Discrete Relative Entropy for the Compressible
Stokes System

Thierry Gallouét, David Maltese and Antonin Novotny

Abstract In this paper, we propose a discretization for the nonsteady compressible
Stokes Problem. This scheme is based on Crouzeix-Raviart approximation spaces.
The discretization of the momentum balance is obtained by the usual finite element
technique. The discrete mass balance is obtained by a finite volume scheme, with an
upwinding of the density. The time discretization will be implicit in time. We prove
the existence of a discrete solution. We prove that our scheme satisfies a discrete
version of the relative entropy. As a consequence, we obtain an error estimate for
this system. This preliminary work will be used in order to obtain a error estimate
for the compressible Navier-Stokes system and has to the author’s knowledge not
been studied previously.

1 Introduction

Let £2 an open bounded domain with lipschitz boundary subset of R?, d = 2, 3. We
consider the following system

dr0 +diviou) =0, t € (0, T), x € 2 (1)

oru — pnAu — (u+1M)Vdivu+Vep(e)=0,1t€ (0, T), x €2 )
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supplemented with the following initial conditions and boundary condition

00, x) = po(x), u(0,x) =up, upe =0. 3)
We suppose that the pressure satisfies p € C(Ry) N Cz(Rj_), p0) = 0 and
lim4 oo z;,(fl) = pso > 0 for y > 2. Moreover if y € [g, 2[ we suppose also

p'(p)
pa—l

that lim inf = po > 0, with <0.

2 Weak Solutions, Relative Entropies

In this part, we give the definition of (finite energy) weak solutions for our system.
We give the definition of the relative entropy. In the following we denote H (o) =

P lp % dt. Let us denote C2°([0, T'] x £2, R3) the space of all smooth functions
on [0, T] x £2 compactly supported in [0, T] x £2.

Definition 1 Let (0q, ug) € LY (§2) X HO1 (£2) such that g9 > 0 a.e in §£2. We shall
say that (o, u) is a finite energy weak solution to the problem (1)—(3) emanating from
the initial data (og, ug) if
0 € L™(0,T; LY (£2)) N Cy([0, T, LY (£2)), p = 0 p.pin (0, T) x £2,
u € L*(0, T; Hy(2)) N Cu((0, T1, L*(2))

and :
— The continuity equation (1) is satisfied in the following weak sense

/ Q(‘L ')(p(rs ) dX _/ Q()QD(O, ) :/ / Q(tv -x)at(p(tv -x) dth
2 2 0 2

T
—|—/ /Qu~Vx(pdxdt, 4)
0 J2

VT € [0, T], Yo € C®([0,T] x £2).
— The momentum equation (2) is satisfied in the following weak sense

/ u.w(t,x)dx—/ ug - (0, -)dx
Q Q

T
= / / u-oy + plo)divy v — uVyiu : Vir — (u + X) divy u divy ¢ dx dt,
0 2
&)

Yt € [0,T], V¢ € C([0, T] x 2,R3).
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— The following energy inequality is satisfied

1 T
/—|u|2+H<@>dx+/ /MIIqu||2+(M+?»)(divxu)2dxdt
22 0o Jo
1
< / S luol? + H(oo)d. ©)
2

aetel0,T].

2.1 Relative Entropy Inequality, Weak-Strong Uniqueness

The method of relative entropy has been successfully applied to partial differential
equations of different types. Relative entropies are non-negative quantities that pro-
vide a kind of distance between two solutions of the same problem, one of which
typically enjoys some extra regularity properties (see [2] for more details)

Definition 2 We define the relative entropy of (p, u) with respect to (r, U) by
1
ol UD = [ Slu = UP + Ele.r) dx ™

where E(p, r) = H(p) —H (r)(p —r) — H(r). We also define a remainder, denoted
by R, as

R:/ V.U : V. (U —u)dx+/ r—0)H @)+ V,H () (rU — ou) dx
2 2
—/ divy U(p(o) — p(r)) dx+/ o/U - (U —u)dx. (8)
2 Q

Theorem 1 Let (p, u) be a weak solution of (1)— (3) in the sense of the definition 1
emanating from the initial condition (po, wo). Then (o, u) satisfy the relative energy
inequality:

(o, ul. Ir. U])(r)+/ / Wl Ve = U IP + (i + A)(divi (e — U)) dxdt
0 Q

< (0. uol. [1(0), UO)) + /0 R(lo. ul. Ir, UN(1) dt
©)
a.et €[0,T], wherer € C®([0,T] x 2,R%) and U € C*([0, T x £2,R?).

