) + A@)e(t, x) + fi(t,x,u(t,x), (c*Vo)(t, x)) > 0.

¢) Finally, a continuous function u : [0,T] x RY — R™ is a viscosity solution
of (5.250) if it is both a viscosity super-solution and a viscosity sub-solution of this
equation.

From Sect. 5.4.1 of this chapter we have:

Proposition 5.87. We suppose that the function f satisfies hypothesis (AV1) and
that k : RY — R” is a continuous function satisfying (AV,). Let X'* and
(Y, Z"*) be the solutions to (5.248) and (5.249), respectively, where the driver F
of BSDE (1.2) is of the form

F(t,x,y,2) = (fit,x,y,2%1), ..., fut,x,y,7 en)),

and e; denotes the unit vector pointing in the i-th coordinate direction of R™. Then
u(t,x) = Y5, (t,x) € [0,T] x R, is a deterministic continuous function of at
most polynomial growth. This function is a viscosity solution to (5.250). Moreover
if, for each R > 0, there exists a continuous function ag : Ry — R, ag(0) = 0,
such that, forall t,y,z,x,x" with |x| < R, |x'| < R,

|f(t.x.y.2) = f(t.x", y. )| < ar(lx — X|(1 + [|zI])), (5.252)

then u is the unique viscosity solution in the class C 0 ([0, T] x RY, R™).
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We now give the notion of the viability property for BSDEs and PDEs. We recall
some notations. For any closed set S C R? we denote by x — ds(x) = min{|x—y :
y € S} the distance function to S, and for x € R, we denote by ITg(x) := {z € S:
ds(x) = |x — 7|} the set of projections of x on S.

Forallr € [0,T], x € R4, let E(t, x) be a non-empty and closed subset of R”.
We consider the following set of moving constraints

E={E(t,x):(t,x) €[0,T] x RY}.

Definition 5.88 (Viability for BSDEs). The moving set E(t, x), (¢, x) € [0, T] x
RY, is viable (invariant) for the BSDE (5.249) (or Eq. (5.249) is said to be &-
viable on [0, T]) if, for all (t,x) € [0,T] x R, T € [t,T], and all Borel
measurable functions ¥ : RY — R” of at most polynomial growth, such that

. —1
k(x) e E(T,x),Po [X;S] (d X)-a.s., it holds that the solution of (1.2) satisfies

Y/ e E(s,X!"), Vse [, T], P-as.

Viability for PDEs: Equation (5.250) is said to be £-viable (E-invariant) on [0, 7]
if, forall T € [0,T] and k € Cpol(Rd,R’") such that k(%) € E(T,X), for all
% € R, it holds that there exists a viscosity solution u € C,y ([0, T] x RY,R™)
of (5.250) with time horizon 7" and terminal condition u(7~", x) = k(x), x € R™,
such that

u(t,x) € E(t,x), ¥(t,x) € [0, T] x RY.

From Proposition 5.87 we see immediately that:
Remark 5.89. If BSDE (5.249) is £-viable then PDE (5.250) is also £-viable.
Therefore the next result also concerns constrained the BSDEs and the PDE:s.

Theorem 5.90 (Viability Criterion for BSDEs). Assume that (AVy) and (AV3)
are satisfied and moreover

(i) the function (t,x) +— dé(t,x)(y) 0 [0, 7] x RY — R is jointly upper
semicontinuous,
(ii) there exist some constants M > 0, p > 1 such that

do00) < M(1+[x]?), ¥(1.x) € [0.T] x R”.

Then the following assertions (c) and (cc) are equivalent:
(¢) Equation (5.249) is E-viable on [0, T'].
(cc) For any sufficiently large C > 0 and for every z € R™ 9, the function
h(t,x,y) = dé(tyx)(y) is an upper semicontinuous viscosity sub-solution of
the PDE
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avV(t,x,y)

3[ + EZ(I)V(tv X, J’) + Cdé(t,x)(y) = 0»

(t,x,y) €[0,T] e R x R™,

(5.253)

In the above relation, L,(t) denotes the following second order differential

operator
L.(t)e(x )—lTr[FF*(tx )D? (x,y)]
[D)elx, y) = ST X, y)Di ) x, y (5.254)
+(Bz(t’x»y)vv(x,y)‘/’(%J’))s
where

B O'(t,x) . b(t,x)
I‘Z(t,x,y) = (ZO’(Z‘,X)), Bz(tvxv J’) - (_F([’x,y,za(l,X))).

