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It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

—John Godfrey Saxe



Preface

Understanding of Complex Visual Content is essential for a wide range of
important applications including automatic multimedia content indexing and
retrieval, medicine, robotics, or surveillance. This is a difficult problem due to
what we call the ‘‘semantic gap’’ or the distance between the raw representation of
image or video contents (bit streams) and the concepts and relations between them
that are meaningful and useful for human beings.

Many approaches rely on the joint use of content representation and supervised
machine learning techniques though the recent approaches like deep learning now
attempt to do both at once. Many alternative and complementary content repre-
sentation and machine learning techniques now exist. While some single or ele-
mentary representation/classification combinations perform relatively well, none
of them is currently able to capture and fully exploit the raw media stream for
understanding its contents. Research is still trying to explore the best single
combinations and their improvements in several complementary directions and the
fusion of such elementary combinations is a way of further improving the overall
system performance.

This book focuses on the fusion problem in a variety of domains and appli-
cations. It follows the workshop on Information Fusion in Computer Vision for
Concept Recognition held jointly with the 12th European Conference on Computer
Vision (ECCV2012). It contains extended versions of works presented in this
workshop together with other works carried out by leading researchers in the
domain. The different chapters cover many aspects of the problem and describe
successful approaches evaluated in the context of international benchmarks that
model realistic use cases at significant scales.

Visual and multi-modal scene understanding by humans is a result of high level
interpretation of quantities of information we gather by different physiological
channels. We are sensitive to colors, contrasts, motion, visual ‘‘roughness,’’
‘‘granularity,’’ loudness of sounds and their nature, etc. We are fusing these dif-
ferent sources to recognize and understand the content. In computer vision and
multimedia nowadays, we are imitating this fusion process at different levels. We
are speaking of ‘‘early,’’ ‘‘late,’’ and ‘‘intermediate’’ fusion for scene understanding.

Under ‘‘early fusion,’’ we usually understand building rich feature spaces for
content description as well as the transformation of these spaces to get the highest
efficiency in the content recognition task.
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The ‘‘late fusion’’ term denominates the fusion of results of primary decisions,
often using information from a single description subspace. The various combi-
nation operators, including cascade classification approaches, are applied for
aggregating primary decisions in the overall recognition task.

In the ‘‘intermediate fusion’’ approaches we combine results obtained on
description subspaces, often coming from different modalities.

Today, the research community in computer vision and multimedia can
benchmark their methods on large datasets in the scope of evaluation campaigns,
such as ImageCLEF, TRECVid, Pascal VOC, MediaEval, etc. These competitions
show the interest and ever-growing performances of late fusion schemes.

The book is organized as follows. In Chaps. 1–3 we are interested in the late
fusion approaches for concept recognition in images and videos. A specific accent
is made on the study, in Chap. 2, of a very popular model of visual content, namely
Bag-of-(Visual)-Words and various fusion aspects which are analyzed in this
framework.

Chapter 4 presents an ever-growing trend in the interpretation of visual content
by incorporating models of Human Visual System with content understanding
methods. Here we are also speaking about fusion. To delimit the areas of potential
attention in the so-called bottom-up image-driven manner, multiple cues have to
be fused: motion, contrast, and geometry of scenes. The approach is also incor-
porated in the classical Bag-of-(Visual)-Words model.

In Chap. 5 fusion schemes are developed for a more focused task, such as
example-based event recognition in video. Multi-modal features of different
semantic levels, such as Bag-of-(Visual)-Words, motion features, audio features,
but also results of semantic concepts detections are fused together to recognize
events of interest. The interesting conclusion on a good performance of simple
fusion operators, such as linear combination of intermediate classification results,
is given.

Analyzing a very rich state-of-the art research in computer vision in the matter of
scene understanding, one can roughly say that the most efficient approaches follow
a threefold scheme: content description, classification, and fusion. All of them are
important, nevertheless, the classification approach is the core. In Chap. 6,
rotation-based ensemble classifiers for high-dimensional data are proposed,
which encourage both individual accuracy and diversity within the ensemble
simultaneously.

Chapters 7–9 are more application-focused and present the search of optimal
strategies of fusion in such applications as video surveillance, violent content
detection in movies, and biomedical information retrieval.

Information fusion is a model of human interpretation of complex visual con-
tent. Nevertheless, we are very far from saying today that the mechanisms of
content understanding by humans are fully explored. We are only at the beginning
in modeling the process. This is why we need to study on a large scale how
humans interpret the content. The last Chap. 10 of the book is devoted to this key
question.
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Chapter 1
A Selective Weighted Late Fusion
for Visual Concept Recognition

Ningning Liu, Emmanuel Dellandréa, Bruno Tellez and Liming Chen

Abstract We propose a novel multimodal approach to automatically predict the
visual concepts of images through an effective fusion of visual and textual features.
It relies on a Selective Weighted Late Fusion (SWLF) scheme which, in optimizing an
overall Mean interpolated Average Precision (MiAP), learns to automatically select
and weight the best features for each visual concept to be recognized. Experiments
were conducted on the MIR Flickr image collection within the ImageCLEF Photo
Annotation challenge. The results have brought to the fore the effectiveness of SWLF
as it achieved a MiAP of 43.69 % in 2011 which ranked second out of the 79 submitted
runs, and a MiAP of 43.67 % that ranked first out of the 80 submitted runs in 2012.

1.1 Introduction

Over the last few years, we have witnessed an explosion in the quantity of multime-
dia data available both for professional and personal uses. This has been amplified
by technological advances realized in various domains that not only address pro-
fessionals but also consumers such as digital content creation, diffusion, and stor-
age. Consequently, more and more multimedia documents are stored on personal
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2 N. Liu et al.

computers but also on the Internet. For example, one of the famous online photo
sharing websites, Flickr1 deals with an average of 1.42 million photos uploaded each
day, hosting more than 7 billion photos. Meanwhile, one of the famous social net-
working websites, Facebook2 serves a peak of 1.2 million photos per second, hosting
more than 170 billion images. Basically, by adding text descriptions or keywords to
the multimedia data, it becomes possible to retrieve those documents by using clas-
sical text-based retrieval techniques. However, nowadays, those text-based systems
are no more conceivable due to the following drawbacks:

• As the amount of data is huge, it is not possible to efficiently annotate the data
manually.

• As the manual annotation is subjective, it is not guaranteed to obtain coherent
descriptions from persons with different backgrounds. Meanwhile, users tend to
use only the first few words that come to their mind, thus, the annotation is incom-
plete.

• As the text descriptions are only available with a limited number of languages,
this would make the choice of a proper language more critical for annotation and
search, or introduce more noise by using unstable automatic translation techniques.

To some extent, these problems might be overcome by a more careful manual
indexing. This however, would be associated with more effort and is infeasible in
most situations. In such context, to escape the limits of manual tagging and anno-
tating, content-based image retrieval (CBIR) systems spring up and support image
search based on low-level visual features, such as colors, textures, or shapes [1, 2].
However, human perception and understanding of images are subjective and rather
on the concept level [3–7]. Therefore, the research topic of visual concept recognition
has attracted increasing attention from researchers including psychology, computer
science, linguistics, neuroscience, and related disciplines, which could greatly be
beneficial to the mentioned applications.

Machine-based recognition of visual concepts aims at automatically recognizing
high-level visual semantic concepts (HLSC), including scenes (such as indoor, out-
door, landscape, etc.), objects (car, animal, person, etc.), events (travel, work, etc.),
or even emotions (melancholic, happy, etc.). It proves to be extremely challenging
because of high inter-class similarities and large intra-class variations especially
due to appearance deformations, occlusions, background clutter, changes in view-
point, pose, scale and illumination. The past decade has witnessed tremendous efforts
from the research communities as testified by the multiple challenges in the field,
such as Pascal VOC [8], TRECVID [9] and ImageCLEF [10]. Most approaches to
visual concept recognition (VCR) have so far focused on appropriate visual content
description, and have featured a dominant bag-of-visual-words (BoVW) represen-
tation along with local SIFT descriptors. Meanwhile, more and more works in the
literature have discovered the wealth of semantic meanings conveyed by the abundant
textual captions associated with images [11]. Therefore, multimodal approaches are

1 http://www.flickr.com
2 http://www.facebook.com

http://www.flickr.com
http://www.facebook.com


1 A Selective Weighted Late Fusion for Visual Concept Recognition 3

proposed for VCR by making joint use of user textual tags and visual descriptions
to bridge the gap between HLSC and low-level visual features. Our work is in that
line and targets an effective feature fusion scheme for VCR.

The rest of this chapter is organized as follows. We present in Sect. 1.2 a review
of the state of the art related to multimodal visual concept recognition. The proposed
fusion scheme, SWLF, is presented in Sect. 1.3. Section 1.4 presents the features
including visual and textual representations. The experiments we have conducted to
evaluate SWLF are described in Sect. 1.5. Finally, we give the conclusion in Sect. 1.6.

1.2 Related Work

As far as multimodal approaches are concerned, it requires a fusion strategy to
combine information from multiple sources, e.g., visual stream and sound stream for
video analysis [12], textual, and visual content for multimedia information retrieval
[13], etc. Taking the multimodal approaches for VCR as examples, there are generally
two modalities to handle, namely the textual and the visual modality. A fusion step
is required to obtain the final results based on the analysis of different modalities,
in which different types of features can be computed to form several information
streams. These streams need to be fused in order to elaborate a final decision. Fusion
methods can be classified into the following three strategies:

• Early fusion: All the features from the different modalities are simply concatenated
into one single feature vector that is provided as input of the classifier to obtain
the final classification result, as in [14].

• Late fusion: The features from each individual channel are first used to feed a
classifier to get its classification score. The scores from all the channels are then
combined to obtain the final classification score according to a certain criterion,
such as mean, max, min, and weighted sum, as in [15]. A comparison of early and
late fusion strategies is given in Fig. 1.1.

• Intermediate fusion: This concerns fusion strategies that are neither early nor
late, as in [18]. For instance, Noble’s approach [16], Pinquier’s HMM-based
approach [17], and more generally Multiple Kernel Learning (MKL) algorithms
that consist in combining kernels from each type of feature, falls into this category.

Each kind of fusion strategy has its own advantages and drawbacks. The early
fusions are straightforward and simple by just concatenating the features extracted
from various information sources into a single vector representation, and their draw-
backs are their large dimensionality and the difficulty they encounter in combining
features of different natures into a common homogeneous representation. The inter-
mediate fusions, mostly kernel methods, present good performances on different
visual classification tasks [8, 19–21], but their weakness lies in their high computa-
tion cost with a number of parameters to learn. By contrast, the late fusion strategies,
which consist in integrating the scores of the classifiers outputs, not only provide a
trade-off between preservation of information and computational efficiency but also
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Fig. 1.1 A comparison between early (a) and late (b) fusion strategies

prove to perform speedily compared to early fusions [22, 23]. A comprehensive and
comparative study of various combination rules, such as sum, product, max, min,
median, and majority voting, by Kittler et al. [24], suggests that the sum rule is much
less sensitive to the error of individual classifiers when estimating posterior class
probability.

The proposed fusion scheme described in the next section, namely Selective
Weighted Late Fusion (SWLF), falls into the category of late fusion strategies. Specif-
ically, when different features such as visual and textual ones, can be used for VCR,
SWLF learns to automatically select and weight the best features to be fused for each
visual concept to be recognized.

1.3 Selective Weighted Late Fusion

The fusion scheme that we propose is a selective weighted late fusion (SWLF),
which shares the same idea as the adaptive score level fusion scheme proposed by
Soltana et al. [25]. Meanwhile, recently, Pinquier et al. [17] proposed a optimal
fusion strategies in the Hierarchical Hidden Markov Model (HMM) framework for
activities recognition, which is also based on weighted trusted experts. While a late
fusion at score level is reputed as a simple and effective way to fuse features of
different nature for machine-learning problems, the proposed SWLF builds on two
simple insights. First, the score delivered by a feature type should be weighted by
its intrinsic quality for the classification problem at hand. Second, in a multi-label
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Fig. 1.2 The framework of the SWLF scheme. For each image and each concept, the associated
tags are analyzed to extract the textual features for textual classifiers. Meanwhile, visual features are
extracted to feed visual classifiers. Experts (classifiers) are then combined to predict the presence
of a given concept in the input image

scenario where several visual concepts may be assigned to an image, different visual
concepts may require different features that best recognize them. For instance, the
“sky” concept may greatly require global color descriptors, while the best feature
to recognize a concept like street could be a segment-based feature for capturing
straight lines of buildings. The whole SWLF framework is illustrated in Fig. 1.2.

1.3.1 The Principle of SWLF

The proposed SWLF scheme has a learning phase which requires a training dataset
for the selection of the best experts and their corresponding weights for each visual
concept. Specifically, given a training dataset, we divide it into two disjoint parts
composed of a training set and a validation set. For each visual concept, a binary
classifier (one versus all) is trained, which is also called expert in the subsequent, for
each type of features using the data in the training set. Thus, for each concept, we
generate as many experts as the number of different types of features. The quality
of each expert can then be evaluated through a quality metric using the data in the
validation set. In this work, the quality metric is chosen to be the interpolated Average
Precision (iAP), which is computed so that the recall measurements range from 0.0
to 1.0 interpolated with steps of 0.1. The higher iAP is for a given expert, the more
weight should be given to the score delivered by that expert for the late fusion.
Concretely, given a visual concept k, the quality metrics, i.e. iAP, produced by all
the experts are first normalized into wi

k . To perform a late fusion of all these experts
at score level, the sum of weighted scores is then computed as in (1.1):

score : zk =
N∑

i=1

(wi
k ∗ yi

k), (1.1)
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where yi
k represents the score of the i th expert for the concept k, and wi

k stands for
the normalized iAP performance of the feature fi on the validation dataset. In the
subsequent, late fusion through (1.1) is called weighted score rule.

For the purpose of comparison, we also consider three other score level fusion
schemes, namely “min,” “max,” or “sum” rules that are recalled respectively in
Eqs. (1.2)–(1.4):

min : zk = min(y1
k , y2

k , . . . , yN
k ); (1.2)

max : zk = max(y1
k , y2

k , . . . , yN
k ); (1.3)

mean : zk = 1

N

N∑

i=1

yi
k; (1.4)

Actually, these three fusion rules can have very simple interpretation. The min
fusion rule is the consensus voting. A visual concept is recognized only if all the
experts recognize it. The max rule can be called alternative voting. A visual concept
is recognized as long as one expert has recognized it. Finally, the mean rule can be
assimilated as the majority voting where a concept is recognized if the majority of
the experts recognize it.

In practice, one discovers that the late fusion of all the experts leads to a decrease
in the global classification accuracy, i.e., the mean iAP over the whole set of visual
concepts. The reason could be that some of the features so far proposed can be noisy
and irrelevant to a certain number of visual concepts, thus disturbing the learning
process and lowering the generalization skill of the learnt expert on the unseen data.
For this purpose, we further implement the SWLF scheme inspired by a wrapper
feature selection method, namely the SFS method (Sequential Forward Selection)
[26], which first initializes an empty set, and at each step the feature that gives the
highest correct classification rate along with the features already included is added to
the set of selected experts to be fused. More specifically, for each visual concept, all
the experts are sorted in a decreasing order according to their iAP. At a given iteration
N , the only first N experts are used for late fusion and their performance is evaluated
over the data of the validation set. N is increased until the overall classification
accuracy measured in terms of MiAP starts to decrease. The learning procedure of
the SWLF algorithm can be defined as follows:

Selective weighted late fusion (SWLF) algorithm for training

Input: Training dataset T (of size NT ) and validation dataset V (of size NV ).
Output: Set of N experts for the K concepts {Cn

k } and the corresponding set
of weights {ωn

k } with n ∈ [1, N ] and k ∈ [1, K ].
Initialization: N = 1, Mi APmax = 0.
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• Extract M types of features from T and V
• For each concept k = 1 to K

– For each type of feature i = 1 to M
1. Train the expert Ci

k using T
2. Compute ωi

k as the iAP of Ci
k using V

– Sort the ωi
k in descending order and denote the order as j1, j2, . . . , j M to form

Wk = {ω j1

k , ω
j2

k , . . . , ω
j M

k } and the corresponding set of experts Ek = {C j1

k , C j2

k , . . . , C j M

k }
• For the number of experts n = 2 to M

– For each concept k = 1 to K
1. Select the first n experts from Ek :En

k = {C1
k , C2

k , . . . , Cn
k }

2. Select the first n weights from Wk :W n
k = {ω1

k , ω
2
k , . . . , ω

n
k }

3. For j = 1 to n: Normalize ω
j
k

⇒ = ω
j
k /

∑n
i=1 ωi

k
4. Combine the first n experts into a fused expert, using the weighted score rule through

(1.1): zk = ∑n
j=1 ω

j
k

⇒ · y j
k where y j

k is the output of C j
k

5. Compute Mi APn
k of the fused expert on the validation set V

– Compute Mi AP = 1/K · ∑K
k=1 Mi APn

k
– If Mi AP > Mi APmax

· Then Mi APmax = Mi AP , N = n
· Else break

As a late fusion strategy, the computational complexity of SWLF can be computed
in terms of the number of visual concepts, K and the number of types of features, M .
This complexity is O(K × M2). Note that the optimized fusion strategy achieved
through SWLF only needs to be trained once on the training and validation datasets.

SWLF combines an ensemble of experts for a better prediction of class labels,
i.e., visual concepts in this work. From this perspective, SWLF can also be viewed
as a method of ensemble learning [27] which aims to use multiple models to achieve
better predictive performance than could be obtained from any of the constituent
models. Nevertheless, SWLF differs from popular bagging methods [28], such as
random forest, which involve having each expert in the ensemble trained using a
randomly drawn subset of a training set and vote with equal weight. In the case of
SWLF, the training dataset is divided into a training set and a validation set which
are used to train experts and SWLF to select the best ones for fusing using different
weights.

1.3.2 The Variants of SWLF

As the number of experts N is the same for each concept in the above algorithm,
this version of SWLF is called SWLF_FN (fixed N ). However, several variants can
be built upon SWLF. Indeed, instead of fixing the same number of experts N for all
concepts, it is possible to select the number of experts on a per-concept basis. Thus the
number of experts can be different for each concept. Therefore, we have implemented
this variant denoted SWLF_VN (variable N ) in the following. In this case, for each
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concept, features are incrementally selected until the iAP for this concept begins to
decrease. Another variant concerns the way the experts are selected at each iteration.
Instead of adding the nth best expert at iteration n to the set of previously selected
n − 1 experts, one can also select the expert that yields the best combination of n
experts, in terms of Mi AP , once added to the set of n − 1 experts already selected
at the previous iteration. This variant is denoted SWLF_SFS in the following as the
selection scheme is inspired from the feature selection method “Sequential Feature
Selection” [26] generally used for early fusion of features.

1.4 The Features Used for VCR

More and more, images are shared on the Internet together with textual resources such
as EXIF data, legends, or tags. This is for instance the case for Flickr website,3 which
is the data source of the ImageCLEF photo annotation challenge. In fact, these textual
descriptions have proven to be a rich source of semantic information for the purpose
of image classification and retrieval [29–31]. Therefore, in order to describe images
for further classification, we propose to use not only visual features extracted from
the image, but also textual features extracted from the textual resources associated
with images. These features are briefly presented in the following sections.

1.4.1 Visual Features

As the concepts to be detected in images can be characterized by different visual
properties, we propose to extract a rich set of features including low-level features
based on color, texture, shape, being local or global, as well as mid-level features
related to aesthetic and affective image properties.

In order to capture the global ambiance and layout of an image, we further com-
pute a set of global features, including descriptions of color information in the HSV
(Hue, Saturation, Value) color space in terms of means, color histograms and color
moments, textures in terms of LBP (Local Binary Patterns) [32], Color LBP [33],
co-occurrence and auto-correlation, as well as shape information in terms of his-
tograms of line orientations quantized into 12 different orientations and computed
by the Hough transform [34]. To describe image local content, we follow the domi-
nant BoVW approach that views an image as an unordered distribution of local image
features extracted from salient image points, called “interest points” [35, 36] or more
simply from points extracted on a dense grid [37, 38]. In this work, we make use
of several popular local descriptors, including C-SIFT, RGB-SIFT, HSV-SIFT [39],
and DAISY [40], extracted from a dense grid [41]. An image is then modeled as a
BoVW using a dictionary of 4,000 visual words and hard assignment. The codebook

3 http://www.flickr.com/

http://www.flickr.com/
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size, 4,000 in this work, results from a trade-off between computational efficiency
and the performance over a training dataset. The visual words represent the centers
of the clusters obtained from the k-means algorithm. In addition to these local and
global low-level features, we also collect and implement a set of mid-level features
[42–44] that are mostly inspired from studies in human visual perception, psychology
[45], cognitive science, art [46], etc., thus in close relationships with the 9 sentiment
concepts newly introduced in the image annotation task at ImageCLEF 2011. These
mid-level features include emotion-related visual features, aesthetic and face-related
features.

In total, we extract 24 visual feature sets of various dimensions ranging from
1 for color harmony to 4,000 for each of the SIFT variants. Table 1.1 summarizes all
the visual features used in the following experiments.

1.4.2 Textual Features

The last few years have seen an impressive growth of sharing websites particularly
dedicated to videos and images. The famous Flickr website4 for example, from which
is extracted the MIR FLICKR image collection, allows users to upload and share their
images and to provide a textual description under the form of tags or legends. These
textual descriptions are a rich source of semantic information on visual data that is
interesting to consider for the purpose of VCR or multimedia information retrieval.
In [7], we have proposed a novel textual descriptor, namely the Histogram of Textual
Concepts (HTC) that is inspired from the componential space model and which
describes the meaning of a word by its atoms, components, attributes, behavior,
related ideas, etc. Specifically, the HTC of a text document is defined as a histogram
of textual concepts toward a vocabulary or dictionary, and each bin of this histogram
represents a concept of the dictionary, whereas its value is the accumulation of the
contribution of each word within the text document toward the underlying concept
according to a predefined semantic similarity measure. Given a dictionary D and a
semantic similarity measurement S, HTC can be simply extracted from the tags of
an image through a three-step process as illustrated in Fig. 1.3. Note that the tags
such as “peacock,” “bird,” “feathers,” and “animal” all contribute to the bin values
associated with the “animal” and “bird” concepts according to a semantic similarity
measurement whereas the tags such as “beautiful,” “pretty,” and “interestingness” all
help peak the bin value associated with the concept “cute”. This is in clear contrast
to the BoW approaches where the relatedness of textual concepts is simply ignored
as word terms are statistically counted.

The advantages of HTC are multiple. First, for a sparse text document as image
tags, HTC offers a smooth description of the semantic relatedness of user tags over
a set of textual concepts defined within the dictionary. More importantly, in the case
of polysemy, HTC helps disambiguate textual concepts according to the context.

4 http://www.flickr.com/

http://www.flickr.com/
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Fig. 1.3 The three-steps process of our HTC algorithm

Our experiments have further indicated that HTC features perform better than the
dominant BoW approach (such as TF-IDF, LDA). The reason may lie in the fact that
BoW-kind approaches assume that word terms are basically statistically independent,
thereby mismatching text documents close in content but with different term vocab-
ulary.

As the computation of HTC relies on the definition of a dictionary and the semantic
distance measurement over textual concepts, we can build variants of HTC features
by using different dictionaries and distance measurements.

In particular, in this work, we have implemented and compared two measurements
of semantic similarities between two textual concepts, namely the path and the wup
distances [56] that are based on the WordNet ontology [57]. Given two synsets w1
and w2, the path and the wup distances are defined as:

dpath(w1, w2) = 1

1 + spl(w1, w2)
(1.5)

dwup(w1, w2) = 2 × depth(lcs(w1, w2))

depth(w1) + depth(w1)
(1.6)

where lcs(w1, w2) denotes the least common subsumer (most specific ancestor node)
of the two synsets w1 and w2 in the WordNet taxonomy, depth(w) is the length of
the path from w to the taxonomy root, and spl(w1, w2) returns the distance of the
shortest path linking the two synsets (if one exists). Note that the path and the wup
measurements have opposite polarity. When the two synsets w1 and w2 are identical,
path returns 1 while wup returns 0. Therefore, when using wup for accumulating the
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Table 1.2 Different variants of the textual features based on HTC

Feature name Dictionary Similarity measure Accumulating method

txtf_99ps D_99 path fi = ∑
t S(t, i)

txtf_99pm D_99 path fi = maxt S(t, i)
txtf_99ws D_99 wup fi = ∑

t S(t, i)
txtf_99wm D_99 wup fi = maxt S(t, i)
txtf_1034ps D_Anew path fi = ∑

t S(t, i)
txtf_1034pm D_Anew path fi = maxt S(t, i)
txtf_1034ws D_Anew wup fi = ∑

t S(t, i)
txtf_1034wm D_Anew wup fi = maxt S(t, i)
txtf_1034pva D_Anew path fi = maxt S(t, i)
txtf_1034wva D_Anew wup fi = maxt S(t, i)

Their names are related to the way they are computed. For instance, txtf_99ps refers to the HTC
variant using the dictionary D_99 made of ImageCLEF 2011 concept names along with the path
distance as semantic similarity measurement, and the sum accumulating operator. txtf_1034pvad
refers to the valence, arousal, and dominance coordinates, while the underlying HTC variant is
computed using ANEW vocabulary D_Anew and the path distance. The path and wup distance are
based on the WordNet ontology [57]

semantic similarities in the computation of HTC, its polarity is first changed to a
positive one in our work.

Table 1.2 summarizes all the text features used in following experiments.

1.5 Experiments and Results

In order to make a comparison of our method with those among the most recent ones
in the visual concept recognition domain, we carried out extensive experiments on
the MIR FLICKR image collection [58, 59] that was used within the ImageCLEF
photo annotation challenge [10]. The database is a subset of MIR FLICKR-1M
image collection from thousands of the real-world users under a creative common
license. The participants of the challenge were asked to elaborate methods in order
to automatically annotate a test set of images with a collection of visual concepts.
The task could be solved using three different types of approaches [10]:

• Visual: automatic annotation using visual information only.
• Textual: automatic annotation using textual information only (Flickr user tags and

image metadata).
• Multimodal: automatic multimodal annotation using visual information and/or

Flickr user tags and/or EXIF information.

The performance was quantitatively measured by the Mean interpolated Aver-
age Precision (MiAP) as the standard evaluation measure, while the example-based
evaluation applies the example-based F-Measure (F-Ex) and Semantic R-Precision
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Fig. 1.4 An example image with sparse Flickr user tags, including however semantic concepts
(“bird,” “beautiful,” and “interestingness,” etc.)

(SRPrecision) [10]. In the following experiments, we focus on the evaluation using
MiAP.

The proposed approach was investigated under the following conditions: (1) the
performance of SWLF using only visual features; (2) the performance of SWLF
using only textual features; (3) the effect of combining textual and visual features
through our SWLF scheme and the performance on the SWLF variants; (4) the perfor-
mance of our runs at ImageCLEF 2011 and 2012 Flickr photo annotation challenge;
(5) a discussion on the impact of the validation size on the generalization ability of
SWLF. We start by describing the experimental setup.

1.5.1 Experimental Setup

The initial training dataset, provided by ImageClef 2011 for the photo annotation
challenge, was first divided into a training set (50 %, 4005 images) and a validation
set (50 %, 3995 images), and balanced the positive samples of most concepts as half
for training and half for validation. An example of an image with its associated tags is
given in Fig. 1.4. The proposed features, both textual and visual, were then extracted
from the training and validation sets. Support Vector Machines (SVM) [60] were
chosen as classifiers (or experts) for their effectiveness both in terms of computation
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complexity and classification accuracy. An SVM expert was trained for each concept
and each type of features, as described in Sect. 1.4. Following Zhang et al. [61], we
used χ2 kernel for histogram-based features and RBF kernels for the other features.
The RBF and χ2 kernel functions are defined by the following equations:

Krbf (F, F ⇒) = exp− 1
2σ2 ⇓(F−F ⇒)⇓2

(1.7)

Kχ2(F, F ⇒) = exp
1
I

∑n
1=1

(Fi −F ⇒
i )2

Fi +F ⇒
i (1.8)

where F and F ⇒ are the feature vectors, n is their size, I is the parameter for normal-
izing the distances which was set at the average value of the training set, and σ was
set at

√
n/2.

We made use of the LibSVM library [62] as SVM implementation (C-Support
Vector Classification). The tuning of the different parameters for each SVM expert
was performed empirically according to our experiments, in which the weight of the
samples from the negative class was set at 1, and the weight of the samples from the
positive class was optimized on the validation set using a range of 1 through 30.

1.5.2 Results on the SWLF Using Visual Features

We performed the SWLF scheme for fusing visual features, and found that fusing
the top five features yield the best MiAP (35.89 %) on the validation set, as shown in
Fig.1.5a. The results indicated that the weighted score and mean rules through SWLF
outperforms the other two fusion rules, namely min and max, and the MiAP perfor-
mance is increased by 3 % using the weighted score-based SWLF scheme compared
to 32.9 % achieved by the best single visual feature (RGB-SIFT). As a result, the
visual model, which we submitted to the photo annotation task at ImageCLEF 2011,
performed the fusion of the top five best visual features using the score-based SWLF
scheme. As shown in Fig. 1.5b, the fused experts proved to have a very good gener-
alization skill on the test set. It can be seen that the weighted score and mean fusion
methods perform better than the others, and the best fused experts on the validation
set, which combine the top five features, achieved a MiAP of 35.54 % on the test set,
in comparison with a MiAP of 35.89 % achieved by the same fused experts on the
validation set.

As it can be seen from Fig. 1.5, the performance by score-based SWLF is not
very different from the performance by mean-based SWLF even though the former
performs slightly better than the latter, especially on the test set. The reason is that
each expert is weighted by its normalized iAP, the weights computed by SWLF for
all the experts are not very different, even roughly the same for the 10 best visual
features (5 SIFT features and 5 LBP features). In the SWLF algorithm, each expert is
weighted by its normalized iAP. This eventually results in roughly the same weights
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Fig. 1.5 The MiAP performance of different fusion methods based on SWLF scheme using the
visual features on the validation set (a) and test set (b). As required by SWLF, the features are first
sorted by descending order in terms of iAP of their corresponding experts. Then, the number of
fused features N is increased from 1 to 24 (total number of visual features)

for the first 10 experts, and the range of weights which is not very big when N goes
beyond 10, especially after weight normalization.

1.5.3 Results on the SWLF Using Text Features

We also applied the SWLF scheme to fuse textual features. The results as shown
in Fig. 1.6a indicate that the combination of the top five best features yield the best
MiAP value, and the weighted score-based SWLF scheme outperforms the other
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Fig. 1.6 The MiAP performance of different fusion methods based on the SWLF scheme using
textual features on the validation set (a) and test set (b). As required by SWLF, the features are
first sorted by descending order in terms of iAP of their corresponding experts. Then, the number
of fused features N is increased from 1 to 10 (total number of textual features)

fusion rules, and achieves a MiAP of 35.01 % which improves by six points the MiAP
of 29.1 % achieved by the best single textual feature (txtf_99ps) on the validation set.
As a result, we implemented our text-based prediction model using the weighted
score-based SWLF scheme to fuse the top five best textual features. As shown in
Fig. 1.6b, the fused experts using the top five features achieve a MiAP of 32.12 %
on the test set. It thus displays a very good generalization skill when this last figure
is compared with the MiAP of 35.01 % achieved by the same fused experts on the
validation set. Again, we also discovered that the score and mean-based SWLFs
perform better than the others.
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Fig. 1.7 The MiAP performance of SWLF_FN using different rules (“min,” “max,” “mean,” and
“score”) for fusing visual and textual features using the validation set (a) and the test set (b)

1.5.4 Results on the SWLF and Its Variants Using All Features

Figure 1.7 presents the MiAP performance on all the features achieved by the SWLF
scheme, using the “score” rule for combining experts which is compared with the
standard fusion operators “min,” “max,” and “mean.” These results are given on both
the validation and test sets and show the evolution of the MiAP as N , the number of
features to be fused, is increased from 1 to 34.

As we can see from Fig. 1.7a, the max and min-based SWLF_FN schemes tend
to decrease the MiAP when the number of features to be fused, N , is successively
increased from 1 to 34. On the contrary, the performance of weighted score and
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Table 1.3 The MiAP obtained by SWLF_FN, SWLF_VN and SWLF_SFS on the validation and
test sets

Method MiAP on the validation set (%) MiAP on the test set (%)

SWLF_FN(N=20) 43.55 42.71
SWLF_FN(N=22) 43.53 43.69
SWLF_VN 44.51 38.61
SWLF_SFS 44.03 43.93

mean-based SWLF_FN schemes keeps increasing until N reaches 20 and then stays
stable. While close to each other, the weighted score-based SWLF_FN scheme per-
forms slightly better than the mean-based SWLF_FN scheme. These results demon-
strate that the weighted score-based SWLF scheme performs consistently better
than the mean, max, and min-based fusion rules. Figure 1.7b presents the results
obtained using the test set. We can observe that the results are very close to those
obtained using the validation set, which proves the very good generalization skill of
SWLF_FN, particularly when using “mean” and “score” fusion rules.

A comparison of the MiAP obtained by the three SWLF variants (SWLF_FN,
SWLF_VN and SWLF_SFS) is provided in Table 1.3. It confirms the good general-
ization skill of SWLF since the MiAP obtained on the test set is very similar to the
one obtained on the validation set. The best result is obtained by SWLF_SFS with a
MiAP of 43.93 % on the test set, closely followed by SWLF_FN (with N = 22) with
a MiAP of 43.69 %. SWLF_VN is the least efficient among SWLF variants. Indeed,
although it performs slightly better than SWLF_FN and SWLF_SFS on the valida-
tion set, its performance drops by more than 5 % on the test set. This tends to suggest
that SWLF_VN, in optimizing the iAP on a per class-basis, is more prone to over-
fitting than SWLF_FN and SWLF_SFS, thus leading to a more severe performance
drop on unseen data (test dataset).

Figure 1.8 presents the iAP obtained by SWLF_FN, SWLF_VN and SWLF_SFS
for each of the 99 concepts that had to be detected within the ImageCLEF 2011 Photo
Annotation challenge. One can notice that the slight superiority of SWLF_SFS over
SWLF_FN based on the global MiAP is respected for most of the concepts, as well as
the lower results obtained by SWLF_VN. This figure also shows that some concepts
are very well detected such as “Neutral_Illumination,” “Outdoor,” and “Sky” with
an iAP around 90 % whereas some are very difficult to detect such as “Abstract,”
“Boring,” and “Work” with an iAP lower than 10 %.

1.5.5 Results at ImageCLEF 2011 Photo Annotation Challenge

We submitted five runs to the ImageCLEF 2011 photo annotation challenge (two
textual prediction models, one visual prediction model and two multimodal predic-
tion models). All runs were evaluated on the test set composed of 10,000 images.
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Fig. 1.8 The iAP obtained by SWLF_FN, SWLF_VN and SWLF_SFS for the 99 concepts of
ImageCLEF 2011 Photo Annotation challenge

They were learnt by the weighted score-based SWLF on the training and validation
sets using the features described in the previous sections, including 10 textual ones
(using user tags) and 24 visual ones. The two textual prediction models made use
of only textual features extracted from the user tags associated with an input image
for predicting the visual concepts within it. The visual prediction model made use
of only visual features while the two multimodal prediction models made joint use
of the textual and visual features. We did not use the EXIF meda data provided for
the photos.

1. textual_model_1: the combination of the top 4 features among the 10 textual
features for each concept based on the weighted score SWFL scheme.

2. multimodal_model_2: the combination of the top 21 features among 34 visual
and textual features for each concept based on the weighted score SWFL scheme.

3. textual_model_3: the combination of the top 5 features among the 10 textual
features for each concept based on the weighted score SWFL scheme.
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Table 1.4 The results of our runs submitted to ImageCLEF 2011 photo annotation challenge

Submitted runs MiAP (%) F-Ex (%) SR-Precision (%)

textual_model_1 31.76 43.17 67.49
multimodal_model_2 42.96 57.57 71.74
textual_model_3 32.12 40.97 67.57
visual_model_4 35.54 53.94 72.50
multimodal_model_5 43.69 56.69 71.82
The best results:TUBFI [18] 44.34 56.59 55.86

4. visual_model_4: the combination of the top 5 features among the 24 visual fea-
tures for each concept based on the weighted score SWFL scheme.

5. multimodal_model_5: the combination of the top 22 features among the 34
visual and textual features for each concept based on the weighted score SWFL
scheme.

Thanks to the combination of the textual and visual features using our weighted
score-based SWFL scheme, our fifth multimodal run achieved a MiAP of 43.69 %
which was ranked the second performance out of 79 runs on the MiAP evaluation,
as shown in Table 1.4. Indeed, our best visual model with 35.5 % was awarded the
fifth in comparison to the best performance of 38.8 % in visual configuration. Our
best textual model with 32.1 % was ranked the fourth performance while the best
performance of textual modality was 34.6 %. Our weighted score-based SWLF fusion
method again demonstrated its effectiveness, displaying a MiAP of 43.69 % which
improves the MiAP of 35.54 % of our visual prediction model by roughly 8 % and
even by 11 % the MiAP of 32.12 % of our best textual prediction model. It ranked
closely to the first place obtained by TUBFI (TU Berlin and Fraunhofer FIRST) [18],
who employed a non-sparse multiple kernel learning to combine kernels produced
from various BoW features including a soft mapping of textual Bag-of-Words (BoW)
and Markov random walks based on frequent Flickr user tags.

1.5.6 Results at ImageCLEF 2012 Photo Annotation Challenge

The ImageCLEF 2012 photo annotation task continues along the same lines as
previous years. It provides 15,000 images for training and 10,000 images for testing,
and has 94 concepts to be detected, where a few old concepts have been removed and
a few new ones have been added. To assess the performance of the runs submitted
by the teams, except the MiAP and F1 that have been used in ImageCLEF2011,
the organizer applied the new evaluation measurement: Geometric Mean Average
Precision (GMAP), which is an extension to MAP. When comparing runs with
each other, the GMAP specifically highlights improvements obtained on relatively
difficult concepts. Indeed, increasing the average precision of a concept from
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0.05 to 0.10 has a larger impact in its contribution to the GMAP than increasing
the average precision from 0.25 to 0.30. To compute the non-interpolated GMAP
(GMnAP) and the interpolated GMAP (GMiAP), the same procedure is conducted
the same as MnAP and MiAP, but instead with average the logs of the average preci-
sion for each concept. GMAP is obtained by exponentiating the resulting averages.
Meanwhile, a very small epsilon value to each average precision is added before
computing its log, so as to avoid taking the log of an average precision of zero. The
epsilon value is very small and its effect on the final GMAP is negligible.

For this task, we continue to use the visual features described in Sect. 1.4.1.
Moreover, we add one popular descriptor TOPSURF, and improve mid-level fea-
tures harmony and dynamism using spatial pyramid strategy. We also include the
distributional term representation DOR and DOR-TF/IDF [63] into the text features.
In addition, we develop to use the color SIFT features based on soft assignment [64].
By using the SWLF fusion scheme, we have also submitted five runs (two text mod-
els, one visual model, and two multi-models), and the details of configuration can
be found in [65].

In this task, 18 teams submitted in total 80 runs, of which 17 runs exclusively
used textual features, 28 runs exclusively used visual features, and 35 runs used
a multimodal approach. We present the overall evaluation results according to the
MiAP, GMiAP, and micro-F1 in Table 1.5 to get an understanding of the best results
irrespective of the features used, where in the Feature column the letter T refers to
the textual configuration, V to the visual configuration, and M to the multimodal
configuration. In the tables, the ranks indicate the position at which the best run
appeared in the results. To compare only runs using the same configuration we
present separate results for the textual features in Table 1.6, the visual features in
Table 1.7.

From the overall evaluation results shown in Table 1.5, we can see that one of
our multimodal results achieved a MiAP of 43.67 % which ranks first out of 80
runs. It is confirmed once again that our multimodal approaches, by fusing with the
efficient textual and visual features using our weighted score-based SWFL scheme,
are effective for the generic VCR task. Moreover, our results not only achieve the
best performance according to MiAP measurement, but also in terms of the two other
measures, namely micro-F1 and GMnAP. The performances of our visual and textual
modalities are also significant since they obtained the first rank except for the visual
configuration using the micro-F1 measure. This indicates that our proposed fusion
method SWLF also works well for combining homogeneous information sources
such as the visual or textual modalities.

1.5.7 Discussion on the Generalization Skill of SWLF

In our experimental setup, defined in Sect. 1.5.1, the initial training dataset was
divided into roughly two equal parts: a training set and a validation set. The SWLF
uses the training set to train an ensemble of experts (classifiers), one for each visual
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Table 1.6 Summary of the annotation results for the evaluation per concept and image for the best
textual run per team per evaluation measure

Team Rank MiAP Team Rank GMiAP Team Rank Micro-F1

LIRIS 1 0.3338 LIRIS 1 0.2771 LIRIS 1 0.4691
CEA LIST 3 0.3314 CEA LIST 2 0.2759 IMU 2 0.4685
IMU 4 0.2441 IMU 4 0.1917 CEA LIST 5 0.4452
CERTH 6 0.2311 CERTH 7 0.1669 MLKD 7 0.3951
MSATL 8 0.2209 MSATL 9 0.1653 CERTH 8 0.3946
IL 11 0.1724 IL 11 0.1140 IL 10 0.3532
BUAA AUDR 13 0.1423 BUAA AUDR 13 0.0818 URJCyUNED 11 0.3527
UNED 14 0.0758 UNED 14 0.0383 MSATL 13 0.2635
MLKD 15 0.0744 MLKD 15 0.0327 BUAA AUDR 14 0.2167
URJCyUNED 17 0.0622 URJCyUNED 17 0.0254 UNED 16 0.0864

Table 1.7 Summary of the annotation results for the evaluation per concept and image for the best
visual run per team per evaluation measure

Team Rank MiAP Team Rank GMiAP Team Rank Micro-F1

LIRIS 1 0.3481 LIRIS 1 0.2858 NII 1 0.5600
NPDILIP6 2 0.3437 NPDILIP6 2 0.2815 MLKD 6 0.5534
NII 6 0.3318 NII 5 0.2703 ISI 7 0.5451
ISI 10 0.3243 ISI 10 0.2590 LIRIS 8 0.5437
MLKD 11 0.3185 MLKD 11 0.2567 CERTH 9 0.4838
CERTH 13 0.2628 CERTH 13 0.1904 UAIC 10 0.4359
UAIC 14 0.2359 UAIC 14 0.1685 NPDILIP6 11 0.4228
UNED 15 0.1020 UNED 15 0.0512 PRA 15 0.3331
DBRIS 16 0.0976 DBRIS 16 0.0476 URJCyUNED 18 0.1984
PRA 22 0.0873 PRA 23 0.0437 UNED 19 0.1360
MSATL 24 0.0868 MSATL 25 0.0414 DBRIS 22 0.1070
URJCyUNED 28 0.0622 URJCyUNED 28 0.0254 MSATL 23 0.1069

concept and each type of features. It then selects and combines the best experts
while optimizing the overall MiAP on the validation set. In the following, we give
an analysis on the generalization ability of SWLF on the overall performance.

The first question concerns the generalization skill of a fused expert through SWLF
on unseen data. In Sects. 1.5.2, 1.5.3 and 1.5.4, we already depicted the good gener-
alization skill of the fused experts through the weighted score-based SWLF, on test
dataset. Table 1.8 further highlights such a behavior of the fused experts in display-
ing their MiAP performance both on the validation and test dataset. The prediction
models in bold correspond to the best prediction model learned through SWLF on
the validation set. It can be seen that the best fused experts learned on the validation
set keeps a quite good generalization skill as the performance only drops slightly on
the test set. In our submission, we anticipated this performance drop in particular
for multimodal prediction models. Instead of submitting the best multimodal model
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Table 1.8 MiAP performance comparison of the fused experts learned through the weighted score-
based SWLF on the validation set versus the test set

Prediction model Nb of fused experts N Validation set Test set

textual_model_1 4 33.21 31.76
textual_model_3 5 35.01 32.12
visual_model_4 5 35.89 35.54
multimodal_model 20 43.54 42.71
multimodal_model_2 21 43.52 42.96
multimodal_model_5 22 43.53 43.69

The prediction models in bold correspond to the best fused experts learnt through weighted score-
based SWLF on the validation set

Fig. 1.9 The MiAP performance on the test dataset of the fused experts through SWLF when
varying the size of the validation dataset from 20 to 100 % of the size of the original validation set

on the validation set which combines the best 20 features, we submitted two multi-
modal runs, namely multimodal_model_4 and multimodal_model_5, making use of
21 and 22 best features, respectively. Surprisingly enough, our best multimodal run,
multimodal_model_5, which was ranked the second best MiAP performance out of
79 runs, proves to perform slightly better on the test set than on the validation set.

The second question is how the size of the validation set impacts the generalization
ability of a fused expert learned through SWLF. For this purpose, we evaluated, as
shown in Fig. 1.9, the performance of the fused multimodal experts learnt through
the score-weighted SWLF on the validation set, by varying the size of that validation
set. The results on the test set were achieved by varying the size of the validation
set from 20 to 100 % of the size of the original validation set, i.e., 3,995 images as
specified in Sect. 1.5.1, while keeping the training set unchanged. The x axis displays
the number of fused experts while the y axis gives the MiAP performance. The curves
in different colors plot the MiAP performance using different size of the validation
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set. From this figure, we can see that the SWLF performance keeps increasing with
the size of the validation set, and the improvement becomes slight from 40 % of the
size of the original validation set. Given the size of a validation set, the fused expert
displays a similar behavior: the performance increases quickly when N varies from
1 to 20, then it subsequently remains stable.

1.6 Conclusion

We have presented in this chapter a novel Selective Weighted Late Fusion (SWLF)
that iteratively selects the best features and weights the corresponding scores for
each concept at hand to be classified. Three variants of SWLF, namely SWLF_FN,
SWLF_VN and SWLF_SFS, have been proposed and compared.

Experiments were conducted on the image collection within the ImageCLEF
Photo Annotation challenge. In 2011, our submission using SWLF_FN obtained a
MiAP of 43.69 % for the detection of the 99 visual concepts that ranked second out
of the 79 submitted runs. In 2012, a MiAP of 43.67 % was obtained that ranked first
out of the 80 submitted runs. The experimental results have also shown that SWLF,
in efficiently fusing visual and textual features, display a very good generalization
ability on unseen data for the image annotation task with a multi-label scenario.

In our future work, we plan to investigate other directions for learning high-level
features using machine learning methods. Indeed, many successful object recog-
nition approaches are proposed based on local features such as SIFT and HOG.
However, these only capture low-level edge information and it has proven difficult
to design features that effectively capture mid-level cues (such as edge intersections)
or high-level representation (such as object parts). Recent developments in machine
learning, known as “Deep Learning,” have shown how hierarchies of features can be
learned directly from data. These machine learning approaches, as applied to learn-
ing high-level features for visual concept recognition in images and video, could
further improve the performances by increasing the discriminative ability of low-level
features for Visual Concept Recognition.
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26. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern
Recogn Lett 15:1119–1125



1 A Selective Weighted Late Fusion for Visual Concept Recognition 27

27. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39
28. Breiman L, Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
29. Fergus R, Fei-Fei L, Perona P, Zisserman A (2005) Learning object categories from google’s

image search. In: 10th IEEE international conference on computer vision ICCV, IEEE, vol 2,
pp 1816–1823

30. Schroff F, Criminisi A, Zisserman A (2007) Harvesting image databases from the web. In:
IEEE 11th international conference on computer vision, ICCV, pp 1–8

31. Wang G, Hoiem D, Forsyth DA (2009) Building text features for object image classification.
In: Proceedings of CVPR, pp 1367–1374

32. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with
classification based on featured distributions. Pattern Recogn 29:51–59

33. Zhu C, Bichot CE, Chen L (2010) Multi-scale color local binary patterns for visual object
classes recognition. In: Proceedings of ICPR, pp 3065–3068

34. Pujol A, Chen L (2007) Line segment based edge feature using hough transform. In: Pro-
ceedings of the 7th IASTED international conference on visualization, imaging and image
processing, ACTA Press, pp 201–206

35. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis
60:91–110

36. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J
Comput Vis 60:63–86

37. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories. In: Proceedings of CVPR, vol 2, pp 2169–2178

38. Li FF, Perona P (2005) A Bayesian hierarchical model for learning natural scene categories.
In: Proceedings of CVPR, vol 2, pp 524–531

39. Van de Sande KEA, Gevers T, Snoek CGM (2010) Evaluating color descriptors for object and
scene recognition. IEEE Trans Pattern Anal Mach Intell 32:1582–1596

40. Tola E, Lepetit V, Fua P (2010) Daisy: an efficient dense descriptor applied to wide-baseline
stereo. IEEE Trans Pattern Anal Mach Intell 32:815–830

41. Zhu C, Bichot CE, Chen L (2011) Visual object recognition using daisy descriptor. In: Pro-
ceedings of ICME, pp 1–6

42. Dunker P, Nowak S, Begau A, Lanz C (2008) Content-based mood classification for pho-
tos and music: a generic multi-modal classification framework and evaluation approach. In:
Proceedings of multimedia information retrieval, pp 97–104

43. Liu N, Dellandréa E, Tellez B, Chen L (2011) Evaluation of features and combination
approaches for the classification of emotional semantics in images. In: International conference
on computer vision, theory and applications (VISAPP)

44. Liu N, Dellandréa E, Tellez B, Chen L, Chen L (2011) Associating textual features with visual
ones to improve affective image classification. In: Proceedings of ACII, vol 1, pp 195–204

45. Valdez P, Mehrabian A (1994) Effects of color on emotions. J Exp Psychol Gen 123:394–409
46. Itten J, Van Haagen E (1973) The art of color: the subjective experience and objective rationale

of color. Van Nostrand Reinhold, New York
47. Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception.

IEEE Trans Syst Man Cybern 8(6):460–472
48. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804
49. Anstey NA (1966) Correlation techniques—a reivew. Can J Explor Geophys 2:55–82
50. van de Sande K. Colordescriptor software. http://www.colordescriptors.com
51. Colombo C, Bimbo AD, Pala P (1999) Semantics in visual information retrieval. IEEE Multi-

media 6:38–53
52. Dellandréa E, Liu N, Chen L (2010) Classification of affective semantics in images based on

discrete and dimensional models of emotions. In: International workshop on content-based
multimedia indexing (CBMI), pp 99–104

53. Ke Y, Tang X, Jing F (2006) The design of high-level features for photo quality assessment.
In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp
419–426

http://www.colordescriptors.com


28 N. Liu et al.

54. Datta R, Li J, Wang JZ (2005) Content-based image retrieval: approaches and trends of the
new age. In: Proceedings on multimedia information retrieval, pp 253–262

55. Viola PA, Jones MJ (2001) Robust real-time face detection. In: Proceedings of CCV, vol 57,
pp 137–154

56. Budanitsky A, Hirst G (2001) Semantic distance in wordnet: an experimental, application-
oriented evaluation of five measures. In: Workshop on WordNet and other lexical resources,
2nd meeting of the North American chapter of the association for computational linguistics

57. Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38:39–41
58. Huiskes MJ, Lew MS (2008) The MIR flickr retrieval evaluation. In: Proceedings on multimedia

information retrieval, pp 39–43
59. Huiskes MJ, Thomee B, Lew MS (2010) New trends and ideas in visual concept detection:

the MIR flickr retrieval evaluation initiative. In: MIR ’10: Proceedings of the 2010 ACM
international conference on multimedia, information retrieval, pp 527–536

60. Vapnik VN (1995) The nature of statistical learning theory. Springer New York Inc., New York
61. Zhang J, Marszaek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification

of texture and object categories: a comprehensive study. Int J Comput Vis 73:213–238
62. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell

Syst Technol 2:1–27
63. Escalante HJ, Montes M, Sucar E (2011) Multimodal indexing based on semantic cohesion for

image retrieval. Inf Retrieval 15:1–32
64. van Gemert JC, Veenman CJ, Smeulders AWM, Geusebroek JM (2010) Visual word ambiguity.

IEEE Trans Pattern Anal Mach Intell 32:1271–1283
65. Liu N, Zhang Y, Dellandréa E, Bres S, Chen L (2012) LIRIS-Imagine at ImageCLEF 2012

photo annotation task. In: CLEF workshop notebook paper



Chapter 2
Bag-of-Words Image Representation:
Key Ideas and Further Insight

Marc T. Law, Nicolas Thome and Matthieu Cord

Abstract In the context of object and scene recognition, state-of-the-art perfor-
mances are obtained with visual Bag-of-Words (BoW) models of mid-level rep-
resentations computed from dense sampled local descriptors (e.g., Scale-Invariant
Feature Transform (SIFT)). Several methods to combine low-level features and to set
mid-level parameters have been evaluated recently for image classification. In this
chapter, we study in detail the different components of the BoW model in the context
of image classification. Particularly, we focus on the coding and pooling steps and
investigate the impact of the main parameters of the BoW pipeline. We show that
an adequate combination of several low (sampling rate, multiscale) and mid-level
(codebook size, normalization) parameters is decisive to reach good performances.
Based on this analysis, we propose a merging scheme that exploits the specificities
of edge-based descriptors. Low and high contrast regions are pooled separately and
combined to provide a powerful representation of images. We study the impact on
classification performance of the contrast threshold that determines whether a SIFT
descriptor corresponds to a low contrast region or a high contrast region. Successful
experiments are provided on the Caltech-101 and Scene-15 datasets.
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2.1 Introduction

Image classification refers to the ability of predicting a semantic concept based
on the visual content of the image. This topic is extensively studied due to its
large number of applications in areas as diverse as Image Processing, Information
Retrieval, Computer Vision, and Artificial Intelligence [10]. This is one of the most
challenging problems in these domains. For instance, in the context of Computer
Vision, the ability to predict complex semantic categories, such as scenes or objects,
from the pixel level, is still a very hard task. How to properly represent images for
successfully categorizing images, i.e., filling the semantic gap, remains a major issue
for computer vision researchers.

Different methodologies have been explored in the last decade to fulfill this goal.
Biologically inspired models [37, 42] try to mimic the mammalian visual system,
and show interesting performances for classification and detection. Recently, deep
learning has attracted lots of attention due to the large success of deep convolutional
nets in the Large Scale Visual Recognition Challenge 2012 (ILSVRC2012).1 Using
pixels as input, the network automatically learns useful image representations for
the classification task. The results reveal that deep learning significantly outperforms
state-of-the-art computer vision representations competitors [29]. However, although
this trend is unquestionable for this large-scale context (1 million training examples),
the feasibility of reaching state-of-the-art performances in other complex datasets
with fewer training examples remains unclear.

Therefore, the Bag-of-words (BoW) model [39] that proved to be the leading
strategy in the last decade, remains a very competitive representation. Two main
breakthroughs have been reached that explain the BoW model strength. The first one
is the design of discriminative low-level local features, such as Scale-Invariant Fea-
ture Transform (SIFT) [32] and Histograms of oriented Gradients (HoG) [12]. The
second one is the emergence of mid-level representations inspired from the text
retrieval community. Indeed, coding local features and aggregating the codes (pool-
ing) make it possible to output a vectorial representation for each image. Subse-
quently, this representation can be used to train powerful statistical learning models,
e.g., Support Vector Machine (SVM) [11], or to model visual attention maps by
feature weighting and selection using biologically inspired methods [23, 38, 47].

Extensive studies have been carried out for adapting to images, the initial method
[39] inspired by text information retrieval. In particular, many attempts for improv-
ing the coding and pooling steps have been done. In this chapter, we first investi-
gate the BoW pipeline in terms of parameter setting and feature combination for
classification. We do believe that such an analysis should help to clarify the real
difference between mid-level representations for a classification purpose. Based on
this study, we also introduce an early fusion [41] method that takes into account
and distinguishes low contrast regions from high contrast regions in images. Low
contrast regions are usually either completely removed and ignored from the mid-
level representation of images, or processed as any common feature. The idea is to

1 http://www.image-net.org/challenges/LSVRC/2012/

http://www.image-net.org/challenges/LSVRC/2012/
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exploit occurrence statistics of low contrast regions and combine them with classical
recognition methods applied on high contrast regions. The fusion we propose does
not exploit low-level features of different natures (such as combining edge-based,
color, metadata descriptors, etc.) but processes low-level features differently with re-
gard to their gradient magnitude. We focus our experiments on the Caltech-101 [18]
and Scene-15 [30] datasets, where most of state-of-the-art methods improving over
the BoW model have been evaluated.

The remainder of the chapter is organized as follows: Section 2.2 gives an overview
of the most significant mid-level BoW improvements, and clarifies the impact of
other low-level and mid-level parameters on classification performances. Section 2.3
presents the classification pipeline evaluated in this chapter. In Sect. 2.4, we specifi-
cally study the pooling fusion of low and high contrast regions. With local edge-based
descriptors (e.g., SIFT), the feature normalization process is likely to produce noisy
features: we analyze the use of a thresholding procedure used in VLFEAT [44] to
overcome this problem. In addition, we propose novel coding and pooling meth-
ods that are well adapted for handling low contrast regions. Section 2.5 provides a
systematic evaluation of the impact on classification performances of the different
parameters studied in the chapter.

