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Abstract The simulation of multiphase flow problems in porous media often
requires techniques for uncertainty quantification to represent parameter values
that are not known exactly. The use of the stochastic Galerkin approach becomes
very complex in view of the highly nonlinear flow equations. On the other hand
collocation-like methods suffer from low convergence rates. To overcome these dif-
ficultieswe present a hybrid stochasticGalerkin finite volumemethod (HSG-FV) that
is in particular well-suited for parallel computations. The new approach is applied to
specific two-phase flow problems including the example of a porous medium with a
spatially random change in mobility. We emphasize in particular the issue of parallel
scalability of the overall method.

1 Introduction

We consider the influence of stochastic effects on a two-phase flow model, that
governs the infiltration of a wetting fluid into a porous medium which is initially
filled by a nonwetting fluid. Let us assume that both fluids are immiscible and incom-
pressible, and let us neglect gravitational forces. The fractional flow formulation of
the capillarity-free case for some domain D ⊂ R

2 and time T > 0 leads to the
following problem [5]:

M. Köppel (B) · I. Kröker · C. Rohde
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
e-mail: markus.koeppel@mathematik.uni-stuttgart.de

I. Kröker
e-mail: ilja.kroeker@mathematik.uni-stuttgart.de

C. Rohde
e-mail: christian.rohde@mathematik.uni-stuttgart.de

J. Fuhrmann et al. (eds.), Finite Volumes for Complex Applications VII - Methods 353
and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics 77,
DOI: 10.1007/978-3-319-05684-5_34, © Springer International Publishing Switzerland 2014



354 M. Köppel et al.

v = −Kλ(S) � p and div(v) = q in D × (0, T ), (1)

φSt + div (v f (x, S)) − q = 0 in D × (0, T ). (2)

The unknowns are the saturation of the wetting fluid S = S(x, t) ∈ [0,1], the global
pressure p = p(x, t) ∈ R, and the total velocity field v = v(x, t) ∈ R

2. The total
mobility λ = λ(S) and the fractional flow function f = f (x, S) are given nonlinear
functions of the saturation and additionally of space for the flux. Furthermore K =
K(x) stands for the intrinsic permeability, φ = φ(x) for the porosity, and q = q(x, t)
for a source or sink. Appropriate initial and boundary conditions have to be added.

Uncertainty can effect solutions of (1), (2) through e.g. given parameter functions,
initial and boundary data. In this case the unknowns depend also on corresponding
randomvariables. Let us first assume that the velocity field v is given and it remains to
solve the hyperbolic transport equation for the saturation. Under generic conditions a
representation in the form of a polynomial chaos expansion (PCE) exists. Restriction
of a (stochastically) weak formulation to a finite number of modes leads to the
stochastic Galerkin method. Combined with a finite volume discretization in space
the PCE approach yields a coupled deterministic system to be solved. The degree
of coupling increases with the non-linearity of the considered equations and with
the order of polynomial expansion. This fact increases the computational effort and
significantly reduces the scalability in parallelisation. We have suggested a hybrid
stochastic Galerkin finite volume method (HSG-FV) in [2], that extends the methods
presented in [8, 11], for general transport equations and will develop it here for
the two-phase problem. Together with a review on the stochastic setting the new
method is formulated in Sect. 2. We stress that the HSG-FV relies on an adaptive
combination of PCEwith a multi-element decomposition of the stochastic domain. It
leads to a deterministic system that is significantly weaker coupled than the pure PCE
approach. Therefore, theHSG-FVmethod allows formore efficient parallelization. In
Sect. 3 we apply the HSG-FV to the two-phase flow problem (1), (2) with a nonlinear
continuous flux function, present the finite volume method and numerical examples.
Moreover the computational effort of the HSG-FV method is discussed at the end of
the section. At last we briefly present the application of the HSG-FV method to the
two-phase flow problem in a heterogeneous porousmediumwith randomly disturbed
discontinuous flux function in Sect. 4.

2 Hybrid Stochastic Galerkin Representation

Polynomial Chaos Let θ = θ(ω) be a random variable on the probability space
(Ω,F ,P), which satisfies θ ∈ L2(Ω).We assume that the distribution of θ is known
and the probability density function (PDF) ρ is given. In this case the expectation of
the random variable θ can be computed by E[θ ] := ∫

Ω
θ(ω) dP(ω) = ∫

θ dρ(θ).

Then there exists a family
{
φp(θ)

}
p∈N0

of L2(Ω)-orthonormal polynomials with

respect to the PDF ρ. This means that
{
φp(θ)

}
p∈N0

satisfies
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〈
φp(θ), φq(θ)

〉
L2(Ω)

:=
∫

I
φp(θ)φq(θ) dρ(θ) = δpq for p, q ∈ N0.

