
Chapter 5
Evaluating Multimedia Features and Fusion
for Example-Based Event Detection

Gregory K. Myers, Cees G. M. Snoek, Ramakant Nevatia,
Ramesh Nallapati, Julien van Hout, Stephanie Pancoast, Chen Sun,
Amirhossein Habibian, Dennis C. Koelma, Koen E. A. van de Sande
and Arnold W. M. Smeulders

G. K. Myers (B) · J. van Hout · S. Pancoast
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
e-mail: gregory.myers@sri.com

J. van Hout
e-mail: julien.vanhout@sri.com

S. Pancoast
e-mail: stephanie.pancoast@sri.com

C. G. M. Snoek · D. C. Koelma · K. E. A. van de Sande · A. W. M. Smeulders
University of Amsterdam (UvA), Science Park 904, P.O. Box 94323, 1098 GH Amsterdam,
The Netherlands
e-mail: cgmsnoek@uva.nl

D. C. Koelma
e-mail: koelma@uva.nl

K. E. A. van de Sande
e-mail: ksande@uva.nl

A. W. M. Smeulders
e-mail: ArnoldSmeulders@uva.nl

R. Nevatia · C. Sun
Institute for Robotics and Intelligent Systems, University of Southern California (USC),
Los Angeles, CA 90089-0273, USA
e-mail: nevatia@usc.edu

C. Sun
e-mail: chensun@usc.edu

R. Nallapati
Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
e-mail: nallapati@us.ibm.com

A. Habibian
University of Amsterdam (UvA)-Euvision, Matrix II, Science Park 400,
1098 XH Amsterdam, The Netherlands
e-mail: a.habibian@uva.nl

B. Ionescu et al. (eds.), Fusion in Computer Vision, Advances in Computer 109
Vision and Pattern Recognition, DOI: 10.1007/978-3-319-05696-8_5,
© Springer International Publishing Switzerland 2014



110 G. K. Myers et al.

Abstract Multimedia event detection (MED) is a challenging problem because of
the heterogeneous content and variable quality found in large collections of Inter-
net videos. To study the value of multimedia features and fusion for representing
and learning events from a set of example video clips, we created SESAME, a sys-
tem for video SEarch with Speed and Accuracy for Multimedia Events. SESAME
includesmultiple bag-of-words event classifiers based on single data types: low-level
visual, motion, and audio features; high-level semantic visual concepts; and auto-
matic speech recognition (ASR). Event detection performance was evaluated for
each event classifier. The performance of low-level visual and motion features was
improved by the use of difference coding. The accuracy of the visual concepts was
nearly as strong as that of the low-level visual features. Experiments with a number
of fusion methods for combining the event detection scores from these classifiers
revealed that simple fusion methods, such as arithmetic mean, perform as well as or
better than other, more complex fusion methods.

5.1 Introduction

The goal of multimedia event detection (MED) is to detect user-defined events of
interest in massive, continuously growing video collections, such as those found on
the Internet. This is an extremely challenging problem because the contents of the
videos in these collections are completely unconstrained, and the collections include
user-generated videos. The quality of such videos varies widely, because they are
often made with handheld cameras and may exhibit jerky motions, wildly varying
fields of view, and poor lighting. The audio in these videos is recorded in a variety
of acoustic environments, often with a single camera-mounted microphone, with no
attempt to prevent background sounds from masking speech.

For purposes of this research, an event, as defined in the TREC Video Retrieval
Evaluation (TRECVID) MED evaluation task sponsored by the National Institute of
Standards and Technology (NIST) [1], has the following characteristics:

• It includes a complex activity occurring at a specific place and time.
• It involves people interacting with other people and/or objects.
• It consists of a number of human actions, processes, and activities that are loosely
or tightly organized and have significant temporal and semantic relationships to
the overarching activity.

• It is directly observable.

Figure5.1 shows some sample video imagery from events in the TRECVIDMED
evaluation task. Events are more complex and may include actions (hammering,
pouring liquid) and activities (dancing) occurring in different scenes (street, kitchen)
in indoor and outdoor environments. Some events may be process-oriented, with an
expected sequence of stages, actions, or activities (making a sandwich or repairing
an appliance); other events may be a set of ongoing activities with no particular
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Fig. 5.1 Key frame series from example videos for the events making a sandwich, repairing
an appliance, birthday party, and parade (The imagery was obtained from the Linguistic Data
Consortium. Faces have been obscured for privacy)

beginning or end (birthday party or parade). An event may be observed in only a
portion of the video clip, and relevant clips may contain extraneous content.

Multimedia event detection can be considered as a search problem with a query-
retrieval paradigm. Currently, videos in online collections, such as YouTube, are
retrieved based on text-based search. Text labels are either manually assigned when
the video is added to the collection or derived from text already associated with
the video, such as text content that occurs near the video in a multimedia blog or
web page. Videos are searched and retrieved by matching a text-based user query to
videos’ text labels, but performance will depend on the quality and availability of
such labels.

Highly accurate text-based video retrieval requires the text-based queries to be
comprehensive and specific. In the TRECVID MED [1] evaluation, each event is
defined by an “event kit,” which includes a 150–400 word text description consist-
ing of an event name, definition, explication (textual exposition of the terms and
concepts), and lists of scenes, objects, people, activities, and sounds that would indi-
cate the presence of the event. Figure5.2 shows an example for the event working
on a woodworking project. The user might also have to specify how similar events
are distinguished from the event of interest (e.g., not construction in Fig. 5.2), and
may have to estimate the frequency with which various entities occur in the event
(e.g., often indoors). Subcategories and variations of the event may also have to be
considered (e.g., operating a lathe in a factory).