2.2 Bag-of-Words Literature

In the BoW model, converting the set of local descriptors into the final image
representation is performed by a succession of two steps: coding and pooling. In
the original BoW model, coding consists of hard assigning each local descriptor to
the closest visual word, while pooling averages the local descriptor projections. The
final BoW vector can thus be regarded as a histogram counting the occurrences of
each visual word in the image. Since the notion of ‘word’ is not as clear for image
classification as for text retrieval, many efforts have been recently devoted to improve
coding and pooling [4]. It is worth mentioning that extensive works have also been
proposed to combine multiple low-level features. For example, Vedaldi et al. [45]
and Gehler et al. [20] report that the performances can be significantly improved,
using Multiple Kernel Learning (MKL) [2] or LP-boosting, respectively. Combin-
ing multiple low-level features is a complementary approach to the improvement of
mid-level representation, and we do not give more details on such methods. Since
this low-level combination is known to have a large impact on performances (for
example in [20] the best reported results are above 82 % while the best perform-
ing low-level feature is below 70 %), the remainder of the methods studied by now
focus on mono feature methods, where mid-level representations are extracted from
a single low-level visual modality.

When dealing with images and visual codebooks, the hard assignment strategy
induces an approximation of the local feature. To attenuate this quantization loss,
soft-assignment attempts to smoothly distribute features to the codewords [21, 31].
In sparse coding approaches [5, 48, 49], there is an explicit minimization of the
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feature reconstruction error, along with a prior regularization that encourages sparse
solutions. However, one main drawback in sparse coding is that the code optimization
needs to be solved for each descriptor. This makes inference very slow, especially
when there are many descriptors or when the dictionary is large. As sparse coding
are decoder networks, some approaches propose to learn encoding-decoder networks
[22, 28], in which an encoder is concurrently learned to avoid performing the heavy
sparse coding minimization. Another way to make coding more accurate is to have
a vectorial coding scheme. In aggregate methods, such as Fisher vectors [34, 35],
VLAD [26] or super-vectors [51], the difference in the feature space between the
local descriptor and each codeword is stored. Despite their very good performances,
these aggregate methods cause a huge inflation in the representation size, where a
dimensionality of 1 million is common.

Regarding pooling, alternative strategies to averaging the codes have been studied.
Max pooling is a promising alternative to sum pooling [5, 7, 31, 48, 49], especially
when linear classifiers are used. Other works study the pooling beyond a scalar
pooling. In [1, 16], the probability density function (pdf) of the distance between
the local features and each codeword is estimated, providing a richer statistics of the
codes than using average or max pooling (that output a scalar value). This vectorial
pooling strategy is shown to improve performances in various image databases.

Finally, one important limitation of the visual BoW model is the lack of spa-
tial information. The most popular extension to overcome this problem is the Spa-
tial Pyramid Matching Scheme (SPM) [30]. SPM independently pools information
from different images regions defined by a multi-resolution spatial grid and concate-
nates the histograms to form the final image vector. Despite its simplicity and rigid-
ity, SPM generally brings a substantial gain in classification performances in most
databases. Using more sophisticated models to incorporate spatial information in
the vectorial representation, generally fails to improve performances over SPM.
A noticeable exception is [13], where a graph-matching kernel strategy is used to
model spatial alignment between images. The performance increases above 80 %
which is outstanding for a mono feature method. However, the results were less
impressive in a scene database such as Scene-15 [30]. Karaman et al. [27] propose
a multi-layer structural approach for the task of object based image retrieval. The
structural features are nested multi-layered local graphs built upon sets of SURF [3]
feature points with Delaunay triangulation. A BoW framework is applied on these
graphs. The multi-layer nature of the descriptors consists in scaling from trivial
Delaunay graphs by increasing the number of nodes layer by layer up to graphs with
maximal number of nodes. For each layer of graphs, its own visual dictionary is built.
Finally, an interesting attempt including both spatial pooling and aggregation in the
feature space is the work of Feng et al. [19]. They propose to learn both aspects
of the pooling from data using a supervised criterion. Specifically, a per-class ωp

geometric pooling is introduced that learns the optimal pooling in between max and
average pooling. A spatial weighting is also learned from data to maximize perfor-
mances. They report the score of 82.6 %, which is, to the best of our knowledge, the
state-of-the-art result using mono features in the Caltech-101 [18] database.
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Fig. 2.1 State-of-the-art results since 2006 on the Caltech 101 for BoW pipeline methods in mono
feature setup

Figure 2.1 shows the performance evolution of different mid-level represen-
tations, in the Caltech-101 database, using mono features. It is obvious that the
mid-level steps improvement since 2006 significantly boosted performances: for ex-
ample, using 30 training examples, there is a substantial gain of about 20 pt from
the baseline SPM work of Lazebnik et al. [30] (∗64 % in 2006) to the pooling
learning method of Feng et al. [19] (∗83 % in 2011). Nonetheless, the absolute
numbers reported in the different publications to illustrate the improvement brought
out by some mid-level representation sometimes also include differences in the
feature computation or learning algorithms. These variations make the merits of
a given mid-level representation confusing. This aspect has recently been studied by
Chatfield et al. [8]. The authors re-implemented some of the most powerful mid-
level representations (e.g., [35, 48, 51]), and provide an experimental comparison in
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Fig. 2.2 BoW pipeline for classification

the PASCAL VOC [14] dataset. Apart from the fact that some methods are nonre-
producible,2 the main conclusion is that mid-level representation performances are
strongly impacted by low-level feature extraction parameters. In particular, it is clear
that mid-level representations benefit from a “heavy” low-level feature computation
setup, mainly using a dense and multiscale extraction scheme.

In this chapter, we analyze the impact on classification performance of different
parameters in the BoW pipeline. We extend here the analysis of Chatfield et al. [8]
by including novel parameters, such as normalization of the image signature and
a specific coding/pooling strategy for low contrast regions, that strongly impact
performances. We focus our experiments on the Caltech-101 [18] and Scene-15 [30]
databases, where most state-of-the-art methods improving over the BoW model have
been evaluated.

2.3 Classification Pipeline

Figure 2.2 illustrates the whole classification pipeline studied in this chapter. Local
features are first extracted in the input image, and encoded into an off-line trained
dictionary. The codes are then pooled to generate the image signature. This mid-level
representation is ultimately normalized before training the classifier. Each block of
the figure is detailed in the following sections. In particular, we specify the main para-
meters of the BoW pipeline that have a strong impact on classification performances,
and evaluate these parameters in Sect. 2.5.

2.3.1 Low-Level Feature Extraction

The first step of the BoW framework corresponds to local feature extraction. To
extract local descriptors, one first issue is to detect relevant image regions. Many
attempts have been done to achieve that goal, generally based on a saliency criterion:

2 Chatfield et al. [8] report that their re-implementation of Zhou et al. [51] performs 6 % below the
published results. From personal communication with the authors of Zhou et al. [51], the results
reported in Chatfield et al. [8] are representative of the method performances, without including
non trivial modifications not discussed in the chapter.
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Harris detector [25] or its multiscale version [33], SIFT detector [32], etc. However,
for classification tasks, most evaluations reveal that a regular grid-based sampling
strategy leads to optimal performances [17]. Therefore, we follow this brute-force
region selection scheme. In each patch, SIFT features [32] are computed because
of their excellent performances attested in various datasets. SIFT features [32] have
initially been designed for an image matching purpose. In this context, the ability to
match image regions under various geometric and photometric deformations is cru-
cial. For that reason, the SIFT descriptor is made rotationally invariant, by computing
the gradient orientation relatively to the dominant orientation of the patch. However,
in an image classification context, it is shown that ignoring the rotation invariance
favorably impacts performances [43]. This is due to the fact that the orientation of
the patch is actually informative for scene and object recognition, and we disable the
orientation invariance in our experiments.

In the sampling process, two parameters have a strong impact on classification
performances:

• Sampling density As we verify experimentally, the denser the sampling is, the
better the performances get. The density is set through the spatial stride parameter
and corresponds to the distance between the center of two closest extracted patches.
In most recent published papers [5, 31, 48, 49], a commonly reported setup is to
use a dense monoscale SIFT extraction scheme with a spatial stride set to 8 pixels.
However, some authors provide publicly available code using different setups than
those reported in their paper.3

• Monoscale versus multiscale features It is known [8] that using multiscale
features increases the amount of low-level information for generating the mid-
level signatures, and thus favorably impacts performances. Again, most approaches
have been evaluated with a monoscale dense sampling strategy. Wang et al. [48]
evaluate their method (LLC) in a multiscale setting, making the comparison with
respect to other methods that use monoscale features somehow unfair.

2.3.2 Mid-Level Coding and Pooling Scheme

Let X = (x1, . . . , x j , . . . , xN ) be the set of local descriptors in an image, where N
is the number of local descriptors in the image. In the BoW model, the mid-level

signature generation first requires a set of codewords
⎡
bi ∈ R

d
⎢M

i=1 (d is the local
descriptor’s dimensionality, and M is the number of codewords). This set of code-
words is called visual codebook or dictionary. Different strategies to compute the
codebook exist. The codebook can be performed with a static clustering, e.g., Smith

3 In the provided source codes for evaluation, the sampling is sometimes set to lower values: e.g., 6
pixels in http://www.ifp.illinois.edu/~jyang29/ScSPM.htm for Liu et al. [31] or http://users.cecs.
anu.edu.au/~lingqiao/ for Liu et al. [31]. Compared to the value of 8 pixels, the performances
decrease of about 1–2 %, making some reported results in published papers over-estimated.

http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
http://users.cecs.anu.edu.au/~lingqiao/
http://users.cecs.anu.edu.au/~lingqiao/
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Table 2.1 Coding and pooling strategies. The functions f and g are explicited below
x1 x j xN

b1 u1,1 · · · u1, j · · · u1,N
.
.
.

.

.

.
.
.
.

bi ui,1 · · · ui, j · · · ui,N ⇒ g : pooling
.
.
.

.

.

.
.
.
.

bM uM,1 · · · uM, j · · · uM,N

⇓
f : coding

and Chang [40] use a codebook of 166 regular colors defined a priori. These tech-
niques are generally far from optimal, except in very specific applications. Usually,
the codebook is learnt using an unsupervised clustering algorithm applied on local
descriptors randomly selected from an image dataset, providing a set of M clusters
with centers bi . K -means is widely used in the BoW pipeline, whereas Gaussian
Mixture Models are preferred with Fisher Vectors [35]. Other approaches [5, 22]
try to include supervision to improve the dictionary learning. However, Coates and
Ng [9] report that dictionary elements learned with “naive” unsupervised methods
(k-means or even random sampling) are sufficient to reach high performances on
different image datasets. What is reported in [9] is that most of the recognition
performance is a function of the choice of architecture, specifically a good encod-
ing function (i.e., sparse or soft) is required. In our experiments, we then choose
to perform the codebook with a k-means algorithm. Let B = (b1, . . . , bi , . . . , bM )

denote the resulting visual dictionary, where M is the number of visual codewords
(clusters).

In Chatfield et al. [8], several mid-level representations including different coding
and pooling methods are evaluated. In this chapter, we focus our re-implementation
on one specific method: the Localized Soft Coding (LSC) approach [31]. Indeed, LSC
proves to be a very competitive method, reaching very good results in Caltech-101
and Scene-15 databases.4 Specifically, LSC is shown to be comparable or superior
to sparse coding methods (e.g., [5, 48, 49]) while the encoding is significantly faster
since no optimization is involved. Moreover, LSC is used with linear classifiers
(see Sect. 2.3.3), making the representation adequate for dealing with large-scale
problems.

Table 2.1 gives a matrix illustration of the mid-level representation extraction in
the BoW pipeline, for scalar coding and pooling schemes. The set of local descriptors
X is represented in columns, while the set of dictionary elements B occupies the rows.

4 Note that from personal communication with the authors, we discover that the performances of
74 % in Liu et al. [31] in the Caltech-101 dataset have been obtained with a wrong evaluation metric.
The level of performances that can be obtained with the setup depicted in Liu et al. [31] is about
70 % (see Sect. 2.5). However, the conclusion regarding the relative performances of LSC with
respect to sparse coding remains valid.
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One column of the matrix thus represents the encoding of a given local descriptor x j

into the codebook that we denote as f (x j ). In each row, aggregating the codes for a
given dictionary elements bi results in the pooling operation, denoted as g(x j ).

In LSC [31], the encoding ui, j of x j to bi is computed as follows using the
k-nearest neighbors Nk(x j ):

ui, j = e−χd̂(bi ,x j )

M⎣
l=1

e−χd̂(bl ,x j )

(2.1)

where d̂(bi , x j ) is the “localized” distance between bi and x j , i.e., we encode a local
descriptor x j only on its k-nearest neighbors:

d̂(bi , x j ) =
⎤

d(bi , x j ) if bi ∈ Nk(x j )

+√ otherwise
(2.2)

From the Localized Soft Coding strategy leading to ui, j codes, max pooling is
used to generate the final image signature Z = {zi }i∈{1,...,M} with:

zi = max
j∈{1,...,N } ui, j (2.3)

The coding (function f ) and pooling (function g) can be represented in this way:

f (x j , B) = U j =

⎛

⎜⎜⎜⎜⎜⎜⎝

u1, j
...

ui, j
...

uM, j

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.4)

g(X, B) = Z =

⎛

⎜⎜⎜⎜⎜⎜⎝

z1
...

zi
...

zM

⎞

⎟⎟⎟⎟⎟⎟⎠
(2.5)

where zi is defined in Eq. (2.3).
In addition, spatial information is incorporated using a linear version [49] of the

Spatial Pyramid Matching (SPM) Scheme [30]: signatures are computed in a multi-
resolution spatial grid with three levels 1 × 1, 2 × 2 and 4 × 4. At the mid-level
representation stage, the main parameter impacting accuracy is definitely M , the
dictionary size.
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2.3.3 Normalization and Learning

Once spatial pyramids are computed, we use linear SVMs to solve the supervised
learning problem. The signature normalization is questionable. In Chatfield et al. [8],
ω2-normalization is applied, because this processing is claimed to be optimal with
linear SVMs [46]. On the other hand, normalizing the data may discard relevant
information for the classification task. For that reason, some authors report that
ω2-normalization negatively impacts performances, and therefore choose not per-
forming any normalization, as in LSC [31] or in the sparse coding work of Boureau
et al. [6]. Therefore, we propose here to experimentally evaluate the impact of the
normalization policy on classification performances.

We use for all experiments the ω2-regularized ω1-loss linear SVM classification
solver of the LibLinear library [15]. The SVM model can be written:

min
w,σ,b

‖w‖2
2 + C

n∑

i=1

σi

subject to yi (w�pi + b) ≥ 1 − σi ,∀i = 1, . . . , n (2.6)

σi ≥ 0,∀i = 1, . . . , n

where (pi , yi )
n
i=1 with yi ∈ {−1,+1} are training samples, and C is a regularization

parameter, which provides a way to avoid overfitting.
The regularization parameter C of the SVM can be determined on a validation

set. In our experiments, we simply set it to a default value (105) because we did not
observe improvement nor decline of accuracy for large values of C .

2.4 Pooling Fusion of Low and High Contrast Regions

Originally, local descriptors like SIFT [32] have been used to describe the visual
content around keypoints. The keypoints are generally detected as high saliency im-
age areas, where the contrast in the considered region is large, making the extraction
of edge-based descriptors relevant. However, when a dense sampling strategy is used,
the feature extraction becomes problematic because edge-based feature extraction is
prone to noise in low contrast areas. This drawback is worsened with SIFT descrip-
tors that are ω2-normalized in order to gain robustness to illuminate variations: in the
dense sampling setup, this normalization might make (noisy) descriptors be close to
descriptors with very large gradient magnitude.

Two different ways to deal with low contrast regions are proposed in different
publicly available libraries. A first one5 renormalizes all the features whose norm
is superior to a given threshold γ and divides the other features by γ so that all the

5 Available on Svetlana Lazebnik’s professional homepage: http://www.cs.illinois.edu/homes/
slazebni/.

http://www.cs.illinois.edu/homes/slazebni/
http://www.cs.illinois.edu/homes/slazebni/
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resulting features have a norm between 0 and 1. In this way, relevant patches with
low contrast are preserved. Another one6 also renormalizes all the features whose
norm is superior to a given threshold γ but sets the other features to zero. From
our experience, the latter method outperforms the former one in multiscale dense
sampling strategies. We then choose to focus on the VLFEAT implementation and
study the impact of the parameter γ on recognition performance. To the best of our
knowledge, the impact of the normalization of low contrast regions on classification
performance has never been explored in any prior work.

To better deal with low contrast areas in the BoW classification pipeline, we
propose the following improvements: defining visual stop features (Sect. 2.4.1), and
specific coding and pooling methods for low contrast regions (Sect. 2.4.2).

2.4.1 Visual Stop Feature: Thresholding Low Contrast Patches

In the context of image retrieval, Sivic and Zisserman [39] define visual stop words
as the most frequent visual words in images that need to be removed from the feature
representation. With the SIFT computation in low contrast patches, we are concerned
about a specific type of problematic features that we call visual stop features since
they arise at the feature extraction step (before the BoW computation). To overcome
the problem of noisy SIFT computation, we threshold the descriptor norm magnitude.
Let us consider a given SIFT feature x extracted in some region of an image. We
apply the following post-processing to x so that the output of the feature computation
is xp: {

xp = 0 if ‖x‖ < γ

xp = x
‖x‖ otherwise. (2.7)

As already mentioned, this post-processing for the SIFT computation is per-
formed in some publicly available libraries, e.g., VLFEAT [44]. The idea is to set
the descriptors corresponding to low contrast regions to a default value (e.g., 0),
and not normalizing them in this case. This thresholding is dedicated to filter out
the noisy feature computation by assigning a constant value to “roughly” homo-
geneous regions. The parameter γ defines the threshold up to which a region is
considered homogeneous. In a given image I, we denote as Xs the set of stop fea-
tures: Xs = {x ∈ I / ‖x‖ < γ }. We also denote Xm the set of nonhomogeneous
regions: Xm = {x ∈ I / ‖x‖ ≥ γ }. Figures 2.3 and 2.4 illustrate some examples of
visual stop features (illustrated with red circles) depending on γ , in Caltech-101 and
Scene-15, respectively. We notice that patches with lowest magnitude mostly do not
belong to the object to be recognized or do not belong to their discriminative parts
(but may contain some relevant contextual information), supporting the relevance
of the applied post-processing. We propose in Sect. 2.4.2 a specific modeling, in the
BoW framework of stop features.

6 Example VLFEAT [44] http://www.vlfeat.org/.

http://www.vlfeat.org/
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γ = 2 × 10−3 γ = 5 × 10−3 γ = 10−2 γ = 1.8 × 10 −2 γ = 6 × 10−2

Fig. 2.3 Visualization of the visual stop features (in circles) depending on the threshold γ applied
to the SIFT descriptor norm

2.4.2 Hybrid Image Representation

Figure 2.5 illustrates the proposed method to better deal with low contrast regions
in the BoW pipeline. In particular, we adapt the coding and pooling scheme to the
case of low contrast regions that are treated separately.
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γ = 2 × 10−3 γ = 5 × 10−3 γ = 10 −2 γ =1.8 × 10−2 γ = 6 × 10−2

Fig. 2.4 Visualization of the visual stop features (in circles) depending on the threshold γ applied
to the SIFT descriptor norm
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Fig. 2.5 Proposed mid-level representation in the BoW pipeline

2.4.2.1 New Dictionary Training and Feature Coding

We propose to identify a specific word in the dictionary (b0) to represent homoge-
neous regions. During codebook training, we learn the M − 1 remaining codewords,
(b1, ..., bM−1), thus excluding stop features when randomly sampling descriptors
in the database. During feature encoding, we propose to hard assign each visual
stop feature to the specific word corresponding to homogeneous regions (b0). This
is sensible, since the thresholding consists of ignoring the small magnitude norm
information.
For the other features, i.e., Xm , we use the LSC method described in Sect. 2.3.2,
encoding each feature on the M − 1 “nonhomogeneous” codewords elements.

2.4.2.2 Early Fusion: Hybrid Pooling Aggregation

As described in Sect. 2.3.2, max pooling is used with LSC because it achieves
better classification performances than average pooling. For visual stop features,
however, since hard assignment is performed, the corresponding pooled value z0 for
the word representing homogeneous regions b0 using max pooling would be binary.
Thus, it would only account for the presence/absence of homogeneous regions in the
image. Using average pooling instead seems more appropriate: the pooled value then
incorporates a statistic estimation of the ratio of low contrast regions in the image that
is much more informative than the binary presence/absence value. We thus follow a
hybrid pooling strategy, using average pooling for Xs and max pooling for Xm . Both
representations are then concatenated into a global descriptor before normalization
and learning. This early fusion scheme is applied in each bin of the SPM pyramid
independently.

Our hybrid pooling BoW pipeline has the following advantages: (1) The code-
book can be learned only for features of Xm , resulting in a richer representation of
Fm for the same number of training samples; (2) The hard assignment to b0 for Xs is
relevant since each homogeneous region should not be encoded in the “nonhomoge-
neous” codewords; (3) The encoding of Xs is substantially faster than using the stan-
dard LSC method, since the automatic assignment avoids the (approximate) nearest
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neighbor search that dominates the computational time; (4) The average pooling
strategy applied to the homogeneous codeword b0 incorporates a richer information
about the ratio of homogeneous regions in the image. This feature that must vary
among different classes, can therefore be capitalized on when training the classifier.

Figure 2.6 illustrates the computation of our BoW representation for a given input
image.

2.5 Experiments

Before evaluating our hybrid method, we first report an exhaustive quality assessment
of the BoW strategy.

2.5.1 Datasets and Experimental Setup

Experiments are proposed on two widely used datasets: Caltech-101 [18] and
Scene-15 [30]. Caltech-101 is a dataset of 9,144 images containing 101 object classes
and a background class. Scene-15 contains 4,485 images of 15 scene categories.

A fixed number of images per category (30 for Caltech-101 and 100 for Scene-15)
is selected to train models and all the remaining images are used for test. The reported
accuracy is measured as the average classification accuracy across all classes over
100 splits. For each class, the accuracy is measured as the percentage of images of the
class that are correctly assigned to the class by the learned classifier. All the images
are resized to have a maximum between width and height set to 300 pixels.

Like Chatfield et al. [8], we only extract SIFT descriptors. We use a spatial stride
of between 3 and 8 pixels (corresponding to the sampling density), and at 4 scales for
the multiscale, defined by setting the width of the SIFT spatial bins to 4, 6, 8 and 10
pixels respectively. The default spatial stride is 3 pixels. When referring to monoscale,
we set the width of the spatial bins to 4 pixels, with a default spatial stride of 8 pixels.
SIFT descriptors are computed with the vl_phow command included in the VLFEAT
toolbox [44], version 0.9.14, for the following experiments (Sect. 2.5.2). Apart from
the stride and scale parameters, the default options are used. In Sect. 2.5.4, monoscale
patches are extracted with the default vl_dsift command designed for monoscale
extraction.

For LSC implementation, Liu et al. [31] use χ = 1/(2φ 2) = 10 (Eq. 2.1) with
normalized features. Since the norms of VLFEAT features are equal to 512 (instead
of 1 as the descriptors used in [31]), we set φ � 115 and the number of nearest
neighbors k = 10 (Eq. 2.1) to be consistent with [31].
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Fig. 2.6 Pooling fusion applied on an image: local descriptors are separated in two different sets
depending on their norm. High contrast and low contrast regions are processed in two different
coding and pooling schemes. Their resulting BoWs are concatenated in a single BoW
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Table 2.2 Classification results on Caltech-101 dataset with 30 training images per class

Spatial stride Scaling Codebook size Accuracy (no norm) Accuracy (ω2-norm)

8 Monoscale 800 70.07 ± 0.96 70.46 ± 1.04
6 Monoscale 800 71.64 ± 0.99 72.01 ± 0.96
3 Monoscale 800 72.45 ± 1.05 72.73 ± 0.99
8 Monoscale 1700 71.67 ± 0.93 71.95 ± 0.90
8 Monoscale 3300 72.13 ± 0.99 72.50 ± 0.97
8 Multiscale 800 73.35 ± 0.89 73.83 ± 0.96
8 Multiscale 1700 75.34 ± 0.92 75.97 ± 0.86
8 Multiscale 3300 76.91 ± 0.98 77.02 ± 0.94
3 Multiscale 800 73.81 ± 0.95 73.99 ± 0.86
3 Multiscale 1700 75.72 ± 1.13 76.00 ± 0.94
3 Multiscale 3300 77.23 ± 1.02 77.47 ± 0.99
3 Multiscale 6500 78.00 ± 1.05 78.46 ± 0.95

2.5.2 Bag-of-Words Pipeline Evaluation

We study in Table 2.2 the results of the BoW pipeline using the LSC coding method
for Caltech-101 dataset. The main parameters studied are the codebook size, the
spatial stride, the mono/multiscale strategy, and the normalization.

We selected the most important combinations between all the possibilities. First,
one can notice that multiscale is always above monoscale results. In monoscale
setup, we do not investigate too many combinations. The best results are 72.73 %
for a small spatial stride with normalization. The codebook size of 3,300 also gives
good results. Compared to the classical performance of 64 % of the BoW SPM [30],
it is remarkable to see how a careful parametrization including normalization of a
BoW soft pipeline may boost the performances up to 9 %.

These trends are fully confirmed in the multiscale setting. The best score of
78.46 % is obtained with a small spatial stride of 3, multiscale, and a dictionary
of size 6,500 with ω2-normalization. The soft BoW pipeline outperforms the ad-
vanced methods presented in Chatfield et al. [8], the Fisher Kernel method (reported
at 77.78 %), and the LLC (reported at 76.95 %) with the same multiscale setup and
a codebook of 8,000 words (for LLC). It is also above the score of Boureau [6],
where the best result reported using sparse coding is 77.3 %. They use a very high
dimensional image representation and a costly sparse coding optimization, with a
monoscale scheme but a two-step aggregating SIFT features.

Table 2.3 reports the experimental results on Scene-15. They are all consistent
with the experiments on Caltech-101. The best result of 83.44 % is also obtained
for a multiscale scheme, a small spatial stride of 3, and a large dictionary of size
6,800 with normalization. This score is still slightly better than the Boureau one of
83.3 % [6], but remains below state-of-the-art results for that database.

These experiments confirm that the parameters mentioned in Sect. 2.3 may
significantly improve the recognition. A small spatial stride with multiscale, a large
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Table 2.3 Classification results on Scene-15 dataset with 100 training images per class

Spatial stride Scaling Codebook size Accuracy (no norm) Accuracy (ω2-norm)

8 Monoscale 1000 78.72 ± 0.62 78.96 ± 0.60
6 Mnoscale 1000 79.53 ± 0.65 79.74 ± 0.65
3 Monoscale 1000 79.74 ± 0.61 80.05 ± 0.67
8 Monoscale 1700 79.98 ± 0.61 80.29 ± 0.58
8 Monoscale 3400 80.61 ± 0.61 81.16 ± 0.57
8 Multiscale 1000 79.59 ± 0.63 80.12 ± 0.56
8 Multiscale 1700 80.91 ± 0.56 81.25 ± 0.54
8 Multiscale 3400 82.01 ± 0.72 82.39 ± 0.60
3 Multiscale 1000 79.74 ± 0.60 80.14 ± 0.59
3 Multiscale 1700 81.03 ± 0.65 81.23 ± 0.60
3 Multiscale 3400 82.17 ± 0.73 82.42 ± 0.59
3 Multiscale 6800 82.66 ± 0.62 83.44 ± 0.55

codebook and a proper normalization of the spatial pyramid is the winning cocktail
for the BoW pipeline. However, the accuracy improvement is more impressive for
Caltech-101 (reaching very high performances) than for Scene-15.

2.5.3 Distribution of Gradient Magnitudes

A distribution in Caltech-101 and Scene-15 of the gradient magnitudes of patches
in a monoscale setup is illustrated in Fig. 2.7. In Caltech-101, about 6 % of patches
have a gradient magnitude smaller than 10−4 and 40 % of patches have a feature
norm greater than 0.05. In Scene-15, less than 1 % of patches have a magnitude close
to 0. This difference compared to Caltech-101 comes from the fact that almost no
fully homogeneous region exists in Scene-15 (whereas some images in Caltech-101
contain uniform background).

We study in Sect. 2.5.4 the impact of the parameter γ (in Eq. 2.7) on classification
performance with our proposed strategy.

2.5.4 Evaluation of Our Strategy

We evaluate here the classification performances of our early fusion detailed in
Sect. 2.4. First, we study the impact of γ (Eq. 2.7). Figure 2.8a shows the evolution
of the classification performances depending on γ on Caltech-101 database, in both
monoscale and multiscale settings. The results are largely impacted when γ varies:
the performances can be improved up to 3 % for the monoscale setup using γ � 10−2

compared to the default value. The same trend appears for the multiscale setting.
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Fig. 2.7 Percentage of patches with gradient magnitude smaller than a given threshold in a
monoscale setup

For Scene-15 dataset (Fig. 2.8b), the conclusion differs: in a multiscale setting the
performances can be slightly improved, whereas the best result is obtained for γ = 0
with monoscale features. This may be explained by the fact that in object recognition
(particularly on Caltech-101), the patches with lowest magnitude usually do not
describe the object to be recognized and belong to the background (see Fig. 2.3).

Second, we evaluate the specific encoding and pooling method for low contrast
regions described in Sect. 2.4.2. We provide two gradual evaluations (see Fig. 2.9).
The proposed changes improve performances in Caltech-101 database, in both
monoscale (Fig. 2.9a) and multiscale settings (Fig. 2.9b). For the multiscale setup, the
performances are in addition more robust to γ variations. For the monoscale setup,
the average pooling outperforms the max pooling method, validating the idea that
enriching the homogeneous regions pooling with a nonbinary value can favorably
impact performances. This is not the case in the multiscale experiments, probably
because fewer homogeneous regions are extracted in such a setup (due to the increase
of the region size), making the statistical estimate of the homogeneous regions ratio
less reliable.

Finally, if we use the best setting of parameters with a codebook of 104 words,
we obtain the score of 79.07 ± 0.83 % on Caltech-101 dataset and 83.83 ± 0.59 %
on Scene-15 with our fusion scheme over low/high contrast regions. The reported
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Fig. 2.8 Accuracy of the normalized LSC model as the threshold under which features are set to
0 varies a on Caltech-101, b on Scene-15

result on the Caltech-101 benchmark is comparable to the best published score [22]
following the standard BoW pipeline (scalar coding and pooling + SPM), for a single
descriptor type and linear classification. Note that the results obtained by Duchenne
et al. [13] or Feng et al. [19] are obtained with methodological tools (resp. graph
matching and pooling learning) that are complementary to our method. Therefore, a
combination is expected to further boost performances.
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Fig. 2.9 Accuracy of the normalized LSC strategies on Caltech-101 a monoscale setup with a
codebook of 1000 words, b multiscale setup with a codebook of 2000 words

2.6 Conclusions

In this chapter, we have studied in detail the different components of the BoW model
in the context of image classification. Particularly, we have shown that several low
(sampling rate, multiscale) and mid-level (codebook size, normalization) parame-
ters have an impact on recognition. The codebook size and mono/multiscaling are
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definitely the most significant parameters as they allow to describe images with richer
or denser information. The sampling rate is more significant in monoscale setup as
it allows to increase the number of descriptors to represent images; this number is
small in monoscale setup.

We have also investigated some early fusion methods that process low and high
contrast regions separately. We have proposed a novel scheme to efficiently embed
low contrast information into the BoW pipeline. This scheme is more robust than
classic methods to the choice of threshold under which SIFT descriptor are nor-
malized. This results from the fact that meaningful high contrast regions are not
mixed with noisy low contrast regions. Finally, our strategy obtains state-of-the-art
performances on Caltech-101 and very good results on Scene-15 dataset.
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Chapter 3
Hierarchical Late Fusion for Concept
Detection in Videos

Sabin Tiberius Strat, Alexandre Benoit, Patrick Lambert,
Hervé Bredin and Georges Quénot

Abstract Current research shows that the detection of semantic concepts (e.g., ani-
mal, bus, person, dancing, etc.) in multimedia documents such as videos, requires the
use of several types of complementary descriptors in order to achieve good results.
In this work, we explore strategies for combining dozens of complementary con-
tent descriptors (or “experts”) in an efficient way, through the use of late fusion
approaches, for concept detection in multimedia documents. We explore two fusion
approaches that share a common structure: both start with a clustering of experts
stage, continue with an intra-cluster fusion and finish with an inter-cluster fusion,
and we also experiment with other state-of-the-art methods. The first fusion approach
relies on a priori knowledge about the internals of each expert to group the set of
available experts by similarity. The second approach automatically obtains measures
on the similarity of experts from their output to group the experts using agglomer-
ative clustering, and then combines the results of this fusion with those from other
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methods. In the end, we show that an additional performance boost can be obtained
by also considering the context of multimedia elements.

3.1 Introduction

During the last few years, society has witnessed a great increase in the amount of
multimedia information, in the form of image, audio and video documents. This has
created a demand for solutions aimed at automatically analyzing and organizing this
content, in order to give the users the possibility to retrieve particular multimedia
elements by browsing and searching the database. Formulating searches in humanly
understandable concepts requires that the database be indexed according to such
terms, which creates the need for automatic semantic indexing tools.

Many advances have taken place in recent years on the topic of concept detection
in multimedia collections with the goal of semantic indexing and there are several
well-known, publicly available datasets on which researchers can test and compare
their different algorithms. For example, the Pascal VOC (visual object categories)
challenge focuses on detecting objects in static images [12], the MediaEval series of
benchmarks is dedicated to evaluating algorithms for multimedia access and retrieval
in videos accompanied by metadata, therefore focusing even on human and social
aspects of multimedia tasks [19], while the TRECVid1 series of workshops proposes
several video-only analysis tasks, such as semantic indexing and surveillance event
detection [24].

A basic framework for semantic indexing on a multimedia dataset consists of
extracting content descriptors from the samples (e.g., images or video shots), then
training supervised classifiers on each of these descriptors. This produces, for each
available descriptor and for each associated classification method, a set of classifi-
cation scores that describe the “likeliness” of each sample to contain a given target
concept. When possible, such scores can be calibrated as probabilities for the samples
to contain the target concept.

We call an expert any method able to produce a set of likeliness scores for mul-
timedia samples to contain a given target concept. Such scores can then be used to
produce a ranked list of the samples the most likely to contain this concept. A com-
bination of a content descriptor and a supervised classification method constitute an
elementary expert. These steps are represented by the “Descriptor computation and
optimization” and “Supervised classification” blocks in Fig. 3.1 (this figure illustrates
the entire processing chain that we use in our experiments, which will be explained
in more detail later on).

As several content descriptors and several supervised classification methods can
be considered, many elementary experts can be built. So far, information coming
from different elementary experts is not jointly exploited, as experts are treated inde-
pendently. However, different types of elementary experts, each based on different

1 TREC Video Retrieval Evaluation, http://trecvid.nist.gov/.

http://trecvid.nist.gov/
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aspects of the multimedia samples (such as colors, textures, contour orientations,
motion or sounds, etc.), give complementary information.

Several aspects of complementarity can be discussed. The first is inter-concept
complementarity, which means that a certain expert (based on a certain type of content
descriptor) can give very good results for a particular semantic concept, yet perform
poorly for another concept. For example, on the TRECVid SIN video dataset, the
concept “Football” is better detected by experts using trajectory descriptors than by
those using SIFT Bag-of-Words descriptors, or vice-versa. The concept “Bridges”
is better detected with SIFT Bag-of-Words than with trajectories. There is no single
expert which is systematically the best for all target concepts.

The second aspect of complementarity is intra-concept complementarity, which
means that even if two (or more) experts have modest performances for a particular
concept, their combination can produce a higher level expert that often performs
better than any of its input elementary experts. This is especially true when one of
the elementary experts detects the concept better in some situations (corresponding
to some of the multimedia samples where the concept is present), while the other
expert works better in the rest of the situations (the rest of the samples where the
concept is present), which means that there is complementarity at the context level.

Because of these observations, for the sake of universality and in order to exploit
complementary information, many systems rely on the combination of a large set of
experts (up to 100+), each based on different descriptors or descriptor versions, and
using various supervised classification algorithms.

The work described here focuses on the next step in the semantic indexing pipeline,
immediately following the (multiple) supervised classification: the combination by
late fusion of a large battery of complementary experts. The goal is to exploit their
complementarity as well as possible for boosting the concept detection performance
as far as possible.

The rest of the chapter is structured as follows: Section 3.2 reviews the relevant
state of the art; Sect. 3.3 explains the motivation of the presented work; Sect. 3.4
describes the proposed approaches; Sect. 3.5 describes some additional improve-
ments to the proposed approaches; Sect. 3.6 presents the experiments carried out and
the obtained results; and Sect. 3.7 draws some conclusions and gives some perspec-
tives.

3.2 State of the Art

Semantic concept detection in multimedia elements starts with computing descrip-
tors. In the case of video datasets, we can have many types of descriptors, such
as Bags-of-Words of local features (SIFT [20], SURF [5] or other type), color his-
tograms, trajectories [2] or audio descriptors, with more examples given in Sect. 3.6.2.
On such a descriptor, for a particular target concept, a supervised classification algo-
rithm is trained and applied (such as K-nearest neighbors, support vector machines
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(SVM) with various kernels, artificial neural networks, gaussian mixture models,
etc.), obtaining an elementary expert [4].

Most often, combining information from several experts improves the correct
recognition rates of semantic concepts. Experts can be combined at several stages
within the processing chain: Early fusions combine descriptors before the classifi-
cation step, while late fusions combine the outputs of supervised classifiers.

Early fusions can be as simple as concatenating two or more multidimensional
descriptors, but for better results, the fact that descriptor dimensions may have values
in different ranges, that descriptors may have varying numbers of dimensions and that
descriptors may have varying importances for a certain concept needs to be taken into
account. In [48], early fusion is performed by computing the distance between two
videos as a weighted average of distances between different descriptors. In [44], a
multichannel approach is used to combine a trajectory descriptor (movements from
one frame to the next) and trajectory-aligned descriptors (histograms of oriented
gradients, histograms of optical flow, motion boundary histograms) as input for a
SVM with a χ2 kernel, by measuring the distance between videos as the average of
distances between channels (input descriptors).

Late fusions can be as simple as averaging the output scores from classifiers based
on different descriptors (averaging different experts), or can be more complex, taking
into account the inter-dependencies of scores from different experts like it is done
with Choquet’s integral [10]. An additional level of supervised classification can also
be trained on the set of experts, however this can lead to over-fitting which degrades
results, and averaging output scores generally gives results just as good (or better)
with less computational cost. In [48], late fusion is done by averaging output scores
from different experts, but in their approach, early fusion performed better than late
fusion . They also experimented with a combination of early and late fusion (double
fusion) which was shown to generally outperform both the early and late fusion . In
general, late fusions perform best when the experts being fused are complementary,
as it was shown by [23].

In [50], a visual classifier and two textual classifiers are combined using methods
from belief theory, in the context of image classification. Classifier output probabili-
ties are first converted into consonant mass functions, and then these mass functions
are combined in the belief theory using Dempster’s rule [36] or the Average rule.
Both rules gave significantly better results than classifiers taken independently, with
Dempster’s rule performing better for challenging classes.

There can also be intermediates between early fusions and late fusions. With
regard to SVM classifiers, Multiple Kernel Learning (MKL) can be considered a sort
of intermediate fusion. Instead of using a single kernel function for the SVM, several
kernels can be combined (either working on the same data or on different data) to
improve classification results [14]. For example, the multichannel approach in [44]
can be regarded as a MKL problem.

In [27], an early fusion, an intermediate fusion and three late fusions are used to
combine static, dynamic and audio features for activity recognition using hierarchical
hidden Markov models. The early fusion is a concatenation of descriptors, while the
late fusions combine confidence scores from separate classifiers. The intermediate
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fusion, which gives the best results in their context, considers each modality as a
stream of measurements and each state of the HMM models separately the observa-
tions of each stream by a Gaussian mixture, each stream being weighted depending
on the activity in question.

Fusion strategies for detecting a concept can also concern themselves with how
to deal with data imbalance problems (such as in TRECVid Semantic Indexing task,
where most of the concepts have many more negative-labeled examples than positive
ones) or which features or descriptors are more relevant for that concept. In [48], a
Sequential Boosting SVM inspired from bagging and boosting approaches is used.
Bagging [7] means splitting the training database into several subparts (when there
are many more training negatives than positives, the positives may be kept common to
all subparts) and training a classifier on each subpart; at recognition, the outputs from
those classifiers are combined (averaged) to improve the result. Boosting strategies
such as AdaBoost [13, 34] train a strong classifier by combining (through weighted
average) results from many weak classifiers. In TRECVid, late fusions based on
AdaBoost have been used in [8, 43, 45].

In the context of the TRECVid Semantic Indexing (SIN) task and as part of our
participation with the IRIM group, we opt for the use of late fusion approaches
(in a concept-per-concept manner), because an early fusion would mean training
supervised classifiers on very high-dimensional descriptors, which is not trivial. Late
fusions are easier to apply, because they fuse simple classification scores, not complex
multidimensional descriptors, and in the case of TRECVid SIN, it was shown in [4]
that late fusions also give better results. As inputs for the late fusion, we have a battery
of (50+) experts, which are classification scores for each of the multidimensional
descriptors (and their versions), on each video shot and each concept. A similar fusion
context is described in [9], where experts are generated from a large number of video
descriptors on which different classification algorithms are applied, the classifier
that yields the best result for each descriptor is retained and the resulting experts are
combined in a late fusion approach.

3.3 Choice of Late Fusion Strategy

When looking for an effective combination of experts, several questions arise. Should
we use them all in the fusion process, or just the best ones? Does combining two
experts always yield better results than the two of them taken separately? Should we
weigh them differently in case one is much better than the other? Tackling a similar
problem, Ng and Kantor [23] proposed a method to predict the effectiveness of their
fusion approach and concluded:

Schemes with dissimilar outputs but comparable performance are more likely to give rise to
effective naive data fusion.
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Fig. 3.2 Average precision gains when combining experts that have various performances and var-
ious agreement rates. Each circle represents an expert pair. The x-axis corresponds to max

(
αi , α j

)
,

the average precision of the best expert from a pair. The y-axis indicates αi+ j , the average precision
of the combination of a pair. Dark (resp. bright) grey circles indicate that experts i and j strongly
agree (resp. disagree) in their rankings. The circle diameter is directly proportional to the ratio of
the average precisions in the pair αi /α j (where αi < α j )

where the similarity between two experts outputs can be measured as the Spearman
rank correlation coefficient [17]—and naive data fusion should be understood as
fusion by sum of normalized scores.

3.3.1 Fusion of Two Experts

In order to validate the conclusion of Ng and Kantor [23] in the case of concept
detection in videos, we drove a simple experiment whose outcome is summarized in
Fig. 3.2.

Given a set of K = 50 experts trained for the detection of a given concept, and
an estimation of their performance (average precision) αk on the TRECVid 2010
Semantic Indexing task [24], we considered all pairs (i, j) of experts and evaluated
the performance of their fusion by weighted sum of normalized scores:

x = αi · xi + α j · x j (3.1)

As most circles are above the x = y line (i.e., αi+ j > max(αi , α j )), Fig. 3.2 clearly
shows that the weighted sum fusion from Eq. (3.1) is the most beneficial for experts
that tend to disagree on their rankings but have similar average precisions (bright,
large circles). This means that the gain is maximum when we have intra-concept
complementarity, at the context level, as discussed in Sect. 3.1.
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Fig. 3.3 Similarity of experts trained for the detection of concept Computers. Each node represents
an expert, and edges represent the similarity between them (we only display some of the edges). The
dotted edges represent experts which derive from the same descriptors, but use different classifiers

3.3.2 Communities of Experts

We have given an example for two experts, however, as described in Sect. 3.6.2,
the final objective is to combine a large collection of (50+) experts. The difference
between those experts mostly comes from the type of descriptors they rely on, and
partly from the type of classifiers trained on top of these descriptors.

We expect experts relying on similar descriptors to generate similar outputs and
therefore strongly agree with each other. We ran an additional set of preliminary
experiments in order to verify this hypothesis—as illustrated in Fig. 3.3.

In Fig. 3.3, each expert is represented by a node and similar experts (according
to their Spearman rank correlation coefficient [17]) are positioned closer to each
other using a standard spring-layout algorithm. It appears that some kind of commu-
nity structure naturally emerges, with several groups of experts being more strongly
connected internally than with the outside of their group.

This is partly due to the type of descriptors used internally by the experts (denoted
by the shape of the nodes). For instance, experts based on color descriptors (circles)
seem to agglutinate, as do experts based on audio descriptors (diamonds). Finally,
the size of a node is directly proportional to the performance (average precision) of
the corresponding expert. Therefore, best performing experts (i.e., larger nodes) also
tend to agglutinate as they provide rankings that are closer to the reality—therefore
closer to each other.

We also used the so-called Louvain algorithm to automatically detect communities
of experts in this graph [6, 22]. With no objective groundtruth to compare with, it
is difficult to evaluate the detected communities. However, looking at Fig. 3.3 and
the five detected communities (A to E), it seems that the Louvain algorithm did a
goodjob at finding communities related to the type of descriptors on which experts
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Fig. 3.4 Basic principle of our main fusion approaches: K input experts are available, which are
clustered based on similarity into several groups, followed by an intra-cluster fusion and an inter-
cluster fusion. Figure from [42]

are based. In particular, a dotted edge between a pair of experts indicates that they
are based on the very same descriptors and they only differ in the classifier they rely
on. None of these pairs is split into two different communities.

3.3.3 Hierarchical Fusion of Multiple Experts

Based on the effects noted in Sect. 3.3.1, and as illustrated in Fig. 3.4, the late fusion
approaches that we propose share the following general framework:

• First, experts are grouped based on similarity into clusters of similar experts. This
grouping can either be done manually, using external knowledge about the internal
workings of each expert (e.g., grouping all experts that use color descriptors), or
automatically, as it was done in Sect. 3.3.2.

• Then, intra-cluster fusions are performed, in which the experts from each cluster
are fused. This balances the quantity of experts of each type, avoiding the case
when numerous similar experts dominate the others (because some groups may be
very numerous, while other groups may only have a few or even a single expert),
and also helps to reduce classification “noise” within the group.

• Last, an inter-cluster fusion is performed, in which the different clusters (which are
complementary because they contain experts of different types) are fused together.
This gives the main performance boost due to complementarity, based on the
remark of Ng and Kantor [23] and on our preliminary tests from Sect. 3.3.1.
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3.4 Proposed Approaches

Our goal is to combine information coming from different experts in a way close to
the optimum, so that the gain from complementarity is maximized. Following their
successful use in our previous work [42], we propose two approaches: one that relies
on manually grouping experts, and the other that determines the group and the weight
of each expert automatically. Our main fusion approaches are the following:

• Manual hierarchical fusion: Expert groups are chosen manually, in a hierarchical
manner, based on how the expert was obtained. There are several fusion levels,
corresponding to the levels of the expert hierarchy.

• Agglomerative clustering: This is our automatic approach; experts are fused pro-
gressively based on similarity into groups, followed by inter-group fusion. We also
extend this approach compared to what was done in [42].

3.4.1 Manual Hierarchical Fusion

The manual hierarchy was designed according to a high-level knowledge about the
descriptors and the classifiers. The main principle considered is to fuse first descrip-
tors or classifiers that are expected to be closer considering their nature or principle
of operation. The manual hierarchy incorporates more levels than the automatic
ones, with branches with different depths. In practice, we fused first the output of all
the available machine learning algorithms for each descriptor (e.g., kNN and SVM,
corresponding to block “Weighted average of KNNB-MSVM pairs” in Fig. 3.1). We
then fuse different variants of the same descriptor (e.g., BoW of the same local
descriptor but with different dictionary sizes). Afterwards, we fuse the experts corre-
sponding to different image spatial decompositions (pyramid) if available. Finally, the
last level concerns descriptors of different types within the same modality (e.g., color,
texture, interest points, percepts, or faces) and descriptors from different modalities
(audio and visual).

Various experiments with manually defined hierarchies suggested that going from
the most similar to the most different was a good strategy. These experiments also
showed that the best results are obtained when using as many combinations as pos-
sible of descriptors and machine learning algorithms. Even combinations with low
performance can contribute to a global performance increase, especially if they are
complementary to better ones.

Late fusion was performed at all levels using a weighted arithmetic mean of
normalized scores. Several other and more complex methods were tried but pro-
duced no or very small improvements. Three weighting strategies were considered:
uniform (simple arithmetic mean), MAP based (simple function of the Mean Aver-
age Precision of the different inputs), and direct optimization by cross-validation.
Cross-validation experiments showed that in the early stages, uniform weighting
was preferable for robustness while in latter stages MAP-based or directly optimized
weighting provided better results.



3 Hierarchical Late Fusion for Concept Detection in Videos 63

3.4.2 Agglomerative Clustering and Extensions

The original version of this approach from [42] is based on grouping and fusing
experts progressively based on similarity, until a minimum similarity threshold is
reached; it clusters experts into groups and performs intra-group fusion at the same
time. Because of this functioning, we call this fusion method agglomerative cluster-
ing. After this step, inter-group fusion is performed to obtain the fused result.

Compared to what was done in [42], we extend this agglomerative clustering
approach by also performing, in parallel, four additional fusions: two versions of
AdaBoost fusions inspired from [8, 43, 45], one weighted arithmetic mean of experts,
and the best expert for each concept. At the end, the results of the five fusions are
combined by choosing, for each semantic concept, the fusion method among the five
that gave the best result for that concept on the training set.

We will first present the original approach, utilizing only agglomerative clustering,
and then we will detail the other fusions with which we compare and also extend the
agglomerative clustering.

3.4.2.1 Agglomerative Clustering of Experts

The agglomerative clustering fusion method treats each semantic concept indepen-
dently, and for each concept, applies the following steps:

1. Relevance of experts estimation: The relevance of each of the input elementary
experts is estimated on the training set, for the concept in question. The relevance
is measured as the average precision of the expert normalized with respect to
chance (the result of randomly choosing samples). An expert with a relevance of
one means that it performs just as poorly as chance.

2. Selection of experts: Experts with a relevance less than one are thrown away,
because they are irrelevant to the concept in question. Experts with a relevance
eight times smaller than that of the best are also thrown away, in order not to
“pollute” the best expert with others that are much worse. This second selection
is not critical, neither is its threshold, but using it tends to reduce performance
degradation from fusion for the (very few) concepts that have an extremely good
best expert.

3. Iterative fusion: Some of the retained experts are highly correlated, so we look for
the pair of experts with the maximum correlation and fuse it into a single expert
(through arithmetic mean). The correlation between the resulting expert and the
remaining ones is updated, and the process is repeated. The iterative fusion stops
when a sufficiently correlated pair of experts can no longer be found. The iterative
fusion corresponds to the first two steps in Fig. 3.4, as it groups and fuses similar
experts at the same time (progressively, as pairs of highly correlated experts are
found).

4. Weighted arithmetic mean: The iterative fusion does not give a large gain, because
it only groups and fuses similar experts. The main performance boost comes now,
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when we fuse different groups via a weighted mean of experts. The weights are
given by the average precisions (for the current concept on the training dataset)
of the experts from the previous step. A single expert is obtained, the result of
our agglomerative clustering fusion approach. This weighted arithmetic mean
corresponds to the last step in Fig. 3.4.

The correlation measure used in the iterative fusion step is the Pearson product-
moment correlation coefficient ρ of the raw classification scores. ρ ∗ [−1; 1], with
values in the range of 0.6–1 corresponding to high correlation. In order to fuse a pair
of experts, not only does the correlation coefficient for the classification scores of all
samples need to be at least 0.75 (the two experts give similar information on a global
scale), but also the correlation coefficient for the scores of only the positive samples
must be at least 0.65 (to ensure that the two experts tend to detect more or less the
same true positives of the semantic concept being analyzed). The constraint related
to positives was added again with regards to the remark of Ng and Kantor, as at this
stage, we want to group similar (not very complementary) experts; also, without this
constraint, because of the imbalance between positives and negatives, the scores for
negatives would have dominated the correlation measure.

The goal of iterative fusion is to balance the contribution of each family of experts,
as we will see in Sect. 3.6.2 that some families are very numerous, while other fam-
ilies are small. This method is automatic and avoids needing to specify the families
manually, making it practical for often-changing expert sets and for automatically
grouping experts of similar types but from different contributors. The groups formed
by the iterative fusion correspond in a large degree to the expectations based on
descriptor type.

In addition to the agglomerative clustering fusion, we also experiment with
other fusion approaches and with combining the results from these different fusion
approaches, as described in the following.

3.4.2.2 AdaBoost Score-Based Fusion

AdaBoost [13], short for “adaptive boosting”, is an algorithm that constructs a strong
expert through a weighted average of a large number of weak experts. AdaBoost func-
tions properly when each of the weak experts is at least slightly better than chance,
and when the different involved experts are complementary (they each correctly clas-
sify different parts of the dataset). This is very much the case of TRECVid, where
we have a large battery of experts, most of them not having spectacular individual
performance (but better than chance), organized into complementary families.

The AdaBoost algorithm that we use is inspired from the original one in [13] with
adaptations for TRECVid. It is very similar to that of [45], however they applied it
in a different context of TRECVid. It is also very similar to that used by Tang and
Yanai [43] in the 2008 edition of TRECVid, but they did not use it on such a large
battery of experts as we do in our experiments.
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For a particular concept, given the training set (x1, y1), . . . , (xm, ym) where xi are
the multimedia samples, and yi ∗ {0, 1} is the groundtruth of the sample xi (0 if it
does not contain the concept, 1 if it does), the algorithm that we use is the following:

1. We initialize a set of weights D1 where D1(i) is the weight of sample xi :

D1(i) =
{

0.5
n Pos , if yi = 1 (a positive sample)

0.5
nNeg , if yi = 0 (a negative sample)

(3.2)

where n Pos and nNeg are the number of positive and negative samples respec-
tively in the training set.

2. At iteration t (t = 1, . . . T ), we choose the input expert ht that minimizes the
weighted classification error εt = ∑m

i=1 Dt (i)I (yi ∈= ht (xi )). I is called the
indicator function, and it gives the cost associated to the classification result of
a sample being different than the groundtruth. In our case, I (yi ∈= ht (xi )) =
|yi − ht (xi )|, the absolute value of the difference between the classification score
(between 0 and 1) and the groundtruth (0 or 1).

3. Compute the weight updating factor αt = ln 1−εt
εt

;
4. Update the weights of the samples according to:

Dt+1(i) = Dt (i)exp(αt I (yi ∈= ht (xi ))) (3.3)

and normalize the weights for positive samples and for negative samples sepa-
rately, so that

∑
i,yi =1 = 0.5 and

∑
i,yi =0 = 0.5 (always keep the total weight of

positives and the total weight of negatives equal).
5. Repeat steps 2–4 until all input experts have been considered (each expert is only

considered once).
6. At the end, the strong expert H(x) will be a weighted sum of the weak experts

chosen at each iteration t :

H(x) =
T∑

t=1

αt ht (x) (3.4)

AdaBoost works on the following principle: at each step, we select the expert that
correctly classifies the multimedia samples for which the previous expert failed, this
way achieving intra-concept complementarity at the context level. Unlike agglom-
erative clustering, it does not first group experts into families and then obtain com-
plementarity between families; instead, AdaBoost tries to exploit complementarity
directly by choosing, at each step, the most complementary expert.

For datasets with severe class imbalance (as is the case of the TRECVid SIN
video dataset, in which, for many concepts, there are only a few tens of positives
and hundreds of thousands of negatives), we have added the additional constraint
that the total weight of positives and the total weight of negatives should have fixed
values on 0.5 each, at every iteration, as in [45], so that the classification result for
true positives would still matter in the fusion.
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Also for the case of TRECVid, we performed a similar expert preselection as for
the agglomerative clustering fusion: we rejected experts with relevances less than 1
or less than 8 times that of the best expert for that concept, for similar reasons as in
the case of the agglomerative clustering.

3.4.2.3 AdaBoost Rank-Based Fusion

When quering a dataset for a particular concept, we receive a ranked list of multimedia
samples, in descending order of their likelihood to contain the concept. Ideally, in this
ranked list, all the true positives should be concentrated toward the beginning, and all
the negatives should follow until the end of the list. The previous AdaBoost method
was made to improve the classification scores, which would indirectly improve the
ranked list. We now try to optimize directly the ranks of the true positives, by altering
the indicator function (the cost function when a classification error appears).

We therefore propose the following indicator function: for a positive sample, the
associated cost is equal to the number of negatives that are in front of it in the ranked
list, divided by the total number of negatives; for a negative sample, the cost is zero
(we don’t care about its rank, as long as the positives are in front):

I (yi ∈= ht (xi )) =
{

neg Preceeding
nNeg , if yi = 1 (a positive sample)

0, if yi = 0 (a negative sample)
(3.5)

where negPreceeding is the number of negatives preceeding the positive sample in
question in the ranked list, according to the weak expert ht , and nNeg is the total
number of negatives.

As with the agglomerative clustering fusion and the AdaBoost fusion based on
scores, we perform similar expert selections before starting the actual fusion.

3.4.2.4 Weighted Average of Experts

As a reference for comparing the performances of the fusion methods presented so
far, we consider the weighted average of the input experts, with weights given by
the average precisions of experts on the training set, for the concept in question (the
weights can vary from one concept to another, depending on how the experts react
to the concepts). We can say that in the end, the other methods are also weighted
means of experts, but with more elaborate ways of choosing the weights. We wish
to compare the more elaborate methods with this simple baseline.

