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Abstract This note is devoted to the study of the finite volume methods used
in the discretization of degenerate parabolic-hyperbolic equation with zero-flux
boundary condition. The notion of an entropy-process solution, successfully used
for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence
result because of a lack of regularity of solutions on the boundary. We infer the
uniqueness of an entropy-process solution using the tool of the nonlinear semigroup
theory by passing to the new abstract notion of integral-process solution. Then, we
prove that numerical solution converges to the unique entropy solution as the mesh
size tends to 0.

1 Introduction

Our goal is to study convergence of a finite volume scheme for a degenerate parabolic
equation with zero-flux boundary condition in a regular bounded domain Ω ∈ R

�

arising, e.g., in sedimentation and traffic models:

⎧
⎨

⎩

ut + div f (u) − �φ(u) = 0 in Q = (0, T ) × Ω,

u(0, x) = u0(x) in Ω,

( f (u) − ∇φ(u)).η = 0 on Σ = (0, T ) × ∂Ω.
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Here φ is a non-decreasing Lipschitz continuous function, moreover, there exists
uc ∈ [0, umax] with umax > 0 such that φ|[0,uc] ≡ 0 but φ′|[uc,umax] > 0. The case
uc = umax was understood in [7]. In the range [0, uc] of values of u, (P) degenerates
into a hyperbolic problem, and admissibility criteria of Kruzhkov type are needed
to single out the unique and physically motivated weak solution (see, e.g., [7, 13]).
We require that the flux function f is Lipschitz, genuinely nonlinear on [0, uc];
moreover, [0, umax] is an invariant domain for the evolution of (P) due to assumption

f (0) = f (umax) = 0, u0 ∈ L∞(Ω; [0, umax]) (H1)

(the latter means the space of measurable on Ω functions with values in [0, umax]).
In the work [4], inspired by [7] we proposed a new entropy formulation of (P)
saying that u ∈ L∞(Q; [0, umax]) is an entropy solution of (P) if u ∈ C([0, T ];
L1(Ω)) with u(0) = u0, φ(u) ∈ L2(0, T ; H1(Ω)) and ∀k ∈ [0, umax]

|u − k|t + div
(
sign(u − k)

[
f (u) − f (k) − ∇φ(u)

]) ≤ | f (k).η| dH � (1)

in D ′((0, T ) × Ω), where η is the exterior unit normal vector to the boundary
Σ = (0, T ) × ∂Ω and the last term is taken with respect to the Hausdorff mea-
sureH � onΣ . Contrary to the Dirichlet case (cf. [9]) where the boundary condition
is relaxed, (1) implies that zero-flux condition in (P) holds in the weak sense.

Existence of an entropy solution to (P) can be obtained by standard vanishing
viscosity method, relying in particular on the strong compactness arguments derived
from genuine nonlinearity of f |[0,uc] and non-degeneracy of φ|[uc,umax ], see [12]. But
in order to prove uniqueness, one faces a serious difficulty (not relevant in the case
uc = umax , [7]) related to the lack of regularity of the fluxF [u] := f (u) − ∇φ(u)

and specifically, to the weak sense in which the normal component F [u].η of the
flux annulates onΣ . Techniques of nonlinear semigroup theory (see, e.g., [5, 6]) can
be used to circumvent this regularity problem in some cases (see [3, 4]) and to prove
well-posedness for (P) in the sense (1). Let us present the key arguments: indeed,
they are also important for study of convergence of the Finite Volume scheme for
(P), which is the goal of this note. The standard doubling of variables method based
upon formulation (1) readily leads to the uniqueness and L1 contraction property