The work described in this chapter focused on evaluating the various data types
and fusion methods for MED. The remainder of the paper is organized as follows.
A short state-of-the art is presented in Sect. 5.2. Our approach for example-based
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Fig. 5.2 Event kit for working on a woodworking project

MED, including methods for content extraction and fusion, is described in Sect. 5.3.
Experimental results are described in Sect. 5.4, and Sect. 5.5 contains a summary and
discussion.

5.2 Related Work and Motivation for Our Approach

Another approach to detect events is to define the event in terms of a set of example
videos, which we call an example-based approach. Example videos are matched
to videos in the collection using the same internal representation for each. In this
approach, the system automatically learns a model of the event based on a set of
positive and negative examples, taking advantage of well-established capabilities in
machine learning and computer vision. This chapter considers an example-based
approach with both nonsemantic and semantic representations.

Current approaches forMED[2–7] rely heavily onkernel-based classifiermethods
that use low-level features computed directly from the multimedia data. These clas-
sifiers learn a mapping between the computed features and the category of event that
occurs in the video. Videos and events are typically represented as “bag-of-words”
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models composed of histograms of descriptors for each feature type, including visual,
motion, and audio features. Although the performance of these models is quite effec-
tive, individual low-level features do not correspond directly to terms with semantic
meaning, and therefore cannot provide human-understandable evidence of why a
video was selected by the MED system as a positive instance of a specific event.

A second representation is in terms of higher-level semantic concepts, which
are automatically detected in the video content [8–11]. The detectors are related
to objects, like a flag; scenes, like a beach; people, like female; and actions, like
dancing. The presence of concepts such as these creates an understanding of the
content. However, except for a few entities such as faces, most individual concept
detectors are not yet reliable [12]. Also, training detectors for each concept require
annotated data, which usually involves significant manual effort to generate. In the
future, it is expected that more annotated data sets will be available, and weakly
supervised learning methods will help improve the efficiency of generating them.
Event representations based on high-level concepts have started to appear in the
literature [13–16].

For an example-based approach, the central research issue is to find an event
representation in terms of the elements of the video that permits the accurate detec-
tion of the events. In our approach, an event is modeled as a set of multiple bags-
of-words, each based on a single data type. Partitioning the representation by data
type permits the descriptors for each data type to be optimized independently. Spe-
cific multimodal combinations of features, such as bimodal audiovisual features [3],
can be considered a single data type within this architecture. To characterize the
video content as comprehensively as possible, the data types we used included a
set of heterogeneous low-level features (visual appearance, motion, and audio) and
higher-level semantic concepts (visual concepts). We also used automatic speech
recognition (ASR) to generate a bag-of-words model in which semantic concepts
were expressed directly by words in the recognized speech. The resulting event
model combined multiple sources of information from multiple data types and mul-
tiple levels of information.

As part of the optimization process for the low-level features, we investigated
the use of difference coding techniques in addition to conventional coding methods.
Because the information captured by difference coding is somewhat complemen-
tary to the information produced by the traditional bag-of-words, we anticipated
an improvement in performance. We conducted experiments to compare the perfor-
mance of difference coding techniques with conventional feature coding techniques.

The remaining challenge is finding the best method for combining the multiple
bags-of-words in the event-detection decision process. In the computer vision and
multimedia retrieval literature, several fusion methods have been explored [3, 5, 17–
19]. For event detection, the most common approach is to apply late fusion methods
[3, 5, 17] in which the results for each data type are combined by fusing the decision
scores from multiple event classifiers. This is a straightforward way of using the
information from all data types in proportion to their relative contribution to event
detection on videos with widely diverse content. We evaluated the performance of
several late fusion methods.
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Fig. 5.3 Major components of the SESAME system

All of the experiments for evaluating the performance of theMED capability were
performed using the data provided in the TRECVID MED [1] evaluation task. The
MED evaluation uses the Heterogeneous Audio Visual Internet Collection (HAVIC)
video data collection [20], which is a large corpus of Internet multimedia files col-
lected by the Linguistic Data Consortium.

5.3 Approach for Example-Based MED

The work in this chapter focuses on SESAME, an MED system in which an event is
specified as a set of video clip examples. A supervised learning process trains an event
model from positive and negative examples, and an event classifier uses the event
model to detect the targeted event. An event classifier was built for each data type.
The results of all the event classifiers were then combined by fusing their decision
scores. An overview of the SESAME system and methods for event classification
and fusion are described in the following sections.

5.3.1 SESAME System Overview

The major components of the SESAME system are shown in Fig. 5.3. A total of nine
event classifiers generate event detection decision scores: two based on low-level
visual features, three based on low-level motion features, one based on low-level
audio features, two based on visual concepts, and one based on ASR. (The particular



5 Evaluating Multimedia Features and Fusion for Example-Based Event Detection 115

Fig. 5.4 Example-based event classifier for MED

set of classifiers used for each feature type was experimentally determined to be
optimal with respect to performance on a reduced dataset.) The outputs of the event
classifiers are combined by the fusion process.

Figure5.4 shows the processing blocks within each event classifier. Each event
classifier operates on a single type of data and includes both training and event
classification. Content is extracted from positive and negative video examples, and
the event classifier is trained, resulting in an event model. The event model produces
event detection scores when it is applied to a test set of videos. Figure5.4 does not
show off-line training and testing to optimize the parameter settings for the content
extraction processes.