This theorem yields:

Corollary 5.91 (Viability Criterion for BSDEs). We assume that the moving sets
of Theorem 5.90 are independent of the spatial variable, E(t,x) = E(t), (t,x) €
[0, T] x R™. Then the following assertions (j) and (jj) are equivalent:

(j) Equation (5.249) is E-viable on [0, T].
(j)) The function h(t,y) = dé(t)(y) is an upper semicontinuous viscosity sub-
solution of the PDE:

V(. y)

at +Az(tsx)V([7y)+Cdlzf(t)(y)=09 (L)’)G[OsT]XRm,

orall x € RY, 7 e R™4 where
Jf

1
AZ (fvx)W()’) = ETr[ZO-G*(Zvx)Z*Diw(y)]_(F(t’)“ y,ZU(l,X)),VyW(y)),

and C > 0 is any sufficiently large constant.

Before proving the main results stated above, we shall present some clarifying
examples. In the first example we find a criterion such that a family of moving balls
has the viability property for a given BSDE.

Example 5.92 (Control Security Tube). We consider an arbitrary function r €
C'([0, T]:Ry) with r (1) > O for all # € [0, T], and we put

E@)={yeR":|y|<r(@)}, tel0,T].
Then the square-distance function is

A3, () = ho (t.y) = ((Iy| — r(®)™)?,
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and, for |y| > r(t), the operator .4,(¢) applied to h at (¢, y) takes the form

AOho (6. y) = 'y'f—“) o (0P + 2 o (1) y P
vl [yl
— 2|y||—T|r(t) (F(t,x,y,z0(t,x)), ).

Hence, the inequality in Corollary 5.91(jj) yields that, for all (¢, x, y,z) € [0, T] x
R? x R™ x R"™* with |y| > r(t),

ZWTT(@ [(F(t.x.y.20(. %)), 3) + |y] 7' (0)]
< bl=r® |_y|r(t) 2o (6, )12 + %I (o (1) ¥+ C Iyl = r ().

from where we easily deduce the following necessary condition for the £-viability
of BSDE (5.249):
For all (¢, x, y,z) with |y| = r(¢) and (zo (¢, x))" y =0,

2r (1) r' (t) + 2 (F(t.x,y,20(t. x)), y) < |lzo (. x)||*. (5.255)
If the assumption (AV]-i) is replaced by
i') |F (. x,y.2) = LA+ |y]),

for all (z, x, y, z), then this condition is not only necessary but also sufficient as the
following argument proves. We fix any (¢, x,y,z) € [0,T] x R? x R™ x Rm*d
with |y| > r(¢), and for simplicity of notation we put y = |y|_1 r (t) y and, for
l<j<m

o uj = (20 (t.X)); = Y4 2400 (1.),

) ﬁj:|y|_2(u1,y)y, ui‘:l/tj—l,/\tj,

o n="(,... 0y, ut= (uf' uL) =u—1.

> m

From the assumptions (A V) and (AV-i’) we get that, for some generic constant C
which can change from line to line but does not depend on (¢, x, y, 7),

z% (F(t.x. yu).y) + |y F(0)

2(F(t.x.y,u).y =¥) +2(Iy| = r@)r'(t)
2(F(t,%,7,u),y =F) + 2(Iy| = r@)) r'(t) + C (|y| = r (1))
<2({F(t,x,57,u"),y =)+ 2(y| = r@) r'®) + C (|y| = r (1))

IA
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+ C(yl=r@)lal

|)’| |y|r(l) (F(t.x.5.u"). y) + C [yl 1l + [y ' (0))
+C(lyl—r @)
I =r@®

N (F@.x,7.u™),3) + 7' @) + C (1y] = r (1))

+C (Iyl =r@) lla +C (| =r @)

Thus, since |y|r'(t) <r () r'(t) + C (ly| —r (¢)), forall (¢, y) € [0, T] x R", we
can deduce from (5.255) that

2O (0. ) + 1917 0)

< |y|’”) [ + € (vl = r@) il + € (ly| = r ()
< PO+ S g+ € (1= 0
< P e 4 (—3|u*y|2+C(|y|—r<t)>2.

