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Abstract In this contribution we present the use of local one-dimensional boundary
value problems (BVPs) to compute the interface velocities in the convective terms
of the incompressible Navier-Stokes equations. This technique provides us with a
better estimate for the interface velocities than linear interpolants.

1 Introduction

We present an accurate method to compute the interface velocities needed in the
convective terms of the momentum equations by solving local one-dimensional
BVPs. This method can be used as an improvement to a second-order accurate finite
volume method on a staggered grid, with central difference discretization for the vis-
cous and convective terms. Such a setup gives us an energy conserving discretization
method for the incompressible Navier-Stokes equations [2]. The standardmethod for
computing the interface velocities makes use of linear interpolation, i.e., by taking
the average values, or alternatively, the upwind values. In this paper, we will solve a
reduced form of the momentum equations, locally over a grid cell, in order to com-
pute the interface velocities. The idea is inspired by the complete flux scheme for the
advection-diffusion-reaction equation as presented in [3]. In this paper we consider
the two-dimensional incompressible Navier-Stokes equations, the proposed method
can be extended to the three-dimensional case.
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In Sect. 2 of this paper, we outline the finite volumemethod for the incompressible
Navier-Stokes equations. In Sect. 3 we describe the methods for solving the one-
dimensional nonlinear BVPs. The computed interface velocities are then compared
with highly accurate numerical solutions in Sect. 4. We conclude with results in
Sect. 5.

2 Finite volume method

Consider the dimensionless incompressible Navier-Stokes equations, i.e.,

∇ · u = 0, (1a)

∂u
∂t

+ ∇ · (uu) = −∇ p + 1

Re
∇2u, (1b)

where u = (u, v) is the velocity of the fluid, p the pressure and Re the Reynolds
number.We use the second-order finite volumemethod to discretize the above system
of equations, as discussed in [1]. The spatial discretization is done using a staggered
Cartesian grid, with the pressure and the velocity components defined at different
locations, see Fig. 1. The semi-discrete form of Eq. (1a) and (1b) then reads:

Du(t) = r1(t),

|Ω|u′(t) = −C(u, v) + 1

Re
Lu(t) − Gp(t) + r2(t),

where D, C , L and G represent the discrete divergence, convection, diffusion and
gradient operators, respectively, and where |Ω| represents the measure of the control
volumes [1]. The terms r1(t) and r2(t) give the boundary conditions for the system
of equations. In two dimensions, |Ω| can be expressed as |Ω| = diag(|Ωu

i, j |, |Ωv
i, j |),

with |Ωu
i, j | = |Ωv

i, j | = ΔxΔy. Let us consider the convective discretization for the
u-component, i.e.,

(
Cu(u, v)

)
i, j = Δy

(
u2

i + 1/2, j − u2
i − 1/2, j

) + Δx
(
vi + 1/2, j ui, j + 1/2

− vi + 1/2, j − 1 ui, j − 1/2
)
. (2)

For computing (Cu(u, v))i, j , we need methods to compute the interface veloci-
ties ui + 1/2, j , vi + 1/2, j and ui, j + 1/2. In this paper we focus on the computation of
ui + 1/2, j . The velocity ui + 1/2, j can be simply taken as the average

ui + 1/2, j = ui, j + ui + 1, j

2
.
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Fig. 1 Staggered grid
structure for spatial
discretization
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In this paper, we aim to compute ui + 1/2, j by solving a reduced form of the
u-momentum equation locally. The u-momentum equation reads

ut + (uu)x + (uv)y = −px + 1

Re

(
uxx + uyy

)
.