5.3.2 Content Extraction Methods

This section describes the feature coding and aggregationmethods thatwere common
to the low-level features and the content extraction methods for the different data
types: low-level visual features, low-level motion features, low-level audio features,
high-level visual features, and ASR.

5.3.2.1 Feature Coding and Aggregation

The coding and aggregation of low-level features share common elements that
we describe here. We extracted local features and aggregated them by using three
approaches: conventional bag of words (BOW), vector of locally aggregated descrip-
tors (VLAD), and Fisher vectors (FV).

The conventional BOW approach partitions low-level features into clusters to
generate a codebook. Given a set of features from a video, a histogram is generated
by assigning each feature from the set to one or several nearest code words. Several
modifications to this approach are possible. One variation uses soft coding, where
instead of assigning each feature to a single code word, distances from the code
words are used to weigh the histogram terms for the code words. Another variation
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describes code words by a Gaussian mixture model (GMM), rather than just by the
center of a cluster.

While conventional BOW aggregation has been successfully used for many appli-
cations, it does not maintain any information about the distribution of features in the
feature space. FV has been introduced in previous work [21] to capture more detailed
statistics, and has been applied to image classification and retrieval [22, 23] and cap-
turing variation in time in video [24]. The basic idea is to represent a set of data
by a gradient of its log-likelihood to model parameters and to measure the distance
between instances with the Fisher kernel. For local features extracted from videos,
it becomes natural to model their distribution as GMMs, forming a soft codebook.
WithGMM, the dimension of FV is linear in the number ofmixtures and local feature
dimensions.

Finally, VLAD [22] is proposed as a nonprobabilistic version of FV. It uses
k-means instead of GMM, and accumulates the relative positions of feature points
to their single nearest neighbors in the codebook.

Compared with conventional BOW, FV and VLAD have the following benefits:

• FV takes GMM as the underlying generative model.
• Both FV and VLAD are derivatives, so feature points with the same distribution as
the general model has no overall impact on the video-level descriptors; as a result,
FV and VLAD can suppress noisy and redundant signals.

None of the above aggregationmethods consider feature localization in space or in
time. We introduced a limited amount of this information by dividing the video into
temporal segments (for time localization) and spatial pyramids (for spatial local-
ization). We then compute the features in each segment or block separately and
concatenate the resulting features. The spatial pooling and temporal segmentation
parameters that yielded the best performance were determined through experimen-
tation.

5.3.2.2 Visual Features

Two event classifiers were developed based on low-level visual features that have
proven themselves for general video categorization in TRECVID [25]. They both
follow a pipeline consisting of four stages: spatiotemporal sampling of points of
interest, visual description of those points, encoding the descriptors into visualwords,
and supervised learning with kernel machines.

Spatiotemporal Sampling: The visual appearance of an event in video may have
a dependency on the spatiotemporal viewpoint under which it is recorded. Salient
point methods [26] introduce robustness against viewpoint changes by selecting
points, which can be recovered under different perspectives. To determine salient
points, Harris-Laplace relies on a Harris corner detector; applying it on multiple
scales makes it possible to select the characteristic scale of a local corner using
the Laplacian operator. For each corner, the Harris-Laplace detector selects a scale-
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invariant point if the local image structure under a Laplacian operator has a stable
maximum.

Another solution is to usemany points by dense sampling. For imagery withmany
homogenous areas, such as outdoor snow scenes, corners may be rare, so relying on
a Harris-Laplace detector can be suboptimal. To counter the shortcomings of Harris-
Laplace, we used dense sampling, which samples an image grid in a uniform fashion,
using a fixed pixel interval between regions.

In our experiments, we used an interval distance of six pixels and sampled at
multiple scales. Appearance variations caused by temporal effects were addressed
by analyzing video beyond the key frame level [27]. Takingmore frames into account
during analysis allowed us to recognize events that were visible during the video, but
not necessarily in a single key frame.We sampled one frame every two seconds. Both
Harris-Laplace and dense sampling give an equal weight to all keypoints, regardless
of their spatial location in the image frame. To overcome this limitation, Lazebnik
et al. [28] suggest repeated sampling of fixed subregions of an image, e.g., 1 × 1,
2×2, 4×4, etc., and then aggregating the different resolutions into a spatial pyramid,
which allows for region-specific weighting. Since every region is an image in itself,
the spatial pyramid can be combined with both the Harris-Laplace point detector and
dense point sampling. We used a spatial pyramid of 1×1 and 1×3 regions, because
this was the set of regions that yielded the best performance in our experiments.