Here δpq denotes the Kronecker delta and I is the support of φp, for p ∈ N0. The
choice of the polynomial basis depends on the PDF ρ. For example the Hermite
polynomials could be used for the stochastic discretization of the Gauss distributed
random variables, and Legendre polynomials allow the discretization of uniformly
distributed random variables. Let w = w(x, t, θ(ω)), (x, t) ∈ D × [0, T ], ω ∈ Ω

be a second order random field. Then w can be represented by the infinite series

w(x, t, θ(ω)) =
∑∞

p=0
wp(x, t)φp(θ(ω)), (x, t, ω) ∈ D × [0, T ] × Ω.

The coefficients wp = wp(x, t), (x, t) ∈ D × [0, T ] are defined by wp :=〈
w, φp

〉
L2(Ω)

for p ∈ N0. The expectation of the random field w is given by w0,

and the variance is given by the series
∑∞

p=1(w
p)2. The truncation up to polynomial

order No ∈ N yields a finite sum

Π No [w] (x, t, θ(ω)) :=
∑No

p=0
wp(x, t)φp(θ(ω)), (x, t, ω) ∈ D × [0, T ] × Ω.

(3)

The Cameron-Martin theorem [3] shows the convergence of (3). For more explana-
tions we refer to [4, 12].

Extension to the Hybrid stochastic Galerkin discretization For the sake of brevity
we assume that θ is uniformly distributed on the interval [0,1], (θ ∼ U (0, 1)). The
main idea of the presented method is the dyadical decomposition of the stochas-
tic domain [0,1] and the appropriate rescaling of the polynomial basis

{
φp

}
p∈N0

.
Due to θ ∼ U (0, 1) we consider orthonormal Legendre polynomials. For No ∈ N0

and Nr ∈ N0 we define the stochastic element by INr
l := [2−Nr l, 2−Nr (l + 1)],

for l = 0, . . . , 2Nr − 1, and a space of the piecewise polynomials SNo, Nr :={
w : [0, 1] → R | w|INr

l
∈ QNo

[θ ],∀l ∈ {0, . . . , 2Nr − 1}
}

, where QNo
[θ ] denotes

the space of real polynomials with degree ≤ No. The basis of SNo, Nr is spanned by
the polynomials φ

Nr
p,l defined by

φ
Nr
i,l (ξ) =

{
2Nr/2φi (2Nrξ − l), ξ ∈ INr

l ,

0, else,
i = 0, . . . , No, l = 0, . . . , 2Nr − 1.

The polynomials φ
Nr
0,0, . . . , φ

Nr
No,2Nr−1

satisfy the orthogonality relation

〈
φ

Nr
i,k , φ

Nr
j,l

〉

L2(Ω)
= δi jδkl , (4)
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and their support is given by the appropriate stochastic element supp(φNr
i,l ) = INr

l .The

projection Π No,Nr : L2(Ω) → SNo, Nr of a second order random field w(x, t, ·) ∈
L2(Ω) is defined by Π No,Nr [w] (x, t, θ) := ∑2Nr−1

l=0
∑No

i=0 wNr
i,l (x, t)φNr

i,l (θ), where

the coefficients wNr
i,l are defined by wNr

i,l (x, t) :=
〈
w(x, t, ·), φ

Nr
i,l

〉

L2(Ω)
, for 0 ≤ p ≤

No and 0 ≤ l ≤ 2Nr − 1. The convergence of Π No,Nr [u] for Nr, No → ∞ is
discussed in [1]. The expectation and variance of the projection Π No,Nr [w] can be
computed by the following formulae:

E[Π No,Nr [w] (x, t)] =
∑2Nr−1

l=0

∑No

p=0
wNr

p,l(x, t)
〈
φ

Nr
p,l , φ0

0,0

〉

L2(Ω)
, (5)

Var[Π No,Nr [w] (x, t)] =
∑2Nr−1

l=0

∑No

p=0

∑No

q=0
wNr

p,l (x, t)wNr
q,l(x, t)

〈
φ

Nr
p,lφ

Nr
q,l , φ0

0,0

〉

L2(Ω)

−
(
E[Π No,Nr [w] (x, t)]

)2
. (6)

Together with the orthogonality relation (4) of φ
Nr
q,l for q = 0, . . . , No, l =

0, . . . , 2Nr − 1 and the fact φ0
0,0 ≡ 1 for U (0, 1) we obtain

Var[Π No,Nr [w] (x, t)] =
∑2Nr−1

l=0

∑No

p=0

(
wNr

p,l(x, t)
)2 −

(
E[Π No,Nr [w] (x, t)]

)2
.

