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Abstract Current research shows that the detection of semantic concepts (e.g., ani-
mal, bus, person, dancing, etc.) in multimedia documents such as videos, requires the
use of several types of complementary descriptors in order to achieve good results.
In this work, we explore strategies for combining dozens of complementary con-
tent descriptors (or “experts”) in an efficient way, through the use of late fusion
approaches, for concept detection in multimedia documents. We explore two fusion
approaches that share a common structure: both start with a clustering of experts
stage, continue with an intra-cluster fusion and finish with an inter-cluster fusion,
andwe also experiment with other state-of-the-art methods. The first fusion approach
relies on a priori knowledge about the internals of each expert to group the set of
available experts by similarity. The second approach automatically obtains measures
on the similarity of experts from their output to group the experts using agglomer-
ative clustering, and then combines the results of this fusion with those from other
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methods. In the end, we show that an additional performance boost can be obtained
by also considering the context of multimedia elements.

3.1 Introduction

During the last few years, society has witnessed a great increase in the amount of
multimedia information, in the form of image, audio and video documents. This has
created a demand for solutions aimed at automatically analyzing and organizing this
content, in order to give the users the possibility to retrieve particular multimedia
elements by browsing and searching the database. Formulating searches in humanly
understandable concepts requires that the database be indexed according to such
terms, which creates the need for automatic semantic indexing tools.

Many advances have taken place in recent years on the topic of concept detection
in multimedia collections with the goal of semantic indexing and there are several
well-known, publicly available datasets on which researchers can test and compare
their different algorithms. For example, the Pascal VOC (visual object categories)
challenge focuses on detecting objects in static images [12], the MediaEval series of
benchmarks is dedicated to evaluating algorithms for multimedia access and retrieval
in videos accompanied by metadata, therefore focusing even on human and social
aspects of multimedia tasks [19], while the TRECVid1 series of workshops proposes
several video-only analysis tasks, such as semantic indexing and surveillance event
detection [24].

A basic framework for semantic indexing on a multimedia dataset consists of
extracting content descriptors from the samples (e.g., images or video shots), then
training supervised classifiers on each of these descriptors. This produces, for each
available descriptor and for each associated classification method, a set of classifi-
cation scores that describe the “likeliness” of each sample to contain a given target
concept.When possible, such scores can be calibrated as probabilities for the samples
to contain the target concept.

We call an expert any method able to produce a set of likeliness scores for mul-
timedia samples to contain a given target concept. Such scores can then be used to
produce a ranked list of the samples the most likely to contain this concept. A com-
bination of a content descriptor and a supervised classification method constitute an
elementary expert. These steps are represented by the “Descriptor computation and
optimization” and “Supervised classification” blocks in Fig. 3.1 (this figure illustrates
the entire processing chain that we use in our experiments, which will be explained
in more detail later on).

As several content descriptors and several supervised classification methods can
be considered, many elementary experts can be built. So far, information coming
from different elementary experts is not jointly exploited, as experts are treated inde-
pendently. However, different types of elementary experts, each based on different

1 TREC Video Retrieval Evaluation, http://trecvid.nist.gov/.

http://trecvid.nist.gov/


3 Hierarchical Late Fusion for Concept Detection in Videos 55

F
ig

.3
.1

T
he

se
m
an
tic

in
de
xi
ng

pr
oc
es
si
ng

ch
ai
n
us
ed

by
th
e
IR
IM

gr
ou
p
[4
],
in

w
hi
ch

ou
r
co
nt
ri
bu
tio

n
(l
at
e
fu
si
on

ap
pr
oa
ch
es
)
is
in
te
gr
at
ed



56 S. T. Strat et al.

aspects of the multimedia samples (such as colors, textures, contour orientations,
motion or sounds, etc.), give complementary information.

Several aspects of complementarity can be discussed. The first is inter-concept
complementarity, whichmeans that a certain expert (based on a certain type of content
descriptor) can give very good results for a particular semantic concept, yet perform
poorly for another concept. For example, on the TRECVid SIN video dataset, the
concept “Football” is better detected by experts using trajectory descriptors than by
those using SIFT Bag-of-Words descriptors, or vice-versa. The concept “Bridges”
is better detected with SIFT Bag-of-Words than with trajectories. There is no single
expert which is systematically the best for all target concepts.

The second aspect of complementarity is intra-concept complementarity, which
means that even if two (or more) experts have modest performances for a particular
concept, their combination can produce a higher level expert that often performs
better than any of its input elementary experts. This is especially true when one of
the elementary experts detects the concept better in some situations (corresponding
to some of the multimedia samples where the concept is present), while the other
expert works better in the rest of the situations (the rest of the samples where the
concept is present), which means that there is complementarity at the context level.

Because of these observations, for the sake of universality and in order to exploit
complementary information, many systems rely on the combination of a large set of
experts (up to 100+), each based on different descriptors or descriptor versions, and
using various supervised classification algorithms.

Theworkdescribed here focuses on the next step in the semantic indexingpipeline,
immediately following the (multiple) supervised classification: the combination by
late fusion of a large battery of complementary experts. The goal is to exploit their
complementarity as well as possible for boosting the concept detection performance
as far as possible.

The rest of the chapter is structured as follows: Section 3.2 reviews the relevant
state of the art; Sect. 3.3 explains the motivation of the presented work; Sect. 3.4
describes the proposed approaches; Sect. 3.5 describes some additional improve-
ments to the proposed approaches; Sect. 3.6 presents the experiments carried out and
the obtained results; and Sect. 3.7 draws some conclusions and gives some perspec-
tives.