Visual Descriptors: In addition to the visual appearance of events in the spatiotem-
poral viewpoint under which they are recorded, the lighting conditions during record-
ing also play an important role in MED. Properties of color features under classes of
illumination and viewing features, such as viewpoint, light intensity, light direction,
and light color, can change, specifically for real-world datasets as considered within
TRECVID [29]. We followed [25] and used a mixture of SIFT, OpponentSIFT, and
C-SIFT descriptors. The SIFT feature proposed by Lowe [30] describes the local
contrast of a region using edge-orientation histograms. Because the SIFT feature
is normalized, the gradient magnitude changes have no effect on the final feature.
OpponentSIFT describes all the channels in the opponent color space using SIFT
features. The information in the O3 channel is equal to the intensity information,
while the other channels describe the color information in the image. The feature
normalization, as effective in SIFT, cancels out any local changes in light intensity.
In the opponent color space, the O1 and O2 channels still contain some intensity
information. To add invariance to shadow and shading effects, the C-invariant [31]
eliminates the remaining intensity information from these channels. The C-SIFT
feature uses the C-invariant, which can be seen as the gradient (or derivative) for
the normalized opponent color space O1/I and O2/I. The I intensity channel remains
unchanged. C-SIFT is known to be scale-invariant with respect to light intensity. We
computed the SIFT and C-SIFT descriptors around salient points obtained from the
Harris-Laplace detector and dense sampling. We then reduced all descriptors to 80
dimensions with principal component analysis (PCA), a common procedure in the
video categorization literature [25].
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Word Encoding: To avoid using all low-level visual features from a video, we fol-
lowed the well-known codebook approach. We first assigned the features to discrete
codewords from a predefined codebook. Then, we used the frequency distribution
of the codewords as a compact feature vector representing an image frame. Based
on [25], we employed codebook construction using k-means clustering in combina-
tion with average codeword assignment and a maximum of 4,096 codewords. (The
number of codewords and the values of other parameters selected for this approach
were determined through experimentation.) The traditional hard assignment can be
improved by using soft assignment through kernel codebooks [32]. A kernel code-
book uses a kernel function to smooth the hard assignment of (image) features to
codewords by assigning descriptors to multiple clusters weighted by their distance
to the center. We also used difference coding, with VLAD performing k-means clus-
tering of the PCA-reduced descriptor space with 1,024 components. The output of
the word encoding is a BOW vector using either hard average coding or soft VLAD
coding. The BOW vector forms the foundation for event detection.

Kernel Learning: Kernel-based learning methods are typically used to develop
robust event detectors from audiovisual features. As described in [25], we relied
predominantly on the support vector machine framework for supervised learning
of events: specifically, the LIBSVM1 implementation with probabilistic output. To
handle imbalance in the number of positive versus negative training examples, we
fixed the weights of the positive and negative classes by estimating the prior prob-
abilities of the classes on training data. We used the histogram intersection kernel
and its efficient approximation as suggested by Maji et al. [33]. For difference coded
BOWs, we used a linear kernel [21].

Experiments: We evaluated the performance of these two event classifiers on a
set of 12,862 drawn from the training and development data from the TRECVID
MED [1] evaluation. This SESAME Evaluation dataset consisted of a training set
of 8,428 videos and a test set of 4,434 videos sampled from 20 event classes and
other classes that did not belong to any of the 20 events. To make good use of the
limited number of available positive instances of events, the positiveswere distributed
so that, for each event, there were approximately twice as many positives in the
training set as there were in the test set. Separate classifiers were trained for each
event based on a one-versus-all paradigm. Table5.1 shows the performance of the
two event classifiers measured by mean average precision (MAP). Color-average
coding with a histogram intersection kernel (HIK) Support Vector Machine (SVM)
slightly outperformed color-difference soft coding with a linear SVM. For events
such as changing a vehicle tire and town hall meeting, the average HIK was the best
event representation. However, for some events, such as flash mob gathering and dog
show, the difference coding was more effective. To study whether the representations
complement each other, we also performed a simple average fusion; the results
indicate a further increase in event detection performance, improving MAP from
0.342 to 0.358 and giving the best overall performance for the majority of events.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 5.1 Mean average precision (MAP) of event classifiers with low-level visual features and
their fusion for 20 TRECVID MED [1] evaluation event classes

Eventa Average coding Difference coding Fusion
with HIK SVM with linear SVM

Birthday_party 0.275 0.229 0.261
Changing_a_vehicle_tire 0.305 0.269 0.302
Flash_mob_gathering 0.602 0.644 0.636
Getting_a_vehicle_unstuck 0.457 0.496 0.494
Grooming_an_animal 0.280 0.222 0.275
Making_a_sandwich 0.268 0.278 0.314
Parade 0.416 0.415 0.427
Parkour 0.464 0.413 0.450
Repairing_an_appliance 0.486 0.469 0.498
Working_on_a_sewing_project 0.378 0.388 0.400
Attempting_a_bike_trick 0.398 0.350 0.408
Cleaning_an_appliance 0.138 0.077 0.135
Dog_show 0.595 0.651 0.636
Giving_directions_to_a_location 0.123 0.130 0.134
Marriage_proposal 0.058 0.093 0.071
Renovating_a _home 0.229 0.273 0.285
Rock_climbing 0.488 0.466 0.507
Town_hall_meeting 0.531 0.463 0.502
Winning_a_race_without_a_vehicle 0.237 0.284 0.263
Working_on_a_metal_crafts_project 0.109 0.134 0.153
Mean for all events 0.342 0.337 0.358
a Best result per event is denoted in bold

5.3.2.3 Motion Features

Manymotion features for activity recognition have been suggested in previous work;
[4] provides a nice evaluation of motion features for classifying web videos on
the NIST MED 2011 dataset. Based on our analysis of previous work and some
small-scale experiments, we decided to use three features: spatio-temporal interest
points (STIPs), dense trajectories (DTs) [34], and MoSIFT [35]. STIP features are
computed at corner-like locations in the 3-D spatio-temporal volume. Descriptors
consist of histograms of gradient and optical flow at these points. This is a very
commonly used descriptor; more details may be found in [36]. Dense trajectory
features are computed on a dense set of local trajectories (typically computed over
15 frames). Each trajectory is described by its shape and by histograms of intensity
gradient, optical flow, and motion boundaries around it. Motion boundary features
are somewhat invariant to camera motion. MoSIFT, as its name suggests, uses SIFT
feature descriptors; its feature detector is built on motion saliency. STIP and DT
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were extracted using the default parameters as provided2; the MoSIFT features were
obtained in the form of coded BOW features.3

After the extraction of low-level motion features, we generated a fixed-length
video-level descriptor for each video. We experimented with the coding schemes
described in Sect. 5.3.2.1 for the STIP and DT features; for MoSIFT, we were able
to use BOW features only. We used the training and test sets described above.