As with the other fusion methods presented so far, we perform similar expert
selections before starting the actual fusion.
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3.4.2.5 Best Expert per Concept

We add a second reference for evaluating the performance of our fusion methods,
namely the best expert per concept. This method consists of simply choosing, for
each semantic concept individually, the expert that gives the best average precision
on the training set. This is our most basic reference when examining other methods,
as the goal of fusions is to obtain gains compared to simply considering the best
expert for the concept of interest.

3.4.2.6 Combining Fusions

After applying all of the previous approaches in parallel, we now dispose of a battery
of five fused experts: agglomerative clustering, score-based AdaBoost, rank-based
AdaBoost, weighted average and best expert per concept. Our preliminary experi-
ments have shown that for some concepts, some (or all) of the fusion methods degrade
performance on the training set when compared to simply choosing that concept’s
best expert. To prevent this, we propose that for each concept, we see which of the
fusion methods (including the best expert per concept) performs best on the training
set, and choose that fusion method as the final result for that concept.

3.5 Improvements: Higher-Level Fusions

After the late fusion step, we dispose, for each concept, of the classification scores
on all video shots. So far, we have treated each concept independently, disregarding
any relationship that may exist between concepts. Moreover, the video shots from
TRECVid result from the temporal segmentation of longer videos, therefore there
may also exist temporal relations between shots. The next step is to integrate this
temporal context and semantic context information.

A concept that is present in a shot of a video also tends to be present in the
neighboring shots of the same video due to temporal correlation. We exploit this
temporal context information by applying the method from [30] to temporally re-
score shots, which was shown to increase performance in this application context
[30] (block “Temporal re-scoring” in Fig. 3.1).

After temporal re-scoring, we exploit the semantic context information by apply-
ing conceptual feedback on the classification scores with the algorithm from [16].
This exploits the semantic relations between concepts by constructing a new descrip-
tor with 346 dimensions (exactly the number of concepts), the i th dimension of this
descriptor being the classification score of the shot with the i th concept. Supervised
classification is applied on this descriptor as if it were a normal descriptor, and the
resulting classification scores are re-fused with the previous results (block “Concep-
tual feedback” in Fig. 3.1). This step was also shown to increase performance in our
application context [16].
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3.6 Experiments

3.6.1 The TRECVid Semantic Indexing Task

The work presented here has been carried out and evaluated in the context of the
Semantic Indexing Task (SIN) of the TRECVid evaluation campaign. The 2013
dataset associated with this task is composed of cca. 1400 h of web video data
decomposed into cca. 35,000 video documents and cca. 880,000 shots. Shots are short
video fragments of lengths varying between a few seconds to a few tens of seconds;
they generally correspond to continuous camera recordings and are expected to have
a homogeneous content and they constitute natural indexing and retrieval units.

A list of 346 various concepts is also provided. These can be objects (Bus, Tree,
Car, Telephone, Chair), actions (Singing, Eating, Handshaking), situations/scene
types (Waterscape, Indoor, Kitchen, Construction site), abstract concepts (Science/-
technology), types of people (Corporate leader, Female person, Asian people, Gov-
ernment leader) or even specific people (Hu Jintao, Donald Rumsfeld). These con-
cepts may or may not be present in a shot. Semantic indexing, as defined in TRECVid,
consists in automatically detecting the presence of these visual concepts in video
shots [37].

The dataset is split into two parts, the first one (dev or 2013d), for developing
and fine-tuning semantic indexing systems, and the second one (test or 2013t) for
evaluating the performances of the task participants. On the test part of the dataset,
semantic indexing systems are required to produce, for each target concept, a ranked
list of up to 2000 shots the most likely to contain it. The quality of the returned lists
(how well the relevant shots for that concept are concentrated toward the beginning
of the list) is evaluated using the mean inferred average precision (mean infAP)
[46, 47]. Common annotations are given on the dev part for system training and
assessments are provided on the test part for system evaluation.

The TRECVid SIN dataset is very challenging, for the following reasons:

• Videos come from a wide array of sources, of varying quality and content, ranging
from professional news footage to amateur videos recorded with a camera phone.
They can be from various environments, such as from inside a kitchen or from
outside in the street or at the beach. They can be acquired in various lighting
conditions, ranging from a sunny day outdoors to a dark interior of a night club.

• The large amount of concepts to be detected requires a generic approach to be used
for all concepts. However, it is not easy to develop a generic system that works
well enough with every concept.

• Many concepts are quite rare in the dataset; they may only appear in a few tens of
shots out of the total ⇒880,000, which poses a problem for training classifiers.

• For a shot to be considered as an occurrence of a concept, it is enough that the
concept is present in at least one frame of the shot. However, the training annotation
only says if a shot contains or does not contain a concept, but it does not say when
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and where that concept appears. This poses a challenge because we do not know
which part of the shot is relevant and needs to be described.

We have chosen to perform our experiments on this dataset because it is so chal-
lenging (e.g., the peak performances in the 2012 edition were in the order of 0.3
mean infAP [38], far from the ideal value of (1) and because, as we have participated
in the task as a member of the IRIM2 group, we have had access to a large battery
of multimodal video descriptors (and corresponding experts) on which we could
experiment with information fusion approaches, which is the topic of this work.

3.6.2 Elementary Experts

Recalling the processing chain from Fig 3.1, the first step for semantic indexing
is to extract descriptors from the video shots. For its participation in the TRECVid
challenge, the laboratories that form the IRIM group have all shared their descriptors,
creating a very rich and multimodal representation of the video shots. The IRIM
partners have contributed many descriptors and descriptor versions, and a full listing
of them is beyond the scope of this work. Instead, we will just list some of the main
descriptors, without going into details:

• A large family of color descriptors was submitted by ETIS, with color represented
in the Lab color space, with an optional spatial division of the keyframe [15]. A
color histogram in the RGB color space was also submitted by LIG.

• ETIS also contributed quaternionic wavelets, which are a texture descriptor, also
with an optional spatial division of the keyframe [15].

• A normalized Gabor transform of the keyframe was contributed by LIG, as well as
an early fusion of their RGB color histogram and this normalized Gabor transform.

• BoW descriptors based on Local Binary Patterns were contributed by LIRIS [49],
and texture local edge patterns enhanced by color histograms [49] were contributed
by CEALIST. Multilevel histograms of multiscale LBP with spatial pyramids were
contributed by LSIS [26].

• BoW of Opponent SIFT features: contributed by LIG in versions with keypoints
either from a Harris-Laplace corner detector, or from a dense grid [33]. From
the same family, CEALIST contributed BoW of dense SIFT with spatial pyramids
[3, 35] and LISTIC contributed BoW of dense SIFT employing retinal preprocess-
ing [39–41].

• Vectors of locally aggregated tensors (VLAT) [21], which also deal with local SIFT
features clustered on a visual vocabulary, but use a pooling mechanism different
than BoW to generate image signatures, were submitted by ETIS.

• Saliency moments, a descriptor that exploits the shape and contours of salient
regions [28], were submitted by EUR.

2 http://mrim.imag.fr/irim/

http://mrim.imag.fr/irim/
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• BoW of space-time interest points, described with histograms of oriented gradients
or with histograms of optical flow, as in [18], were submitted by LIG.

• EURECOM submitted spatio-temporal edge histograms, based on temporal sta-
tistics of the (2D) MPEG-7 edge histogram.

• Descriptors based on tracking and describing faces in successive frames (face
tracks) were submitted by LABRI.

• LISTIC submitted Bags of Words of trajectories for motion description.
• Audio descriptors in the form of a BoW of Mel-frequency cepstral coefficients

(MFCC) were contributed by LIRIS.
• Detection scores of various semantic concepts from the ILSVC and ImageNet

datasets [11] (with detectors trained on ImageNet) were submitted by XEROX
[32]. From the same family of highly semantic descriptors, LIF contributed a
descriptor based on detection scores for a set of 15 mid-level concepts called
“percepts” [1].

Before supervised classification, most of the descriptors went through an opti-
mization (block “Descriptor computation and optimization” in Fig. 3.1) consisting
in applying a power transformation to normalize the values of the descriptor dimen-
sions, followed by Principal Component Analysis (PCA) to make each descriptor
more compact, and at the same time, more robust [31].

The next step was to train and apply supervised classification algorithms (classi-
fiers) on each of the (optimized) descriptors (“Supervised classification” in Fig. 3.1).
A classifier gives, for each concept and for each video shot, the estimated “likeliness”
of the shot to contain the concept (a classification score between 0 and 1).

Two classifiers were applied to each video shot descriptor. The first one is based
on a K-Nearest Neighbors search.3 The second one, called MSVM, applies a multiple
learner approach based on Support Vector Machines [29]. MSVM generally performs
better than KNN, but it is more computationally expensive [4].

KNN and MSVM classifiers applied to a given descriptor constitute two differ-
ent elementary experts. These can be combined (or fused) into a first level non-
elementary expert. The combination can be done in a number of ways. For this first
level, we use a weighted mean of classification scores, the weights between KNN
and MSVM being their infAP performance estimated by cross-validation within the
training (dev) set. The corresponding expert is called FUSEB; it is most often better
than either KNN or MSVM. We later use the FUSEB experts as elementary ones for
the next steps in our proposed late fusion approaches.

The most numerous family of FUSEB experts is that of ETIS color histograms
in the Lab color space (12 experts), while their quaternionic wavelets family num-
bered nine experts. LISTIC had in total 11 SIFT-based BoW experts, some with
and some without retinal preprocessing, and for five experts using trajectories. Six
OpponentSIFT BoW experts from LIG were also used, as well as two more dense
SIFT experts from CEALIST. There were five experts based on percepts, while the
experts corresponding to the remaining descriptors from the previous list were less
numerous (only one or two).

3 http://mrim.imag.fr/georges.quenot/freesoft/knnlsb/index.html

http://mrim.imag.fr/georges.quenot/freesoft/knnlsb/index.html
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Table 3.1 Mean (over all concepts) inferred average precisions of fusion approaches

basic +RS +RS+CF +RS+CF+RS

Manual hierarchical fusion 0.2576 0.2695 0.2758 0.2848
Adaboost score-based fusion 0.2500 0.2630 – –
Adaboost rank-based fusion 0.2346 0.2534 – –
Agglomerative clustering fusion 0.2383 0.2516 – –
Weighted average fusion 0.2264 0.2409 – –
Best expert per concept 0.2162 0.2367 – –
Selected best from 5 above 0.2495 0.2631 – –

Basic (without any post-processing), +RS (with temporal re-scoring, temporal context integration),
+RS+CF (with RS followed by conceptual feedback, semantic context integration), +RS+CF+RS
(+RS+CF followed by a second RS)

3.6.3 Results

All of the compared fusion methods are tested using the same input elementary
experts, the FUSEB experts for the descriptors listed in Sect. 3.6.2. The classifiers
are trained on 2013d and applied on 2013t. The fusions are also trained on experts
from 2013d, and fusion results are evaluated on 2013t. In the case of parameter
optimizations for experts or fusions, they are done in cross-validation on 2013d.

We report mean infAP averaged over a subset of 38 concepts out of the total
346, the same concepts that are used for evaluating official TRECVid SIN 2013
submissions [25].

3.6.3.1 Global Results

Table 3.1 (column “basic”) shows the mean infAP obtained by the proposed fusion
methods. The manual hierarchical fusion performs the best, thanks to the carefully
optimized weights of experts, the additional score normalization steps between fusion
stages and the manual grouping of experts that ensures more homogeneous properties
within a group.

Among the automatic methods, the Adaboost score-based fusion performs the
best, with performances not far behind the manually optimized hierarchical fusion.
The Adaboost rank-based fusion performs less good, because the rank of a shot
can vary greatly with small variations in the classification score, which makes the
method more sensitive to classification noise. The agglomerative clustering fusion
is relatively close in global results to the Adaboost rank-based fusion. Among the
fusion methods, the weighted average fusion is the least good, showing that a perfor-
mance boost can be obtained with more careful expert weight choosing strategies; for
example, the Adaboost score-based fusion performs 10 % better than the weighted
average.

In any case, it can be seen that whatever the fusion method, the global result is
always better than what would have been obtained if we would have taken, for each



72 S. T. Strat et al.

concept, its best expert on the training dataset (Best expert per concept). The manual
hierarchical fusion is 19 % better, the Adaboost score-based fusion is 16 % better
and the even the weighted average has a 5 % improvement, proving that late fusion
schemes, even naive ones, generally improve concept detection performances.

The selected best fusion selects, for each concept, the fusion approach (among
Adaboost score-based fusion, Adaboost rank-based fusion, agglomerative cluster-
ing, weighted average and the best expert for that concept) that performed the best
on the training set. The Adaboost score-based fusion was by far chosen the most
often, for 230 out of the 346 concepts, which is in agreement with it having the
highest mean infAP. The Adaboost rank-based fusion was chosen for 60 concepts,
the agglomerative clustering for 14 concepts and the weighted average for only eight
concepts. For the rest of the 34 concepts, the best expert was chosen, because the
fusions were found to degrade performances on the training dataset. Considering
this, it was to be expected that the mean infAP of the selected best fusion would be
close but slightly above that of the Adaboost score-based fusion. However, no global
gain is observed for the emphselected best fusion, because the choices made on the
training set are not always the best also for the test dataset, due to variations between
the two datasets.

3.6.3.2 Concept-per-Concept Results

Moving on to a concept-per-concept analysis, Table 3.2 shows the infAP gains for the
38 semantic concepts used in the official TRECVid evaluation, when comparing the
best of the automatic methods (the Adaboost score-based fusion) with the baseline
best expert per concept. For the majority of concepts, the fusion gives a signifi-
cant performance boost (such as for Airplane, Bus, Hand, Running, Throwing). For
some concepts, the boost is not too high, especially for concepts that already have
large infAP to start with (such as Beach, Government leader, Instrumental musician,
Skating); this happens when the other experts do not bring any pertinent and comple-
mentary information compared to the best expert. There are only six concepts that
experience performance degradations from the fusion, namely Animal, Computers,
Explosion or fire, Female face closeup, Girl and Kitchen.

As a preliminary conclusion, we can say that fusing a large battery of comple-
mentary experts yields a significant performance increase. It is now time to examine
the gains of higher-level fusions, at the temporal and semantic context levels.

3.6.3.3 Results for Higher-Level Fusions

Table 3.1, column “RS” shows the mean infAP after applying the temporal re-scoring
algorithm described in Sect. 3.5. Our best-performing method, the manual hierar-
chical fusion, has a gain of 4.6 %, while the other methods also experience gains
in the range of 5–10 %. This shows that the temporal context can also bring useful
information, resulting in a performance increase for all methods.
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Table 3.2 Comparison of inferred average precisions for the best expert per concept and the
AdaBoost score-based fusion, for particular concepts

Concept Best expert AdaBoost sc. Rel. gain (%)

Airplane 0.0573 0.0923 61
Anchorperson 0.4850 0.5988 23
Animal 0.0659 0.0078 −88
Beach 0.4658 0.4722 1
Boat or ship 0.2907 0.3083 6
Boy 0.0291 0.0316 9
Bridges 0.0372 0.0393 6
Bus 0.0273 0.0598 119
Chair 0.1621 0.2394 48
Computers 0.2647 0.1919 −28
Dancing 0.2990 0.4019 34
Explosion or fire 0.1780 0.1617 −9
Female face closeup 0.3741 0.3550 −5
Flowers 0.1752 0.1895 8
Girl 0.0462 0.0360 −22
Government leader 0.4387 0.4546 4
Hand 0.1532 0.2847 86
Instrumental musician 0.5141 0.5782 12
Kitchen 0.1072 0.0952 −11
Motorcycle 0.1778 0.2369 33
News studio 0.7213 0.8223 14
Old people 0.3719 0.4096 10
People marching 0.0388 0.0470 21
Running 0.0863 0.1405 63
Singing 0.1096 0.1459 33
Sitting down 0.0003 0.0023 667
Telephones 0.0063 0.0133 111
Throwing 0.1121 0.2506 124
Baby 0.1317 0.2234 70
Door opening 0.0369 0.0410 11
Fields 0.0753 0.1375 83
Flags 0.2607 0.2819 8
Forest 0.0911 0.1150 26
George Bush 0.6092 0.6624 9
Military airplane 0.0172 0.0381 122
Quadruped 0.0807 0.1133 40
Skating 0.4956 0.5328 8
Studio with anchorperson 0.6228 0.6871 10

After temporal re-scoring, we apply the conceptual feedback step described in
Sect. 3.5 (+RS+CF in Table 3.1). Because of the significant computational cost,
we limit this experiment to our best-performing method, the manual hierarchical
fusion, for which an additional gain of 2.3 % is obtained compared to the previ-
ous result. Adding a second temporal re-scoring step after the conceptual feedback
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(+RS+CF+RS) increases results by another 3.3 %. In the end, the successive tempo-
ral re-scoring and conceptual feedback steps give an increase of 10.5 % compared to
the basic approach.

3.7 Conclusion

In this work, we proposed several methods of combining dozens of input experts into
better ones, and applied these methods in the context of the TRECVid 2013 Semantic
Indexing task. We have shown that all of the methods globally outperform taking the
best expert for each concept, and that more elaborate fusions can perform better than
a naive weighted arithmetic mean. Two late fusion methods distinguish themselves, a
manually optimized hierarchical grouping of experts and an automatic fusion based
on AdaBoost, both with a relatively low computational complexity. Even though we
experimented on the TRECVid SIN video dataset, these approaches are generic and
can be extended to other multimedia collections as well. We have also shown that
additional levels of fusions that exploit context can give an additional performance
increase: in the case of a video dataset, the temporal and semantic context were tested,
while for other multimedia datasets, different types of contextual fusions could be
devised, for example by considering the identity of the multimedia sample’s uploader,
the date and time when the material was created and/or uploaded etc. In the future,
we plan to extend our work to such types of multimedia datasets.
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Chapter 4
Fusion of Multiple Visual Cues
for Object Recognition in Videos

Iván González-Díaz, Jenny Benois-Pineau, Vincent Buso and Hugo Boujut

Abstract In this chapter, we are interested in the open problem of meaningful object
recognition in video. Recently the approaches which estimate human visual attention
and incorporate it into the whole visual content understanding process have become
popular. In estimation of visual attention in a complex spatio-temporal content such as
video one has to fuse multiple information channels such as motion, spatial contrast,
and others. In the first part of the chapter, we are interested in these questions and
report on optimal strategies of bottom–up fusion in visual saliency estimation. Then
the estimated visual saliency is used in pooling of local descriptors. We compare
different pooling approaches and show results on rather interesting visual content:
that one recorded with wearable cameras for a large-scale research on Alzheimer’s
disease. The results which will be shown together with conclusion demonstrate that
the approaches based on the saliency fusion outperform the best state-of-the art
techniques in this content.

4.1 Introduction

Object recognition or classification have sparked the interest of researchers for nearly
three decades. Nowadays, this topic is one of the most active in the computer vision
research community. Object recognition/classification is performed on several dig-
ital media such as pictures or videos. The recognition task is more or less obvious
according to the visual scene complexity, and the object to find. It is indeed easier
to find an object in a controlled environment than in a natural scene. Furthermore,
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in a real-life visual scene, objects can be numerous and located in the presence of
cluttered backgrounds. The object recognition task is often dependent on the global
semantic interpretation task. One does not seek to recognize all objects in the visual
content, but only those ones which are of interest to understand the meaning of the
scene or for the particular task being accomplished. The examples of such a selective
interest are numerous: e.g., when seeking for identifying a person crossing the road,
the observer will not focus on the surrounding buildings.

This book chapter addresses the recognition/classification of objects in complex
visual scenes recorded using a wearable video camera. More specifically, we are
willing to recognize manipulated objects of the Instrumental Activities of Daily Living
(IADL) [1]. For such videos, the wearable camera is either set on the subject’s shoulder
or tied on the chest. Both camera positions give an egocentric point-of-view of the
visual scene. This point-of-view has the advantage to be the best to catch the action
happening. However, there is nobody behind the camera in charge of pointing to
and therefore centering the object of interest. That is the reason why the object of
interest may be located in an unexpected area of the video frame. This issue is not
as usual in edited videos where objects of interest are almost always near the frame
center. Fruthermore, IADL video scene is complex and might be cluttered as well.
In general, although several manipulated objects are present on each frame, only
one or two of them could be considered as active, that is, of special interest for
the observer to understand the meaning of the scene. Hence, under this scenario,
additional information must be integrated in the recognition framework to catch the
attention of the observer and therefore to discriminate between the essential and
secondary elements in the scene.

In contrast to the well-known sliding window approaches for object detection and
recognition [2, 3], and due to the specific nature of the first-person view contents,
we aim to drive the object recognition process using visual saliency. Under the par-
ticular scenario of egocentric video, there is usually a strong differentiation between
active (manipulated or observed by the user wearing the camera) and passive objects
(associated to background) and, therefore, spatial, temporal and geometric cues can
be found in the video content that may help to identify the active elements in the
scene.

Incorporation of visual saliency in video content understanding is a recent trend.
The fundamental model by Itti and Koch [4] is the most frequently used. Nevertheless,
other models can be proposed using priors on the content. The application of saliency
modeling for object recognition on video serves for identifying areas where objects
of interest are located. Then, features in these areas can be extracted for object
description. Several approaches in the literature have shown the utility of human
gaze tracking in the analysis of egocentric video content and, in particular, in the
activity recognition task [5, 6].

This chapter proposes an object recognition system that relies on visual saliency-
maps to provide more precise object representations, that are robust against back-
ground clutter and, therefore, improve the precision of the object recognition
task. We further propose to incorporate the saliency maps into the well known
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Bag-of-Visual-Words (BoVW) [7] paradigm for object recognition. The benefits
of this approach are multiple:

• The computation of saliency maps is generic (category-independent) and therefore
a common step for any object detector.

• Compared to sliding window approaches [2, 8], by looking at the salient area we
can avoid much of the computational overhead due to the scanning process and
therefore use more complex non-linear classifiers.

• Since the saliency maps are automatically computed in both training and test data,
our method does not need bounding boxes for training, what dramatically reduces
the human resources devoted to the database annotation.

We consider two differentiated scenarios of application. The first one is a
constrained scenario in which all the subjects perform actions in the same room
and, therefore, interact with the same objects: e.g. a hospital scenario in which the
medical staff asks patients to perform several activities. This task can be seen as a
specific object recognition problem since there is no intra-class variation between
instances of a category other than this caused by the strong egomotion, changes on
the viewpoint, illumination, occlusions, etc.

The second scenario, on the contrary, is unconstrained, and corresponds to record-
ings made at different locations. In this case, users interact with various instances
of the same objects: e.g., in a home environment, a patient performs daily activities
using his/her own utensils and devices, that probably differ from those ones available
in another home. The second scenario is therefore much more difficult than the first
one, due to the large intra-class variation as well as to the limited amount of training
data (a few instances of each object category).

In this chapter, we will assess our method in both scenarios, showing its strength
and weakness in comparison to other methods in the literature.

The remainder of the chapter is organized as follows: in Sect. 4.2 we discuss the
traditional visual cues fusion for the object recognition problem. Next, in Sect. 4.3,
we provide a description of the geometric-spatio-temporal cues to compute saliency
maps, and present some specially tailored developments to extend their use to an
object recognition task in egocentric videos. Section 4.4 introduces our saliency-
based approach for object recognition. In Sect. 4.5 an in-depth evaluation is provided
that assesses our model under the considered scenarios, and compares it to other state-
of-the-art approaches. Finally, Sect. 4.6 draws our main conclusions and introduces
our further lines of research.

4.2 Traditional Visual Cues Fusion for Object
Recognition Problem

Object recognition or classification are very active research topics. Over thousands
of papers have been published on these subjects during the last ten years. Doing an
exhaustive state of the art is therefore unrealistic. Hence we focus on the approaches



82 I. González-Díaz et al.

that have received the most attention and have given the most promising results.
One common strategy for all these methods can be highlighted. First, the image
or areas of interest is described with the most possible pertinent information. The
descriptors can either be local, global, or semi-local. Next, a compact representation
of the set of all the descriptors is defined. Finally, distances or similarities between
these representations are computed so that the current image can be classified or
compared to a database in order to obtain the recognition result. In this section, all
these steps are detailed.

4.2.1 Visual Cues

In order to analyze the content of images or videos, the first step consists in extract-
ing some features which characterize the data. This step is useful for all the appli-
cations such as Content-Based Image Retrieval (CBIR), image classification, object
recognition or scene understanding. Attending to their granularity, the features can
either be global, local or semi-local, and almost all of them can be easily adapted to
describe particular areas of interest (salient areas) detected in the video frames. In
the following we review some of the existing approaches on the topic.

4.2.1.1 Global Image Descriptors

Global image features are generally based on color cues. Indeed, color is an important
part of the human visual perception. In images, the colors are encoded in color spaces
(RGB, HSV, YUV etc.).

Probably the most famous global color descriptor is the color histogram. Color
histograms aim at representing the distribution of colors within the image or a region
of the image. Each bin of a histogram represents the frequency of a color value
within this area. It usually relies on a quantization of the color values, which may
differ from one color channel to another. Histograms are invariant under geometrical
transformations of the region.

Color moments are another way of representing the color distribution of an image
or a region of an image. The first order moment is the mean which provides the
average value of the pixels of the image. The standard deviation is the second order
moment representing how far color values of the distribution are spread out from
each other. The third order moment, named skewness, can capture the asymmetric
degree of the distribution. It will be null if the distribution is centered on the mean.
Using color moments, a color distribution can be represented in a very compact way
[9, 10].

Other color descriptors that can be mentioned are the Dominant Color Descriptor
(DCD) introduced in the MPEG-7 standard [11] or the Color Layout Descriptor
(CLD).
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4.2.1.2 Local Image Descriptors

The features that have received the most attention in the recent years are the local
features. The main idea is to focus on the areas containing the specially discriminative
information. In particular, the descriptors are generally computed around several
interest regions in the image, and are therefore often associated to an interest point
detector. In the following paragraphs, we briefly introduce some local descriptors
that have been broadly adopted by the computer vision community in the last few
years.

Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) [12] has been designed to match
different images or objects of a scene. The features are invariant to image scaling and
rotation, and partially invariant to change in illumination and 3D camera viewpoint.
They are well localized in both the spatial and frequency domains, reducing the
probability of disruption by occlusion, clutter, or noise. In addition, the features are
highly distinctive, which allows a single feature to be correctly matched with high
probability against a large database of features, providing a basis for object and scene
recognition. There are two main steps for extracting SIFT features: the key-point
localization through scale-space extrema detection and the generation of key-point
descriptors. First, a scale pyramid is built by convolving the image with variable-scale
Gaussians and DoG images are computed from the difference of adjacent blurred
images. Interesting points for SIFT features finally correspond to local extrema of
these DoG images. To determine the key-point orientation, necessary for rotation
invariance, a gradient orientation histogram is computed in the neighborhood of the
key-point. The contribution of each neighboring pixels is weighted by the gradient
magnitude. Peaks in the histogram indicate the dominant orientations. The feature
descriptor finally corresponds to a set of orientation histograms, relative to the key-
point orientation, on a 4 × 4 pixel neighborhoods. As histograms contain eight bins,
a SIFT feature is a vector of 128 dimensions. This vector is normalized to ensure
invariance to illumination changes.

Speeded Up Robust Features

Although SIFT have proven to be a powerful feature in many computer vision appli-
cations, all the necessary convolutions make it computationally expensive. Hence,
Speeded Up Robust Features (SURF) [13] have then been proposed as an alterna-
tive feature. This feature describes a distribution of Haar-wavelet responses within
interest point neighborhood. It relies on integral images. The latter is the sum of
all pixel values contained in the rectangle between the origin and the current po-
sition. SURF key-points are also extracted by scale-space analysis through the use
of Hessian-matrices. Here again, the dominant orientation is extracted. It is esti-
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mated by computing the sum of Haar-wavelet responses within a sliding orientation
window. In an oriented square window centered at the key-point, which is split up
into 4 × 4 sub-regions, each sub-region finally yields a feature vector based on the
Haar-wavelet responses, of dimension 64.

4.2.1.3 Semi-Local Image Descriptors

Most shape descriptors fall into this category. Shape description relies on the
extraction of accurate contours of shapes within the image or region of interest.
Image segmentation is usually fulfilled as a preprocessing stage. In order for the de-
scriptor to be robust with regard to affine transformations of an object, quasi perfect
segmentation of shapes of interest is supposed. Here, we just mention some shape
descriptors but more can be found in literature. In particular, let us mention the Cur-
vature Scale Space (CSS) descriptor [14] and the Angular Radial Transform (ART),
descriptors in the MPEG-7 standard.

4.2.2 Models for Object Recognition

In this section, we will review some computational models that have been broadly
adopted in computer vision tasks. We will start by presenting the BoVW which,
due to its simplicity and notable performance, represents one of the most common
approaches in tasks like object recognition, scene understanding or even action recog-
nition. We will then introduce the family of sliding-window methods, that concur-
rently address the problems of object recognition and localization. Finally, we will
present the use of saliency as an efficient alternative for the so high computational
burden of the sliding window methods.

4.2.2.1 Bag-of-Visual-Words Paradigm

The descriptors presented above, and in particular SIFT and SURF, have been widely
used for retrieving objects in images. Local feature extraction leads to a set of
unordered feature vectors. The main difficulty of the recognition, retrieval or classi-
fication steps consists in finding a compact representation of all these features and its
associated (dis-)similarity measure. An efficient approach that has been widely used
is the so-called BoVW framework [15], that we now describe. The BoVW approaches
have four main stages: building a visual dictionary by clustering visual features
extracted from a training set of images/objects, quantifying the features, choosing an
image representation using the dictionary and comparing images according to this
representation. We now review these steps.
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Visual Dictionary

In analogy with text retrieval, the features extracted in an image correspond to the
words in a document. A visual dictionary must then be built. This is generally done by
randomly selecting a sufficiently large set of features over a huge amount of images.
This dictionary, V = vi , i = {1, . . . , K }, is then built by clustering these features
into a certain number of K classes or “visual words.”

Feature Quantization

The second step consists in quantizing the features extracted in an image according
to the visual dictionary. Each feature from N extracted features for an image is
quantized. This quantization is generally achieved by assigning each feature to its
closest word in the dictionary V .

Pooling

Each image in the dataset can now be represented by a unique vector of K
dimensions. Each dimension represents the number of times a feature appears in
the image. Therefore, this vector can be seen as a histogram representing the distrib-
ution of visual words in an image. This histogram is often normalized which enables
comparing images containing a different number of features. These histograms were
named BoVW [15].

Instance Recognition

All images being now represented by a histogram, the last step simply consists
in comparing the histograms. Obviously, when the size of the database increases
this step can become very computationally expensive. The computational time also
depends on the size of the dictionary which therefore needs to be chosen carefully.
Several strategies have been proposed in the literature to improve the efficiency of
this last step. In [15], this framework was applied with SIFT features. The vector
quantization was carried out by k-means clustering, the number of clusters being
chosen manually.

4.2.2.2 Sliding Window Methods

Unlike the general BoVW paradigm, sliding window methods aim to concurrently
address the object recognition and localization tasks. These methods perform a
window-based scanning process so that objects are intensively searched at several
locations and scales in the image. Good examples of these methods can be found
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in the literature applied to face detection [16], pedestrian detection [8], deformable
part models for general object detection [2], and even mixing BoV with the sliding
window approach [3]. As mentioned, they have shown very good performance ad-
dressing the object detection and localization in images, even when an object size is
very small compared to the image dimensions. However, their main drawback is the
computational burden caused by the intensive scanning process, what prevents their
application under many scenarios.

The Deformable Part Trained Model (DPM) [2] has been introduced in 2006 by
Felzenszwalb et al. and remains today the state-of-the-art sliding window method
in many applications in computer vision. It is an object detection system based on
mixtures of multiscale deformable part models. At a high level, the system can be
characterized by the combination of:

• Strong low-level features based on Histograms of Oriented Gradients (HOG).
• Efficient matching algorithms for deformable part-based models (pictorial

structures).
• Discriminative learning with latent variables (latent SVM).

The system needs to be trained using bounding boxes on objects, allowing it to
automatically compute the best probable models for the parts of an object.

The DPM has become a model of reference for object recognition and has been
extended to different applications. Concerning egocentric videos, the authors in [17]
proposed to extend the use of the DPM to train classifiers for activities based on the
output of the well-known deformable part model [2] using temporal pyramids.

In this work, the DPM has been used for the purpose of comparing the perfor-
mances with our method (see Sect. 4.5).

4.2.2.3 Saliency-Based Methods

In contrast to sliding window methods, visual saliency represents an efficient way to
drive the scene analysis towards particular areas considered ‘of interest’ for a viewer
and has become a very active trend in computer vision. The computation and use of
saliency is specially appealing for the object recognition task due to its generic nature,
not dependent on the particular object being detected. By using saliency, on the one
hand, one can reduce the computational burden of the scanning process of sliding
window methods and, on the other, filter out much of the background information
from the scene analysis, thus giving more relevance to the area of interest.

The application of saliency modeling for object recognition on video serves for
identifying areas where objects of interest are located. Then, features in these areas
can be extracted for object description. Several approaches in the literature have
shown the utility of human gaze tracking in the analysis of visual content addressing
tasks such as image retrieval [18], object recognition [19], or action recognition
[5, 6, 20].

This book chapter explores how an object recognition system is built in the top of
visual saliency-maps that provide more precise object representations, that are robust
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against background clutter and, therefore, improve the precision of the object recog-
nition task. We further propose to incorporate the saliency maps into the well known
Bag-of-Visual-Words (BoVW) [7] paradigm for object recognition. As mentioned
in the introduction, the use of saliency in object recognition is generic and does not
depend on the particular object/concept being detected, and therefore avoids much
of the computational burden of the sliding window methods by filtering our much
visual information and driving the recognition process to some areas of particular
interest in the scene.

4.3 Visual Saliency: A New Paradigm for Information
Fusion in Object Recognition

4.3.1 Motivations

In this work, we propose to use visual saliency for detecting active regions of the
frame. Visual saliency represents the human visual attention within a visual scene.
Therefore, the saliency is well suited to distinguish active from inactive objects.
Visual saliency modeling captivates researchers since the early 80s with the Feature
Integration Theory [21] from Treisman and Gelade. This research topic is still very
active. In 2012, Borji, and Itti [22] took the inventory of 48 significant saliency
models. Despite the fact that the visual saliency modeling is an old research topic,
object recognition frameworks using such models is a new trend [5, 23]. Most of
the visual saliency models are only considering spatial information such as contrast.
These models are called spatial and where designed at first for still pictures. There are
also models called spatio-temporal based on the motion present in videos. Especially
the Human Visual System (HVS) is highly sensitive to the relative motion. This is
why applying a spatio-temporal saliency model in the object recognition framework
is relevant to consider the temporal dimension of videos. Indeed most of the object
recognition frameworks for video only process video frames separately, without
taking advantage of previous and next frames. In this chapter, we also propose to
improve the saliency model by adding a third saliency cue called geometric. Recent
approaches [24] have shown that subjects tend to fixate the screen center when
watching natural scene. In [25], the authors came to the same conclusion for natural
edited videos.

4.3.1.1 Traditional Models for Saliency

ITTI Model

“A Model of Saliency-Based Visual Attention for Rapid Scene Analysis” from
Itti et al. [4] is one of the most cited articles on topics related to the visual modeling.
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The approach described in the paper is built on the biologically-plausible architecture
proposed by Koch and Ullman in their “Feature Integration Theory” (FIT) [26]. The
FIT tries to explain how human visual search strategies are performed. Itti’s model
is a bottom–up approach based on three computational stages: extraction, activa-
tion, and normalization/combination. At the extraction stage features are extracted at
several spatial scales (nine in the original paper) by using dyadic Gaussian pyramids.
These features are intensity, color opponents (red/green, green/red, blue/yellow and
yellow/blue), and the local orientation estimated from the intensity. At the activa-
tion stage, linear “center-surround” operations are applied on the feature computed
at the previous stage. These “center-surround” structures are present in the HVS to
detect local spatial discontinuities, especially for detecting areas standing out from
the surround. In the last stage, the saliency map is built by normalizing and combin-
ing (summing) the features processed by the “center-surround” operators. The gaze
scan-path is predicted from the saliency map by using a biologically-inspired 2D
“winner-take-all” neural network. Each neuron of the network receives an excitatory
input from the saliency map. The first neuron to “fire” is the “winner,” which means
that the Focus of Attention (FOA) is shifted to the location of this neuron on the
saliency map. Then area covered by the winner neuron is inhibited and the WTA
process is started again. This inhibition phenomenon has been observed and mea-
sured in human visual psychophysics [27]. This approach has inspired many saliency
map models such as [28–30].

Graph-Based Visual Saliency

In Graph-Based Visual Saliency (GBVS), J. Harel et al. have proposed an original
method for computing visual saliency maps on still images. Their bottom–up model
is based on three computational stages as many other leading approaches [31–33]:

• Extraction (identified as s1 in the original paper): of feature vectors from the
image plane.

• Activation (s2): Creates an activation map (or feature map) from the feature vectors
extracted at stage s1.

• Normalization/combination (s3): Normalization of the activation map, and com-
bination of the maps in a single map if several activation maps have been generated
at stage s2.

Most algorithms perform Stage s1 by using biologically inspired filter and stage
s2 is done by multiscale feature maps subtraction. This processing simulates the
action of center-surround ganglion cells located in the retina. Stage s3 is accom-
plished either by considering the local maximum (max-ave) as in [31] or by using
iterative convolutions based on Difference-of-Gaussians (DoG) filters, or with non-
linear interactions (NL) [34]. The novelty is that the author has proposed to apply
graph algorithms to compute saliency maps for stages s2 and s3. Their approach
defines the dissimilarity and the saliency, of features, as the edge weights of the
graphs. Generated graphs are interpreted as Markov chains. The authors claim that
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this approach is more “organic” since it is biologically inspired with individual nodes
(neurons) connected together in a structured network as in the HVS. The commu-
nication between nodes allows for the rising of emergent behavior such as the fast
identification of areas that require additional processing. This method (GBVS) has
been compared with the standard saliency map methods from Itti et al. [31, 35, 36],
Bruce and Tsotsos [33]. The results show that the GBVS predicts the fixations bet-
ter than the standard methods. The authors have also compared their approach with
improved version of the standard methods considering the center bias hypothesis on
photographs. Although these improved methods provided better results, the GBVS
still better predicts eye fixations.

4.3.2 Our Computational Models of Visual Saliency

In order to drive the video analysis to the regions that are potentially interesting
to human observers we need to model visual saliency on the basis of video signal
features. In this work, we have considered three basic approaches to generate saliency
maps, each of them built using a particular source of information: spatial, geometric
and temporal. In the following paragraphs, we will briefly describe the method that
gives place to each map.

Spatial saliency Ss : proposed in [37], it is based on various color contrast de-
scriptors that are computed on the HSV color space, due to its closeness to human
perception of color. In particular, seven local contrasts are computed, namely:

1. Contrast of Saturation: A contrast occurs when low and highly saturated color
regions are close.

2. Contrast of Intensity: A contrast is visible when dark and bright colors co-exist.
3. Contrast of Hue: A hue angle difference on the color wheel may generate a

contrast.
4. Contrast of Opponents: Colors located at the hue wheel opposite sides create very

high contrast.
5. Contrast of Warm and Cold Colors: Warm colors–red, orange and yellow—are

visually attractive.
6. Dominance of Warm Colors: Warm colors are always visually attractive even if

no contrast are present in the surrounding.
7. Dominance of Brightness and Saturation: Highly bright and saturated regions

have more chances of attracting the attention, regardless of the hue value.

The spatial saliency value Ss(i) for each pixel i in a frame is computed by aver-
aging the outputs associated to the seven color contrasts.

Temporal saliency St : this saliency models the attraction of attention to motion
singularities in a scene. The visual attention is not grabbed by the motion itself, but by
the residual motion for each pixel, e.g., the difference between the estimated motion
for each pixel and the predicted camera motion based on a global parametrization.
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Simply put, the process of computing a temporal saliency map is as follows: first,
for each frame in the video, a dense motion map v(i) that contains the motion vectors
in each pixel i in the image is computed using the optical flow technique described
in [38].

Then, a 3 × 3 affine matrix A that models the global motion associated to the
camera movements is computed. For that end, the well-known robust estimation
method RANSAC [39] has been used in order to successfully handle the presence
of outliers (e.g., areas of the image associated to objects that move differently than
the camera). Furthermore, since the central area of each frame constitutes the most
likely region where moving objects appear, this region is not considered for the affine
matrix estimation, thus reducing the proportion of outliers.

Next, the residual motion r(i) is computed by compensating the camera motion:

r(i) = v(i) − A · vi (4.1)

where xi stands for the spatial coordinates of each pixel i , xi = (xi , yi , 1)T .
Finally, the values of the temporal saliency map St (i) are computed by filtering

the amount of residual motion in the frame. The authors of [37] reported that the
human eye cannot follow objects with a velocity higher than 80◦/s [40]. According
to this psycho-visual constraints, a post-processing filter was proposed in [37] that
decreased the saliency when motion was too strong. Applying this filtering stage to
our first-person camera videos was however too restrictive due to the strong camera
motion so that we have preferred to consider a simpler filtering stage that normalizes
and computes the saliency map as follows:

St (i) = min

{ ||r(i)||2
K

, 1

}
(4.2)

where K has been heuristically computed depending on image dimensions (H, W),
as K = max(H, W )/10.

Geometric saliency Sg: it follows two observations about saliency in egocentric
video: on the one hand, some studies on general purpose video confirm the so-
called center bias hypothesis, that is the attraction of human gaze by the geometrical
center of an image [37, 41]. On the other hand, in videos recorded with wearable
cameras, the camera is usually set-up to point specific areas of interest: e.g., the
gaze fixation if the camera is located on glasses, or an area just in front of the
human body where the hands usually manipulate objects, in case it is located on the
body. Generally, central geometric saliency is dependent on the wearable camera
position and might be shifted in image plane [41]. In the present research, we work
on datasets with either eye-centered or body-centered camera, thus using the center-
bias hypothesis. Hence, following the approach in [37], the geometric saliency map
Sg(i) = N ((x0, y0), (σx , σy)) is computed as 2D Gaussian located at the screen
center with a spread σx = σy = 5◦.
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Fig. 4.1 Results of various saliency maps for one frame in GTEA dataset. The three basic techniques
spatial, temporal and geometric are shown. In addition, for spatial and temporal maps, two types of
postprocessing are also included (LPF and FGS)

However, this attraction may change with the camera motion. This is explained by
the anticipation phenomenon [42]. Indeed, the observer of video content produced
by a wearable video camera tries to anticipate the actions of the actor. The action
anticipation is performed according to the actor body motion, which is expressed
by the camera motion. Hence, we propose to simulate this phenomenon by moving
the 2D Gaussian centered on initial geometric saliency point in the direction of the
camera motion projected in the image plane. A rough approximation of this projection
is the motion of image center computed with the global motion estimation model
previously described.

Results on the basic approaches are shown in Fig. 4.1 (columns 2–4). As one
can notice from the figures, spatial and temporal saliency maps show more precise
localization of the objects of interest whereas the geometric approach provides a
coarse approximation of the visual saliency. However, saliency information appears
more scattered or disaggregated for the first two approaches, being more compact
and therefore robust for the geometric technique.

For an object recognition task, we consider that the perfect saliency map is a trade-
off between precision and compactness, requirement that, based on the examples,
is not completely fulfilled by any of the basic approaches. Hence, to overcome this
issue, we propose two extensions: (a) to incorporate a post-processing step in the
spatial and temporal techniques that provides more compact saliency representations
and (b) to investigate fusion schemes that successfully combine the three approaches
taking advantage of their precision and compactness, respectively.
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4.3.3 Postprocessing: Setting-up Suitable Saliency
Maps for Object Recognition

As already mentioned, we propose to use an additional post-processing stage to obtain
more compact representations for the spatial and temporal saliency. In particular, we
have evaluated two methods: (a) a very simple spatial low-pass filtering using a
Gaussian mask (LPF), and (b) a method that Fits a Gaussian Surface (FGS) on the
original map.

The LPF approach, shown in columns 5–6 of Fig. 4.1, simply provides a smooth
version of the original saliency maps. However, if the standard deviation of the spatial
Gaussian is large enough, results may fulfill our requirements of compactness.

For the second approach, given the original saliency mask S, we propose to fit a
Gaussian surface of the form:

G(x, y) = A · exp

[
−1

2

(
x − xg

σ 2
x

+ y − yg

σ 2
y

)]
(4.3)

where θ = {A, xg, yg, σx , σy} are the parameters to be estimated in the fit-
ting process. In practice, we minimize the square error between the two maps
e2 = ∑

x,y[S(x, y) − G(x, y)]2 using the optimization method described in [43].
In the experimental section, we will assess the performance of both post-

processing approaches.

4.3.4 Fusion Strategies for Saliency Maps

Once the basic spatial, temporal, and geometric saliency maps has been introduced,
we aim to evaluate how their combination into spatio-temporal-geometric saliency
masks Sstg might improve the representation of the area of interest in the image.

For that end, several fusion strategies have been proposed and evaluated in this
work. Again, although most of them have been already proposed in [44] in a video
quality assessment task, for the sake of compactness we next briefly describe their
computation:

1. Multiplication (Mult): a multiplicative fusion strategy model as:

Smult
stg (i) = Ss(i) · St (i) · Sg(i) (4.4)

2. Mean: the average of the three methods as:

Smean
stg (i) = 1

3

(
Ss(i) + St (i) + Sg(i)

)
(4.5)
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Fig. 4.2 Results of various fusion strategies for computing spatio-temporal-geometric saliency
maps

3. Square: the squared Minkovsky pooling reinforced by multiplicative pooling:

Ssq
stg(i) = Ss(i) · St (i) · Sg(i) + 1

3

(
S2

s (i) + S2
t (i) + S2

g(i)
)

(4.6)

4. Max: maximum pooling:

Smax
stg (i) = max

(
Ss(i), St (i), Sg(i)

)
(4.7)

5. Log: logarithmic combination model:

Slog
stg (i) = 1

3

(
log(1 + Ss(i)) + log(1 + St (i)) + log(1 + Sg(i)

)
(4.8)

A visual example of the fusion strategies is shown in Fig. 4.2. In addition, all of them
will be evaluated in the experimental section of this chapter.
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Fig. 4.3 Processing pipeline for the saliency-based object recognition in first-person camera videos

4.4 Object Recognition with Visual Saliency

4.4.1 Low-Level Feature Extraction and Description

In this section, we will describe our approach for object recognition in first-person
camera videos using saliency masks. As we have already mentioned in the introduc-
tion, we aim to detect the Region of Interest (ROI) of each frame so that we can
effectively build more precise image representations.

The processing pipeline of our approach is included in Fig. 4.3. We build our
model on the well-known BoW paradigm [7], and propose to add saliency masks as
a way to improve the spatial precision of the original Bag-of-Words approach.

For each frame in a video sequence, we extract a set of N local descriptors using
a dense grid of local circular patches [45]. Based on some experiments, we have set
the radius of the circular patches to 25 pixels, and the step size between each local
patch of 6pixels, thus leading to a high degree of overlapping between neighboring
local regions.

Next, each local patch n = 1, . . . , N is described using a 64-dimensional SURF
descriptor dn [13], which has shown similar performance than the SIFT descriptor
[12] in our experiments, whereas it is of half the dimension. Each descriptor dn

is then assigned to the most similar word j = 1, . . . , V in a visual vocabulary
by following a vector-quantization process. The visual vocabulary, computed using
a k-means algorithm over a large set of descriptors in the training dataset (about
1 million descriptors in our case), has a size of V visual words. As we will show in
the evaluation section, we have experimented with visual vocabularies of different
sizes V .

In parallel, our system generates a saliency map S of the frame with the same
dimensions of the image and values in the range [0, 1] (the higher the more salient
is a pixel).
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4.4.2 Object Recognition with Saliency Weighting

In the traditional BoVW approach [7], the final image signature H is the statistical
distribution of the image descriptors according to the codebook. This is made by first
assigning each local descriptor to a visual word in the vocabulary and then computing
a histogram of word occurrences by counting the times that a visual word appears in
an image.

Instead of doing this hard assignment, we propose to apply what we call saliency
weighting, a sort of soft-assignment based on saliency maps. With saliency weight-
ing, the contribution of each image descriptor is defined by the maximum saliency
value found under the circular region Ωn associated to the index n. In other words,
descriptors over salient areas will get more weight in the image signature than de-
scriptors over non-salient areas. Therefore, the image signature is a V-dimensional
vector H that can be computed as follows:

Hj =
N∑

n=1

αnwnj (4.9)

where the term wnj = 1 if the descriptor or region n is quantized to the visual word
j in the vocabulary, and the weight αn is defined as:

αn = max
s∈Ωn

{S(s))} (4.10)

where Ωn represents the set of pixels contained in the nth circular region of the dense
grid, and S(s) is a saliency map.

Finally, the histogram H is L1-normalized in order to produce the final image
signature.

It is worth stressing the difference between our weighted histogram with hard-
assignments and the histogram with soft assignments previously proposed in the
literature [46]. In that work, given a descriptor, a similarity measure is computed
with respect to all the words in the vocabulary so that various bins of the histogram
can be incremented according to these similarities. On the contrary, our method is
assigning each descriptor to just one word in the vocabulary but then is weighting its
contribution to the histogram using the saliency map information. In fact, if necessary,
our method might be combined with the one in [46].

On the contrary, our method of saliency weighting is more similar to the spatial
weighting proposed in [47] but, in our case, the weights are computed unsupervisely,
without need of training data and not depending on the category to detect.

Once each image is represented by its weighted histogram of visual words, we use
a non-linear classifier to detect the presence of a category in the image. In particular,
we have employed a SVM classifier [48] with a χ2 kernel, which has shown good
performance in visual recognition tasks working with normalized histograms as those
ones used in the BoW paradigm [49].
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4.5 Experimental Results

In this section, we assess our model in various challenging datasets with egocen-
tric videos. As we have already mentioned we aim to recognize objects under two
different scenarios: constrained, in which all videos contain the same instances of
the involved object categories, and the unconstrained, in which each video shows a
different environment with varying instances of the object categories.

4.5.1 Datasets

We have assessed our approach with three publicly available ego-centric video
datasets.

The first one is the GTEA Gaze dataset [5], which consists of 17 standard definition
(640 × 480) video sequences, captured at a frame rate of 15 frames per second, and
performed by 14 different subjects using Tobii eye-tracking glasses. Due to the lack
of object annotations in this dataset, we have extracted and annotated 595 frames
from the videos so that we can easily perform our tests over a set of still images.
The whole dataset has been divided into two sets, namely: (a) the training set (294
frames) and (b) the test set (300 frames). Furthermore, we aimed to detect 15 object
categories in this database. Due to its limited size, we have used this dataset to
compare various system configurations.

The second dataset is the GTEA dataset [50] for Object Recognition. This dataset,
recorded at 30 frames per second in 1280 × 720 definition, contains seven types of
daily activities, each performed by four different subjects. In this case, the camera is
mounted on a cap worn by the subject. Weak annotations are already available for this
dataset. They identify active objects on each frame belonging to 16 object categories,
but do not include the object location. Since all the users have been recorded in the
same room interacting with the same objects, we have evaluated our constrained
scenario using this dataset. For that end, we have followed the same setup described
in [50], using the users 2–4 for training the algorithms and the user 1 for testing.

The third dataset used in the experiments is the ADL dataset [17], that contains
videos captured by a chest-mounted GoPro camera on users performing various daily
activities at their homes. The high definition videos (1280 × 960) are captured at
rate of 30 frames per second and with 170 ◦ of viewing angle. In total, 27,064 frames
have been accurately annotated providing bounding boxes for objects belonging to
44 categories. In our experiments, we have just considered those objects labelled
as ‘active’ (those being interacted or observed by the users) for both training and
testing purposes. This dataset is more challenging than the other two since both
the environment and the object instances are completely different for each user, thus
leading to an unconstrained scenario. However, we have evaluated both scenarios with
this dataset: the constrained one by randomly dividing the whole set of frames into
a training and test set (50–50), and the unconstrained, by doing so at the video/user
level.
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4.5.2 Setting-up the Final Model

In this section, we compare various system configurations. The objective is then
to select the final system setup that provides the best performance, which will be
compared with other state-of-the-art methods in the two envisaged scenarios.

4.5.2.1 Evaluating the Basic Approaches for Saliency Maps

We have firstly evaluated our basic approaches for generating the saliency maps. In
addition, we have included two reference methods in the comparison:

1. Basic BoW (B-BoW): the BoVW approach that generates image signatures con-
sidering whole images. This method becomes the basic reference and allows us
to evaluate the improvement achieved by our saliency masks.

2. BoW with Ideal Masks (I-BoW): this approach makes use of the ideal ground
truth masks provided in the annotation. Since it evaluates our approach when the
saliency masks correspond with the ground-truth, it constitutes the theoretical
limit in its performance. It is worth noting how this ideal binary masks are used
both on training and testing, thus incorporating the annotations in the whole
recognition process, but omitting the aforementioned weighting scheme in the
histograms computation.

The results of this study in the GTEA Gaze dataset are presented in Fig. 4.4a, that
shows the Average Precision (AP) achieved by each approach at various vocabulary
sizes. As one can notice from the results, for almost every technique, the performance
improves until a vocabulary size of V = 4,000 words, after which it stabilizes. Hence,
from now on, we will either remove larger vocabulary sizes from our experiments or
simply consider the optimal vocabulary size of 4,000 as the final approach.

Comparing the approaches, as we expected, the I-BoW constitutes the theoretical
upper bound of the method. This is logic due to the use of the ground-truth bounding
boxes that, although do not correspond to the tight silhouette of the object of interest,
always ensure its correct localization. Furthermore, two of the basic techniques to
compute the saliency masks (geometric and temporal) already achieve slightly better
results than the reference B-BoW. This is a nice consequence of the use of saliency
masks, even when not specific post-processing is applied to the maps. Furthermore,
the fact that the geometric saliency map is the one that achieves the best results, let
us to conclude that compactness is even more important than localization precision
for an object recognition task.

4.5.2.2 Techniques for Saliency Map Post-processing

In this section, we present the evaluation of the post-processing techniques described
in Sect. 4.3.3. As we have already claimed, direct outputs from some saliency detec-
tors might not be optimal for an object recognition task due to the lack of compactness.



98 I. González-Díaz et al.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N: Number of Words in the Vocabulary

A
P

Classification MAP on GTEA Gaze dataset

B−BoW
I−BoW
Geometric
Spatial
Temporal

500 1000 1500 2000 2500 3000 3500 4000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N: Number of Words in the Vocabulary

A
P

Classification MAP on GTEA Gaze dataset

Spatial Basic
Spatial LPF
Spatial FGS

500 1000 1500 2000 2500 3000 3500 4000

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N: Number of Words in the Vocabulary

A
P

Classification MAP on GTEA Gaze dataset

Temporal Basic
Temporal LPF
Temporal FGS

500 1000 1500 2000 2500 3000 3500 4000

(a) (b)

(c) (d)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

N: Number of Words in the Vocabulary

A
P

Classification MAP on GTEA Gaze dataset

B−BoW
I−BoW
Geometric
Spatial LPF
Temporal LPF

Fig. 4.4 A comparison of various configurations in the GTEA Gaze dataset and various vocabulary
sizes. a Results of the basic saliency techniques in comparison with the two references; b results
achieved by two post-processing techniques for the spatial saliency; c results achieved by two post-
processing techniques for the temporal saliency; d a comparison between the best post-processing
option (LPF) and the reference methods

Since the geometric technique already provided compact and Gaussian-shaped
saliency masks, we have applied the postprocessing stage to the spatial and temporal
techniques. Figure 4.4b and c respectively compare the results obtained in the GTEA
Gaze dataset by the basic spatial and temporal saliency, and the two post-processing
methods: Low Pass Filtering (LPF) and FGS. The improvements on the results,
although not very notable, demonstrate that post-processing is important to adequate
the saliency maps to the particular problem of object recognition. Furthermore, the
computational cost of the LPF method, the one that achieves the best performance,
is almost negligible when compared to other steps of the processing pipeline.

In addition, Fig. 4.4d shows a comparison between the LPF approach and the two
reference methods. With the post-processing stage, now all the saliency methods
outperform the reference B-BoW and achieve closer results to the theoretical limit
I-BoW. Hence, from now on, LPF post-processing will be incorporated to every
version of our approach.
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Fig. 4.5 Classification results of various strategies for fusing spatio-temporal-geometric saliency
maps. Values are given at two different vocabulary sizes (V = 1000, V = 4000). Basic and
reference methods are also included for comparison

4.5.3 Data Fusion Strategies for Saliency Maps

In this section, we show how spatio-temporal-geometric information can be success-
fully fused for object recognition. As mentioned before, rather than following the
traditional approach that fuses classifiers over various features (texture, color, shape,
etc.), here we experiment by fusing heterogeneous information to compute saliency
maps. The resulting maps can be then easily plugged into the Bag-of-Visual-Words
paradigm for object recognition.