3.2 State of the Art

Semantic concept detection in multimedia elements starts with computing descrip-
tors. In the case of video datasets, we can have many types of descriptors, such
as Bags-of-Words of local features (SIFT [20], SURF [5] or other type), color his-
tograms, trajectories [2] or audio descriptors,withmore examples given inSect. 3.6.2.
On such a descriptor, for a particular target concept, a supervised classification algo-
rithm is trained and applied (such as K-nearest neighbors, support vector machines
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(SVM) with various kernels, artificial neural networks, gaussian mixture models,
etc.), obtaining an elementary expert [4].

Most often, combining information from several experts improves the correct
recognition rates of semantic concepts. Experts can be combined at several stages
within the processing chain: Early fusions combine descriptors before the classifi-
cation step, while late fusions combine the outputs of supervised classifiers.

Early fusions can be as simple as concatenating two or more multidimensional
descriptors, but for better results, the fact that descriptor dimensions may have values
in different ranges, that descriptorsmay have varying numbers of dimensions and that
descriptorsmay have varying importances for a certain concept needs to be taken into
account. In [48], early fusion is performed by computing the distance between two
videos as a weighted average of distances between different descriptors. In [44], a
multichannel approach is used to combine a trajectory descriptor (movements from
one frame to the next) and trajectory-aligned descriptors (histograms of oriented
gradients, histograms of optical flow, motion boundary histograms) as input for a
SVM with a χ2 kernel, by measuring the distance between videos as the average of
distances between channels (input descriptors).

Late fusions can be as simple as averaging the output scores from classifiers based
on different descriptors (averaging different experts), or can bemore complex, taking
into account the inter-dependencies of scores from different experts like it is done
with Choquet’s integral [10]. An additional level of supervised classification can also
be trained on the set of experts, however this can lead to over-fitting which degrades
results, and averaging output scores generally gives results just as good (or better)
with less computational cost. In [48], late fusion is done by averaging output scores
from different experts, but in their approach, early fusion performed better than late
fusion . They also experimented with a combination of early and late fusion (double
fusion) which was shown to generally outperform both the early and late fusion . In
general, late fusions perform best when the experts being fused are complementary,
as it was shown by [23].

In [50], a visual classifier and two textual classifiers are combined using methods
from belief theory, in the context of image classification. Classifier output probabili-
ties are first converted into consonant mass functions, and then these mass functions
are combined in the belief theory using Dempster’s rule [36] or the Average rule.
Both rules gave significantly better results than classifiers taken independently, with
Dempster’s rule performing better for challenging classes.

There can also be intermediates between early fusions and late fusions. With
regard to SVM classifiers, Multiple Kernel Learning (MKL) can be considered a sort
of intermediate fusion. Instead of using a single kernel function for the SVM, several
kernels can be combined (either working on the same data or on different data) to
improve classification results [14]. For example, the multichannel approach in [44]
can be regarded as a MKL problem.

In [27], an early fusion, an intermediate fusion and three late fusions are used to
combine static, dynamic and audio features for activity recognition using hierarchical
hidden Markov models. The early fusion is a concatenation of descriptors, while the
late fusions combine confidence scores from separate classifiers. The intermediate
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fusion, which gives the best results in their context, considers each modality as a
stream of measurements and each state of the HMMmodels separately the observa-
tions of each stream by a Gaussian mixture, each stream being weighted depending
on the activity in question.

Fusion strategies for detecting a concept can also concern themselves with how
to deal with data imbalance problems (such as in TRECVid Semantic Indexing task,
where most of the concepts have manymore negative-labeled examples than positive
ones) or which features or descriptors are more relevant for that concept. In [48], a
Sequential Boosting SVM inspired from bagging and boosting approaches is used.
Bagging [7] means splitting the training database into several subparts (when there
aremanymore training negatives than positives, the positivesmay be kept common to
all subparts) and training a classifier on each subpart; at recognition, the outputs from
those classifiers are combined (averaged) to improve the result. Boosting strategies
such as AdaBoost [13, 34] train a strong classifier by combining (through weighted
average) results from many weak classifiers. In TRECVid, late fusions based on
AdaBoost have been used in [8, 43, 45].

In the context of the TRECVid Semantic Indexing (SIN) task and as part of our
participation with the IRIM group, we opt for the use of late fusion approaches
(in a concept-per-concept manner), because an early fusion would mean training
supervised classifiers on very high-dimensional descriptors, which is not trivial. Late
fusions are easier to apply, because they fuse simple classification scores, not complex
multidimensional descriptors, and in the case of TRECVid SIN, it was shown in [4]
that late fusions also give better results. As inputs for the late fusion, we have a battery
of (50+) experts, which are classification scores for each of the multidimensional
descriptors (and their versions), on each video shot and each concept. A similar fusion
context is described in [9], where experts are generated from a large number of video
descriptors on which different classification algorithms are applied, the classifier
that yields the best result for each descriptor is retained and the resulting experts are
combined in a late fusion approach.

3.3 Choice of Late Fusion Strategy

When looking for an effective combination of experts, several questions arise. Should
we use them all in the fusion process, or just the best ones? Does combining two
experts always yield better results than the two of them taken separately? Should we
weigh them differently in case one is much better than the other? Tackling a similar
problem, Ng and Kantor [23] proposed a method to predict the effectiveness of their
fusion approach and concluded:

Schemes with dissimilar outputs but comparable performance are more likely to give rise to
effective naive data fusion.
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Fig. 3.2 Average precision gains when combining experts that have various performances and var-
ious agreement rates. Each circle represents an expert pair. The x-axis corresponds to max

(
αi , α j

)
,

the average precision of the best expert from a pair. The y-axis indicates αi+ j , the average precision
of the combination of a pair. Dark (resp. bright) grey circles indicate that experts i and j strongly
agree (resp. disagree) in their rankings. The circle diameter is directly proportional to the ratio of
the average precisions in the pair αi /α j (where αi < α j )

where the similarity between two experts outputs can be measured as the Spearman
rank correlation coefficient [17]—and naive data fusion should be understood as
fusion by sum of normalized scores.