We trained separate SVMclassifiers for each event and each feature type. Training
was based on a one-versus- all paradigm. For conventional BOW features, we used
the χ2 kernel. We used the Gaussian kernel for VLAD and FV. To select classifier-
independent parameters (such as the codebook size), we conducted fivefold cross
validation of 2,062 videos from 15 event classes.We conducted fivefold cross valida-
tion on the training set to select classifier-dependent parameters. For BOW features,
we used 1,000 codewords; for FV and VLAD, we used 64 cluster centers. More
details of the procedure are found in [37].

We compared the performance of conventional BOW, FV, and VLAD for STIP
features; BOW and FV for DT features; and BOW for MoSIFT, using the SESAME
Evaluation dataset. Table5.2 shows the results.

Wecan see that FVgave the bestMAP for bothSTIP andDT.VLADalso improved
MAP for STIP, but was not as effective as the FV features. We were not able to
perform VLAD and FV experiments for MoSIFT features, but would expect to have
seen similar improvements there.

5.3.2.4 Audio Features

The audio is modeled as a bag of audio words (BOAW). The BOAW has recently
been used for audio document retrieval [38] and copy detection [39], as well as MED
tasks [40]. Our recent work [41] describes the basic BOAW approach. We extracted
the audio data from the video files and converted them to a 16kHz sampling rate.
We extracted Mel frequency cepstral coefficients (MFCCs) for every 10ms interval
using a hamming window with 50% overlap. The features consist of 13 values (12
coefficients and the log-energy), along with their delta and delta-delta values. We
used a randomized sample of the videos from the TRECVID 2011 MED evaluation
development set to generate the codebook. We performed k-means clustering on the
MFCC features to generate 1,000 clusters. The centroid for each cluster is taken as
a code word. The soft quantization process used the codebook to map the MFCCs to
code words. We trained an SVM classifier with a histogram intersection kernel on
the soft quantization histogram vectors of the video examples, and used the classifier
to detect the events. Evaluation with the SESAME Evaluation dataset showed that
the audio features achieved a MAP of 0.112.

2 We obtained the STIP code from http://www.di.ens.fr/~laptev/download/stip-1.1-winlinux.zip,
and DT code from http://lear.inrialpes.fr/people/wang/dense_trajectories.
3 MoSIFT features were provided by Dr. Alex Hauptmann of Carnegie-Mellon University.

http://www.di.ens.fr/~laptev/download/stip-1.1-winlinux.zip
http://lear.inrialpes.fr/people/wang/dense_trajectories
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Table 5.2 Mean average precision of event classifiers with motion features for 20 TRECVID
MED [1] evaluation event classes

Eventa BOW + BOW + VLAD + FV + BOW + FV +
MoSIFT STIP STIP STIP DT DT

Birthday_party 0.191 0.217 0.217 0.189 0.225 0.293
Changing_a_vehicle_tire 0.126 0.064 0.165 0.136 0.190 0.217
Flash_mob_gathering 0.463 0.535 0.579 0.569 0.564 0.567
Getting_a_vehicle_unstuck 0.337 0.284 0.316 0.365 0.403 0.439
Grooming_an_animal 0.290 0.093 0.116 0.147 0.216 0.247
Making_a_sandwich 0.164 0.154 0.193 0.225 0.198 0.234
Parade 0.326 0.260 0.364 0.457 0.446 0.419
Parkour 0.295 0.366 0.404 0.369 0.413 0.459
Repairing_an_appliance 0.368 0.357 0.370 0.385 0.417 0.443
Working_on_a_sewing_project 0.270 0.292 0.346 0.386 0.352 0.433
Attempting_a_bike_trick 0.640 0.104 0.234 0.235 0.245 0.438
Cleaning_an_appliance 0.090 0.058 0.088 0.074 0.066 0.089
Dog_show 0.488 0.361 0.489 0.557 0.600 0.632
Giving_directions_to_a_location 0.085 0.194 0.148 0.191 0.069 0.052
Marriage_proposal 0.027 0.040 0.107 0.173 0.059 0.118
Renovating_a_home 0.157 0.182 0.201 0.255 0.277 0.361
Rock_climbing 0.465 0.156 0.326 0.352 0.470 0.425
Town_hall_meeting 0.519 0.285 0.286 0.462 0.317 0.370
Winning_a_race_without_a_vehicle 0.273 0.187 0.174 0.260 0.179 0.216
Working_on_a_metal_crafts_project 0.116 0.148 0.064 0.032 0.072 0.128
MAP 0.285 0.217 0.259 0.291 0.289 0.329
a Best result per event is denoted in bold

5.3.2.5 Visual Concepts

Two event classifiers were based on concept detectors. We followed the pipeline
proposed in [42]. We decoded the videos by uniformly extracting one frame every 2
sec. We then applied all available concept detectors to the extracted frames. After we
concatenated the detector outputs, each frame was represented by a concept vector.
Finally, we aggregated the frame representations into a video-level representation
by averaging and normalization. On top of this concept representation per video, we
used either a HIK SVM or a random forest as an event classifier.

