
Chapter 6
Rotation-Based Ensemble Classifiers
for High-Dimensional Data
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Abstract In past 20 years,MultipleClassifier System (MCS) has showngreat poten-
tial to improve the accuracy and reliability of pattern classification. In this chapter,
we discuss the major issues of MCS, including MCS topology, classifier genera-
tion, and classifier combination, providing a summary of MCS applied to remote
sensing image classification, especially in high-dimensional data. Furthermore, the
recently rotation-based ensemble classifiers, which encourage both individual accu-
racy and diversity within the ensemble simultaneously, are presented to classify
high-dimensional data, taking hyperspectral and multidate remote sensing images as
examples. Rotation-based ensemble classifiers project the original data into a new
feature space using feature extraction and subset selection methods to generate the
diverse individual classifiers. Two classifiers: Decision Tree (DT) and Support Vec-
tor Machine (SVM), are selected as the base classifier. Unsupervised and supervised
feature extraction methods are employed in the rotation-based ensemble classifiers.
Experimental results demonstrated that rotation-based ensemble classifiers are supe-
rior to Bagging, AdaBoost and random-based ensemble classifiers.
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6.1 Introduction

Learning from high-dimensional data has important applications in areas such as
speech processing, medicine, monitoring urbanization using multisource images,
mineralogy using hyperspectral images [34, 56, 62, 64, 75, 77, 93]. Despite con-
stant improvements in computational learning algorithms, supervised classification
of high-dimensional data is still a challenge largely due to the curse of dimensional-
ity (Hughes phenomenon) [40]. This is because the training set is very limited when
compared to the hundreds or thousands of dimensions in high-dimensional data
[8, 54]. Big efforts on feature extraction and feature selection have been applied to
the supervised classifiers [35, 59, 61, 67, 69, 83, 92]. Since each learning algorithm
(feature selection/extraction, classifiers) has its own advantages and disadvantages,
efficient methodologies have yet to be developed. One of the most usual ways to
achieve that is Multiple Classifier System (MCS) [4, 7, 11, 20, 27, 48, 50, 74, 78,
79, 85].

MCS comes from the idea that seek advices from several persons to make the final
decision, where the basic assumption is that combining the opinions will produce a
decision that is better than the single opinion [48, 50, 74]. The individual classifiers
(member classifiers) are constructed and their outputs are integrated according to a
certain combination approach, to gain the final classification result. The outputs can
be generated by the same classifier with different training sets, or by the different
classifiers with same or different training set. The success of MCS not only depends
on a set of appropriate classifiers, but also on the diversity within the ensemble, which
referred to two conditions: accuracy and diversity [15, 47]. Accuracy requires a set
of appropriate classifiers to be as accurate as possible. Diversity means the difference
among the classification results. Combining similar classification results would not
further improve the accuracy. Both theoretical and empirical studies demonstrated
that using a good diversity measure is able to find the extent of diversity among clas-
sifier and estimate the improvement in accuracy of combining individual classifiers
[50, 74]. However, Brown et al. pointed out that the diversity for classification tasks
is still an ill-defined concept, and defining an appropriate diversity measure for MCS
is still an open question [12].

Generally speaking, we often adapt three independent steps: topology selection,
classifier generation, and classifier combination, to construct the MCS. In Sect. 6.2,
we will give a review on the uses of MCS, including these steps and along with the
application of remote sensing.

Rotation-based ensemble classifier is one of the current state-of-the-art ensemble
classifier methods [72]. This algorithm constructs different training sets as follows:
first, the feature set is divided into several disjoint sets on which the training set is
projected. Second, the subtraining set is obtained from the projection results using
bootstrapping technique. Third, feature extraction is used to rotate each obtained
subtraining set. The components obtained from feature extraction are rearranged to
form the dataset that is treated as the input of a single individual classifier. The final
result is produced by combining the output of individual classifiers generated by
repeating the above steps in multiple times.
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In this chapter, we will apply rotation-based ensemble classifier to classify high-
dimensional data. In particular, two classifiers: Decision Tree (DT) and Support Vec-
torMachine (SVM), are selected as the base classifiers. Unsupervised and supervised
feature extraction methods are employed to rotate the training set. The performances
of rotation-based ensemble classifiers are evaluated by the high-dimensional remote
sensing images.

The remainder of this article is organized as follows. In Sect. 6.2, we introduce the
topology, classifier generation, and classifier combination approaches of MCS, sum-
marize the advances of MCS to high-dimensional remote sensing data classification.
The main idea and two implementations of rotation-based ensemble are shown in
Sects. 6.3 and 6.4, respectively. Experimental results are presented in Sect. 6.5. The
conclusion and perspective of this chapter are drawn in Sect. 6.6.