3.3.1 Fusion of Two Experts

In order to validate the conclusion of Ng and Kantor [23] in the case of concept
detection in videos, we drove a simple experiment whose outcome is summarized in
Fig. 3.2.

Given a set of K = 50 experts trained for the detection of a given concept, and
an estimation of their performance (average precision) αk on the TRECVid 2010
Semantic Indexing task [24], we considered all pairs (i, j) of experts and evaluated
the performance of their fusion by weighted sum of normalized scores:

x = αi · xi + α j · x j (3.1)

As most circles are above the x = y line (i.e., αi+ j > max(αi , α j )), Fig. 3.2 clearly
shows that the weighted sum fusion from Eq. (3.1) is the most beneficial for experts
that tend to disagree on their rankings but have similar average precisions (bright,
large circles). This means that the gain is maximum when we have intra-concept
complementarity, at the context level, as discussed in Sect. 3.1.
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Fig. 3.3 Similarity of experts trained for the detection of concept Computers. Each node represents
an expert, and edges represent the similarity between them (we only display some of the edges). The
dotted edges represent experts which derive from the same descriptors, but use different classifiers

3.3.2 Communities of Experts

We have given an example for two experts, however, as described in Sect. 3.6.2,
the final objective is to combine a large collection of (50+) experts. The difference
between those experts mostly comes from the type of descriptors they rely on, and
partly from the type of classifiers trained on top of these descriptors.

We expect experts relying on similar descriptors to generate similar outputs and
therefore strongly agree with each other. We ran an additional set of preliminary
experiments in order to verify this hypothesis—as illustrated in Fig. 3.3.

In Fig. 3.3, each expert is represented by a node and similar experts (according
to their Spearman rank correlation coefficient [17]) are positioned closer to each
other using a standard spring-layout algorithm. It appears that some kind of commu-
nity structure naturally emerges, with several groups of experts being more strongly
connected internally than with the outside of their group.

This is partly due to the type of descriptors used internally by the experts (denoted
by the shape of the nodes). For instance, experts based on color descriptors (circles)
seem to agglutinate, as do experts based on audio descriptors (diamonds). Finally,
the size of a node is directly proportional to the performance (average precision) of
the corresponding expert. Therefore, best performing experts (i.e., larger nodes) also
tend to agglutinate as they provide rankings that are closer to the reality—therefore
closer to each other.

We also used the so-calledLouvain algorithm to automatically detect communities
of experts in this graph [6, 22]. With no objective groundtruth to compare with, it
is difficult to evaluate the detected communities. However, looking at Fig. 3.3 and
the five detected communities (A to E), it seems that the Louvain algorithm did a
goodjob at finding communities related to the type of descriptors on which experts



3 Hierarchical Late Fusion for Concept Detection in Videos 61

Fig. 3.4 Basic principle of our main fusion approaches: K input experts are available, which are
clustered based on similarity into several groups, followed by an intra-cluster fusion and an inter-
cluster fusion. Figure from [42]

are based. In particular, a dotted edge between a pair of experts indicates that they
are based on the very same descriptors and they only differ in the classifier they rely
on. None of these pairs is split into two different communities.

3.3.3 Hierarchical Fusion of Multiple Experts

Based on the effects noted in Sect. 3.3.1, and as illustrated in Fig. 3.4, the late fusion
approaches that we propose share the following general framework:

• First, experts are grouped based on similarity into clusters of similar experts. This
grouping can either be donemanually, using external knowledge about the internal
workings of each expert (e.g., grouping all experts that use color descriptors), or
automatically, as it was done in Sect. 3.3.2.

• Then, intra-cluster fusions are performed, in which the experts from each cluster
are fused. This balances the quantity of experts of each type, avoiding the case
when numerous similar experts dominate the others (because some groups may be
very numerous, while other groups may only have a few or even a single expert),
and also helps to reduce classification “noise” within the group.

• Last, an inter-cluster fusion is performed, in which the different clusters (which are
complementary because they contain experts of different types) are fused together.
This gives the main performance boost due to complementarity, based on the
remark of Ng and Kantor [23] and on our preliminary tests from Sect. 3.3.1.
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3.4 Proposed Approaches

Our goal is to combine information coming from different experts in a way close to
the optimum, so that the gain from complementarity is maximized. Following their
successful use in our previous work [42], we propose two approaches: one that relies
onmanually grouping experts, and the other that determines the group and the weight
of each expert automatically. Our main fusion approaches are the following:

• Manual hierarchical fusion: Expert groups are chosen manually, in a hierarchical
manner, based on how the expert was obtained. There are several fusion levels,
corresponding to the levels of the expert hierarchy.

• Agglomerative clustering: This is our automatic approach; experts are fused pro-
gressively based on similarity into groups, followed by inter-group fusion.We also
extend this approach compared to what was done in [42].

3.4.1 Manual Hierarchical Fusion

The manual hierarchy was designed according to a high-level knowledge about the
descriptors and the classifiers. The main principle considered is to fuse first descrip-
tors or classifiers that are expected to be closer considering their nature or principle
of operation. The manual hierarchy incorporates more levels than the automatic
ones, with branches with different depths. In practice, we fused first the output of all
the available machine learning algorithms for each descriptor (e.g., kNN and SVM,
corresponding to block “Weighted average of KNNB-MSVM pairs” in Fig. 3.1). We
then fuse different variants of the same descriptor (e.g., BoW of the same local
descriptor but with different dictionary sizes). Afterwards, we fuse the experts corre-
sponding to different image spatial decompositions (pyramid) if available. Finally, the
last level concerns descriptors of different typeswithin the samemodality (e.g., color,
texture, interest points, percepts, or faces) and descriptors from different modalities
(audio and visual).

