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Abstract  The 3D information is useful in the security services and media production  
markets. However, it is difficult to achieve a reliable and dense 3D reconstruction from 
images. In this paper, we introduce a new approach to generating a dense 3D map  
from stereo images. We estimate the epipolar geometry and find matches using the 
geometric model. Given matches, we triangulate the 3D points and propagate the  
3D information to neighboring pixels. For propagation, we use segmentation for a 
plane fitting and non-homogeneous optimization for an edge-preserving smoothing.

Keywords  3D reconstruction  •  Stereo

6.1 � Introduction

Multi-camera systems become popular in recent years. Surveillance systems use 
them to monitor specific areas. When multi-camera systems need to track a mov-
ing target, it is essential to pass the 3D information to each other (Fig. 6.1).

Media production uses multi-camera techniques to broadcast sports. The growing  
3D TV market will demand more advanced techniques.

However, it is difficult to achieve a reliable and dense 3D reconstruction from 
images. This paper introduces a new approach to generating a 3D map from non-
rectified stereo images. We estimate the epipolar geometry find matches using 
the geometric model. Given matches, we triangulate the 3D points and propagate 
the 3D information to neighboring pixels. For propagation, we segment the input 
image and apply a plane fitting. In addition, we perform non-homogeneous opti-
mization for an edge-preserving smoothing.
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Although there exist previous methods which reconstruct 3D structures using 
stereo and segmentation [1, 4, 7], they deal with rather simple depth maps and rely 
on quite complicated algorithms.

6.2 � Algorithm Description

For each pixel, we estimate a depth value. We call our depth estimation the depth map. 
We estimate the depth map in three steps. First, we estimate the depth value at corners. 
Then, we segment the image and apply a 3D plane-fitting to each segment given the 
sparse depth values. Finally, we propagate this depth measure to the rest of the image.

6.2.1 � Epipolar Geometry Estimation and Triangulation

Given two non-rectified stereo images (Fig. 6.2), we estimate the epipolar geometry 
[3]. Since we assume the images are calibrated, we estimate the essential matrix. 
We lower the threshold for the corner detection to detect more matches (Fig. 6.3).

Fig. 6.1   Multi-camera surveillance systems
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We triangulate the resulting matches and compute the initial 3D points. 
Although we increased the number of matches, they are points in the corners and 
do not cover the whole image. Therefore, we propagate the initial 3D points to the 
whole  image (Fig. 6.4).

6.2.2 � Segmentation and Plane-Fitting

To propagate the initial sparse depth value to the neighboring pixels, we segment the 
input image. After segmentation [2], we explicitly enforce the depth discontinuities in 
the segmentation boundaries and the depth continuities inside each segment using a 
plane-fitting. This results in sharp discontinuities and smooth planes (Figs. 6.5 and 6.6).

Fig. 6.2   Input images. They are not rectified, but calibrated

Fig. 6.3   Corner detection results (red and green points) and resulting matches (blue lines) satisfying 
the epipolar geometry
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To find a best-fitting plane, we use RANSAC (RANdom SAmple Consensus) 
[3] and PCA (Principal Component Analysis). We randomly select four initial depth 
values in a segment and estimate a corresponding plane using SVD (Singular Value 
Decomposition). We iterate the above process and find a best-fitting plane with a 
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Fig. 6.4   The initial sparse 3D from two different views of the first example in Figs. 6.2 and 6.3. 
The horizontal rotation and vertical elevation in degrees are a −45 and 20, and b 60 and −10 
respectively

Fig. 6.5   Segmentation results

Fig. 6.6   Plane fitting example and plane fitting results. The red values means far and blue means 
near
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smallest fitting error. We register the plane if the plane satisfies more than 60 % of 
the initial depth values with less than 0.1 fitting error in the segment and if the area 
containing the initial depth values projected to the selected plane covers more than 
20 % of the area of the segment projected to the plane.

However, to fit a plane, there should be at least three matches and there exist 
segments with less than three matches. To resolve this issue, we use an edge- 
preserving smoothing.