6.2 Multiple Classifier System

Different classifiers, such as parametric classifiers and non-parametric classifiers,
have their own strengths and limitations. The famous ‘no free lunch’ theorem stated
byWolpert may be extrapolated to the point of saying that there is no single computa-
tional view that solves all problems [86]. In the remote sensing community, Giacinto
et al. compared the performances of different classification approaches in various
applications and found that no one could always gain the best result [32]. In order
to alleviate this problem, MCS can provide the complementary information of the
pattern classifiers and integrate the outputs of these pattern classifiers so as to make
the best use of the advantages and bypass the disadvantages. Nowadays MCS are
highlighted by review articles as a hot topic and promising trend in remote sensing
image classification and change detection [4, 21].

Most of MCS approaches focus on integrating the supervised classifiers. Few
works devote to combine unsupervised classification results, often called cluster
ensemble [38, 41]. Gao et al. proposed an interesting work to combine multiple
supervised and unsupervised models using graph-based consensus maximization
[29]. Unsupervised models (clustering), which do not directly generate label pre-
diction for each individual classifier, can provide useful constraints for the joint
prediction of a set of related object. Thus, Gao et al. proposed to consolidate a
classification solution by maximizing the consensus among both supervised predic-
tions and unsupervised constraints based on the optimization problem on a bipartite
graph [29]. Experimental results on three real applications demonstrate the benefits
of the proposed method over existing alternatives. In this chapter, we focus on the
combination of supervised classifiers.

The main issues of MCS design are [50, 74, 88]:

• MCS topology: How to interconnect individual classifiers.
• Classifier generation: How to generate and select valuable classifiers.
• Classifier combination: How to build a combination function which can exploit
the strengths of the selected classifiers and combine them optimally.
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(a) (b)

Fig. 6.1 The topologies of MCS. a Parallel style. b Concatenation style

6.2.1 MCS Topology

Figure 6.1 illustrates the two topologies employed in MCS design. The overwhelm-
ing majority of MCS reported in the literature is structured in a parallel style. In
this architecture, multiple classifiers are designed independently without any mutual
interaction and their outputs are combined according to certain strategies [70, 71,
90]. Alternatively, in the concatenation topology, the classification result generated
by a classifier is used as the input into the next classifier [70, 71, 90]. When the
primary classifier cannot obtain the satisfactory classification result, then the output
of the primary classifier is feed to a secondary classifier, and so on. The main draw-
back of this topology is that the mistakes produced by the earlier classifier cannot be
corrected by the later classifiers.

A very special case of concatenation topology is the AdaBoost [28]. The goal of
AdaBoost is to enhance the accuracy of any given learning algorithm, even weak
learning algorithms with an accuracy slightly better than chance. The algorithm
processes training of the weak learner multiple times, each time presenting it with an
updated weight over the training samples. Then, the weights of misclassified samples
are increased to concentrate the learning algorithm on specific samples. Finally, the
decisions generated by the weak learners are combined into a single decision.

6.2.2 Classifier Generation

Classifier generation aims to build mutually complementary individual classifiers
that are accurate and at the same time disagree on some different parts of the input
space. Diversity of individual classifiers is a vital requirement for the success of the
MCS.
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Fig. 6.2 Different classifier combinations using three single classifiers. The three colors represent
the different classes. The overall accuracy of all individual classifier is 6/9. The overall accuracies
of the four combinations are 1, 8/9, 6/9, and 5/9, respectively

Both theoretical and empirical studies indicate that we can ensure diversity
using Homogeneous and Heterogeneous approaches [50, 74]. In Homogeneous
approaches, we can obtain a set of classification results obtained by the same clas-
sifier by injecting randomness into the classifier, manipulating the training sample
and the input features. The Heterogeneous approaches are to apply different learning
algorithms to the same training set. First of all, we will start to review some diver-
sity measures, and the generated classifiers followed to ensure the diversity in the
ensemble.

6.2.2.1 Diversity Measures

Diversity represents the difference among the individual classifiers [15, 47].
Figure 6.2 presents four different classifier combinations within three classes (9 sam-
ples) using majority vote approach. Overall accuracy of each individual classifier is
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Table 6.1 Summary of the 15 diversity measures

Name p/n s/dis/c ↑ / ↓ Range Reference

Kappa statistic (κ1, κ2) p s ↓ [−1, 1] [57, 60]
Mutual Information (MI) p s/c ↓ / [43]
Q-statistic (Q) p s/c ↓ [−1, 1] [49, 53]
Correlation coefficient (ρ) p s/c ↓ [−1, 1] [53]
Double fault (DF) p s ↓ [0, 1] [30]
Disagreement (Dis) p dis ↑ [0, 1] [39]
Same fault (SF) p s ↓ [0, 1] [2]
Weighted count of errors and correct (WCEC) p s ↑ / [2]
Entropy (E) n s ↓ [0, 1] [17, 53]
Kohavi-Wolpert variance (KW) n dis ↑ [0, 0.5] [45]
Interrater agreement (IA) n s ↓ [0, 1] [25, 53]
Generalized diversity (GD) n dis ↑ [0, 1] [53, 68]
Conincident faiure diversity (CFD) n dis ↑ [0, 1] [68]
Difficulty (θ) n dis ↓ [0, 0.25] [37]

Note ‘p’ stands for ‘pairwise’ and ‘n’ stands for ‘non pairwise’, ‘s’ means ‘similarity,’ ‘c’ means
‘correlation’ and ‘dis’ means ‘dissimilarity.’ The arrow specifies the greater diversity if the measure
is lower (↓) or higher (↑)

6/9. The accuracies of the four combinations are 1, 8/9, 6/9, and 5/9, respectively.
Our goal is to use diversitymeasures to find the classifier combination like in Fig. 6.2a
or b and avoid to select the third or especially the fourth classifier combination.