Various experiments with manually defined hierarchies suggested that going from
the most similar to the most different was a good strategy. These experiments also
showed that the best results are obtained when using as many combinations as pos-
sible of descriptors and machine learning algorithms. Even combinations with low
performance can contribute to a global performance increase, especially if they are
complementary to better ones.

Late fusion was performed at all levels using a weighted arithmetic mean of
normalized scores. Several other and more complex methods were tried but pro-
duced no or very small improvements. Three weighting strategies were considered:
uniform (simple arithmetic mean), MAP based (simple function of the Mean Aver-
age Precision of the different inputs), and direct optimization by cross-validation.
Cross-validation experiments showed that in the early stages, uniform weighting
was preferable for robustness while in latter stages MAP-based or directly optimized
weighting provided better results.
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3.4.2 Agglomerative Clustering and Extensions

The original version of this approach from [42] is based on grouping and fusing
experts progressively based on similarity, until a minimum similarity threshold is
reached; it clusters experts into groups and performs intra-group fusion at the same
time. Because of this functioning, we call this fusion method agglomerative cluster-
ing. After this step, inter-group fusion is performed to obtain the fused result.

Compared to what was done in [42], we extend this agglomerative clustering
approach by also performing, in parallel, four additional fusions: two versions of
AdaBoost fusions inspired from [8, 43, 45], oneweighted arithmeticmean of experts,
and the best expert for each concept. At the end, the results of the five fusions are
combined by choosing, for each semantic concept, the fusion method among the five
that gave the best result for that concept on the training set.

Wewill first present the original approach, utilizing only agglomerative clustering,
and then we will detail the other fusions with which we compare and also extend the
agglomerative clustering.

3.4.2.1 Agglomerative Clustering of Experts

The agglomerative clustering fusion method treats each semantic concept indepen-
dently, and for each concept, applies the following steps:

1. Relevance of experts estimation: The relevance of each of the input elementary
experts is estimated on the training set, for the concept in question. The relevance
is measured as the average precision of the expert normalized with respect to
chance (the result of randomly choosing samples). An expert with a relevance of
one means that it performs just as poorly as chance.

2. Selection of experts: Experts with a relevance less than one are thrown away,
because they are irrelevant to the concept in question. Experts with a relevance
eight times smaller than that of the best are also thrown away, in order not to
“pollute” the best expert with others that are much worse. This second selection
is not critical, neither is its threshold, but using it tends to reduce performance
degradation from fusion for the (very few) concepts that have an extremely good
best expert.

3. Iterative fusion: Some of the retained experts are highly correlated, so we look for
the pair of experts with the maximum correlation and fuse it into a single expert
(through arithmetic mean). The correlation between the resulting expert and the
remaining ones is updated, and the process is repeated. The iterative fusion stops
when a sufficiently correlated pair of experts can no longer be found. The iterative
fusion corresponds to the first two steps in Fig. 3.4, as it groups and fuses similar
experts at the same time (progressively, as pairs of highly correlated experts are
found).

4. Weighted arithmetic mean: The iterative fusion does not give a large gain, because
it only groups and fuses similar experts. Themain performance boost comes now,
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when we fuse different groups via a weighted mean of experts. The weights are
given by the average precisions (for the current concept on the training dataset)
of the experts from the previous step. A single expert is obtained, the result of
our agglomerative clustering fusion approach. This weighted arithmetic mean
corresponds to the last step in Fig. 3.4.

The correlation measure used in the iterative fusion step is the Pearson product-
moment correlation coefficient ρ of the raw classification scores. ρ ∈ [−1; 1], with
values in the range of 0.6–1 corresponding to high correlation. In order to fuse a pair
of experts, not only does the correlation coefficient for the classification scores of all
samples need to be at least 0.75 (the two experts give similar information on a global
scale), but also the correlation coefficient for the scores of only the positive samples
must be at least 0.65 (to ensure that the two experts tend to detect more or less the
same true positives of the semantic concept being analyzed). The constraint related
to positives was added again with regards to the remark of Ng and Kantor, as at this
stage, we want to group similar (not very complementary) experts; also, without this
constraint, because of the imbalance between positives and negatives, the scores for
negatives would have dominated the correlation measure.

The goal of iterative fusion is to balance the contribution of each family of experts,
as we will see in Sect. 3.6.2 that some families are very numerous, while other fam-
ilies are small. This method is automatic and avoids needing to specify the families
manually, making it practical for often-changing expert sets and for automatically
grouping experts of similar types but from different contributors. The groups formed
by the iterative fusion correspond in a large degree to the expectations based on
descriptor type.

In addition to the agglomerative clustering fusion, we also experiment with
other fusion approaches and with combining the results from these different fusion
approaches, as described in the following.

3.4.2.2 AdaBoost Score-Based Fusion

AdaBoost [13], short for “adaptive boosting”, is an algorithm that constructs a strong
expert through aweighted average of a large number ofweak experts. AdaBoost func-
tions properly when each of the weak experts is at least slightly better than chance,
and when the different involved experts are complementary (they each correctly clas-
sify different parts of the dataset). This is very much the case of TRECVid, where
we have a large battery of experts, most of them not having spectacular individual
performance (but better than chance), organized into complementary families.