This proves the sufficiency of (5.255).

The next example shows that, in the general case, there is no possibility of null-
controllability of BSDEs; although we don’t consider controlled equations, we can
interpret the choice of the coefficients as controls.

Example 5.93. For any given (ty, yo) € |0, T[ x R”, we introduce the family of

moving constraints

R™, ift # to,

E(’)Z{{yo}, it = b

The associated square-distance function is of the form:

0, if t # 1,

h(t,y) =dgq () = { Iy —wol*, ift = 1.

This function is upper semicontinuous in (¢, y) € [0, T]xR™, and if t = 1o, y # yo,
then, for every a € R, there is some ¢, € C'? ([0, T] x R™) with

d
(5, v,. Di) 0u (10, 7) = (.2 (v — y0) . 21)
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such that & — ¢, achieves a local maximum at (#y, y). Since

A (t;x) @a (o, y) = |20 (1,x) > = 2(F(t. x, y,20(t, X)), y — Yo)

does not depend on @ € R, we can choose a > 0 sufficiently large in order to
guarantee that the inequality in Corollary 5.91(jj) is not satisfied. This shows that
Eq. (5.249) cannot be £-viable.

The proof of Theorem 5.90 reduces to that of the following two lemmas, see [15].

Lemma 5.94. Under our standard assumptions we have the equivalence between
the following statements:

i) Equation (5.249) is E-viable on [0, T].

it) There exists a C > 0 such that, for all t, T with 0 <t < T < T, and for
all x € RY, the solution of BSDE (5.249) with time horizon T and arbitrary
Borel measurable terminal function k : R¢ — R™ of at most polynomial growth
satisfies:

A0 (V") < TR} 1 o (V).

Lemma 5.95. Let Y'* be the solution of BSDE (5.249) with time horizon T and
arbitrary terminal function k € Cpy ([0, T] x Rd).

Let C be a positive constant and h : [0,T] x R x R”" — R be an upper
semicontinuous function of at most polynomial growth such that, for some positive
constants M, p > 0,

Ih(t.x,y") = h(t,x. )| < My = Y11+ |x|” + [yI” + Y17 (5.256)

forall (t,x) € [0,T] x R? and all y,y' € R™. Then the following assertions are
equivalent:

i) Forall x € R? and ¢, T with 0 <t < T < T, it holds that

h(t.x, YY) < CTOBR(T, X1 YY),

ii) For every z € R"™*, the function h is a viscosity sub-solution of the equation

v (t,x,y)

oy +L.()V (t,x,y)+Ch(t,x,y) =0 on [0, T| xR xR™. (5.257)

Recall that L,(t) is defined in (5.254).

Proof of Lemma 5.94. We first remark that (ii) obviously implies (). Thus, it
only remains to show that (i) can be deduced from (i). Let T € [0, T], (z,x) €
[0, T] x R?. For simplicity of notation we put u(¢,x) = Y,"*, and we select
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a Borel measurable mapping # : [t,T] x RY — R” such that a(s,x’) €
1 e (u(s, x), for all (s,x’) € [¢,T] x R?. Recall that [[gsa)(2) =
{y € E(s,x') : |z— y| = dg(s.x) (2)}. Then, since Eq. (1.2) is £-viable, the unique
square integrable adapted solution (Y, Z"*) of the BSDE

s

7 7
v =a(T,X;X)+/ F(r, X,f'X,Yr”x,Zﬁ”‘)dr—/ ZUdW,, selt.T],

is such that YS"X € E(s,X!),t <s<T,P-a.s.