Proof See [2].
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Remark 1 For the choice of r = p and U = 0, the relative energy inequality (9)
reduces to the standard energy inequality.

Moreover, the relative energy inequality can be used to show that suitable weak
solutions comply with the weak-strong uniqueness principle, meaning, a weak and
strong solution emanating from the same initial data coincide as long as the latter
exists. This can be seen by taking the strong solution as the test functions r, U in the
relative entropy inequality (see [2]).

3 The Numerical Scheme

Now suppose that £2 is a bounded open set of R?, polygonal if d = 2 and polyhedral
if d = 3. Let 7 be a decomposition of the domain £2 in simplices, which we call
hereafter a triangulation of £2, regardless of the space dimension. By £(K), we
denote the set of the edges (d = 2) or faces (d = 3) o of the elements K € 7;
for short, each edge or face will be called an edge hereafter. The set of all edges
of the mesh is denoted by &; the set of edges included in the boundary of £2 is
denoted by Eex and the set of internal edges (i.e £ \ Eex¢) is denoted by Ein. The
decomposition 7 is assumed to be regular in the usual sense of the finite element
literature, and, in particular, 7 satisfies the following properties: 2 =uU KETE; if
K,L € T,then KNL =@, K NLisavertex or K N L is a common edge of K
and L, which is denoted by K |L. For K € 7 and o € £(K), we define Dk , as the
cone with basis o and with vertex the mass center of K. For each internal edge of
the mesh 0 = K|L, nk stands for the unit normal vector of o, oriented form K to
L (sothatng; = —nrk). By |K| and |o| we denote the (d and d — 1 dimensional)
measure, respectively, of an element K and of an edge o, and h g and h,, stand for the
diameter of K and o, respectively. We measure the regularity of the mesh through
the parameter 6 defined by:

9=inf{i—K,KeT} (10)
K

where &k stands for the diameter of the largest ball included in K. The space dis-
cretization relies on the Crouzeix-Raviart element. The reference element is the unit
d-simplex and the discrete functional space is the space P; of affine polynomials.
The degrees of freedom are determined by the following set of edge functionals:

{Fy,0 € E(K)}, Fy(v) = |C17_|/ vdy.

The mapping from the reference element to the actual one is the standard affine
mapping. Finally, the continuity of the average value of a discrete function v across
each edge of the mesh, F, (v), is required, thus the discrete space V}, is defined as
follows:
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Vi ={vel*2), VK €T, vk € Pi{(K) and Vo € En, 0 = K|L, Fy(vik)
= F,;(v1), Yo € Ex, Fys(v) =0}

The space of approximation for the velocity is the space W of vector-valued
functions each component of which belongs to V;, : W, = (V;,)“. The pressure and
the density are approximated by the space Lj, of piecewise constant functions:

Ly ={q € LZ(Q),q\K = constant, VK € 7T}.

We will also denote L;l" ={qelLy gk >0,VK €T} andL;l"+ ={q € Ly, qx >
0, VK € T}.

It is well-know that this discretization is nonconforming in H'(£2)?. We then
define, for 1 <i < d and u € Vj, 9j ;u as the function of L2(£2) which is equal
to the derivative of u with respect to the ith space variable almost everywhere. This
notation allows us to define the discrete gradient, denoted by V,, for both scalar and
vector-valued discrete functions and the discrete divergence of vector-valued discrete
functions, denoted by div,. We denote || - ||1 5 the broken Sobolev H ! semi-norm,
which is defined for scalar as well as for vector-valued functions by

Ivllf, = Z/

|Vv|2dx=/ |Viv|?dx.
KeT K 2

We denote by {u;s,0 € Eint, 1 < i < d} the set of velocity degrees of freedom
We denote by ¢, the usual Crouzeix-Raviart shape function associated to o € iy,
i.e. the scalar function of V}, such that F, (¢,) = 1 and F,/(¢s) = 0, Vo' # 0.