Kuncheva and Whitaker summarized the diversity measures in classifier ensem-
bles [53]. A special issue called “Diversity Measure in Multiple Classifier System”
published in Information Fusion journal indicates that diversity measure is an impor-
tant research direction in MCS [51]. Petrakos et al. applied agreement measure in
decision fusion level combination [60]. Foody compared the different classification
results from three aspects: similarity, non-inferiority and difference using hypothesis
tests and confidence interval algorithms [26]. It is proved that increasing diversity
should lead to better accuracy, but there is no formal proof of this dependency [12].
Table 6.1 summarizes the 15 diversity measures with their types, data range and
literature sources.

Diversity measures also play an important role in ensemble pruning. Ensemble
pruning aims at reducing the ensemble size prior to combination while maintaining
a high diversity among the remaining members in order to reduce the computa-
tional cost and memory storage. To deal with the ensemble pruning process, sev-
eral approaches have been proposed such as clustering-based, ranking-based, and
optimization-based approaches [82].

6.2.2.2 Ensuring Diversity

Following the steps of pattern classification, we can enforce the diversity by the
manipulation of training samples, features, outputs and classifiers.
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Manipulating the training samples: In this method, each classifier is trained
on different versions of training samples by exchanging the distribution of origi-
nal training samples. This method is very useful for the unstable learner (decision
tree and neural network), for which small changes in the training set will lead to a
major change in the obtained classifier. Bagging and Boosting belong to this category
[9, 28]. Bagging applies sampling with replacement to obtain the independent train-
ing samples for individual classifiers. Boosting changed the weights of training sam-
ples according to the results of the previous trained classifiers, focusing on the wrong
classified samples, making the final result using a weight vote rule.

Manipulating the training features: The most well-known algorithm of this
type is Random subspace [39]. Random subspace can be employed for several types
of base learners, such as DT (Random Forest) [10], SVM [85]. Another development
is Attribute Bagging, which establishes the appropriate size of a feature subsets, and
then creates random projections of a given training set by random selection of feature
subsets [13].

Manipulating the outputs: Multiclassification problem can be converted into
several two-class classification problems. Each problem discover the discrimination
between one class and the other classes. Error Correcting Output Coding (ECOC)
adapts a code matrix to convert a multiclass problem into binary ones. Ensemble of
multiclassifier classification problem can be treated as ensembles of multiple two-
classifier classification problem, and then combined together [19]. The other method
to deal with the outputs is label switching [58]. This method generates an ensemble
by using perturbed version of the training setwhere the classes of the training samples
are randomly switched. High accuracy can be achieved with fairly large ensembles
generated by class switching.

Manipulating the individual classifiers: We can use different classifiers or the
same classifier with different parameters to ensure the diversity. For instance, when
the SVM is selected as the base learner, we can gain diversity by using different
kernel functions or parameters.

6.2.3 Classifier Combination

Majority vote is a simple and an effective strategy for classifier combination. Within
this scheme, a pixel is assigned as the class which gets the highest vote from the indi-
vidual classifiers. Foody et al. used majority vote rule to integrate multiple binary
classifiers for the mapping of a specific class [27]. According to the output of indi-
vidual classifier, classifier combination approaches can be divided into three levels:
abstract level, rank level, and measurement level [76]. The abstract level combina-
tion methods are applied when each classifiers outputs a unique label [76]. Rank
level makes use of a ranked list of classes where ranking is based on decreasing
likelihood. In the measurement level, probability values of the classes provided by
each classifier are used in the combination. Majority/weighted vote, fuzzy integral,
evidence theory, and dynamic classifier selection belong to the abstract level com-
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Table 6.2 Summary of classifier combination approaches

Name Hard labels Soft labels Validation set Reference

Majority vote Y N N [50]
Weighted vote Y N Y [63, 90]
Bayesian average N Y N [30]
Dempster-shafer evidence theory Y N Y [50, 81]
Fuzzy integral Y N Y [46, 65]
Consensus theory Y Y Y [5, 6]
Dynamic classifier selection Y N Y [31, 78, 87]

Note “Y” and “N” mean whether or not the hard labels, soft labels or validation set are needed.
Dynamic classifier selection method needs the original image to calculate the distance

bination methods. Bayesian average and Consensus theory belong to measurement
level methods. Table 6.2 summarizes classifier combinational approaches. Weighted
vote, fuzzy integral, Dempster-Shafer evidence theory and consensus theory require
anther training set to calculate the weights. Dynamic classifier selection calculates
the distance between the samples so it requires the original image. The computation
time of dynamic classifier selection is more expensive than other approaches.

