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Abstract In this work we present a new finite volume scheme valid on unstructured
meshes for the Euler equation with gravity and friction indeed the classical Godunov
type schemes are not adapted to treat the hyperbolic systems with source terms. The
new method is based on a finite volume nodal scheme modified to capture correctly
the behavior induced by the source terms.

1 Introduction

In many physical applications appear hyperbolic systems with source terms which
model the balance between the convective effects, acoustic effects and the external
forces. A classical example of this type of problem is the Euler equationswith friction
and gravity given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + 1

ε
div(ρu) = 0

∂tρu + 1

ε
div(ρu ⊗ u) + 1

ε
∇ p = 1

ε
ρg − σ

ε2
ρu

∂tρe + 1

ε
div(ρue) + 1

ε
div(pu) = 1

ε
ρ(g, u) − σ

ε2
ρ||u||2

(1)

with g a vector of gravity and ε a small parameter which comes from to a rescaling
of the time and σ . The limit ε tend to zero correspond to the limit in long time
for very large σ . This model is used for the astrophysics applications (for example
atmospheric phenomena) and is an interesting model to begin the study of more
complicated multi-fluid and multi-phases flows [5, 6]. At the numerical level, it is
known that the classical Godunov and splitting schemes are not efficient to capture
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the behavior induced by the balance between source terms and hyperbolic part.
Since some years, specific numerical methods have been designed, in particular the
asymptotic preserving schemes (which capture the asymptotic limit independently
of the relaxation parameter ε) andwell-balanced schemes which discretize the steady
states with a high accuracy. Our aim is to extend this type of method on unstructured
meshes to the Euler equations. Firstly we recall some properties at the analytical
level.

Proposition 1 The system (1) satisfies the following properties:

• The density and the energy are non negative
• The entropy inequality ∂t (ρS) + div(ρuS) ≥ 0 is satisfied for weak solutions
• When ε tends to zero the system tends to

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0
∂tρe + div(ρue) + p div u = 0

u = 1

σ
(g − 1

ρ
∇ p)

(2)

• The solutions of u = 0 and ∇ p = ρg are steady states (hydrostatic equilibrium)
of the system (1)

Proof The first property is a classical property of the Euler equations. The second
and fourth one are discussed in [5].
We give a proof of the asymptotic limit. To obtain this result, we use a Hilbert
expansion. Each variable is decomposed on the following form ρ = ρ0 + ερ1 +
ε2ρ2 + o(ε2). Next we plug these definitions in the model.
The terms homogeneous to 1

ε2
are −ρ0u0 = 0 and − ρ0||u0||2 = 0. Since ρ is

strictly positive we obtain that u0 = 0.
The term homogeneous to 1

ε
is ∇ p0 = ρ0g − σρ0u1.

To finish we give the terms homogeneous to 1
ε0
, using u0 = 0 we have:

∂tρ
0 + div(ρ0u1) = 0,

∂tρ
0e0 + div(ρ0u1e0) + div(p0u1) = ρ0(g, u1) − σρ0||u1||2. (3)

Using the equation ∇ p0 = ρ0g − σρ0u1 we obtain

∂tρ
0 + div(ρ0u1) = 0,

∂tρ
0e0 + div(ρ0u1e0) + div(p0u1) − (u1,∇ p0) = 0.

(4)

with u1 = 1
σ
(g − 1

ρ
∇ p0). To conclude we use div(pu) = (u,∇ p) + p div u. �

Now we propose to design a scheme which captures and preserves these properties
at the discrete level. To capture the diffusion limit system (2), we use asymptotic
preserving (AP) methods.
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Fig. 1 Notations for nodal
scheme. The corner quantity
C jr is equal to the orthogonal
vector to the half of the vector
that starts at xr−1 and finishes
at xr+1. The center of the cell
is an arbitrary point inside the
cell

For a relaxation model as the Euler equations with the friction terms which depends
of ε, the classical schemes like Godunov-type schemes admit a consistency error
homogeneous to O(�x

ε
) and a CFL condition constrained by ε. However, for the AP

schemes the consistency error and the CFL condition are independent of ε [1, 2, 7].
Whereas the well-balanced methods are schemes which discretize exactly or with a
high accuracy the steady states [7, 8]. The idea to obtain good discretization is to
plug the source terms in the fluxes to capture correctly the effects of these terms.