Similarly, each degree of freedom for the density is associated to a cell K, and
the set of density degrees of freedom is denoted by {px, K € 7'}. We define by ry,
the following interpolation operator ry, : HO1 (£2) — V), by

) = > Fs(0)gs.

ne&m

This operator naturally extends to vector-valued functions and we keep the same
notation ry, for both the scalar and vector case.

Let us consider a partition 0 = 1° < ¢! < ... < N = T of the time interval
[0, T'], which, for the sake of simplicity, we suppose uniform. Let A¢ be the constant
time step At = 1" — " lforn=1,.. N.Let (po, u®)y e L, x Wy,

Following [6] we consider the following numerical scheme :

Find (0")1<n<n C Lp, W")1<n<n C Wy, such thatVn =1, ..., N

ok — ok + -
KIS ol(wy - nke) ok — ol (- nke)
oe&(K),o=K|L
Pl =0,YK €T (11)
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D
'A:|(u;{0 —MZ;1)+;L > / Vil - Voo dx+(n+1) D / div(u") div(ps ¢;) dx
KeT K KeT K
- z / P div(gse)dx =0,Vo € &y, 1 <i <d (12)
KeT K
with p% = p(pk),at = max(a,0),a~ = —min(a, 0).

As usual, to the discrete unknowns, we associate piecewise constant functions on
time intervals and on primal or dual meshes, so the density pa; p, the pressure pa;
and the velocity u 4, , are defined almost everywhere on (0, 7') x §2 by

N N
oarn(t,x) = Z Z Qr;(l(;n*l,zn)ll(y parn(t, x) = Z Z P%l(;nfl,tn)ll(,

n=1KeT n=1KeT

N

warh(t,x) =D > wplnt mlp,.

n=1 KeT

3.1 Existence, Positivity and Stabilities Properties

Theorem 2 (Existence and positivity) Let (0%, u’) e L;[Jr X Wy, Then the problem
(11), (12) admits at least a solution (0")1<n<N C L;lH', @) 1<n<n C W

Proof See [5].

Theorem 3 (Energy estimate) Let (0o, ug) € LY (§2) x HO1 (2, R3), such that
00> 0aex e 2.

Let Q(I)( = ﬁ [x 00 dx and u® = ry (uo).

Let (0", u") € L2'+ X Wy,n =1, ..., N be a solution of (11), (12) emanating
from the initial data (0°, u®). Then we have the following balance discrete energy

.....

N
1
n n \2 ny2
max D KIH@R)+ max D, SIDol,) +pdt ) Il
KeT i,0€Eint n=0

N
+ (4 VALY [[divy a7 ) < c(d, 60, 0o, uo),

k=0

Proof See [5].
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3.1.1 Discrete Relative Entropy Inequality

The following result is crucial for the rest of the article. It can be seen as a discrete
balance version of (9).

Theorem 4 Let (00, uo) € LY (22) x H} (2, R?), such that 0o(x) > 0 a.e x € 2
and H(0o) € L' ().

Let 0% = ﬁ [x 00 dx and u® = ry (ug).

Let (0", u") e Ly xWy,n=1,..,N beasolut@ of (11), (12) ema_natingfrom
the initial data (p°, u®). Let (r, U) € C'([0, T] x 2) N C*([0, T] x 2, R?) such
that r(t,x) > 0,V¥(t,x) € [0,T] x 2 and U(t)jpe = 0. Let U = rp(U(")),
re = ﬁ fK r(t", x) dx Then we have the following inequality

1 [Ds | 2 -1 —12
Z 2 At ((uﬁa _Uir.ltf) _(uﬁo _Ui’?cr ))

i,0€Emt
+ Z @ E( n |rn) _ E( n71|rn71)
Ar Ok 'k Ok 'k
KeT
+ " = U+ ()| divy " = U1 g

| Dy | -
= 2 4 Wy —ui Wy Ui+ 3 | VUL VWL —u)dx
i,0€&in keT 'K
+(n+ A)/ divy Uy} divy, (U} — u™) dx + Z divyy (" u™YH (1)
2
KeT

K
+ > u(r;g — PYH ) = H ) —/ prdivUl dx+RM" (13)
KeT At 2

where At Z,Ilv:l IR™"| < c(oo, o, r, U) At.

The following result is the main result of our article and it is a consequence of the
previous. We give an error estimate for our system.

