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Abstract Numerical schemes that satisfy the maximum principle play important
role in multiphysics codes. They reduce significantly various numerical artifacts. We
describe a novel inexpensive practical algorithm for buildingmimetic finite difference
schemes with conditional maximum principle on polygonal and polyhedral meshes
for diffusion problems.

1 Introduction

Numerical schemes that preserve important properties of underlying PDEs lead in
general to more robust computer simulations. These schemes reduce significantly or
eliminate totally various numerical artifacts. An important property of a diffusion
problem is the existence of themaximumprinciple (MP). In its simplest form, it states
that in absence of external sources, the continuum solution has no internal extrema.
This implies that physical quantities, such as temperature or chemical concentration,
are always bounded by the boundary data.

It is well known that the second-order linear schemes for the diffusion equation
satisfy theMP only under some conditions on themesh and diffusion tensor. Analysis
of sufficient conditions for the MP on unstructured simplicial meshes started in 70th,
see e.g. [2]. For the mimetic finite difference (MFD) method, sufficient conditions
were formulated in [5]; however, algorithms for their verification were developed
for a limited class of meshes. Here, we propose a practical algorithm for verifying
the sufficient conditions and building mimetic schemes with the MP for meshes
with arbitrarily-shaped cells. The algorithm satisfies a few requirements of emerging
computer architectures: large flops per memory ratio and data locality.
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A detailed description of the MFDmethod can be found in the recently published
book [8]which focuses on numerical solution of elliptic PDEs. In general, the concept
of mimetic (or compatible in general) schemes can be applied to a greater variety
of PDEs (see [4] and references therein). The incomplete list of related compatible
discretization methods includes discrete duality finite volume (FV), hybrid FV and
mixed FV methods. For diffusion problems, the algebraic equivalence of the MFD,
mixed FV, and hybrid FV methods has been shown in [3].

The paper outline is as follows. In Sect. 2, we describe briefly the MFD method.
In Sect. 3, we formulate sufficient conditions for the MP and present a practical
algorithm for verifying them and selecting an optimal scheme. In Sect. 4, we analyze
numerically the complexity of the proposed algorithm.

2 A Family of Mimetic Finite Difference Schemes

Let Ω ⊂ �d , d = 2 or 3, be a bounded domain with a Lipschitz boundary Γ . We
consider the following mixed formulation of the elliptic equation:

u = −K∇ p and div u = b, (1)

where p is pressure, u is velocity, K is symmetric diffusion tensor, and b is source
term. To simplify the presentation, we assume that p = 0 on Γ .

Let Ωh be a conformal partition of Ω into polyhedral (d = 3) or polygonal
(d = 2) cells c. We denote by |c| the volume (area in 2D) of cell c. For face f of
cell c, we denote by |f| its area (length in 2D) and by nf,c its exterior unit normal
vector. We assume that the diffusion tensor has constant value Kc in cell c.

The discrete pressure space Qh consists of one degree of freedom per cell, pc,
and one degree of freedom per face, pf , approximating the average pressure value in
c and f, respectively. Thus, the dimension of Qh equals to the number of mesh cells
plus the number of mesh faces.

The discrete velocity space Xh consists of one degree of freedom, uf,c, per face
f of cell c, which approximates the average flux u · nf,c across face f. Thus, the
dimension of Xh equals to the number of boundary faces plus twice the number of
interior faces. For each vector uh ∈ Xh , we denote by uh,c its restriction to cell c,
i.e. uh,c = {uf,c}f∈∂c. The mass conservation law implies the following condition:

uf,c1 = −uf,c2 , (2)

for each face f shared by cells c1 and c2.
Integrating the second equation in (1) over cell c, we obtain:

divhuh,c = bc, divhuh,c = 1

|c|
∑

f∈∂c

|f| uf,c, bc = 1

|c|
∫

c
bdV . (3)

What is left is to discretize the first equation in (1).
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2.1 Consistency and Stability Conditions

The constitutive equation is discretized using the consistency and stability conditions.
The consistency condition is the exactness property and can be formulated in a variety
of ways. Here we use the FV viewpoint that is more appropriate for the practical
implementation of the MFD method; however, it hides its theoretical roots.