3 Hybrid Stochastic Galerkin for the Two-Phase
Flow Problem with Continuous Flux Function

In the deterministic case the continuous fractional flux function is defined as equiva-
lent to f (x, S) ≡ fw(S). f (x, S) ≡ fw(S). The fractional flux of the wetting phase
fw : [0, 1] → R is given by fw(S) = fw(S, Se) := λw(S,Se)

λw(S,Se)+λo(S,Se)
.Here themean

mobility λ is given by λ(S, Se) = λo(S, Se)+λw(S, Se),where λw denotes the total
mobility of the wetting phase and λo the total mobility of the non-wetting phase.
The effective saturation Se is defined by Se(S) := (S − Swc)/(1 − Sor − Swc), with
the connate saturation Swc ∈ [0,1] and the irreducible saturation Sor ∈ [0,1]. If the
condition

λ(S, Se) = const (7)

is fulfilled, then the total velocity field v does not depend on the change of the
saturation S. We use this property of v to stress the influence of the random distur-
bance.
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In this section we consider the application of the HSG discretization to the two-
phase flow problem with a given randomly disturbed velocity field. For this sake
we replace v = (vx , vy) in (1) by vs given by vs = (vx + cθ, vy), for c ∈ R and
θ ∼ U (0, 1). Further we replace vs and S in the Eq. (2) by their HSG representations
Π No,Nr [vs] and Π No,Nr [S] and obtain

v = −Kλ(S) � p and div(v) = q, (8)

Π No,Nr [S]t + div
(
Π No,Nr [vs] f

(
Π No,Nr [S]

))
− q = 0, (9)

S(·, 0) = S0. (10)

We test the Eq. (9) with φ
Nr
p,l for p = 0, . . . , No and l = 0, . . . , 2Nr − 1, that is

∫

Ω

(
Π No,Nr [S]t + div

(
Π No,Nr [vs] f

(
Π No,Nr [S]

))
− q

)
φ

Nr
p,l dP(ω),

and obtain the system

∂t SNr
α + div

〈
Π No,Nr [vs] f

(
Π No,Nr [S]

)
, φNr

α

〉

L2(Ω)
−

〈
q, φNr

α

〉

L2(Ω)
= 0, (11)

with initial values

SNr
α (·, 0) =

〈
S0, φNr

α

〉

L2(Ω)
(12)

for the multi-index α = (p, l), p = 0, . . . , No and l = 0, . . . , 2Nr − 1. The HSG
system (11) is symmetric hyperbolic [2].

Finite volume method For the computation of the numerical solution of the hyper-
bolic system (11), (12) the semi-discrete central-upwind scheme introduced by
Kurganov and Petrova in [7] is applied. This central-upwind method allows to
work with larger systems with a minimum of requirements on the eigenvalues.
Together with the HSG discretization we obtain the following numerical scheme
on the triangulation T = ⋃

Tj of D = (−1, 1) × (−1, 1), consisting of triangular
cells Tj

d

dt
S̄ j := − 1

|Tj |
∑3

k=1
h jk

(
ain

jkF(S̃ jk, M j (k), t) + aout
jk F(S̃ j , M j (k), t)

ain
jk + aout

jk

)

· n jk

+ 1

|Tj |
∑3

k=1
h jk

ain
jkaout

jk

ain
jk + aout

jk

[
S̃ jk(M j (k)) − S̃ j (M j (k))

]
+ q j

for α = 0, . . . , P = (No + 1)2Nr − 1. Here S̄ j = (
S̄0, . . . , S̄ P

)
is the cell average

on the triangle Tj ∈ T . The flux vector is given by F = (F0, . . . , F P )T , where
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(a) (b)

Fig. 1 a Expectation, b Variance for the problem (8)–(10) with a randomly perturbed velocity
field and non-linear flux function. Computed with Nr = 5, No = 4, T = 6, spatial adaptivity with
maximal refinement level 4

Fα(S, x, t) :=
〈

f

(∑P

β=0
Sβ(x, t)φNr

β

)

Π No,Nr [vs ] (x, t), φNr
α

〉

L2(Ω)

for α = 0, . . . , P.

The initial values are given by S̄α,0
j := 1

Tj

∫
Tj

S0
〈
φ0
0,0, φ

Nr
α

〉

L2(Ω)
for α = 0, . . . , P.

For the triangle Tj ∈ T , h jk with k = 1, 2, 3 denotes the length of the k-th edge. The
point M j (k) is the midpoint of the k-th edge and n jk is the outer normal on the k-th
edge, ain

jk and aout
jk are the so-called directional local speeds associated with the k-th

edge. We use the Runge-Kutta method for the time discretization, the CFL-condition
depends on the Jacobian of F. For the computation of the reconstructions S̃ j and S̃ jk

we refer to the work of Kurganov and Petrova [7].