Consequently, Ed é B X,,X)(Yf”‘) < E|Y!* — Y/*|?, and a standard estimate of
E|lY> — f’s”‘|2 involving It6’s formula and Gronwall’s formula, yields the desired

result:

2 t,x
Edy oy (¥5™)

= ]EIYXI.X - ?SI’X|2 =< eC(T_S)E|Y%’X — Y]E_'X|2

= TRV — (T, X)) = eC(T_S)]Edé(f,X;X)(Y%‘“"),
0<r<s< T < T,x € RY. This completes the proof of Lemma 5.94.
‘We now come to the proof of Lemma 5.95.

Proof of Lemma 5.95. We first show that, under the assumption (i), we have (ii).
To this end we fix an arbitrary function ¢ : [0, T] x R x R — R of class C ,1(‘)21‘2
and a point (¢, x,y) € (0,T) x R? x R™ such that the mapping & — ¢ achieves
a global maximum at (¢, x, y). For an arbitrary but fixed z € R"*¢ we denote by
(Y, Z%) € S2 (1,1 +¢] x A2, (1,1 + ¢) the unique solution of the BSDE

mxk

t+e

t+e 3
Yy = ke(X[]3) +/ F(r, X", Yf,Zf)dr—/ ZdW,, t <s<t+se,
N s

where
ke(x") =y +z2(x’ —x) —ezb(t,x) —eF(t,x,y,z0(t, x)).
From the assumption made on / in assertion (i), we obtain
ht,x,Y?)—h(t,x,y)

< eC[Eh(t + &, Xfﬁg, YE ) —h(t.x, y)]+ (e“¢ = Dh(t, x, y)
< e [EBo(t + & X, YE ) — ot x, )] + (€° — Dh(t, x, y).
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Then, with the help of a Taylor expansion of ¢, we get

1

- (h(t,x, YS) = h(t,x,y))

e

X —x
Ce[ (t x,y)+ IE<v(x \))90(Z x,¥), Y;+€_y)>+

5.258
el v )nzx x;ﬁ . 0238
P @, x,y
3"\ Pl =) Vi -
&

1
+E]E)/t’x‘y([ +e Xtt-i)fa’ t+s)] + h(t’x’ y)’

where,
yl.x,y (t/, x/’ y/)

1 B 0
=/O (Ego(t+9(t —1), x’,y’)—gw(t»x,y)) (t'—1)do

1 0
+ /0 /0 <(D(2x,y)‘p (l,x +7 (x/ - X) Y+ 0 (y’ - y)) — D(Zx‘y)(p([,x, y))

’r_ ’r_
N, ) Y ava.
y=y) -y

Note that

X x\ /+ b(r. X1Y)
Yo, —v ) 2(b(r, XY —b(t,x)) — F(t,x, y,z0(t, x))
t+e

o(r,X)
+/@meym.
t

Hence,

tim LX) = bt,x)
e>0e \YS, -y —F(t,x,y,z0(t, x))

X —x\ (X —x
lim —E D(zx,y)(p(t, X, ) Yt5+6 , Yt5+£
e>0¢e t+e y t+e y

= %Tr ((a 20) (0,z0)" (¢, x) D(x y)(p(t X, y)) .

and
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Moreover, from the assumptions on /,

1 M
2 1h@x Y —h(@x. )l = — Y7 =yl + x|+ [y]7 + Y77,

Therefore, applying the following auxiliary lemma, the proof of which will be given
at the end of this section, we can take the limit as ¢ — 0 in (5.258) and obtain
assertion (ii).

Lemma 5.96. Under the assumptions of Lemma 5.95, and with the notations
introduced above, we have

o1
a) lim (Y7 —y[ =0,

.1 Y v
b) il\ir(l) nghx,y(S’ Xttli-s’ Yl+s)| = 0’

forall (t,x,y) € [0,T] x RY x R™.