Let us consider a cell c with nc faces fi . We assume that there exists a linear
relationship between the discrete unknowns,

⎛

⎜⎜⎜⎝

uf1,c
uf2,c

...

ufnc ,c

⎞

⎟⎟⎟⎠ = −Wc

⎛

⎜⎜⎜⎝

|f1| (pf1 − pc)
|f2| (pf2 − pc)

...

|fnc | (pfnc − pc)

⎞

⎟⎟⎟⎠ , (4)

with a symmetric and positive definite matrix Wc. Then, the mimetic scheme is
defined by collecting Eqs. (4), (2), (3) and imposing the homogeneous boundary
conditions, i.e. pf = 0 for all f ∈ Γ .

To define matrixWc, we require that (4) is exact for any linear function p and the
corresponding constant vector function u. It is sufficient to consider d + 1 linearly
independent pressure functions: p0 = 1, p1 = x , p2 = y and p3 = z in 3D.
Obviously, formula (4) is trivial for p0 = 1 and u0 = 0. Taking pairs pi and
ui = −Kc∇ pi , calculating vectors of degrees of freedom and inserting them in (4),
we obtain d matrix equations:

Nc,i = WcRc,i , 1 ≤ i ≤ d, (5)

whereNi andRi are nc×1 vectors. These vectors can be calculated using only areas,
centroids and normals to faces of c which results in relatively simple calculations for
an arbitrary-shaped cell (see [8, Chap. 5] or [4] for more details).

Let us define nc × d matrices Nc = [Nc,1, . . . ,Nc,d ] and Rc = [Rc,1, . . . ,Rc,d ].
It has been proved in [1] that a particular solution to matrix Eq. (5) is

W
(0)
c = 1

|c|NcK
−1
c N

T
c .

The rank of this matrix is d which is strictly less than nc. Thus, to build a positive
definite nc × nc matrix Wc, we have to add a stabilization term W

(1)
c such that

W
(1)
c Rc = 0. The stability condition imposes lower and upper bounds on this term.

More precisely, it requires the matrixWc = W
(0)
c +W

(1)
c to be spectrally equivalent

to a scalar matrix:

a�

1

|c| ‖uh,c‖2 ≤ uT
h,cWcuh,c ≤ a� 1

|c| ‖uh,c‖2 ∀uh,c, (6)
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where a� and a� are mesh independent positive constants, and ‖ · ‖ denotes the
Eucleadian norm.

2.2 A Family of Stable Mimetic Schemes

Let us introduce a full rank matrix Dc such that its columns span the null space of
matrixRT

c , i.e.R
T
c Dc = O, whereO denotes a generic zero matrix. We assume that

the columns of Dc are orthonormal vectors. Then,

W
(1)
c = Dc Pc D

T
c ,

wherePc is a symmetric positive definitematrix of parameters. The stability condition
does not allow Pc to have arbitrarily small or large eigenvalues. In practice, a good
choice for Pc is the scalar matrix αcI where αc = 1

nc
trace(W(0)

c ). In this case, the
condition number ofWc depends only on the anisotropy of tensorKc and the shape-
regularity constants of cell c.

3 Mimetic Schemes with the Maximum Principle

For a polyhedral mesh, a family of admissible mimetic schemes is quite large. Indeed
for each polyhedral cell with nc faces, we have (nc−d +1)× (nc −d)/2 parameters
forming the symmetric matrix Pc. Ideally, these parameters have to be selected to
enforce the MP.

3.1 Sufficient Conditions

We recall sufficient conditions for the MP proposed in [5]. Inserting (4) into (2) and
(3), we obtain a system of algebraic equations for the pressure unknown ph ∈ Qh :

Aph = bh, A =
∑

c∈Ωh

NcAcN
T
c ,

whereNc is an assembling matrix with 0 and 1 entries. The sufficient conditions for
the MP are such that each cell matrix Ac is a singular M-matrix. If so, the global
matrixA is a singularM-matrix. Eliminating equations corresponding to theDirichlet
boundary conditions, pf = 0 for f ∈ Γ, we obtain an M-matrix [5]. Hence, solution
ph satisfies the MP.
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Let us rewrite the mass balance equation (3) in the algebraic formB
T
c uh,c = |c| bc

where Bc is the column matrix, Bc = (|f1|, . . . , |fnc |)T. We define a square diagonal
matrix Cc such that Cc1 = Bc, where 1 is a generic vector with all entries equal to
1. According to [5], the cell-based matrix has the following structure:

Ac =
(

C
T
c WcCc −C

T
c Wc Bc

−B
T
c WcCc B

T
c Wc Bc

)
.