To create the concept representation, we needed a comprehensive pool of concept
detectors. We built this pool of detectors using the human-annotated training data
from two publicly available resources: the TRECVID 2012 Semantic Indexing task
[43] and the ImageNet Large-Scale Visual Recognition Challenge 2011 [44]. The
former has annotations for 346 semantic concepts on 400,000 keyframes from web
videos. The latter has annotations for 1,000 semantic concepts on 1300,000 photos.
The categories are quite diverse and include concepts from various types; i.e., objects
like helicopter and harmonica, scenes like kitchen and hospital, and actions like
greeting and swimming. Leveraging the annotated data available in these datasets,
we trained 1,346 concept detectors in total.
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Table 5.3 Mean average precision of event classifiers with visual concept features for 20
TRECVID MED [1] evaluation event classes

Eventa RF SVM

Birthday_party 0.339 0.324
Changing_a_vehicle_tire 0.251 0.241
Flash_mob_gathering 0.542 0.542
Getting_a_vehicle_unstuck 0.454 0.426
Grooming_an_animal 0.254 0.231
Making_a_sandwich 0.283 0.257
Parade 0.373 0.306
Parkour 0.550 0.479
Repairing_an_appliance 0.422 0.404
Working_on_a_sewing_project 0.390 0.394
Attempting_a_bike_trick 0.475 0.472
Cleaning_an_appliance 0.097 0.149
Dog_show 0.595 0.529
Giving_directions_to_a_location 0.058 0.097
Marriage_proposal 0.077 0.066
Renovating_a_home 0.295 0.325
Rock_climbing 0.412 0.401
Town_hall_meeting 0.411 0.417
Winning_a_race_without_a_vehicle 0.198 0.167
Working_on_a_metal_crafts_project 0.099 0.162
Mean for all events 0.341 0.330
a Best result per event is denoted in bold

We followed the state-of-the-art for our implementation of the concept detectors.
We used densely sampled SIFT, OpponentSIFT, and C-SIFT descriptors, as we had
for our event detector using visual features, but this time, we used difference coding
with Fisher vectors [21]. We used a visual vocabulary of 256 words. We again used
the full image and three horizontal bars as a spatial pyramid. The feature vectors
representing the training images formed the input for a linear SVM.

Experiments with the SESAME Evaluation dataset, summarized in Table5.3,
show that the random forest classifier is more successful than the nonlinear HIK
SVM for event detection using visual concepts, although the two approaches are
quite close on average. Note that the event detection results using visual concepts
are close to our low-level representation using visual or motion features.

5.3.2.6 Automatic Speech Recognition

Spoken language content is often present in user-generated videos and can potentially
contribute useful information for detecting events. The recognized speech has direct
semantic information that typically complements the information contributed by
low-level visual features. We used DECIPHER, SRI’s ASR software, to recognize
spokenEnglish.Weused acoustic and languagemodels obtained fromanASRsystem
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[45] trained on speech data recorded in meetings with a far-field microphone. Initial
tests on the audio in user-generated videos revealed that the segmentation process,
which distinguishes speech from other audio, often misclassified music as speech.
Therefore, before running the speech recognizer on these videos, we constructed a
new segmenter, which is described below.

The existing segmenter was GMM-based and had two classes (speech and non-
speech). For this effort, we leveraged the availability of annotated TRECVID video
data and built a segmenter better tuned to audio conditions in user-generated videos.
We built a segmenter with four classes: speech, music, noise, and pause. We mea-
sured the effectiveness of the new segmentation by the word-error rates (WERs)
obtained by feeding the speech-segmented audio to our ASR system. We found that
the new segmentation helped reduce theWER from 105 to 83%. This confirmed that
the new segmentation models were a better match to the TRECVID data than models
trained on meeting data. For reference, when all the speech segments were processed
by the ASR, the WER obtained by our system was 78%. (This oracle segmentation
provided the lowest WER that could be achieved by improving the segmentation.)

To create features for the event classifiers, we used ASR recognition lattices to
compute the expected word counts for each word and each video. This approach pro-
vided significantly better results compared to using the 1-best ASR output, because
it compensated for ASR errors by including words with lower posteriors that weren’t
necessarily present in the 1-best. We computed the logarithm of the counts for each
word, appended them to form a feature vector of dimension 34,457, and used a linear
SVM for the event classifiers. More details may be found in [46]. Evaluation with
the SESAME Evaluation dataset showed that the ASR event classifiers achieved a
MAP of 0.114.

5.3.3 Fusion

We implemented a number of late fusion methods, all of which involved a weighted
average of the detection scores from the individual event classifiers. The methods
for determining the weights considered several factors:

• Event dependence and learned weights: Because the set of most reliable data
types for different events might vary, we considered the importance of learning the
fusion weights for each event using a training set. However, when there is limited
data available for training, aggregating the data for all events and computing a fixed
set of weights for all events may yield more reliable results. Another strategy is to
set the weights without training with any data at all. For example, in the method
of fusing with the arithmetic mean of the scores, all of the weights are equal.