We shall now prove the reverse implication: Under the assumption that (ii) holds
we have to show the validity of (7). For this we first remark that, for any continuous
function ® : [0,7] x R x R"™ x R x R"*" x §"*+" x R™*¢ _ R satisfying
the standard assumptions of monotonicity with respect to the R”+"-variable and of
degenerate ellipticity with respect to the S”*"-variable (see Annex D),

h(t, x, y) is a viscosity sub-solution of the PDE
() | ®(t,x,y,0:h(t,x,y), Ve h(t, x, ), D(Zx’y)h(t,x, ¥);z2) =0,
for all z € R™*4

if and only if

h(t,x, y) is a viscosity sub-solution of the PDE
(B) | D(t,x,y,0,h(t, x,y), Vixph(t, x, ), D(zxﬁy)h(t,x, y);g(t, x)) =0,
forall g € Cpo ([0, T] x RY; R™*4),

Indeed, in order to see that () implies («), it suffices to choose g € C,y; ([0, T]
x RY; R™ Y with g (¢, x) = z € R™“. On the other hand, to get the necessity of
(B) under (a), we remark that, for all test functions ¢ € C!?>?2 for which & — ¢
achieves a local maximum at (¢, x, y), and with the notation

3
(a,p.S) = (5% ez D(zxﬁy)w) (t,x,y),

we have that ®(¢,x,y,a,p,S;z) = 0, for all z € R™*d and hence also for
z = g(t,x), where g runs over the set of functions belonging to C ([0, T] x R?;
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R™*) We now fix any g € Cpor ([O T] xR¥; R"™*?) and consider the unique square
integrable adapted solution (X, Y ) of the (forward) SDE

(75 = () T e 7 )
—=txy | = +/ o tX} tx tx dr
Y, y J —F(r, XY, ,g( X, o (r, X))
i o(r,X)
+/ (g(r, X'Yo(r, Xr,_x))dWr, s €, T].

Of course, here the process X' is nothing else than the unique solution of
SDE (5.248). Moreover, we denote by ( Y.z ”) € S2[t.T]x A2, (t.7)
the unique solution of the BSDE

t.x,y

Y = (T, X”Yi”)+c/ hi(r, X125, Y 0 ydr

T
—/ ZVdW,, s et Tl

where T € [0, T] and (hi)g>1 € Cpar([0,T] x R? x R™) is a monotonically
decreasing sequence of continuous functions with at most polynomial growth, such
that its pointwise limit is equal to /. Then the function

Vi(t,x,y) = ktfy, (t,x,y) € [0,T] x RY x R™,
is a continuous viscosity solution of the equation
Vi (t,x,y)

o T Lo OVi(t,x,y) + Chi(t,x, y) =0,
Vi(T,x,y) = (T, x, ), (x,y) e R x R",

and it is the unique solution in the class of continuous functions of at most
polynomial growth. We also note that, by the Markov property,

P = Vi, XY )s € . T

Since, due to assumption (ii), 4 is an upper semicontinuous viscosity sub-solution

of at most polynomial growth of the above PDE, we know that # must be smaller

than or equal to the viscosity solution V. Thus,

Eh(s. X!, Y,")
<EVi(s, X", Y

=t.x,y

) ~
_ T t,x XY a fx XY ~
— Eh (T X2 Y5 + € [ Ehe(r X077 )r, s € [1, T,

N



5.9 Invariant Sets of BSDEs 509

then, by passing to the limit as k — oo and applying Gronwall’s inequality, we
obtain the following estimate

Xy

Eh(s. X"~ Y,

=X,y

) < CT2ER(T, X4 V),

Setting s = ¢ and y = u(f, x) = ¥, and using the assumption (5.256) we obtain
for some positive constant Cy,

h(t,x,u(t, x))

=Xy

< CTOENT, XL V5)
< eCT=0[BA(T, X5, V1Y)
—1,x,y

—t.x, P
+ME (|Yf — VI X+ T+ |Y7£;*|P))]

< €0 [Eh(f, X5 YY)

7 12
+C1(1 + |x]P7 + |y]") (E/ |Z£’X — (go) (r, Xf’x)|2dr> i|
t

forall g € C,y ([0, T]xR?Y; R™*4)_ Since by a result from [30] (Theorem 4.1) there
is a Borel measurable function v : [0, T]xR? — R”*¢ such that

ZM = (vo) (s, Xs”x) ,se€[t.T], dsdP—a.e.,
we deduce that by density (and Lebesgue’s dominated convergence theorem)
h(t,x.u(t.x)) < e“TOER(T, XL, VL),

Since this result holds true forall x € R?,0 <t < T < T, we have proved (i).
Let us now prove Lemma 5.96.