6.2.4 Applications to High-Dimensional Remote Sensing Data

Table 6.3 lists the studies of MCS applied to high-dimensional remote sensing
images in recent years. These studies applied different effective MCS schemes to
classify high-dimensional data, including multisource, multidate, and hyperspec-
tral remote sensing data. In the works of Smits [78], Briem et al. [11], Gislason
et al. [33], dynamic classifier selection, Bagging, Boosting and Random Forest are
applied to classifymultisource remote sensingdata, respectively. Lawrence et al. [55],
Kawaguchi and Nishii [44], Chan and Paelinckx [14], Rodriguez-Galiano et al. [73]
used Boosting and Random Forest for the classification of multi-date remote sensing
images. Doan and Foody [20] combining the soft classification results derived from
NOAAAVHRR images using average operator and Evidence theory. FromTable 6.2,
the most well-known MCS approaches for hypespectral image classification is Ran-
dom Forest. In Random Forest, each tree is trained on a bootstrapped sample of the
original dataset and only a randomly chosen subset of the dimensions is considered
for splitting a leaf. Thus, the computational complexity can be reduced and the cor-
rection between the trees are decreased. Apart from this, Waske et al. [85] developed
random selection-based SVM for the classification of hyperspectral images. Yang
et al. [91] proposed a novel subspace selection mechanism, dynamic subspace
method, to improve random subspace method on automatically determining dimen-
sionality and selecting component dimensions for diverse subspace. Du et al. [22]
constructed diverse classifiers using different feature extraction methods and then
combined the results using evidence theory, linear consensus algorithms. Recently,
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Table 6.3 Studies on high-dimensional remote sensing image classification using MCS published
in journals in recent years

Study Methods Datasets

Smits [78] Dynamic classifier selection Multispectral and SAR
images

Briem et al. [11] Bagging, Boosting and
Consensus theory

Landsat MSS/AMSS+SAR
and elevation, slope,
aspect data

Lawrence et al. [55] Stochastic gradient boosting Multi-temporal Landsat TM
images

Ham et al. [36] Random Forest Hyperspectral images
Gislason et al. [33] Random Forest Landsat MSS and elevation,

slope, aspect data
Doan and Foody [20] Average operator and

Evidence theory
NOAA AVHRR images

Kawaguchi and Nishii
[44]

AdaBoost with stump
functions

Hyperspectral images

Chan and Paelinckx [14] Random Forest and
AdaBoost tree-based
ensemble

Hyperspectral images

Waske et al. [84] Random Forest Hyperspectral images
Yang et al. [91] Dynamic random subspace Hyperspectral images
Waske et al. [85] Random subspace Hyperspectral images
Bakos and Gamba [3] Hierarchical hybrid

decision tree
Hyperspectral images

Du et al. [22] Evidence theory, linear
consensus

Hyperspectral images

Rodriguez-Galiano
et al. [73]

Random Forest Multi-temporal Landsat TM
images

Xia et al. [89] Rotation Forest Hyperspectral images

Xia et al. [89] used Rotation Forest to classify hyperspectral remote sensing images.
Compared to Random Forest, Rotation Forest [89] uses feature extraction to promote
both the diversity and the accuracy of individual classifiers. Therefore, Rotation For-
est can generate more accurate result than Random Forest.

6.3 Rotation-Based Ensemble Classifiers

In this study, rotation-based ensemble classifiers are used for high dimensional data.
Let {X, Y } = {xi , yi }n

i=1 be training samples. T is number of classifier. K is number
of subsets (M : number of features in each subset). Γ is the base classifier. The
details of rotation-based ensemble are presented in Algorithm 1 and Fig. 6.3 [66, 72].
According to Algorithm 1 and Fig. 6.3, the main steps of rotation-based ensemble
classifier can be concluded as follows:
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Fig. 6.3 Illustration of the rotation-based ensemble

• the input feature space is divided into K disjoint subspaces.
• feature extraction is performed on each subsets with the bootstrapped samples of
75 % size of {X, Y }.

• the new training data, which is obtained by rotating the original training samples,
is applied to the individual classifier.

• the individual classification results are combined using majority voting rule.

The strong performance is attributed to a simultaneous improvement of (1) diver-
sitywithin the ensemble, obtained by the use of feature extraction on training data and
(2) accuracy of the base classifiers, by keeping all extracted features in the training
data [66, 72].
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It is essential to notice step 5 in rotation-based ensemble presented inAlgorithm 1,
the sample size X

′
t, j is selected smaller than Xt, j due to two reasons: one is to avoid

obtaining the same coefficients when the same features are chosen and the other is
to enhance the diversity within the ensemble [72].

Given the importance of the choice regarding the algorithm for feature extraction
and the base classifier in rotation-based ensemble, several alternatives are considered
in this study. The detailed feature extraction methods and base classifier can be found
in the following section.