Therefore, we have assessed several fusion approaches that have been previously
described in Sect. 4.3.4, and compared them with the basic spatial, temporal and
geometric saliency maps. Furthermore, we have also included the two references
(B-BoW, I-BoW), as well as two well-known methods using spatial information to
compute saliency maps: the fundamental model of Itti et al. [4], and the graph-based
method of Harel et al. [29]. Results of this study in a subset of the ADL unconstrained
dataset are shown in Fig. 4.5 for two vocabulary sizes (V = 1000, V = 4000).

The obtained results stand out the importance of the fusion strategy, which
makes the difference between providing similar or even worse results than the basic
approaches and yielding notably better performance. In particular, the square fu-
sion strategy obtains particularly good performance on this dataset, outperforming
both the basic saliency approaches and the rest of the fusion strategies. In particu-
lar, by using this approach we are achieving relative improvements with respect to
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Table 4.1 mAP and standard
deviation on ADLdataset
under the constrained and
unconstrained scenarios

Algorithm Cons. mAP ± std Uncons. mAP ± std

B-BoW 0.585 ± 0.258 0.113 ± 0.152
I-BoW 0.621 ± 0.250 0.191 ± 0.258
DPM [2] 0.341 ± 0.254 0.129 ± 0.194
Proposal 0.602 ± 0.260 0.125 ± 0.167

the reference B-BoW of a 10 and 7.43 %, for a vocabulary of size 1,000 and 4,000,
respectively. Hence, we will consider this fusion strategy as the final choice for
our object recognition system in ego-centric videos. The excellent results achieved
in the hypothetical case in which ideal ground truth saliency maps are available
(I-BoW) also help to stress the suitability of this saliency-based approach for object
recognition.

Finally, it is also of interest remarking that our proposed spatio-temporal-
geometric saliency map provides better performance than the two well known
saliency methods (Itti and Harel). The rationale behind is that these two methods
simply use spatial properties of the scene, and therefore ignore motion and geomet-
ric constraints that have turned out to be very useful to detect the area of interest of
a video scene.

4.5.4 A Comparison with the State-of-the-Art

In the following, we present a comparison between our method and various
approaches that have reported state-of-the-art results in the egocentric datasets. As
mentioned before, we consider two scenarios of application: an easier constrained
scenario and a more challenging unconstrained scenario.

4.5.4.1 Experiments Under the Constrained Scenario

As we mentioned before, the constrained scenario is that one in which all the subjects
wearing cameras are recorded in the same environment and interacting with the same
object instances.

Results for the ADL dataset under the constrained scenario are shown in the first
column of Table 4.1 in terms of mAP (mean Average Precision), and its standard
deviation (category deviation). It is worth noting that we show only the results of
those objects considered as ‘active’ in the dataset ground-truth annotations, e.g. those
objects that are either manipulated or observed by the main actor in the ego-centric
video. We consider these objects as the main source of information for detecting an
action, so that the rest of the visual information (background) is less relevant and
only useful for horizontal tasks as context identification.
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Fig. 4.6 Per-category results (AP) for the constrained scenario achieved by various methods in the
ADL dataset

As we have already mentioned, to simulate the constrained environment, we have
randomly divided the whole set of frames into a training and test set (50–50) without
taking into account the video to which each frame belongs. In this dataset, we are
comparing the performance of our approach with the reference method B-BoW, the
ideal case I-BoW, and the Discriminatively Trained Part-Based Model (DPM) [2],
which was the approach used by the authors of the dataset [17] to address the object
recognition task.

Furthermore, in Fig. 4.6 we include detailed per-category performance. Base on
these results, we can draw the following conclusions:

• Our proposal outperforms the reference B-BoW by guiding the recognition process
to the salient areas of each frame. This result is consistent along almost all the
categories in the dataset, and supports the idea that using visual saliency generates
more accurate object representations and reduces the effect of clutter.

• The approach using ideal masks is, as expected, the one yielding the best perfor-
mance. However, a deeper by category analysis shows remarkable conclusions:
in general, providing an accurate localization of the object (I-BoW) helps the
recognition process and improves the performance. This observation is partic-
ularly noticeable for relatively small objects such as the ones belonging to the
categories ‘foodsnack’, ‘knife_spoon_fork’, ‘milk_juice’ or TV. However, when
the objects are too small, such as the instances of ‘comb,’ ‘dentfloss’ or ‘pills,’
we have observed that the ground truth bounding boxes, restricted to the object
and lacking any information about object context, give not enough information to
successfully detect its presence. In contrast, due to the fact that the saliency maps
usually cover more area in the image (object, hands, even spatial neighboring
context), our proposal achieves notably better results than the I-BoW. In addition,
the reference B-BoW also achieves better results than I-BoW for these classes,
although its performance is still below our approach.

• The performance of the DPM is poor when compared any BoW method. From our
point of view, the rationale behind is that this method has been designed to get good
generalizations of object categories, what prevents from taking advantage of the
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Fig. 4.7 Per-category results (AP) for the unconstrained scenario achieved by various methods in
the ADL dataset. Some categories cannot be computed in this scenarios due to the lack of samples
in training/test sets

high visual similarity between training and test samples in the constrained scenario.
Hence, we believe that its relative performance with respect to our approach should
drastically improve in the unconstrained scenario.

In addition, we have also evaluated our approach in the GTEA dataset. This dataset
represents the constrained scenario in a more realistic way, due to the fact that we can
take training and test samples from different videos. Hence, we have followed the
same evaluation setup proposed by the authors [50]. In particular, we have developed
a multiclass classifier so that each image is considered to contain just one object of
interest. Our proposal achieves a global classification accuracy of 36.8 % in this
dataset, which compares well with the 35 % obtained by the authors of the dataset
[50] when they matched the highest detection score to the ground truth annotations.

4.5.4.2 Experiments Under the Unconstrained Scenario

The unconstrained scenario corresponds to the challenging situation in which users
perform their activities at several locations, thus interacting with heterogeneous
instances of the object categories. Consequently, the large intra-class variation jointly
with the reduced number of object instances, are expected to lead to poor general-
ization in recognition process.

In our experiments, we have used the videos corresponding to half of the subjects
{2, 3, 5, 7, 8, 12–14, 17, 18} for training, and the remainder videos for test.

Average results of this study are shown in the second column of Table 4.1, whereas
Fig. 4.7 shows detailed per-category AP. We next draw the main conclusions of this
experiment:

• As expected due to the challenging nature of this scenario, the performance is
drastically lower for all the automatic approaches (from AP ∼ 0.6 to ∼ 0.10).
This illustrates how challenging is the problem of object recognition when just a
few instances are available for each object.



4 Fusion of Multiple Visual Cues for Object Recognition in Videos 103

Table 4.2 Test execution times of our approach compared with the DPM implementation in [2].
We show single threading (S.T.) and multi-threading (M.T.) execution time

Algorithm S.T. M.T.

DPM [2] 60.4 s 10.9 s
Proposal 15.7 s 4.1 s

• Furthermore, the I-BoW, that uses ground-truth masks in test, now notably out-
performs any automatic approach. This fact stresses the importance of a good
previous localization of the object of interest for its localization.

• Our proposal again outperforms the basic reference (B-BoW). The improvement
is once more consistent along almost all the categories.

• The DPM now achieves competitive results, even slightly superior to the ones of
our proposal. As we previously stated, this technique learns object models with a
high degree of generalization, which is better suited for this unconstrained rather
than for the constrained scenario.

As a conclusion, we can state that our approach yields good results in the con-
strained scenario, outperforming state-of-the-art approaches, and obtains competitive
results in the unconstrained one. In addition to the classification results, it offers two
main advantages over other alternatives: (1) it does not require precise localization
of objects in the training data, what minimizes the human effort in the database an-
notation, and (2) as we will see in the next section, its computational complexity is
low when compared to sliding window methods.

4.5.5 A Study of the Computational Time

In Table 4.2, we show a comparison between the average execution times of our
proposal and the DPM to run one category object-detector in a test frame. We included
results using a single threading (S.T.) and multi-threading in a 2.10 GHz computer
with four cores, and hyper-threading enabled.

For our proposal, the execution time comprises the generation of the saliency
maps, the SURF feature extraction process, the computation of the weighted his-
tograms, and the classification using a SVM with χ2 kernel. It is worth noting that
some of the computations for the spatial saliency map are implemented in GPU so that
they cannot be translated to S.T. case (spatial saliency takes about 0.05 s per frame in
the GPU). The rest of the calculus are made with the CPU under the aforementioned
circumstances.

For the DPM, we run the implementation in [2], made in Matlab with optimized
c routines for all the steps in the process that require most of the execution time.

As we can see in the tables, our approach shows much lower computational times
in comparison with DPM. From our point of view, the rationale behind is the fact that
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using the saliency maps, we avoid the heavy scanning process of a sliding window
approach as the DPM.

Furthermore, it is also worth noting that, since the saliency maps are automatically
computed in both training and test data, our method does not need bounding boxes
for training, what dramatically reduces the human resources devoted to the database
annotation when compared to the DPM.

4.6 Conclusion and Perspectives

In this chapter we have presented a method for object recognition in egocentric
videos. Our proposal aims to drive the recognition process using visual saliency.
In particular, spatial, temporal and geometric cues found in egocentric videos are
exploited to improve the object recognition, generating more precise representations
of the area of interest in a frame, as well as enhancing the robustness against cluttered
backgrounds.

We have also evaluated several fusion strategies to generate spatio-temporal-
geometric saliency maps from their basic constituents, as well as some post-
processing techniques that improve the compactness, a property that has turned out
to be very important for object recognition.

In addition, rather than simply performing foreground/background segmentation
to restrict the recognition process to the areas of interest, we have proposed a soft
application of saliency that controls the influence of pixels in the final object repre-
sentation based on their saliency. We have combined saliency with the well known
BoVW paradigm by proposing a saliency weighting method to compute image sig-
natures.

Having in mind the context of this work, which is the automatic analysis of videos
for the diagnosis, assessment, maintenance and promotion of self-independence of
people with dementia, we have assessed our model in two particular scenarios of
interest: (a) a constrained scenario in all the subjects perform actions in the same
room and, therefore, interact with the same object instances, and (b) an unconstrained
scenario that corresponds to recordings made at different locations, so that users
interact with various instances of the same objects.

Our experiments have shown that this method outperforms the basic BoVW model
and achieves closer results to an hypothetical case in which optimal foreground masks
are available in test. Furthermore, our approach compares well, and outperforms
DPM and the full method in [50] under the constrained scenario. Furthermore, the
computational time is less than half of the DPM one.

However, the notable decrease in performance in case of an unconstrained scenario
reveals that our method needs further development. Indeed, in an unconstrained
scenario the variability of object instances intra-category requires drastically new
recognition approaches. Here we are in the case of “concept recognition.” As we
know from e.g. TRECVID challenge [51] concept recognition is a complex and
open research problem and we are amongst those working on it.
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Abstract Multimedia event detection (MED) is a challenging problem because of
the heterogeneous content and variable quality found in large collections of Inter-
net videos. To study the value of multimedia features and fusion for representing
and learning events from a set of example video clips, we created SESAME, a sys-
tem for video SEarch with Speed and Accuracy for Multimedia Events. SESAME
includes multiple bag-of-words event classifiers based on single data types: low-level
visual, motion, and audio features; high-level semantic visual concepts; and auto-
matic speech recognition (ASR). Event detection performance was evaluated for
each event classifier. The performance of low-level visual and motion features was
improved by the use of difference coding. The accuracy of the visual concepts was
nearly as strong as that of the low-level visual features. Experiments with a number
of fusion methods for combining the event detection scores from these classifiers
revealed that simple fusion methods, such as arithmetic mean, perform as well as or
better than other, more complex fusion methods.

5.1 Introduction

The goal of multimedia event detection (MED) is to detect user-defined events of
interest in massive, continuously growing video collections, such as those found on
the Internet. This is an extremely challenging problem because the contents of the
videos in these collections are completely unconstrained, and the collections include
user-generated videos. The quality of such videos varies widely, because they are
often made with handheld cameras and may exhibit jerky motions, wildly varying
fields of view, and poor lighting. The audio in these videos is recorded in a variety
of acoustic environments, often with a single camera-mounted microphone, with no
attempt to prevent background sounds from masking speech.

For purposes of this research, an event, as defined in the TREC Video Retrieval
Evaluation (TRECVID) MED evaluation task sponsored by the National Institute of
Standards and Technology (NIST) [1], has the following characteristics:

• It includes a complex activity occurring at a specific place and time.
• It involves people interacting with other people and/or objects.
• It consists of a number of human actions, processes, and activities that are loosely

or tightly organized and have significant temporal and semantic relationships to
the overarching activity.

• It is directly observable.

Figure 5.1 shows some sample video imagery from events in the TRECVID MED
evaluation task. Events are more complex and may include actions (hammering,
pouring liquid) and activities (dancing) occurring in different scenes (street, kitchen)
in indoor and outdoor environments. Some events may be process-oriented, with an
expected sequence of stages, actions, or activities (making a sandwich or repairing
an appliance); other events may be a set of ongoing activities with no particular
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Fig. 5.1 Key frame series from example videos for the events making a sandwich, repairing
an appliance, birthday party, and parade (The imagery was obtained from the Linguistic Data
Consortium. Faces have been obscured for privacy)

beginning or end (birthday party or parade). An event may be observed in only a
portion of the video clip, and relevant clips may contain extraneous content.

Multimedia event detection can be considered as a search problem with a query-
retrieval paradigm. Currently, videos in online collections, such as YouTube, are
retrieved based on text-based search. Text labels are either manually assigned when
the video is added to the collection or derived from text already associated with
the video, such as text content that occurs near the video in a multimedia blog or
web page. Videos are searched and retrieved by matching a text-based user query to
videos’ text labels, but performance will depend on the quality and availability of
such labels.

Highly accurate text-based video retrieval requires the text-based queries to be
comprehensive and specific. In the TRECVID MED [1] evaluation, each event is
defined by an “event kit,” which includes a 150–400 word text description consist-
ing of an event name, definition, explication (textual exposition of the terms and
concepts), and lists of scenes, objects, people, activities, and sounds that would indi-
cate the presence of the event. Figure 5.2 shows an example for the event working
on a woodworking project. The user might also have to specify how similar events
are distinguished from the event of interest (e.g., not construction in Fig. 5.2), and
may have to estimate the frequency with which various entities occur in the event
(e.g., often indoors). Subcategories and variations of the event may also have to be
considered (e.g., operating a lathe in a factory).

The work described in this chapter focused on evaluating the various data types
and fusion methods for MED. The remainder of the paper is organized as follows.
A short state-of-the art is presented in Sect. 5.2. Our approach for example-based
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Fig. 5.2 Event kit for working on a woodworking project

MED, including methods for content extraction and fusion, is described in Sect. 5.3.
Experimental results are described in Sect. 5.4, and Sect. 5.5 contains a summary and
discussion.

5.2 Related Work and Motivation for Our Approach

Another approach to detect events is to define the event in terms of a set of example
videos, which we call an example-based approach. Example videos are matched
to videos in the collection using the same internal representation for each. In this
approach, the system automatically learns a model of the event based on a set of
positive and negative examples, taking advantage of well-established capabilities in
machine learning and computer vision. This chapter considers an example-based
approach with both nonsemantic and semantic representations.

Current approaches for MED [2–7] rely heavily on kernel-based classifier methods
that use low-level features computed directly from the multimedia data. These clas-
sifiers learn a mapping between the computed features and the category of event that
occurs in the video. Videos and events are typically represented as “bag-of-words”
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models composed of histograms of descriptors for each feature type, including visual,
motion, and audio features. Although the performance of these models is quite effec-
tive, individual low-level features do not correspond directly to terms with semantic
meaning, and therefore cannot provide human-understandable evidence of why a
video was selected by the MED system as a positive instance of a specific event.

A second representation is in terms of higher-level semantic concepts, which
are automatically detected in the video content [8–11]. The detectors are related
to objects, like a flag; scenes, like a beach; people, like female; and actions, like
dancing. The presence of concepts such as these creates an understanding of the
content. However, except for a few entities such as faces, most individual concept
detectors are not yet reliable [12]. Also, training detectors for each concept require
annotated data, which usually involves significant manual effort to generate. In the
future, it is expected that more annotated data sets will be available, and weakly
supervised learning methods will help improve the efficiency of generating them.
Event representations based on high-level concepts have started to appear in the
literature [13–16].

For an example-based approach, the central research issue is to find an event
representation in terms of the elements of the video that permits the accurate detec-
tion of the events. In our approach, an event is modeled as a set of multiple bags-
of-words, each based on a single data type. Partitioning the representation by data
type permits the descriptors for each data type to be optimized independently. Spe-
cific multimodal combinations of features, such as bimodal audiovisual features [3],
can be considered a single data type within this architecture. To characterize the
video content as comprehensively as possible, the data types we used included a
set of heterogeneous low-level features (visual appearance, motion, and audio) and
higher-level semantic concepts (visual concepts). We also used automatic speech
recognition (ASR) to generate a bag-of-words model in which semantic concepts
were expressed directly by words in the recognized speech. The resulting event
model combined multiple sources of information from multiple data types and mul-
tiple levels of information.

As part of the optimization process for the low-level features, we investigated
the use of difference coding techniques in addition to conventional coding methods.
Because the information captured by difference coding is somewhat complemen-
tary to the information produced by the traditional bag-of-words, we anticipated
an improvement in performance. We conducted experiments to compare the perfor-
mance of difference coding techniques with conventional feature coding techniques.

The remaining challenge is finding the best method for combining the multiple
bags-of-words in the event-detection decision process. In the computer vision and
multimedia retrieval literature, several fusion methods have been explored [3, 5, 17–
19]. For event detection, the most common approach is to apply late fusion methods
[3, 5, 17] in which the results for each data type are combined by fusing the decision
scores from multiple event classifiers. This is a straightforward way of using the
information from all data types in proportion to their relative contribution to event
detection on videos with widely diverse content. We evaluated the performance of
several late fusion methods.
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Fig. 5.3 Major components of the SESAME system

All of the experiments for evaluating the performance of the MED capability were
performed using the data provided in the TRECVID MED [1] evaluation task. The
MED evaluation uses the Heterogeneous Audio Visual Internet Collection (HAVIC)
video data collection [20], which is a large corpus of Internet multimedia files col-
lected by the Linguistic Data Consortium.

5.3 Approach for Example-Based MED

The work in this chapter focuses on SESAME, an MED system in which an event is
specified as a set of video clip examples. A supervised learning process trains an event
model from positive and negative examples, and an event classifier uses the event
model to detect the targeted event. An event classifier was built for each data type.
The results of all the event classifiers were then combined by fusing their decision
scores. An overview of the SESAME system and methods for event classification
and fusion are described in the following sections.

5.3.1 SESAME System Overview

The major components of the SESAME system are shown in Fig. 5.3. A total of nine
event classifiers generate event detection decision scores: two based on low-level
visual features, three based on low-level motion features, one based on low-level
audio features, two based on visual concepts, and one based on ASR. (The particular
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Fig. 5.4 Example-based event classifier for MED

set of classifiers used for each feature type was experimentally determined to be
optimal with respect to performance on a reduced dataset.) The outputs of the event
classifiers are combined by the fusion process.

Figure 5.4 shows the processing blocks within each event classifier. Each event
classifier operates on a single type of data and includes both training and event
classification. Content is extracted from positive and negative video examples, and
the event classifier is trained, resulting in an event model. The event model produces
event detection scores when it is applied to a test set of videos. Figure 5.4 does not
show off-line training and testing to optimize the parameter settings for the content
extraction processes.

5.3.2 Content Extraction Methods

This section describes the feature coding and aggregation methods that were common
to the low-level features and the content extraction methods for the different data
types: low-level visual features, low-level motion features, low-level audio features,
high-level visual features, and ASR.

5.3.2.1 Feature Coding and Aggregation

The coding and aggregation of low-level features share common elements that
we describe here. We extracted local features and aggregated them by using three
approaches: conventional bag of words (BOW), vector of locally aggregated descrip-
tors (VLAD), and Fisher vectors (FV).

The conventional BOW approach partitions low-level features into clusters to
generate a codebook. Given a set of features from a video, a histogram is generated
by assigning each feature from the set to one or several nearest code words. Several
modifications to this approach are possible. One variation uses soft coding, where
instead of assigning each feature to a single code word, distances from the code
words are used to weigh the histogram terms for the code words. Another variation
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describes code words by a Gaussian mixture model (GMM), rather than just by the
center of a cluster.

While conventional BOW aggregation has been successfully used for many appli-
cations, it does not maintain any information about the distribution of features in the
feature space. FV has been introduced in previous work [21] to capture more detailed
statistics, and has been applied to image classification and retrieval [22, 23] and cap-
turing variation in time in video [24]. The basic idea is to represent a set of data
by a gradient of its log-likelihood to model parameters and to measure the distance
between instances with the Fisher kernel. For local features extracted from videos,
it becomes natural to model their distribution as GMMs, forming a soft codebook.
With GMM, the dimension of FV is linear in the number of mixtures and local feature
dimensions.

Finally, VLAD [22] is proposed as a nonprobabilistic version of FV. It uses
k-means instead of GMM, and accumulates the relative positions of feature points
to their single nearest neighbors in the codebook.

Compared with conventional BOW, FV and VLAD have the following benefits:

• FV takes GMM as the underlying generative model.
• Both FV and VLAD are derivatives, so feature points with the same distribution as

the general model has no overall impact on the video-level descriptors; as a result,
FV and VLAD can suppress noisy and redundant signals.

None of the above aggregation methods consider feature localization in space or in
time. We introduced a limited amount of this information by dividing the video into
temporal segments (for time localization) and spatial pyramids (for spatial local-
ization). We then compute the features in each segment or block separately and
concatenate the resulting features. The spatial pooling and temporal segmentation
parameters that yielded the best performance were determined through experimen-
tation.

5.3.2.2 Visual Features

Two event classifiers were developed based on low-level visual features that have
proven themselves for general video categorization in TRECVID [25]. They both
follow a pipeline consisting of four stages: spatiotemporal sampling of points of
interest, visual description of those points, encoding the descriptors into visual words,
and supervised learning with kernel machines.

Spatiotemporal Sampling: The visual appearance of an event in video may have
a dependency on the spatiotemporal viewpoint under which it is recorded. Salient
point methods [26] introduce robustness against viewpoint changes by selecting
points, which can be recovered under different perspectives. To determine salient
points, Harris-Laplace relies on a Harris corner detector; applying it on multiple
scales makes it possible to select the characteristic scale of a local corner using
the Laplacian operator. For each corner, the Harris-Laplace detector selects a scale-
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invariant point if the local image structure under a Laplacian operator has a stable
maximum.

Another solution is to use many points by dense sampling. For imagery with many
homogenous areas, such as outdoor snow scenes, corners may be rare, so relying on
a Harris-Laplace detector can be suboptimal. To counter the shortcomings of Harris-
Laplace, we used dense sampling, which samples an image grid in a uniform fashion,
using a fixed pixel interval between regions.

In our experiments, we used an interval distance of six pixels and sampled at
multiple scales. Appearance variations caused by temporal effects were addressed
by analyzing video beyond the key frame level [27]. Taking more frames into account
during analysis allowed us to recognize events that were visible during the video, but
not necessarily in a single key frame. We sampled one frame every two seconds. Both
Harris-Laplace and dense sampling give an equal weight to all keypoints, regardless
of their spatial location in the image frame. To overcome this limitation, Lazebnik
et al. [28] suggest repeated sampling of fixed subregions of an image, e.g., 1 × 1,
2×2, 4×4, etc., and then aggregating the different resolutions into a spatial pyramid,
which allows for region-specific weighting. Since every region is an image in itself,
the spatial pyramid can be combined with both the Harris-Laplace point detector and
dense point sampling. We used a spatial pyramid of 1×1 and 1×3 regions, because
this was the set of regions that yielded the best performance in our experiments.

Visual Descriptors: In addition to the visual appearance of events in the spatiotem-
poral viewpoint under which they are recorded, the lighting conditions during record-
ing also play an important role in MED. Properties of color features under classes of
illumination and viewing features, such as viewpoint, light intensity, light direction,
and light color, can change, specifically for real-world datasets as considered within
TRECVID [29]. We followed [25] and used a mixture of SIFT, OpponentSIFT, and
C-SIFT descriptors. The SIFT feature proposed by Lowe [30] describes the local
contrast of a region using edge-orientation histograms. Because the SIFT feature
is normalized, the gradient magnitude changes have no effect on the final feature.
OpponentSIFT describes all the channels in the opponent color space using SIFT
features. The information in the O3 channel is equal to the intensity information,
while the other channels describe the color information in the image. The feature
normalization, as effective in SIFT, cancels out any local changes in light intensity.
In the opponent color space, the O1 and O2 channels still contain some intensity
information. To add invariance to shadow and shading effects, the C-invariant [31]
eliminates the remaining intensity information from these channels. The C-SIFT
feature uses the C-invariant, which can be seen as the gradient (or derivative) for
the normalized opponent color space O1/I and O2/I. The I intensity channel remains
unchanged. C-SIFT is known to be scale-invariant with respect to light intensity. We
computed the SIFT and C-SIFT descriptors around salient points obtained from the
Harris-Laplace detector and dense sampling. We then reduced all descriptors to 80
dimensions with principal component analysis (PCA), a common procedure in the
video categorization literature [25].
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Word Encoding: To avoid using all low-level visual features from a video, we fol-
lowed the well-known codebook approach. We first assigned the features to discrete
codewords from a predefined codebook. Then, we used the frequency distribution
of the codewords as a compact feature vector representing an image frame. Based
on [25], we employed codebook construction using k-means clustering in combina-
tion with average codeword assignment and a maximum of 4,096 codewords. (The
number of codewords and the values of other parameters selected for this approach
were determined through experimentation.) The traditional hard assignment can be
improved by using soft assignment through kernel codebooks [32]. A kernel code-
book uses a kernel function to smooth the hard assignment of (image) features to
codewords by assigning descriptors to multiple clusters weighted by their distance
to the center. We also used difference coding, with VLAD performing k-means clus-
tering of the PCA-reduced descriptor space with 1,024 components. The output of
the word encoding is a BOW vector using either hard average coding or soft VLAD
coding. The BOW vector forms the foundation for event detection.

Kernel Learning: Kernel-based learning methods are typically used to develop
robust event detectors from audiovisual features. As described in [25], we relied
predominantly on the support vector machine framework for supervised learning
of events: specifically, the LIBSVM1 implementation with probabilistic output. To
handle imbalance in the number of positive versus negative training examples, we
fixed the weights of the positive and negative classes by estimating the prior prob-
abilities of the classes on training data. We used the histogram intersection kernel
and its efficient approximation as suggested by Maji et al. [33]. For difference coded
BOWs, we used a linear kernel [21].

Experiments: We evaluated the performance of these two event classifiers on a
set of 12,862 drawn from the training and development data from the TRECVID
MED [1] evaluation. This SESAME Evaluation dataset consisted of a training set
of 8,428 videos and a test set of 4,434 videos sampled from 20 event classes and
other classes that did not belong to any of the 20 events. To make good use of the
limited number of available positive instances of events, the positives were distributed
so that, for each event, there were approximately twice as many positives in the
training set as there were in the test set. Separate classifiers were trained for each
event based on a one-versus-all paradigm. Table 5.1 shows the performance of the
two event classifiers measured by mean average precision (MAP). Color-average
coding with a histogram intersection kernel (HIK) Support Vector Machine (SVM)
slightly outperformed color-difference soft coding with a linear SVM. For events
such as changing a vehicle tire and town hall meeting, the average HIK was the best
event representation. However, for some events, such as flash mob gathering and dog
show, the difference coding was more effective. To study whether the representations
complement each other, we also performed a simple average fusion; the results
indicate a further increase in event detection performance, improving MAP from
0.342 to 0.358 and giving the best overall performance for the majority of events.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 5.1 Mean average precision (MAP) of event classifiers with low-level visual features and
their fusion for 20 TRECVID MED [1] evaluation event classes

Eventa Average coding Difference coding Fusion
with HIK SVM with linear SVM

Birthday_party 0.275 0.229 0.261
Changing_a_vehicle_tire 0.305 0.269 0.302
Flash_mob_gathering 0.602 0.644 0.636
Getting_a_vehicle_unstuck 0.457 0.496 0.494
Grooming_an_animal 0.280 0.222 0.275
Making_a_sandwich 0.268 0.278 0.314
Parade 0.416 0.415 0.427
Parkour 0.464 0.413 0.450
Repairing_an_appliance 0.486 0.469 0.498
Working_on_a_sewing_project 0.378 0.388 0.400
Attempting_a_bike_trick 0.398 0.350 0.408
Cleaning_an_appliance 0.138 0.077 0.135
Dog_show 0.595 0.651 0.636
Giving_directions_to_a_location 0.123 0.130 0.134
Marriage_proposal 0.058 0.093 0.071
Renovating_a _home 0.229 0.273 0.285
Rock_climbing 0.488 0.466 0.507
Town_hall_meeting 0.531 0.463 0.502
Winning_a_race_without_a_vehicle 0.237 0.284 0.263
Working_on_a_metal_crafts_project 0.109 0.134 0.153
Mean for all events 0.342 0.337 0.358
a Best result per event is denoted in bold

5.3.2.3 Motion Features

Many motion features for activity recognition have been suggested in previous work;
[4] provides a nice evaluation of motion features for classifying web videos on
the NIST MED 2011 dataset. Based on our analysis of previous work and some
small-scale experiments, we decided to use three features: spatio-temporal interest
points (STIPs), dense trajectories (DTs) [34], and MoSIFT [35]. STIP features are
computed at corner-like locations in the 3-D spatio-temporal volume. Descriptors
consist of histograms of gradient and optical flow at these points. This is a very
commonly used descriptor; more details may be found in [36]. Dense trajectory
features are computed on a dense set of local trajectories (typically computed over
15 frames). Each trajectory is described by its shape and by histograms of intensity
gradient, optical flow, and motion boundaries around it. Motion boundary features
are somewhat invariant to camera motion. MoSIFT, as its name suggests, uses SIFT
feature descriptors; its feature detector is built on motion saliency. STIP and DT
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were extracted using the default parameters as provided2; the MoSIFT features were
obtained in the form of coded BOW features.3

After the extraction of low-level motion features, we generated a fixed-length
video-level descriptor for each video. We experimented with the coding schemes
described in Sect. 5.3.2.1 for the STIP and DT features; for MoSIFT, we were able
to use BOW features only. We used the training and test sets described above.

We trained separate SVM classifiers for each event and each feature type. Training
was based on a one-versus- all paradigm. For conventional BOW features, we used
the χ2 kernel. We used the Gaussian kernel for VLAD and FV. To select classifier-
independent parameters (such as the codebook size), we conducted fivefold cross
validation of 2,062 videos from 15 event classes. We conducted fivefold cross valida-
tion on the training set to select classifier-dependent parameters. For BOW features,
we used 1,000 codewords; for FV and VLAD, we used 64 cluster centers. More
details of the procedure are found in [37].

We compared the performance of conventional BOW, FV, and VLAD for STIP
features; BOW and FV for DT features; and BOW for MoSIFT, using the SESAME
Evaluation dataset. Table 5.2 shows the results.

We can see that FV gave the best MAP for both STIP and DT. VLAD also improved
MAP for STIP, but was not as effective as the FV features. We were not able to
perform VLAD and FV experiments for MoSIFT features, but would expect to have
seen similar improvements there.

5.3.2.4 Audio Features

The audio is modeled as a bag of audio words (BOAW). The BOAW has recently
been used for audio document retrieval [38] and copy detection [39], as well as MED
tasks [40]. Our recent work [41] describes the basic BOAW approach. We extracted
the audio data from the video files and converted them to a 16 kHz sampling rate.
We extracted Mel frequency cepstral coefficients (MFCCs) for every 10 ms interval
using a hamming window with 50 % overlap. The features consist of 13 values (12
coefficients and the log-energy), along with their delta and delta-delta values. We
used a randomized sample of the videos from the TRECVID 2011 MED evaluation
development set to generate the codebook. We performed k-means clustering on the
MFCC features to generate 1,000 clusters. The centroid for each cluster is taken as
a code word. The soft quantization process used the codebook to map the MFCCs to
code words. We trained an SVM classifier with a histogram intersection kernel on
the soft quantization histogram vectors of the video examples, and used the classifier
to detect the events. Evaluation with the SESAME Evaluation dataset showed that
the audio features achieved a MAP of 0.112.

2 We obtained the STIP code from http://www.di.ens.fr/~laptev/download/stip-1.1-winlinux.zip,
and DT code from http://lear.inrialpes.fr/people/wang/dense_trajectories.
3 MoSIFT features were provided by Dr. Alex Hauptmann of Carnegie-Mellon University.

http://www.di.ens.fr/~laptev/download/stip-1.1-winlinux.zip
http://lear.inrialpes.fr/people/wang/dense_trajectories
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Table 5.2 Mean average precision of event classifiers with motion features for 20 TRECVID
MED [1] evaluation event classes

Eventa BOW + BOW + VLAD + FV + BOW + FV +
MoSIFT STIP STIP STIP DT DT

Birthday_party 0.191 0.217 0.217 0.189 0.225 0.293
Changing_a_vehicle_tire 0.126 0.064 0.165 0.136 0.190 0.217
Flash_mob_gathering 0.463 0.535 0.579 0.569 0.564 0.567
Getting_a_vehicle_unstuck 0.337 0.284 0.316 0.365 0.403 0.439
Grooming_an_animal 0.290 0.093 0.116 0.147 0.216 0.247
Making_a_sandwich 0.164 0.154 0.193 0.225 0.198 0.234
Parade 0.326 0.260 0.364 0.457 0.446 0.419
Parkour 0.295 0.366 0.404 0.369 0.413 0.459
Repairing_an_appliance 0.368 0.357 0.370 0.385 0.417 0.443
Working_on_a_sewing_project 0.270 0.292 0.346 0.386 0.352 0.433
Attempting_a_bike_trick 0.640 0.104 0.234 0.235 0.245 0.438
Cleaning_an_appliance 0.090 0.058 0.088 0.074 0.066 0.089
Dog_show 0.488 0.361 0.489 0.557 0.600 0.632
Giving_directions_to_a_location 0.085 0.194 0.148 0.191 0.069 0.052
Marriage_proposal 0.027 0.040 0.107 0.173 0.059 0.118
Renovating_a_home 0.157 0.182 0.201 0.255 0.277 0.361
Rock_climbing 0.465 0.156 0.326 0.352 0.470 0.425
Town_hall_meeting 0.519 0.285 0.286 0.462 0.317 0.370
Winning_a_race_without_a_vehicle 0.273 0.187 0.174 0.260 0.179 0.216
Working_on_a_metal_crafts_project 0.116 0.148 0.064 0.032 0.072 0.128
MAP 0.285 0.217 0.259 0.291 0.289 0.329
a Best result per event is denoted in bold

5.3.2.5 Visual Concepts

Two event classifiers were based on concept detectors. We followed the pipeline
proposed in [42]. We decoded the videos by uniformly extracting one frame every 2
sec. We then applied all available concept detectors to the extracted frames. After we
concatenated the detector outputs, each frame was represented by a concept vector.
Finally, we aggregated the frame representations into a video-level representation
by averaging and normalization. On top of this concept representation per video, we
used either a HIK SVM or a random forest as an event classifier.

To create the concept representation, we needed a comprehensive pool of concept
detectors. We built this pool of detectors using the human-annotated training data
from two publicly available resources: the TRECVID 2012 Semantic Indexing task
[43] and the ImageNet Large-Scale Visual Recognition Challenge 2011 [44]. The
former has annotations for 346 semantic concepts on 400,000 keyframes from web
videos. The latter has annotations for 1,000 semantic concepts on 1300,000 photos.
The categories are quite diverse and include concepts from various types; i.e., objects
like helicopter and harmonica, scenes like kitchen and hospital, and actions like
greeting and swimming. Leveraging the annotated data available in these datasets,
we trained 1,346 concept detectors in total.



122 G. K. Myers et al.

Table 5.3 Mean average precision of event classifiers with visual concept features for 20
TRECVID MED [1] evaluation event classes

Eventa RF SVM

Birthday_party 0.339 0.324
Changing_a_vehicle_tire 0.251 0.241
Flash_mob_gathering 0.542 0.542
Getting_a_vehicle_unstuck 0.454 0.426
Grooming_an_animal 0.254 0.231
Making_a_sandwich 0.283 0.257
Parade 0.373 0.306
Parkour 0.550 0.479
Repairing_an_appliance 0.422 0.404
Working_on_a_sewing_project 0.390 0.394
Attempting_a_bike_trick 0.475 0.472
Cleaning_an_appliance 0.097 0.149
Dog_show 0.595 0.529
Giving_directions_to_a_location 0.058 0.097
Marriage_proposal 0.077 0.066
Renovating_a_home 0.295 0.325
Rock_climbing 0.412 0.401
Town_hall_meeting 0.411 0.417
Winning_a_race_without_a_vehicle 0.198 0.167
Working_on_a_metal_crafts_project 0.099 0.162
Mean for all events 0.341 0.330
a Best result per event is denoted in bold

We followed the state-of-the-art for our implementation of the concept detectors.
We used densely sampled SIFT, OpponentSIFT, and C-SIFT descriptors, as we had
for our event detector using visual features, but this time, we used difference coding
with Fisher vectors [21]. We used a visual vocabulary of 256 words. We again used
the full image and three horizontal bars as a spatial pyramid. The feature vectors
representing the training images formed the input for a linear SVM.

Experiments with the SESAME Evaluation dataset, summarized in Table 5.3,
show that the random forest classifier is more successful than the nonlinear HIK
SVM for event detection using visual concepts, although the two approaches are
quite close on average. Note that the event detection results using visual concepts
are close to our low-level representation using visual or motion features.

5.3.2.6 Automatic Speech Recognition

Spoken language content is often present in user-generated videos and can potentially
contribute useful information for detecting events. The recognized speech has direct
semantic information that typically complements the information contributed by
low-level visual features. We used DECIPHER, SRI’s ASR software, to recognize
spoken English. We used acoustic and language models obtained from an ASR system
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[45] trained on speech data recorded in meetings with a far-field microphone. Initial
tests on the audio in user-generated videos revealed that the segmentation process,
which distinguishes speech from other audio, often misclassified music as speech.
Therefore, before running the speech recognizer on these videos, we constructed a
new segmenter, which is described below.

The existing segmenter was GMM-based and had two classes (speech and non-
speech). For this effort, we leveraged the availability of annotated TRECVID video
data and built a segmenter better tuned to audio conditions in user-generated videos.
We built a segmenter with four classes: speech, music, noise, and pause. We mea-
sured the effectiveness of the new segmentation by the word-error rates (WERs)
obtained by feeding the speech-segmented audio to our ASR system. We found that
the new segmentation helped reduce the WER from 105 to 83 %. This confirmed that
the new segmentation models were a better match to the TRECVID data than models
trained on meeting data. For reference, when all the speech segments were processed
by the ASR, the WER obtained by our system was 78 %. (This oracle segmentation
provided the lowest WER that could be achieved by improving the segmentation.)

To create features for the event classifiers, we used ASR recognition lattices to
compute the expected word counts for each word and each video. This approach pro-
vided significantly better results compared to using the 1-best ASR output, because
it compensated for ASR errors by including words with lower posteriors that weren’t
necessarily present in the 1-best. We computed the logarithm of the counts for each
word, appended them to form a feature vector of dimension 34,457, and used a linear
SVM for the event classifiers. More details may be found in [46]. Evaluation with
the SESAME Evaluation dataset showed that the ASR event classifiers achieved a
MAP of 0.114.

5.3.3 Fusion

We implemented a number of late fusion methods, all of which involved a weighted
average of the detection scores from the individual event classifiers. The methods
for determining the weights considered several factors:

• Event dependence and learned weights: Because the set of most reliable data
types for different events might vary, we considered the importance of learning the
fusion weights for each event using a training set. However, when there is limited
data available for training, aggregating the data for all events and computing a fixed
set of weights for all events may yield more reliable results. Another strategy is to
set the weights without training with any data at all. For example, in the method
of fusing with the arithmetic mean of the scores, all of the weights are equal.

• Score dependence: For weights learned via cross-validation on a training set, a
single set of fixed weights might be learned for the entire range of detection scores.
Alternatively, the multidimensional space of detection scores might be partitioned
into a set of regions, with a set of weights assigned to each region. In general, more
data is needed for score-dependent weights to avoid overfitting.
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• Adjustment for missing scores: When the scores for some types of data (partic-
ularly for ASR and MFCC) are missing, a default value, such as an average for
the missing score, might be used, but this could provide a misleading indication
of contribution and therefore degrade performance. Another way in which the
fusion methods described below dealt with missing scores was renormalizing the
weights of the nonmissing scores. Another alternative was learning multiple sets
of weights, each set for a particular combination of nonmissing scores.

We evaluated the fusion models described below. All of the models operated on
detection scores that were normalized using a Gaussian function (i.e., computing the
z-score by removing the mean and scaling by the standard deviation).

Arithmetic mean (AM): In this method, we compute the AM of the scores of the
observed data types for a given clip. Missing data types for a given clip are ignored,
and the averaging is performed over the scores of observed data types.

Geometric mean (GM): In this method, we compute the uniform GM of the scores
of the observed data types for a given clip. As we do for AM, we ignore missing data
types and compute the geometric mean of the scores from observed data types.

Mean average precision-weighted fusion (MAP): This fusion method weighs
scores from the observed data types for a clip by their normalized average preci-
sion scores, as computed on the training fold. Again, the normalization is performed
only over the observed data types for a given clip.

Weighted mean root (WMR): This fusion method is a variant of the MAP-weighted
method. In this method, we compute the fusion score as we do for MAP-weighted
fusion, except the final fused score x∗ is determined by performing a power normal-
ization of the MAP-based fused score x:

x∗ = x
1
α (5.1)

where α is the number of nonmissing data types for that video. In other words, the
higher the number of data types from which the fusion score is computed, the more
trustworthy the output.

Conditional mixture model: This model combines the detection scores from various
data types using mixture weights that were trained by the expectation maximization
(EM) algorithm on the labeled training folds. For clips that are missing scores from
one or more data types, we provide the expected score for that data type based on
the training data.

Sparse mixture model (SMM): This extension of the conditional mixture model
addresses the problem of missing scores for a clip by computing a mixture for only
the observed data types [47]. This is done by renormalizing the mixture weights over
the observed data types for each clip. The training was done with the EM algorithm,
but the maximization step no longer had a closed-form solution, so we used gradient-
descent techniques to learn the optimal weights.
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Table 5.4 Fusion methods and their characteristics

Fusion method Event- Learned on a Score- Adjustment for
independent? training set? dependent? missing scores?

Arithmetic mean Yes No No Yes
Geometric mean Yes No No Yes
MAP-weighted No Yes No Yes
Weighted mean root No Yes No Yes
Conditional mixture model No Yes No No
Sparse mixture model No Yes No Yes
SVMLight No Yes Yes No
Distance from threshold No Yes Yes No
Bin accuracy weighting No Yes Yes No

SVMLight: This fusion model consists of training an SVM using the scores from
various data types as the features for each clip. Missing data types for a given clip are
assigned zero scores. We used the SVMLight4 implementation with linear kernels.

Distance from threshold: This is a weighted averaging method [3] that dynamically
adjusts the weights of each data type for each video clip based on how far the score
is from its decision threshold. If the detection score is near the threshold, the correct
decision is presumed to be somewhat uncertain, and a lower weight is assigned.
A detection score that is much greater or much lower than the threshold indicates
that more confidence should be placed in the decision, and a higher weight is assigned.

Bin accuracy weighting: This method tries to address the problem of uneven distri-
bution of detection scores in the training set. For each data type, the range of scores in
the training fold is divided into bins with approximately equal counts per bin. During
training, the accuracy of each bin is measured by computing the proportion of cor-
rectly classified videos whose scores fall within the bin. During testing, for each data
type, the specific bin that the scores fall into is determined, and the corresponding
bin accuracy scores for each data type are used as fusion weights.

Table 5.4 summarizes the fusion methods and their characteristics.

5.4 Experimental Results

We evaluated the performance of our SESAME system using the data provided in
the TRECVID MED [1] evaluation task. Although the MED event kit contained
both a text description and video examples for each event, the SESAME system
implemented the example-based approach in which only the video examples were
used for event detection training.

4 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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5.4.1 Evaluation by Data Type

Table 5.5 lists results on the SESAME Evaluation dataset, which consisted of a train-
ing set of 8,428 videos and a test set of 4,434 videos, sampled from 20 event classes
and other classes that did not belong to any of the 20 events. In terms of the perfor-
mance of the various data types, the visual features were the strongest performers
across all events. The accuracy of the visual concepts was nearly as strong as that of
the low-level visual features. The motion features also showed strong performance.
Although the performance of low-level audio features and ASR was significantly less,
ASR had the highest performance for events containing a relatively large amount of
speech content, including a number of instructional videos. The best scores for each
event are distributed among all of the data types, indicating that fusion of these data
should yield improved performance. Indeed, the AM fusion of the individual event
classifiers, which is listed in the last column of Table 5.5, shows a significant boost
in performance: a 33 % improvement over the best single data type.

5.4.2 Evaluation of Fusion Methods

We tested the late fusion methods described in Sect. 5.3.3 using the SESAME Eval-
uation dataset. For all our fusion experiments, we trained each event classifier on the
training set, and executed the classifier on the test set to produce detection scores
for each event. To produce legitimate fusion scores over the test set, we used ten-
fold cross validation, with random fold selection, to generate the detections, and
then obtained a micro-averaged average precision over the resulting detections. The
micro-averaged MAP was computed by averaging the average precision for each
event. To gauge the stability of the fusion methods, we repeated this process 30
times and computed the macro average and standard deviation of the micro-averaged
MAPs. Because the Arithmetic Mean and Geometric Mean methods are untrained,
their micro-averaged MAPs will be the same regardless of fold selection; thus, the
standard deviations for their micro-averaged MAPs are zero.

Table 5.6 shows the MED performance of various fusion methods. The comparison
indicates that the simplest fusion methods, such as AM and GM, performed as well
as or better than other, more complex fusion methods. Also note that most of the
top-performing fusion methods (AM, GM, MAP, WMR, and SMM) adjusted their
weights to accommodate missing scores.

5.4.3 Evaluation of MED Performance in TRECVID

As the SESAME team, we participated in the 2012 TRECVID MED [1] evaluation
and submitted the detection results for a system configured nearly the same as that
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Table 5.6 MED performance of fusion methods with all event classifiers

Fusion method MacroMAP Standard deviation

Arithmetic mean 0.456 0.0000
Geometric mean 0.456 0.0000
MAP-weighted 0.437 0.0006
Weighted Mean Root 0.451 0.0005
Conditional mixture model 0.403 0.0054
Sparse mixture model 0.443 0.0007
SVMLight 0.451 0.0036
Distance from threshold 0.407 0.0005
Bin accuracy weighting 0.401 0.0031

Fig. 5.5 Performance of the
primary runs of 17 MED
systems in the 2012
TRECVID MED [1]
evaluation

described in this chapter.5 The event classifiers were trained with all the positives
from the event kit and negatives from the TRECVID MED training and development
material. The test set consisted of the 99,000 videos used in the formal evaluation.

Figure 5.5 shows the performance of the primary runs of 17 MED systems in
this evaluation in terms of miss and false alarm rates [48]. The performance of the
SESAME run was one of the best among the evaluation participants.

5 It included a poorer-performing ASR capability instead of the one described in Sect. 5.3.2.6, and
a video OCR capability that contributed minimally to overall performance.
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5.5 Summary and Discussion

SESAME, a MED capability that learns event models from a set of example video
clips, includes a number of BOW event classifiers based on single data types: low-
level visual, motion, and audio features; high-level semantic visual concepts; and
ASR. Partitioning the representation by data type permits the descriptors for each
data type to be optimized independently. We evaluated the detection performance
for each event classifier and experimented with a number of fusion methods for
combining the event detection scores from these classifiers. Our experiments using
multiple data types and late fusion of their scores demonstrated strongly reliable
MED performance.

Major conclusions from this effort include:

• The relative contribution of visual, motion, and audio features varies according to
the specific event. This is due to differences in the relative distinctiveness and con-
sistency of certain features for each event category. Across all events, score-level
fusion resulted in a 33 % improvement over the best single data type, indicating
that different types of features contribute to the representation of heterogeneous
video data.

• The use of difference coding in low-level visual and motion features significantly
improved performance. We surmise that difference coding works better than the
traditional bag-of-words because it measures differences from the general model,
which is likely to be dominated by the background features. We expect additional
gains in performance if difference coding were applied to low-level audio features.

• The set of 1346 high-level visual features was nearly as effective as the set of
low-level visual features. It appears that, in comparison to the 5000 or so concepts
predicted to be needed for sufficient performance in event detection [49], this
number of high-level features begins to span the space of concepts reasonably well.
Therefore, analogous sets of motion and audio concepts should further improve
overall performance.

• Although the performance of ASR was lower than that of the visual and motion
features, its performance was highly event-dependent, and it performed reasonably
well for events containing a relatively large amount of speech content, such as
instructional videos.

• The simplest fusion methods for computing event detection scores were very effec-
tive compared to more complex fusion methods. One possible explanation for this
is that the reliability of the scores is roughly equal across all data types. Another
possible reason is that the limited number of positive training examples (an aver-
age of about 70 per event) is not enough to achieve the full benefit of the more
complex fusion models.

While our relatively straightforward BOW approach was quite effective, we view
it as a baseline capability that could be improved in several ways:
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• Since the current approach aggregates low-level visual and motion features within
fixed spatial partitions, the usage of local information is limited. Features of an
object divided by our predefined partition, for example, will not be aggregated as
a whole. We expect that the use of dynamic spatial pooling, which is better aligned
to the structure and content of the video imagery, will improve performance. Seg-
menting the image into meaningful homogeneous regions would be even better,
as it allows more salient characteristics to be extracted, and would eventually lead
to better classification.

• The current approach ignores the temporal information within each video clip; all
of the visual, motion, and audio features are aggregated. However, events con-
sist of multiple components that appear at different times, so using time-based
information for event modeling and detection should improve performance. Also,
aggregating low-level features according to the temporal structure of the video
may yield feature sets that better represent the video contents.

• All of the classifiers in our approach operate on a histogram of features and do not
leverage any relationships between the features. Features occurring in video data
are not generally independent. In particular, the combination of particular high-
level semantic concepts could become strong discriminatory evidence, since their
co-occurrence might be associated with a subset of relevant video content. For
example, although the concepts balloons and singing occur in many contexts, the
occurrence of both might be more common to birthday party than to other video
content. Exploiting the spatiotemporal dependencies among the features would
better characterize the video contents and offer a richer set of data with which to
build event models.
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Chapter 6
Rotation-Based Ensemble Classifiers
for High-Dimensional Data

Junshi Xia, Jocelyn Chanussot, Peijun Du and Xiyan He

Abstract In past 20 years, Multiple Classifier System (MCS) has shown great poten-
tial to improve the accuracy and reliability of pattern classification. In this chapter,
we discuss the major issues of MCS, including MCS topology, classifier genera-
tion, and classifier combination, providing a summary of MCS applied to remote
sensing image classification, especially in high-dimensional data. Furthermore, the
recently rotation-based ensemble classifiers, which encourage both individual accu-
racy and diversity within the ensemble simultaneously, are presented to classify
high-dimensional data, taking hyperspectral and multidate remote sensing images as
examples. Rotation-based ensemble classifiers project the original data into a new
feature space using feature extraction and subset selection methods to generate the
diverse individual classifiers. Two classifiers: Decision Tree (DT) and Support Vec-
tor Machine (SVM), are selected as the base classifier. Unsupervised and supervised
feature extraction methods are employed in the rotation-based ensemble classifiers.
Experimental results demonstrated that rotation-based ensemble classifiers are supe-
rior to Bagging, AdaBoost and random-based ensemble classifiers.
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6.1 Introduction

Learning from high-dimensional data has important applications in areas such as
speech processing, medicine, monitoring urbanization using multisource images,
mineralogy using hyperspectral images [34, 56, 62, 64, 75, 77, 93]. Despite con-
stant improvements in computational learning algorithms, supervised classification
of high-dimensional data is still a challenge largely due to the curse of dimensional-
ity (Hughes phenomenon) [40]. This is because the training set is very limited when
compared to the hundreds or thousands of dimensions in high-dimensional data
[8, 54]. Big efforts on feature extraction and feature selection have been applied to
the supervised classifiers [35, 59, 61, 67, 69, 83, 92]. Since each learning algorithm
(feature selection/extraction, classifiers) has its own advantages and disadvantages,
efficient methodologies have yet to be developed. One of the most usual ways to
achieve that is Multiple Classifier System (MCS) [4, 7, 11, 20, 27, 48, 50, 74, 78,
79, 85].

MCS comes from the idea that seek advices from several persons to make the final
decision, where the basic assumption is that combining the opinions will produce a
decision that is better than the single opinion [48, 50, 74]. The individual classifiers
(member classifiers) are constructed and their outputs are integrated according to a
certain combination approach, to gain the final classification result. The outputs can
be generated by the same classifier with different training sets, or by the different
classifiers with same or different training set. The success of MCS not only depends
on a set of appropriate classifiers, but also on the diversity within the ensemble, which
referred to two conditions: accuracy and diversity [15, 47]. Accuracy requires a set
of appropriate classifiers to be as accurate as possible. Diversity means the difference
among the classification results. Combining similar classification results would not
further improve the accuracy. Both theoretical and empirical studies demonstrated
that using a good diversity measure is able to find the extent of diversity among clas-
sifier and estimate the improvement in accuracy of combining individual classifiers
[50, 74]. However, Brown et al. pointed out that the diversity for classification tasks
is still an ill-defined concept, and defining an appropriate diversity measure for MCS
is still an open question [12].

Generally speaking, we often adapt three independent steps: topology selection,
classifier generation, and classifier combination, to construct the MCS. In Sect. 6.2,
we will give a review on the uses of MCS, including these steps and along with the
application of remote sensing.

Rotation-based ensemble classifier is one of the current state-of-the-art ensemble
classifier methods [72]. This algorithm constructs different training sets as follows:
first, the feature set is divided into several disjoint sets on which the training set is
projected. Second, the subtraining set is obtained from the projection results using
bootstrapping technique. Third, feature extraction is used to rotate each obtained
subtraining set. The components obtained from feature extraction are rearranged to
form the dataset that is treated as the input of a single individual classifier. The final
result is produced by combining the output of individual classifiers generated by
repeating the above steps in multiple times.
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In this chapter, we will apply rotation-based ensemble classifier to classify high-
dimensional data. In particular, two classifiers: Decision Tree (DT) and Support Vec-
tor Machine (SVM), are selected as the base classifiers. Unsupervised and supervised
feature extraction methods are employed to rotate the training set. The performances
of rotation-based ensemble classifiers are evaluated by the high-dimensional remote
sensing images.

The remainder of this article is organized as follows. In Sect. 6.2, we introduce the
topology, classifier generation, and classifier combination approaches of MCS, sum-
marize the advances of MCS to high-dimensional remote sensing data classification.
The main idea and two implementations of rotation-based ensemble are shown in
Sects. 6.3 and 6.4, respectively. Experimental results are presented in Sect. 6.5. The
conclusion and perspective of this chapter are drawn in Sect. 6.6.

6.2 Multiple Classifier System

Different classifiers, such as parametric classifiers and non-parametric classifiers,
have their own strengths and limitations. The famous ‘no free lunch’ theorem stated
by Wolpert may be extrapolated to the point of saying that there is no single computa-
tional view that solves all problems [86]. In the remote sensing community, Giacinto
et al. compared the performances of different classification approaches in various
applications and found that no one could always gain the best result [32]. In order
to alleviate this problem, MCS can provide the complementary information of the
pattern classifiers and integrate the outputs of these pattern classifiers so as to make
the best use of the advantages and bypass the disadvantages. Nowadays MCS are
highlighted by review articles as a hot topic and promising trend in remote sensing
image classification and change detection [4, 21].

Most of MCS approaches focus on integrating the supervised classifiers. Few
works devote to combine unsupervised classification results, often called cluster
ensemble [38, 41]. Gao et al. proposed an interesting work to combine multiple
supervised and unsupervised models using graph-based consensus maximization
[29]. Unsupervised models (clustering), which do not directly generate label pre-
diction for each individual classifier, can provide useful constraints for the joint
prediction of a set of related object. Thus, Gao et al. proposed to consolidate a
classification solution by maximizing the consensus among both supervised predic-
tions and unsupervised constraints based on the optimization problem on a bipartite
graph [29]. Experimental results on three real applications demonstrate the benefits
of the proposed method over existing alternatives. In this chapter, we focus on the
combination of supervised classifiers.

The main issues of MCS design are [50, 74, 88]:

• MCS topology: How to interconnect individual classifiers.
• Classifier generation: How to generate and select valuable classifiers.
• Classifier combination: How to build a combination function which can exploit

the strengths of the selected classifiers and combine them optimally.
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(a) (b)

Fig. 6.1 The topologies of MCS. a Parallel style. b Concatenation style

6.2.1 MCS Topology

Figure 6.1 illustrates the two topologies employed in MCS design. The overwhelm-
ing majority of MCS reported in the literature is structured in a parallel style. In
this architecture, multiple classifiers are designed independently without any mutual
interaction and their outputs are combined according to certain strategies [70, 71,
90]. Alternatively, in the concatenation topology, the classification result generated
by a classifier is used as the input into the next classifier [70, 71, 90]. When the
primary classifier cannot obtain the satisfactory classification result, then the output
of the primary classifier is feed to a secondary classifier, and so on. The main draw-
back of this topology is that the mistakes produced by the earlier classifier cannot be
corrected by the later classifiers.