2 Derivation of the Scheme and Asymptotic Properties

Some asymptotic preserving and well-balanced schemes for Euler equations have
been designed in 1D [5, 6]. However the situation is more complicated in 2D. Indeed
in [2] we show that the classical extension of the AP scheme for linear hyperbolic
systems with diffusion limit does not converge on unstructured meshes. In fact the
limit diffusion scheme called 5-points scheme is not consistent on unstructured
meshes. To treat this problem we have proposed new scheme based on a nodal
formulation (these schemes localize the fluxes at the corner) for different models
[2, 3]. Now extend these methods to solve the Euler equations. We use a modified
Lagrange+remap scheme (nodal scheme for the Lagrangian part defined in [4] and
a nodal advection scheme for the remap part).

Let us consider an unstructured mesh in dimension 2. The mesh is defined by a
finite number of vertices xr and cells Ω j . We denote x j the center of the cell chosen
inside Ω j . We also define the geometric quantity C jr = ∇xr Ω j (Fig. 1).

Definition 1 The classical Lagrange+remap scheme (LP scheme) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

| Ω j | ∂tρ j + 1
ε

(∑
R+ (C jr , ur )ρ j + ∑

R−(C jr , ur )ρk(r)

)
= 0

| Ω j | ∂tρ j u j + 1
ε

(∑
R+ (C jr , ur )(ρu) j + ∑

R−(C jr , ur )(ρu)k(r) + ∑
r G jr

)
= 0

| Ω j | ∂tρ j e j + 1
ε

(∑
R+ (C jr , ur )(ρe) j + ∑

R− (C jr , ur )(ρe)k(r) + ∑
r (G jr , ur )

)
= 0

(5)
with the fluxes defined by the problem
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{
G jr = p j C jr + c jr α̂ jr (u j − ur )∑

j
c jr α̂ jr ur =

∑

j
p j C jr +

∑

j
c jr α̂ jr u j

(6)

The wave speed is defined by c jr = ρ j c j . The expression of the flux ur comes
from a classical relation of the GLACE scheme:

∑
j G jr = 0. For the advection

fluxes we define u jr = (C jr , ur ), R+ = (r/u jr > 0), R− = (r/u jr < 0) and

ρk(r) =
∑

j/u jr >0 u jr ρ j
∑

j/u jr >0 u jr
.

To obtain an AP scheme, we apply the Jin-Levermore procedure [9]. This method
consists to incorporate the steady state of the system into the fluxes. The balance
equation between source term and hyperbolic part is div(ρu⊗u)+∇ p = ρg− σ

ε
ρu.

But the proof of the asymptotic limit shows that div(ρu⊗u) is negligible in the limit.
Indeed the previous equation shows that u = O(ε), consequently the important
relation for the diffusion regime is ∇ p + O(ε2) = ρg − σ

ε
ρu. To incorporate this

relation into the fluxes we use a first order Taylor expansion p(x j ) = p(xr ) + (x j −
xr ,∇ p(xr )). Using the relation between ∇ p and the source term we obtain p(x j ) =
p(xr )+ σ

ε
(x j − xr , ρ(xr )g − σ

ε
ρ(xr )u(xr )). Now we use the the discrete equivalent

of the previous equation: p j = p jr + (x j − xr , ρr g − σ
ε
ρr ur ). If we consider that

G jr is homogeneous to p jr C jr . We obtain G jr ≈ p j C jr + β̂ jrρr (g − σ
ε
)ur with

β̂ jr = C jr ⊗ (xr − x j ) then we obtain the new fluxes, we plug the previous relation
in the fluxes (6). To finish we use discretization localized to the interfaces of the
cells for the source term. To justify this discretization we use the following identity∑

r β̂ jr =| Ω j | Îd introduced in [2].