Algorithm 1 Rotation-based ensemble
Require: {X, Y } = {xi , yi }n

i=1: training samples, T : number of classifier, K : number of subsets
(M: number of features in each subset), Γ : base classifier
1. For t = 1 : T
2. randomly split the features F into K subsets Ft, j
3. For j = 1 : K
4. select the corresponding features of Ft, j to compose a new training features Xt, j

5. select a new training samples X
′
t, j using bootstrap algorithm, whose size is 75 % of

the original size
6. transform X

′
t, j to get the coefficients v(1)

t, j , ..., v(Mk )
t, j

7. Endfor
8. sparse matrix Rt is composed of the above coefficients

Rt =

⎡
⎢⎢⎢⎢⎣

v(1)
t,1 , ..., v(M1)

t,1 0 · · · 0

0 v(1)
t,2 , ..., v(M2)

t,2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · v(1)
t, j , ..., v(MK )

t, j

⎤
⎥⎥⎥⎥⎦

9. rearrange Rt to Ra
t with respect to the original feature set

10. obtain the new training samples
{
XRa

t , Y
}

11. build classifier Γt using
{
XRa

t , Y
}

12. Endfor
Ensure: the class label of given sample x predicted by multiple classifier

Γ ∗(x) = argmaxy∈φ

∑T
t=1 I

(
Γt

(
xRa

t

) = y
)

I (a = b) equals to 1 when a equals to b, otherwise equals to 0

6.4 Two Implementations of Rotation-Based Ensemble

6.4.1 Rotation Forest

Decision trees are often used for the multiple classifier system, especially for the
rotation-based ensembles, because it is sensitive and fast. In this chapter, we adapt
Classification and Regression Tree (CART) to construct Rotation Forest (RoF).

CART is a nonparametric decision tree learning technique, which can be both
used for classification and regression. Decision trees are formed by a collection of



146 J. Xia et al.

rules based on variables in the modeling dataset: (1) rules based on variables’s values
are selected to get the best split to differentiate observations based on the dependent
variable, (2) once a rule is selected and a node is split into two, the same process is
applied to each ‘child’ node. (3) splitting stops when CART detects no further gain
can be made, or some preset stopping rules are met. Each branch of the tree ends
in a terminal node. Each observation falls into exactly one terminal node, and each
terminal node is uniquely defined by a set of rules.

Both unsupervised and supervised feature extraction methods are applied to Rota-
tion Forest. Principal Component Analysis (PCA) is the most popular linear unsu-
pervised feature extraction method, which can keep the most information in a few
components in terms of variance. Though Cheriyadat and Bruce provide theoretical
and experimental analysis to demonstrate that PCA is not optimal for dimensionality
reduction in target detection and classification of hyperspectral data, PCA are still
competitive for the purpose of classification because of its low complexity and the
absence of parameters [16, 24].

Linear Discriminant Analysis(LDA) is the best-known supervised feature extrac-
tion approaches.But thismethodhas the limitation: forC class classificationproblem,
it can extract at maximum C − 1 features [18, 54]. That means in Rotation Forest,
we should define the value of C is greater than K . In order to solve the problem, we
adapt Local Fisher Discriminant Analysis (LFDA) instead of LDA. LFDA effectively
combines the ideas of LDA and Locality Preserving Projection (LPP), which leads
to both maximize between-class separability and preserve with-class local structure
[80]. It can be viewed as the following eigenvalue decomposition problem:

Slbv = λSlwv (6.1)

where, v is an eigenvector and λ is the eigenvalue corresponding to v. Slb and Slw

denote the local between-class and within-class scatter matrix. LFDA wants to find
an eigenvectormatrix thatmaximize the local between-class scatter in the embedding
space while minimize the local within-class scatter in the embedding space. Slb and
Slw can be defined:

Slb = 1

2

n∑
i, j=1

ωlb
i, j (xi − x j )(xi − x j )

� (6.2)

Slw = 1

2

n∑
i, j=1

ωlw
i, j (xi − x j )(xi − x j )

� (6.3)

where, ωlb and ωlw are the weight matrices with:

ωlb
i, j =

⎧⎨
⎩

Ai, j

(
1
n − 1

nyi

)
yi = y j

1
n yi �= y j

(6.4)
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ωlw
i, j =

{
Ai, j
nyi

yi = y j

0 yi �= y j
(6.5)

where, Ai, j is the affinity value between xi and x j in the local space.

Ai, j = exp

(
−

∥∥xi − x j
∥∥

σiσ j

)
(6.6)

σi = ∥∥xi − xe
i

∥∥ (6.7)

where, xe
i is the e-th nearest neighbor of xi , nyi is the number of labeled samples in

class yi ∈ {1, 2, 3, ..., C}.

6.4.2 Rotation SVM

SVM classifier has shown better classification performance for high-dimensional
data than other classifier. SVM is very stable that small changes in the training set
cannot produce very different SVM classifiers.

Therefore, it is difficult to get an ensemble of multiple SVM that perform better
than a single SVM using the state of the art ensemble methods. Thus, we hope
to introduce more diversity into SVM. In [52], diversity is analyzed for Random
Projections (RP) with and without splitting into group of attributes. Therefore, we
introduce Random Projection (RP) into rotation-based SVM in order to promote the
diversity within the ensemble.