Theorem 5 Let (09, ug) € LY ($2) x H& (£2, R3), such that po(x) > 0 a.e x € §2
and H(oo) € L' ().

Let Q(I)( = ﬁ [x 00 dx and u® = ry (ug).

Let (0",u") € L, x Wy,n = 1, ..., N be a solution of (11), (12) emanating
from the initial data (QO, u®). Let (r,U) € CH([0, T] x 2) N C%([0, T] x 22, R3)
be a strong solution of (1)~(3) such that ¥(t,x) € [0,T] x £,r(t,x) > 0. Let
Ul =rp(U@M), rg = ﬁ fK r(t", x) dx . Then we have the following inequality
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1] _ _
Z 2 At (( ;10 - Uir,lo)z - (Mzr'l,crl - Ui’?crl)z)

+ Y T (Eeprp - E@ 1)
KeT

+ " = UM+ (W) divy " = UDI135 g

\Y (r
= Z (rg — K)/ P —-U;)dx
KeT
- Z/ " _P(rK)(QK_rK) P(VK))dIVUh dx
KeT
+Rn’h (14)
where At Zn_ |Rn,h| < C(901Q0,u0)(h€(1’) + At) with e(y) = %for y > %
and €(y) = 5 — % for y € [g, %], and we obtain the following estimation

||u8t,h - U||i°C(O,T;L2(.Q)) + ||Q5t,h _r”I)joo(O,T,LV(.Q)) < C(GO, 00, uo)(he(y) +At)

Proof We begin with a algebraic inequality whose straightforward proof is left to
the reader

Lemmal Let0 < a < b < oo. Then there exists ¢ = c(a, b) > 0 such that for all
p € [0,00[ and r € [a, b] there holds

E(pl|r) = c(a, b)(l[g,zb] +p7 IR \14,20) + (0 — r)21R+\[%,2b])~ (15)

We return to (14). We set a = min[o’ﬂxﬁ rand b = max i 7 We write

Z/ P = PRk = ) = p)) div U dx

KeT

= Z / P —p(rK)(,oK rg) — p(rK))dlth dx

K pKe[a/2 2b]

+ > / P" = P ik — i) = p(r)) div U}t dx

K,pkeR\[a/2,2b]

Now using the behavior of p as p goes to infinity and (15) we obtain

|Z/ PP ) (=) = p(r) ) div U dx | < ¢, U) > IKIE (o Irie)

KeT KeT
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We write

V n
Z(r,"{—p,"()/ p(,,r)-(u"—Ug‘)dx
K r

KeT
v
=> ¢y - K)/ p(r u" — Ul dx

Pk<%
\Y
+ Z (r K)/ p(r — Ul dx
p( ) n
+Z(rK K) u" — Ul)dx.
P >2b

Using (15) and Poincare’s inequality we obtain V§ > 0,

DG K>/ VPO - upyax)

Pk <5
<c(r.8) D |KIE(pfIry) + 8llu" — UpIF .
KeT
p( ")
| (rk — Pk / —Up) dx|
pKe[“ 2b)
<c(r,8) D IKIE(pfIry) + 8llu" — U1 5
KeT

Now we have

391

DK < ¢ DL IKIEPRIR). DL KRR <e D IKIE(pIrg)

P >2b KeT P >2b KeT

Then,

v n
> (r,’é—p}é)/K zzir ) (" — U} dx |

P >2b
<cr) D max(pk, (o)) / llu" — U}l dx
Pk >2b
c(r) D VIKIR Pl = Uyl 2
P >2b

+er) DKM pille" = Upll g,
P >2b
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C(r,8) Y IKIE(okIr) +8llu" = UpII,

KeT
+e(r.8) D IKIEQkIrk) + 81" = URIIY o
KeT
< C(r8) D IKIE(PkIrg) + 8llu" = ULI13
KeT
+c(r,8) D IKIEkIrk) + 8llu" = U106 o)
KeT
< C(r8) D IKIE(kIrk) + 811" — UFIIT
KeT
since y > g. ‘We obtain finally
1|Dy| _ _
Z S (u?d _Uincr)z_(u?al _Uino'l)z)
, 2 At \F ’ ~ »
i,0€Emt
+ 3 Bl i) - By )
At K K
KeT
<cr .U X IDelwly = UL+ D IKIEGo 1)) + R
i,0€Ein KeT
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