Proof of Lemma 5.96. We first prove part a) of the lemma. Obviously, we have that
t+e t+e
Y = KS(X;fS) + / F(r, X!, Y, Z8)dr —/ Z:dw,
t t
t+e
= y+/ z(b(r. X)) = b(t,x)) dr
t

t+e
+/ (F(r, XY}, Z) — F(t,x,y,z0(t,x)) dr
t

t+e
_/ (25 = 20(r, X!¥)] d W
t
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1
Thus for0 < & < —,
612

IYf—y|2+E/

t+
t

&
|28 —z0(r, X1) [P dr
t+e 2
<3¢ |z|2/ E|b(r, X!™) — b(t,x)|" dr
t
t+e )
+3¢E / |F(r, XI5, YE, ZE) — F(r, X2, Y 20 (1, X9 | dr
t

t+e
+38E[ |F(r. X, YF z0(t, X)) — F(t, x, y,za(t,x)|2dr
t

r o Lro

+

t+e 1 &
<3¢ |z|2/ E|b(r, X}™) — b(z,x)\zdr + EIE/ |Z8 —zo (1, Xr”x)‘zdr
t

t
t
t+e )
+38E/ |F(i’, XY zo(t, X)) — F(t,x, y,z0(t, x)| dr,
t

which yields

1 1 t+e
limsup = E Y — y|* + lim sup _2]E/ |Zf —zo(r, Xr”‘)|2dr <0.
N0 € oo 28 t

Finally, the proof of part b) of Lemma 5.96 uses the same argument as that of
Lemma 4.82. The only difference is that the role of the diffusion process X'~ in the
proof of Lemma 4.82 is now replaced by that of the pair (X', Y*¢).

5.10 Exercises

Without further mention, (2, F, P, {F;};>0) will be a stochastic basis, {B; : t > 0}
will be a k-dimensional Brownian motion with respect to this basis and F, = FJ
forallz > 0.

Exercise 5.1. Consider the BSDE
T T
Yi=n +[ (s, Ys, Zs)d Qs —/ Z,dBy, (5.259)
t t

under the assumptions (5.41). Let

t 1 t
Vv, = / LydQs + — / (£,)* ds.
0 npJo
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Show that if p > 2 and forall § > 0
4 T p
E [¢/7y] +]E(/ e 1 (1,0,0)dQ, ) < oo,
0

then the BSDE (5.259) has a unique solution (¥, Z) € S° [0, T] x A?

mxk (0, T) such
that

T p/2
E sup "% |Y,|” + +E ([ e2Vs |Z~Y|2ds) < oo, forall § > 0.
s€[0,T] 0

Remark. Note that our assumptions hold in particular if both V; has exponential
moments of all orders (e.g. the tail of its law behaves like that of a Gaussian random

variable) and |n| + IEfOT |®(t,0,0)|dQ; has a finite moment of some order p > 1.
Exercise 5.2 (g-Expectation). Consider the BSDE: P-a.s., for all ¢ € [0, T]

T T
va = r’ + / g (Ss YS? ZS) ds - / (Zs»st) ) (5260)
t t

where we assume:

(l) n S LP (Q’]:Ta]P);R)’ P > 19

(ii) for every (y,z) € R x R¥, the function g (-,-,y,2) : @ x [0,T] = R is P-
measurable;

(iii) g satisfies the assumptions of Theorem 5.27 (F replaced by g) and
g, y,0)=0forall y e R,ae.t €[0,T].