RP obtains the rotation matrix using simply random number. Unlike other feature
extraction methods such as PCA, RP can get a projected space which is bigger than
the original. Two types of RP are used in this chapter [1]:

1. Gaussian. Eachvalue in transformationmatrix comes fromaGaussian distribution
(mean 0 and standard deviation).

2. Sparse. The entry values are
√
3 × α, where, α is a random number taking the

following value: −1 with the probability 1/6, 0 with the probability 2/3 and +1
with probability 1/6.

6.5 Experimental Results and Analysis

6.5.1 Experimental Setup

In this section, we present the results that we obtained with rotation-based ensemble
on different types of images. Two airborne hyperspectral images are used to evaluate
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Rotation Forest (RoF). An airborne hyperspectral and a multi-date remote sensing
images are applied to test the performance of Rotation SVM (RoSVM). The descrip-
tions of the data are detailed in the following two subsections. Overall accuracy
(OA), average accuracy (AA), and class-specific accuracy are used to evaluate the
efficiency of RoF and RoSVM.

Popular ensemble methods, including Bagging [9], AdaBoost [28] and Random
Forest (RF) [10] are added to be compared with Rotation Forest. The performance
achieved by Rotation Forest is illustrated using the following design:

• Number of features in each subset: M = 10;
• Number of classifiers in the ensemble: L = 10;
• Feature extraction method: PCA [42] and LFDA [80];

we employed RoF-PCA and RoF-LFDA as the abbreviations of Rotation Forest with
PCA and LFDA.

Gaussian RBF kernel is adopt in the SVM. In order to reduce the computational
time in the ensembles of SVM, we used the fixed parameters in SVM. Random
Projection-based ensemble is added to compare with RoSVM using RP projections.
Two sizes of projected space dimension have been tested (100 and 150 %). The
configurations of 150 % size are denoted as RoSVM or RP 150 %. The performance
achieved by RoSVM is illustrated using the following designs:

• Number of features in each subset: M = 10;
• Number of classifiers in the ensemble: L = 10;
• Feature extraction method: Random Projection (RP) with Gaussian and Sparse;
• Base classifier: SVM.

In the following experiments, we employed RP and RoSVM as the abbreviations
of Random Projection-based ensemble and rotation-based SVM ensemble.

6.5.2 Rotation Forest

6.5.2.1 Indiana Pines AVIRIS Image

The first hyperspectral image is recorded by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indiana Pines inNorthwestern Indiana, USA.
The image is composed of 145 × 145 pixels, and the spatial resolution is 20 m per
pixel. This image is a classical benchmark to validate the accuracy of hyperspectral
image analysis algorithms and constitutes a challengingproblemdue to the significant
presence of mixed pixels in all available classes and also because of the unbalanced
number of available labeled pixels per class. The three-band color composite and
ground truth of AVIRIS image can be seen in Fig. 6.4. We have chosen 20 pixels of
each class from the available ground truth (a total size of 320 pixels) as the training
set.
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Fig. 6.4 a Three-band color composite of AVIRIS image. b Ground truth: Corn-no till, corn-min
till, corn, soybean-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees,
grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel
towers

Fig. 6.5 Classification results of Indiana Pines AVIRIS image. Different color represents the dif-
ferent class. The color of the classes can be found in Fig. 6.4. a CART. b Bagging. c AdaBoost. d
RF. e RoF-PCA. f RoF-LFDA

Table 6.4 shows the classification accuracies (OA%) obtained by the Rotation
Forest approaches as well as other algorithms using different training samples. We
highlight the highest accuracies of each case in bold font. From Table6.4, it can
be seen that RoF-PCA and RoF-LFDA achieve better results than other ensemble
approaches (Bagging, Adaboost, and RF). Compared to Bagging, AdaBoost and RF,
Rotation Forest can promote the diversity and improve the accuracy of individual
classifier within the ensemble. Therefore, in most cases, Rotation Forest is superior
to Bagging, AdaBoost, and Random Forest. Our experimental results are compati-
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Table 6.4 Overall, average and class-specific accuracies of the Indiana Pines AVIRIS image

Class Train Test CART Bagging AdaBoost RF RoF-PCA RoF-LFDA

Alfalfa 20 54 77.78 79.63 79.63 87.04 88.89 88.89
Corn-no till 20 1434 32.15 52.09 37.66 37.34 50.28 50.84
Corn-min till 20 834 37.89 37.53 45.92 48.08 61.51 54.8
Bldg-grass-tree-drives 20 234 44.44 50.85 44.02 47.44 70.51 78.21
Grass/pasture 20 497 46.08 71.23 46.48 63.38 76.46 78.47
Grass/trees 20 747 57.43 79.92 84.47 73.9 73.63 76.44
Grass/pasture-mowed 20 26 88.46 88.46 92.31 92.31 96.15 92.31
Corn 20 489 62.99 49.69 58.69 81.6 86.09 84.05
Oats 20 20 30 90 75 100 100 100
Soybeans-no till 20 968 30.48 42.25 49.38 53.71 76.55 76.65
Soybeans-min till 20 2468 23.3 35.13 31 45.79 31.69 30.88
Soybeans-clean till 20 614 28.66 31.92 34.2 43.81 47.56 51.79
Wheat 20 212 86.79 88.68 86.79 92.45 94.34 91.98
Woods 20 1294 69.09 76.82 83 83.77 91.19 89.49
Hay-windrowed 20 380 48.16 45.79 46.84 55.53 48.42 48.42
Stone-steel towers 20 95 74.74 96.84 97.89 95.79 93.68 94.74
OA 41.44 51.87 50.54 56.97 60.88 60.60
AA 52.4 63.55 63.55 68.87 74.18 74.25