A very special case of concatenation topology is the AdaBoost [28]. The goal of
AdaBoost is to enhance the accuracy of any given learning algorithm, even weak
learning algorithms with an accuracy slightly better than chance. The algorithm
processes training of the weak learner multiple times, each time presenting it with an
updated weight over the training samples. Then, the weights of misclassified samples
are increased to concentrate the learning algorithm on specific samples. Finally, the
decisions generated by the weak learners are combined into a single decision.

6.2.2 Classifier Generation

Classifier generation aims to build mutually complementary individual classifiers
that are accurate and at the same time disagree on some different parts of the input
space. Diversity of individual classifiers is a vital requirement for the success of the
MCS.
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(a)

(b)

(c)

(d)

Fig. 6.2 Different classifier combinations using three single classifiers. The three colors represent
the different classes. The overall accuracy of all individual classifier is 6/9. The overall accuracies
of the four combinations are 1, 8/9, 6/9, and 5/9, respectively

Both theoretical and empirical studies indicate that we can ensure diversity
using Homogeneous and Heterogeneous approaches [50, 74]. In Homogeneous
approaches, we can obtain a set of classification results obtained by the same clas-
sifier by injecting randomness into the classifier, manipulating the training sample
and the input features. The Heterogeneous approaches are to apply different learning
algorithms to the same training set. First of all, we will start to review some diver-
sity measures, and the generated classifiers followed to ensure the diversity in the
ensemble.

6.2.2.1 Diversity Measures

Diversity represents the difference among the individual classifiers [15, 47].
Figure 6.2 presents four different classifier combinations within three classes (9 sam-
ples) using majority vote approach. Overall accuracy of each individual classifier is
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Table 6.1 Summary of the 15 diversity measures

Name p/n s/dis/c ∗ / ∈ Range Reference

Kappa statistic (κ1, κ2) p s ∈ [−1, 1] [57, 60]
Mutual Information (MI) p s/c ∈ / [43]
Q-statistic (Q) p s/c ∈ [−1, 1] [49, 53]
Correlation coefficient (ρ) p s/c ∈ [−1, 1] [53]
Double fault (DF) p s ∈ [0, 1] [30]
Disagreement (Dis) p dis ∗ [0, 1] [39]
Same fault (SF) p s ∈ [0, 1] [2]
Weighted count of errors and correct (WCEC) p s ∗ / [2]
Entropy (E) n s ∈ [0, 1] [17, 53]
Kohavi-Wolpert variance (KW) n dis ∗ [0, 0.5] [45]
Interrater agreement (IA) n s ∈ [0, 1] [25, 53]
Generalized diversity (GD) n dis ∗ [0, 1] [53, 68]
Conincident faiure diversity (CFD) n dis ∗ [0, 1] [68]
Difficulty (θ) n dis ∈ [0, 0.25] [37]

Note ‘p’ stands for ‘pairwise’ and ‘n’ stands for ‘non pairwise’, ‘s’ means ‘similarity,’ ‘c’ means
‘correlation’ and ‘dis’ means ‘dissimilarity.’ The arrow specifies the greater diversity if the measure
is lower (∈) or higher (∗)

6/9. The accuracies of the four combinations are 1, 8/9, 6/9, and 5/9, respectively.
Our goal is to use diversity measures to find the classifier combination like in Fig. 6.2a
or b and avoid to select the third or especially the fourth classifier combination.

Kuncheva and Whitaker summarized the diversity measures in classifier ensem-
bles [53]. A special issue called “Diversity Measure in Multiple Classifier System”
published in Information Fusion journal indicates that diversity measure is an impor-
tant research direction in MCS [51]. Petrakos et al. applied agreement measure in
decision fusion level combination [60]. Foody compared the different classification
results from three aspects: similarity, non-inferiority and difference using hypothesis
tests and confidence interval algorithms [26]. It is proved that increasing diversity
should lead to better accuracy, but there is no formal proof of this dependency [12].
Table 6.1 summarizes the 15 diversity measures with their types, data range and
literature sources.

Diversity measures also play an important role in ensemble pruning. Ensemble
pruning aims at reducing the ensemble size prior to combination while maintaining
a high diversity among the remaining members in order to reduce the computa-
tional cost and memory storage. To deal with the ensemble pruning process, sev-
eral approaches have been proposed such as clustering-based, ranking-based, and
optimization-based approaches [82].

6.2.2.2 Ensuring Diversity

Following the steps of pattern classification, we can enforce the diversity by the
manipulation of training samples, features, outputs and classifiers.
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Manipulating the training samples: In this method, each classifier is trained
on different versions of training samples by exchanging the distribution of origi-
nal training samples. This method is very useful for the unstable learner (decision
tree and neural network), for which small changes in the training set will lead to a
major change in the obtained classifier. Bagging and Boosting belong to this category
[9, 28]. Bagging applies sampling with replacement to obtain the independent train-
ing samples for individual classifiers. Boosting changed the weights of training sam-
ples according to the results of the previous trained classifiers, focusing on the wrong
classified samples, making the final result using a weight vote rule.

Manipulating the training features: The most well-known algorithm of this
type is Random subspace [39]. Random subspace can be employed for several types
of base learners, such as DT (Random Forest) [10], SVM [85]. Another development
is Attribute Bagging, which establishes the appropriate size of a feature subsets, and
then creates random projections of a given training set by random selection of feature
subsets [13].

Manipulating the outputs: Multiclassification problem can be converted into
several two-class classification problems. Each problem discover the discrimination
between one class and the other classes. Error Correcting Output Coding (ECOC)
adapts a code matrix to convert a multiclass problem into binary ones. Ensemble of
multiclassifier classification problem can be treated as ensembles of multiple two-
classifier classification problem, and then combined together [19]. The other method
to deal with the outputs is label switching [58]. This method generates an ensemble
by using perturbed version of the training set where the classes of the training samples
are randomly switched. High accuracy can be achieved with fairly large ensembles
generated by class switching.

Manipulating the individual classifiers: We can use different classifiers or the
same classifier with different parameters to ensure the diversity. For instance, when
the SVM is selected as the base learner, we can gain diversity by using different
kernel functions or parameters.

6.2.3 Classifier Combination

Majority vote is a simple and an effective strategy for classifier combination. Within
this scheme, a pixel is assigned as the class which gets the highest vote from the indi-
vidual classifiers. Foody et al. used majority vote rule to integrate multiple binary
classifiers for the mapping of a specific class [27]. According to the output of indi-
vidual classifier, classifier combination approaches can be divided into three levels:
abstract level, rank level, and measurement level [76]. The abstract level combina-
tion methods are applied when each classifiers outputs a unique label [76]. Rank
level makes use of a ranked list of classes where ranking is based on decreasing
likelihood. In the measurement level, probability values of the classes provided by
each classifier are used in the combination. Majority/weighted vote, fuzzy integral,
evidence theory, and dynamic classifier selection belong to the abstract level com-
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Table 6.2 Summary of classifier combination approaches

Name Hard labels Soft labels Validation set Reference

Majority vote Y N N [50]
Weighted vote Y N Y [63, 90]
Bayesian average N Y N [30]
Dempster-shafer evidence theory Y N Y [50, 81]
Fuzzy integral Y N Y [46, 65]
Consensus theory Y Y Y [5, 6]
Dynamic classifier selection Y N Y [31, 78, 87]

Note “Y” and “N” mean whether or not the hard labels, soft labels or validation set are needed.
Dynamic classifier selection method needs the original image to calculate the distance

bination methods. Bayesian average and Consensus theory belong to measurement
level methods. Table 6.2 summarizes classifier combinational approaches. Weighted
vote, fuzzy integral, Dempster-Shafer evidence theory and consensus theory require
anther training set to calculate the weights. Dynamic classifier selection calculates
the distance between the samples so it requires the original image. The computation
time of dynamic classifier selection is more expensive than other approaches.

6.2.4 Applications to High-Dimensional Remote Sensing Data

Table 6.3 lists the studies of MCS applied to high-dimensional remote sensing
images in recent years. These studies applied different effective MCS schemes to
classify high-dimensional data, including multisource, multidate, and hyperspec-
tral remote sensing data. In the works of Smits [78], Briem et al. [11], Gislason
et al. [33], dynamic classifier selection, Bagging, Boosting and Random Forest are
applied to classify multisource remote sensing data, respectively. Lawrence et al. [55],
Kawaguchi and Nishii [44], Chan and Paelinckx [14], Rodriguez-Galiano et al. [73]
used Boosting and Random Forest for the classification of multi-date remote sensing
images. Doan and Foody [20] combining the soft classification results derived from
NOAA AVHRR images using average operator and Evidence theory. From Table 6.2,
the most well-known MCS approaches for hypespectral image classification is Ran-
dom Forest. In Random Forest, each tree is trained on a bootstrapped sample of the
original dataset and only a randomly chosen subset of the dimensions is considered
for splitting a leaf. Thus, the computational complexity can be reduced and the cor-
rection between the trees are decreased. Apart from this, Waske et al. [85] developed
random selection-based SVM for the classification of hyperspectral images. Yang
et al. [91] proposed a novel subspace selection mechanism, dynamic subspace
method, to improve random subspace method on automatically determining dimen-
sionality and selecting component dimensions for diverse subspace. Du et al. [22]
constructed diverse classifiers using different feature extraction methods and then
combined the results using evidence theory, linear consensus algorithms. Recently,
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Table 6.3 Studies on high-dimensional remote sensing image classification using MCS published
in journals in recent years

Study Methods Datasets

Smits [78] Dynamic classifier selection Multispectral and SAR
images

Briem et al. [11] Bagging, Boosting and
Consensus theory

Landsat MSS/AMSS+SAR
and elevation, slope,
aspect data

Lawrence et al. [55] Stochastic gradient boosting Multi-temporal Landsat TM
images

Ham et al. [36] Random Forest Hyperspectral images
Gislason et al. [33] Random Forest Landsat MSS and elevation,

slope, aspect data
Doan and Foody [20] Average operator and

Evidence theory
NOAA AVHRR images

Kawaguchi and Nishii
[44]

AdaBoost with stump
functions

Hyperspectral images

Chan and Paelinckx [14] Random Forest and
AdaBoost tree-based
ensemble

Hyperspectral images

Waske et al. [84] Random Forest Hyperspectral images
Yang et al. [91] Dynamic random subspace Hyperspectral images
Waske et al. [85] Random subspace Hyperspectral images
Bakos and Gamba [3] Hierarchical hybrid

decision tree
Hyperspectral images

Du et al. [22] Evidence theory, linear
consensus

Hyperspectral images

Rodriguez-Galiano
et al. [73]

Random Forest Multi-temporal Landsat TM
images

Xia et al. [89] Rotation Forest Hyperspectral images

Xia et al. [89] used Rotation Forest to classify hyperspectral remote sensing images.
Compared to Random Forest, Rotation Forest [89] uses feature extraction to promote
both the diversity and the accuracy of individual classifiers. Therefore, Rotation For-
est can generate more accurate result than Random Forest.

6.3 Rotation-Based Ensemble Classifiers

In this study, rotation-based ensemble classifiers are used for high dimensional data.
Let {X, Y } = {xi , yi }n

i=1 be training samples. T is number of classifier. K is number
of subsets (M : number of features in each subset). Γ is the base classifier. The
details of rotation-based ensemble are presented in Algorithm 1 and Fig. 6.3 [66, 72].
According to Algorithm 1 and Fig. 6.3, the main steps of rotation-based ensemble
classifier can be concluded as follows:
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Fig. 6.3 Illustration of the rotation-based ensemble

• the input feature space is divided into K disjoint subspaces.
• feature extraction is performed on each subsets with the bootstrapped samples of

75 % size of {X, Y }.
• the new training data, which is obtained by rotating the original training samples,

is applied to the individual classifier.
• the individual classification results are combined using majority voting rule.

The strong performance is attributed to a simultaneous improvement of (1) diver-
sity within the ensemble, obtained by the use of feature extraction on training data and
(2) accuracy of the base classifiers, by keeping all extracted features in the training
data [66, 72].



6 Rotation-Based Ensemble Classifiers 145

It is essential to notice step 5 in rotation-based ensemble presented in Algorithm 1,
the sample size X

⇒
t, j is selected smaller than Xt, j due to two reasons: one is to avoid

obtaining the same coefficients when the same features are chosen and the other is
to enhance the diversity within the ensemble [72].

Given the importance of the choice regarding the algorithm for feature extraction
and the base classifier in rotation-based ensemble, several alternatives are considered
in this study. The detailed feature extraction methods and base classifier can be found
in the following section.

Algorithm 1 Rotation-based ensemble
Require: {X, Y } = {xi , yi }n

i=1: training samples, T : number of classifier, K : number of subsets
(M: number of features in each subset), Γ : base classifier
1. For t = 1 : T
2. randomly split the features F into K subsets Ft, j
3. For j = 1 : K
4. select the corresponding features of Ft, j to compose a new training features Xt, j

5. select a new training samples X
⇒
t, j using bootstrap algorithm, whose size is 75 % of

the original size
6. transform X

⇒
t, j to get the coefficients v(1)

t, j , ..., v(Mk )
t, j

7. Endfor
8. sparse matrix Rt is composed of the above coefficients

Rt =

⎡

⎢⎢⎢⎢⎣

v(1)
t,1 , ..., v(M1)

t,1 0 · · · 0

0 v(1)
t,2 , ..., v(M2)

t,2 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · v(1)
t, j , ..., v(MK )

t, j

⎤

⎛⎛⎛⎛⎜

9. rearrange Rt to Ra
t with respect to the original feature set

10. obtain the new training samples
⎝
XRa

t , Y
⎞

11. build classifier Γt using
⎝
XRa

t , Y
⎞

12. Endfor
Ensure: the class label of given sample x predicted by multiple classifier

Γ ⇓(x) = arg maxy√φ

⎟T
t=1 I

⎠
Γt

⎠
xRa

t

) = y
)

I (a = b) equals to 1 when a equals to b, otherwise equals to 0

6.4 Two Implementations of Rotation-Based Ensemble

6.4.1 Rotation Forest

Decision trees are often used for the multiple classifier system, especially for the
rotation-based ensembles, because it is sensitive and fast. In this chapter, we adapt
Classification and Regression Tree (CART) to construct Rotation Forest (RoF).

CART is a nonparametric decision tree learning technique, which can be both
used for classification and regression. Decision trees are formed by a collection of



146 J. Xia et al.

rules based on variables in the modeling dataset: (1) rules based on variables’s values
are selected to get the best split to differentiate observations based on the dependent
variable, (2) once a rule is selected and a node is split into two, the same process is
applied to each ‘child’ node. (3) splitting stops when CART detects no further gain
can be made, or some preset stopping rules are met. Each branch of the tree ends
in a terminal node. Each observation falls into exactly one terminal node, and each
terminal node is uniquely defined by a set of rules.

Both unsupervised and supervised feature extraction methods are applied to Rota-
tion Forest. Principal Component Analysis (PCA) is the most popular linear unsu-
pervised feature extraction method, which can keep the most information in a few
components in terms of variance. Though Cheriyadat and Bruce provide theoretical
and experimental analysis to demonstrate that PCA is not optimal for dimensionality
reduction in target detection and classification of hyperspectral data, PCA are still
competitive for the purpose of classification because of its low complexity and the
absence of parameters [16, 24].

Linear Discriminant Analysis(LDA) is the best-known supervised feature extrac-
tion approaches. But this method has the limitation: for C class classification problem,
it can extract at maximum C − 1 features [18, 54]. That means in Rotation Forest,
we should define the value of C is greater than K . In order to solve the problem, we
adapt Local Fisher Discriminant Analysis (LFDA) instead of LDA. LFDA effectively
combines the ideas of LDA and Locality Preserving Projection (LPP), which leads
to both maximize between-class separability and preserve with-class local structure
[80]. It can be viewed as the following eigenvalue decomposition problem:

Slbv = λSlwv (6.1)

where, v is an eigenvector and λ is the eigenvalue corresponding to v. Slb and Slw

denote the local between-class and within-class scatter matrix. LFDA wants to find
an eigenvector matrix that maximize the local between-class scatter in the embedding
space while minimize the local within-class scatter in the embedding space. Slb and
Slw can be defined:

Slb = 1

2

n∑

i, j=1

ωlb
i, j (xi − x j )(xi − x j )

� (6.2)

Slw = 1

2

n∑

i, j=1

ωlw
i, j (xi − x j )(xi − x j )

� (6.3)

where, ωlb and ωlw are the weight matrices with:

ωlb
i, j =

⎧
⎨

⎩
Ai, j

(
1
n − 1

nyi

)
yi = y j

1
n yi �= y j

(6.4)
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ωlw
i, j =

{
Ai, j
nyi

yi = y j

0 yi �= y j
(6.5)

where, Ai, j is the affinity value between xi and x j in the local space.

Ai, j = exp

(
−

∥∥xi − x j
∥∥

σiσ j

)
(6.6)

σi = ∥∥xi − xe
i

∥∥ (6.7)

where, xe
i is the e-th nearest neighbor of xi , nyi is the number of labeled samples in

class yi √ {1, 2, 3, ..., C}.

6.4.2 Rotation SVM

SVM classifier has shown better classification performance for high-dimensional
data than other classifier. SVM is very stable that small changes in the training set
cannot produce very different SVM classifiers.

Therefore, it is difficult to get an ensemble of multiple SVM that perform better
than a single SVM using the state of the art ensemble methods. Thus, we hope
to introduce more diversity into SVM. In [52], diversity is analyzed for Random
Projections (RP) with and without splitting into group of attributes. Therefore, we
introduce Random Projection (RP) into rotation-based SVM in order to promote the
diversity within the ensemble.

RP obtains the rotation matrix using simply random number. Unlike other feature
extraction methods such as PCA, RP can get a projected space which is bigger than
the original. Two types of RP are used in this chapter [1]:

1. Gaussian. Each value in transformation matrix comes from a Gaussian distribution
(mean 0 and standard deviation).

2. Sparse. The entry values are
≥

3 × α, where, α is a random number taking the
following value: −1 with the probability 1/6, 0 with the probability 2/3 and +1
with probability 1/6.

6.5 Experimental Results and Analysis

6.5.1 Experimental Setup

In this section, we present the results that we obtained with rotation-based ensemble
on different types of images. Two airborne hyperspectral images are used to evaluate
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Rotation Forest (RoF). An airborne hyperspectral and a multi-date remote sensing
images are applied to test the performance of Rotation SVM (RoSVM). The descrip-
tions of the data are detailed in the following two subsections. Overall accuracy
(OA), average accuracy (AA), and class-specific accuracy are used to evaluate the
efficiency of RoF and RoSVM.

Popular ensemble methods, including Bagging [9], AdaBoost [28] and Random
Forest (RF) [10] are added to be compared with Rotation Forest. The performance
achieved by Rotation Forest is illustrated using the following design:

• Number of features in each subset: M = 10;
• Number of classifiers in the ensemble: L = 10;
• Feature extraction method: PCA [42] and LFDA [80];

we employed RoF-PCA and RoF-LFDA as the abbreviations of Rotation Forest with
PCA and LFDA.

Gaussian RBF kernel is adopt in the SVM. In order to reduce the computational
time in the ensembles of SVM, we used the fixed parameters in SVM. Random
Projection-based ensemble is added to compare with RoSVM using RP projections.
Two sizes of projected space dimension have been tested (100 and 150 %). The
configurations of 150 % size are denoted as RoSVM or RP 150 %. The performance
achieved by RoSVM is illustrated using the following designs:

• Number of features in each subset: M = 10;
• Number of classifiers in the ensemble: L = 10;
• Feature extraction method: Random Projection (RP) with Gaussian and Sparse;
• Base classifier: SVM.

In the following experiments, we employed RP and RoSVM as the abbreviations
of Random Projection-based ensemble and rotation-based SVM ensemble.

6.5.2 Rotation Forest

6.5.2.1 Indiana Pines AVIRIS Image

The first hyperspectral image is recorded by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indiana Pines in Northwestern Indiana, USA.
The image is composed of 145 × 145 pixels, and the spatial resolution is 20 m per
pixel. This image is a classical benchmark to validate the accuracy of hyperspectral
image analysis algorithms and constitutes a challenging problem due to the significant
presence of mixed pixels in all available classes and also because of the unbalanced
number of available labeled pixels per class. The three-band color composite and
ground truth of AVIRIS image can be seen in Fig. 6.4. We have chosen 20 pixels of
each class from the available ground truth (a total size of 320 pixels) as the training
set.
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Fig. 6.4 a Three-band color composite of AVIRIS image. b Ground truth: Corn-no till, corn-min
till, corn, soybean-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees,
grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel
towers

Fig. 6.5 Classification results of Indiana Pines AVIRIS image. Different color represents the dif-
ferent class. The color of the classes can be found in Fig. 6.4. a CART. b Bagging. c AdaBoost. d
RF. e RoF-PCA. f RoF-LFDA

Table 6.4 shows the classification accuracies (OA %) obtained by the Rotation
Forest approaches as well as other algorithms using different training samples. We
highlight the highest accuracies of each case in bold font. From Table 6.4, it can
be seen that RoF-PCA and RoF-LFDA achieve better results than other ensemble
approaches (Bagging, Adaboost, and RF). Compared to Bagging, AdaBoost and RF,
Rotation Forest can promote the diversity and improve the accuracy of individual
classifier within the ensemble. Therefore, in most cases, Rotation Forest is superior
to Bagging, AdaBoost, and Random Forest. Our experimental results are compati-
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Table 6.4 Overall, average and class-specific accuracies of the Indiana Pines AVIRIS image

Class Train Test CART Bagging AdaBoost RF RoF-PCA RoF-LFDA

Alfalfa 20 54 77.78 79.63 79.63 87.04 88.89 88.89
Corn-no till 20 1434 32.15 52.09 37.66 37.34 50.28 50.84
Corn-min till 20 834 37.89 37.53 45.92 48.08 61.51 54.8
Bldg-grass-tree-drives 20 234 44.44 50.85 44.02 47.44 70.51 78.21
Grass/pasture 20 497 46.08 71.23 46.48 63.38 76.46 78.47
Grass/trees 20 747 57.43 79.92 84.47 73.9 73.63 76.44
Grass/pasture-mowed 20 26 88.46 88.46 92.31 92.31 96.15 92.31
Corn 20 489 62.99 49.69 58.69 81.6 86.09 84.05
Oats 20 20 30 90 75 100 100 100
Soybeans-no till 20 968 30.48 42.25 49.38 53.71 76.55 76.65
Soybeans-min till 20 2468 23.3 35.13 31 45.79 31.69 30.88
Soybeans-clean till 20 614 28.66 31.92 34.2 43.81 47.56 51.79
Wheat 20 212 86.79 88.68 86.79 92.45 94.34 91.98
Woods 20 1294 69.09 76.82 83 83.77 91.19 89.49
Hay-windrowed 20 380 48.16 45.79 46.84 55.53 48.42 48.42
Stone-steel towers 20 95 74.74 96.84 97.89 95.79 93.68 94.74
OA 41.44 51.87 50.54 56.97 60.88 60.60
AA 52.4 63.55 63.55 68.87 74.18 74.25

ble with the theorectical analysis. For instance, CART, Bagging, Adaboost and RF
acquired an OA of 41.44, 51.87, 50.54 and 56.97 %, respectively. RoF-PCA and
RoF-LFDA respectively increased the OA to 60.88 and 60.6 %, while the AA of
RoF-PCA and RoF-LFDA were improved to 23.78 and 23.85 % percertage points
compared to CART. The OA of RoF-PCA is slightly higher than the one of RoF-
LFDA. But there is no significantly difference between the two classification results
according to McNemar test. Nine of sixteen class-specific accuracies is improved by
RoF-PCA and RoF-LFDA.

The classification results of Indiana Pines AVIRIS image are shown in Fig. 6.5.
The classification map for the CART classifier was very noisy because CART is not
a promising classifier for high-dimensional data. Compared to the reference data
presented in Fig. 6.4b, all the ensemble methods produced more corrected classifi-
cation results than CART. If we carefully look at the reference image, particularly,
the area of Soybean-no till, this region is almost correctly classified by RoF-PCA
and RoF-LFDA, whereas it is classified as Corn-min till and Corn-no till by other
classifiers.

6.5.2.2 Pavia Center DAIS Image

The second image was acquired by the DAIS sensor at 1500 m flight altitude over
the city of Pavia, Italy. The image (seen in Fig. 6.6) has a size of 400 × 400 pixels,
with ground resolution of 5 m. The 80 data channels recorded by this spectrometer
were used for this experiment. Nine land cover classes of interest are considered,
which are detailed in Table 6.5, with the number of labeled samples for each class.
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Table 6.5 Overall, average and class-specific accuracies of the Pavia Center DAIS image

Class Train Test CART Bagging AdaBoost RF RoF-PCA RoF-LFDA

Water 10 4281 98.11 96.15 90.66 100 100 100
Trees 10 2424 56.89 67.12 63.74 88.7 87.83 91.3
Meadows 10 1251 97.44 97.76 97.2 99.52 99.12 99.12
Bricks 10 2237 74.17 77.08 72.68 65.02 84.27 80.2
Soil 10 1475 50.29 60.39 65.38 76.7 74.77 74.71
Asphalt 10 1704 77.7 77.7 83.28 77.35 91.99 97.91
Bitumen 10 685 68.22 63.66 76.62 83.33 94.95 93.74
Parking lot 10 287 70.22 87.01 91.09 78.1 86.28 88.32
Shadows 10 241 86.72 66.39 85.06 92.95 95.85 89.63
OA 76.71 79.09 79.6 87.67 91.72 91.8
AA 75.53 77.03 80.63 84.63 90.56 90.55

Fig. 6.6 a Three-band color composite of DAIS image. b Ground truth

The global accuracies and class-specific accuracies of the Pavia Center DAIS
image are reported in Table 6.5. The classification results achieved by the ensemble
classifiers are similar with the ones of AVIRIS image. Regarding the overall accu-
racies, Rotation Forest with different feature extraction algorithms are all superior
to other approaches under comparison. RoF-LFDA yields the highest OA (91.8 %).
The accuracies of class Bricks, Asphalt and Bitumen are significantly improved by
the Rotation Forest ensemble classifiers. The classification results of Pavia Center
DAIS image are shown in Fig. 6.7.
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Fig. 6.7 Classification results of Pavia Center DAIS image. a CART. b Bagging. c AdaBoost. d
RF. e RoF-PCA. f RoF-LFDA

6.5.2.3 Sensitivity of the Parameters

Ensemble size (T ) and the number of features in a subset (M) are the key parameters
of Rotation Forest, which are indicators of the operating complexity. In order to
investigate the impacts of these parameters, we have performed the classification
results using different ensemble size when the number of subset M is fixed to 10,
different number of features in a subset when ensemble size T is fixed to 10. Fig. 6.8
shows the OA (%) using different number of T and M obtained from AVIRIS and
DAIS images. For AVIRIS image, the classification results are improved when the
values of T and M increased. RoF-PCA is superior to RoF-LFDA. For DAIS image,
the OAs are improved with the increasement of T . The general trend of different
values of M is not obvious.

6.5.2.4 Discussion

Based on the above classification results, we identify that the incorporation of multi-
ple classifiers has shown great improvement for the classification of high-dimensional
data. In order to make MCS effective, we should enforce the diversity by the manip-
ulation of training sets. Bagging and Boosting aim at changing the distribution of
the training samples to obtain the different training set. Random subspace method
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(a) (b) (c) (d)

Fig. 6.8 Effects of varying parameters on the performance of rotation forest. Indiana Pines AVIRIS
image. a Sensitivity for change of T (M = 10). b Sensitivity for change of M (T = 10). Pavia
Center DAIS image. c Sensitivity for change of T (M = 10). d Sensitivity for change of M (T = 10)

constructs several classifier by random selecting the subset of the features. It is very
useful for the classification problem where the number of features is much larger
than the number of training samples. Random subspace method is a generalization
of the Random Forest algorithm, whereas Random Forest is composed of decision
trees. Rotation Forest tries to create the individual classifiers that are both diverse
and accurate, each based on a different axis rotation of attributes. To create different
training set, the features are randomly split into a given number of subsets and feature
extraction is applied to each subset. Decision trees is very sensitive to the rotation of
axis. In this chapter, we select CART to construct Rotation Forest. Rotation Forest
can promote more diversity than Bagging, AdaBoost and Random Forest. Therefore,
it can produce more accurate results than Bagging, AdaBoost and Random Forest.
An important issue of Rotation Forest is the selection of the parameters (T and M). A
larger value of T will often increase the accuracy and also increase the computation
time. The optimal value of M is hard to determine. Different datasets achieve the
highest accuracy with different value of M . The computation time of Rotation Forest
approaches is longer than those of Bagging, AdaBoost and Random Forest. But the
computation complexity of Rotation Forest is much less than the one of the strong
classifier of high-dimensional data, such as SVM.

6.5.3 Rotation SVM

6.5.3.1 Indiana Pines AVIRIS Image

Table 6.6 shows overall, average and class-specific accuracies using different version
of rotation-based SVMs. We highlight the highest accuracies of each case in bold
font. It can be seen that RoSVM achieve the better results than RP, because RoSVM
can provide more diversity than RP. For this dataset, RP with Gaussian is superior
to the one of Sparse. By employing a slightly higher size of a projected space, the
results of RP is improved but RoSVM yields bad results. The corresponding results
are shown in Fig. 6.9. We have studied the impacts of T and M in RoSVM. The
sensitivity of performance using different T and M is not obvious.
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Fig. 6.9 Classification results of Indiana Pines AVIRIS image. a SVM. b RP Gaussian. c RP
Gaussian 150 %. d RP Sparse. e RP Sparse 150 %. f RoSVM Gaussian. g RoSVM Gaussian 150 %.
h RoSVM Sparse. i RoSVM Sparse 150 %

6.5.3.2 CHRIS Multi-date Images

The second high-dimensional data is the three dates of Compact High-Resolution
Imaging Spectrometer (CHRIS) images acquired by the Project for On-Board Auton-
omy (PROBA)-1 satellite with spatial resolution of 21 m/pixel. The total number of
spectral bands is 54. More details about CHRIS image can be seen in [23]. Training
samples contains 2,297 samples and test data includes 1,975 samples with 11 classes.
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The flowchart of RoSVM for classifying CHRIS image is the same as the previous
AVIRIS dataset. Single SVM achieved the accuracy of 84.05 %. All the methods
based on RP and RoSVM ensemble can generate the better accuracies than a single
SVM. In particular, RoSVM ensembles are slightly superior to RP ensembles because
they enforce the diversity by applying RP to the subsets of the features. RoSVM with
Spare RP gains the highest the overall accuracy.

6.5.3.3 Discussion

SVM is a stable classifier, so it is hard to generate different individual SVM classifiers
using the common manipulation ways. Therefore,we should introduce more diversity
to construct the diverse individual SVM classifiers. In this chapter, we adapt Random
Projection methods to produce diverse SVM classifiers. Two sizes of projected space
dimension have been tested. Experimental results indicated that RoSVM ensemble
outperform RP ensembles. The main drawback of RoSVM is the computational
complexity, especially for large training samples. The sensitivity of performance
using different M is not obvious.

6.6 Conclusion

In this chapter, we first presented a review of MCS approaches with special focus on
applications of high-dimensional data. Recently rotation-based ensemble classifiers
were applied to high-dimensional data. They consist in splitting the feature set into
several subsets, running feature extraction algorithms separately on each subset and
then reassembling a new extracted feature set while keeping all the components.
CART Decision Tree and SVM classifiers are used as the base classifier. Different
splits of the feature set lead to different rotations. Thus diverse classifiers are obtained.
We take into account both diversity and accuracy. Rotation Forest using PCA, LFDA,
Rotation SVM using RP are used to classify high-dimensional data.

Experimental results have shown that rotation-based ensemble methods (both
DT and SVM) outperform classical ensemble methods such as Bagging, AdaBoost,
Random Forest in terms of accuracies. The key parameters are also explored in this
chapter. Future studies will be devoted to the integration of rotation-based ensemble
classifiers with other ensemble approaches, the selection of an optimized Decision
Tree model, and the use of other effective feature extraction algorithms.
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Chapter 7
Multimodal Fusion in Surveillance
Applications

Virginia Fernandez Arguedas, Qianni Zhang and Ebroul Izquierdo

Abstract The recent outbreak of vandalism, accidents and criminal activities has
increased general public’s awareness about safety and security, demanding improved
security measures. Smart surveillance video systems have become an ubiquitous
platform which monitors private and public environments, ensuring citizens well-
being. Their universal deployment integrates diverse media and acquisition systems,
generating daily an enormous amount of multimodal data. Nowadays, numerous
surveillance applications exploit multiple types of data and features benefitting from
their uncorrelated contributions. Hence, the analysis, standardisation and fusion of
complex content, specially visual, have become a fundamental problem to enhance
surveillance systems by increasing their accuracy, robustness and reliability. Dur-
ing this chapter, an exhaustive survey of the existing multimodal fusion techniques
and their applications in surveillance is provided. Addressing some of the revealed
challenges from the state of the art, this chapter focuses on the development of a
multimodal fusion technique for automatic surveillance object classification. The
proposed fusion technique exploits the benefits of a Bayesian inference scheme to
enhance surveillance systems’ performance. The chapter ends with an evaluation of
the proposed Bayesian-based multimodal object classifier against two state-of-the-
art object classifiers to demonstrate the benefits of multimodal fusion in surveillance
applications.
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7.1 Introduction

Recently, society awareness of citizens’ security has undergone an exponential
increase due to the recent outbreak of vandalism, accidents and criminal activi-
ties. The need for enhanced security and the ever-increasing efforts to palliate the
threat triggered the deployment of surveillance systems. Such systems are envis-
aged as surveillance networks, where numerous plugged-in devices are deployed
to monitor urban areas and detect suspicious events. Hence, in-growing telecom-
munications infrastructures are contemplated to ensure the citizens’ security and
raise society’s well-being, leaving behind single camera systems and their limited
capabilities. During the years, the type of devices used to monitor urban areas has
evolved towards more technological applications, from police records and citizens
testimonials to speed sensors and surveillance cameras, creating a colourful spectrum
(refer to Fig. 7.1). Additionally, some devices intricate a huge variability between
models, e.g., vision cameras and infrared cameras, resulting in a broad amalgam of
data and patterns extracted with different standards and presenting complementary
information.

The creation of a multimodal surveillance network, fed by multiple inputs, is
an open-research challenge which envisages the improvement of the existing sur-
veillance systems as well as strengthening the existing forensic applications. This
is not only a benefit of adding new modalities of information but also potentiates
the synergy between the complementary information provided by different sensors’
types. Nowadays, diverse examples of surveillance networks are deployed all over
the world, from distributed networks to centralised architectures, and presenting dif-
ferent topologies [13]. In the literature, several authors have addressed the creation
of surveillance multimodal networks, structuring the surveillance process into three
steps: (i) extracting useful metadata from videos, (ii) fusing the extracted information
from multiple sensors and (iii) presenting them in a user-friendly manner [20]. In
[34], authors propose to combine audio and video sensors to enhance the surveillance
system robustness by complementing their information in case of sparse camera net-
works, addressing cost-reduction in surveillance networks by camera control based
on audio event detection. Another multimodal surveillance network was proposed
by Drajic and Cvejic [14]. Their network, built over visible surveillance and infrared
cameras, addressed image fusion to extend the complementary information present
in different visual sensors, proposing a region-based image fusion algorithm based
on Dual-Tree Complex Wavelet transform. Prati et al. proposed a multimodal sen-
sor network integrating passive infrared sensors with traditional surveillance video
cameras for the monitoring of specific situations such as door access and moving
object or motion direction changes during occlusions [38]. Their work reported a
drastic improvement in accuracy and robustness due to the fusion of complementary
information in situations when the visual analysis is challenging.

Despite the fact that the exploitation of complementary sensors attracts a lot of
attention both from industrial and academic research community due to its relevant
potentiality, smart surveillance systems are mainly built over surveillance cameras,
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Fig. 7.1 Surveillance systems
multimodal inputs

relying on computer vision techniques for monitoring urban areas. The relative low
cost of the employed devices comes together with certain limitations affecting the
visual processing components, such as light variance, low resolution, occlusions,
low quality, etc. In fact, surveillance cameras, typically installed on fixed and mobile
devices, provide a huge quantity of information that has to be contrasted, correlated
and integrated in order to react to special situations. Nowadays single camera sce-
narios are studied to address visual challenges, such as occlusions or low quality,
however, there is a strong interest on high-complexity scenarios composed of several
visual sensors. Multicamera surveillance networks are increasingly present in the
literature addressing surveillance tasks such as scene monitoring, event detection or
object tracking [1]. More importantly, they deal with some specific challenges such
as overlapped field of views or blank-spaces in adjacent cameras and visual features
variability amongst cameras (which are hindering the identification and recognition
of moving objects in non-overlapped cameras).

The exponential increase of surveillance data generated everyday by an in-growing
set of multimodal sensors is a bottle-neck problem, where the collected information
cannot be processed in real-time or even for the archives. An additional problem is
the selection of the appropriate information fusion technique required to integrate the
sensors plugged-in a surveillance system. The diversity and variability of the surveil-
lance systems deployed require robust but adaptive information fusion techniques
which are capable of combining complementary information in versatile environ-
ments. In this chapter, the foundation for a Multimodal Surveillance System (MSS)
is proposed, stating the requirements, characteristics and identifying the challenges,
presenting the potentials in surveillance networks. Furthermore, the crucial need to
combine multimodal information to exploit the synergy amongst acquisition systems
is addressed in the proposed Bayesian-based Multimodal Fusion technique. Surveil-
lance systems are by nature adaptable and scalable networks which should be able to
evolve on time. Hence, an information fusion technique capable of addressing scala-
bility, adaptability, robustness and information incompleteness is presented. Finally,
the overall functionality, implementation and evaluation presented in this chapter are
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framed on a surveillance use case, i.e., object classification in urban scenarios. Its rel-
evance in real-time and forensic applications as well as its impact on event detection
algorithms locates it as a foundational step. The exponential increase of surveillance
data generated everyday by an in-growing set of multimodal sensors is a bottle-neck
problem, where the collected information cannot be processed in real-time or even
for the archives. An additional problem is the selection of the appropriate information
fusion technique required to integrate the sensors plugged-in a surveillance system.
The diversity and variability of the surveillance systems deployed require robust but
adaptive information fusion techniques which are capable of combining complemen-
tary information in versatile environments. In this chapter, the foundation for a MSS
is proposed, stating the requirements, characteristics and identifying the challenges,
presenting the potentials in surveillance networks. Furthermore, the crucial need to
combine multimodal information to exploit the synergy amongst acquisition systems
are addressed in the proposed Bayesian-based Multimodal Fusion technique. Surveil-
lance systems are by nature adaptable and scalable networks which should be able to
evolve on time. Hence, an information fusion technique capable of addressing scala-
bility, adaptability, robustness and information incompleteness is presented. Finally,
the overall functionality, implementation and evaluation presented in this chapter are
framed on a surveillance use case, i.e., object classification in urban scenarios. Its rel-
evance in real-time and forensic applications as well as its impact on event detection
algorithms locates it as a foundational step. The exponential increase of surveillance
data generated everyday by an in-growing set of multimodal sensors is a bottle-neck
problem, where the collected information cannot to be processed in real-time or even
for the archives. An additional problem is the information fusion technique required
to integrate the sensors plugged-in a surveillance system. The diversity and variability
of the surveillance systems deployed require robust but adaptive information fusion
techniques which are capable of combining complementary information in versa-
tile environments. In this chapter, the foundation for a MSS is proposed, stating the
requirements, characteristics and identifying the challenges, presenting the poten-
tials in surveillance networks. Furthermore, the crucial need to combine multimodal
information to exploit the synergy amongst acquisition systems is addressed in the
proposed Bayesian-based Multimodal Fusion technique. Surveillance systems are
by nature adaptable and scalable networks which should be able to evolve on time.
Hence, an information fusion technique capable of addressing scalability, adapt-
ability, robustness and information incompleteness is presented. Finally, the overall
functionality, implementation and evaluation presented in this chapter are framed
on a surveillance use case, object classification in urban scenarios. Its relevance in
real-time and forensic applications as well as its impact on event detection algorithms
locates it as a foundational step.

The remainder of the book chapter is organised as follows. An exhaustive survey
of the existing multimodal fusion techniques with special attention to object classi-
fication and other surveillance applications is presented in Sect. 7.2. The proposed
MSS is presented in Sect. 7.3, where the inputs of the proposed surveillance network
and the proposed Bayesian-based Multimodal Fusion technique are further detailed.
A comprehensive description of the experiments conducted to evaluate the proposed
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object classifiers is presented in Sect. 7.4. Whilst, Sect. 7.5 draws conclusions and
presents the potential future work.

7.2 Multimodal Fusion Techniques in Surveillance
Applications

Multimedia analysis and more specifically surveillance systems benefit from differ-
ent inputs. Such inputs can be captured by different media and present different types
of information. The variety in the available media and the different nature of infor-
mation have motivated multimodal fusion research. Over the past several decades,
many different approaches have been proposed to automatically represent objects or
concepts in videos, such as visual appearance, motion, shape or temporal evolution
[18]. Single features or inputs are capable of obtaining high accuracy results and
tackle specific problems, e.g., object detection. However, the use of complementary
information enhances the possibilities and capabilities of different systems to per-
form more sophisticated tasks, e.g., object classification, speaker identification, etc,
and increases the accuracy of the overall decision-making process, motivating the
research on multimedia fusion.

The variety of media, features or partial decisions provide a wide range of options
to address specific tasks. However, the different characteristics of the involved
modalities hinder the combination for several reasons including (i) the particular
format acquisition of different media, (ii) the confidence level associated to each
data depending on the task under analysis, (iii) the independent protection of each
type of data and (iv) the different processing times related to the different type of
media streams. Due to the existing challenges in multimodal fusion and the range
of application tasks, the multimodal fusion techniques in the literature can be cate-
gorised according to the level of fusion (early fusion) or the nature of the methods
(late fusion). On one hand, the former category, level of the fusion (early fusion),
includes all the approaches which combine the available input data before perform-
ing the objective task. In this case, the number of features extracted from different
modalities must be combined in a unique vector (output) which will be considered
as a unique input by the objective task. Amongst the advantages of the feature level
multimodal fusion techniques, the need for a unique learning phase on the combined
feature vector and the possibility to take advantage of the correlation between mul-
tiple features from different modalities excel [42]. Despite the advantages, feature
level multimodal fusion presents several disadvantages including: (i) the difficulty
to learn cross-correlation amongst features increases with the number of different
media considered, (ii) before combining features, their format should be the same
and (iii) the synchronisation between features is more complex due to their different
modalities and non-linearity [47]. On the other hand, the latter category, nature of the
methods (late fusion), proposes to analyse each input individually, providing local
decisions. Those decisions are then combined using a decision fusion unit to make a
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fused decision vector that is analysed to obtain a final decision, considering it as the
output of the fusion technique. Unlike feature level fusion techniques, decision-level
multimodal fusion techniques benefit from unique representations despite the mul-
tiple media modalities easing their fusion, the scalability of the system and enabling
the use of different and most suitable techniques to obtain partial solutions. However,
the acquisition of partial solutions prevents consideration of the features correlation
and is affected by the individual learning process associated to each feature. In order
to exploit the advantages of both fusion levels, hybrid systems have been proposed.
For further information on the state of the art refer to [5, 12, 32, 41].

Considering the exponential growth of the types and amount of media, smart sur-
veillance systems try to convey information captured by different means to achieve
a higher robustness and accuracy. In the proposed use case, object classification in
urban environments, different acquisition systems are distributed, such as speed-
detection sensors, acoustic sensors, videocameras, etc, collecting relevant informa-
tion. Several classification-based multimodal fusion methods have been proposed in
the literature in an attempt to categorise the multimodal input data into one of the
pre-defined classes associated to the application under analysis. However, the most
popular multimodal fusion techniques are: (i) Support Vector Machines (SVMs),
(ii) Bayesian Inference, (iii) Dempster-Shafer Theory, (iv) Dynamic Bayesian Net-
works, (v) Neural Networks (NN) and (vi) Maximum Entropy Model.

Support Vector Machines (SVMs) acquired great popularity for data classification,
especially, in the domain of multimedia, where SVM has been used for applications
such as face detection, object classification, modality fusion, etc. SVM is a supervised
learning method, which assuming a set of input data vectors, provides an optimal
binary classification, partitioning the input data into the two training classes. Typi-
cally, SVMs are used for multimodal fusion, assuming the set of inputs represents
the scores given by individual classifiers. Multimodal fusion and classification using
SVMs partitions the input data, applying different kernel functions which allow non-
linear classification. Many existing literature approaches use the SVM-based fusion
scheme. Nirmala et al. [35] proposed a multimodal image fusion technique using Shift
Invariant Discrete Wavelet Transform (SIDWT) for surveillance applications. This
approach addressed the fusion of visual and infrared images, extracting their SIDWT
and using SVM to fuse the transforms at feature-level. The proposed multimodal
image fusion technique combined two information sources, but enabled its exten-
sion providing a scalable approach. To compute the SIDWT, images were divided
into non-overlapping blocks of fixed size and three features including energy, entropy
and standard deviation, were computed for each block. The SVM was trained based
on the extracted features for each block and determined whether the wavelet coeffi-
cient block from the visual or infrared image was to be used. Finally, the fused image
was obtained by performing inverse SIDWT on the selected coefficients. Arsic et al.
[3] targeted the automatic detection of certain passenger’s behaviour in an airplane
situation, e.g., aggressive, nervous, tired, etc, using an SVM during the classification
stage. A set of low-level features based on difference imaging were extracted from
different parts of the image such as skin colour regions, face or the entire image.
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The proposed low-level features were based on the global motion, representing its
movement or mean deviation. Finally, a vector containing all features was created
and classified using a SVM based on the polynomial kernel.

Bayesian inference combines multimodal information by applying rules of probabil-
ity theory [27]. Multimodal information sources provide either features or decisions
from individual classifiers which are combined to derive the inference of the joint
probability of an observation or decision [39]. Bayesian networks allow the use of
prior knowledge about the likelihood of the hypothesis to be utilised in the inference
process. New observations or decisions can be used to update the a-priori probability
in order to compute the posterior probability of the hypothesis. Finally, the Bayesian
inference fusion method allows for uncertainty modelling. The Bayesian inference
method has been used in the literature to combine multimodal information due to
its possibility to adapt as the information evolves as well as its capability to apply
subjective or estimated probabilities when empirical data is absent. Due to these
advantages, Bayesian inference has been used for different tasks, such as speech
recognition or video analysis. In surveillance, Bayesian inference has been applied
for combining classification results for various applications [7, 8]. Atrey et al. [6]
fused multimodal information using the Bayesian inference fusion approach for event
detection in surveillance scenarios, such as standing and talking, running and shout-
ing, walking or standing and door knocking. Meuter et al. addressed vision-based
traffic sign recognition in a hybrid classification method based on a decision tree and
a Bayesian fusion algorithm [31]. The fusion module combined the classification
results of the different classifiers over time and fused similar signs on both sides
of the road, taking advantage of the redundancy existent in German roads, where
identical signs are mounted on both sides of the road.

Dempster-Shafer Theory allows the inclusion of belief and plausibility values to
represent evidences and their corresponding uncertainty in the fusion process, rather
than representing the evidence using only uncertainty values [4]. According to the
Dempster-Shafer theory, an hypothesis is characterised by belief and plausibility.
Whilst the degree of belief implies a lower bound of the confidence, the plausibility
represents the upper bound, delimiting the confidence interval or the possibility of the
hypothesis to be true [5]. After the assignment of a probability to every hypothesis,
the decision regarding the hypothesis is measured by a confidence interval. Multi-
modal fusion using the Dempster-Shafer theory applies evidence combination rules
to fuse multimodal information. Multimodal fusion techniques have acquired great
relevance in recent years, the inclusion of higher levels of freedom within the fusion
process has been used in different applications. For instance, vehicle classification
based on Dempster-Shafer theory was addressed by Klausner et al. [25]. The pro-
posed approach fused single-source classifier’s results into a matrix of uncertainty
intervals. The authors applied the SVM distance mass function and the Dempster-
Shafer belief function to classify objects into three categories, including large trucks,
small trucks and cars according to a set of visual and acoustic features. Moreover,
Dempster-Shafer theory of evidence was applied on other surveillance applications
such as gender profiling. In [28], authors proposed a multimodal fusion technique
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based on the Dempster-Shafer theory to combine the partial decisions provided by
different gender profiling techniques to overcome existing limitations such as the
face occlusion or body shape alteration. The provided experiments exhibited an
improvement versus single profiling or classic fusion results.
Dynamic Bayesian Networks (DBNs) Multimodal fusion considering the temporal
axis requires specific models to describe the evolution of the observed data. For the
analysis and fusion of this type of information, Bayesian inference fusion methods
can be extended to DBN, also called probabilistic generative model or a graphical
model [5]. DBNs have been applied in a diverse range of multimedia applications
where the time-series data affected the analysis due to its two main advantages, (i) its
ability to model multinode dependency and (ii) to integrate the temporal dependency
of the multimodal data. Despite, the variety of DBN systems proposed, the most
popular and simplest form of a DBN is the Hidden Markov Model (HMM). HMMs
have been used for diverse applications from recognising tennis strokes to gait-based
human identification. Additionally, their ability to exploit the spatio-temporal pat-
terns has driven human activity recognition research. A comprehensive review of
modelling, recognition and analysis of human activities and interactions was pre-
sented by Turaga et al. [44]. Amongst the existing human activity recognition tech-
niques based on DBNs, techniques could be categorised according to the number of
agents involved in the activity and/or the amount of information sources. Oliver et al.
[36] proposed a system for detection of two person interactions using coupled hidden
Markov models (CHMMs). The CHMMs was a variant of HMMs which integrated
two or more sources of information to model and recognise human behaviour. Liu and
Chua [26] proposed a technique to classify three agent activities, including groups
approaching, walking together or meeting and turning back, applying Observation
Decomposed Hidden Markov Model (ODHMM). Whilst, Due et al. [15] proposed
to decompose an interaction into multiple interacting stochastic processes and pro-
posed a coupled hierarchical durational-state dynamic Bayesian Network. Suk et al.
[43] analysed human interactions based on their moving trajectories. Each human
interaction was decomposed into elementary components or subinteractions, which
were modelled individually using HMMs, and finally assembled using a directed
graph. Despite DBNs great development in human activity recognition, multimodal
fusion using DBNs was also applied in other surveillance applications such as vision-
based traffic monitoring [10, 21], vehicle detection [11], scene description [24, 40]
or action recognition based on contextual information [33].

Neural Networks (NN) provide a nonlinear mapping between the input information
sources and the output decisions. The NN method consists of a network including
input, hidden and output nodes. The input nodes accept information from the dif-
ferent sources while the output nodes provide the results of combining the input
information or decisions. The mapping between the input and output nodes, using
the hidden nodes, defines the network architecture and therefore its behaviour. The
architecture and the weights defining its topology can be adjusted during the training
phase to obtain the optimal fusion results [9]. In recent years, multiple applica-
tions have used NNs as a multimodal fusion technique. In general scenarios, appli-
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cations such as speaker tracking [50] or structural damage detection [22] applied
NNs to combine different information sources. In surveillance scenarios, NNs have
been widely used in traffic control [37]. For example, in [30], traffic magnetic sen-
sors captured the information to detect traffic incidents using NNs. Traffic flow
prediction was tackled using a radial basis function neural network [48] or genetic-
based NNs [46]. Furthermore, NNs and SVMs were compared for the prediction of
traffic speed in [45]. Authors determined that SVM was a viable alternative to NNs
for short-term prediction due to the high dependence of NNs performance to the
training stage. Despite NNs are suitable for high-dimensional problem spaces and
generating high-order nonlinear mapping, NNs present several challenges, including
(i) slow training and (ii) complexity to select an appropriate network architecture
according to the application under analysis. These challenges limited NNs impact
on the multimedia analysis compared to other fusion methods [5].

Maximum Entropy Model presents a statistical classifier which provides a proba-
bility of an observation belonging to a particular class based on the input informa-
tion. The maximum entropy model is used in multimodal fusion, classifying fused
multimedia observations, coming from different acquisition sources, into a set of
pre-defined concepts. The maximum entropy model-based fusion method learns pos-
sible correlations between the extracted features and the selected concepts to build
statistical models calculating the probability of the observations belonging to a cer-
tain class. The maximum entropy model has been applied for semantic multimedia
indexing and annotation. In [29], text and image features were combined to index
and retrieve images using the Maximum Entropy Model. The proposed approach was
evaluated against the Naives Bayes classifier using the Reuters-21578, Corel Images
and TRECVID 2005 datasets. In [2], a multimedia-content automatic annotation
approach based on maximum entropy models was presented. Statistical models were
calculated extracting colour, texture and shape features to represent each classifying
concept. For each concept to be predicted, the set of relevant models were extracted
to estimate the probability of the observation to be a particular concept.

7.3 Multimodal Surveillance System

Surveillance systems have been positioned in a fast-track race towards the creation
of smart, dynamic, distributed, scalable, multimodal systems. Recent social and
technological factors encourage this evolution, including:

• the ever-increasing amount of information collected everyday from the police
(from surveillance cameras, police records, speed sensors, etc)

• the in-growing deployment of new privately owned sensors
• the environments variability
• the fast evolution of technological equipment.

The consideration of these factors increases the complexity of surveillance sys-
tems tasks, implying an extension of surveillance systems’ capabilities to:

• integrate different kinds of sensors
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Fig. 7.2 Multimodal surveillance system framework

• process independently each sensor’s input
• provide stability handling absence of information or ambiguous inputs
• dynamically expand and adapt its structure and; the complementary information

by exploiting the synergy amongst sensors.

Despite several challenges arose from this ambitious system, a crucial research
task is the multimodal fusion of information, formally referred as the integration
of multiple media, their associated features or the intermediate decision to perform
an analysis task. Considering the requirements established for a surveillance system
capable to handle realistic situations, a MSS is proposed (refer to Fig. 7.2). The MSS
focuses on monitoring urban areas and it is built as a distributed multimodal network.
The system, aimed to be scalable and over several multimodal inputs, is proposed
as a distributed system, based on the rationale divide et impera. Consequently, MSS
intends to:

• Decrease the processing time for real-time applications based on distributed deci-
sions.

• Enable scalability, accepting the integration of a non-pre-defined number of inputs
during the systems’ lifetime.

• Handle uncertainty and lack of information, relying the decisions in the prior-
knowledge and the existing evidences, and hence offering a stable operational
mode.

The MSS proposes a distributed sensor network, where multimodal fusion is
performed at a decision-level. Hence, the individual partial decisions are computed
locally and concurrently, reducing the computational load in the centric framework
while providing the fusion schema with enough evidences to address high-level
analysis. The proposed system is focused on the multimodal classification of moving
objects into a set of predefined semantic classes, handing key knowledge to intelligent
surveillance systems for more complex context-dependent tasks such as suspicious
event detection.

Despite MSS is a scalable surveillance network, real surveillance networks are
still not deployed and less connected. Thus, the access to numerous diverse multi-
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modal sensors is a challenging task. In this chapter, the MSS system is built towards
the analysis of a specific use case, object classification in urban environments. Con-
sidering that object classification can be performed based on a wide range of multi-
modal information and its fundamental importance as prior step towards suspicious
event detection techniques, situates this use case as a critical challenge. The pro-
posed use case analyses two inputs: surveillance videos and tracking coordinates.1

MSS is a two-stage framework. First, the acquisition systems perform object classi-
fication based on partial knowledge of the situation, providing a local-decision and
the classifier-confidence level. Second, a Bayesian-based Multimodal fusion schema
proceeds with the combination of the partial decisions to maximise the knowledge
by exploiting the synergy between complementary information. MSS results with a
final classification decision accompanied by a confidence level based on the individ-
ual partial decisions, the confidence on the classifiers and the prior knowledge on the
urban environment.

In the following paragraphs each MSS stage is further detailed with special atten-
tion to the proposed fusion schema.

7.3.1 MSS Multimodal Inputs

The complexity inherent in urban surveillance requires collaborative work from dif-
ferent sensors to enable certain capabilities such as the detection of suspicious events,
despite the external factor affecting the scene (refer to Fig. 7.3). Based on this idea,
MSS proposes to divide the information to analyse and obtain individual remote
decisions to build a knowledge network provider. Hence, two inputs are feeding the
MSS, surveillance videos and tracking coordinates.

7.3.1.1 Surveillance Videos

A moving object classifier is presented based on the analysis of the CCTV videos
and the extraction and modelling of visual patterns [17]. The surveillance centric
object classifier consists of three stages:

• Motion analysis component targets the extraction of moving objects in the surveil-
lance videos to optimise the next stages performance by selecting relevant infor-
mation, removing the irrelevant and so reducing the computational burden. This
stage targets background subtraction based on Gaussian Mixture Models, moving
object segmentation using connected components and object tracking applying
Kalman filters to predict the tracks.