6.2.3 � Edge-Preserving Smoothing

For the segments where a plane cannot be fitted, we propagate the initial 3D maps 
to the whole image using non-homogeneous optimization [5]. Our assumption is 
that the depth varies smoothly over the image except where the color is discon-
tinuous. We propagate the depth value to the neighbors with similar color.

We impose the constraint that neighboring pixels p, q have similar depth if they 
have similar colors. We minimize the difference between the depth D(p) and a 
weighted average of depth of neighboring pixels:

Non-homogeneous optimization:

where ID(p) is the initial depth measure from the plane fitting and σp is the standard 
deviation of the colors of neighboring pixels in a window around p. The window 
size used is 21 × 21. We have experimented both with setting the second term as 
hard constraints versus a quadratic data term, and have found that the latter is more 
robust to potential remaining errors in the depth measure.

6.3 � Results

We have implemented our dense 3D reconstruction using Matlab. We crop the 
upper and lower 2 % of the depth map.

6.3.1 � Depth Map Results

Figure  6.7 presents the depth map of the input images in Fig.  6.2. Figure  6.8 
shows an additional example and result.

(6.1)
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∑
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6.3.2 � 3D Results

Since we assume the camera is calibrated, we can compute the normalized coordinate 
for each pixel. As we multiply the depth value to the normalized coordinate, we achieve 
the 3D values for each pixel (Fig. 6.9).

Fig. 6.7   The depth map results of the input images in Fig. 6.2. The red values means far and 
blue means near

Fig. 6.8   An additional result. The red values means far and blue means near

Fig. 6.9   The final dense 3D from two different views of the example in Fig. 6.4. The depth map 
clearly shows the depth discontinuities between the girl and bush and continuities in the grass 
and bush. The horizontal rotation and vertical elevation in degrees are a −45 and 20, and b 60 
and −10 respectively
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6.3.3 � Evaluation

We evaluate the accuracy of our 3D using the Middlebury stereo datasets at http://
vision.middlebury.edu/stereo/data/ [6]. Although the datasets are rectified, we do 
not rely on the fact that there is no rotation between the left and right cameras. The 
Middlebury stereo datasets provide the ground-truth disparities from a structured-
lighting approach. We convert our depth map into disparity map using the following 
equation.

Conversion between depth and disparity:

Figures 6.10 and 6.11 show the results. They present that the corresponding disparity 
map from our 3D is very close to the ground-truth.

(6.2)Depth =
focal length

disparity

Fig. 6.10   Evaluation results. a Left image, b right image, c ground-truth disparities, d our result, 
e disparity differences, f pixels with less than 3 pixel disparity error, and g pixels with less than  
1 pixel disparity error. 92 % pixels have less than a 3 pixel-error, and 85 % pixels have less than a 
1 pixel-error. The median error ratio is 4.2 %

http://vision.middlebury.edu/stereo/data/
http://vision.middlebury.edu/stereo/data/
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In Fig. 6.10, 92 % pixels have less than a 3 pixel-error, and 85 % pixels have less 
than a 1 pixel-error. The median error ratio is 4.2 %. In Fig. 6.11, 91 % pixels have 
less than a 3 pixel-error, and 72 % pixels have less than a 1 pixel-error. The median 
error ratio is 1.9 %.

6.4 � Conclusion

This paper introduces a new approach to reconstructing a dense 3D from a sparse 
3D. Given a pair of non-rectified images, we estimate sparse depth values at corners 
and propagate the 3D information to the neighboring pixels using a plane-fitting 
and edge-preserving smoothing. Our assumption is that depth is piece-wise smooth 

Fig. 6.11   More evaluation results. a Left image, b right image, c ground-truth disparities, d our 
result, e disparity differences, f pixels with less than 3 pixel disparity error, and g pixels with less 
than 1 pixel disparity error. 91 % pixels have less than a 3 pixel-error, and 72 % pixels have less 
than a 1 pixel-error. The median error ratio is 1.9 %
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and particularly smooth where colors are similar. We verify the accuracy of our  
3D using the ground-truth disparity maps.

We envision that the resulting dense 3D reconstruction will be of benefit to the 
security services and media production markets.
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