Lemma 1 ([5]). The matrix Ac is a singular M-matrix if Wc is an M-matrix and the
vector Wc Bc has non-negative entries.

3.2 Simplex Method for Matrix Wc

The simplex method is used twice in the construction of matrixWc that satisfies the
conditions of Lemma 1. First, it answers the question of the existence of at least one
such matrix. Second, it finds an optimal (in some sense) matrix when a few matrices
satisfy Lemma 1. In this section, we drop out subscript ‘c’ from all matrices.

We illustrate this method for the quadrilateral cell, i.e. nc = 4, d = 2. Despite
its simple shape, the direct construction of an M-matrix W was an open problem
until now. The matrix of parameters is a 2 × 2 matrix characterized typically by
three parameters. However, since the simplex method requires all parameters to be
non-negative, we need four parameters to describe negative off-diagonal entries:

P =
(

a1 a3 − a4
a2 − a4 a2

)
, ai ≥ 0.

Unless we enforce somehow the positive definiteness of matrix P, we can only
guarantee the symmetry of W. Direct control of the properties of P is undesirable,
since it leads to a nonlinear optimization problem. Fortunately, the properties of a
M-matrix allow us to circumvent this problem. The first set of linear inequalities
enforces the Z-matrix property for W = W

(0) + W
(1):

a1D1iD1 j + a2D2iD2 j + (a3 − a4)
(
D1iD2 j + D2iD1 j

) ≤ −W
(0)
i j ∀i < j.

Recall that a Z-matrixW is an M-matrix if there exists a vector v with non-negative
entries such thatWv ≥ ε > 0, i.e. all entries of this matrix-vector product are strictly
positive. We take v = B, so that the later property implies the second condition of
Lemma 1. Since W(0)v = 0, the resulting set of inequalities reads:

nc∑

j=1

|f j |
(

a1D1iD1 j + a2D2iD2 j + (a3 − a4)
(
D1iD2 j + D2iD1 j

)) ≥ εi ∀i,
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where εi > 0. In practice, we take εi = λmin(Kc)/(10|c|). This choice leads to
mesh-independent coefficients a� and a� in the stability condition (6).

The objective functional that the simplex method maximizes is the sum of all
entries in W (this maximizes the diagonal dominance of W):

max
ai ≥0

Φ({ai }), Φ({ai }) =
nc∑

i, j=1

Wi j . (7)

Note that other linear objective functionals can be also admissible. The simplex
method requires to convert the inequality constraints to equality constraints. We
introduce the slack (or surplus, or logical) non-negative variables si j and si :

a1D1iD1 j + a2D2iD2 j + (a3 − a4)
(
D1iD2 j + D2iD1 j

) + si j = −W
(0)
i j (8)

and

nc∑

j=1

|f j |
(

a1D1iD1 j + a2D2iD2 j + (a3 − a4)
(
D1iD2 j + D2iD1 j

)) + si = εi . (9)

The total number of slack variables is nc(nc + 1)/2. The slack variables are treated
like the original parameters ai until the last moment when they are just ignored.
Each slack variable is the amount by which the original inequality is satisfied. The
optimization problem is now to find the maximum of functional Φ subject to the
equality constraints (8), (9) and the inequality constraints ai ≥ 0, si j ≥ 0, si ≥ 0.

To launch the simplex method, we need to prescribe valid (i.e. non-negative)
initial values for the variables ai , si j and si so that the above equalities are satisfied.
In general, finding such a guess is equally as difficult as finding an optimal solution.
Fortunately, computation of valid initial values can be done by the simplex itself.