• Feature extraction component addresses the creation of visual patterns for each
segmented moving object in the video. Different low-level features were analysed,

1 Despite the limited number of inputs, MSS is built in a scalable fashion, prepared to aggregate
new inputs through the system’s lifetime.
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Fig. 7.3 Video analysis techniques’ results are affected by several problematic situations as low
quality image (a), inaccurate background subtraction (b), camera movement (c) and objects merged
due to noise and shadows (d). The four images composing this figure (a–d) show the original images
(in colour and black & white, top left and top right images, respectively) as well as the results
obtained after processing the surveillance videos by video analysis techniques, i.e., background
subtraction, object detection and object tracking (bottom images). The result images reflect the
effect of external factors on the obtained results

including global and local descriptors. However, after an exhaustive analysis only
four of them were selected due to their high distinctiveness, compact represen-
tation and significance for human perception. These features are the following
MPEG-7 descriptors: Colour Layout Descriptor (CLD), Edge Histogram Descrip-
tor (EHD), Dominant Colour Descriptor (DCD) and Colour Structure Descriptor
(CSD). All these features were chosen for their representativeness for the visual
patterns useful in surveillance applications (for further information on the visual
feature performance comparison and analysis for surveillance applications refer
to [18]).

• Multifeature fusion algorithm. Based on the assumption that single visual feature
descriptors are not capable of interpreting human understanding, a combination
of visual features could represent more complex patterns. However, each feature
has different nature, metrics and nonlinear behaviour. Hence, to combine single
features, these requirements must be considered. In this visual-based object classi-
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fier, the feature combination relies on the Multi-Objective Optimisation technique
(MOO) [49]. The main idea is to perform a weighted average feature combina-
tion where weights are optimised and features are analysed and compared in their
natural feature space. These weights are optimised through the use of pareto opti-
mal solutions, which minimise the distance between the object visual features and
the centroid of the feature’s positive training samples and maximising it with the
negative training examples. This rationale is resumed in:

min

⎡
⎢⎣

⎢⎤

K⎛
k=1

D(k)
+ (V (k),V̄, As )

K⎛
k=1

D(k)
− (V (k),V̄, As )

⎜
⎢⎝

⎢⎞
, s = 1, 2, . . . , S (7.1)

where D(k)
− and D(k)

+ are the distances over positive and negative training sam-
ples respectively, V (k) represents the visual features vector for the moving object
(k), V̄ is the features centroid vector formed by the selected MPEG-7 features
and represented as V̄ = (v̄C L D, v̄SC D, v̄DC D, v̄E H D), while, As is the sth in the
set of Pareto-optimal solutions, and S is the number of available Pareto-optimal
solutions [17].

Finally, this classifier exploits the inherent visual appearance of the moving objects
to create a unique and optimal representation vector.

7.3.1.2 Tracking Coordinates

In urban environments, surveillance cameras are not the only sensors deployed,
though they are the most common. Other sensors recording global positioning or
spatio-temporal evolution of moving objects are also inserted in surveillance distrib-
uted networks. The second input to the MSS system provides the tracking coordinates
of moving objects located in the same area monitored by the CCTV camera (first
MSS input).

Considering the conclusions extracted by certain psychological studies, determin-
ing the importance of motion as a fundamental cue for humans to classify objects
[23], in this section, a behaviour-based classifier is presented. The main objective is
to extract and model behaviour patterns of the moving objects in order to use their
spatio-temporal evolution to perform semantic classification. The process consists
of two stages:

• Behaviour patterns extraction. A set of features exploiting the intra-object variance
while minimising the inter-object variance was selected to represent the behaviour
of moving objects, including, shape pattern, velocity and trajectory [16]. Geo-
metric computation algorithms were developed to model object’s behaviour and
extracted to form the Behaviour Pattern (BP), where
B P = {Shape, Size,Velocity,Trajectory}.

• Behaviour fuzzy classification proposes a hierarchical fuzzy classifier based on
a general framework consisting of two levels of classification performed on cas-
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Fig. 7.4 Behavioural fuzzy classifier framework

cade to provide robustness against behaviour pattern outliers (shown in Fig. 7.42).
The first level depicts the classification of each moving object according to every
individual behaviour feature. This level is built with a set of nested rule-based
fuzzy classifiers. The membership functions applied for each behaviour feature
are extrapolated from the marginal training sample created from the manually
annotated dataset. As a result, each individual fuzzy classifier provides a classifi-
cation label and a membership degree. While the second level of the hierarchical
fuzzy classifier performs the combination of the individual classification results
obtained in the first level, through a set of high-level fuzzy classification rules.

Finally, this classifier exploits the spatio-temporal evolution of the moving objects
to create a unique and optimal representation vector depicting its evolutionary behav-
iour.

7.3.2 Bayesian-Based Multimodal Fusion Technique

The diverse nature of the sensors deployed in a controlled area requires a versatile
and adaptive fusion technique, capable to overcome their individual challenges, as
well as, address the absence of information and the presence of uncertainty by the
means of inferring information from previously acquired knowledge. Hence, in this
chapter, we propose a Bayesian-based Multimodal Fusion technique to provide a

2 In the figure, Mx is the label which indicates if certain behaviour feature, B Fj , fulfils the condition
attached to the semantic class, Cx , and CF = µ j x represents the membership degree of the behaviour
feature under analysis to belong to the semantic class Cx , µ represents the membership degree and
N is the amount of behaviour features considered in the analysis.
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Fig. 7.5 Bayesian-based multimodal fusion technique for object classification in surveillance
networks

scalable algorithm capable to combine the two aforementioned inputs (refer to the
scalable framework presented in Fig. 7.5).

The rationale to use Bayesian Networks relies on its advantages for integration
and robustness based on the application of probability theory. There are three main
advantages characteristic from Bayesian Networks [19]. First, the Bayesian infer-
ence method allows the combination of multimodal information due to its possibility
of adaptation as the information evolves as well as its capability to apply subjective
or estimated probabilities when empirical data is absent [5]. Second, the hierarchical
structure provides flexibility and scalability, facilitating not only the inclusion of
additional information, but also enabling the degradation of the a-posteriori prob-
ability in case of the absence of a certain cue/s. Finally, Bayesian networks allow
domain knowledge to be embedded in the structure and parameters of the networks,
allowing the adjustment of the fusion technique to the domain and scenario’s require-
ments. Based on these advantages, the proposed Bayesian-based Multimodal Fusion
technique provides the following benefits to the MSS system:

• Combines the output from several diverse-nature sensors exploiting their comple-
mentary.

• Addresses absence of information basing the classification on the input received
and the prior knowledge and decreasing the certainty of the classification if evi-
dences are missing.
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• Each sensor performs local-based classification, alleviating the computational
requirements of the central MSS system.

• Provides scalability based on the Bayesian Networks adaptability advantage.

Each of the aforementioned individual classifiers provides a partial decision and a
conditional probability matrix describing the probability of a detected moving object
to belong to each of the semantic concepts, Ci , i = 1, . . . , N , considered within the
classification scenario, and the matrices are defined as:

⎟

⎠⎠

P(C1|F1) P(C1|F2)

P(C2|F1) P(C2|F2)

· · · · · ·
P(CN |F1) P(CN |F2)



⎧⎧⎨ (7.2)

where Fj represents each of the individual classifiers whose decisions are fused
applying Bayes’ probabilistic rules. Each partial decision could perform automatic
object classification. However, the integration of several features, derived from dif-
ferent and uncorrelated media, addresses higher robustness, stability, flexibility and
adaptation.

The proposed Bayesian-based multimodal fusion approach performs probabilistic
fusion at a decision-level, standardising the output of the remote local classifiers and
thus enabling distributed classification for surveillance networks. Considering the
decision-level fusion as a classification problem, the Bayesian inference scheme can
be formulated using the maximum a-posteriori criterion (MAP):

D = argmax
i

⎩
P(Ci |F1, F2, . . . , FL)

} = argmax
i

{ L∏

j=1

P(Fj |Ci )P(Ci )

}

= argmax
i

⎟

⎠⎠⎠⎠

∏L
j=1 P(Fj |C1)P(C1)∏L
j=1 P(Fj |C2)P(C2)

...∏L
j=1 P(Fj |CN )P(CN )



⎧⎧⎧⎧⎨
(7.3)

where P(Ci |F1, F2, . . . , FL) defines the probability of a concept Ci to be the final
decision undertaken by the classifier, D, considering all the individual partial deci-
sions provided by individual classifiers; Fj are the individual classifiers that provide
partial decisions to the Bayesian inference scheme; P(Ci ) represents the a-priori
probability of the i concept; L defines the amount of partial decisions incorporated
in the multimodal fusion, which in MSS this implies L = 2, and N represents the
number of concepts involved in the classification problem (described in Sect. 7.3.1).
Finally, the conditional probability matrices connecting distributed partial decisions
to the surveillance network can be set manually or learned from training data, and
so permits adaptation to scenario, application and the topology of the surveillance
network.
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The proposed Bayesian-based Multimodal Fusion technique, core of the Multi-
modal Surveillance System, presents a semantic classification technique based on
the fusion of diverse-nature cues. The semantic object classification provides sev-
eral advantages to future applications including (i) to enhance forensic applications
enabling the hyper-connexion between the automatic classification, the queries and
concepts meaningful for human operators and (ii) for the detection of surveillance
events in urban environments, the use of human understanding in the decision-making
process enables the capability to establish human related rules to infer object-oriented
events.

7.4 Performance Evaluation of the Multimodal
Surveillance System

During this section, a qualitative and quantitative performance evaluation of the
Bayesian-based Multimodal Fusion technique is presented along with a comparison
of the proposed individual object classifiers performance. Moreover, the surveillance
dataset and ground truth are explained for further understanding of the experiments.

7.4.1 Dataset and Ground Truth

In order to evaluate the performance of the proposed Multimodal Surveillance System
and the benefits from combining complementary information from diverse-nature
sensors, the Bayesian-based Multimodal Fusion technique was applied to a set of
video sequences and tracking data.

AVSS 2007 dataset3 was used to evaluate the proposed system, providing outdoor
videos summing a total of 13,400 images, with variable lighting conditions as well
as different levels of difficulty. The surveillance footage includes several challenges
such as noise, low quality image, camera movement or blurring increasing the dif-
ficulty of its analysis. From these videos, the tracking coordinates from each of the
moving objects recorded on the scenes are stored in independent files.

In order to perform careful evaluation, a ground truth was manually annotated,
containing the two most common semantic categories within the videos, namely
Person and Vehicle. A total of 1,567 objects were included, 6 % were person while
50 % were vehicle. Due to the imposed guidelines for the manual annotation and
the challenges introduced by the motion analysis component (in the visual-based
object classifier), objects presenting certain constraints such as small blob size, partial
occlusion of the object over 50 % or multiple objects coexisting in a blob, were
annotated as unknown. The proposed system, MSS, probabilistically categorises

3 http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
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Table 7.1 Performance comparison of the four selected MPEG-7 features, the linearly combined
multi-feature descriptor and the proposed optimal multi-feature descriptor

Semantic concepts F-measure (%)
CLD EHD CSD DCD SVM MOO

Person 4.47 19.14 7.76 63.82 7.92 25.35
Vehicle 5.92 68.48 65.38 7.27 45.69 64.43

each moving object into one of those semantic categories, based on independent
partial decision provided by the two object classifiers presented in Sect. 7.3.1.

7.4.2 Experimental Results

In order to provide a comprehensive evaluation of the Multimodal Surveillance Sys-
tem and the benefits from exploiting the synergies between multimodal inputs, an
individual evaluation of each input detailed in Sect. 7.3.1 is presented, followed by
the analysis of the Bayesian-based Multimodal Fusion technique. This Section ends
with a comparison amongst the individual decision-making processes.

7.4.2.1 Object Classification Based on the Analysis of Surveillance Videos

In this Section, the proposed Visual-based Object Classifier is evaluated against
state-of-the-art machine learning techniques, for individual descriptors as well as for
linearly combined multi-feature descriptors. The selected visual features, CLD, EHD,
DCD and CSD, were computed to represent and classify all the detected moving
objects within the surveillance video datasets according to their visual appearance.
The proposed object classifier applies MOO technique to optimise the weighted
linear combination for the visual feature descriptors while considering that each
feature has a different feature space. The benefits addressed by the MOO technique
are further contrasted against SVM in individual feature spaces as well as in multi-
feature descriptor spaces built by concatenating the appearance descriptors. Two are
the objectives of this comparison: (i) to demonstrate the benefits of multifeature
descriptors versus individual descriptors and (ii) to establish the need to preserve
each individual feature space while combining visual features. The obtained results
are shown in Table 7.1, where six results are presented:

• Each visual feature individual performance, namely CLD, EHD, CSD and DCD.
• A linear concatenation of the four selected visual features to build a multi-feature

descriptor, namely SVM.
• The proposed multi-feature visual pattern built based on the MOO technique and

preserving the nonlinearity of each individual visual feature, namely MOO.
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Table 7.2 Performance of the proposed object classifier based on tracking information analysis

Semantic
class

True positive (%) True negative (%) False positive (%) False neg-
ative (%)

F-measure

Vehicle 79.40 51.06 48.94 20.60 61.8
Person 51.06 79.40 20.60 48.94 59.5

The results provided by linearly combining several features (SVM) reveal a con-
siderable F-measure value for the concept Vehicle, however, drops its performance for
the concept Person. The proposed visual-based object classifier (MOO) show a rea-
sonable improvement for both semantic concepts, Vehicle and Person, outperforming
SVM by 18 %, and exceeding single visual features performance, demonstrating the
necessity to consider each feature individually respecting its nature, behaviour and
specific metrics.4

7.4.2.2 Object Classification Based on the Analysis of Tracking Information

The proposed object classifier based on the analysis of the spatio-temporal evolution
of the moving objects in a scene provides not only a membership label for each
detected moving object, but also a membership degree exhibiting the reliability on the
membership label (refer to Sect. 7.3.1.2). However, in order to study the classification
results, we strictly consider the membership label to calculate the percentage of false
positives, false negatives, true positives and true negatives for each semantic class
(refer to Table 7.2).

In Table 7.2, the flexibility provided by fuzzy logic is omitted to study the per-
formance obtained by sharp binary classifiers in a behaviour-based object classifier.
The results reveal a high true positive rate in both semantic concepts but affected by
a significant false negative rate. The results obtained for the semantic concept Per-
son can be related to the sparseness of this object category within the ground truth,
generating a less accurate model. On the other hand, the results for the semantic
concept Vehicle are limited for two reasons. First, the analysed scene records a road
with urban speed limitation so vehicles do not exceed person’s speed, limiting the
discriminative effect of the velocity pattern. Second, the appearance of vehicles with
different silhouettes and shape ratios, some of them really similar to a person’s shape
ratio.

7.4.2.3 Evaluation of the Bayesian-Based Multimodal Fusion Technique

In this chapter, a Bayesian-based Multimodal Fusion technique is proposed to clas-
sify moving objects according to multiple diverse-nature information, exploiting the

4 Person results can be related to the sparseness of the concept within the ground truth (refer to
Sect. 7.4.1).
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Table 7.3 Performance evaluation of the bayesian-based multimodal fusion technique

Concepts True positive
(%)

True negative
(%)

False positive
(%)

False negative
(%)

F-measure
(%)

Vehicle 97 66 34 3 83.9
Person 66 97 3 34 78.1

synergies amongst complementary information. The proposed fusion technique is
performed at a decision-level, enabling the creation of distributed surveillance net-
works, where each node performs individual classification, providing the central
system (MSS) with a partial classification and the confidence on the classification
results. The combination of multimodal information in a decision-level fusion tech-
nique based on Bayesian Networks enables the working continuity of the MSS system
despite the absence of information and the presence of uncertainty.

To evaluate the performance of the proposed Bayesian-based Multimodal Fusion
technique, a conditional probability matrix is calculated by each of the individual
classifiers, acting as inputs to the Bayesian Network. The Bayesian-based Multimodal
Fusion technique combines the locally computed partial decisions to achieve a unique
classification, preserving their individual feature spaces and metrics. The obtained
results are shown in Table 7.3.

The obtained results reveal a high rate of true positive and low false negative rates
for the semantic concept Vehicle, 97 and 3 %, respectively. The semantic concept
Person presents lower true positive and false negative rates, 66 and 34 %, respectively.
The achieved false positive detection rates are 34 and 3 % for Vehicle and Person,
respectively. The results, both the false positive rates for vehicles and the true positive
rate for person, are directly affected by the sparseness of the concept person within
the ground truth.

7.4.2.4 Comparative Evaluation

The diversity and variability of sensors deployed in surveillance networks entailed
a fusion challenge. In this chapter, a Bayesian-based Multimodal Fusion technique
was proposed to provide a robust, versatile, scalable solution capable of handling
absence of information and presence of uncertainty. The objective of the proposed
multimodal fusion technique was to allow the integration of various different nature
features independently of which media were they derived from, to benefit from
(i) the representability provided by each feature, (ii) their uncorrelation in order to
cover a bigger spectrum, and (iii) the robustness acquired by the system due to the
consideration of multiple partial decisions rather than relying on a single decision. In
order to demonstrate such an improvement on the performance, the Bayesian-based
Multimodal Fusion technique is compared with the individual classifiers, presenting
the partial decisions as inputs to the Bayesian inference scheme. Table 7.4 presents
the comparative results, revealing that the combination of multimodal inputs based on
a Bayesian inference scheme outperforms both individual object classifiers. While
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Table 7.4 Performance comparison between the proposed bayesian-based multimodal fusion tech-
nique and the two intermediate object classifiers based on visual and spatio-temporal features, which
are further explained in Sects. 7.3.1.1 and 7.3.1.2, respectively

Concepts True positive
(%)

True negative
(%)

False positive
(%)

False negative
(%)

F-measure
(%)

Vehicle Visual
features

77 64 36 23 64.43

Spatio-
temporal
features

79 57 43 21 61.8

Bayesian 97 66 34 3 83.9

Person Visual
features

64 77 23 36 25.35

Spatio-
temporal
features

57 79 21 43 59.5

Bayesian 66 97 3 34 78.1

visual and spatio-temporal-based classifiers achieve a true positive rate of 77 and
79 %, respectively, the Bayesian-based Multimodal Fusion technique reveals a 97 %
positive rate for the semantic concept Vehicle. A lower increase of the performance
is also registered for semantic concept Person, increasing the true positive rate by
1 and 9 % for the visual and spatio-temporal features classifiers. A reason for the
reduced improvement and generally the lower true positive rates obtained for the
semantic concept Person is its sparseness in the ground truth and the dataset (for
further information refer to Sect. 7.4.1).

Generally, classifiers’ performance is represented by their F-measure. Consider-
ing this measurement, the proposed Bayesian-based Multimodal Fusion technique
reveals the benefits of exploiting the synergies existing between complementary
information, exceeding with its results both individual classifiers by 18.57 and
22.1 % respectively for the semantic concept Vehicle and by 52.75 and 18.6 % respec-
tively for the semantic concept Person. A refined analysis reveals that the proposed
Bayesian-based Multimodal Fusion technique enhances the object classification pro-
cedure, increasing positive detection and reducing false alarms.

7.5 Conclusions and Future Work

In this book chapter, the foundations for a MSS envisaged as a distributed network
of sensors is presented, together with a probabilistic fusion schema proposed as the
core of the centric system. For the evaluation of the MSS, its implementation and
experiments have been implemented analysing a case of study, object classification in
urban environments. Two inputs fed the MSS, surveillance videos and tracking infor-
mation, and were computed locally, providing the partial classification results and the
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confidence level of the classifier to the Bayesian-based Multimodal Fusion compo-
nent. The Bayesian inference schema, based on the premise that the higher amount
of complementary information would provide higher robustness and accuracy in
the decision-making process, exploited the synergies of the two independent inputs,
obtaining higher rate of true positive detections and lower false alarms than the
partial decisions, and generally, higher F-measure results. The proposed fusion tech-
nique provided the foundation to build a distributed, scalable, dynamic multimodal
surveillance network, addressing also the partial or total absence of information, by
degrading the classification results accordingly. The proposed Bayesian-based Multi-
modal Fusion technique outperformed both individual classifiers, demonstrating the
benefits of combining complementary features to improve the classification results
and to enhance the robustness of the classification framework.

The use of the proposed technique as prior step for event detection in urban
environments will be addressed in the future. Moreover, in this book chapter, a
challenging research line was presented. In the future, we will target the consolidation
of a multimodal surveillance network, fed by numerous inputs and favoured with a
inference schema capable to extract inherent information for urban scene monitoring.
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Chapter 8
Multimodal Violence Detection in Hollywood
Movies: State-of-the-Art and Benchmarking

Claire-Hélène Demarty, Cédric Penet, Bogdan Ionescu,
Guillaume Gravier and Mohammad Soleymani

Abstract This chapter introduces a benchmark evaluation targeting the detection of
violent scenes in Hollywood movies. The evaluation was implemented in 2011 and
2012 as an affect task in the framework of the international MediaEval benchmark
initiative. We report on these 2 years of evaluation, providing a detailed description
of the dataset created, describing the state of the art by studying the results achieved
by participants and providing a detailed analysis of two of the best performing multi-
modal systems. We elaborate on the lessons learned after 2 years to provide insights
on future work emphasizing multimodal modeling and fusion.

8.1 Introduction

Detecting violent scenes in movies appears as an important feature in various use
cases related to video on demand and child protection against offensive content. In
the framework of the MediaEval benchmark initiative, we have developed a large
dataset for this task and assessed various approaches via comparative evaluations.
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MediaEval1 is a benchmarking initiative dedicated to evaluating new algorithms
for multimedia access and retrieval. MediaEval emphasizes the multimodal charac-
ter of the data (speech, audio, visual content, tags, users, context, etc). As a track of
MediaEval, the Affect Task—Violent Scenes Detection—involves automatic detec-
tion of violent segments in movies. The challenge derives from a use case at the
company Technicolor.2 Technicolor is a provider of services in multimedia enter-
tainment and solutions, in particular, in the field of helping users select the most
appropriate content according to, for example, their profile. In this context, a par-
ticular use case arises which involves helping users choose movies that are suitable
for children in their family, by previewing the parts of the movies (i.e., scenes or
segments) that include the most violent moments [9].

Such a use case raises several substantial difficulties. Among them, the subjectivity
that will occur during the selection of those violent moments is certainly the most
important one. Indeed the definition of a violent event remains highly subjective
and dependent on the viewers, their culture, their gender. Agreeing on a common
definition of a violent event is not easy, which explains why each work related to
violence in the literature exhibits a different definition. The semantic nature of the
events to retrieve also contributes to the difficulty of the task, as it entails a huge
semantic gap between features and interpretation. Due to the targeted content (i.e.,
Hollywood movies) and the nature of the events, multimodality is also an important
characteristic of the task, which stresses its ambitious and challenging nature even
more.

The choice of the targeted content raises additional challenges which are not
addressed in similar evaluation tasks, for example in the TRECVid Surveillance Event
Detection or Multimedia Event Detection Evaluation Tracks.3 Indeed, systems will
have to cope with content of very different genres that may contain special editing
effects, which may alter the events to detect.

In the literature, violent scene detection in movies has received very little attention
so far. Moreover, comparing existing results is impossible because of the different
definitions of violence adopted. As a consequence of the differences in the defini-
tion of violence, methods suffer from a lack of standard, consistent, and substantial
datasets. The Affect task of MediaEval constitutes a first attempt to address all these
needs and establish a standard with state-of-the-art performance for future reference.

This paper provides a thorough description of the Violent Scene Detection (VSD)
dataset and reviews the state of the art for this task. The main contributions in this
regard can be summarized with:

• the proposal of a definition of violence in movies and its validation in the commu-
nity,

• the design of a comprehensive dataset of 18 Hollywood movies annotated for
violence and for concepts related to violence. Insights about annotation challenges
are also provided;

1 http://www.multimediaeval.org/
2 http://www.technicolor.com/
3 http://www.nist.gov/itl/iad/mig/sed.cfm

http://www.multimediaeval.org/
http://www.technicolor.com/
http://www.nist.gov/itl/iad/mig/sed.cfm
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• a detailed description of the state of the art in violence detection;
• a comparison of the systems that competed in the 2011 and 2012 benchmarks and

the description of two of the best performing systems.

The chapter is organized as follows. Section 8.2 reviews previous research on
violence detection in videos. Section 8.3 provides an overview of the violent scene
detection task after 2 years of implementation within the MediaEval benchmarking
initiative. Section 8.4 reports the results of the benchmark with a short comparative
description of the competing systems. Section 8.5 provides an in-depth description
of two of the best ranked systems with an explicit focus on the contribution of the
multimodal information fusion.

8.2 A Review of the Literature

Automatically detecting violent scenes in movies received very limited attention
prior to the establishment of the MediaEval violence detection task [21].

A closely related problem is action recognition focusing on detecting human
violence in real-world scenarios. Datta et al. [8] proposed an hierarchical approach
for detecting distinct violent events involving two people, e.g., fist fighting, hitting
with objects, and kicking. They computed the motion trajectory of image structures,
i.e., acceleration measure vector and its jerk. Their method was validated on 15 short
sequences including around 40 violent scenes. Another example is the approach
in [40] which aims at detecting instances of aggressive human behavior in public
environments. The authors used a Dynamic Bayesian Network (DBN) as a fusion
mechanism to aggregate aggression scene indicators, e.g., “scream,” “passing train,”
or “articulation energy.” Evaluation is carried out using 13 clips featuring various
scenarios, such as “aggression towards a vending machine” or “supporters harassing
a passenger.”

Sports videos were also used for violence detection, usually relying on the bag
of visual words (BoVW) representation. For instance, [32] addresses fight detec-
tion using BoVW along with space-time interest points and motion scale-invariant
feature transform (MoSIFT) features. The authors evaluated their method on 1,000
clips containing different actions from ice hockey videos labeled at the frame level.
The highest reported detection accuracy is near 90 %. A similar experiment is the
one in [11] that used BoVW with local spatio-temporal features, for sports and
surveillance videos. Experiments show that motion patterns tend to provide better
performance than spatio-visual descriptors.

One of the early approaches targeting broadcast videos is from Nam et al. [31]
where violent events were detected using multiple audio–visual signatures, e.g.,
description of motion activity, blood and flame detection, and violence/nonviolence
classification of the soundtrack and characterization of sound effects. Only quali-
tative validations were reported. More recently, Gong et al. [17] used shot length,
motion activity, loudness, speech, light, and music as features for violence detec-
tion. A modified semi-supervised learning model was employed for detection and
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evaluated on 4 Hollywood movies, achieving a F-measure of 0.85 at best. Similarly,
Giannakopoulos et al. [14] used various audio-visual features for violence detection
in movies, e.g., spectrogram, chroma, energy entropy, Mel-Frequency Cepstral Coef-
ficients (MFCC), average motion, motion orientation variance, measure of the motion
of people or faces in the scene. Modalities were combined by a meta-classification
architecture that classified mid-term video segments as “violent” or “non-violent.”
Experimental validation was performed on 50 video segments ripped from 10 dif-
ferent movies (totaling 150 min) with F-measures up to 0.58. Lin and Wang [27]
proposed a violent shot detector that used a modified probabilistic Latent Semantic
Analysis (pLSA). Audio features as well as visual concepts such as motion, flame,
explosion, and blood were employed. Final integration was achieved though a co-
training scheme, typically used when dealing with small amounts of training data
and large amounts of unlabeled data. Experimental validation was conducted on 5
movies showing an average F-measure of 0.88.

Most of the approaches are naturally multimodal, exploiting both the image and
sound tracks. However, a few works approached the problem based on a single modal-
ity. For example, [6] used Gaussian mixture models (GMM) and hidden Markov
models (HMM) to model audio events over time series. They considered the pres-
ence of gunplay and car racing with audio events such as “gunshot,” “explosion,”
“engine,” “helicopter flying,” “car braking,” and “cheers.” Validation was performed
on a very restrained data set, containing excerpts of 5 min extracted from 5 movies,
leading to an average F-measure of up to 0.90. In contrast, [4] used only visual con-
cepts such as face, blood, and motion information to determine whether an action
scene had violent content or not. The specificity of their approach is in addressing
more semantics-bearing scene structures of video rather than simple shots.

In general, most of the existing approaches focus more or less on finding the
correct concepts that can be translated into violence in general and their findings are
bounded by the size of the dataset and the definition of violence. Because of the high
variability of violent events in movies, no common and objective enough definition
for violent events was ever proposed to the community, even when restricting to
physical violence. On the contrary, each piece of work dealing with the detection
of violent scenes provides its own definition of the violent events to detect. For
instance, [4] targeted “a series of human actions accompanied with bleeding,” [11,
32] looked for “scenes containing fights, regardless of context and number of people
involved.” In [14], the following definition is used: “behavior by persons against
persons that intentionally threatens, attempts, or actually inflicts physical harm.” In
[17], authors were interested in “fast paced scenes which contain explosions, gunshots
and person-on-person fighting.” Moreover, violent scenes and action scenes are often
mixed up in the past as in [5, 17].

The lack of a common definition and the resulting absence of a reference and
substantial dataset has made it so far very difficult to compare methods which were
sometimes developed for a very specific type of violence. This is precisely the fault
that we attempt to correct with the MediaEval violent scene detection task, by creating
a benchmark based on a clear and generalizable definition of violence to advance the
state of the art on this topic.
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8.3 Affect Task Description

The 2011 and 2012 Affect Task required participants to deploy multimodal
approaches to automatically detect portions of movies depicting violence. Though
not a strict requirement, we tried to emphasize multimodality for several reasons.
First, videos are multimodal. Second, violence might be present in all modalities
though not necessarily at the same time. This is clearly the case for images and
soundtracks. Violence might also be reflected in subtitles though verbal violence
was not considered. In spite of a definition of violence limited to physical violence,
single modality approaches were bound to be suboptimal and most participants ended
up using visual and audio features.

The key for creating a corpus for comparative evaluation clearly remains a general
definition of the notion of violence which eases annotation while encompassing a
large variety of situations. We discuss here the notion of violence and justify the
definition that was adopted before describing the data set and evaluation rules.

8.3.1 Toward a Definition of Violence

The notion of violence remains highly subjective as it depends on viewers. The World
Health Organization (WHO) [39] defines violence as: The intentional use of physical
force or power, threatened or actual, against oneself, another person, or against a
group or community that either results in or has a high likelihood of resulting in injury,
death, psychological harm, maldevelopment, or deprivation. According to the WHO,
three types of violence can be distinguished, namely, self-inflicted, interpersonal, and
collective [24]. Each category is divided according to characteristics related to the
setting and nature of violence, e.g., physical, sexual, psychological, and deprivation
or neglect.

In the context of movies and television, Kriegel [23] defines violence on TV as
an unregulated force that affects the physical or psychological integrity to challenge
the humanity of an individual with the purpose of domination or destruction.

These definitions only focus on intentional actions and, as such, do not include
accidents, which are of interest in the use case considered, as they also result in poten-
tially shocking gory and graphic scenes, e.g., a bloody crash. We therefore adopted
an extended definition of violence that includes accidents while being as objective
as possible and reducing the complexity of the annotation task. In MediaEval 2011
and 2012, violence is defined as physical violence or accident resulting in human
injury or pain. Violent events are therefore limited to physical violence, verbal, or
psychological violence being intentionally excluded.

Although we attempted to narrow the field of violent events down to a set of events
as objectively violent as possible, there are still some borderline cases. First of all,
sticking to this definition leads to the rejection of some shots in which the results of
some physical violence are shown but not the violent act itself. For example, shots
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in which one can see a dead body with a lot of injuries and blood were not annotated
as violent. On the contrary, a character simply slapping another one in the face is
considered as a violent action according to the task definition. Other events defined
as “intent to kill,” in which one sees somebody shooting somebody else for example
with the clear intent to kill, but the targeted person escapes with no injury, were also
discussed and finally not kept in the violent set. On the contrary, scenes where the
shooter is not visible but where shooting at someone is obvious from the audio, e.g.,
one can hear the gunshot possibly with screams afterward, were annotated as violent.
Interestingly, such scenes emphasize the multimodal characteristic of the task. Shots
showing actions resulting in pain but with no intent to be violent or, on the contrary,
with the aim of helping rather than harming, e.g., segments showing surgery without
anesthetics, fit into the definition and were therefore deemed violent.

Another borderline case keenly discussed was the events such as shots showing
the destruction of a whole city or the explosion of a moving tank. Technically speak-
ing, these shots do not show any proof of people death or injury, though one can
reasonably assume that the city or the tank were not empty at the time of destruc-
tion. Consequently, such cases, where pain or injury is implicit, were annotated as
violent. Finally, shots showing the violent action and the result of the action itself
happen to be separated by several nonviolent shots. In this case, the entire segment
was annotated as violent if the duration between the two violent shots (action and
result) was short enough (less than 2 s).

8.3.2 Data Description

In line with the use case considered, the dataset consisted of Hollywood movies from
a comprehensive range of genres, from extremely violent to movies without violence.
In 2011, 15 movies were considered and completed by 3 additional movies in 2012.
From these 18 movies, 12 were designated as development data4 in 2011. The three
movies used as test set5 in 2011 where shifted to the development set in 2012 where
three additional movies were provided for evaluation. The list of movies, along with
some characteristics, is given in Table 8.1.

The development dataset represents a total of 26,108 shots in 2012—as given
by automatic shot segmentation—for a total duration of 102,851 s. Violent content
corresponds to 9.25 % of the total duration and 12.27 % of the shots, highlighting the
fact that violent segments are not so scarce in this database. We tried to respect the
genre distribution (from extremely violent to nonviolent) both in the development
and test sets. This appears in the statistics, as some movies such as Billy Elliot or
The Wizard of Oz contain a small proportion of violent shots (around 5 %). The
choice we made for the definition of violence impacts the proportion of annotated
violence in some movies such as The Sixth Sense where violent shots amount to

4 The development data is intended for designing and training the approaches.
5 The test set data is intended for the official benckmarking.
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Table 8.1 Movie dataset (2011 dev. set: first 12 movies; 2011 test set: following 3 movies. 2012
dev. set: first 15 movies; 2012 test set: last three movies)

2012 2011 Movie Dur Sh V-Dur V-Sh

Dev. set Dev. set Armageddon 8680.16 3562 10.16 11.0
Billy Elliot 6349.44 1236 5.14 4.21
Eragon 5985.44 1663 11.02 16.6
Harry Potter 5 7953.52 1891 9.73 12.69
I am Legend 5779.92 1547 12.45 19.78
Leon 6344.56 1547 4.3 7.24
Midnight Express 6961.04 1677 7.28 11.15
Pirates Carib. 1 8239.4 2534 11.3 12.47
Reservoir Dogs 5712.96 856 11.55 12.38
Saving Private Ryan 9751.0 2494 12.92 18.81
The Sixth Sense 6178.04 963 1.34 2.80
The Wicker Man 5870.44 1638 8.36 6.72
Total 83805.9 21608 9.02 14.8

Test set Kill Bill 6370.4 1597 17.47 23.98
The Bourne Identity 6816.0 1995 7.61 9.22
The Wizard of Oz 5859.2 908 5.51 5.06
Total 19045.6 4500 11.55 13.62

Total 102851.5 26108 9.25 12.27
Test set Dead Poets Society 7413.2 1583 1.5 2.14

Fight Club 8005.7 2335 13.51 13.27
Independance Day 8834.3 2652 9.92 13.98

Total 24253.2 6570 8.53 10.88

Dur duration in seconds; Sh number of shots; V-Dur violent shot duration proportion (%); V-Sh
Violent shot proportion (%)

only 2.8 % of the duration. However, the movie contains several shocking scenes of
dead people which do not fit the definition of violence that we adopted. In a similar
manner, psychological violence, such as what may be found in Billy Elliot, was also
not annotated, which also explains the small number of violent shots in this particular
movie.

The violent scenes dataset was created by seven human assessors. In addition to
segments containing physical violence according to the definition adopted, annota-
tions also include high-level concepts potentially related to violence for the visual
and audio modalities, highlighting the multimodal character of the task.

The annotation of violent segments was conducted using a 3 step process, with the
same so-called “master annotators” for all movies. A first master annotator extracted
all violent segments. A second master annotator reviewed the annotated segments
and possibly missed segments according to his/her own judgment. Disagreements
were discussed on a case by case basis, the third master annotator making the final
decision in case of an unresolved disagreement. Each annotated violent segment
contained a single action, whenever possible. In the case of overlapping actions, the
corresponding global segment was proposed as a whole. This was indicated in the
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annotation files by adding the tag “multiple action scene.” The boundaries of each
violent segment were defined at the frame level, i.e., indicating the start and end
frame numbers.

The high-level video concepts were annotated through a simpler process, involv-
ing only two annotators. Each movie was first processed by an annotator and then
reviewed by one of the master annotators.

Seven visual concepts are provided: presence of blood, fights, presence of fire,
presence of guns, presence of cold weapons, car chases and gory scenes. For the
benchmark, participants had the option to carry out detection of the high-level con-
cepts. However, concept detection is not among the task’s goals and these high-level
concept annotations were only provided on the development set. Each of these high-
level concepts followed the same annotation format as for violent segments, i.e.,
starting and ending frame numbers and possibly some additional tags which provide
further details. For blood annotations, a tag in each segment specifies the proportion
of the screen covered in blood. Four tags were considered for fights: only two people
fighting, a small group of people (roughly less than 10), large group of people (more
than 10), distant attack (i.e., no real fight but somebody is shot or attacked at distance).
As for the presence of fire, anything from big fires and explosions to fire coming out
of a gun while shooting, a candle, a cigarette lighter, a cigarette, or sparks was anno-
tated, e.g., a space shuttle taking off also generates fire and receives a fire label. An
additional tag may indicate special colors of the fire (i.e., not yellow or orange). If a
segment of video showed the presence of firearms (respectively cold weapons) it was
annotated by any type of (parts of) guns (respectively cold weapons) or assimilated
arms. Annotations of gory scenes are more difficult. In the present task, they are
indicating graphic images of bloodletting and/or tissue damage. It includes horror or
war representations. As this is also a subjective and difficult notion to define, some
additional segments showing disgusting mutants or creatures are annotated as gore.
In this case, additional tags describing the event/scene are added.

For the audio modality, three audio concepts were annotated, namely, gunshots,
explosions, screams. Those concepts were extracted using the English audio tracks.
Contrary to what is done for the video concepts, audio segments are identified by start
and end times in seconds. Additional tags may be added to each segment to distinguish
different types of subconcepts. For instance, distinction was made between gunshots
and cannon fires. All kinds of explosions were annotated, even magic explosions as
well as explosions resulting from shells or cannonballs in cannon fires. Last, scream
annotations are also provided, however for 9 movies only, in which anything from
nonverbal screams to what was called “effort noise” was extracted, as long as the
noise came from a human or a humanoid. Effort noises were separated from the rest,
by the use of two different tags in the annotation.

In addition to the annotation data, automatically generated shot boundaries with
their corresponding key frames, as detected by Technicolor’s software, were also
provided with each movie.
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8.3.3 Evaluation Rules

Due to copyright issues, the video content was not distributed and participants were
required to buy the DVDs. Participants were allowed to use all information automat-
ically extracted from the DVDs, including visual and auditory material as well as
subtitles. English was the chosen language for both the audio and subtitles channels.
The use of any other data, not included in the DVD (web sites, synopsis, etc.) was
not allowed.

Two types of runs were initially considered in the task, a mandatory shot clas-
sification run and an optional segment detection one. The shot classification run
consisted in classifying each shot provided by Technicolor’s shot segmentation soft-
ware as violent or not. Decisions were to be accompanied by a confidence score
where the higher the score, the more likely the violence. Confidence scores were
optional in 2011 and compulsory in 2012 because of the chosen metric. The segment
detection run involved detection of the violent segment boundaries, regardless of the
shot segmentation provided.

System comparison was based on different metrics in 2011 and 2012. In 2011,
performance was measured using a detection cost function weighting false alarms
(FA) and missed detections (MI), according to

C = Cfa · Pfa + Cmiss · Pmiss (8.1)

where the costs Cfa = 1 and Cmiss = 10 were arbitrarily defined to reflect (a) the
prior probability of the situation and (b) the cost of making an error. Pfa and Pmiss are
the estimated probabilities of respectively false alarms (false positive) and missed
detections (false negative) given the system’s output and the reference annotation. In
the shot classification, the FA and MI probabilities were calculated on a per shot basis
while in the segment level run, they were computed on a per unit of time basis, i.e.,
durations of both references and detected segments are compared. This cost function
is called “MediaEval cost” in all that follows.

Experience taught us that the MediaEval detection cost was too strongly biased
toward low-missed detection rates, leading to systems hardly reaching cost values
lower than 1 and therefore worse than a naive system classifying all shots as violent.
We therefore adopted the Mean Average Precision (MAP) computed over the first
100 top-ranked violent segments as evaluation metric. Note that this measure is also
well adapted to the search-related use case that serves as a basis for our work.

We also report detection error tradeoff curves, showing Pfa as a function of Pmiss
given a segmentation and the confidence score for each segment, to compare potential
performance at different operating points. Note that in the segment detection run,
DET curves are possible only for systems returning a dense segmentation (a list of
segments that spans the entire video): segments not present in the output list are
considered as non violent for all thresholds.
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Fig. 8.1 Evolution of the
participation to the task
between 2011 and 2012

8.4 Results

In 2011, the Affect Task on Violent Scenes Detection was proposed in MediaEval
as a pilot for the first year. Thirteen teams, corresponding to 16 research groups
considering joint submission proposals, declared interest in the task. Finally, six
teams registered and completed the task, representing four different countries, for
a grand total of 29 runs submitted. These figures show the interest for the task for
this first year. This was confirmed in 2012, with the registration of 11 teams, of
which 8 crossed the final line, by sending 36 runs for the evaluation. Interest is
also emphasized by the wide geographic coverage area of teams. Interestingly, the
multimodal aspect of the task shows in the fact that participants come from different
communities, namely the audio and image processing communities. A more detailed
evolution of the task for these two years is summarized in Fig. 8.1.

Official results are reported in Table 8.2. Despite the change of official metric
between 2011 and 2012, MAP values were also computed on the 2011 submissions.
Similarly, the MediaEval cost is reported for 2012. It should nevertheless be noted
that these two metrics imply different tunings of the systems (toward low precision
rate for the MediaEval cost, and on the contrary toward high precision for the MAP),
meaning that metric values should be compared cautiously, as systems were not
optimized in the same way.

In 2011 and 2012, all participants submitted predominantly runs for the shot
classification task. Only the ARF team submitted one segment level run in 2012.
Results show a substantial improvement between 2011 and 2012. Although the over-
all performances of the proposed systems in 2011 were not good enough to satisfy
the requirements of a real-life commercial system, in 2012 three systems reached
MAP@100 values above 60 %, leading to the conclusion that research still needs
to be conducted on this subject, nevertheless state-of-the-art systems already show
convincing performances.

Detection error trade-off curves, obtained from the confidence values provided
by participants, are given in Fig. 8.2 for the best run of each participant according
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Table 8.2 Official results of the 2011 and 2012 Affect task evaluation at MediaEval

Team Country MAP@20 MAP@100 Med. cost
2011 benchmark

ARF Austria-Romania-France – – –
DYNI France 13.81 (31.22) 18.33 (19.07) 6.46 (7.57)
LIG France 23.87 (23.87) 18.01 (18.01) 7.93 (7.93)
NII Japan 40.73 (33.14) 24.78 (27.71) 1 (1)
Shanghai-Hongkong China – – –
TEC∗ France-UK 33.33 (44.94) 21.89 (40.58) 0.76 (0.89)
TUB Germany 4.69 (4.69) 14.29 (14.29) 1.26 (1.26)
TUM Germany-Austria – – –
UNIGE∗ Switzerland 29.28 (29.28) 24.57 (24.57) 2.00 (2.83)

2012 benchmark

ARF Austria-Romania-France 70.08 65.05 3.56
DYNI France 0 12.44 7.96
LIG France 28.64 31.37 4.16
NII Japan 40.07 30.82 1.28
Shanghai-Hongkong China 73.6 62.38 5.52
TEC∗ France-UK 66.89 61.82 3.56
TUB Germany 35.92 18.53 4.2
TUM Germany-Austria 50.42 48.43 7.83
UNIGE∗ Switzerland – – –

In 2011, we report in plain figure results from the best run according to the MediaEval cost and
indicate in parenthesis results corresponding to the best run according to the mean average precision.
Team names indicated with “*” correspond to the task organizers

to the official metric for the year considered. Clearly, ordering of the systems differs
according to the operating point. Once again the direct comparison of the 2011 and
2012 curves is to be considered with caution. Nevertheless, improvements can be
observed between the 2 years. Whereas in 2011, only one participant reached at best
a false alarm rate of 20 % for a missed detection rate of about 25 %, in 2012, at
least two participants have similar results and three more additional teams have fair
results.

Analyzing the 2011 submissions, three different systems categories can be dis-
tinguished. Two participants (NII [26] and LIG [37]) treated the problem of violent
scene detection as a concept detection problem, applying generic systems developed
for TRECVid evaluations to violent scene detection, potentially with specific tuning.
Both sites used classic video only features, computed on the key frames provided,
based on color, textures, edges, either local (interest points) or global, and classic
classifiers. One participant (DYNI [15]) proposed a classifier-free technique exploit-
ing only two low-level audio and video features, computed on each successive frame,
both measuring the activity within a shot. After a late fusion process, decisions were
taken by comparison with a threshold. The last group of participants (TUB [2],
UGE [16] and TI [33]) built dedicated supervised classification systems for the
task of violent scene detection. Different classifiers were used from SVM, Bayesian
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Fig. 8.2 Detection error trade-off curves for all participants in 2011 (a) and 2012 (b)

networks to linear or quadratic discriminant analysis. All used multimodal features,
either audio-video or audio-video-textual features (UGE). Features were computed
globally for each shot (UGE, TI) or on the provided key frames (TUB).
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In 2012, systems were all supervised classification systems; LIG [10] and NII [25]
went on with some improved versions of their generic systems dedicated to concept
detection, while others implemented dedicated versions of such systems for the task
of violent scene detection. Chosen classifiers were mostly SVM, with some excep-
tions for neural networks and Bayesian networks. It should be noted that most par-
ticipants [1, 10, 13, 22, 35, 38] voted for multimodal (audio+video) systems and
that multimodality seems to help the performance of such systems. Globally, classic
low-level audio (MFCC, zero-crossing rate, asymetry, roll-off, etc.) and video (color
histograms, texture-related, Scale Invariant Feature Transform-like, Histograms of
Oriented Gradients, visual activity, etc.) features were extracted. One exception may
be noted with the use of multi-scale local binary pattern histogram features by
DYNI [30]. Added to those classical features, audio and video mid-concept detection
was also used for this second year [10, 22, 25, 38], thanks to the annotated high-
level concepts. Such mid-level concepts, especially used in a two-step classification
scheme [38], seem to be promising.

Based on these results, one may draw some tentative conclusions about the global
characteristics that were more likely to be useful for violence detection. Local video
features (SIFT-like) did not add a lot of information to the systems. On the contrary,
taking advantage of different modalities seems to improve performance, especially
when modalities are merged using late fusion. Although results do not prove their
impact in one way or another, it also seems of interest to use temporal integration.
This was carried out in different manners in the systems, either by using contextual
features, i.e., features at different times, or by temporal smoothing or aggregation of
the decisions at the output of the chain. Using intermediate concept detection with
high-level concepts related to violence such as those provided in the task seems to
be rewarding.

8.5 Multimodal Approaches

Progress achieved between 2011 and 2012 can probably be explained by two main
factors. Data availability is undoubtedly the first one, along with experience on the
task. Exploiting multimodal features is also one of the keys. While many systems
made very limited use of multiple modalities in 2011, multimodal integration became
more widely spread, mostly relying on the audio and visual modalities.

We provide here details for two multimodal systems which competed in 2012,
namely the ARF system based on mid-level concepts detected from multimodal input
and the Technicolor/IRISA system which directly exploits a set of low-level audio
and visual features.
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Fig. 8.3 Description of ARF teams’s system developed for MediaEval 2012 (black boxes refer to
classifiers)

8.5.1 A Mid-Level Concept Fusion Approach

We describe the approach developed by the ARF team [21, 38], relying on fusing
mid-level concept predictions inferred from low-level features by employing a bank
of multilayer perceptron classifiers featuring a dropout training scheme.

The motivation of this approach lies in the high variability in appearance of violent
scenes in movies and the low amount of training data that is usually available. In
this scenario, training a classifier to predict violent frames directly from visual and
auditory features seems rather difficult. The system proposed by ARF team uses
the task provided a high-level concept ground-truth to infer mid-level concepts as an
intermediate step toward the final violence detection goal, thus attempting to limit the
semantic gap. Experiments proved that predicting mid-level concepts from low-level
features should be more feasible than directly predicting all forms of violence.

8.5.1.1 Description of the System

Violence detection is first carried out at frame level by classifying each frame as being
violent or nonviolent. Segment level prediction (shot level or arbitrary length) is then
determined by a simple aggregation of frame level decisions. Given the complexity of
this task, i.e., labeling of individual frames rather than video segments (ca. 160,000
frames per movie), the classification is tackled by exploiting the inherent parallel
architecture of neural networks. The system involves several processing steps as
illustrated in Fig. 8.3.

Multimodal features: First, raw video data is converted into content descriptors
whose objective is to capture meaningful properties of the auditory-visual informa-
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tion. Feature extraction is carried out at the frame level. Given the specificity of
the task, the system was tested using audio, color, feature description, and temporal
structure information, which is specific both for violence-related concepts as well
as for the violent content itself. Results reported in 2012 were obtained with the
following descriptors:

• audio descriptors (196 dimensions) consist of general purpose descriptors: lin-
ear prediction coefficients, line spectrum pairs, MFCCs, zero-crossing rate, and
spectral centroid, flux, rolloff, and kurtosis, augmented with the variance of each
feature over a window of 0.8 s around the current frame6;

• color descriptors (11 dimensions) using the color naming histogram proposed
in [12] which maps colors to 11 universal color names ( “black”, “blue”,“brown”,
“gray”, “green”, “orange”, “pink”, “purple”, “red”, “white”, and “yellow”);

• visual features (81 dimensions) which consist of the 81-dimensional Histogram
of Oriented Gradients [29];

• temporal structure (1 dimension) derives a measure of visual activity. The cut detec-
tor in [20] that measures visual discontinuity by means of a difference between
color histograms of consecutive frames, was modified to account for a broader
range of significant visual changes. For each frame it determines the number of
detections in a certain time window centered at the current frame. High values of
this measure will account for important visual changes that are typically related
to action.

Neural network classification: Both at the concept level and at the violence level,
classification is carried out with a neural network, namely a multilayer perceptron
with a single hidden layer of 512 logistic sigmoid units. Network is trained by gradient
descent on the cross-entropy error with backpropagation [36], using the recent idea
in [19] to improve generalization: For each presented training case, a fraction of input
and hidden units is omitted from the network and the remaining weights are scaled up
to compensate. The set of dropped units is chosen at random for each presentation of
a training case, such that many different combinations of units will be trained during
an epoch.

Concept detection consists of a bank of perceptrons that are trained to respond to
each of the targeted violence-related concepts, such as presence of “fire,” presence
of “gunshots,” or “gory” scenes (see Sect. 8.3.2). As a result, a concept prediction
value in [0, 1] is obtained for each concept. These values are used as inputs to
a second classifier, acting as a final fusion scheme to provide values for the two
classes “violence” and “nonviolence” on a frame-by-frame basis. For all classifiers,
parameters were trained using reference annotations coming along with the data.

Violence classification: Frame prediction of violence for the unlabeled data is given
by the system’s output when fed with the new data descriptors. As prediction is pro-
vided at frame level, aggregation into segments is performed by assigning a violence
score corresponding to the highest predictor output for any frame within the segment.
The segments are then tagged as “violent” or “nonviolent” depending on whether

6 The Yaafe toolkit for audio feature extraction was used.
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Table 8.3 ARF team violence shot-level detection results at MediaEval 2012

Run Modality Precision (%) Recall (%) F1-score (%)

ARF-(c) Concepts 46.14 54.40 49.94

ARF-(a) Audio 46.97 45.59 46.27

ARF-(av) Audio-visual 32.81 67.69 44.58

ARF-(avc) Audio-visual 31.24 66.15 42.44

ARF-(v) Visual 25.04 61.95 35.67

their violence score exceeds a certain threshold (determined in the training step of
the violence classifier).

8.5.1.2 Results

Results are evaluated on the shot classification task and on the segment detection
one.

Shot level classification: To highlight the contributions of the concept fusion scheme,
different feature combinations were tested, namely: ARF-(c) uses as features only
mid-level concept predictions for violence detection; ARF-(a) uses only audio
descriptors, i.e., the violence classifier is trained directly on features instead of using
the concept prediction outputs; ARF-(v) uses only visual features; ARF-(av) uses
only audio-visual features; finally, ARF-(avc) uses all concepts and audio-visual
features using an early fusion aggregation of concept predictions and features.

Results on the 2012 benchmark, reported in Table 8.3, exhibited a F-measure of
49.9 which placed the system among the top systems. The lowest discriminative
power is achieved using only visual descriptors (ARF-(v)), with an F-measure of
35.6. Compared to visual features, audio features seem to show better descriptive
power, providing an F-measure of 46.3. The combination of descriptors (early fusion)
tends to reduce their efficiency and yields lower performance than the use of concepts
alone, e.g., audio-visual (ARF-(av)) yields an F-measure of 44.6, while audio-visual-
concepts (ARF-(avc)) achieve 42.4.

Figure 8.4 details the precision-recall curves for this system. The use of concepts
fusion scheme (red line) proved again to provide significantly higher recall than the
sole use of audio-visual features or the combination of all for a precision of 25 %
and above.
Arbitrary segment-level results: At the segment detection level, the use of the
fusion of the mid-level concepts achieves average precision and recall values of
42.21 and 40.38 %, respectively, while the F-measure is 41.3. This yields a miss rate
(at time level) of 50.69 % and a very low false alarm rate of only 6 %. These results
are promising considering the difficulty of precisely detecting the exact time interval
of violent scenes, but also the subjectivity of the human assessment (reflected in the
ground truth).
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Fig. 8.4 ARF system
precision-recall curves [21]

8.5.2 Direct Modeling of Multimodal Features

We describe here the approach adopted in the joint submission of Technicolor and
IRISA in 2012, which directly models a set of multimodal features to infer violence
at the shot level. Relying on Bayesian networks and, more specifically, on structure
learning in Bayesian networks [18], we investigate multimodal integration via early
and late fusion strategies, together with temporal integration.

8.5.2.1 Description of the System

Figure 8.5 provides a schematic overview of the various steps implemented in Tech-
nicolor’s system. Violence detection is performed at the shot level via direct modeling
of audio and visual features aggregated over shots. Classification is then performed
either based on the entire set of multimodal features or independently for each modal-
ity. In this last case, late fusion is used to combine modalities. In both cases, temporal
information can be used at two distinct levels: in the model with contextual features
or as a postprocessing step to smooth decisions taken on a per shot basis.

Multimodal features: For each shot, different low-level features are extracted from
both the audio and the video signals of the movies:

• Audio features: the audio features, extracted using 40 ms frames with 20 ms over-
lap, are: the energy (E), the frequency centroid (C), the asymmetry (A), the flatness
(F), the 90 % frequency roll-off (R), and the zero-crossing rate (Z) of the signal.
These features are normalized to zero mean and unit variance, and averaged over
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Fig. 8.5 Description of the technicolor/IRISA system at MediaEval 2012

the duration of a shot, in order to obtain a single value per shot for each feature.
The audio feature vector dimension is D = 6;

• Video features: the video features extracted per shot are: the shot length (SL), the
mean proportion of blood color pixels (B), the mean activity (AC), the number of
flashes (FL), the mean proportion of fire color pixels (FI), a measurement of color
coherence (CC), the average luminance (AVL), and three color harmony features,
the majority harmony template (Tp), the majority harmony template mean angle
(Al), and the majority harmony template mean energy (Em) [3]. The feature vector
dimension is D = 10.

Features are quantized in 21 bins on a per movie basis, except for the majority
template whose values are already quantized over 9 bins.

Bayesian network classification: Bayesian networks are used as a classification
technique. The idea behind Bayesian networks is to build a probabilistic network on
top of the input features with a node in the network for classification of violence.
The network represents conditional dependencies and independencies between the
features, and it is possible to learn the structure of the graph using structure learning
algorithms. The output of the classifier is, for each shot, the estimated posterior
probabilities for each class, viz., violence and nonviolence.

We compared a so-called naive structure, which basically links all the features
to the class variable, with structures learned using either forest-augmented networks
(FAN) [28] or K2 [7]. The FAN structure consists in building a tree on top of the
naive structure based on some criterion related to classification accuracy. On the
contrary, the K2 algorithm does not impose the naive structure but rather attempts
a better description of the data based on a Bayesian information criterion, thus not
necessarily targeting better classification.

Temporal integration: Two strategies for integrating temporal information were
tested. The first one is a contextual representation of the shots at the input of the
classifier, where classification of a shot relies on the features for this shot augmented
with the features from the neighboring shots. If we denote Fi the features for shot i,
the contextual representation of shot i is given by:
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Fω
i := {Fi−n, Fi−n+1, . . . , Fi−1, Fi , Fi+1, . . . , Fi+n−1, Fi+n} (8.2)

where the context size was set to n = 5 (empirically determined).
In addition to contextual representation, we also used temporal filtering to smooth

the shot by shot independent classification, considering two types of filters:

• a majority vote over a sample window of size k = 5, after thresholding the prob-
abilities.