Let us assume that the flow is locally steady and one-dimensional. Moreover, we
ignore all terms involving y. Then the previous equation is reduced to

uux − εuxx = −px , (3)

where ε = 1/Re. Thus, we are left with a nonlinear differential equation. In the
following we ignore the y-dependence of u and we simply write u = u(x). We
denote u(xi ) as ui . In order to get the interface velocity ui + 1/2 located at xi + 1 we
solve Eq. (3) for x ∈ (

xi + 1/2, xi + 3/2
)
subject to the boundary conditions

u(xi + 1/2) = ui , u(xi + 3/2) = ui + 1. (4)

The following section details the computation of ui + 1/2, j and briefly outlines the
computation of ui, j + 1/2 and vi + 1/2, j .

3 Computing the Interface Velocities

The BVP (3)–(4) is difficult to solve due to the nonlinear term uux and the pres-
sure gradient px . We simplify this by first solving a linearized problem without the
pressure gradient and subsequently solving the linearized problem along with the
pressure term.

Let U be in between ui and ui + 1, or equal to either ui or ui + 1. We linearize the
nonlinear term of Eq. (3), to get
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Uux − εuxx = −px .

In the derivation that follows, it is convenient to introduce the following notation,
a = U/ε and (.)′ = ∂/∂x . We define the local mesh Péclet number (P) as

P = UΔx

ε
= aΔx, (5)

and the normalized coordinate by

σ(x) = x − xi + 1/2

Δx
for x ∈ [

xi + 1/2, xi + 3/2
]
.

So the linearized equation can now be written as,

ε
(
u′ − au

)′ = p′. (6)

The problem given by Eq. (6) with boundary conditions (4), can now be split in two
cases, the homogeneous case, having p′ = 0, and the inhomogeneous case, in which
we assume a piecewise linear pressure. We first consider the homogeneous case.

Homogeneous case. Using u′ − au = eax
(
e−ax u

)′ and integrating Eq. (6) (with
the assumption p′ = 0), from xi + 1/2 to x ∈ [xi + 1/2, xi + 3/2], and applying the
boundary condition u(xi + 1/2) = ui , gives

e−ax u(x) − e−axi + 1/2ui = C1

a

(
e−axi + 1/2 − e−ax), (a �= 0).

Formulating in terms of σ and P, and imposing the other boundary condition
u(xi + 3/2) = ui + 1, gives

u(x) = e−P(1−σ(x)) − 1

e−P − 1
ui + ePσ(x) − 1

eP − 1
ui + 1. (7)

We assume that the grid is equidistant. Then puttingσ(x) = 1
2 in the above expression

gives
ui + 1/2 = A(−P/2)ui + A(P/2)ui + 1, (8)

where A(z) = (
ez + 1

)−1
. Alternatively, ui + 1/2 can also be expressed as the sum

of the average value and a correction term, as

ui + 1/2 = (ui + ui + 1)

2
+

(
A(P/2) − 1

2

)
(ui + 1 − ui ). (9)

From Eq. (8), we see that ui + 1/2 is a weighted average of ui and ui + 1. It can be
observed that in the limit P → 0, we recover the average value. For P = 0, we
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have a = 0, implying εu′′ = 0, which gives u(xi+1) = (ui + ui+1)/2. In the limit
|P| → ∞, we get A(|P/2|) = 0, thereby giving ui+1/2 = ui or ui+1, depending on
the direction of the flow.

We compute the velocity ui+1/2 iteratively, by initializing U = (ui + ui+1)/2
and P as given in Eq. (5) and then compute ui+1/2 using Eq. (8). For the next itera-
tion, we take U to be the computed value of ui+1/2 and update P accordingly, and
then compute a new value of ui+1/2 using Eq. (8). We continue this procedure until
the values of ui+1/2 computed after each iteration have converged, i.e., when the
absolute difference between the values of ui+1/2 computed at consecutive iterations
has dropped below a fixed tolerance.

Inhomogeneous case In this case we solve the linearized boundary value problem
given by Eq. (6), under the assumption that the pressure p is piecewise linear. We
initially proceed as we did in the homogeneous case, so we have

eax(e−ax u
)′ = 1

ε
I(x) + C1, I(x) =

∫ x

xi+1

p′(ξ)dξ, (10)

and Eq. (10) then becomes

(
e−ax u

)′ = 1

ε
e−ax I(x) + C1e−ax . (11)

The value I(x) can be calculated as

I (x) =
{

1
Δx (pi+1 − pi )(x − xi+1) = (pi+1 − pi )(σ (x) − 1

2 ), for 0 ≤ σ(x) ≤ 1
2 .