Definition 2 The scheme LP-AP is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

| Ω j | ∂tρ j + 1
ε

(∑
R+ u jrρ j + ∑

R− u jrρk(r)

)
= 0

| Ω j | ∂tρ j u j + 1
ε

(∑
R+ u jr (ρu) j + ∑

R− u jr (ρu)k(r) + ∑
r G jr

)

= 1
ε

∑
r ρr β̂ jr

(
g − σ

ε
ur

)

| Ω j | ∂tρ j e j + 1
ε

(∑
R+ u jr (ρe) j + ∑

R− u jr (ρe)k(r) + ∑
r (G jr , ur )

)

= 1
ε

(∑
r ρr β̂ jr g − σ

ε

∑
r (ur , β̂ jr ur )

)

(7)

with the fluxes
⎧
⎨

⎩

G jr = p j C jr + c jr α̂ jr (u j − ur ) + ρr β̂ jr (g − σ
ε

ur )
(∑

j c jr α̂ jr + σ
ε
ρr

∑
j β̂ jr

)
ur = ∑

j p j C jr + ∑
j c jr α̂ jr u j + ρr (

∑
j β̂ jr )g

(8)

Proposition 2 If the local matrices are invertible and the density is positive then the
scheme LP-AP tends formally to the following diffusion scheme
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

| Ω j | ∂tρ j +
(∑

R+ u jrρ j + ∑
R− u jrρk(r)

)
= 0

| Ω j | ∂tρ j e j +
(∑

R+ u jr (ρe) j + ∑
R− u jr (ρe)k(r) + p j

∑
r (C jr , ur )

)
= 0

(∑
j σrρr β̂ jr

)
ur = ∑

j p j C jr + ρr

(∑
j β̂ jr

)
g

(9)

Proof To obtain this result, we plug the Hilbert expansion in the scheme (7)–(8).
We begin by simplify the source terms with the last part of the fluxes

∑
r G jr and∑

r (G jr , ur ). After we plug these definitions in the model.
The term homogeneous to 1

ε
is

(∑
r σrρ

0
r β̂ jr

)
u0

r = 0. Since the density is positive
and the matrix is invertible [2] then u0

r = 0. The term in the second equation homo-
geneous to 1

ε
is

∑
r p0j C jr + ∑

r c0jr α̂ jr (u0
j − u0

r ) = 0. Using ur = 0 and since
∑

r C jr = 0 (property of nodal schemes) this term gives
∑

r c0jr α̂ jr u0
j = 0. The

matrix
∑

j c jr α̂ jr is invertible [4] and ρ j > 0 then u0
j = 0. To finish we study the

terms homogeneous to 1
ε0

using u0
r = 0 and u0

j = 0:

∂t | Ω j | ρ0
j + ∑

R+ u1
jrρ

0
j + ∑

R− u1
jrρ

0
k(r) = 0

∂t | Ω j | ρ0
j e0j + ∑

r C jr (p0j , u1
r ) + ∑

R+ u1
jrρ

0
j e0j + ∑

R− u1
jr (ρe)0k(r) = 0

(10)

and, since u0
r = 0 and u0

j = 0, we obtain

σrρ
0
r

(∑

j
β̂ jr

)
u1

r =
∑

j
p0j C jr +

( ∑

j
ρ0

r β̂ jr

)
g (11)

To finish we couple (11) and (10). �

3 Discretization of the Steady States

For some applications as gravitational flows in astrophysics it is very important
to treat with a good accuracy the steady states and to initialize the computations
with such steady states, otherwise spurious velocity in the hydrostatic equilibrium
configuration (∇ p = ρg and u = 0) may disrupt the simulation. For nearly steady
flows numerical perturbations dominate the small physical perturbations. In this
section we show that the AP scheme is a well-balanced scheme [8] and is more
efficient to treat these configurations. For some equation as shallow water equations
awell balanced scheme is amethodwhich preserve exactly the steady states.However
this definition is not adapted to study the Euler equations with gravity. Indeed the
steady state for the shallow water equations the steady states are algebraic unlike the
steady states of the Euler equations which are differential.
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Definition 3 (Well-balanced scheme) We assume that the initial data (ρ j , u j , e j )

satisfy the discrete steady state at the interface (∇r p = ρr g for Euler equations). A
scheme is well-balanced if the scheme is exact for the discrete steady state.

For the Shallow water equations the discrete steady state is an exact discretization of
the continuous steady states. This is not the case for theEuler equations.Consequently
for the Euler equations the numerical error given by a well-balanced scheme come
from only to the error between continuous and discrete steady state.