• an average of the probabilities over a sliding window of size k = 5, before thresh-
olding the probabilities.

Contrary to averaging, majority vote does not directly provide a confidence score
in the decision taken. We implemented the following heuristics in this case. For a
given shot, if the vote results in violence, the confidence score is set to min{P(Sv)},
where P(Sv) is the set of probabilities of the shots that were considered as violent
within the window. If the vote results in a nonviolent decision, the confidence score
is set to max{P(Snv)}, where P(Snv) is the set of probabilities of the shots that were
considered as nonviolent within the window.

Multimodal integration: As for multimodal integration, early fusion and late fusion
are compared. Early fusion consists in the concatenation of the audio and the video
attributes in a common feature vector. The violence classifier is then learned using
this feature vector. Late fusion consists in fusing the outputs of both a video classifier
and an audio classifier. In order to fuse the outputs of the ith shot, the following rule
is used:

Psi
fused(Psi

va
, Psi

vv
) =

⎧
⎨

⎩

max{Psi
va , Psi

vv } if both decisions are violent
min{Psi

va , Psi
vv } if both decisions are nonviolent

Psi
va · Psi

vv otherwise
(8.3)

where Psi
va (resp. Psi

vv ) is the probability that shot i is violent as given by the audio
(respectively video) classifier. This simple rule of thumb yields a high score when
both classifiers agree on violence, and a low score when they agree on nonviolent.

8.5.2.2 Results

We first compare the different strategies implemented using cross- validation over
the 15 development movies, leaving one movie out for test on each fold. We then
report results for the best configuration on the official 2012 evaluation.

The MAP@100 values obtained in cross-validation for the audio only, the video
only, and the early fusion experiments are presented in Table 8.4. For the late fusion
experiments, all classifier combinations, i.e., the naive structure, the FAN, or the
K2 networks, with or without context, with or without temporal filtering, have been
tested. The seven best combinations are presented in Table 8.5.

It is interesting to note that, while the FAN networks are supposed to perform well
in classification, they are outclassed by the K2 and the naive structures in these exper-
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Table 8.4 MAP@100 values obtained via cross-validation

Network structure Context Audio Video Early fusion
1 2 3 1 2 3 1 2 3

Naive No 36.3 39.4 38.4 25.4 30.0 27.9 36.0 40.3 37.5
Yes 36.9 36.2 37.3 31.1 30.8 31.3 38.5 37.1 38.5

FAN No 26.9 30.9 29.3 22.4 26.9 25.0 29.0 34.7 34.8
Yes 20.1 20.6 21.4 25.5 27.4 26.9 25.6 26.2 26.1

K2 No 36.3 39.1 37.8 26.0 30.7 29.0 37.4 40.9 39.2
Yes 36.1 39.0 37.0 27.0 27.5 27.9 32.3 32.3 33.2

Results are reported for the audio and the video modalities, and for early fusion. For each
modality, column 1 corresponds to no temporal filter, column 2 to a sliding window averaging,
and column 3 to a majority vote

Table 8.5 Results obtained for the seven best late fusion parameter combinations

Sa Ca Sv Cv Tc Tlf MAP@100

K2 No Naive Yes 1 2 43.18
K2 Yes Naive Yes 3 2 42.59
K2 Yes Naive Yes 1 2 42.55
K2 Yes Naive Yes 2 2 42.53
Naive No Naive Yes 3 2 42.45
K2 No Naive Yes 3 3 42.36
Naive No Naive Yes 3 3 42.32

Sa Audio structure, Ca Audio context, Sv Video structure, Cv Video context, Tc Temporal filter
applied to the classifiers, Tlf Temporal filter applied after late fusion

iments. As for the other two types of structure, they both seem to provide equivalent
results, which shows that structure learning is not always beneficial. One must also
note that, if the influence of context is not always clear for the modalities presented
in Table 8.4, temporal filters systematically improve the results, thus showing the
importance of the temporal aspect of the signal. However, it is not possible to say
which filter provides the best performances. Finally, the importance of multimodal
integration is clearly shown as the best results were obtained via both early and late
fusions. The importance of temporal integration is further reinforced by the results
obtained via late fusion: among the best combinations, the contextual naive structure
is always used for the video modality, and a temporal filter is always used after the
fusion step. Moreover, it seems that late fusion performs better than early fusion.

The system chosen and submitted to the 2012 campaign is the best system obtained
via late fusion. This system uses a noncontextual K2 network for the audio modality,
a contextual naive network for the video modality, and a sliding window probability
averaging filter after the fusion. It is applied to the test movies and the obtained
results are presented in Table 8.6.

The first thing to note is that results are much better than in the cross-validation
experiments (∈ +18 %). Taking a closer look at the individual results for each movie,
it appears that the lowest results are obtained for the movie Fight Club, while for
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Table 8.6 Results obtained on the test movies

Movie P R F1 MAP@100 MC

Dead poet society 5.06 64.71 9.38 60.56 4.09

Fight club 25.14 58.06 35.09 53.15 3.70

Independence day 26.22 75.20 38.89 71.76 1.35

Total 21.72 67.27 32.83 61.82 3.57

Column P corresponds to the Precision, R to the Recall, F1 of the F1-measure, and MC to the
MediaEval Cost. The values in the MAP@100 column presented for each movie actually correspond
to the average precision over the first hundred top-ranked samples (AP@100), the MAP@100 being
the value in the Total row

the other systems presented in the 2012 campaign, the lowest results were usually
obtained for Dead Poet Society. This is encouraging as, contrary to the other systems,
this system was able to cope with such a nonviolent movie. The “low” results obtained
for Fight Club can be explained by the very particular type of violence present in
this movie, which might be under-represented in the training database. Similarly, the
good results obtained for Independence day can be explained by its similarity with
the movie Armageddon present in the training set.

These results clearly emphasize again the importance of multimodal integration,
through late fusion of classifiers. Finally, the overall result of 61.82 for the MAP@100
is already convincing for the evolution of the task towards real-life commercial
systems.

8.6 Conclusions

Running the Violent Scene Detection task in the framework of the MediaEval bench-
mark initiative for 2 years have resulted in two major results: a comprehensive data
set to study violence detection in videos, with a focus on Hollywood movies; state-of-
the-art multimodal methods which establish a baseline for future research to compare
with. Results in the evaluation, demonstrated by the two systems described in this
chapter, clearly emphasize the crucial role of multimodal integration, either for mid-
level concept detection or for direct detection of violence. The two models compared
here, namely Bayesian networks and neural networks, have proven beneficial to learn
relations between audio and video features for the task of violence detection.

Many questions are still to be addressed, among which we believe two to be
crucial. First, Bayesian networks with structure learning, as well as neural networks,
implicitly learn the relations between features for better classification. Still, it was
observed that late fusion performs similarly. There is therefore a need for better
models of the multimodal relations. Second, mid-level concept detection has proven
beneficial, reducing the semantic gap between features and classes of interest. There is
however, still a huge gap between features and concepts such as gunshots, screams, or
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explosions, as demonstrated by various experiments [21, 34]. An interesting idea for
the future is that of inferring concepts in a data-driven manner, letting the data define
concepts whose semantic interpretation is to be found post-hoc. Again, Bayesian
networks and neural networks might be exploited to this end, with hidden nodes
whose meaning have to be inferred.
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Chapter 9
Fusion Techniques in Biomedical Information
Retrieval

Alba García Seco de Herrera and Henning Müller

Abstract For difficult cases clinicians usually use their experience and also the
information found in textbooks to determine a diagnosis. Computer tools can help
them supply the relevant information now that much medical knowledge is available
in digital form. A biomedical search system such as developed in the Khresmoi
project (that this chapter partially reuses) has the goal to fulfil information needs of
physicians. This chapter concentrates on information needs for medical cases that
contain a large variety of data, from free text, structured data to images. Fusion
techniques will be compared to combine the various information sources to supply
cases similar to an example case given. This can supply physicians with answers
to problems similar to the one they are analyzing and can help in diagnosis and
treatment planning.

9.1 Introduction

Clinicians generally base their decisions for diagnosis and treatment planning on a
mixture of acquired textbook knowledge and experience acquired through real-life
clinical cases [39]. Therefore, in the medical field, two knowledge types are generally
available [32]:

• explicit knowledge: to the already well-established and formalized domain knowl-
edge, e.g., textbooks or clinical guidelines;

• implicit knowledge: individual expertise, organizational practices, and past cases.
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When working on a new case that includes images, clinicians analyze a series of
images together with contextual information, such as the patient age, gender, and
medical history as these data can have an impact on the visual appearance of the
images. Since related problems may have similar solutions, clinicians use past situ-
ations similar to the current one to determine the diagnosis and potential treatment
options, information that is also transmitted in teaching, where typical or interest-
ing cases are discussed and used for research [32, 52]. Thus, the goal of a clinician
is often to solve a new problem by making use of previous similar situations and
by reusing information and knowledge [1], also called case-based reasoning. The
problem can be defined in four steps, known as the four ‘res’ [16, 32]:

1. Retrieve the most similar case(s) from the collection;
2. Reuse them, and more precisely their solutions, to solve the problem;
3. Revise the proposed solution;
4. Retain the current case in the collection for further use.

In this chapter, we focus on the retrieval step because the retrieval of similar cases
from a database can help clinicians to find the needed information [39, 45]. In
the retrieval step a search over the documents in the database is performed using
the formulation of the information need that can include text and images or image
regions. Relevant documents are ranked depending on the degree of similarity to a
given query case or the similarity to the information need. The most relevant cases are
then proposed on the top of the list and can be used to solve the current problem [4].

Text analysis and retrieval has been successfully used in various medical fields
from lung disease, through cardiology, eating disorders, to diabetes and Alzheimer’s
disease [25]. Text in the anamnesis are often the first data available and based on the
initial analysis other exams are ordered.

In addition to the text in the anamnesis, another initial data source for diagnosis are
the images [52]. Visual retrieval has become an important research area over the past
more than 15 years also for medical applications [45]. In the past, the most common
visual descriptors used for visual retrieval systems were the color histograms, texture
features such as Gabor filters and simple shape measures [45]. In recent years, visual
words have had most often the best results in object recognition or image retrieval
benchmarks [18] and have become the main way of describing images with a variety
of basic features such as SIFT (Scale Invariant Feature Transform) [28] and also
texture or color measures.

In terms of medical cases, images are always associated with either text or struc-
tured data and this can then be used in addition to the visual content analysis for
retrieval. Most often text retrieval has much better performance than visual retrieval,
describing the context in which the images were taken. Furthermore, there is an evi-
dence that the combination or fusion of information from textual and visual sources
can improve the overall retrieval quality [17, 27]. Whereas visual retrieval usually
has good early precision and low recall, text retrieval generally has a high recall.
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Combination of image and text search can be done as follows [15]:

• Combine results (ranked lists) of visual and text retrieval for the final results;
• Use visual retrieval to rerank results lists of text retrieval;
• Use text retrieval to rerank results lists of visual retrieval;
• Use image analysis and classification to extract relevant information from the

images (such as modality types, anatomic regions, or the recognition of specific
objects in the images such as arrows) to filter results lists or rerank them.

In 2013, the Center of Informatics and Information Technology group CITI pre-
sented the Nova MedSearch1 as a medical multimodal (text and image) search engine
that can retrieve either similar images or related medical cases [33]. Case-based
retrieval taking into account several images and potentially other data of the case has
also been proposed by other authors over the past 7 years [37, 52]. Due to the many
challenges in biomedical retrieval, research has been attracting increasing attention,
and many approaches have been proposed [27].

The remainder of the chapter is organized as follows. Section 9.2 describes the text
and visual retrieval and discusses several fusion approaches. The biomedical task and
a evaluation framework are presented in Sect. 9.3. In Sect. 9.4 the Khresmoi system
is presented as well as the experiments carried out on existing fusion techniques to
combine multiple sources. Finally, conclusions are given in Sect. 9.5.

9.2 Visual and Text Information Retrieval

To search through the large amount of data available there is a need for tools and
techniques that effectively filter and automatically extract information from text and
visual information. Text-based and visual-based methods [22] can in our scenario be
used for the retrieval.

9.2.1 Text Retrieval

Most biomedical search engines, also systems searching for images, have been based
on text retrieval, only. Sources of biomedical information can be scientific articles
and also reports from the patient record [47]. The various parts of the text such
as title, abstract, figure captions can then be indexed separately. Some examples for
general search tools that have also been used in the biomedical domain are the Lucene,
Essie, or Terrier information retrieval (IR) libraries. Lucene2 is a open source full-text
search engine. The advantage of Lucene is its simplicity and high performance [31].
Lucene was chosen for the experiments shown in Sect. 9.4 because it is fast and

1 http://medical.novasearch.org/
2 http://lucene.apache.org/

http://medical.novasearch.org/
http://lucene.apache.org/
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Fig. 9.1 Shape and SIFT
(Scale Invariant Feature
Transform) information can
be extracted from the visual
content of the images. In
the left, the regions detected
by a key-region detector
are shown. In the right, the
arrows represent the center,
scale, and orientation of the
keypoints detected by the SIFT
algorithm

easy to install and use. Essie [23] is a phrase-based search engine with term and
concept query expansion and probabilistic relevancy ranking. It was also designed
to use terms from the Unified Medical Language System (UMLS). Terrier3 is also
an open source platform for research and experimentation in text retrieval developed
at the University of Glasgow. It supports most state-of-the-art retrieval models such
as Dirichlet prior language models, divergence from randomness (DFR) models, or
Okapi BM25.

9.2.2 Visual Retrieval

Users of biomedical sources are also often interested in images for biomedical
research or medical practice [38], as the images carry an important part of the infor-
mation in articles. Rather than using text queries, in content-based image retrieval
systems, images are indexed and retrieved based on their visual content (image fea-
tures) such as color, texture, shape, and spatial location of image elements. This
allows to use visual information to find images in a database similar to examples
given or with similar regions of interest. Figure 9.1 shows examples of the visual
information that can be extracted from the images.

The most commonly used features for visual retrieval can be grouped into the
following types [22]:

• Color: Several color image descriptors have been proposed [5] such as simple color
histograms, a color extension to the Scale Invariant Feature Transform (SIFT) [42]
or the Bag of Colors [19];

• Texture: Texture features have been used to study the spacial organization of pixel
values of an image like first-order statistics, second-order statistics, higher order
statistics, and multiresolution techniques such as wavelet transform [43].

• Shape: Various features have been used to describe shape information, including
moments, curvature, or spectral features [53].

3 http://terrier.org/

http://terrier.org/
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Fig. 9.2 Examples of images with annotations found in the ImageCLEFmed database. Annotations
emphasize specific regions of the image according to special attributes of the highlight region such
as lesions or structures important for the case

Some systems, such as img (Anaktisi),4 FIRE5 (Flexible Image Retrieval Engine)
or LIRE6 (Lucene Image REtrieval), allow content-based image retrieval by various
visual descriptors and various combinations of descriptors.

In the following, we present some of the processing steps that can potentially
improve the retrieval quality of images from the biomedical literature when fusing
them with text and/or visual retrieval, particularly for retrieval from the biomedical lit-
erature: region-of-interest (ROI) identification, image classification, and multipanel
figure separation methods.

9.2.2.1 Region-of-Interest Identification

Annotations in images such as arrows are frequently used in images in the biomedical
literature (see Fig. 9.2). If the marked regions can then be linked with text describing

4 http://orpheus.ee.duth.gr/anaktisi/
5 http://thomas.deselaers.de/fire/
6 http://www.lire-project.net/

http://orpheus.ee.duth.gr/anaktisi/
http://thomas.deselaers.de/fire/
http://www.lire-project.net/
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Fig. 9.3 Examples of images of various types that can be found in the biomedical literature
a Ultrasound b Electron microscopy c PET d Light microscopy

the images, this can be used for retrieval of focused parts of image [40], so retrieving
the regions of interest and not entire images. Several approaches have been used
in the literature. For instance, Cheng et al. [10] segmented arrow candidates by a
global thresholding-based method followed by edge detection. Also Seo et al. [44]
developed a semantic ROI segmentation. An attention window is created and a quad-
tree-based ROI segmentation is also applied to remove meaningless regions.

9.2.2.2 Image Categorization

In the biomedical literature images can be of several types, some of which corre-
spond to medical imaging modalities such as ultrasound, magnetic resonance imaging
(MRI), X-ray, and computer tomography (CT) (see examples in Fig. 9.3). Detecting
the image type automatically can help in the retrieval process to focus, for exam-
ple, on one modality or to remove nonclinical images entirely from the retrieval.
Image categories can be integrated into any retrieval system to enhance or filter
its results [49], improving the precision of the search [24] and reducing the search
space to a set of relevant categories [41]. Furthermore, classification methods can
be used to offer adaptive search methods [51]. Using image types as a filter is often
requested by clinicians as an important functionality of a retrieval system [30]. Some
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Fig. 9.4 The image class hierarchy proposed in ImageCLEFmed 2013 campaign for the image
classification task

Web-accessible retrieval systems such as Goldminer7 or Yottalook8 allow users to
filter the search results by modality [36].

ImageCLEF9 proposes a hierarchy of image types for document images occurring
in the biomedical open access literature [17], Fig. 9.4 shows the proposed hierarchy.
For more details on the ImageCLEF campaign see Sect. 9.3.2. Once the image type
information is extracted, the predicted types can be integrated into the search results
to generate a final result list. Information on image types can be used in various
ways in the retrieval. The following approaches have been used to integrate the
classification into the results [49]:

• Filtering: Discarding the images of which the predicted type is different to the
query. Thus, when filtering using the image type only potentially relevant results
are considered;

• Reranking: Reranking the initial results with the image type information. The goal
is to improve the retrieval ranking by moving relevant documents toward the top
of the list based on the categorization;

• Score fusion: Fusing a preliminary retrieval score SR with an image classification
score SM using a weighted sum: α · ST + (1 − α) · SM , where SR and ST are
normalized. This approach allows to adjust the parameter α to emphasize the
retrieval score or the categorization results.

7 http://goldminer.arrs.org/
8 http://www.yottalook.com/
9 http://imageclef.org/

http://goldminer.arrs.org/
http://www.yottalook.com/
http://imageclef.org/
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Fig. 9.5 Examples of compound figures found in the ImageCLEFmed database. These examples
show mixed modalities in a single figure and several images from the same modality in the same
figure. Red lines separate the subfigures. a Microscopy and chromatography; b Mixed modalities;
c Graphs and microscopy

9.2.2.3 Compound Figure Separation

Compound or multipanel figures (figures consisting of several sub figures) constitute
a very large proportion of the images found in the biomedical literature. Image
retrieval systems should be capable of distinguishing the parts of compound figures
that are relevant to a given query. Compound figure separation is, therefore, a required
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first step to retrieving focused figures [17]. Figure 9.5 contains several examples of
compound figures.

Several approaches have been published for separating figures from text in scanned
documents [12] and specifically, for separating compound figures in the biomed-
ical literature [2, 9, 11]. Chhatkuli et al. [11] proposed a compound figure separa-
tion technique based on systematic detection and analysis of uniform space gaps.
Demner-Fushman et al. [13] determined if an image contains homogeneous regions
that cross the entire image. An hybrid clustering algorithm based on particle swarm
optimization with a fuzzy logic controller was presented by Cheng et al. [9] to locate
related figure components. Using a figure and its associated caption, Apostolova
et al. [2] determined if the figure consisted of multiple panels to then separate the
panels and the corresponding caption part.

9.2.3 Fusion of Multimodal Features

To combine visual and text search several fusion techniques can be used. Such com-
binations can lead to better results than single modalities. Text retrieval often has
much better performance than visual retrieval in medical retrieval [17], therefore the
right combination strategies need to be chosen to really improve performance. This
section describes several approaches for information fusion that have been used in
the past [14]. To combine the results/features of multiple query images into a single
ranked list two main fusion strategies were used depending on how the multiple
results from the feature extraction are integrated: early and late fusion. Early fusion
integrates unimodal features before making any decision (see Fig. 9.6). Since the
decision is then based on all information sources, it enables a truly multimodal fea-
ture representation [48]. Unimodal feature vectors are concatenated into one vector
using a weighting scheme. Rocchio’s algorithm can also be applied to merge the
vectors of the same feature spaces into a single vector.

qm = αqo + β
1

|Ir |
∑

i j ∈Ir

i j − γ
1

|Inr |
∑

i j ∈Inr

i j

where α, β and γ are weights, im is the modified query, io is the original query, Ir is the
set of relevant documents/images and Inr is the set of nonrelevant documents/images.
Only the second term of the right part of the equation is used to merge vectors when
nonrelevant documents/images are concerned [18].

Late fusion consists of a combination of independent results from various
approaches, e.g., text and visual approaches. The ranked lists of retrieval results
are fused and not the features (see Fig. 9.7).

Two main categories of late fusion techniques exist based on which information is
used, namely score-based and rank-based methods. In order to obtain a final ranking
of a document d fusion techniques are required to reorder documents based on various
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Fig. 9.6 General scheme for early fusion

Fig. 9.7 General scheme for late fusion

descriptor lists. An overview of fusion techniques commonly used for the biomedical
domain is given below:

• Score-based methods:

– Linear combination
LN(d) = αSt (d) + βSv(d)

where St and Sv are the textual and visual scores of the document d;
– combSUM

combSUM(d) =
N j∑

j=1

S j (d)

with N j being the number of descriptors to be combined and S(i) is the score
assigned to document d;

– combMNZ
combMNZ(d) = F(d) ∗ combSUM(d)



9 Fusion Techniques in Biomedical Information Retrieval 219

where F(d) is the frequency of document d being returned by one input system
with a nonzero score;

– combMAX
combMAX(d) = arg max

j=1:N j
(S j (d))

– combMIN
combMIN(d) = arg min

j=1:N j
(S j (d))

– combPROD

combPROD(d) =
N j∏

j=1

S j (d)

• Rank-based methods:

– Reciprocal rank fusion:

RRFscore(d) =
∑

r∈R

1

k + r(d)

where R is the set of rankings assigned to the documents;
– Borda

Borda(d) =
∑

r∈R

r(d).

9.3 Biomedical Retrieval

In this section, a biomedical retrieval scenario is investigated. An evaluation frame-
work for biomedical retrieval systems is proposed by ImageCLEFmed and this
chapter uses the same framework to make results comparable with the state of the
art.

9.3.1 Medical Scenario

A biomedical retrieval system should correspond to real practical informations and
be evaluated based on a corresponding scenario. Several user surveys and analyses of
search log files have been done for obtaining the place of text and visual information
in retrieval, mainly in radiology [34, 35, 50]. Based on these user analyses the
tasks in ImageCLEFmed were developed. Particularly, radiologists frequently search
for images and have a need to search for visual abnormalities linked to specific
pathologies. Usually, not the entire image is of interest but rather small regions
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of interest [46]. In the past, text retrieval for these tasks has obtained much better
information that visual retrieval [17], but combinations can profit from the advantages
of the two.

Currently, the use of only visual information still achieves low retrieval perfor-
mance in this task and the combination of text and visual search is improving and
seems promising [17].

9.3.2 ImageCLEFmed: An Evaluation Framework

ImageCLEF10 is the image retrieval track of the Cross Language Evaluation Forum
(CLEF)11 [6]. One of the main goals of the medical task of ImageCLEF (Image-
CLEFmed) [17] is to investigate the effectiveness of combining text and images for
medical image- and case-based retrieval [14]. Several tasks have been proposed over
the years since 2004, always in a very end user-oriented way based on surveys or log
files analyses. In 2013, four tasks were organized:

• Image-based retrieval;
• Case-based retrieval;
• Modality classification;
• Compound figure separation.

The image-based retrieval task has been running since 2004 with changing databases.
The goal of this task is to retrieve images for a precise information need expressed
through text and example images. Figure 9.8 shows one of the 35 topics distributed
to the participants in 2013.

The case-based task was first introduced in 2009. This task aims to retrieve cases
that are similar to the query case and are useful in differential diagnosis. Each topic
consists of a case description with patient demographics, limited symptoms and test
results including imaging studies (but not the final diagnosis). An example of a topic
can be seen in Fig. 9.9.

Since 2010, the modality classification task has been running. The goal of this task
is to classify images into image types that can be medical modalities or other types
occurring in the biomedical literature. More information can be found in Sect. 9.2.2.2.

In 2013, a compound figure separation task was added as a large portion of images
in the literature turn out to be compound figures.

The ImageCLEFmed evaluation framework gives access to the tools developed
for the described tasks including databases and ground truth. These tools were used
to conduct the fusion experiments presented in Sect. 9.4.

10 http://imageclef.org/
11 http://www.clef-initiative.eu/

http://imageclef.org/
http://www.clef-initiative.eu/
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Fig. 9.8 Images from one of the topics in the image-based retrieval task of ImageCLEFmed 2013.
They correspond to the textual query “pneumothorax CT images” that is also expressed in French,
German, and Spanish

Fig. 9.9 Images from one of the topics in the case-based retrieval task of ImageCLEFmed 2013.
They correspond to the textual query “A 56-year-old woman with Hepatitis C, now with abdominal
pain and jaundice. Abdominal MRI shows T1 and T2 hyperintense mass in the left lobe of the liver
which is enhanced in the arterial phase”
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Table 9.1 Results of the
approaches at the ImageCLEF
case-based retrieval task
when using only text retrieval

Run MAP Bpref P10 P30

Best textual ImageCLEF run 0.2429 0.2417 0.2657 0.1981
Textual 0.1791 0.1630 0.2143 0.1581

9.4 Khresmoi and Evaluation of Fusion Techniques

To search through large amounts of biomedical data, the Khresmoi12 project is devel-
oping a multilingual multimodal search and access system for medical and health
information and documents [3].

In this section, the work on text and visual fusion as part of Khresmoi is presented.
More on the employed fusion techniques can also be found in [21]. The experiments
use the ImageCLEFmed 2013 database of the case-based task described in Sect. 9.3.2.

For text retrieval, Apache Lucene was used (see Sect. 9.2.1). The results achieved
with this approach on the case-based task of ImageCLEF is shown in Table 9.1.

For visual retrieval, a combination of the following descriptors were extracted to
incorporate color and texture information from the images [20]:

• color and edge directivity descriptor (CEDD) [7];
• bag of visual words using SIFT, Scale Invariant Feature Transform, (BoVW) [28];
• fuzzy color and texture histogram (FCTH) [8];
• bag of colors (BoC) [19];
• BoVW with a spatial pyramid matching [26] (BoVW-SPM);
• BoC with n × n spatial grid (Grid BoC).

To enhance visual retrieval several fusion strategies described in Sect. 9.2.3 were
tested to combine results of each of the query images and of several visual descriptors
of the same image. Table 9.2 shows the results of the visual retrieval using this
combination of fusion rules.

The results of the combination of text and visual approach are shown in Table 9.3.
The visual approach selected for these combination used RRF for query fusion and
combSUM for the fusion of the descriptors, obtaining the best results in terms of
MAP (MAP = 0.0037) and P30 (P30 = 0.0067) (see Table 9.2).

Although in previous ImageCLEF campaigns, the mixed submissions sometimes
achieved worse performance than the textual runs, the best result among all the
experiments carried out on this chapter was obtained using a linear combination
of text and visual search (MAP = 0.1795). The weight of each rank was defined
by a function of their performance in terms of MAP, where the best MAP scores
obtained using text (MAP(T ) = 0.1293) and visual (MAP(V ) = 0.0204) search in
ImageCLEFmed 2011 [29] were employed. Despite the lower performance of the
visual and textual approaches compared with the runs submitted to ImageCLEFmed
2013, the fusion of visual and text retrieval outperform the best multimodal approach

12 http://www.khresmoi.eu/

http://www.khresmoi.eu/
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Table 9.2 Results of the approaches for the ImageCLEF case-based retrieval task when using
various fusion strategies for visual retrieval. Query and descriptor fusion is combined

Queries fusion Descriptors fusion MAP Bpref P10 P30
Best visual ImageCLEF run 0.0281 0.0335 0.0429 0.0238

Rocchio Borda 0.0004 0.0092 0 0
Rocchio combMAX 0.0004 0.0096 0 0.0029
Rocchio combMIN 0.0002 0.0093 0 0.0019
Rocchio combMNZ 0.0008 0.0084 0.0029 0.0048
Rocchio combSUM 0.0006 0.0084 0.0029 0.0038
Rocchio RRF 0.0005 0.0085 0 0.0038
Borda Borda 0.0005 0.0060 0 0.0019
Borda combMAX 0.0004 0.0066 0 0.0019
Borda combMIN 0.0002 0.0124 0 0
Borda combMNZ 0.0009 0.0055 0.0029 0.0038
Borda combSUM 0.0005 0.0060 0.0029 0.0029
Borda RRF 0.0012 0.0061 0.0086 0.0057
combMAX Borda 0.0006 0.0062 0.0066 0.0019
combMAX combMAX 0.0006 0.0089 0.0057 0.0029
combMAX combMIN 0.0003 0.0156 0 0.0019
combMAX combMNZ 0.0036 0.0077 0.0114 0.0057
combMAX combSUM 0.0021 0.0077 0.0086 0.0067
combMAX RRF 0.0013 0.0066 0.0086 0.0048
combMIN Borda 0.0005 0.0077 0.0029 0.0029
combMIN combMAX 0.0006 0.0091 0.0086 0.0038
combMIN combMIN 0.0003 0.0172 0 0.0019
combMIN combMNZ 0.0032 0.008 0.0086 0.0057
combMIN combSUM 0.0015 0.0079 0.0057 0.0057
combMIN RRF 0.0011 0.0060 0.0086 0.0067
combMNZ Borda 0.0005 0.0061 0.0029 0.001
combMNZ combMAX 0.0004 0.0077 0 0.0038
combMNZ combMIN 0.0001 0.0111 0 0.001
combMNZ combMNZ 0.0029 0.0058 0.0086 0.0067
combMNZ combSUM 0.0011 0.0053 0.0057 0.0057
combMNZ RRF 0.0008 0.0055 0.0029 0.0038
combSUM Borda 0.0005 0.006 0.0029 0.0019
combSUM combMAX 0.0005 0.0084 0.0057 0.0038
combSUM combMIN 0.0002 0.0127 0 0.0019
combSUM combMNZ 0.0033 0.0075 0.0086 0.0076
combSUM combSUM 0.0014 0.0067 0.0086 0.0067
combSUM RRF 0.0009 0.0051 0.0029 0.0048
RRF Borda 0.0005 0.0057 0 0.0019
RRF combMAX 0.0004 0.0070 0 0.0038
RRF combMIN 0.0002 0.0121 0 0
RRF combMNZ 0.0037 0.0129 0.0086 0.0067
RRF combSUM 0.0011 0.0060 0.0086 0.0067
RRF RRF 0.0010 0.0047 0.0029 0.0057



224 A. García Seco de Herrera and H. Müller

Table 9.3 Results of the approaches for the ImageCLEF case-based retrieval task when using
various fusion strategies to combine visual and textual information

Visual + textual fusion MAP Bpref P10 P30
Best ImageCLEF run 0.1608 0.1426 0.1800 0.1257

Borda 0.1302 0.1230 0.1371 0.1105
combMAX 0.1770 0.1625 0.2143 0.1571
combMIN 0.1505 0.157 0.2171 0.1438
combMNZ 0.1197 0.1257 0.1714 0.1133
combSUM 0.1741 0.1609 0.2229 0.161
RRF 0.1084 0.1011 0.1543 0.1114
LN 0.1795 0.1627 0.2086 0.1571

submitted to ImageCLEFmed 2013. This shows the importance of the multimodal
fusion.

Sections 9.2.2.2 and 9.2.2.3 describe the modality classification and compound
figure separation tasks. Both can be fused with text and visual retrieval to improve
the quality of the systems but this has not yet been implemented in our approach. The
modality classification of Khresmoi approached achieved an accuracy of 69.63 %.
Moreover, the compound figure separation approach obtained the best accuracy of
all the ImageCLEF 2013 participants (84.64 %) [20]. There seems to be potential for
improving performance including these techniques into the retrieval process.

9.5 Conclusions

In their practical work, clinicians have information needs when taking informed deci-
sions. Their work sometimes involves search for similar past cases.To help clinicians
in their daily routine, several information retrieval approaches involving visual and
text retrieval are proposed.

This chapter describes the methods to combine both visual and textual information
in a biomedical retrieval system. In the context of the Khresmoi project, experiments
on text and visual fusion were done using the ImageCLEFmed 2013 database. Despite
the low performance of the visual approaches on the case-based task, the fusion
of text and visual techniques are improving the quality of the retrieval. Applying
weighted linear combination of text and visual retrieval ranks, results outperform the
best multimodal runs submitted at ImageCLEFmed 2013 with a MAP of 0.1795. It
demonstrates the effectiveness of proposed the multimodal framework. Moreover,
image analysis can be applied to enhance the quality of retrieval system. Image
classification and compound figure separation are common techniques that can be
integrated into a retrieval systems to improve the performance of a simple text or
visual retrieval. The system achieved and accuracy of 69.63 % at the ImageCLEFmed
2013 modality classification task and 84.64 % at the compound figure separation task.
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Future work will focus on integration the modality classification and compound figure
separation into the retrieval system to show that they can contribute to improve the
retrieval.
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Chapter 10
Using Crowdsourcing to Capture
Complexity in Human Interpretations
of Multimedia Content

Martha Larson, Mark Melenhorst, María Menéndez and Peng Xu

Abstract Large-scale crowdsourcing platforms are a key tool allowing researchers
in the area of multimedia content analysis to gain insight into how users interpret
social multimedia. The goal of this article is to support this process in a practical
manner that opens the path for productive exploitation of complex human interpre-
tations of multimedia content within multimedia systems. We first discuss in detail
the nature of complexity in human interpretations of multimedia, and why we, as
researchers, should look outward to the crowd, rather than inward to ourselves, to
determine what users consider important about the content of images and videos.
Then, we present strategies and insights from our own experience in designing tasks
for crowdworkers. Our techniques are useful to researchers interested in eliciting
information about the elements and aspects of multimedia that are important in the
contexts in which humans use social multimedia.

10.1 Introduction

The world in which we live is complex. It is made up of many interacting elements
and aspects. Our understanding of the world is based not only on what is going on,
but also on where it is taking place and who is involved. Given the intricacy of this
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interplay in the world around us, it is unsurprising that when we make multimedia
recordings of that world (i.e., take a picture or capture a video) that these are also by
nature complex. The purpose of this article is to provide a useful characterization of
the nature of this complexity, as well as practical insight that will support researchers
in social multimedia in tackling complex human interpretations.

Initially, the decision to address complex human interpretations of multimedia
seems to open Pandora’s box. Since we do not assume the existence of any principles
that would exclude particular human interpretations, we are forced to allow, at least
in theory, any interpretation to be assigned to any image or video. Seen in this way,
admitting the complexity of human interpretation to the study of multimedia appears
to create an unbounded problem.

This contribution of this chpater is to offer a perspective that makes it possi-
ble to take the initial steps of confronting complexity without formulating it as an
unbounded problem. We advocate that complexity should be first recognized, and
then the aspects of complexity that are most important to users should be isolated
and tackled. The chapter illustrates some key contributions that can be made by
large-scale crowdsourcing platforms, i.e., systems capable of collecting answers to
specific questions from a large number of people.

The insights of the article are intended to be useful to allow multimedia researchers
to move from focusing their research on simple descriptions of multimedia, to
investigating techniques that address descriptions that are more complex and, for
this reason, have the potential to be more directly useful to the users of multime-
dia systems. This chapter, in some respects, can be considered a complete mirror
image of much of the literature written in the area of multimedia content analysis. It
focuses on what humans do with multimedia, rather than what algorithms can do. It
is independent of any particular multimedia content analysis technology: no specific
features or automatic analysis algorithms are mentioned. Finally, many of the insights
provided by this chapter take the form not of answers, but questions that should be
asked when carrying out multimedia research. We choose this form in order to keep
the focus of the chapter not on what current technology can accomplish, but rather on
productive routes of inquiry. Specifically, we are interested in techniques that have
recently become more feasible to pursue, but that we are currently still in danger of
overlooking.

It is important to note that in this chapter we focus on human interpretations of
the literally depicted content of images and video. Specifically, we are interested
in annotations contributed by users that address the questions about an image or a
video: “What does this show?” and “What is this about?” In other words, we are in-
terested in “objective” descriptions of multimedia, i.e., descriptions that focus on the
object in question, the “what”. The chapter includes a comparison with “subjective”
descriptions of multimedia, i.e., descriptions that focus on the reaction of subject,
(e.g., the emotional response or esthetic preference of the human user) and discusses
the implications of the differences.

The chapter is structured into two parts. The first part (Sects. 10.2–10.3) discusses
how humans interpret multimedia. In Sect. 10.2, we explain why handling the com-
plexity of human interpretations is important for multimedia systems, and provide
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additional examples of contrasting multimedia descriptions involving simple con-
cepts and multimedia descriptions involve complex interpretations. Then, in Sect. 10.3,
we delve more deeply into the nature of complex interpretations, including the depen-
dency of interpretation on context and the relationship between complexity and other
notions discussed in the literature. The second part of the chapter (Sects. 10.4–10.5)
discusses crowdsourcing and its role in eliciting complex interpretations of multime-
dia from large groups of people. In Sect. 10.4, we briefly introduce crowdsourcing
for multimedia, and discuss its added value. In Sect. 10.5, we cover an example that
illustrates crowdsourcing at work to collect complex interpretations. This example
leads to a presentation of specific crowdsourcing techniques and a discussion of their
limitations. We finish with a conclusion and outlook in Sect. 10.6.

10.2 The Importance of Human Interpretations

We begin with the observation that upon first considerations it seems natural that the
nature of human interpretation should be easy to grasp. After all, we are all human
and engage in processes of interpretation constantly in our daily lives. However,
as it turns out, just like we need a mirror if we want to look at our own eyes, we
need external tools to understand our own complex interpretations. In this chapter,
we will argue that crowdsourcing is the source of an external tool well suited for
this purpose. However, before we turn to crowdsourcing, we discuss in depth why
complex human interpretations are important for multimedia systems and exactly
what we mean when we say a human interpretation is complex.

10.2.1 Human Interpretations of Multimedia in Multimedia
Systems

Multimedia systems are systems that provide users with access to collections of
multimedia content, via search, recommendation, or browsing. Such systems are able
to take advantage of descriptions of multimedia that encode human interpretations.
These descriptions make possible a close match between the needs of users and
content in the collection.

A prime example of a multimedia system that exploits human interpretations is
an image search engine that uses tags assigned by uploaders sharing their images
online in order to match user queries with relevant items. However, although tags
and annotations that are contributed by users who upload or interact with content are
valuable, they do not fully characterize human interpretations of multimedia. Tags
are known to be sparse, and the information that they provide partial, at best. For these
reasons, multimedia content analysis, i.e., the automatic generation of multimedia
descriptions, holds great promise to improve the usefulness of multimedia systems
for users.
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Arguably, the most daunting challenge facing researchers in the area of multimedia
content analysis is the sheer diversity of multimedia. The diversity is especially
challenging in the case of social multimedia on the Internet, whose characteristics
are highly unpredictable. As they work to develop methods to bridge the semantic
gap, the difference between machine representations (i.e., pixel patterns) and human
understanding, researchers struggle to find techniques that are capable of generalizing
in the face of wide variability. Much multimedia content analysis research involves
addressing diversity on the “machine side” of the semantic gap. For example, visual
concept detection attempts to develop methods that can robustly generalize over
different visual appearances of instances of entities belonging to the same conceptual
class.

However, diversity in multimedia also exists on the “human side” of the semantic
gap. Different people will say different things about the same image, when they are
asked what the image depicts. Answers vary depending on where or when people are
asked. For forms of multimedia content that go beyond images, the same observation
holds: people provide different answers when asked what a video is about.

This chapter, as mentioned above, opens relevant questions and supplies some
practical ideas and techniques for researchers who are interested in creating mul-
timedia content analysis algorithms that are sensitive to the complexity of human
interpretation of multimedia. The ultimate goal is to contribute to improving algo-
rithms that generate automatic descriptions of multimedia content, and are useful for
multimedia systems.

10.2.2 Complex Interpretations and Next Generation
Multimedia Analysis

If human interpretations of multimedia are complex, it is not surprising that descrip-
tions involving simple concepts fall short of capturing the range of what can be seen
in an image or what is shown in a video. Yet, much current work in the area of
multimedia focuses on simple concepts. For example, it aims to process images to
detect animals from a typical inventory such as would be depicted in a children’s
picture dictionary.

The appeal of simple concepts for the multimedia community lies in three factors:
the likelihood that their encodings are relatively stable (e.g., visually invariant), the
likelihood that they are well represented within multimedia collections, and the idea
that they can be combined compositionally into more complex representations. We
discuss each of these in turn.

Consider the two images in Figure 10.1. Comparison between the images suggests
that the depiction of the simple concept “Golden Retriever” is visually similar across
images, making it possible to train a concept detector. The Web yields a large number
of “Golden Retriever” images. Should there not be enough “Golden Retriever” data
to train a good concept detector, it is possible to back off to the more general concept
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“dog”. Some sacrifice must be made on the visual stability across representations of
dogs in different images, but it is safe to assume that tens of thousands of images to
train a dog detector can be readily obtained from the Web. Finally, it seems relatively
straightforward that in order to identify images fitting the description, “Golden Re-
triever in the snow,” a useful approach would be to decompose the problem, i.e., to
detect “Golden Retriever” and then detect “snow” and intersect the two result sets.

These considerations have driven much of the work on multimedia content analy-
sis. In particular, we mention the work of Dong Liu et al. [14], in the area of “Tag
ranking”. This work uses the image on the right in Fig. 10.1 as an example. This
article cites the tags that have been assigned by the uploader to this image and states
that the most relevant tag is “dog” (cf. [14, p. 351], Fig. 10.1). The tag “dog” occupies
the fifth position in the uploader-assigned tag list, and is preceded by the tags, “alex”,
“meditating”, “love”, and “winter”. Without doubt, it is productive for a researcher
in the area of multimedia content analysis to assume that the tag “dog” is most in-
teresting in this list. With high probability, it is for this tag that one could collect the
largest amount of relatively visually stable data. This data could be used to train a
model capable of automatically generating the label “dog” as a description for this
image.

However, there are a number of reasons why it has recently become both interest-
ing and feasible to move beyond using simple concepts to characterize multimedia.
First, there has been a growing realization that the perfect “dog” detector is only a
partial solution to building a useful multimedia retrieval system. There are thousands
of images on the Internet depicting dogs. Focusing on “Golden Retrievers” does not
narrow the problem significantly. A system that returns that large number of undif-
ferentiated “dog” or “Golden Retriever” results is not supporting users in closing in
on images that have a tight fit with their information needs. The image on the right
in Fig. 10.1 is not even a particularly good dog picture, since it does not portray the
dog canonically, but rather, the dog’s eyes are closed. In sum, the tag “dog” does not
provide a particularly satisfying characterization of this image.

Second, with the advent of crowdsourcing, to be discussed in detail later in this
chapter, it is no longer necessary to assume that descriptions for images must be
generated by fully automatic approaches. Instead hybrid approaches that combine
human intelligence and machine computation can be used to generate image de-
scriptions. Hybrid approaches have already been applied with a great deal of success
to the case of simple concepts [29]. However, human judgments are more subtle
and richer. For a human, it is easy to see in the image on the right in Fig. 10.1 that
the dog’s eyes are closed, and that its face is illuminated by a light source. These
are outward signs that conventionally indicate that a human depicted in an image is
meditating. A human interpreting this image realizes instantly that, if the dog is an-
thropomorphized, the label “meditating” is a good fit. This example is an illustration
of a complex interpretation of an image. Since modern systems are able to consult
human intelligence in the form of the crowd, in addition to carrying out computation,
it is no longer necessary to consider “meditating,” or other complex interpretations,
to be a less relevant for images. In other words, the semantic gap need no more be
considered to represent an absolute barrier.
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Fig. 10.1 In the case of social multimedia, a simple concept, like “dog”, does not always adequately
describe an image. Flickr credit Andrea Arden (Left) and Andrew Morrell Photography (Right)

Third, a priori, it is not clear that there exist no complex interpretations that
are associated with visual stability within a given multimedia collection. Take for
example the tag “love” on the right image in Fig. 10.1. Upon first consideration, it
seems like it would be impossible to generalize over the visual content of images
representing “love.” However, a second look reveals that the depth of field of this
image is quite shallow. The shallowness can be seen because the Golden Retriever is
in focus and the background is blurry. When a photographer uses this technique, it
gives rise to a feeling of spatial closeness and intimacy. This photographic technique
has a visual reflex that creates a commonality between images interpreted as depicting
“love.” There are a large number of images on the Web that depict “love” in this way.
Note we are not arguing that the depth of field is a strong indicator for “love,” but
rather that it is an indicator that is not initially expected. This example supports the
point that it could hold back the progress of research in multimedia content analysis to
assume, without further investigation, that complex interpretations never have stable
manifestations at the level of signal.

Fourth, it is unclear if researchers are making the right decision to blindly assume
the usefulness of principles of compositionality. The Standford Encyclopedia of
Philosophy [30] describes the principle of compositionality by stating, “the meaning
of a complex expression is fully determined by its structure and the meanings of
its constituents—once we fix what the parts mean and how they are put together,
we have no more leeway regarding the meaning of the whole.” It goes on to state,
that this principle is presupposed by most contemporary works in semantics. It is
important to note that some work treating “complexity” in multimedia, actually
treats compositional combinations of simple concepts, e.g., [18, 35]. Such queries
are complex in that they involve multiple parts, but the relationship between the
parts is transparent and does not involve complex interpretation. Inherently, there is
nothing wrong with compositionality. “Divide and conquer” is a solid strategy that
is useful for solving many problems. In its formative stages of the research area, the
problem of multimedia content analysis was so formidable, that researchers really
had no other choice than to try to break it down, solve individual pieces, and then build
up solutions. Now, however, we stand at a moment in which the field has developed
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Fig. 10.2 Images illustrating
a case in which a complex
concept (“wilted flower”)
might be both more important
to users and easier to auto-
matically detect than a simple
concept, i.e., “hibiscus” (left)
versus “tulip” (right). Flickr
Credit Grant MacDonald (left)
and Mrs. Magic (right)

far enough that it is possible to go back and reconsider our dependence of such
techniques. Concretely, a noncompositional approach to multimedia means directly
targeting the description “wilted flower,” for the images in Fig. 10.2, rather than
attempting to first detect “flower” and then combine it with the notion of “wilted.”

The images in Fig. 10.2 serve to motivate the insight that when researchers focus on
detecting simple concepts, they may be forcing themselves to face an unnecessarily
difficult challenge. The flower on the left is hibiscus and the one on the right is a
tulip. These flowers have a different appearance in these images than they would in
the canonical photos typically used to portray these types of flowers. If, however,
what is important to the user is that the flower is wilted, and not the identity of the
flower, then it makes sense, to skip the simple concept entirely, and jump directly to
the complex interpretation “wilted flower.” We would like to explicitly point out the
relationship between this type of complexity and the work of [3], which proposes an
inventory of visual noun pairs based one emotionally colored adjective noun pairs.
Here, we do not restrict ourselves to aspects of multimedia with emotional aspects,
and also are not specifically interested in adjective noun pairs. However, we mention
[3] here, since the idea of moving away from simple concepts to create concepts
more closely related to user interpretations is a common underlying theme.

In sum, in the past, simple concepts have served well to advance the field of
multimedia content analysis. However, we now have the possibilities at our dis-
posal to address multimedia in terms of complex human interpretations. In the next
subsection, we make our notion of complex human interpretations more concrete
and provide additional illustrations of why it is imperative that multimedia content
analysis takes them into account.

10.2.3 Simple Concepts Versus Complex Interpretations

Two definitions allow us to more formally distinguish a description of multimedia
content that involves a simple concept and a complex interpretation. Note that the pur-
pose of these definitions is not to completely characterize “simple concepts” versus
“complex interpretations,” but rather to provide a diagnostic to help in differentiat-
ing them. The purpose of such a diagnostic is to support researchers in identifying
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Fig. 10.3 Images described by a simple concept, here, “Phillips screwdriver” (left) and a complex
interpretation, here, “birdhouse” (right). Flickr credit loonyhiker

cases in which they might assume that they are dealing with a simple concept, but
in which it would be more productive to look at the problem in terms of complex
interpretations.

Multimedia description involving a simple concept: A description of an image or a video
that it does not make sense to question. The validity of the description can be defined with
respect to a conventionally accepted external authority.

Multimedia description involving a complex interpretation: A description of an image
or a video that is acceptable given a particular point of view. The complex interpretation
is often accompanied by an explanation of the point of view. It is possible to question the
description by offering an alternative explanation. It does not make sense to reference a
single, conventionally accepted external authority.

In Fig. 10.3, two images serve to illustrate the difference between a description
involving a simple concept and one involving a complex interpretation. The image on
the left is described by the simple concept, “Phillips screwdriver.” Because this image
depicts a standard tool, there is also an obvious conventional source of authority that
can validate the applicability of the description to the image. In this case, if we would
like to identify that authority specifically, it is the toolmaker, Stanley. Note that it is
not necessary to actually consult that authority to label this image. The mere existence
of an authority that can be readily associated with this image, already establishes that
it does not make sense to question whether the image depicts the simple concept or
not.

The image on the right is described by the complex interpretation, “birdhouse.”
We consider “birdhouse” to be a complex interpretation of this image because it is
possible to contest its appropriateness as a description of the image. For example,
a human looking at the image could plausibly take point of view that because it is
shaped like a beehive it should be interpreted as “beehive”. Alternately, someone
could say that because it is hanging indoors no birds could possibly be living in it
and it should be interpreted as “living room accessory.”
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In sum, in this subsection, we have introduced definitions to formalize the notions
of simply concepts and complex interpretations. The strength of the definitions is not
in their absolute ability to characterize these notions, but rather in their ability to allow
us to distinguish the two. In the next subsection, we turn to examine the limitations of
simple concepts in describing multimedia, and the issues that arise when a complex
interpretation is unnaturally forced into the form of a simple concept.

10.2.4 The Limitations of Simple Concepts
for Describing Multimedia

We illustrate the use of multimedia descriptions involving simple concepts in research
on multimedia concept analysis by discussing an example of a multimedia ontology,
LSCOM [13]. The ontology has been used widely for multimedia concept detection
tasks, e.g., TREC Video Retrieval Evaluation (TRECVid ) [28]. These tasks involve
automatically assigning semantic tags representing visual or multimodal concepts
to segments of video. TRECVid has a track record of having productively exploited
simple multimedia concepts in order to advance the state of the art of multimedia
content analysis.

Human judges use LSCOM to annotate video by watching the video and assign-
ing the concepts in the ontology to individual video shots. The human annotators
annotated the images by making references to definitions formulated to characterize
the concepts. For example, “artillery” is defined by the LSCOM task with the sen-
tence, “artillery includes mortars but not tank guns” [13]. This definition represents a
simple concept used to describe multimedia according to the definition above. Note
that the situations in which “artillery” is used are a priori well-defined. The use of the
concept “artillery” is limited to military-related settings and humans who participate
in military or combat activities share a common understanding of what “artillery” is
used for and what the concept refers to. The ultimate authority on whether an image
or video depicts “artillery” lies with someone who has had military training. In other
words, the military provides an authoritative definition that can be used to resolve
questions of interpretative variation. Note that we do not claim that it is technically
simple to automatically determine whether or not an image or a video depicts the
simple concept “artillery”. Rather, we point out that “artillery” is a simple concept
from the point of human understanding.

Next to “artillery” the concept of “dresses” is also included in LSCOM. The
concept of “dresses” serves to reveal the limitation of simple concepts. Since styles
vary widely across time, region, and social convention, there is no single, obvious
authority that can be consulted in order to create a definition of “dresses”. The
LSCOM definition of “dresses” is “People wearing dresses or gowns Arab men tend
to wear them. Also of course women in dresses. The dresses should at least reach the
knees” [13]. In contrast to “artillery”, it is relatively easy to argue that this definition
represents one interpretation of “dresses”, but that other interpretations should also be
considered admissible. For example, the definition excludes dresses depicted without
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people, i.e., as they occur in shop windows or certain clothing catalogs. Situations are
imaginable, for example, online shopping or personal photo album creation, where
users might be surprised by the exclusion of dress-models shorter than knee-length
from the definition of “dresses”. This example illustrates that if a system forces a
complex interpretation to be covered by a simple concept, it can radically fail to
capture the way in which an image would be understood or used by a human user.

One tempting approach is to “fix” the simple definition of the concept by extending
it each time an exception is encountered. For example, one could append the following
sentence to the definition, “…dresses depicted on hangers or on mannequins should
also be included.” However, this solution proves to be unhelpful with respect to
the larger picture. If a concept is to be broadened, it is important not to broaden it
arbitrarily, since it will lose its meaning, i.e., its ability to isolate a usefully constrained
set of multimedia items from the larger pool. This problem of meaning loss is already
reflected in the fact that the definition in LSCOM conflates Western-style women’s
“dresses” with men’s robes in a non-Western setting. Such a conflation is inconsistent
with which dictionary definitions of the word “dress” and also obscures the distinction
between categories as “thobe” and “galabiya”. The definition of “dresses” in LSCOM
provides a compelling illustration that simple concepts will not always be appropriate
to characterize multimedia in a way that is consistent with the vantage points of the
users of a multimedia retrieval system.

Thus far, we have argued for the importance of addressing complexity in human
interpretations of multimedia. We have presented definitions that can be used to
distinguish “simple concepts” and “complex interpretations” and have discussed the
dangers of conflating the two. In the next section, we go on to discuss the nature of
complex interpretations in greater depth.

10.3 The Origins of Complex Interpretations

As stated in the introduction, in this article, we advocate that complexity of human
interpretations of multimedia should be first recognized, and then the aspects of
complexity that are most important to users should be isolated and tackled. As a step
to recognizing complexity, in this section we discuss the conditions that give rise
to complex interpretations. Then, we discuss the nature of complex interpretations,
in particular, relating the discussion of complex interpretations in this article to
existing notions familiar from multimedia research, such as “affective impact” and
“subjectivity”.

10.3.1 Context and Complexity

In this section, we elaborate further on our initial observation that different people
assign different interpretations to the same multimedia, and that these differences
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Fig. 10.4 Images used by a bicycle parts website for the purpose of illustrating the different bicycle
parts that they sell can be characterized by simple concepts (http://www.fiets-onderdelen-online.nl)

depend on when and where the interpretation is being made. We regard the aspects
of when and where as the context in which the multimedia is being interpreted.

Hypothetically, we can consider the number of contexts in which multimedia can
be interpreted to be infinite. Practically speaking, however, it is useful to narrow con-
texts down to include only the specific ways in which people frequently or typically
use multimedia. Within a context, we can expect the range of interpretations assigned
to the same multimedia content by different interpreters to be radically restricted. We
base this expectation on the assumption that in a given context, multimedia is used
as a form of communication. We do not commit ourselves to particular expectations
concerning the strength of the consensus among people using multimedia with a
given context. Instead, we simple build from the insight that if everyone assigns a
different interpretation to an image within a context, the context will be unable to
support human communication and become irrelevant. This insight makes it reason-
able for us to assume that a common context must be characterized by a minimum
level of consensus.

Let us begin with an example of a context of use: a website selling bicycle parts
that uses images to depict the parts, as illustrated by the examples in Fig. 10.4.
This context admits very little variation in human interpretation. The images can
be described with simple concepts, e.g., “cantilever brake,” that identify the items
offered for sale by the website.

In the context of this website, it is safe to feel confident in assuming that humans
interpret these images to depict the bicycle parts that are being sold. We can exclude,
for example, that they are meant to record an interesting experience of the photog-
rapher, or demonstrate certain techniques for taking a photograph. Since the images

http://www.fiets-onderdelen-online.nl
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are used within a clearly specified context, multimedia researchers can expect that
simple concepts will provide useful descriptions and are a good choice.

Note that, theoretically, it is not impossible that someone would frame an image
of the “cantilever brake” from this website and hang it on their wall as art. However,
in doing so, this person is not acting according to the purpose of the existence of
the shopping website, namely, buying and selling bicycle parts. Instead, the person
has taken the image outside of the context of its use. The challenge that faces the
multimedia researcher is how to delineate the context. The bike parts website is
relatively simple to handle, since it has a well-defined purpose. In general, however,
it is important that in advance of developing multimedia content analysis algorithms,
the multimedia researcher understands the type of multimedia system in which the
algorithms are to be used. The ultimate system for which the algorithms are intended
will define the context of use. This context imposes limitations of the interpretations
of visual content that automatically generated descriptions of multimedia content
should admit.

The rise of social multimedia has also seen the rise of contexts in which images
are used for a broad range of purposes. In such situations, what on the surface appears
to be a single context (e.g., a photo sharing website) is ultimately more productively
understood as a multiplicity of a large number of subcontexts that overlap, evolve,
and elude precise delineation. Ignoring or repressing the complexity of possible
interpretations in these contexts threatens to cut off the possibility of finding solutions
to the underlying problem. For example, an image of a quilt is a picture of a cozy
sleeping cover (i.e., something that makes a bed comfortable), but it is also a picture
of a craftwork (i.e., something that was made by hand following an age-old tradition).