1
Δx (pi+2 − pi+1)(x − xi+1) = (pi+2 − pi+1)(σ (x) − 1

2 ), for 1
2 ≤ σ(x) ≤ 1.

Integrating Eq. (11) from xi+1/2 to x ∈ [
xi+1/2, xi+3/2

]
and using the boundary

condition u(xi+1/2) = ui , we get

u(x) − ePσ(x)ui = 1

ε

∫ x

xi+1/2

ea(x−ξ)I(ξ)dξ + C1

a
(ePσ(x) − 1).

We define

J(x) ≡
∫ x

xi+1/2

ea(x−ξ)I(ξ)dξ,

and use the boundary condition u(xi+3/2) = ui+1 to get the solution

u(x) = e−P(1−σ(x)) − 1

e−P − 1
ui + ePσ(x) − 1

eP − 1
ui+1 + 1

ε

(
J(x) − ePσ(x) − 1

eP − 1
J(xi+3/2)

)
.

(12)
We now express the velocity u(x) as the sum of a homogeneous part uh(x) and an
inhomogeneous part ui (x) as



368 N. Kumar et al.

u(x) = uh(x) + ui (x).

The homogeneous part uh(x) of the velocity, as given by Eq. (7), depends on the
convection-diffusion operator, whereas the inhomogeneous part, ui (x), depends on
the pressure gradient. Computing the values of the integrals J(xi+1) and J(xi+3/2),
and introducing

F(z) ≡ ez − 1 − z

z2(ez + 1)
,

gives us

u(xi+1) = uh(xi+1) + ui (xi+1), (13a)

uh(xi+1) = A(−P/2)ui + A(P/2)ui+1, (13b)

ui (xi+1) = − (Δx)2

4ε

[
F(−P/2)

pi+1 − pi

Δx
+ F(P/2)

pi+2 − pi+1

Δx

]
. (13c)

In this case also the computation ofu(xi+1) is iterative,wherewebegin by takingU =
uh = (ui, j + ui+1, j )/2 and ui = 0 and compute u(xi+1) using the above equations.
Now proceed as in case of the homogeneous case, until the values converge.

Till now we have discussed the computation of the interface velocity ui+1/2, j

but for computing the convective term as given by Eq. (2), we also require ui, j+1/2
and vi+1/2, j . These velocities can also be computed using local BVPs. The interface
velocity ui, j+1/2 is computed from the BVP

V uy − εuyy = 0, y j < y < y j+1, (14a)

u(y j ) = u j , u(y j+1) = u j+1, (14b)

and vi+1/2, j , from

Uvx − εvxx = 0, xi < x < xi+1, (15a)

v(xi ) = vi , v(xi+1) = vi+1. (15b)

These velocities are also computed iteratively. We begin the iterations by defining
V = (vi, j + vi+1, j )/2 and Pv = V Δy/ε for BVP (14a) and (14b) and U = (ui, j +
ui, j+1)/2, Pu = UΔx/ε for BVP (15a) and (15b). We then compute ui, j+1/2 and
vi+1/2, j using an equation analogous to (8). For the next iteration, we assign V the
value of vi+1/2, j computed in the previous iteration and U the value of ui, j+1/2
computed in the previous iteration. With the new values of V and U we update Pv

and Pu and recompute ui, j+1/2 and vi+1/2, j . We continue this procedure until the
values converge. Computing the interface velocities in this manner results in the
coupling between u and v interface velocities. The next section gives a validation of
the method presented above.
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Table 1 Validation for the homogeneous case, ui+1/2, j according to Eq. (8), (Δx = 10−3)