• Score dependence: For weights learned via cross-validation on a training set, a
single set of fixed weights might be learned for the entire range of detection scores.
Alternatively, the multidimensional space of detection scores might be partitioned
into a set of regions, with a set of weights assigned to each region. In general, more
data is needed for score-dependent weights to avoid overfitting.
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• Adjustment for missing scores: When the scores for some types of data (partic-
ularly for ASR and MFCC) are missing, a default value, such as an average for
the missing score, might be used, but this could provide a misleading indication
of contribution and therefore degrade performance. Another way in which the
fusion methods described below dealt with missing scores was renormalizing the
weights of the nonmissing scores. Another alternative was learning multiple sets
of weights, each set for a particular combination of nonmissing scores.

We evaluated the fusion models described below. All of the models operated on
detection scores that were normalized using a Gaussian function (i.e., computing the
z-score by removing the mean and scaling by the standard deviation).

Arithmetic mean (AM): In this method, we compute the AM of the scores of the
observed data types for a given clip. Missing data types for a given clip are ignored,
and the averaging is performed over the scores of observed data types.

Geometric mean (GM): In this method, we compute the uniform GM of the scores
of the observed data types for a given clip. As we do for AM, we ignore missing data
types and compute the geometric mean of the scores from observed data types.

Mean average precision-weighted fusion (MAP): This fusion method weighs
scores from the observed data types for a clip by their normalized average preci-
sion scores, as computed on the training fold. Again, the normalization is performed
only over the observed data types for a given clip.

Weighted mean root (WMR):This fusionmethod is a variant of theMAP-weighted
method. In this method, we compute the fusion score as we do for MAP-weighted
fusion, except the final fused score x′ is determined by performing a power normal-
ization of the MAP-based fused score x:

x′ = x
1
α (5.1)

where α is the number of nonmissing data types for that video. In other words, the
higher the number of data types from which the fusion score is computed, the more
trustworthy the output.

Conditional mixture model:Thismodel combines the detection scores fromvarious
data types using mixture weights that were trained by the expectation maximization
(EM) algorithm on the labeled training folds. For clips that are missing scores from
one or more data types, we provide the expected score for that data type based on
the training data.

Sparse mixture model (SMM): This extension of the conditional mixture model
addresses the problem of missing scores for a clip by computing a mixture for only
the observed data types [47]. This is done by renormalizing the mixture weights over
the observed data types for each clip. The training was done with the EM algorithm,
but the maximization step no longer had a closed-form solution, so we used gradient-
descent techniques to learn the optimal weights.
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Table 5.4 Fusion methods and their characteristics

Fusion method Event- Learned on a Score- Adjustment for
independent? training set? dependent? missing scores?

Arithmetic mean Yes No No Yes
Geometric mean Yes No No Yes
MAP-weighted No Yes No Yes
Weighted mean root No Yes No Yes
Conditional mixture model No Yes No No
Sparse mixture model No Yes No Yes
SVMLight No Yes Yes No
Distance from threshold No Yes Yes No
Bin accuracy weighting No Yes Yes No

SVMLight: This fusion model consists of training an SVM using the scores from
various data types as the features for each clip. Missing data types for a given clip are
assigned zero scores. We used the SVMLight4 implementation with linear kernels.

Distance from threshold: This is a weighted averaging method [3] that dynamically
adjusts the weights of each data type for each video clip based on how far the score
is from its decision threshold. If the detection score is near the threshold, the correct
decision is presumed to be somewhat uncertain, and a lower weight is assigned.
A detection score that is much greater or much lower than the threshold indicates
thatmore confidence should be placed in the decision, and a higherweight is assigned.

Bin accuracy weighting: This method tries to address the problem of uneven distri-
bution of detection scores in the training set. For each data type, the range of scores in
the training fold is divided into bins with approximately equal counts per bin. During
training, the accuracy of each bin is measured by computing the proportion of cor-
rectly classified videos whose scores fall within the bin. During testing, for each data
type, the specific bin that the scores fall into is determined, and the corresponding
bin accuracy scores for each data type are used as fusion weights.

Table5.4 summarizes the fusion methods and their characteristics.

5.4 Experimental Results

We evaluated the performance of our SESAME system using the data provided in
the TRECVID MED [1] evaluation task. Although the MED event kit contained
both a text description and video examples for each event, the SESAME system
implemented the example-based approach in which only the video examples were
used for event detection training.

4 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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5.4.1 Evaluation by Data Type

Table5.5 lists results on the SESAME Evaluation dataset, which consisted of a train-
ing set of 8,428 videos and a test set of 4,434 videos, sampled from 20 event classes
and other classes that did not belong to any of the 20 events. In terms of the perfor-
mance of the various data types, the visual features were the strongest performers
across all events. The accuracy of the visual concepts was nearly as strong as that of
the low-level visual features. The motion features also showed strong performance.
Although the performance of low-level audio features andASRwas significantly less,
ASR had the highest performance for events containing a relatively large amount of
speech content, including a number of instructional videos. The best scores for each
event are distributed among all of the data types, indicating that fusion of these data
should yield improved performance. Indeed, the AM fusion of the individual event
classifiers, which is listed in the last column of Table5.5, shows a significant boost
in performance: a 33% improvement over the best single data type.

