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Abstract We consider the solution of hyperbolic conservation laws on moving
meshes by means of an Arbitrary Lagrangian Eulerian (ALE) formulation of the
Runge-Kutta RD schemes of Ricchiuto and Abgrall (J.Comput.Phys 229, 2010). Up
to the authors knowledge, the problem of recasting RD schemes into ALE frame-
work has been solved with first order explicit schemes and with second order implicit
schemes. Our resulting scheme is explicit and second order accurate when computing
discontinuous solutions.

1 Conservation Laws in Arbitrary Lagrangian Eulerian Form

We start by recalling the ALE formulation of conservation laws, which dates back
to the early eighties due to the contribution of Donea [10].

Assuming that we are given a domain Ω and a field of displacements that brings
every point of the domain from the reference position X to the actual one x(t) and
that this field is governed by an arbitrary given motion law

dx(t)

dt
= σ (x, t), (1)
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Solving Eq.1 gives back ∀t > 0 the actual configuration through the mapping

A(t) : ΩX → Ωx (t), x = A(X, t) (2)

with the condition A(X, 0) = X. Let the Jacobian matrix of the mapping be JA =
∂x
∂X and assume that JA = detJA �= 0, i.e. themapping A is assumed to be invertible.

The conservation of the scalar u can be stated within a control volume which is
moving following the domain arbitrary mapping of Eq. 2. The differential form of
conservation law in ALE formulation reads in actual coordinates

∂ (JAu)

∂t

∣
∣
∣
∣

X
+ JA∇ · (f − uσ ) = 0 (3)

with f the flux of u through the borders of the volume. Simple relations can be used
to prove the so called Geometric Conservation Law (GCL)

∂ JA

∂t

∣
∣
∣
∣

X
= JA∇ · σ (4)

Last equation is a constraint the points of the domain have to satisfy during their
arbitrary motion. Using Eq.4 into Eq.3 it is possible to obtain a mixed formulation
where the ALE part of the flux is in a quasilinear form

∂u

∂t

∣
∣
∣
∣

X
+ ∇ · f − σ · ∇u = 0 (5)

2 Residual Distribution for 2D Steady Conservation Laws

The foundations ofResidualDistribution (RD) canbe traced to theworkof [6, 16, 19]
on residual based schemes, and to the fluctuation splitting approach of Roe and co-
workers [20, 21]. Consider the steady limit of the conservation law

∂u

∂t
+ ∇ · f(u) = 0 (6)

Discretize the spatial domain by a triangulationTh , and consider the standard P1 con-
tinuous approximation uh(x, t) = ∑N+1

j=1 ϕ j (x)u j (t) with ϕ j the continuous piece-

wise linear Lagrange basis functions. The RD approximation of Eq.6 is obtained as

1. On each element K ∈ Th compute the residual

φK =
∫

K
∇ · f(uh) dx =

∫

∂K
f(uh) · n ds (7)
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2. Distribute the residuals to the nodes of the element i, j, k ∈ K

φK
j = βK

j φK ,
∑

j∈K

φK
j = φK (8)

3. Assemble elemental contributions:

|Si | dui

dt
+

∑

K∈Di

φK
i = 0, ∀i ∈ Th (9)

with Di the set of elements sharing node i , an Si the standard median dual cell.
Marching Eq.9 to steady state one obtains a discrete solution which can be shown
to be an approximation of the weak solution of Eq.6, see [5].

In practice residual in Eq.7 can be computed either by contour integration [7, 18],
or by introducing an exact Jacobian mean value linearization so that

φK =
∑

j∈K

k j u j , ki = 1

2
ā · ni (10)

with ni the inward normal to the edge facing node i , scaled by the edge length and

the elemental average of the advective speed ā = 1
|K |

∫

K
∂f(uh)

∂u dx.