ble with the theorectical analysis. For instance, CART, Bagging, Adaboost and RF
acquired an OA of 41.44, 51.87, 50.54 and 56.97 %, respectively. RoF-PCA and
RoF-LFDA respectively increased the OA to 60.88 and 60.6 %, while the AA of
RoF-PCA and RoF-LFDA were improved to 23.78 and 23.85 % percertage points
compared to CART. The OA of RoF-PCA is slightly higher than the one of RoF-
LFDA. But there is no significantly difference between the two classification results
according to McNemar test. Nine of sixteen class-specific accuracies is improved by
RoF-PCA and RoF-LFDA.

The classification results of Indiana Pines AVIRIS image are shown in Fig. 6.5.
The classification map for the CART classifier was very noisy because CART is not
a promising classifier for high-dimensional data. Compared to the reference data
presented in Fig. 6.4b, all the ensemble methods produced more corrected classifi-
cation results than CART. If we carefully look at the reference image, particularly,
the area of Soybean-no till, this region is almost correctly classified by RoF-PCA
and RoF-LFDA, whereas it is classified as Corn-min till and Corn-no till by other
classifiers.

6.5.2.2 Pavia Center DAIS Image

The second image was acquired by the DAIS sensor at 1500 m flight altitude over
the city of Pavia, Italy. The image (seen in Fig. 6.6) has a size of 400 × 400 pixels,
with ground resolution of 5 m. The 80 data channels recorded by this spectrometer
were used for this experiment. Nine land cover classes of interest are considered,
which are detailed in Table 6.5, with the number of labeled samples for each class.
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Table 6.5 Overall, average and class-specific accuracies of the Pavia Center DAIS image

Class Train Test CART Bagging AdaBoost RF RoF-PCA RoF-LFDA

Water 10 4281 98.11 96.15 90.66 100 100 100
Trees 10 2424 56.89 67.12 63.74 88.7 87.83 91.3
Meadows 10 1251 97.44 97.76 97.2 99.52 99.12 99.12
Bricks 10 2237 74.17 77.08 72.68 65.02 84.27 80.2
Soil 10 1475 50.29 60.39 65.38 76.7 74.77 74.71
Asphalt 10 1704 77.7 77.7 83.28 77.35 91.99 97.91
Bitumen 10 685 68.22 63.66 76.62 83.33 94.95 93.74
Parking lot 10 287 70.22 87.01 91.09 78.1 86.28 88.32
Shadows 10 241 86.72 66.39 85.06 92.95 95.85 89.63
OA 76.71 79.09 79.6 87.67 91.72 91.8
AA 75.53 77.03 80.63 84.63 90.56 90.55

Fig. 6.6 a Three-band color composite of DAIS image. b Ground truth

The global accuracies and class-specific accuracies of the Pavia Center DAIS
image are reported in Table 6.5. The classification results achieved by the ensemble
classifiers are similar with the ones of AVIRIS image. Regarding the overall accu-
racies, Rotation Forest with different feature extraction algorithms are all superior
to other approaches under comparison. RoF-LFDA yields the highest OA (91.8%).
The accuracies of class Bricks, Asphalt and Bitumen are significantly improved by
the Rotation Forest ensemble classifiers. The classification results of Pavia Center
DAIS image are shown in Fig. 6.7.
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Fig. 6.7 Classification results of Pavia Center DAIS image. a CART. b Bagging. c AdaBoost. d
RF. e RoF-PCA. f RoF-LFDA

6.5.2.3 Sensitivity of the Parameters

Ensemble size (T ) and the number of features in a subset (M) are the key parameters
of Rotation Forest, which are indicators of the operating complexity. In order to
investigate the impacts of these parameters, we have performed the classification
results using different ensemble size when the number of subset M is fixed to 10,
different number of features in a subset when ensemble size T is fixed to 10. Fig. 6.8
shows the OA (%) using different number of T and M obtained from AVIRIS and
DAIS images. For AVIRIS image, the classification results are improved when the
values of T and M increased. RoF-PCA is superior to RoF-LFDA. For DAIS image,
the OAs are improved with the increasement of T . The general trend of different
values of M is not obvious.