5.4.2 Evaluation of Fusion Methods

We tested the late fusion methods described in Sect. 5.3.3 using the SESAME Eval-
uation dataset. For all our fusion experiments, we trained each event classifier on the
training set, and executed the classifier on the test set to produce detection scores
for each event. To produce legitimate fusion scores over the test set, we used ten-
fold cross validation, with random fold selection, to generate the detections, and
then obtained a micro-averaged average precision over the resulting detections. The
micro-averaged MAP was computed by averaging the average precision for each
event. To gauge the stability of the fusion methods, we repeated this process 30
times and computed the macro average and standard deviation of the micro-averaged
MAPs. Because the Arithmetic Mean and Geometric Mean methods are untrained,
their micro-averaged MAPs will be the same regardless of fold selection; thus, the
standard deviations for their micro-averaged MAPs are zero.

Table5.6 shows theMEDperformanceof various fusionmethods.The comparison
indicates that the simplest fusion methods, such as AM and GM, performed as well
as or better than other, more complex fusion methods. Also note that most of the
top-performing fusion methods (AM, GM, MAP, WMR, and SMM) adjusted their
weights to accommodate missing scores.

5.4.3 Evaluation of MED Performance in TRECVID

As the SESAME team, we participated in the 2012 TRECVID MED [1] evaluation
and submitted the detection results for a system configured nearly the same as that
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Table 5.6 MED performance of fusion methods with all event classifiers

Fusion method MacroMAP Standard deviation

Arithmetic mean 0.456 0.0000
Geometric mean 0.456 0.0000
MAP-weighted 0.437 0.0006
Weighted Mean Root 0.451 0.0005
Conditional mixture model 0.403 0.0054
Sparse mixture model 0.443 0.0007
SVMLight 0.451 0.0036
Distance from threshold 0.407 0.0005
Bin accuracy weighting 0.401 0.0031

Fig. 5.5 Performance of the
primary runs of 17 MED
systems in the 2012
TRECVID MED [1]
evaluation

described in this chapter.5 The event classifiers were trained with all the positives
from the event kit and negatives from the TRECVIDMED training and development
material. The test set consisted of the 99,000 videos used in the formal evaluation.

Figure5.5 shows the performance of the primary runs of 17 MED systems in
this evaluation in terms of miss and false alarm rates [48]. The performance of the
SESAME run was one of the best among the evaluation participants.

5 It included a poorer-performing ASR capability instead of the one described in Sect. 5.3.2.6, and
a video OCR capability that contributed minimally to overall performance.
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5.5 Summary and Discussion

SESAME, a MED capability that learns event models from a set of example video
clips, includes a number of BOW event classifiers based on single data types: low-
level visual, motion, and audio features; high-level semantic visual concepts; and
ASR. Partitioning the representation by data type permits the descriptors for each
data type to be optimized independently. We evaluated the detection performance
for each event classifier and experimented with a number of fusion methods for
combining the event detection scores from these classifiers. Our experiments using
multiple data types and late fusion of their scores demonstrated strongly reliable
MED performance.

Major conclusions from this effort include:

• The relative contribution of visual, motion, and audio features varies according to
the specific event. This is due to differences in the relative distinctiveness and con-
sistency of certain features for each event category. Across all events, score-level
fusion resulted in a 33% improvement over the best single data type, indicating
that different types of features contribute to the representation of heterogeneous
video data.

• The use of difference coding in low-level visual and motion features significantly
improved performance. We surmise that difference coding works better than the
traditional bag-of-words because it measures differences from the general model,
which is likely to be dominated by the background features. We expect additional
gains in performance if difference coding were applied to low-level audio features.

• The set of 1346 high-level visual features was nearly as effective as the set of
low-level visual features. It appears that, in comparison to the 5000 or so concepts
predicted to be needed for sufficient performance in event detection [49], this
number of high-level features begins to span the space of concepts reasonablywell.
Therefore, analogous sets of motion and audio concepts should further improve
overall performance.

• Although the performance of ASR was lower than that of the visual and motion
features, its performancewas highly event-dependent, and it performed reasonably
well for events containing a relatively large amount of speech content, such as
instructional videos.

• The simplest fusionmethods for computing event detection scoreswere very effec-
tive compared to more complex fusion methods. One possible explanation for this
is that the reliability of the scores is roughly equal across all data types. Another
possible reason is that the limited number of positive training examples (an aver-
age of about 70 per event) is not enough to achieve the full benefit of the more
complex fusion models.

While our relatively straightforward BOW approach was quite effective, we view
it as a baseline capability that could be improved in several ways:
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• Since the current approach aggregates low-level visual and motion features within
fixed spatial partitions, the usage of local information is limited. Features of an
object divided by our predefined partition, for example, will not be aggregated as
a whole. We expect that the use of dynamic spatial pooling, which is better aligned
to the structure and content of the video imagery, will improve performance. Seg-
menting the image into meaningful homogeneous regions would be even better,
as it allows more salient characteristics to be extracted, and would eventually lead
to better classification.

• The current approach ignores the temporal information within each video clip; all
of the visual, motion, and audio features are aggregated. However, events con-
sist of multiple components that appear at different times, so using time-based
information for event modeling and detection should improve performance. Also,
aggregating low-level features according to the temporal structure of the video
may yield feature sets that better represent the video contents.

• All of the classifiers in our approach operate on a histogram of features and do not
leverage any relationships between the features. Features occurring in video data
are not generally independent. In particular, the combination of particular high-
level semantic concepts could become strong discriminatory evidence, since their
co-occurrence might be associated with a subset of relevant video content. For
example, although the concepts balloons and singing occur in many contexts, the
occurrence of both might be more common to birthday party than to other video
content. Exploiting the spatiotemporal dependencies among the features would
better characterize the video contents and offer a richer set of data with which to
build event models.
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