3 Genuinely Explicit RK-RD Time Marching Procedure

In the time dependent case we use the Petrov-Galerkin form of RD [3, 12, 14, 17]

∑

K∈Di

∑

j∈K

mK
i j

du j

dt
+

∑

K∈Di

βK
i φK = 0 (11)

with the mass-matrix mK
i j = ∫

K ϕ j wi dx, and with wi = ϕi + γi the RD Petrov-
Galerkin test function. Considering a time step Δt subjected to CFL condition, the
second order explicit RK2-RD schemes of [17] is obtained as:

1. First RK step:
Δu1

Δt
+ e1 = 0, with e1 = e(un). We use the Petrov-Galerkin RD

statement and mass lumping, leading to (Δu1 = u1 − un)

|Si |Δu1

Δt
+

∑

K∈Di

φK
i (un) = 0 (12)
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2. Second RK step:
Δu2

Δt
+ e2 = 0, with e2 = (e(un) + e(u1)/2). We use the

Petrov-Galerkin RD statement, however two different approximations of the
equation are used in the Galerkin part and in the stabilization, namely (Δu2 =
un+1 − un)

∫

Ω

ϕi

(

Δuh
2

Δt
+ ∇ · f2(uh)

)

dx+
∑

K∈Di

∫

K
γi

(

Δuh
1

Δt
+ ∇ · f2(uh)

)

dx = 0

(13)
3. Mass lumping is applied to the Galerkin integrals in Eq.13. This leads to

|Si |
{(Δu2

Δt

)

i − (Δu1

Δt

)

i

}

= −
∑

K∈Di

Φ
RK (2)
i (14)

where

Φ
RK (2)
i =

∑

j∈K

mK
i j

(Δu1

Δt

)

j + 1

2
φK

i (u1) + 1

2
φK

i (un)

4 Residual Distribution Schemes for Moving Grids

In this section we recast the scheme of Eq.14 in ALE form. ALE formulations of
RD have been proposed in the work of Michler and Deconinck [15], who achieved
first order with an Explicit Euler time integrator, and later Dobes and Deconinck (see
e.g. [8]) who moved to high order time approximation (BDF, Crank Nicholson), thus
obtaining second order of accuracy. The aim of this work is to obtain a numerical
solution with second order of accuracy using a faster explicit Runge Kutta time
integrator.

4.1 Explicit Euler Time Stepping

We start from the stabilized Finite Element approximation of ALE Eq.3, discretized
in time with Explicit Euler (EE):

Δ

Δt

∫

Ω(t)
wi u

h dx +
∫

Ω(t∗)
wi∇ · (

f(un
h) − σ ∗

h un
h

)

dx = 0 (15)

Imposing a uniform flow, the discrete counterpart of Eq.4 arises from the above
approximation and it is referred to asDiscreteGeometric ConservationLaw (DGCL).
The satisfaction of the DGCL is very important when numerically solving PDEs
in ALE form [11, 13]. In [8] the problem is closed substituting directly the GCL
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condition Eq.4, discretized with the same time integrator used for the PDEs (in this
case EE), into the ALE flux part of Eq.15. In such a way, when a uniform flow
is imposed, the volume variation within the time step is exactly balanced by an
equal term. This tecnique could be employed for every time approximation, even
the more complex, provided that the Geometric Source Term arising from the above
substitution is discretized with the same time scheme which we use for the PDEs.
Here instead we follow Farhat [11, 13] which shows that by choosing σ ∗

j = (xn+1
j −

xn
j )/Δt , and by setting t∗ = tn+1/2, most single step time discretizations satisfy

naturally the DGCL condition. In our case if a uniform flow is imposed one gets

∫

Ωn+1
h

wi dx −
∫

Ωn
h

wi dx = Δt
∫

Ω
n+1/2
h

wi∇ · σ ∗
h dx (16)

which is in fact an identity for P1 interpolation. This identity, and the properties of
the P1 basis functions, can be used to prove

∫

Ωn+1
wi u

h dx −
∫

Ωn
wi u

h dx =

=
∫

Ωn+1/2
wi

(

un+1
h − un

h

)

dx + Δt
∫

Ωn+1/2
wi

(

un+1
h + un

h

)

2
∇ · σ ∗

h dx (17)

Substituting this expression in Eq.15 we end with

∫

Ωn+1/2

(

1 + Δt

2
∇ · σ ∗

h

)

wi

(

un+1
h − un

h

)

dx +

+ Δt
∫

Ωn+1/2
wi

(∇ · f(un
h) − σ ∗

h · ∇un
h

)

dx = 0 (18)

Lumping the mass matrix, recalling that ∇ · σ ∗
h

∣
∣
K is constant in the P1 case, and

using the analogy with Residual Distribution method on the right-handside, we get