Then by Theorem 5.17 the BSDE (5.260) has a unique solution (Y, Z) €
S7[0,T] x A7 (0, T). Moreover if T : € — [0,7] is a stopping time and
nelL?(Q,F.,P;R)then (Y;,Z;,) = (n,0) forallt > 7.

Define the g-expectation of n by E, (1) “ Yy and the conditional g-

expectation of n with respect to F; by E, (n|F;) =4 Y;. Clearly Eo () = En
and Eo (n|7,) = E (n|F).

Show that:

. E;(a) =a,foralla € R.

-m=m,Pas. = Eg(n1) = Eg ().

. <, P-as.andEg () = Eg () == 11 = o, P-as.

If g(t,-,) : RxR— R is a convex function, a.e. t € [0,T], then E, :
L? (2, Fr,P) — R is convex, too.

5.LetU € L? (2, F;,P). Then E; (14n) = E; (14U), forall A € 7, if and only

ifU =Y,
6. E; (a|F) = a,foralla e R.
7. E; (n|F;) =n,foralln e L? (2, F;,P).

AW =
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8. m < m,P-as. = E,(m|F) ZE; (2| F), P-as.
9. Eg (14| F) = 14E, (n|F), forall A € F,.

Exercise 5.3 (Peano Type Result). Consider the BSDE
T T
Yt =77+/ G(SaYs»Zs)ds_/ (ZS’dBS)7
t t

where n € L? (Q, F7,P;R), p > 2,and G : [0,T] x R x R* — R is a function
such that

e G(-x,2):[0,T] = R is measurable for all x € R and z € R¥,
e G(t,-,):Rx R* — R s continuous for all 7 € [0,T],
« there exists an L > 0 such that for all (, y, z) € [0, T] x R x RF,

|G (¢, y,.2)| < L(1+|y|+z]).

Under these conditions we shall prove that the BSDE (5.260) has at least one
solution (Y, Z) € S?[0,T] x A,f 0, 7).
LetO<e<g=1A(1/L)and G, : [0,T] x R x R¥ - R,

1 1
G.(t,y,z) =inf{G (t,u,v) + — |y —u| + — |z—v| : (u,v) € R x RF} .
& &

Prove that:
1. Forallt € [0,T],y,y € Rand z,7 € R:
(@ [Ge (1, y. 9| =LA+ [y[+ IZP;
®) 1Ge (t.y.2) = Ge (0. ") = — Iy =y + ]z =2
1
© ¥Ge(t,y,2) S LIyl + (L+ L) [P + 712

d0<§<e = Gs(t,y,2)>G:(1,y.2);
(e) if 11II(1) (yavZS) = (y,Z), then 11II(1) G, (t’yavza) =G (f»va)-
£—> £—>

2. The BSDEs
T T
Y= n+/ G. (s,Y;,Zf)ds—/ Z¢dB,,
t t
T T
U,=n+/ L(1+|Us|+|VS|)ds—/ ZdB;
t t

have unique solutions (Y¢, Z¢), (U,V) € S7[0,T] x A

mxk

(0,T) and:
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(@)

T r/2
EF | sup |Y£)” | + ET (/ |Z§|2ds)
S€[t,T] t
< Cpexp[(L + L?) (T —1)] |:Ef’ In|” + L? (T — z)P}

where C), is a constant depending only on p.
(b) Forall0 <§ <e<egy=1A(1/L), P-as.,

Y <YP<Y)<U, foralltel0,T],

and there exists a ¥ € S? [0, T'] such that

ImE [ sup Y] —Y,|" | =0.
&0\ sef0,7]

(¢c) There existsa Z € Af;xk (0, T) such that

T p/2
lim E ([ |ZE — Zslzds) =0.
e—>0 0 ;

Exercise 5.4 (BSDE Reflected Above 0). Let § € L*(Q,FZ P;R), where
{B;, 0 <t < T}is ak-dimensional BM, and F : R x R¥ > Rbea Lipschitz
continuous mapping. Consider for each n € N the solution {(¥,", Z}), 0 <t < T}
of the BSDE