∀t ∈ [0, T ] ‖u(t, ·) − û(t, ·)‖L1 ≤ ‖u0 − û0‖L1 (2)

if we compare two solutions u, û such that the strong (in the sense of L1 convergence,
see [11, 13]) trace of the normal flux F [u].η at the boundary exists. In the sequel,
we call such solutions trace-regular. Every entropy solution is a trace-regular in the
case of the pure hyperbolic problem (case uc = umax, see [7, 11, 13]). The idea
of symmetry breaking in the doubling of variables (see [3]) permits an extension
of (2) to a kind of weak-strong comparison principle where u is a general solution
and û is a trace-regular solution. When a sufficiently large family of trace-regular
solutions is available, uniqueness of a general solution and principle (2) may follow
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by density arguments. A closely related technique consists in exploiting the above
weak-strong comparison arguments using the idea of integral solution and somewhat
stronger regularity properties of stationary solutions. E.g., for the pure parabolic one
(uc = 0, see [3]) every entropy solution of the stationary problem

û + div f (û) − �φ(û) = g in Ω, ( f (û) − ∇φ(û)).η = 0 on ∂Ω (S)

with g ∈ L∞(Ω) is trace-regular if f ◦φ−1 ∈ C0,γ ,γ > 0 (see [3]). This observation,
in conjunction with the use of integral solutions [6] of abstract evolution problem

u′ + Au � h, u(0) = u0 (3)

for suitably defined operator A = A f,φ (problem (S) taking the form (Id + A f,φ)

u � g) permits to get uniqueness of entropy solution in [3], for the parabolic case
uc = 0. Let us stress that the question of uniqueness for (P) with uc /∈ {0, umax }
and � > 1 remains open. The one-dimensional hyperbolic-parabolic case (� = 1,
Ω = (a, b) with arbitrary uc ∈ [0, umax]) has been treated by the authors in [4],
using the above abstract approach along with the elementary observation that yields
trace-regularity:

(
f (û)−φ(û)x

)

x = g−u ∈ L∞((a, b)) ⇒ F [u] = (
f (û)−φ(û)x

) ∈ C([a, b]).

Another essential aspect of the study of (P) is to justify convergence of numer-
ical approximations. The difference with the existence proof is that, for numerical
approximations, the use of strong compactness arguments is very technical, and
weak compactness methods are often preferred. Such study relying on nonlinear
weak-∗ compactness technique of [8, 9] is our goal in this note. We study a finite
volume scheme discretization in the spirit of [9] for (P) on a family of admissible
meshes (Oh)h with implicit time stepping. According to the standard weak compact-
ness estimates, as for the Dirichlet problem [9] approximate solutions uh := uOh ,δth
converge up to a subsequence, as the discretization size h goes to zero, towards an
entropy-process solution ν. This notion closely related to Young measures’ tech-
niques (see [8] and references therein) incorporates dependence on an additional
variable α ∈ [0, 1] which may represent oscillations in the family (uh)h . It remains
to prove the uniqueness of an entropy-process solution which implies the indepen-
dence of ν(t, x, α) on α so that u(t, x) ≡ ν(t, x, α) is an entropy solution of (P).
As for the proof of uniqueness of an entropy solution discussed above, we face the
major difficulty due to the lack of regularity of F [u].η. Hence, we found it useful
to define the new notion of integral-process solution in the framework of abstract
problem (3). Following the pattern of the uniqueness proofs in [3, 4], we compare
an entropy-process solution of (P) and a trace regular solution of (S), then we prove
that an entropy-process solution of (P) is an integral-process solution of (3) defined
for an appropriate m-accretive operator A f,φ . The convergence result holds due to
the fact that the integral-process solution coincides with the unique integral solution
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of (3); and the latter one coincides with the unique entropy solution of (P) in the
sense (1).

The remainder of this note is organized as follows. In Sect. 2 we present our
scheme. In Sect. 3 we present the standard steps of convergence arguments for the
problem (P), obtained as for Dirichlet problem [9]. In Sect. 4, we achieve the con-
vergence result using classical and new tools of the nonlinear semigroup theory. In
Remark 1, we sketch a convergence argument for Finite Volume schemes based upon
a direct use of integral-process solutions, bypassing the entropy-process ones.

