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Abstract A finite volumes numerical scheme is here proposed for hyperbolic
systems of conservation laws with source terms which degenerate into parabolic
systems in large times when the source terms become stiff. In this framework, it is
crucial that the numerical schemes are asymptotic-preserving i.e. that they degener-
ate accordingly. Here, an asymptotic-preserving numerical scheme is designed for
any systemwithin the aforementioned class on 2D unstructuredmeshes. This scheme
is proved to be consistent and stable under a suitable CFL condition. Moreover, we
show that it is also possible to prove that it preserves the set of (physically) admis-
sible states under a geometrical property on the mesh. Finally, numerical examples
are given to illustrate its behavior.

1 Introduction

The objective of this paper is to build a suitable numerical scheme for hyperbolic
systems of conservation laws which can be written under the following form:

∂t U + div(F(U)) = γ (U)(R(U) − U), (t, x) ∈ R+ × R
2. (1)

Here, the Jacobian of the flux F is assumed to be diagonalizable in R. The set
of admissible states is denoted A . Moreover, R is a smooth function of U such
that for all U ∈ A , R(U) ∈ A . Finally, γ (U) is a positive real function which
represents the stiffness of the source term. The system (1) is assumed to fulfill the
properties required in [3] so that it degenerates in long time and when the source term
becomes stiff, more precisely when γ (U)t → ∞, into a parabolic system. There are
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numerous examples of such systems, including the M1 model for radiative transfer
(see [17]) which is used here as when an illustration is required:

U =

⎛
⎜⎜⎝

E
Fx
Fy
T

⎞
⎟⎟⎠, F(U) =

⎛
⎜⎜⎝

Fx Fy
c2Pxx c2Pxy
c2Pyx c2Pyy
0 0

⎞
⎟⎟⎠, R(U) =

⎛
⎜⎜⎜⎜⎜⎝

σ(U)aT 4+σ1(U)
σm (U)

σ1(U)Fx
σm (U)

σ1(U)Fy
σm (U)

σ (U)E+σ2(U)ρCvT
ρCvσm (U)

⎞
⎟⎟⎟⎟⎟⎠

,

(2)
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σm(U) = σ(U)max
(
1,

aT 3

ρCv

)
, σ1(U) = σm(U)−σ(U), σ2(U) = σm(U)−σ(U)

aT 3

ρCv
. (4)

The set of admissible states is:

A = {
U = (E, Fx , Fy, T )� ∈ R

4 / E > 0, T > 0, ‖F‖ ≤ cE
}
. (5)

When σm(U)t → ∞, the M1 model degenerates into the so-called equilibrium
diffusion equation:

∂t
(
ρCvT + aT 4) − div

( c

3σ
∇aT 4

)
= 0. (6)

Themain difficultywhen designing a numerical scheme for such systems is to enforce
the correct degeneracy in the diffusion limit. In other words, the limit of the scheme
when γ (U)t → ∞ shall be a consistent approximation of the limit diffusion equa-
tion. This property is generally not fulfilled by numerical schemes hence the design
of asymptotic-preserving (AP) schemes has been an important issue during the last
decade. For 1D applications, several asymptotic-preserving schemes were proposed
in this context. The most explored way to do so is to use a modified HLL scheme and
cleverly control the numerical diffusion in the spirit of the work of Gosse and Toscani
for the telegraph equations [20]. This technique has been widely used for the M1
model andEuler equationswith friction (see for instance [8, 10]) and extended to gen-
eral cases [5]. Other techniques have also been used, such as [1, 6, 11]. The situation
is much more difficult for 2D applications however. While it is quite straightforward
for Cartesian grids (see [2] for example), it is way more complex on unstructured
grids. One of the reasons is that the classical two-point flux scheme (or FV4 [18])
which is the target of many AP schemes is not consistent anymore. The only excep-
tion is the MPFA-based AP scheme for Friedrich systems developed in [9]. Our
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goal is therefore to propose an AP finite volumes scheme for any system of the
form (1). This scheme is a natural extension of the 1D scheme proposed in [5] based
on the diamond scheme [12]. It is consistent and stable under a natural unrestrictive
CFL condition. Moreover, it is also possible to enforce the preservation of the set of
admissible states provided a geometrical property is satisfied by the mesh.

Notations. Since we intent to provide a finite volumes scheme which may be
used in either cell-centered or vertex-centered contexts we call (primary) mesh M
the set of all control volumes effectively used in the scheme. The secondary mesh
is a set control volumes defined around the nodes of the primary mesh. Hence, the
primary mesh is the primal mesh in the context of cell-centered schemes and the dual
mesh in the context of vertex-centered schemes and the secondary mesh is the dual
mesh in the context of cell-centered schemes and the primal mesh in the context of
vertex-centered schemes. The notations used throughout this paper are summarized
on Fig. 1:

• NK is the number of nodes (and interfaces) of the cell K ∈ M .
• xK is the centroid of the cell K .
• The nodes of the cell K are locally denoted {Ai }i=1...NK .
• The neighboring cells (Li )i of the cell K are locally numbered from 1 to NK such
that K ∩ Li = [Ai Ai+1]. Their centroids are locally denoted {xi }i=1...NK .