Remark 1 The velocity field v is computed with the Taylor-Hood FEM approach,
respective CG-solver, implemented in the FEM-toolbox Alberta [9]. The initial
Delaunay triangulation is generated below the mesh generator Triangle [10]. We
use an adaptive dynamic mesh refinement and coarsening, which uses discrete gra-
dient heuristics and hierarchical refinement given by the bisection of the triangle on
the longest edge.We perform our computation on the domain D = (−1, 1)×(−1, 1)
with the initial edge-length 0.1 and max. refinement level 4.

Numerical experiments Let us apply the previously introduced numerical flux to
(9), (10). We define mean mobility functions of the wetting λw and non-wetting λo

phase by λw(S, Se) := (Se(S))2

μw(Se(S)2+(1−Se(S))2)
and λo(S, Se) := (1−Se(S))2

μo(Se(S)2+(1−Se(S))2)
.

Then the condition (7) is satisfied forμw = μo = 0.3 ·10−3. Therefore we can again
use the velocity field v = (vx , vy) computed with the FEM framework Alberta at the
first time-step during the computation. The randomly perturbed velocity field vs is
given by vs = (vx + cθ, vy), where c = 0.1 and θ ∼ U (0, 1). The irreducible and
connate saturations are again given by Sor = 0.3 and Swc = 0.1. Figure1 shows the
expectation and variance computed with (5), (6) at T = 6.
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Table 1 (a) L1-error for the problem (8)–(10) with a randomly perturbed velocity field and non-
linear flux function, at T = 6

(a) (b)
No Nr = 2 Nr = 3 Nr = 4 Nr = 5 No Nr = 2 Nr = 3 Nr = 4 Nr = 5

2 2.74e-2 1.89e-2 1.10e-2 1.11e-3 2 18.5 21.2 17.8 19.6
3 2.54e-2 1.79e-2 1.0e-2 1.01e-3 3 48.4 56.2 46.2 49.7
4 2.34e-2 1.74e-2 1.10e-2 1.1e-3 4 109.9 129.3 107.3 114.3

(b) Computation time (in hours) for the problem (8)–(10) with a randomly perturbed velocity field
and nonlinear flux function, at T = 6 computed on 2Nr CPU’s

Up to our knowledge there is no analytical solution of the problem. A comparable
simulationwith theMonte Carlo finite volume (MC-FV)method in two space dimen-
sions is not possible with nowadays computer power. Therefore we compare our
numerical results with the most fine HSG-FV solution we could realize, that means
Nr = 6 and No = 4.Due to the accuracy tests in one space dimension in comparison
with aMC-solution, considered in [2], we can expect that this comparison represents
the behaviour of the method correctly. Table1 shows the L1-error and computing
times for Nr = 1, . . . , 5 and No = 1, . . . , 4. These results seem to indicate that
the overall approach leads to convergence for increasing Nr and No. The computing
times show, that the computational effort per node does not change significantly for
increasing Nr and a constant number of stochastic elements INr

l per node.

4 HSG for Two-Phase Flows in a Heterogeneous Porous Media

Nowwe focus on two-phase flow problemswith a non-linear, spatially discontinuous
flux function. A specific application is a heterogeneous porousmedium characterised
by two different materials. In the deterministic case the considered spatial domain
D is decomposed such that D = D1 ∪ D2. Within one subdomain Di , i = 1, 2, the
medium is supposed to be homogeneous. Hence, the descriptive parameters depend
on the spatial position. By the introduction of a discontinuity function γ : D →
[0, 1], in order to determine the location, and a uniformly distributed random variable
θ , we define the randomly perturbed discontinuous fractional flux

fw(x, γ, S, θ) := γ (x + cθ, y) f 1,w(S) + (1 − γ (x + cθ, y)) f 2,w(S), x ∈ D,

(13)

where c ∈ R. The related HSG of the randomly perturbed problem (1), (2) is
(non-strictly) hyperbolic (cf. [2, 6] for details). Figure2 shows expectation and vari-
ance of the numerical solution of the problem (1), (2) with a randomly perturbed
discontinuous flux (13) and deterministic velocity field v for No = 3 and Nr = 3
at T = 15. Computed with S1

wc = 0.1, S1
or = 0.3 and S2

wc = 0.4, S2
or = 0.2,

μo = 3 · 10−3, μw = 3 · 10−3, θ ∼ U (0, 1) and coefficient c = 0.4.
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(a) (b)

Fig. 2 a Expectation, b Variance for the quarter five-spot problem with random perturbed discon-
tinuous flux. Computed with Nr = 3, No = 3 at T = 15

The numerical results show a realistic behaviour close to the discontinuity, in
particular the variance shows the expected dependence of the uncertainty.

5 Outlook

In the futureworkwe intend to develop an appropriate stochastic representation of the
total velocity field v in the elliptic equation (1), and apply the developed numerical
scheme to more general heterogeneous two-phase flow problems.
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