2 Description of the Finite Volume Scheme for (P)

Let us begin with considering an admissible mesh O of Ω (see [8, 9]) for space
discretization and using the conventional notation present in the main literature.
Because we consider the zero-flux boundary condition, we don’t need to distinguish
between interior and exterior control volumes K , only inner interfaces σ between
volumes are needed in order to formulate the scheme. For K ∈ O and σ ∈ εK , we
denote by τK ,σ the transmissivity coefficient. For the approximation of the convec-
tive term, we consider the numerical convection fluxes FK ,σ : R2 −→ R that are
consistent with f , monotone, Lipschitz regular, and conservative (see [8, 9]).

The values of the discrete unknowns un+1
K for all control volume K ∈ O , and

n ∈ N are defined thanks to the following relations: first we initialize the scheme by

u0
K = 1

m(K )

∫

K
u0(x)dx ∀K ∈ O, (4)

then, we use the implicit scheme for the discretization of problem (P):
∀n > 0, ∀K ∈ O ,

m(K )
un+1

K −un
K

δt
+

∑

σ∈εK

(
FK ,σ (un+1

K , un+1
K ,σ ) − τK ,σ

(
φ(un+1

K ,σ )−φ(un+1
K )

)) = 0.

(5)

If the scheme has a solution (un
K )K ,n , we will say that the approximate solution to

(P) is the piecewise constant function uO,δt (t, x) defined by:

uO,δt (t, x) = un+1
K for x ∈ K and t ∈ (nδt, (n + 1)δt]. (6)

Aweakly consistent discrete gradient∇Oφ(uO,δt ) is defined “per diamond”; we refer
to [10] for details. Let us stress that the zero-flux boundary condition is included in
the scheme, since the flux terms on ∂K ∩ ∂Ω are set to be zero in Eq. (5).
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3 Analysis of the Approximate Solution: Classical Arguments

Following the guidelines of [8, 9], we can justify uniqueness of discrete solutions,
obtain several uniform estimates (confinement of values of uO,δt in [0, umax ], weak
BV estimate for uO,δt , discrete L2(0, T ; H1(Ω)) estimate of φ(uO,δt )), and derive
existence of uO,δt . We refer to the PhD thesis [10] of the second author for details,
with a particular emphasis on the treatment of boundary volumes. It follows that the
discrete solution uO,δt satisfies the approximate continuous entropy formulation.

Theorem 1 Let uO,δt be the approximate solution of the problem (P) defined by
(4),(5),(6). Then the following approximate entropy inequalities hold:
for all k ∈ [0, umax], for all ξ ∈ C∞([0, T ) × R

�), ξ ≥ 0,

∫ T

0

∫

Ω

{
|uO,δt − k|ξt + sign(uO,δt − k)

[
f (uO,δt ) − f (k) − ∇Oφ(uO,δt )

]
.∇ξ

}
dxdt

+
∫ T

0

∫

∂Ω

| f (k).η(x)| ξ(t, x)dH �−1(x)dt +
∫

Ω

|u0 − k|ξ(0, x)dx ≥ −υO,δt (ξ),

(7)

where ∀ξ ∈ C∞([0, T ) × R
�), υO,δt (ξ) → 0 when h → 0.

In order to pass to the limit in (7) using only the L∞ bound on uO,δt , one can adapt
the notion of an entropy-process solution to problem (P) in the entropy sense (1).

Definition 1 Let μ ∈ L∞(Q × (0, 1)). The function μ = μ(t, x, α) is called an
entropy-process solution to the problem (P) if∀k ∈ [0, umax],∀ξ ∈ C∞([0, T )×R

�),
with ξ ≥ 0, the following inequalities hold:

∫ T

0

∫

Ω

∫ 1

0

{
|μ − k|ξt + sign(μ − k)

[
f (μ) − f (k)

]
.∇ξ

}
dxdtdα

−
∫ T

0

∫

Ω

∇|φ(u) − φ(k)|.∇ξdxdt +
∫ T

0

∫

∂Ω

| f (k).η(x)| ξ(t, x)dH �−1(x)dt

+
∫

Ω

|u0 − k|ξ(0, x)dx ≥ 0, where u(t, x) :=
∫ 1

0
μ(t, x, α)dα.