Note that we are not stating that the image is ambiguous. Note that a quilt neither
implies nor necessitates either a bedcover or a craft. Rather, the point that we are
making is that when this image is used in the context of a social image-sharing
website (i.e., Flickr), it can be equally well be described in either way, depending on
the point of view taken. The two descriptions exist legitimately side-by-side within
the context. In our view, the key to handling such cases is to consult many human
interpreters in order to gather large amounts of information that reflect the range of
perspectives that people take on social multimedia online. We do not aim to cover
every single possible interpretation, but rather we wish to analyze the interpretations
and find the dominant ones. In other words, we identify those interpretations that
are most important to users when they are creating, sharing, and consuming the
multimedia material. We then add these dominant interpretations to the aspects of
multimedia that we design our multimedia content analysis algorithms to cover. Such
collection of information is made possible by the use of crowdsourcing platforms,
which we will return to discuss in detail later.

The sensitivity of interpretation to context can be illustrated by imagining the
image in Fig. 10.5 in another context, for example, on the website of a quilting
competition. Here, a description that characterizes the image as depicting a bedcover
or a quilt conveys little information. Instead, aspects of the image such as the exact
pattern of the blocks in the quilt, the colors used by the quilter, and the quality of
the quilting work becomes important. Multimedia content analysis developed for a
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Fig. 10.5 Image shared on
Flickr, serving as an example
of an image best described
with a complex interpretation.
Flickr credit lisaclarke

multimedia system used by a quilting competition website requires entirely different
multimedia descriptions.

The challenges faced by researchers are making an informed decision about which
context is being addressed, collecting information on the scope of possible human
interpretations of multimedia in this context, and deciding which interpretations
should be considered dominant, and for this reason most useful to form the basis of
multimedia descriptions. Note that this process effectively addresses the problematic
example discussed above, in which the concept of “dresses” was expanded to include
men’s robes. We acknowledge that, technically, it may be useful for a multimedia
content analysis system to leverage a “Non-trousers garment” category that conflates
men’s robes and women’s dresses. Visually, this category is presumably distinguished
by the presence of a human with no discernible legs. However, the system must also
be able to make the distinctions necessary to describe images in a way that reflects
that interpretations given them by users in the context of use of the system.

10.3.2 Context Abhors a Vacuum

Context is a challenge for multimedia research, since it is very difficult to measure
or control. Researchers are often tempted to approach the problem of generating
descriptions of multimedia by first ignoring context, with the idea that it will be
added later. However, multimedia content does not arise out of a void, rather is
always created with a context. A human looking at, for example, an image necessarily
attempts to recreate that context. This attempt is a natural and inherent part of the
effort to understand the image. In this subsection, we make the point that it is critical
for multimedia researchers to understand that human interpretations may be impacted
by context, even in cases where context has been carefully removed, or does not
obviously appear to be present.
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Fig. 10.6 Two images of cars. These images trigger the human interpreter to reconstruct a context,
with great likelihood this context is “car show”. Flickr credit harry_nl (Left) and ptyntofmyld
(Right)

We express this point by the phrase, “Context abhors a vacuum.” When a multi-
media content item (i.e., an image or a video) is presented to a human viewer without
any indication of where it was taken or what it is used for, the interpretation that the
viewer gives to that item will be impacted by the viewer’s attempt to construct or
reconstruct a context for that image.

We present two different sources of evidence that human interpreters create or
assume a context for an image during the process of interpretation. The first source
of evidence is practical. Consider the two images of cars in Fig. 10.6.

These images fit with the simple concept description “car.” However, unless the
human interpreters have been explicitly asked, “Tell me only whether or not the
image depicts a car,” they will not simply say, “car” and move on. Rather they will
note that these cars are not portrayed in motion, that they have no drivers, that they
are the central objects in the photo, that they appear to be on display, and that the
relevant context for both images is cars being shown at car shows. It is important to
realize that human interpreters are not able to look at these images and not also see
something in addition to “car.” Instead, humans naturally, and largely unconsciously,
fill in the blanks in order to create a context.

The second source of evidence that human interpreters create or assume a context
comes from accommodation of presupposition, a mechanism that humans use to
interpret natural language. In the field of linguistics, much formal work has been
devoted to understand the mechanics of presupposition. Presupposition in human
language is complex, but Beaver and Geurts provide an accessible overview [2].
Here, we present a short, informal explanation of presupposition. Presupposition is
information that is not directly asserted by the person who says a sentence. Rather,
the truth of the information is taken for granted. For example, in the course of a
conversation between two people, one person can suddenly say out of context, “I
need to pick my cat up from the vet now.” The person is explicitly stating that he
needs to go to the vet. He is not explicitly stating that he has a cat. Rather, the
sentence takes for granted that he has a cat. His interlocutor may not have known
that the speaker has a cat and decide to state, “Oh, I didn’t know that you had a cat.”
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However, critically, it is not necessary for the larger context (i.e., that the person
has a cat, that the cat needed to go to the vet) to have been previously discussed or
explicitly clarified in order for the sentence, “I need to pick my cat up from the vet
now.” to be used successfully in a conversation. Rather the speaker can simply reply
on presupposition. In other words, he can simply assume that an indirect mention of
the cat will trigger the listener to accommodate the presupposition of situation, i.e.,
construct the context including at least one cat that belongs to the speaker, that was
also in need of a vet visit.

Presupposition accommodation happens so quickly and so automatically that it is
easy to assume that it is not important to understanding language. In order to more
clearly see its importance in human conversation, it is helpful to consider how the
same conversation would be held, if presupposition accommodation were not used.
The person would say: “By the way, I own several cats. One of these cats was recently
in need of a vet trip. I took the cat to the vet and left it there. I need to pick my cat
up from the vet now.” Here, the reaction of the other person is, “Why are you giving
me all the details, when what you really want to say is that you need to leave now
because of a previous commitment?”

If humans fill in the context information in this way while interpreting each other’s
sentences, it is not surprising to find a similar mechanism at work when humans
interpret photographs. Indeed, it is not necessary for someone to understand every
detail of an image in order to have the feeling that they understand what the image is
about. For example, humans will be able to interpret the images in Fig. 10.6 without
knowing at exactly which car show they were taken. Instead, they pursue a strategy
of filling in the blanks, i.e., constructing or reconstructing the context necessary in
order to be able to make sense of the image.

In sum, it is important to be aware of the principle, “Context Abhors a Vacuum.”
This principle reminds multimedia researchers that context is always a factor in
how humans interpret images or videos. Even when there appears to be no context,
researchers should still take caution and use a mechanism for context control. In this
way, they can exclude the impact of implicit and possibly unexpected assumptions
of human interpreters on their interpretation of multimedia context. We will return
in Sect. 10.5 to introduce a specific technique for controlling context that can help
to reduce the variability in human interpretations of multimedia, without forcing
complex interpretations to be represented as simple concepts.

10.3.3 Complex Interpretations Versus Subjective Interpretations

In this subsection, we relate the notion of complex interpretations of multimedia,
as it is presented in this chapter, to existing notions of subjective interpretations of
multimedia. This discussion is intended to provide further support for researchers
in recognizing different aspects of complexity, and in determining which are most
important to users of specific multimedia systems.

In the field of multimedia research, “subjective” descriptions of multimedia that
are considered to be those descriptions that include users’ personal opinions, their
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judgments of esthetic value, their emotional responses, and their impressions of
having a high-quality multimedia experience. Such characterizations of multimedia
are referred to as “subjective,” since it is the point of view of the “subject,” i.e., the
specific human user, that is the factor that determines their validity. A good way of
identifying a subjective description of multimedia is to ask if it follows the principle
behind the maxim, “Beauty is the eye of the beholder.” If a user says that a photo is
appealing, then it is, by definition, appealing to that user. The user him- or herself
is the ultimate authority on subjective aspects of multimedia, no external authorities
are involved.

Differentiating subjective interpretations of multimedia from complex interpre-
tations requires careful consideration, since the two can easily be confused. Collo-
quially, the phrase, “Beauty is in the eye of the beholder.” is used to express the fact
that we cannot expect people to be in agreement with each other when they make
subjective judgments. Indeed, a key challenge facing research in the area of subject
aspects of multimedia is the variability of human judgments. When studying sub-
jective aspects of multimedia, it is not possible to expect a high level of consensus
among users.

If we as multimedia researchers are to fully understand the richness of human
interpretations of multimedia, it is important to reflect carefully on what should
be considered “subjective” aspects of multimedia. Although it is in general safe to
assume that subjective aspects of multimedia are associated with less-than-perfect
consensus among human judges, the converse is not the case. In other words, it
should not be assumed that interpretations of multimedia that enjoy less-than-perfect
consensus among human judges are necessarily subjective.

The danger of too quickly assuming that an interpretation is subjective is that it
leads us to overlook both its stability and the predictable sources of its stability. Since
subjective judgments emphasize the point of view of the subject, we generally exclude
points of reference beyond the subject when studying subjective aspects. If complex
interpretations are considered to be subjective, it is easy to take the attitude, “They’re
making it all up anyhow.” and go back to attempting to express all descriptions of
multimedia in terms of simple concepts. Concretely, this danger manifests itself in
the reflex of multimedia researchers to discard, a priori, the possibility that complex
interpretations could ever be sufficiently consistent at the signal level (e.g., visually
invariant enough) to be modeled robustly, or that external information sources could
ever be helpful in doing so.

Because of this danger, it is important to keep our understanding of complex
interpretations of multimedia focused on human judgments that are objective. For
objective descriptions of multimedia, the human user is important, but is not the
ultimate point of reference. Instead, “objective” views of multimedia make use of an
external reference, such as a definition (e.g., as provided by a dictionary) or a set of
examples. In this way, the focus is kept on the “object” and not on the person judging
the object. The classical “objective” description of multimedia content is one that
involves a simple concept (defined above under “Multimedia description involving
a simple concept”). This description makes use of an external reference provided
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in the form of a conventionally accepted authority. For this type of description, a
high-level of consensus among human judges can be expected.

Although it may be less immediately obvious, complex interpretations of mul-
timedia (defined above under “Multimedia description involving a complex inter-
pretation”) are also objective in nature. When carrying out complex interpretations,
humans make reference to multiple points of view. These points of view cannot be
considered inherent to the subject, i.e., they do not depend on the “eye of the be-
holder.” Rather the points of view are associated with external reference frameworks
or vantage points. As mentioned in the definition, the points of view are often associ-
ated with different explanations that human judges will supply that serve to account
for the reasons that they have decided to assign a particular interpretation. Because
multiple points of view are possible, it is not reasonable to expect that complex
interpretations of multimedia will yield high consensus among human judgment.
However, critically, the lack of high consensus does not make complex interpreta-
tions subjective judgments. Rather, in the case of complex interpretations, as with
simple concepts, it is also the view on the “object” and not the “subject” that is
important.

Because we take a practical approach to multimedia, we take the position that
“subjectivity” versus “objectivity” should not turn into an lengthy debate, but rather
that the distinction should serve to inform the types of multimedia content analysis
we develop and the types of multimedia systems that we build. For this reason, we
suggest that instead of referring to aspects of multimedia as “subjective” or “objec-
tive,” researchers should look directly at two factors: first, the level of consensus
among human interpreters considering these aspects, and, second, the sources used
by interpreters as reference, i.e., whether human interpreters make their judgment, but
looking inward to their personal preference, or looking outward to external reference
frameworks.

In order to illustrate the way in which we propose that these considerations should
be practically applied, we consider the concrete case of the Flickr image shown in
Fig. 10.7. In Table 10.1, we give examples of plausible descriptions for this image.
The descriptions are chosen so that they illustrate the different levels of consensus
and different sources that can be used as reference.

We have included two separate columns Table 10.1 to encode the consensus of
human judges concerning the multimedia description. Two columns are necessary
because there are two ways for human judges to connect a description with mul-
timedia content. First, they can produce the description unprompted, and, second,
they can validate an existing description that has been produced by someone else.
We assume that human interpreters are willing to agree to accept more descriptions
than they would naturally produce themselves, i.e., they can be expected to validate
more descriptions than they personally actually contribute. For these reasons, we
include separate predictions of “Production consensus” (the proportion of human
judges who volunteer the same description) and “Validation consensus” (the propor-
tion of human judges who accept the description). It is important to note that the
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Fig. 10.7 Example image
used to illustrate levels of
consensus achieved by human
interpreters, and the sources
of reference the use. Flickr
credit Scarleth White

consensus values in this table are illustrative and not values that have been actually
estimated on the basis of human-contributed information. One of the keys to making
the decision concerning which aspects of human interpretation should be considered
most important is the ability to make good estimates of these values.

Here, we briefly discuss each of the example descriptions. In the first row, “bird”
is an example that fulfills our definition of a description involving simple concept.
Unlike the example of “artillery,” already discussed above, there is not a specific
institution that acts as an external authority on the matter of what should be considered
a “bird.” Rather, the authority is the established referential practices of the general
community.

Formally expressed, “bird” is a basic-level concept. The basic level is a division
of the world into categories at the level of abstraction that humans find most natural.
The fields of cognitive psychology and linguistics have accumulated a great deal of
evidence concerning the existence and the nature of the basic-level concepts [17]. A
good working definition of the basic level is that it is the “default” level of abstraction
that is most commonly used and is chosen by adults as the most appropriate level to
first teach children. Note that we would still consider a description like “seabird” a
simple concept according to our definition above (“Multimedia description involv-
ing a simple concept”), although it is not a basic-level concept. In this case, the
conventional external authority would be a bird expert. Interestingly, the bird expert
could probably also supply the genus and species of the particular seabird pictured
in Fig. 10.7. If the pool of human judges is taken to be general Internet users, such
experts would be quite rare in the pool. (In support of this statement, we note that
the authors were unable to determine the correct Latin name for this bird.) We would
predict low consensus among people either contributing or validating the species of
the bird in this image. Descriptions that can only be produced by experts are classic
examples of cases where low consensus is to be expected, but should never be used
to conclude that the description should be considered subjective.

In the second through fourth rows, “lovely weather,” “unusual seagull,” and “free-
dom” are all complex interpretations. The projected consensus that these descrip-
tions would enjoy among human interpreters is hardly overwhelming. However, these
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descriptions are clearly not to be considered subjective, since they all make
reference to external reference frameworks. The image in Fig. 10.7 depicts lovely
weather from the point of view of someone who wants to make a photo. However,
seen from another point of view, e.g., the sky is also blue on a cold day, “lovely
weather” might not seem clearly appropriate as a way to describe this photo. The im-
age depicts an “unusual seagull” with reference to other images of similar seabirds on
Flickr (which tend to have different characteristics, e.g., yellow and not black beaks.)
Note that this description may technically be considered wrong according to the bird
expert, who would be able to determine if the photo in fact depicts a tern and not a
seagull. However, users commenting on this photo describe it as a gull. The image
depicts “freedom” because it evokes the book Jonathan Livingston Seagull, which,
in the 1970s, established the image of a seagull in flight as a symbol of striving for
freedom from conformity.

Now that we have discussed examples of complex interpretations of this image, we
turn to discuss connotation, which is a concept frequently occurring in discussions in
the literature on how humans interpret images. A key reference on connotation is the
work of Roland Barthes, and especially his essay, “The Photographic Message,” in-
cluded in his 1977 book, Image Music Text [1]. Barthes characterizes connotation as
“the imposition of second meaning on the photographic proper” (p. 20). This “second
meaning” is encoded in the photo by choices made by the photographer in terms of
content, but also layout, lighting, and other technical choices. Humans can interpret
images in terms of connotations because connotations are highly institutionalized,
meaning that they are consistently and conventionally used to convey the same mes-
sage. A classic example is the nuit américaine technique used in film, which changes
the look of a scene in a conventional way that is used to signal to the audience that
the scene should be interpreted as taking place at night. The complex interpretation
“freedom” applied to the image in Fig. 10.7 can be interpreted to be a connotation.
However, it is important to note that it is not possible to cleanly equate complex
descriptions and connotations. The complex interpretation “lovely weather” does
not appear to be a secondary meaning imposed on the photograph at all. It is simply
something that one person might see directly in the photograph, and someone else,
taking a different point of view, might contest. Historically, however, authors dis-
cussing connotation have also discussed divisions similar to our distinction between
simple concepts and complex interpretation. Rafferty and Hidderly mention some
of the major points in a chapter entitled, “Using Semiotics to Analyse Multimedia
Objects” in their 2005 book [26].

Finally, in the bottom row of the column, “scary” is a truly subjective description.
Here, the human interpreter describes a photo with respect to personal emotional
reaction and not with respect to an external reference. The level of consensus is
projected to be low. It is important to note that there is only a subtle difference
between true subjective descriptions (i.e., ones that fit “Beauty is in the eye of the
beholder.”) and descriptions that report opinions, esthetic judgments, and emotional
reactions that can be related to external influences. For example, it is possible that
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quite a few people feel that this image is “scary” because it is not uncommon to
have had the childhood experience of being terrified by Alfred Hitchcock’s film, The
Birds. Also, the image respects the Rule of Thirds, which is applied by photographers
in order to achieve balance in their images. It is not surprising that people in general
should find a balanced photo more appealing than an imbalanced one, and should
have a greater tendency to describe this photo as beautiful.

These comments on connotation (“freedom”) and the subjective description
(“scary”) support our point that ultimately it may be more productive to focus on
how the crowd interprets particular images in particular contexts, rather than being
guided by theoretical distinctions. In other words, we believe it is most helpful to
analyze descriptions of multimedia with respect to consensus levels and to external
references, than insisting on particular definitions of subjectivity and connotation.
This empirical, quantitative approach has only recently become possible. It is the
rise of crowdsourcing that allows us to obtain sufficient input from enough different
human interpreters to make possible useful estimates of consensus.

In sum, up to this point, we have defined descriptions of multimedia involving
complex human interpretations, we have argued that they are important for making
multimedia systems useful to users, and we have discussed their relationship to other
types of descriptions of multimedia. In the next section, we move on to practical
techniques for making the first step in taking complex interpretations into account
in research on multimedia content analysis.

10.4 Crowd-Based Collection of Multimedia Interpretations

In this section, we turn to discussing crowdsourcing as a tool with which we can
gather a wide range of interpretations from human interpreters. Before diving into
the details of the discussion, we explicitly recapitulate the underpinnings of our
approach. We use crowdsourcing to collect information on possible points of view
referenced by humans when they are interpreting multimedia. In particular, we create
catalogs of depicted elements and other aspects of multimedia that are important for
interpreting multimedia from these points of view. The approach is highly practical in
nature. We do not advocate creating an exhaustive inventory of all possible points of
view, elements, or aspects that could possibly be relevant. Rather, we are interested
in effective methods for exploring, free of our own biases, the range of possible
interpretations, and then, focusing in on the most important ones. By consulting the
crowd, we aim to determine which particular interpretations may be dominant for a
certain type of multimedia data, or for a certain application scenarios in which that
multimedia data is used.

The intended benefit of this approach is to provide multimedia systems with
descriptions of multimedia that more closely fit human expectations and to prevent
the issues associated with arbitrarily restricting or broadening the definition of simple
concepts. Critically, under our approach we accept that many different legitimate
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complex human interpretations of multimedia exist side-by-side. We do not force
the different human interpretations to be consistent with one another.

10.4.1 Crowdsourcing for Multimedia

Crowdsourcing is the process of producing value or services in a manner that takes
advantage of both human intelligence and human multiplicity. What needs to be
done and who does it come into connection outside of the locus of a conventional
workplace, where specific tasks are delegated to specific agents at specific locations.
The original definition of crowdsourcing was formulated by in 2006 by Jeff Howe
[12], and has later been refined by many authors, include Quinn and Bederson [25].
Here, we focus our attention on crowdsourcing platforms, i.e., online task markets
where crowdworkers can carry out task for taskaskers in exchange for a reward. Typ-
ically, the task is quite short, and often referred to, for this reason, as a “microtask.”
Mechanical Turk1 is a major crowdsourcing platform run by Amazon. Other exam-
ples include CrowdFlower,2 and Microworkers.3 Crowdsourcing platforms make it
possible to collect input from very large and diverse groups of people. Using such
platforms, researchers can ask questions about multimedia items, i.e., images, sound
recordings, and videos, and gather a set of responses that reflect how human beings
interpret multimedia.

The number of people who can be reached via crowdsourcing platforms is sig-
nificantly larger than the number of people who could practically participate in a
conventional lab-based experiment or field study. Because crowdsourcing makes it
possible to access a high volume of feedback from a diverse set of human subjects,
it becomes feasible to study the variety and nuances of human interpretations from
perspectives that were previously not possible. If we can make use of crowdsourcing
to understand the range of possible interpretations for multimedia, it becomes pos-
sible to build automatic multimedia indexing systems that better serve the needs of
their human users.

Crowdsourcing has been successfully deployed in human behavior research and
to run experiments with large subject pools [15, 22]. In the field of multimedia, it
has proven very valuable to researchers in the area of Quality of Experience [4, 11].
Quality of Experience studies are closely related to users’ perception. For exam-
ple, they often require crowdworkers to provide answers related directly to sensory
information (e.g., “Which image is sharper or brighter?”). Such studies resemble
our proposed use of crowdsourcing to gather complex human interpretations since
they take advantage of the size and the diversity of the crowd. The difference is
that the crowdsourcing studies discussed here involve providing interpretations, a

1 https://www.mturk.com
2 http://www.crowdflower.com
3 http://www.microworkers.com

https://www.mturk.com
http://www.crowdflower.com
http://www.microworkers.com
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cognitive activity, whereas providing self-reporting on personal experience has a
large perceptual component.

Crowdsourcing platforms have been demonstrated to be just as reliable as con-
ventional methods used to gather image labels [21]. However, extending this work
to the goal that we pursue here, namely, collecting complex human interpretations
of multimedia content, is not a trivial undertaking. The reason is that the tasks most
often offered on crowdsourcing platforms are “mechanical” in nature, as reflected in
the name “Mechanical Turk”. Mechanical tasks are highly routine and usually do not
require specialized knowledge. In addition to proving concept labels for images, me-
chanical tasks in the area of multimedia annotation include tasks such as segmenting
objects and matching the contents of images, e.g., faces fall into the category of me-
chanical tasks. Two example cases [8, 34], with which we have had direct experience,
illustrate these types of task. For mechanical tasks, it is most often the case that an
external standard exists that can be used to determine whether or not a crowdworker
has provided reliable input. Mechanical tasks require little interpretation from the
side of the user. A typical mechanical task would ask a user to confirm whether or
not the image in Fig. 10.7 shows a “bird.” Mechanical tasks monitor the quality
of the responses being provided by the crowdworkers by interleaving “validation”
questions (i.e., questions for which the correct answers are already known) with the
“target” questions (i.e., the questions for which the answers are being gathered).
Workers who give incorrect answers to the validation questions are assumed to be
providing incorrect answers on the target questions as well, and their work is filtered
or rejected.

In order to successfully exploit crowdsourcing for the purpose of collecting com-
plex human interpretations, the key challenge is designing effective tasks. The tasks
must be capable of moving beyond collecting responses to “mechanical” questions
to eliciting complex user interpretations for images and videos. Because such user
interpretations will come from a variety of points of view and are not predictable
in advance, it is impossible to judge the quality of a crowdworker’s response by
comparing it to a standard. In fact, when we use crowdsourcing to collect human
interpretations, we are using it exactly because we have no idea of what the responses
might be. In contrast to mechanical tasks, the crowd is not helping researchers save
time with annotation, rather they are providing researchers with a real-world lens
through which to view their research problem.

Even tasks that upon first consideration appear to be mechanical tasks, can involve
an unexpected component of interpretation. Such a case arose during the construc-
tion of ImageNet. ImageNet is a hierarchical Wordnet-based image database [7].
The concepts depicted by each image have been verified using a crowdsourcing plat-
form. The verification task asked workers to confirm whether images depict certain
categories. To perform this task, crowdworkers are referred to a Wikipedia page.
The verification method used takes into account that inter-annotator agreement is
smaller on some categories than it is on others. In the example given by Deng et al.
[7], the verification method automatically collects more input from the crowd before
verifying an image as depicting a “Burmese cat” than it does to verify an image as
depicting a “cat.” This work can be considered to touch on some of the issues that
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we are addressing here, since it explicitly proposes a methodology to make use of
descriptions of multimedia for which there may not be a high level of consensus
among human judges.

10.4.2 Trusting the Crowd, not Ourselves

In order to interact with the world around us, we, as humans, must learn to trust our
own interpretations. Trusting our own interpretations means not being easily dis-
tracted by alternative interpretations that may be offered by others around us. When
we, as researchers, use crowdsourcing platforms to collect complex interpretations
for multimedia, it is necessary to invert these habits. In other words, it is important
that we trust the crowd more than we trust ourselves. The most direct explanation
for why this inversion is necessary is that a single person cannot produce diversity
of a larger population. However, there is quite a distance between understanding that
diversity is necessary, and actively allowing ourselves be guided by other perspec-
tives. Often, even when we think that we are being open to diverse points of view,
we are actually still caught in our own world, which has closed back in on us. In this
subsection, we cover a couple of potential biases that are impossible for multimedia
researchers to avoid. These biases provide concrete reasons why it is essential that
we do not take the attitude, “we know better than the crowd.” Instead, we should
always assume, given that we have designed our crowdsourcing task carefully, that
“the crowd knows better than we do.”

The first potential bias is our understanding of which images are important. Con-
sider again the images associated with the descriptions “Phillips screwdriver” and
“birdhouse” in Fig. 10.3. It is true that these examples have been specifically cho-
sen to provide a clear illustration of the contrast between an image that can be well
described with simple concept, and an image whose description involves complex
interpretation. However, it is important to resist the temptation of assuming that im-
ages like the “Phillips screwdriver” image are “common,” and that image like the
“birdhouse” image are “uncommon.” Although the style of this particular birdhouse
may make it a rare object, overall, images of rare objects are not necessarily them-
selves rare objects. Although any given type of object maybe only rarely represented,
in a social media collection, rare images compete with common images. If anything,
images that are best described by complex interpretations dominate images that are
best described by simple concepts on Flickr. We may be attempted to view images
like the “birdhouse” image in Fig. 10.3. as noise, or discard them as “improbable”
exceptions. However, if we limit ourselves to images that can be described by simple
concepts, we are effectively “throwing the baby out with the bathwater.” In other
words, we are falling far short of solving the overall problem of generating descrip-
tions of social multimedia that are maximally useful to users. Instead, we should
leave it up to the crowd to decide which images are part of the signal and which
images it is not worth describing.
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The second potential bias is our tendency to privilege our own interpretations.
When we as multimedia researchers look at a given a photo or video, we have easy
access to our own point of view. On the other hand, it takes much more effort to find
another human being and ask them for their interpretation. If we ask another person,
it is likely to be someone who sits in the next office, whose opinion is highly likely to
be correlated with our own due to the close social and intellectual contact. Although
it may be possible for us to counteract our own laziness in order to avoid privileging
our own points of view, there are other biases over which we have not control. The
reality of such biases is demonstrated by the existence of the so-called Bayesian Truth
Serum [24]. This effect refers to the tendency of people who are reporting their own
opinion truthfully to overestimate the number of other people in the population who
share their opinion. Apparently, we are programmed to be overly optimistic about
the number of people that we predict to agree with us. For this reason, it is necessary
that we, as multimedia researchers, learn to ignore even a very strong feeling of being
“right,” and instead leave the job of providing interpretations of multimedia content
to the crowd.

In sum, this section has introduced crowdsourcing and its usefulness for studying
the ways in which people describe multimedia. We have argued that the biases of our
perspectives as researchers mean that crowdsourcing can be a source of information
that we cannot access in any other way.

10.5 Crowdsourcing Complex Human Interpretations

In this section, we discuss techniques that make it possible to collect complex in-
terpretations of multimedia content from the crowd. In the Sect. 10.5.1, we discuss
an example of a task run on Mechanical Turk that was designed to broaden our un-
derstanding how humans interpret images in the domain of fashion. Sections 10.5.2
and 10.5.3 moves from the concrete example to present practices that are helpful for
guiding the development of tasks that elicit complex interpretations of multimedia
from the crowd. Section 10.5.4 presents background information about the develop-
ment of our approach. Finally, Sect. 10.5.5 presents another concrete example that
illustrates the limitations of what the crowd is able to offer.

10.5.1 Example Crowdsourcing Task

In this subsection we present a task that we designed and carried out on Amazon
Mechanical Turk. The task had the function of eliciting interpretations from the
crowd concerning user-contributed fashion images from an online image-sharing
platform (Flickr). It was designed in the context of a project developing multimedia
content analysis technology for use in an analysis system that would process social
multimedia in order to detect trends in popular fashion. During the process of deciding
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Fig. 10.8 Images used in a task designed to elicit factors that influence users when forming judg-
ments on fashion images. Flickr credit epSos.de (left) and Becca (right)

which sorts of categories the multimedia content analysis should focus on, we found
ourselves “fixated” on simple concepts corresponding to items of clothing, such
as “shirts” and “trousers.” We were bothered by the suspicion that users using our
fashion trend analysis system would be interested in many other aspects of fashion
beyond basic clothing categories. However, we also felt that we ourselves were
unqualified to decide which aspects of fashion photos users consider when they
interpret them. In order to make a collection of the factors important for users when
considering fashion images, we designed a crowdsourcing task. The task collected
information from workers both on basic concepts depicted in the images, as well on
complex interpretations. In our presentation of the task here, we focus on the results
of the task that were relevant for complex interpretations.

The task presented crowdworkers with a fashion image and asked the question,
“Do you like what is depicted in the picture?” (possible answers were “Yes,” “No,” “I
am not sure”). Example images are shown in Fig. 10.8. This question was followed
by the key question “What do you like/dislike about it?”, which required a free text
answer. Note that we do not ask these questions because we are directly interested
in whether or not the human judges like the images. Rather the aim of the questions
is to collect a list of the aspects of the images that human interpreters refer to when
they make a decision concerning the images. These aspects correspond to factors
that are important for users when judging images in the fashion domain.

Recall from the discussion in Sect. 10.3.1, that complex interpretations humans
give to images are related to the context. In order to narrow the input that we received
from the crowd to those factors most important for our domain, we needed to focus
our task on the context of our application, namely, popular fashion. A critical part of
task design is narrowing down the context in which crowdworkers are interpreting
the multimedia content.
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As a preliminary remark, we point out that, a priori, the popular fashion domain is a
good fit with the demographic of workers on Mechanical Turk. Clothing is a universal
phenomenon, and we expected that the crowdworkers would have at least a basic
sense of what is important when making decisions about what kind of clothing to buy.
Note that if our domain were “high fashion” rather than “popular fashion,” we would
not have the same reason to assume that the crowdworkers on Mechanical Turk would
be a good population from which to be eliciting complex interpretations. Finally, the
ultimate fashion trend analysis system is intended to support clothing marketers in
understanding and opening broader markets. The markets would presumably use the
same channel as the one that connects the crowdworkers to Mechanical Turk, namely
the Internet, in order to carry out their marketing. We also point out that we do not
require a perfect approximation of the target demographic. Our goal was to broaden
our understanding of which dimensions are important to people interpreting fashion,
and not to build a fine grained model of how fashion judgments are made.

Our main strategy for controlling the context in which the crowdworkers inter-
preted the images was driven by a simple realization. We found that if we simply
presented images to people and asked them, “What do you see in this image?” they
may not understand that we are interested in the fashion dimensions of the images,
and not other aspects (for example, the people wearing the clothing or the surround-
ings in which the images were taken). Also, the danger would be high that they
would respond with a highly personal opinion, rather than identifying factors that
would be relevant for a broader public. Another danger was that the crowdworkers
would understand our questions as “searching” for particular answers. For example,
they might assume that we are representatives of a certain brand of fashion and are
more likely to approve their answers (i.e., accept and pay for their work) if they
create replies to be particularly positive or oriented towards our own products. Giv-
ing the crowdworkers specific directions, “Do not let your answers be influenced by
any particular designs or products” would be counterproductive. Mentioning specific
designs might further convince them that we are “searching” for certain answers (al-
though we do not want to admit it). Also, asking people to produce a natural answer
to the question, while at the same time unnaturally not doing something makes the
task more difficult and tiresome and less engaging or fun for the workers.

For this reason, we decided to present the crowdworkers with an interesting back-
story and ask them to answer the questions from the perspective of the person in the
story. The story also helped to prepare them for the very diverse images that they
would see, countering the expectation that they would see professional fashion pho-
tographs taken, for example, for a magazine. The text of the story read, “For this task
we would like you to imagine you are a fashion blogger. For your blog, you usually
collect pictures you find on the Internet. The pictures you collect can be very diverse:
they might contain professional models, regular people, fashion from other cultures,
or different époques. For you it is not important that the pictures look professional,
but that they contain any kind of outfit or fashion-related item such as clothes, fabrics,
and accessories. You might also collect pictures of outfits and fashion-related items
which you do not like and discuss them with your readers.” This text was presented
to the crowdworkers at the top of the task before the image.
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Fig. 10.9 The affinity
diagram used to cluster
crowdworker responses into
categories each containing a
different type of interpreta-
tions

The task collected a total of 216 interpretations (three separate interpretations for
each of 72 images). The task was carried out on Amazon Mechanical Turk by a total
of 50 crowdworkers. Of these, 72 % reported themselves to be female and some 28 %
male. The mean reported age was 32 years (Standard Deviation = 7.6). The age of
the oldest contributor was 53 years and the youngest was 18 years old. Contributors
came from 10 countries. Most of the contributors came from India (41 %), followed
by USA (40 %), and Canada (4 %). Chile, Serbia, Croatia, Dominican Republic,
Philippines, Poland, and UK had one representative contributor. Contributors from
the USA were most active, providing 50 % of the total interpretations, followed by
India with 34 %. A total of six responses from five different crowdworkers were
discarded because they were not intelligible.

We manually inspected the 216 interpretations and clustered them into classes
according to the types of factors to which the crowdworkers made reference. To
perform the clustering we used an affinity diagram, shown in the image in Fig. 10.9.
Such diagrams are commonly used to sort the ideas arising in a brainstorming session
into groups that reflect their natural relationships. Affinity diagrams are created by,
first, making individual cards or slips of paper for each factor. Then, slips with related
ideas are used to seed groups. The slips are sorted until every slip belongs to a group.
The groups are usually reorganized during the sorting process such that the similarity
among slips belonging to one group is larger that the similarity between any two slips
across groups.

The classes of factors contributing to crowdworker interpretation of social fash-
ion images that we discovered by using this crowdsourcing task are summarized in
Table 10.2. The results in the table make it clear that we have broadened our under-
standing of the fashion domain substantially beyond our initial assumption that the
aspects of images that matter most to users are the identity of basic fashion items,
such as “shirts” and “trousers.” Here, we have identified eight categories of differ-
ent kinds of interpretations. Note that we did not intend to take all the information
discovered in this task into account when making decisions about which kinds of
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Table 10.2 Before turning to crowdsourcing, our multimedia content analysis focused on the
identity of basic fashion items

Classes of factors contributing to the Input collected on the crowdsourcing
interpretation of fashion platform

Visual appearance of fashion item Color (“I don’t like red sunglasses”) and
pattern (“the pattern is a little crazy”)

Visual appearance connected with a
physical property

Cut (“the shoulders are a bit too much”)
and fabric/material (“princess feel of
the gown”)

Physical properties related to wearing the
item

“Warm,” “comfortable”

Aspects differentiating this item from
other similar items

“Trendy ties,” “unique skirts,”

Aspects reflecting the sort of impact made
by the item

“Attractive gloves,” “classy purse”

Aspects involving use of the item “A set of nice business attire for office
work and interviews,” “The black
leather outfit is a great look for
clubbing”

Properties of item combinations “Fun,” “whimsy,” “sloppy,” “not
flattering,” “Different colors don’t
look good,” “the way of outfitting the
pendant is awesome”

Properties of the image “It’s a really unflattering picture,” “The
picture surroundings are not good”

Crowdsourcing revealed a much broader set of dimensions to which users are sensitive when
interpreting fashion images

multimedia content analysis to pursue, rather we intended to exploit the most useful
ones.

Particularly useful points that we have observed is that people take color and
patterns into account when interpreting fashion images. These points are helpful
because the color and patterns of clothes are characteristics that are feasible to auto-
matically recognize (as opposed to “fit” or “style,” which is much more challenging).
The complexity here lies in the reference to a “crazy pattern.” If we had not done
this study, we would not have independently arrived at the idea that “crazy pattern”
is a worthwhile aspect of fashion. With this knowledge, we can investigate further
in order to determine if what people consider to be “crazy patterns” have the sort of
stability necessary to train a visual classifier. Not everyone needs to agree on what
constitutes “crazy” with respect to a pattern, there just needs to be enough consensus
to make this a useful label for use in a multimedia system.

We also found that users are sensitive not just to items individually, but to combi-
nations of items, i.e., the overall “look.” Finally, we discovered that overall properties
of the image going beyond just the clothes are important to users who are judging
fashion. If the picture is in and of itself not technically satisfying photo, this interferes
with the interpretations that people give to the fashion it depicts. If we would focus
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our multimedia content analysis research exclusively on the identities of individual
items, we would miss out information on how the images are globally interpreted.

It is important to note that relative to what is possible, this task was quite small in
scale, and not particularly sophisticated, since it was designed without an intensive
piloting stage. However, the task allowed us in the course of approximately 2 days
to significantly improve our understanding of the complex interpretations that peo-
ple give to fashion images. We expect to gain even more insight with larger, more
sophisticated tasks in the future. However, we do note that because of the affinity
clustering step, task size is effectively limited to how many interpretations we can
manually process afterward.

We conclude this subsection with a couple of additional points on the design of
the task. First, we note that the task appears to have attracted a particular population
of workers. They are slightly younger that the average worker age reported in the
literature, and the ratio of women to men is higher (although women do outnumber
men among crowdworkers in the USA) [27]. We conjecture that including the back-
story and asking the crowdworkers to answer the question from the perspective of
the person in the backstory has a tendency to draw workers to the task who identify
with the person. This effect could be helpful in targeting particular demographics
for particular multimedia systems. Second, this task has been successful in gathering
information from the crowd that goes above and beyond “mechanical” questions. In
Sect. 10.4.1, we mentioned that it is difficult to control the quality if a task is not me-
chanical, i.e., there are no right or wrong answers. Filtering serious from nonserious
workers requires looking at workers’ work and estimating the level of seriousness
and engagement with which they approached the task. Creating a backstory for the
task and asking open text answers that invited creativity proved to serve us well as
a filter. In the end, less than 3 % of our responses were unserious. We conjecture
that the backstory and the open-ended questions signaled to the crowdworkers that
we as taskaskers would review their work by hand. Apparently, the form of the task
communicated to the crowdworkers that we value their work and inspired them to
engage seriously with the images and provide us with useful interpretations.

10.5.2 Iterative Task Design

In this section, we move from the examination of a specific example in the previous
section to discuss general strategies and techniques that are useful when designing a
task that elicits complex interpretations of multimedia from the crowd. Our goal is to
design a task with a backstory, which is understandable, appealing and engaging for
crowdworkers, who understand that they should project themselves into the back-
story, and are able to maintain their motivation and respond genuinely and seriously
to the questions posed to them by the task. It is impossible to predict in advance
what the crowdworkers, who can be considered users or “the audience” of the task,
will find appealing. Because the task has a backstory, in many ways it can be com-
pared to a short story, a film or even a video game. These communication forms are
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notoriously difficult to design, and film or game studios will invest large amounts
of effort into piloting before producing a final product. These considerations lead us
to recommend an iterative approach to designing crowdsourcing tasks. In practice,
we have found it productive to include three iterations in the design process that
precedes launching the task in its final form on the crowdsourcing platform:

• Initial design the task is designed and discussed by the researcher and the project
team until they agree that it meets the requirements.

• Internal test the draft version of the task is tested with a pilot test group of
approximately ten people, who can be interviewed onsite. The testers should meet
two requirements: they should be able to empathize with crowd workers and they
should be able to reflect on and provide feedback about the task. The “sandbox”
of Amazon Mechanical Turk is, for example, handy for internal testing.

• External test the task is published at a small scale on the crowdsourcing platform.
The final question of the task is a box asking crowdworkers to give their opinion
of the task and suggestions for improvement.

Because appeal and engagement are critical, the user experience of the crowd-
worker while carrying out the task is critical. For this reason, we recommend that
during the process of task design, and especially internal testing, user experience
evaluation should be carried out to detect serious usability issues. Particular attention
should be paid to the classical usability dimensions of task efficiency, learnability, and
error prevention [19]. Furthermore, the workers’ motivation for the crowdsourcing
tasks is considered a critical success factor.

To evaluate the user experience, including the crowdworkers’ motivation, a wide
range of usability inspection methods are available that can involve either target users
or user experience experts. A widely used example of the former is the combination
of think-aloud and observation. Participants verbalize every thought that comes to
their minds, assuming that the verbalizations reflect the contents of their short-term
memory [31]. The combination with observation provides a detailed insight into
the user’s behavior. Testing with, for instance, five to ten people (e.g., students) is
sufficient to detect over 80 % of the problems [20]. If done efficiently, this would
require approximately only one day of work for preparation, testing, and analysis.

An example of user experience evaluation with experts is heuristic evaluation in
which two or more experts evaluate a system using a standardized set of guidelines
[32]. Even though it is an efficient way to detect major issues, experts have proven to
be unsuccessful in predicting the problems that real-world users encounter [5]. For
this reason, we recommend iterative testing, as outlined above, rather than exclusive
reliance on experts.

10.5.3 Iterative Elicitation

In the previous subsection, we have emphasized the importance of iterative tests in
order to arrive at a well-designed effective task. In this section, we make the point
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that, ultimately, it may require multiple tasks in order to build a picture of complex
human understanding of multimedia that is truly useful. We start our discussion with
the observation that crowdsourcing tasks that collect information about multimedia
that could not be otherwise inferred or predicted are in fact a type of qualitative
research. It is natural, that we turn to established principles that have proven useful in
qualitative research to inform our design of this type of tasks. In particular, we propose
making use of Grounded Theory, a technique used to inductively build a theory
through the collection and analysis of qualitative data (e.g., data from interviews, or
observations). The “Theoretical Sampling” approach is a key element in Grounded
Theory research, and is defined as, “the process of data collection for generating
theory whereby the analyst jointly collects, codes, and analyses his data and decides
what data to collect next and where to find them, in order to develop his theory as
it emerges” ([10], p. 45). In the case of crowdsourcing tasks that elicit information
about complex interpretations of multimedia, the “theory” being described is the
set of factors that are important to people when interpreting multimedia in a given
domain.

One important point that Grounded Theory has to contribute is that eliciting
information from crowdworkers about multimedia should necessarily be a multistage
process. In other words, iterations of tasks, one building on the next, are necessary in
order to arrive at a maximally informative overview of the aspects of multimedia that
are most relevant for human interpretation. As in the example above, the ultimate
product is a set of categories or a typology. For tasks in the first iteration, a subset
of the dataset or even a manually constructed dataset can be used. If the tasks are
manually constructed, careful attention should be paid to generalizability: to what
extent do the multimedia content that the crowdworkers are exposed to in the task
represent the dataset as a whole? How and to what extent does the manual selection
of items from the dataset influence the results? Additional iterations can be used
to refine the way in which the task is described to the crowdworkers or to ask the
crowdworkers themselves to help in broadening the multimedia data set used to
represent the domain. At the end of the process, iterations can be used to confirm
and validate the typology and gain insight into its coverage. In Grounded Theory
the process of gathering information is carried out by writing codes. Codes labels
designate concepts, and, in later iterations, the attributes of these concepts and their
interrelations. During the course of iteration, the codes are combined with direct
feedback from the workers, leading to refinement of the categories. The cycle of
task design, data collection, and coding stops when, it achieves what is referred to
in grounded theory as theoretical saturation, i.e., the point at which no additional
properties and dimensions for each category can be obtained.

10.5.4 Controlling Context by Creating Context

Our approach to designing tasks for eliciting complex interpretations derives not
only from our experience of with the task described in Sect. 10.5.1, but also from
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experiences that have been reported elsewhere in the literature. The work reported
in [33] develops the idea of crowdsourcing tasks with a high “imaginative load.”
Loosely analogous to cognitive load, the burden placed on a person’s working mem-
ory, the imaginative load refers to the burden of projection, i.e., thinking oneself into
someone else’s shoes and answering a question from their perspective. This work
successfully makes use of a crowdsourcing task with a backstory in order collect
users’ perceptions concerning the similarities of multimedia items.

The work reported in [6] uses not one but several backstories. It presents the
crowdsourcing workers with a set of different roles (e.g., blogger, journalist, photog-
rapher) and asks them to choose a role and answer the questions in the task from the
perspective of that person. The purpose of the task is to collect people’s perceptions
of whether or not they feel deceived when they see an image that has been digitally
manipulated used in a particular context. When they choose a role, the crowdworker
is also choosing a context. Practically speaking, the role can also put the crowd-
worker at ease, allowing them to report their feeling that someone else might accept
a manipulated image as not being deceptive, without committing to the position that
they themselves would not find it deceptive.

In both of these cases, the backstory has provided a context in which the crowd-
worker is answering the questions. The presence of the backstory helps to trigger the
crowdworker to thing about particular uses to which multimedia is put. Upon first
consideration, one may wonder why a crowdworker would pay attention to the back-
story since it seems like extra effort. However, if human interpretation of multimedia
involves the creation or the assumption of a context, then a task with a backstory
actually represents less effort. The crowdworker does not have to invent the content
from scratch. We conjecture that the backstory also gives the crowdworker more
insight into the reasons why the questions are being asked, and with this more confi-
dence that the answers will be accepted by the taskasker. Ideally the backstory also
serves to deter unserious workers, because it is obviously asking for answers that the
taskasker will screen by hand.

10.5.5 Within Reach Versus Beyond Control

We have argued in this article that crowdsourcing is an important tool for under-
standing human interpretations of multimedia. However, it cannot be considered to
be the perfect solution to collecting information about factors contributing to com-
plex interpretations of multimedia. For certain aspects of multimedia, it is simply
very difficult to elicit information from the crowd. In this subsection, we discuss
our experiences with a second crowdsourcing task. The task was a success, and was
productive in collecting a large amount of high-quality information. However, dur-
ing the design process and while analyzing the worker responses, we noticed that
there were several examples that served to reveal limitations of the possibilities for
collecting interpretations from the crowd.
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Fig. 10.10 This diagram was included in the task to illustrate the principle of timed-tags to the
crowdworkers

The task was designed and carried out in the context of a project studying a special
form of video tagging. On some video-sharing websites, such as Viddler.com, tags
can be assigned to a time-point by stopping the video and clicking on the navigation
bar (Fig. 10.10). We refer to these tags as timed-tags. The goal of the research was
to better understand the properties of these tags. Specifically, we were interested
in investigating three factors: first, if the tags referred to objects that were visually
depicted in the video, or other aspects of the video, second, the way in which the
relevance of tags relates to the video in the neighborhood of the tagged time-points
(i.e., size of the window or relevance, and the relative position of the tag within this
window), and, third, the specific reason for which a person would want to use a tag
to start watching the video at this time-point.

From Viddler.com, we collected 5,194 videos with at least one timed tag. On
average, there were 3.4 timed-tags for each video. Guided by our research questions,
we developed a pilot task using 100 videos and carried out several rounds of testing
and refinement. Through the pilot task, we discovered some interesting observations,
problems that could be fixed, and issues that were beyond our control.



10 Using Crowdsourcing to Capture Complexity 263

Fig. 10.11 Introduction of the final version of the task used to collect information about timed-tags
related to videos

We start by mentioning the problems that could be straightforwardly addressed.
During piloting, when a task does not yield the desired results, a first reaction might be
to blame the crowdworkers instead of the task design. However, it pays to remember
that the likelihood is high that the task is at fault. Relatively small refinements can
be a difference. Specifically, the language used by a task must be correct, clear, and
very simple. In our experience, our first idea of simple is often not simple enough.
For example, the first pilot we ran on Mechanical Turk had the title, “Watch small
bit of internet videos and choose the explanation of video tags.” We initially thought
that the language of that title was lucid and appealing. However, the task was more
successful after we gave it the very short, simple title, shown in Fig. 10.11.

We also find that it was very important to keep the task short overall. Independently
of the reward received per task, crowdworkers find work more appealing when the
tasks are short. We conjecture it is more pleasant to carry out tasks in series when it is
possible remember the questions from one task to the next. In this way, crowdworkers
can get into the “flow” or the “groove” of doing tasks without having to re-understand
each question the task asks them to answer for each new video. In the final version
of our task, it took crowdworkers an average of two minutes to complete the task.

It is also important to keep the tasks of equal length. We originally piloted a
task where we would ask questions about up to three tags per video. From the
crowdworkers’ point of view, it does not make sense that, for the same reward,
sometimes they are asked to answer three sets of questions and sometimes one. The
uptake by crowdworkers of the final version of the task, which only asked one set
of questions about a single tag-video pair, was significantly faster than the uptake of
the initial version.

Finally, we noticed the importance of illustrations and examples, such as in
Fig. 10.10, and also other forms of “help.” The open text question about why someone
would watch the video starting at a tag worked best when formulated as a “complete
the sentence” question, i.e., “A person watching the video at this time-point would be
someone who wants to…” The “complete the sentence” question also was preferred
to a multiple-choice question with too many options. Crowdworkers preferred to re-
spond by writing text than to choose one of seven options. These points also helped
to improve the uptake of our task among crowdworkers.
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Fig. 10.12 An example in which it was difficult for crowdworkers to separate what they heard from
what they saw. The mug is a subject of discussion throughout a longer segment of the video (blue),
it is visible in the frame for a shorter subsegment (orange). The mug was tagged at 2:23. Workers
found the tag to apply visually 5 s earlier and 5 s later, although the mug is discussed and not shown
in these regions

Other issues that we encountered could not be solved. In particular, we found
evidence of the effect that people perceive video as a whole, and have a very difficult
time separating the information conveyed by the visual channel and the information
conveyed by the audio channel. Recall that in this task, we are particularly interested
in the tags that are related to the visual channel, and we would like to know which
part of the video is related to the tag. To this end, we used the following sentence,
“The next question (question 2) asks you about the connection between the tag and
what can be seen in the video. When you answer this question please turn off the
sound of your computer and pay attention only to what you see in the video. (If you
feel that you can reliably ignore what you are hearing, it is OK if you simply pretend
the sound is turned off rather than turning it off.)”

We were pleased when we initially formulated this sentence because we thought
that it gave very clear instructions. However, it is obvious that some crowdworkers
did not ignore the sound, although we tried to nudge them to think specifically about
their own hearing. Figure 10.12 shows an example of such a case.

The example is a video about a man showing his birthday gifts. He talked about
a mug for about 30 s, but only showed it in front of the camera for less than 5 s. The
tag “mug” was labeled on the time-point where the mug is shown. For this task, two
of the three workers who provided information on this tag-video pair thought the tag
could be moved 5 s earlier or later and it would still be related to what was seen in
the video.

Ultimately, we addressed this issue to the best of our ability by making the entire
task more clearly focused on the idea of “tell us what you see when you turn off the
sound.” We decided that the first question of our original pilot task was distracting.
This question asked the crowdworkers a question concerning the tag as a lexical
word and not the tag as something that could be seen in the video. In the final version
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of the task, we eliminated this question. Because we were interested in developing
an effective task and not studying how human perception per se, we did not stop to
consider the nature of this distraction. We mention here, that what we characterize as
“distraction” could be anything from crowdworkers feeling uncomfortable with a task
that they feel is drifting “off topic” to a bona fide priming effect. Priming is a memory
effect beyond conscious control that causes our response to any given stimulus to be
impacted by the immediately preceding stimulus. Although we cannot assert with
certainty that we observed priming, we note that priming has been demonstrated to
have an impact on crowdworkers’ performance in affective crowdsourcing tasks, and
is thought to have a role to play in other types of crowdsourcing as well [16].

Finally, we note that a task might be difficult for crowdworkers because of vari-
ations in their background knowledge. Conventionally, a differentiation is made
between expert and general public crowdsoucing, as in [34]. However, expertise
necessary for interpreting social multimedia cannot be equated with encyclopedic
or textbook knowledge. For example, in our video collection, the tag "rattail" was
assigned to a video in which girls were demonstrating makeup. If the crowdworkers
do not realize that ‘rattail’ is the name of the girl’s hairstyle, they may think this
tag is not related to the video at all. A general strategy that suggests itself is to ask
as many crowdworkers as possible. "Rattails" are relatively rare, but not an entirely
obscure classical hairstyle known throughout the world.

In sum, we have used this example to argue that it is important not to assume that
unexpected responses of the crowdworkers to a task are the fault of the crowdworkers.
Instead, the task must be carefully piloted. However, crowdsourcing does have its
limitations and it is important to be aware of them when using it as a tool for eliciting
information on complex human interpretations of multimedia.

10.6 Conclusion and Outlook

Multimedia content analysis researchers find complexity in human interpretations of
multimedia nearly unbearably frustrating. If there is no single “right answer” to the
question of whether a specific image depicts a certain object or a certain video shows
a certain event, then how is it possible to develop an algorithm that will generate a
useful description of that image or video automatically? Effectively, the complexity
arising on the “human side” of the semantic gap creates an impasse threatening to
block the progress of multimedia algorithms that are able to generate human-like
descriptions of multimedia. For this reason, focusing on diverse human interpre-
tations of multimedia is an important undertaking, although it initially appears to
be prohibitively difficult. This article has pursued the modest aim of taking a few
practical steps in the direction of a larger solution, although the solution itself lies,
presumably, many years in the future.

The approach that we advocate involves two phases, first recognizing complex-
ity, and then isolating the most important aspects of complexity so that they can be
tackled by multimedia content analysis research. We have taken the position that
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the variability of objective characterizations of multimedia should not be considered
to be “aberrations” or “subjectivity” in the way that people describe multimedia.
Rather, variability in interpretation arises through variability in context of use and is
an essential part of how humans make sense of multimedia. As such, we argue, multi-
media researchers should strive to addresses the variability of user interpretations of
multimedia content in their full richness and complexity. We have discussed reasons
for which the interpretations that we, as multimedia researchers, give to multimedia
do not reflect those that are assigned by users using multimedia in real-world con-
texts. In other words, it is not possible for us to expect to “see with our own eyes”
the factors that play the most important role for users. Instead, the factors (e.g., vi-
sual concepts and other properties of multimedia) that determine how humans carry
out complex interpretation of multimedia are something that we must actively go in
search of.

Looking forward to the future, it is instructive to compare the approach that we
have presented here, with the recent work in the area of computer vision that has made
use of crowdsourcing to elicit attributes describing images from humans. Attributes
are defined as properties of images that mediate between low level features and high-
level categories. In [23], an inventory of attributes is created that are detectable by
visual algorithms and are also nameable by humans. The inventory is created so that it
is visually discriminative with respect to high-level categories. This work is similar to
our own in that it uses crowdsourcing to consult a large number of people concerning
their interpretations of images, rather than using a hand-crafted inventory created by
a few people. However, the differences are more informative than this similarity.

First, the work in [23] focuses discovering attributes that describe high-level cat-
egories that are basic concepts: outdoor scenes and animals. In other words, the
ultimate target categories of interest to the user are assumed and not elicited. Our
work targets ultimate categories which are of themselves complex.

Second, the Amazon Mechanical Turk task used in [23] does not attempt to create
a context for the crowdworkers. The subjects are shown images and asked to “name
properties.” Initially, this seems like the most straightforward way of asking about
images. However, it is actually not straightforward. If the crowdworkers have no clue
of context, they need to invent their own. The natural human way to approach the
situation is to build a new context: how I describe images in the context of a task that
is asking me about the “properties” of images.

The example that [23] provides of a distinction that is considered “unnamable”
by crowdworkers is the split between “elephant,” “lion,” “polar-bear,” “sheep” on the
one hand and “gorilla,” “giraffe,” “giant-panda” on the other hand. This distinction is
visually discriminative, but crowdworkers cannot name it. We conjecture that if the
task had been couched in a context related more directly to a real-world relationship
to animals (e.g., selecting images for kid’s school projects on the animal kingdom),
then people would more easily trigger that “gorilla,” “giraffe”, “giant-panda” all fall
into a “eats shoots and leaves” type of animal, that is often pictured feeding against
a foliage backdrop. We do not claim that there is something inherently wrong with
the procedure in [23]. To the contrary, the information that it elicits from the crowd
is extremely useful and clearly advancing the state of the art. Our point is that the
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formulation of the task limits the information that can be collected. In our view, the
focus on “properties” of pictures that have been isolated from their context of use
stands in the way of allowing crowdworkers to connect with the full richness of the
complex interpretations that they give to images.

Other work in the area of attribute, such as [9], also uses a task that gives no
context. This work mentions the concern of the expense of collecting labels from
crowdsourcing platform, and the need to simplify decisions to control expense. How-
ever, limited budget should inspire us to think more carefully about whether we are
asking the right questions on crowdsourcing platforms, rather than making assump-
tions to build constraints into the way we ask people about multimedia.

If we are sure that we are focused on what is essential we can avoid wasting
resources attempting to solve versions of the multimedia content analysis problem
that do not directly contribute to building multimedia systems that support users.
Crowdsourcing platforms make it easier than ever before for multimedia researchers
should direct their gaze outwards and explore complex human interpretations of
multimedia. Ultimately, significant progress in this line of investigation will require
a substantial investment of resources, time, and effort. The alternative is that the
multimedia systems of the future fail to address what is truly important to human
users, and it is those users who are forced to adapt to the system instead.
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