The AdaBoost algorithm that we use is inspired from the original one in [13] with
adaptations for TRECVid. It is very similar to that of [45], however they applied it
in a different context of TRECVid. It is also very similar to that used by Tang and
Yanai [43] in the 2008 edition of TRECVid, but they did not use it on such a large
battery of experts as we do in our experiments.
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For a particular concept, given the training set (x1, y1), . . . , (xm, ym)where xi are
the multimedia samples, and yi ∈ {0, 1} is the groundtruth of the sample xi (0 if it
does not contain the concept, 1 if it does), the algorithm that we use is the following:

1. We initialize a set of weights D1 where D1(i) is the weight of sample xi :

D1(i) =
{

0.5
n Pos , if yi = 1 (a positive sample)
0.5

nNeg , if yi = 0 (a negative sample)
(3.2)

where n Pos and nNeg are the number of positive and negative samples respec-
tively in the training set.

2. At iteration t (t = 1, . . . T ), we choose the input expert ht that minimizes the
weighted classification error εt = ∑m

i=1 Dt (i)I (yi �= ht (xi )). I is called the
indicator function, and it gives the cost associated to the classification result of
a sample being different than the groundtruth. In our case, I (yi �= ht (xi )) =
|yi − ht (xi )|, the absolute value of the difference between the classification score
(between 0 and 1) and the groundtruth (0 or 1).

3. Compute the weight updating factor αt = ln 1−εt
εt

;
4. Update the weights of the samples according to:

Dt+1(i) = Dt (i)exp(αt I (yi �= ht (xi ))) (3.3)

and normalize the weights for positive samples and for negative samples sepa-
rately, so that

∑
i,yi =1 = 0.5 and

∑
i,yi =0 = 0.5 (always keep the total weight of

positives and the total weight of negatives equal).
5. Repeat steps 2–4 until all input experts have been considered (each expert is only

considered once).
6. At the end, the strong expert H(x) will be a weighted sum of the weak experts

chosen at each iteration t :

H(x) =
T∑

t=1

αt ht (x) (3.4)

AdaBoost works on the following principle: at each step, we select the expert that
correctly classifies the multimedia samples for which the previous expert failed, this
way achieving intra-concept complementarity at the context level. Unlike agglom-
erative clustering, it does not first group experts into families and then obtain com-
plementarity between families; instead, AdaBoost tries to exploit complementarity
directly by choosing, at each step, the most complementary expert.

For datasets with severe class imbalance (as is the case of the TRECVid SIN
video dataset, in which, for many concepts, there are only a few tens of positives
and hundreds of thousands of negatives), we have added the additional constraint
that the total weight of positives and the total weight of negatives should have fixed
values on 0.5 each, at every iteration, as in [45], so that the classification result for
true positives would still matter in the fusion.
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Also for the case of TRECVid, we performed a similar expert preselection as for
the agglomerative clustering fusion: we rejected experts with relevances less than 1
or less than 8 times that of the best expert for that concept, for similar reasons as in
the case of the agglomerative clustering.

3.4.2.3 AdaBoost Rank-Based Fusion

Whenquering a dataset for a particular concept,we receive a ranked list ofmultimedia
samples, in descending order of their likelihood to contain the concept. Ideally, in this
ranked list, all the true positives should be concentrated toward the beginning, and all
the negatives should follow until the end of the list. The previous AdaBoost method
was made to improve the classification scores, which would indirectly improve the
ranked list. We now try to optimize directly the ranks of the true positives, by altering
the indicator function (the cost function when a classification error appears).

We therefore propose the following indicator function: for a positive sample, the
associated cost is equal to the number of negatives that are in front of it in the ranked
list, divided by the total number of negatives; for a negative sample, the cost is zero
(we don’t care about its rank, as long as the positives are in front):

I (yi �= ht (xi )) =
{

neg Preceeding
nNeg , if yi = 1 (a positive sample)

0, if yi = 0 (a negative sample)
(3.5)

where negPreceeding is the number of negatives preceeding the positive sample in
question in the ranked list, according to the weak expert ht , and nNeg is the total
number of negatives.

As with the agglomerative clustering fusion and the AdaBoost fusion based on
scores, we perform similar expert selections before starting the actual fusion.

3.4.2.4 Weighted Average of Experts

As a reference for comparing the performances of the fusion methods presented so
far, we consider the weighted average of the input experts, with weights given by
the average precisions of experts on the training set, for the concept in question (the
weights can vary from one concept to another, depending on how the experts react
to the concepts). We can say that in the end, the other methods are also weighted
means of experts, but with more elaborate ways of choosing the weights. We wish
to compare the more elaborate methods with this simple baseline.

As with the other fusion methods presented so far, we perform similar expert
selections before starting the actual fusion.
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3.4.2.5 Best Expert per Concept

We add a second reference for evaluating the performance of our fusion methods,
namely the best expert per concept. This method consists of simply choosing, for
each semantic concept individually, the expert that gives the best average precision
on the training set. This is our most basic reference when examining other methods,
as the goal of fusions is to obtain gains compared to simply considering the best
expert for the concept of interest.

3.4.2.6 Combining Fusions

After applying all of the previous approaches in parallel, we now dispose of a battery
of five fused experts: agglomerative clustering, score-based AdaBoost, rank-based
AdaBoost, weighted average and best expert per concept. Our preliminary experi-
ments have shown that for some concepts, some (or all) of the fusionmethods degrade
performance on the training set when compared to simply choosing that concept’s
best expert. To prevent this, we propose that for each concept, we see which of the
fusion methods (including the best expert per concept) performs best on the training
set, and choose that fusion method as the final result for that concept.

3.5 Improvements: Higher-Level Fusions

After the late fusion step, we dispose, for each concept, of the classification scores
on all video shots. So far, we have treated each concept independently, disregarding
any relationship that may exist between concepts. Moreover, the video shots from
TRECVid result from the temporal segmentation of longer videos, therefore there
may also exist temporal relations between shots. The next step is to integrate this
temporal context and semantic context information.