From Theorem 1 we derive the following result which, however, will not be
conclusive. In the sequel, we will upgrade (or circumvent, see Remark 1) this claim.

Proposition 1 Let uO,δt be the approximate solution of the problem (P) defined by
(4), (5). There exists an entropy-process solution μ of (P) in the sense of Definition
1 and a subsequence of (uO,δt )O,δt , such that:
• The sequence (uO,δt )O,δt converges to μ in the nonlinear weak-∗ sense.
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• Moreover, (φ(uO,δt ))O,δt converges strongly in L2(Q) to φ(u), u = ∫ 1
0 μ(t, x, α)

dα, and (∇Oφ(uO,δt ))O,δt ⇀ ∇φ(u) in (L2(Q))� weakly, as h, δt → 0.

Proof The proof is essentially the same as in main reference papers dealing with
finite volume scheme for degenerate parabolic equations (see [2, 9]). ��

4 Reduction of Entropy-Process Solution: Semigroup Arguments

In the context of the Dirichlet problem (see [8, 9]) there holds the uniqueness and
reduction result stating that an entropy-process solution μ is α-independent, so that
it reduces to an entropy solution. The lack of regularity of the fluxes at the boundary
makes it difficult to prove the analogous result with zero-flux conditions. Here, we
show how this difficulty can be bypassed, using classical tools and a new notion of
integral-process solution in the abstract context of nonlinear semigroup theory [6].

4.1 Notion of Integral-Process Solution and Equivalence Result

Given a Banach space X and an accretive operator A ⊂ X × X , u ∈ C([0, T ]; X) is
called integral solution (see Bénilan et al. [5, 6]) of the abstract evolution problem
(3) if, ‖ · ‖ being the norm and [u, v] := limλ↓0 ‖u+λv‖−‖u‖

λ
the bracket on X , one

has u(0) = u0 and the following family of inequalities holds:

∀(û, ẑ) ∈ A ‖u(t)−û‖ − ‖u(s)−û‖ ≤
∫ t

s
[u(τ )−û, h(τ )− ẑ], 0 ≤ s ≤ t ≤ T .

For m-accretive operators the classical in the nonlinear semigroup theory notion of
mild solution coincides with the notion of integral solution, so that we have

Proposition 2 Assume that A is m-accretive, with Dom(A)
‖·‖X = X. Then for any

h ∈ L1((0, T ); X), u0 ∈ X there exists a unique integral solution of (3).

We refer to [6] for the proof of uniqueness of an integral solution and to [5] for a
generalization relevant to our case: continuity of u : [0, T ] → X can be relaxed,
cf. (9).Wepropose a variant of the above notion thatwe call integral-process solution.
This notion is motivated by an application in the setting where X is a Lebesgue space
on Ω ⊂ R

� and ν is a nonlinear weak-∗ limit (see [8]) of approximate solutions.

Definition 2 Let A be an accretive operator on X , h ∈ L1(0, T ; X) and u0 ∈ X .
An X -valued function ν of (t, α) ∈ [0, T ] × [0, 1] is an integral-process solution
of abstract problem u′ + Au � h on [0, T ] with datum ν(0, ·, α) ≡ u0(·), if for all
(û, ẑ) ∈ A
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∫ 1

0

(
‖ν(t, α)− û‖ − ‖ν(s, α)− û‖

)
dα≤

∫ 1

0

∫ t

s

[
v(τ, α) − û, h(τ ) − ẑ

]
dτdα (8)

for 0 < s ≤ t ≤ T and the initial condition is satisfied in the sense

ess- limt↓0
∫ 1
0 ‖ν(t, α) − u0‖dα = 0. (9)

The main fact concerning integral-process solutions is the following result [10].

Theorem 2 Assume that A is m-accretive in X and u0 ∈ D(A). Then ν is an
integral-process solution of (3) if and only if ν is independent on α and for all α,
ν(., α) coincides with the unique integral and mild solution u(·) of (3).