Lemma 1 Assume the initial data is given by u j = 0 and ∇r p = ρr g which is
equivalent to

∇r p = −
( ∑

j
β̂ jr

)−1 ∑

j
p j C jr = ρr g

with ρr a mean of ρ j around r. Then the scheme LP-AP is stationary for the hydro-
static equilibrium.

Proof We write the nodal solver

( ∑

j
c jr α̂ jr + σr

ε
ρr

∑

j
β̂ jr

)
ur =

∑

j
p j C jr +

∑

j
α̂ jr c jr u j +

( ∑

j
β̂ jr

)
ρr g

Using the definition of u j and p j , we obtain that the right hand side term is equal to
zero. By uniqueness of the solution ur = 0. Since ur = 0 and u j = 0 then G jr =
p j C jr + ρr β̂ jr g, ∂tρ j = 0, ∂tρ j e j = 0 and ∂tρ j u j + 1

ε

∑
r G jr = 1

ε

∑
r β̂ jrρr g.

Next we use the property
∑

r C jr = 0 consequently we obtain that
∑

r G jr =
ρr

∑
r β̂ jr g and we conclude that LP-AP scheme is a WB scheme. �

4 Numerical Results

Firstly we study the convergence of the LP and LP-AP schemes for two different
steady states where the density is constant or linear. In the two cases we define
g = (0,−1). The initial data for the first test case are defined by ρ j = 1, u j = 0 and
e j = 1

γ−1 (x j , g) + C with C a constant. The initial data for the second test case are

defined by ρ j (t, x) = y + b, u j = 0 and p j (t, x) = −(
y2

2 + by)g.
Now we propose two remarks about the numerical results given in Tables1 and

2. For the constant density case, the AP scheme preserves exactly the steady state
unlike the classical scheme which converges with the first order. For the non constant
density case,we remark that theAP scheme ismore accurate that the classical scheme.
Indeed the AP scheme converge with the second order (Table 2).

We also validate the AP property. For this we consider a Sod problem with σ = 1
and ε = 0.005. We compare the classical scheme on fine grid (480 × 480 cells) and
coarse grid (60 × 60 cells) and the AP scheme on coarse grid.
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Table 1 L2 error for the first test case (constant density)

Schemes LP-AP LP
Meshes/cells 40 80 160 40 80 160

Cartesian 5.9 × 10−17 1 × 10−16 7.1 × 10−17 0.00470 0.00239 0.00121
Random 1.1 × 10−16 1.5 × 10−16 3 × 10−16 0.01519 0.00947 0.00526
Kershaw 1.4 × 10−16 2.2 × 10−16 3.2 × 10−16 0.08503 0.050 0.02908

Table 2 L2 error for the second test case (linear density)

Schemes LP-AP LP
Meshes/cells 80 160 320 80 160 320

Cartesian 2.3 × 10−15 9.4 × 10−15 3.4 × 10−14 0.0034068 0.0016984 0.0000848
Random 3.4 × 10−5 1 × 10−5 2.8 × 10−6 0.00967 0.00529 0.002823
Kershaw 1.1 × 10−6 1.8 × 10−7 2.6 × 10−8 0.03687 0.008363 0.00215

Fig. 2 Density (left) and energy (right) for the classical LP scheme. Coarse grid

Fig. 3 Density (left) and energy (right) for the LP AP scheme. Coarse grid

We observe that the AP scheme (Fig. 3) on coarse grid capture correctly the
behavior of the solution computed on the fine grid (Fig. 4) at least better than the
classical scheme on coarse grid (Fig. 2) which is more diffusive (the numerical
viscosity is homogeneous to �x

ε
).
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Fig. 4 Density (left) and energy (right) for the classical LP scheme. Fine grid

5 Conclusion

In this paper we study a modified Lagrange+remap scheme in 2D to capture the
behavior induced by the source terms in the Euler equations.We obtain anAP scheme
which captures theoretically the diffusion limit independently of the parameter ε.
Moreover this scheme preserves experimentally the positivity of ρ and e. To finish,
this scheme is well-balanced and converges with the second order for the hydrostatic
equilibrium. This new scheme is more accurate than the classical one for these steady
states. Contrary to the Shallow water equations where the steady states are algebraic,
for the Euler equations the steady states are differential, consequently it is more
difficult to obtain a WB scheme exact for all steady states. In the future it will be
important to discuss the entropy property and semi-implicit time scheme with a CFL
independent of ε.
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