Let us assume that the right-hand sides in (8) are non-negative which can be easily
achieved by multiplying the corresponding equations by −1. Then, we introduce
nc(nc − 1)/2 additional artificial (or logical) variables yi j such that

a1D1iD1 j + a2D2iD2 j + (a3 − a4)
(
D1iD2 j +D2iD1 j

) + si j + yi j = −W
(0)
i j . (10)

This transformation gives equivalent equations only if yi j = 0. To find such non-
negative solution, we consider an auxiliary optimization problem:

max
ai , si j , si , yi j ≥0

Ψ, Ψ = −
∑

i< j

yi j

subject to constraints (9) and (10). The maximum of this functional on a set of non-
negative solutions is obviously zero. For this auxiliary functional it is easy to find a
valid initial guess by setting ai = si j = 0 and calculating yi j , si from (9) and (10).
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If the auxiliary problem does not have a solution, the original problem has no valid
initial guess and an M-matrix W does not exist.

Remark 1 In a computer program, the artificial variables yi j have to be introduced

only when W
(0)
i j > 0.

The simplex method performs linear operations on the set of linear constraints
(9), (10) plus the linear objective functional (first Ψ , then Φ) using certain rules [6].
Each transformation does not decrease the value of the objective functional.

Various generalizations. The simplex method can be also applied to the nodal
mimetic schemes [8, Chap. 6], In the case of parabolic equations, positive terms
from a time discretization relax the positive definiteness conditions of type (9) which
leads to a larger feasible set. Additional computational efficiency can be achieved by
combining the simplex method with the primal-dual interior point method [6].

4 Numerical Analysis

In the numerical experiments we used the algorithm simplx from [7] with a few
modifications that happened to be critical for meshes with flat cells typically used
in porous media applications. Specifically, we changed the pivot rule and enforced
stability with respect to round-off errors. We verified that the proposed algorithm
returns diagonal mass matrixWc for a Voronoi cell and a scalar diffusion tensor.

For time-dependent simulations that require to generate matricesWc on each time
step, complexity of the numerical scheme cannot be ignored. In our experiments with
large physics codes, the simplex method has been reaching an optimal solution in
something between n2

c/2 and n2
c pivot steps. We have not yet met the worst-case

scenario shown in Fig. 1.
We illustrate complexity of the simplex method with two experiments. In the first

experiment, we take the unit square and the shape-regular pentagon with diameter
2.51 shown in Fig. 2 and change randomly positions of their vertices. This simulates
a mechanical deformation of porous media, e.g. due to a land subsidence. The per-
turbation changes each vertex coordinate by 0.2ξ where −1 ≤ ξ ≤ 1 is a random
function. In the second experiment, we fix the shape of cells shown in Fig. 2, plus
the unit square, and rotate gradually the anisotropic diffusion tensorKc = diag{1, 3}
in 2D and Kc = diag{1, 2, 3} in 3D about the z-axis. This simulates a change of
dispersion tensor, e.g. due to pumping in or out of a subsurface reservoir.

In both experiments, the CPU times are averaged over 1000 different realiza-
tions. The results presented in Table1 show that the calculation of an M-matrix
Wc is 3–6 times more expensive than the calculation based on the original formula
W

(1)
c = αcDcD

T
c . On the other hand, the optimal M-matrix contains on average

40% zero entries which has a few interesting implications for multigrid solvers.
The performance of the multigrid solvers is near-optimal for M-matrices and our



380 K. Lipnikov

Table 1 Complexity of a single matrix generation in microseconds for random perturbation
(columns 2 and 3) and tensor rotation (columns 4 and 5)

Cell type Monotone MFD Original MFD Monotone MFD Original MFD

Quad 15.3 5.05 14.7 4.91
Pentagon 28.0 6.62 29.3 6.64
Hexahedron – – 48.7 8.92

Fig. 1 The worst-case
scenario. The set of feasible
solutions forms a Klee Minty
cube. The Dantzig’s sim-
plex method initialized at a
vertex of this cube passes
through all its vertices mak-
ing exponentially many pivot
steps

Fig. 2 The cells used in
the numerical experiments:
pentagon and hexahedron
with planar faces

preliminary experiments indicate reduction of the cost of one V-cycle which offsets
a bit the higher complexity of the proposed mimetic scheme.

Due to page limitation, experiments showing advantage of the simplex method in
modeling dispersive transport in porous media will be presented at the conference.
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