A concept that is present in a shot of a video also tends to be present in the
neighboring shots of the same video due to temporal correlation. We exploit this
temporal context information by applying the method from [30] to temporally re-
score shots, which was shown to increase performance in this application context
[30] (block “Temporal re-scoring” in Fig. 3.1).

After temporal re-scoring, we exploit the semantic context information by apply-
ing conceptual feedback on the classification scores with the algorithm from [16].
This exploits the semantic relations between concepts by constructing a new descrip-
tor with 346 dimensions (exactly the number of concepts), the i th dimension of this
descriptor being the classification score of the shot with the i th concept. Supervised
classification is applied on this descriptor as if it were a normal descriptor, and the
resulting classification scores are re-fused with the previous results (block “Concep-
tual feedback” in Fig. 3.1). This step was also shown to increase performance in our
application context [16].
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3.6 Experiments

3.6.1 The TRECVid Semantic Indexing Task

The work presented here has been carried out and evaluated in the context of the
Semantic Indexing Task (SIN) of the TRECVid evaluation campaign. The 2013
dataset associated with this task is composed of cca. 1400 h of web video data
decomposed into cca. 35,000 video documents and cca. 880,000 shots. Shots are short
video fragments of lengths varying between a few seconds to a few tens of seconds;
they generally correspond to continuous camera recordings and are expected to have
a homogeneous content and they constitute natural indexing and retrieval units.

A list of 346 various concepts is also provided. These can be objects (Bus, Tree,
Car, Telephone, Chair), actions (Singing, Eating, Handshaking), situations/scene
types (Waterscape, Indoor, Kitchen, Construction site), abstract concepts (Science/-
technology), types of people (Corporate leader, Female person, Asian people, Gov-
ernment leader) or even specific people (Hu Jintao, Donald Rumsfeld). These con-
ceptsmay ormay not be present in a shot. Semantic indexing, as defined in TRECVid,
consists in automatically detecting the presence of these visual concepts in video
shots [37].

The dataset is split into two parts, the first one (dev or 2013d), for developing
and fine-tuning semantic indexing systems, and the second one (test or 2013t) for
evaluating the performances of the task participants. On the test part of the dataset,
semantic indexing systems are required to produce, for each target concept, a ranked
list of up to 2000 shots the most likely to contain it. The quality of the returned lists
(how well the relevant shots for that concept are concentrated toward the beginning
of the list) is evaluated using the mean inferred average precision (mean infAP)
[46, 47]. Common annotations are given on the dev part for system training and
assessments are provided on the test part for system evaluation.

The TRECVid SIN dataset is very challenging, for the following reasons:

• Videos come from a wide array of sources, of varying quality and content, ranging
from professional news footage to amateur videos recorded with a camera phone.
They can be from various environments, such as from inside a kitchen or from
outside in the street or at the beach. They can be acquired in various lighting
conditions, ranging from a sunny day outdoors to a dark interior of a night club.

• The large amount of concepts to be detected requires a generic approach to be used
for all concepts. However, it is not easy to develop a generic system that works
well enough with every concept.

• Many concepts are quite rare in the dataset; they may only appear in a few tens of
shots out of the total ≈880,000, which poses a problem for training classifiers.

• For a shot to be considered as an occurrence of a concept, it is enough that the
concept is present in at least one frame of the shot. However, the training annotation
only says if a shot contains or does not contain a concept, but it does not say when
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and where that concept appears. This poses a challenge because we do not know
which part of the shot is relevant and needs to be described.

We have chosen to perform our experiments on this dataset because it is so chal-
lenging (e.g., the peak performances in the 2012 edition were in the order of 0.3
mean infAP [38], far from the ideal value of (1) and because, as we have participated
in the task as a member of the IRIM2 group, we have had access to a large battery
of multimodal video descriptors (and corresponding experts) on which we could
experiment with information fusion approaches, which is the topic of this work.

3.6.2 Elementary Experts

Recalling the processing chain from Fig 3.1, the first step for semantic indexing
is to extract descriptors from the video shots. For its participation in the TRECVid
challenge, the laboratories that form the IRIM group have all shared their descriptors,
creating a very rich and multimodal representation of the video shots. The IRIM
partners have contributed many descriptors and descriptor versions, and a full listing
of them is beyond the scope of this work. Instead, we will just list some of the main
descriptors, without going into details:

• A large family of color descriptors was submitted by ETIS, with color represented
in the Lab color space, with an optional spatial division of the keyframe [15]. A
color histogram in the RGB color space was also submitted by LIG.

• ETIS also contributed quaternionic wavelets, which are a texture descriptor, also
with an optional spatial division of the keyframe [15].

• A normalized Gabor transform of the keyframe was contributed by LIG, as well as
an early fusion of their RGB color histogram and this normalizedGabor transform.

• BoW descriptors based on Local Binary Patterns were contributed by LIRIS [49],
and texture local edge patterns enhanced by color histograms [49]were contributed
byCEALIST.Multilevel histograms ofmultiscale LBPwith spatial pyramids were
contributed by LSIS [26].

• BoW of Opponent SIFT features: contributed by LIG in versions with keypoints
either from a Harris-Laplace corner detector, or from a dense grid [33]. From
the same family, CEALIST contributed BoW of dense SIFT with spatial pyramids
[3, 35] and LISTIC contributed BoW of dense SIFT employing retinal preprocess-
ing [39–41].

• Vectors of locally aggregated tensors (VLAT) [21], which also dealwith local SIFT
features clustered on a visual vocabulary, but use a pooling mechanism different
than BoW to generate image signatures, were submitted by ETIS.