4.2 Convergence of the Scheme

Let us define the operator A f,φ on L1(Ω; [0, umax]) ⊂ X = L1(Ω) endowed with
‖ · ‖1:

(v, z)∈ A f,φ ={
v such that v is a trace regular solution of (S), with g = v + z

}

(instead of L1(Ω)we can work in L1(Ω; [0, umax]) due to the confinement principle
for solutions of (S)). The main result of this paper is the following theorem.

Theorem 3 Assume operator A f,φ on L1(Ω; [0, umax]) is m-accretive densely
defined, then any entropy-process-solution of (P) is its unique entropy solution. In
particular, the scheme (4),(5) for discretization of (P) in the sense (1) is convergent:

∀p ∈ [1,+∞) uO,δt −→ u in L p(0, T × Ω) as max(δt, h) −→ 0.

Proof First, in Proposition 1 we prove that the approximate solutions uO,δt con-
verge towards an entropy-process solution μ. Then, with the technique of [3, 4] we
compare the entropy-process solution μ and a trace-regular solution û of stationary
problem (S). We find that μ is also an integral-process solution. By Theorem 2, μ is
independent on the variable α. Therefore μ(·, α) coincides with the unique integral
solution of the abstract evolution problem (3) governed by operator A f,φ ; we know
from the analysis of [3, 4] that it is also the unique entropy solution of (P). ��
Theorem 3 is applicable in the following three cases where trace-regularity for the
solutions of (S) can be justified, at least for a dense set of source terms.

Proposition 3 Assume that � ≥ 1, and uc = umax (i.e., (P) is purely hyperbolic).
Then A f,φ is m-accretive densely defined on L1(Ω; [0, umax]).
Proposition 4 Assume that � ≥ 1 and uc = 0 ( i.e. (P) is non-degenerate parabolic).
Then A f,φ is m-accretive densely defined on L1(Ω; [0, umax]) if f ◦ φ−1 ∈ C 0,γ ,

γ > 0.
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Fig. 1 a f (u) = u(1 − u), φ ≡ 0, b f (u) = u2
2 , φ ≡ 0, c f (u) = u(1 − u), φ(u) = (u − 0.6)+

Proposition 5 Assume that Ω = (a, b) (thus, � = 1). Then A f,φ is m-accretive
densely defined on L1(Ω; [0, umax]).
Prop. 3 follows by the strong trace results of [11, 13] (cf. [7]), Prop. 4 is justified
like in [3], while Prop. 5 was an ingredient of the uniqueness proof in [4].

Remark 1 Actually, the use of entropy-process solutions can be circumvented.
Observe that the stationary problem (S) can be discretized with the scheme anal-
ogous to the time-implicit scheme used for the evolution problem (P). Consider the
situation where strong compactness (and convergence to û ∈ Dom(A f,φ)) can be
proved for approximate solutions ûO of (S) but only nonlinear weak-∗ compactness
for approximate solutions uO,δt of (P) is known (this occurs when � = 1, where
compactness of ûO (xi ), for all xi ∈ Q, is immediate: see the arguments developed
in [1]). Then convergence of the stationary scheme is easily proved, moreover, one
infers inequalities (8) for the limit ν(·, α) of uO,δt . Then, the result of Theorem 2
proves convergence of the scheme for the evolution problem. In a future work, this
argument will be applied to a large variety of one-dimensional degenerate parabolic
conservation laws with boundary conditions or interface coupling conditions.

5 Numerical Experiments

We conclude with 1D numerical illustrations presented in Fig. 1a, c obtained with
the explicit analogue of the scheme (4),(5) under the ad hoc CFL restrictions. On this
occasion, we use the scheme to highlight the importance of hypothesis (H1). In the
test of Fig. 1b assumption (H1) fails, and a boundary layer appears. If one refines the
mesh one observes convergence of uOh ,δth towards a function bounded by ‖u0‖∞
while the sequence (uOh ,δth )h seems unbounded. However, the condition of zero flux
imposed in (5) is relaxed in the limit, making formulation (1) inappropriate outside
the framework (H1). Introduction of appropriate boundary formulation satisfied by
the limit of the scheme, in absence of (H1), is postponed to future work.
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