∑

K∈Di

(

1 + Δt

2
∇ · σ ∗

h

) |K n+1/2|
3

(

un+1
i − un

i

)

= −Δt
∑

K∈Di

βK
i φK (

un
h

)

The final algorithm reads

|S̃n+1/2
i |
Δt

(

un+1
i − un

i

)

= −
∑

K∈Di

βK
i φK (

un
h

)

(19)

where the median dual cell area that appears in Eq.9 is evaluated at the midpoint
configuration, and modified to take into account the grid distortion as follows
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|S̃n+1/2
i | =

∑

K∈Di

(

1 + Δt

2
∇ · σ ∗

h

) |K n+1/2|
3

(20)

The DGCL is satisfied by construction. Note that, due to the extra term σ ∗
h · ∇uh in

Eq.18, the ki parameter used to evaluate φK (cf. Eq. 10) is modified as

ki = 1

2
(ā − σ̄ ) · ni (21)

4.2 Two-Stage RK-RD Time Stepping

The extension of scheme of Eq.14 has to be done carefully to preserve the DGCL.
The problem is related to the balance of the different time increments used in the
stabilization and Galerkin parts. To handle this, we use for the stabilization term the
nonconservative ALE form Eq.5. Proceeding as in Sects. 3 and 4.1 we have:

1. First RK step: It is the EE of Eq.19 with linearized residuals and geometry com-
puted at midpoint configuration, and ki modified according to Eq.21.

2. Second RK step: The discretization of the Galerkin part writes

Δ

Δt

∫

Ω(t)
ϕi u

h
2 dx +

∫

Ωn+1/2
ϕi∇ ·

(

f(uh) − σ ∗
huh

)

2
dx (22)

For the stabilization term instead we use

∑

K∈Di

∫

K n+1/2
γi

Δuh
1

Δt
dx+

∑

K∈Di

∫

K n+1/2
γi

(

∇ · f(uh)n − σ ∗
h · ∇uh

)

2
dx (23)

both the parts satisfy the DGCL condition by construction.
3. We use Eq.17, mass lump the Galerkin integrals, and sum up the two terms to get

|S̃n+1/2
i |

{(Δu2

Δt

)

i − (Δu1

Δt

)

i

}

= −
∑

K∈Di

Φ
RK (2)
i (24)

with

Φ
RK (2)
i =

∑

j∈K

mK
i j

(Δu1

Δt

)

j + 1

2
φK

i (u1) + 1

2
φK

i (u2)

Besides the modified definition of the ki parameters and of the median dual area, the
final scheme is formally identical to the original one.
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Fig. 1 Vortex advection. Mesh deformation (left) and grid convergence (right)

5 Application to the Perfect Gas Euler Equations

We tets the proposed ALE formulation on the perfect gas Euler equations. We have
used the non-linear LDA-N distribution scheme. We refer to [1, 2, 4, 17] for details
concerning this scheme, and for the implementation of RD for systems.

5.1 Advection of a Vortex

Wemeasure the accuracy of the scheme on the advection of a constant density vortex
(see [9] for details). The mapping of Eq.2 is defined according to (cf. Fig. 1)

x = X + sin(aπ X) sin(bπY )(c sin(dπ t/tmax, e sin( f π t/tmax)))

We can see from the right picture on Fig. 1 that the expected order of accuracy is
achieved both in the fixed mesh and ALE framework.

5.2 Wind Tunnel with Wall Def lection

We consider a simple application involving moving boundaries. We have a 2D chan-
nel [2 × 1] with an hinge on the lower surface placed at x = 0.25. This hinge allows
a rigid deflection of the lower wall of an angle α governed by the motion law

{

α(t) = αmax
(

1 − e−t/τ
)

t ≤ tswitch

α(t) = αmax − 2αmax
(

1 − e−(t−tswitch)/τ
)

t > tswitch
(25)

The Mach number at the inlet is M = 3.



64 R. Abgrall et al.

Fig. 2 Mach 3 wind tunnel with a deflecting wall. Density isolines

The flow shows two stable configurations. The first is a regular shock reflection
on the upper wall (t ≈ 1.2), the second is a supersonic Prandtl-Mayer expansion
(t ≈ 2.5). In between these two states, the flow shows a transient with the formation
and shedding of complex interacting shocks, which are sharply and monotonically
captured by our scheme (Fig. 2).
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