• Saliency moments, a descriptor that exploits the shape and contours of salient
regions [28], were submitted by EUR.

2 http://mrim.imag.fr/irim/

http://mrim.imag.fr/irim/
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• BoWof space-time interest points, describedwith histograms of oriented gradients
or with histograms of optical flow, as in [18], were submitted by LIG.

• EURECOM submitted spatio-temporal edge histograms, based on temporal sta-
tistics of the (2D) MPEG-7 edge histogram.

• Descriptors based on tracking and describing faces in successive frames (face
tracks) were submitted by LABRI.

• LISTIC submitted Bags of Words of trajectories for motion description.
• Audio descriptors in the form of a BoW of Mel-frequency cepstral coefficients
(MFCC) were contributed by LIRIS.

• Detection scores of various semantic concepts from the ILSVC and ImageNet
datasets [11] (with detectors trained on ImageNet) were submitted by XEROX
[32]. From the same family of highly semantic descriptors, LIF contributed a
descriptor based on detection scores for a set of 15 mid-level concepts called
“percepts” [1].

Before supervised classification, most of the descriptors went through an opti-
mization (block “Descriptor computation and optimization” in Fig. 3.1) consisting
in applying a power transformation to normalize the values of the descriptor dimen-
sions, followed by Principal Component Analysis (PCA) to make each descriptor
more compact, and at the same time, more robust [31].

The next step was to train and apply supervised classification algorithms (classi-
fiers) on each of the (optimized) descriptors (“Supervised classification” in Fig. 3.1).
A classifier gives, for each concept and for each video shot, the estimated “likeliness”
of the shot to contain the concept (a classification score between 0 and 1).

Two classifiers were applied to each video shot descriptor. The first one is based
on aK-Nearest Neighbors search.3 The second one, calledMSVM, applies amultiple
learner approach based on Support VectorMachines [29].MSVMgenerally performs
better than KNN, but it is more computationally expensive [4].

KNN and MSVM classifiers applied to a given descriptor constitute two differ-
ent elementary experts. These can be combined (or fused) into a first level non-
elementary expert. The combination can be done in a number of ways. For this first
level, we use a weighted mean of classification scores, the weights between KNN
and MSVM being their infAP performance estimated by cross-validation within the
training (dev) set. The corresponding expert is called FUSEB; it is most often better
than either KNN or MSVM. We later use the FUSEB experts as elementary ones for
the next steps in our proposed late fusion approaches.

The most numerous family of FUSEB experts is that of ETIS color histograms
in the Lab color space (12 experts), while their quaternionic wavelets family num-
bered nine experts. LISTIC had in total 11 SIFT-based BoW experts, some with
and some without retinal preprocessing, and for five experts using trajectories. Six
OpponentSIFT BoW experts from LIG were also used, as well as two more dense
SIFT experts from CEALIST. There were five experts based on percepts, while the
experts corresponding to the remaining descriptors from the previous list were less
numerous (only one or two).

3 http://mrim.imag.fr/georges.quenot/freesoft/knnlsb/index.html

http://mrim.imag.fr/georges.quenot/freesoft/knnlsb/index.html
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Table 3.1 Mean (over all concepts) inferred average precisions of fusion approaches

basic +RS +RS+CF +RS+CF+RS

Manual hierarchical fusion 0.2576 0.2695 0.2758 0.2848
Adaboost score-based fusion 0.2500 0.2630 – –
Adaboost rank-based fusion 0.2346 0.2534 – –
Agglomerative clustering fusion 0.2383 0.2516 – –
Weighted average fusion 0.2264 0.2409 – –
Best expert per concept 0.2162 0.2367 – –
Selected best from 5 above 0.2495 0.2631 – –

Basic (without any post-processing),+RS (with temporal re-scoring, temporal context integration),
+RS+CF (with RS followed by conceptual feedback, semantic context integration),+RS+CF+RS
(+RS+CF followed by a second RS)

3.6.3 Results

All of the compared fusion methods are tested using the same input elementary
experts, the FUSEB experts for the descriptors listed in Sect. 3.6.2. The classifiers
are trained on 2013d and applied on 2013t. The fusions are also trained on experts
from 2013d, and fusion results are evaluated on 2013t. In the case of parameter
optimizations for experts or fusions, they are done in cross-validation on 2013d.

We report mean infAP averaged over a subset of 38 concepts out of the total
346, the same concepts that are used for evaluating official TRECVid SIN 2013
submissions [25].

3.6.3.1 Global Results

Table 3.1 (column “basic”) shows the mean infAP obtained by the proposed fusion
methods. The manual hierarchical fusion performs the best, thanks to the carefully
optimizedweights of experts, the additional score normalization steps between fusion
stages and themanual grouping of experts that ensuresmore homogeneous properties
within a group.

Among the automatic methods, the Adaboost score-based fusion performs the
best, with performances not far behind the manually optimized hierarchical fusion.
The Adaboost rank-based fusion performs less good, because the rank of a shot
can vary greatly with small variations in the classification score, which makes the
method more sensitive to classification noise. The agglomerative clustering fusion
is relatively close in global results to the Adaboost rank-based fusion. Among the
fusion methods, the weighted average fusion is the least good, showing that a perfor-
mance boost can be obtainedwithmore careful expert weight choosing strategies; for
example, the Adaboost score-based fusion performs 10% better than the weighted
average.

In any case, it can be seen that whatever the fusion method, the global result is
always better than what would have been obtained if we would have taken, for each
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concept, its best expert on the training dataset (Best expert per concept). The manual
hierarchical fusion is 19% better, the Adaboost score-based fusion is 16% better
and the even the weighted average has a 5% improvement, proving that late fusion
schemes, even naive ones, generally improve concept detection performances.