T T t
Y'=§&+ / FY/,Z)ds + nf Y ds— f (Z1,dBs) ,
t t 0

andlet K = n [;(Y]")~ds.
1. Show that Y"*' > y", 0<¢t <T.
2. Show that

supIE( sup |Y,”|2) < 00.
n

0<t<T

3. Deduce that there exists a progressively measurable process {¥;, 0 < ¢t < T}
such that ¥, — Y, as. forall ¢ € [0, T], and

IE( sup |Y}|2) < 00.
0<t<T
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Show that ¥,” > f’t”, where {17[”, 0 <t < T} solves the BSDE
~ T T r
Y =g+/ F(Y;*,zg)ds—n/ Y;’ds—/ (27, dB,).
t t 0

Identify lim, oo f’,” and deduce that Y; > 0,0 <t < T, a.s., and (with the
help of Dini’s theorem) that supy, <7 (¥,")” — 0 in mean square.

Show that {Z]', 0 < t < T} is a Cauchy sequence in A,% (0, T). Hint: check
that

T T
[ (V" — Y7)(dK" — dK?) < [ (/) dK! + (¥)~dK] > o.
t t

Deduce that K" converges in probability to a progressively measurable increas-
ing continuous stochastic process K.

Show that the just constructed triple {(X;, Z;, K;), 0 < ¢t < T} is a unique
progressively measurable solution of the reflected BSDE: for all ¢+ € [0, T],
P-a.s.

(i) Y is a continuous stochastic process, ¥; > 0,

T
(ii) Kisc.is.p., [ Y. dK, = 0,
0

T
(iii) E/ |Z,2dt < oo,
0

T T
) Y,=£t+ / F(Y,, Zs)ds + Kr — K; —/ (Zs,dBy) .
t t

With the help of Tanaka’s formula applied to (¥;)* = Y;, show that in the sense
of inequality between measures,

0 <dK, < 1yy,=qy [F(Y:, Z,)] dt.

Deduce that K is absolutely continuous.
Show that the points 2-9 constitute a particular case of Theorem 5.52.

Exercise 5.5. Let n € L°(Q, Fr,P;R) be such that 0 < n < 1, P-a.s. Prove that
the BSDE

T T
Y, = n+ f Y (1 - Yv) ds — / (ZSv dBv)
t t

has a unique solution (Y, Z) € S} [0, T] x Ai (0, T"). Moreover

T p/2
E (/ |ZS|2ds) < oo, forall p>0,
0

0<Y, <1, P-a.s.
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Exercise 5.6. Let ¢ > 0, k : R — R be a continuous bounded function and g :
R — R be a bounded Lipschitz continuous function. Consider the PDEs

1
u, (t,x) + EMZ* (t,x) =0, (t,x)€]0, T[xR,
u(T,x) =k (x) x €R,

(5.261)

and

( 8); ( ’ x) _2 (’/t ).:C/.X (t7 x) Sin (x) g (”8 (t7 x) ) (ué‘); ( ’ x)) — Y,
u 7 = ( ’X) E]O, z [)(IR7 (5~262)
( ’ x) K (x) ’ X € R.

1. Write the BSDEs in (Y**, Z"*) and respectively in (Y5, Z%"*) such that
u(t,x) =Y and u® (¢, x) = ¥, are viscosity solutions of the PDEs (5.261)
and, respectively, (5.262). Are the corresponding viscosity solutions unique?

2. Prove that

limu® (0,x) = u(0,x), forallx € R.
e—0

Exercise 5.7. Let E be a non-empty closed subset of R, ¢ : R* — E be a
bounded Borel measurable function and F : @ x [0,7] — R™ be a bounded
progressively measurable stochastic process. Let (Y, Z) € S} [0, T] x A}nxk 0,7)
be such that

T T
Y, =g(BT)+/ Fsds—/ ZdBy, a.s., tel0,T].
! t

Show that (i) = (ii), where:

(@) P-as., {Y;:t €[0,T]} C E, for all bounded Borel measurable function g :
R - E;
(i) E is aconvex set.
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