• d K
i := ‖xK xi‖ and ei := ‖Ai Ai+1‖ is the length of the i th interface of the cell K .

• r K := |K |/pk where pk is the perimeter of K .

2 Definition of the Scheme and Properties

The scheme proposed here is a direct generalization of the 1D scheme [5] where
a Rusanov-type flux is selected for the hyperbolic part. As it was pointed in the
introduction, themaindifficulty is to select a scheme todegenerate into in the diffusive
limit. The classical two-point finite volume scheme (a.k.a FV4 [18]) is not consistent
with the diffusion equation on general meshes. The target scheme in the diffusive
limit must therefore properly take into account the whole gradient. For the sake of
consistency and simplicity, we choose to use the same gradient discretization in the
hyperbolic part. Here, we adopt the diamond scheme strategy [12] but others could
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be considered (see [7, 13–15, 19, 21] and references therein). With the diamond
scheme to approximate the gradients, the resulting scheme is obtained:

Un+1
K = Un

i + �t

|K |
NK∑
i=1

eiα
n
K ,iF

n
K ,i · ni + �t

|K |
NK∑
i=1

eiα
n
K ,i F(Un

K ) · ni

+ �t

|K |
NK∑
i=1

ei (1 − αn
K ,i )b

K
i (R(Un

K ) − Un
K ), (7)

F n
K ,i = F(Un

K ) + F(Un
i )

2
− bK

i θ K
i

2
∇K

i Un
K · ni , αK

i = bK
i

bK
i + γ K

i r K
, (8)

∇K
i Un

K · ni = Un
i − Un

K

2|Di | ei + Un
Ai+1

− Un
Ai

2|Di | d K
i ni · τ i , (9)

where θ K
i > 0 is a parameter to be precised later and Un

Ai
is the value of the solution

at the node Ai (see Fig. 1). This value is obtained as a mean value of the solution in
the cells which share Ai as a node (see [12]).

Theorem 1 Assume that θ K
i → 0 when r K → 0, then the scheme (7)–(8) is con-

sistent with (1).

The proof of this theorem and the following can be found in [4]. In some applications,
it is important to preserve the set of admissible states A . It is all the more difficult
since most finite volumes schemes for parabolic problems, including the diamond
scheme, do not preserve the maximum principle. Only a few examples ensure this
property (for example [16, 22]). Interestingly, it is sometimes possible to recover the
maximum principle for our scheme under some geometric condition on the mesh.

Definition 1 The mesh is said to be δ-admissible if ∃δ > 0 such that:

∀K ∈ M , ∀i ∈ [1, NK ], 1 + ei−1d K
i−1

e2i

|Di |
3|Di−1| − ei+1d K

i+1

e2i

|Di |
3|Di+1| > δ,

d K
i = d K

i ni · τ i .

With this definition, an admissible mesh is δ-admissible for all δ ≤ 1 since all d K
i

are then equal to 0. This condition turned out to be satisfied by most of the meshes
generated with reasonable constraints on the angles we tested. Equipped with this
definition, we can obtain the following result.

Theorem 2 Assume that the mesh is δ-admissible and that the secondary mesh is
made of triangles. Let us also assume that αK

i is constant inside each cell K ∈ M

(αK
i = αK ) and let us set θ K

i = 2|Di |
δei

. Then, the scheme (7)–(8) preserves the set

of admissible states A as soon as the following CFL condition holds:

max
K∈A ,i≤NK

{bK
i θ K

i δK
i } �t

|K | pK ≤ 1

2
. (10)
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Once again, a proof of this theorem is provided in [4]. There are two essential
bricks here: the ability towrite the 2D scheme as a convex combination of 1D schemes
and the possibility to express the approximate gradient as

∑
i ωK ,i (UK − Ui ) with

ωK ,i ≥ 0. Several comments have to be done concerning this theorem:

• The choice of θ K
i tends to 0 when r K → 0 as it was requested for the sake of

consistency.
• Asimilar theoremmay be obtained onmore generalmeshes. However, the geomet-
rical condition quickly becomes cumbersome.On the other hand, other expressions
of the discrete gradient such as [16]may also be used to ensure the propertywithout
any restriction on the mesh at the cost of a strongly nonlinear scheme.

• The main restriction is to consider αK
i that are constant per cell. It is sometimes a

severe limitation when the AP procedure defined in the following is applied.

• Other choices of θ K
i allow to recover the same result e.g. θ K

i = max
i≤NK

2|Di |
2δ

.

The scheme (7)–(8) is not AP in general but a simple procedure may be used to
recover this property. It consists in appliying the scheme to the system:

∂t U + div(F(U)) = (γ + γ̄ )
(
R̄(U) − U

)
, R̄(U) = γ R(U) + γ̄ U

γ + γ̄
, (11)

which is obviously equivalent to (1). Then, a formal Chapmann-Enskog expansion
leads to the following scheme in the diffusion limit:

Un+1
K = Un

K − �t

|K |
NK∑
i=1

ei
bK

i

(γ K
i + γ K

i )r K

[
F (Un

K ) · ni − F(Un
K ) · ni

]
|R(Un

K )=Un
K

.