The selected best fusion selects, for each concept, the fusion approach (among
Adaboost score-based fusion, Adaboost rank-based fusion, agglomerative cluster-
ing, weighted average and the best expert for that concept) that performed the best
on the training set. The Adaboost score-based fusion was by far chosen the most
often, for 230 out of the 346 concepts, which is in agreement with it having the
highest mean infAP. The Adaboost rank-based fusion was chosen for 60 concepts,
the agglomerative clustering for 14 concepts and the weighted average for only eight
concepts. For the rest of the 34 concepts, the best expert was chosen, because the
fusions were found to degrade performances on the training dataset. Considering
this, it was to be expected that the mean infAP of the selected best fusion would be
close but slightly above that of the Adaboost score-based fusion. However, no global
gain is observed for the emphselected best fusion, because the choices made on the
training set are not always the best also for the test dataset, due to variations between
the two datasets.

3.6.3.2 Concept-per-Concept Results

Moving on to a concept-per-concept analysis, Table 3.2 shows the infAP gains for the
38 semantic concepts used in the official TRECVid evaluation, when comparing the
best of the automatic methods (the Adaboost score-based fusion) with the baseline
best expert per concept. For the majority of concepts, the fusion gives a signifi-
cant performance boost (such as for Airplane, Bus, Hand, Running, Throwing). For
some concepts, the boost is not too high, especially for concepts that already have
large infAP to start with (such as Beach, Government leader, Instrumental musician,
Skating); this happens when the other experts do not bring any pertinent and comple-
mentary information compared to the best expert. There are only six concepts that
experience performance degradations from the fusion, namely Animal, Computers,
Explosion or fire, Female face closeup, Girl and Kitchen.

As a preliminary conclusion, we can say that fusing a large battery of comple-
mentary experts yields a significant performance increase. It is now time to examine
the gains of higher-level fusions, at the temporal and semantic context levels.

3.6.3.3 Results for Higher-Level Fusions

Table 3.1, column “RS” shows themean infAP after applying the temporal re-scoring
algorithm described in Sect. 3.5. Our best-performing method, the manual hierar-
chical fusion, has a gain of 4.6%, while the other methods also experience gains
in the range of 5–10%. This shows that the temporal context can also bring useful
information, resulting in a performance increase for all methods.
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Table 3.2 Comparison of inferred average precisions for the best expert per concept and the
AdaBoost score-based fusion, for particular concepts

Concept Best expert AdaBoost sc. Rel. gain (%)

Airplane 0.0573 0.0923 61
Anchorperson 0.4850 0.5988 23
Animal 0.0659 0.0078 −88
Beach 0.4658 0.4722 1
Boat or ship 0.2907 0.3083 6
Boy 0.0291 0.0316 9
Bridges 0.0372 0.0393 6
Bus 0.0273 0.0598 119
Chair 0.1621 0.2394 48
Computers 0.2647 0.1919 −28
Dancing 0.2990 0.4019 34
Explosion or fire 0.1780 0.1617 −9
Female face closeup 0.3741 0.3550 −5
Flowers 0.1752 0.1895 8
Girl 0.0462 0.0360 −22
Government leader 0.4387 0.4546 4
Hand 0.1532 0.2847 86
Instrumental musician 0.5141 0.5782 12
Kitchen 0.1072 0.0952 −11
Motorcycle 0.1778 0.2369 33
News studio 0.7213 0.8223 14
Old people 0.3719 0.4096 10
People marching 0.0388 0.0470 21
Running 0.0863 0.1405 63
Singing 0.1096 0.1459 33
Sitting down 0.0003 0.0023 667
Telephones 0.0063 0.0133 111
Throwing 0.1121 0.2506 124
Baby 0.1317 0.2234 70
Door opening 0.0369 0.0410 11
Fields 0.0753 0.1375 83
Flags 0.2607 0.2819 8
Forest 0.0911 0.1150 26
George Bush 0.6092 0.6624 9
Military airplane 0.0172 0.0381 122
Quadruped 0.0807 0.1133 40
Skating 0.4956 0.5328 8
Studio with anchorperson 0.6228 0.6871 10

After temporal re-scoring, we apply the conceptual feedback step described in
Sect. 3.5 (+RS+CF in Table 3.1). Because of the significant computational cost,
we limit this experiment to our best-performing method, the manual hierarchical
fusion, for which an additional gain of 2.3% is obtained compared to the previ-
ous result. Adding a second temporal re-scoring step after the conceptual feedback
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(+RS+CF+RS) increases results by another 3.3%. In the end, the successive tempo-
ral re-scoring and conceptual feedback steps give an increase of 10.5% compared to
the basic approach.

3.7 Conclusion

In this work, we proposed several methods of combining dozens of input experts into
better ones, and applied these methods in the context of the TRECVid 2013 Semantic
Indexing task. We have shown that all of the methods globally outperform taking the
best expert for each concept, and that more elaborate fusions can perform better than
a naive weighted arithmetic mean. Two late fusionmethods distinguish themselves, a
manually optimized hierarchical grouping of experts and an automatic fusion based
on AdaBoost, both with a relatively low computational complexity. Even though we
experimented on the TRECVid SIN video dataset, these approaches are generic and
can be extended to other multimedia collections as well. We have also shown that
additional levels of fusions that exploit context can give an additional performance
increase: in the case of a video dataset, the temporal and semantic contextwere tested,
while for other multimedia datasets, different types of contextual fusions could be
devised, for example by considering the identity of themultimedia sample’s uploader,
the date and time when the material was created and/or uploaded etc. In the future,
we plan to extend our work to such types of multimedia datasets.
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