6.5.2.4 Discussion

Based on the above classification results, we identify that the incorporation of multi-
ple classifiers has showngreat improvement for the classification of high-dimensional
data. In order to make MCS effective, we should enforce the diversity by the manip-
ulation of training sets. Bagging and Boosting aim at changing the distribution of
the training samples to obtain the different training set. Random subspace method
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(a) (b) (c) (d)

Fig. 6.8 Effects of varying parameters on the performance of rotation forest. Indiana Pines AVIRIS
image. a Sensitivity for change of T (M = 10). b Sensitivity for change of M (T = 10). Pavia
CenterDAIS image. c Sensitivity for change of T (M = 10).d Sensitivity for change of M (T = 10)

constructs several classifier by random selecting the subset of the features. It is very
useful for the classification problem where the number of features is much larger
than the number of training samples. Random subspace method is a generalization
of the Random Forest algorithm, whereas Random Forest is composed of decision
trees. Rotation Forest tries to create the individual classifiers that are both diverse
and accurate, each based on a different axis rotation of attributes. To create different
training set, the features are randomly split into a given number of subsets and feature
extraction is applied to each subset. Decision trees is very sensitive to the rotation of
axis. In this chapter, we select CART to construct Rotation Forest. Rotation Forest
can promote more diversity than Bagging, AdaBoost and Random Forest. Therefore,
it can produce more accurate results than Bagging, AdaBoost and Random Forest.
An important issue of Rotation Forest is the selection of the parameters (T and M). A
larger value of T will often increase the accuracy and also increase the computation
time. The optimal value of M is hard to determine. Different datasets achieve the
highest accuracy with different value of M . The computation time of Rotation Forest
approaches is longer than those of Bagging, AdaBoost and Random Forest. But the
computation complexity of Rotation Forest is much less than the one of the strong
classifier of high-dimensional data, such as SVM.

6.5.3 Rotation SVM

6.5.3.1 Indiana Pines AVIRIS Image

Table 6.6 shows overall, average and class-specific accuracies using different version
of rotation-based SVMs. We highlight the highest accuracies of each case in bold
font. It can be seen that RoSVM achieve the better results than RP, because RoSVM
can provide more diversity than RP. For this dataset, RP with Gaussian is superior
to the one of Sparse. By employing a slightly higher size of a projected space, the
results of RP is improved but RoSVM yields bad results. The corresponding results
are shown in Fig. 6.9. We have studied the impacts of T and M in RoSVM. The
sensitivity of performance using different T and M is not obvious.
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Fig. 6.9 Classification results of Indiana Pines AVIRIS image. a SVM. b RP Gaussian. c RP
Gaussian 150%. d RP Sparse. e RP Sparse 150%. f RoSVMGaussian. g RoSVMGaussian 150%.
h RoSVM Sparse. i RoSVM Sparse 150 %

6.5.3.2 CHRIS Multi-date Images

The second high-dimensional data is the three dates of Compact High-Resolution
Imaging Spectrometer (CHRIS) images acquired by the Project for On-BoardAuton-
omy (PROBA)-1 satellite with spatial resolution of 21 m/pixel. The total number of
spectral bands is 54. More details about CHRIS image can be seen in [23]. Training
samples contains 2,297 samples and test data includes 1,975 samples with 11 classes.
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The flowchart of RoSVM for classifying CHRIS image is the same as the previous
AVIRIS dataset. Single SVM achieved the accuracy of 84.05 %. All the methods
based on RP and RoSVM ensemble can generate the better accuracies than a single
SVM. In particular, RoSVMensembles are slightly superior toRP ensembles because
they enforce the diversity by applying RP to the subsets of the features. RoSVMwith
Spare RP gains the highest the overall accuracy.

6.5.3.3 Discussion

SVM is a stable classifier, so it is hard to generate different individual SVMclassifiers
using the commonmanipulationways. Therefore,we should introducemore diversity
to construct the diverse individual SVM classifiers. In this chapter, we adapt Random
Projection methods to produce diverse SVM classifiers. Two sizes of projected space
dimension have been tested. Experimental results indicated that RoSVM ensemble
outperform RP ensembles. The main drawback of RoSVM is the computational
complexity, especially for large training samples. The sensitivity of performance
using different M is not obvious.

6.6 Conclusion

In this chapter, we first presented a review of MCS approaches with special focus on
applications of high-dimensional data. Recently rotation-based ensemble classifiers
were applied to high-dimensional data. They consist in splitting the feature set into
several subsets, running feature extraction algorithms separately on each subset and
then reassembling a new extracted feature set while keeping all the components.
CART Decision Tree and SVM classifiers are used as the base classifier. Different
splits of the feature set lead to different rotations. Thus diverse classifiers are obtained.
We take into account both diversity and accuracy. Rotation Forest using PCA, LFDA,
Rotation SVM using RP are used to classify high-dimensional data.

Experimental results have shown that rotation-based ensemble methods (both
DT and SVM) outperform classical ensemble methods such as Bagging, AdaBoost,
Random Forest in terms of accuracies. The key parameters are also explored in this
chapter. Future studies will be devoted to the integration of rotation-based ensemble
classifiers with other ensemble approaches, the selection of an optimized Decision
Tree model, and the use of other effective feature extraction algorithms.
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