(12)
Now, γ K

i may be chosen so that the scheme is AP. This procedure is illustrated in
the case of the M1 model for radiative transfer.

AP correction for the M1 model. For the M1 model (2), bK
i = c and the equilibrium

gives Fx = Fy = 0 and E = aT 4. The first and fourth equations of (12)–(8) hence
become:

(ρCv + aT 4)n+1
K = (ρCvT + aT 4)n

K + �t

|K |
NK∑
i=1

c2ei

2(σ K
m,i + σ̄ K

i )r K
∇K

i (aT 4)n · ni .

In order to ensure that this scheme is consistent with the equilibrium diffusion equa-
tion (6), the terms σ̄ K

i have to be chosen accordingly. For example, if we take:

(σ K
m,i + σ̄ K

i ) = σ K
m,i

3cθ K
i

2r K
> 0. (13)
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then the limit scheme in the diffusion regime is:

(ρCvT + aT 4)n+1
K = (ρCvT + aT 4)n

K + �t

|K |
NK∑
i=1

cei

3σ K
i

∇K
i (aT 4)n

i · ni ,

which is consistent with the diffusion equation (6). In fact, as expected, it is nothing
but the diamond scheme applied to (6). Moreover, if σ is a constant and θ K

i = θ K

then σ̄ K
i = σ̄ K and Theorem 2 can be applied. In order to meet such a requirement,

one may choose: θ K
i = max

i≤NK

2|Di |
2δ

.

3 Numerical Results

Validation tests are performed in this paragraph in order to illustrate the behavior of
the scheme. ARiemann problem for the M1 model for radiative transfer is considered
on [0, 5] × [0, 1] with:

(E, Fx , Fy, T )�(0, x) =
{

(aT 4
L , c fx,LaT 4

L , 0, TL)�, if x < 1,

(aT 4
R, 0, 0, TR)�, otherwise.

In the following, TL = 10000, TR = 300 and fx,L = 0, ρCv = 10−2 and c = 3.108.
First, σ is set to 0 since the preservation of admissible states is expected to be more
difficult than in the presence of the (regularizing) source-term. Two different meshes
are used: a “coarse” one (5152 triangles) and a “fine” one (132006 triangles). Both
of these meshes are δ−admissible with optimal δ = δ1 = 1.095 for the coarse grid
and δ2 = 5.59910−2 for the fine one. The reference solution is the exact solution of
the corresponding 1D Riemann problem. Figure2 shows the solutions along x = 1

2 .

Here, the conservation of admissible states is enforced by using θ K
i = max

i≤NK

2|Di |
2δ

where δ = δ1 on the coarse mesh and δ2 on the fine one. The solution computed
on the coarse grid is comparable to a 1D Rusanov scheme with a similar number of
cells. On the other hand, since δ2 � δ1, the numerical diffusion of the scheme is way
larger on the fine mesh than on the coarse one. The approximation is hence better on
the coarse grid in this case. Now if δ = δ1 on the fine mesh, as shown in the right of
Fig. 2, the quality of the approximation behaves as expected, i.e. the approximation
is better on the fine grid.

Next, we fix σ = 1000 to investigate theAP property. The results showed on Fig. 3
are compared with a grid-converged 1D approximation of the equilibrium diffusion
equation. The tests are performed with and without the asymptotic-preserving cor-
rection on the fine grid. We immediately see that with the AP correction, the scheme
provides an approximation which is nearly indistinguishable from the reference solu-
tion. On the other hand, as expected, if the AP correction is turned off i.e. γ K = 0),
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Fig. 2 Exact and computed E along x = 1
2 with σ = 0 at t = 2.10−9. (l) conservation of A

enforced; (r) same value of δ for both meshes

Fig. 3 Ref. and computed
E with and w/o AP correction
along x = 1

2 with σ = 1000
at t = 2.10−6

Fig. 4 Radiative flow in
a channel (top) E (bottom) χ

there is a large discrepancy between the computed and the reference solution. Finally,
a test-case involving the evolution of the radiation in a channel with multiple obsta-
cles is performed. The entry condition on the left side of the channel models a beam
of high energy (FL = cEL = ca100004) compared to the initial state of the domain
(F0 = 0, E0 = a104), σ = 1 and 11 obstacles (with wall boundary conditions)
are scattered in the channel. A vertex-centered approached is used on a mesh con-
sisting of 15348 cells refined near the obstacles (see Fig. 4). Let us emphasize that
this case is numerically very challenging and that it is all the more critical to pre-
serve the set of admissible states here since very small numerical errors may yield
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unadmissible values, which immediately cause the code to crash. Several values of
θ K

i were tested and even a value 5% larger than the choice stated in the theorem
produces unadmissible results. In this sense, it seems that the condition of Theorem
2 is optimal.
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