Re ui+1/2, j unum duavg duup # iterations

10 1.1749 1.1749 0.012 4.432 2
102 1.1735 1.1735 0.125 4.314 3
103 1.1609 1.1608 1.201 3.189 4
104 1.1254 1.1253 4.225 0.032 4
105 1.1250 1.1250 4.255 0 2
106 1.1250 1.1250 4.255 0 2

Table 2 Validation for inhomogeneous case, ui+1/2, j according to Eq. (13a)–(13c), (Δx = 10−3)

Re uh(xi+1) ui (xi+1) u(xi+1) unum # iterations

10 1.1749 1.47×10−5 1.1749 1.1749 2
102 1.1735 1.47×10−4 1.1737 1.1738 3
103 1.1609 1.43×10−3 1.1623 1.1637 4
104 1.1253 5.16×10−3 1.1305 1.1356 4
105 1.1250 5.19×10−3 1.1302 1.1354 4
106 1.1250 5.19×10−3 1.1302 1.1354 4

4 Numerical Validation

In order to check the accuracy of the computed interface velocity ui+1/2, j , we com-
pare it with the value obtained by computing a very accurate numerical solution of
the local boundary value problem.

For the validation of our computed interface velocities, we take ui, j = 1.125 and
ui+1, j = 1.225. For this setup the value of ui+1/2, j obtained by central averaging
(uavg) is 1.175 and by taking the upwind value (uup) it is 1.125. Let unum denote
the highly accurate numerically computed value of ui+1/2, j . We next define the

relative absolute differences duavg = |uavg−ui+1/2, j |
|uavg| and dunum = |unum−ui+1/2, j |

|unum| . The
convergence criterion, i.e., the difference of the computed interface velocities from
two consecutive iterations, is taken to be 10−7. Table 1 gives the results obtained
for the homogeneous case. It can be observed that the computed interface velocity
is very accurate (when compared to unum) and attains the upwind value for higher
Reynolds numbers. Similarly, for the inhomogeneous case, let u(xi+1) be the velocity
computed using Eq. (13a)–(13c), as the sum of uh(xi+1) and ui (xi+1). Table 2 gives
the obtained results. For this case a constant pressure gradient of −0.01175 has
been assumed. The inhomogeneous part of the velocity increases with increasing
Reynolds number. The effect of adding a pressure gradient can be seen in Fig. 2,
where we have plotted the interface velocity with increasing Reynolds number. In
absence of a pressure gradient the computed interface velocity is almost equal to the
numerical solution see Fig. 2a. On adding the pressure gradient, the homogeneous
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Fig. 2 Effect of adding a pressure gradient to the BVP, ui = 1.125, ui+1 = 1.225, Δx = 10−2

a Interface velocities in absence of a pressure gradient.b Interface velocitieswith a negative pressure
gradient

part of the velocity remains the same, and the addition of the inhomogeneous part
corrects the interface velocity ui+1/2, j , in a physically proper way.

5 Conclusions

To compute interface velocities, we have proposed an iterative discretization method
that depends on the local mesh Péclet number, P. For increasing P, the homoge-
neous part of the velocity attains the upwind value, and for decreasing values of P,
it converges towards the average velocity. The pressure gradient plays an important
role in the determination of ui+1/2, j . For increasing pressure gradient, the differ-
ence between the approximations of ui+1/2, j , uh and uh + ui and the numerical
solution unum increases see Fig. 2b. For a negative pressure gradient, the interface
velocity increases, whereas for a positive pressure gradient it decreases. The incre-
ment/decrement growswith an increase in the absolute value of the pressure gradient.

We have applied the methods proposed in this paper to the two-dimensional flow
in a lid-driven square cavity. It was observed that the difference in the velocities
computed using the proposed iterative method and those computed using the average
method is very small for small values ofΔx/ε but starts to increase asΔx/ε increases.
The gain of the present method is to be sought in the possibility to use much coarser
grids, with the same accuracy as standard methods.
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