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Abstract We prove a uniform Poincaré-like estimate of the relative free energy by
the dissipation rate for implicit Euler, finite volume discretized reaction-diffusion
systems. This result is proven indirectly and ensures the exponential decay of the
relative free energy with a unified decay rate for admissible finite volume meshes.
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1 Introduction

In a heterostructured domain Ω ⊂ R
N , we consider m diffusing species Xi with

initial densities Ui which undergo a finite number of reversible chemical reactions.
Besides the densities ui of the species Xi we introduce their (dimensionless) chem-
ical potentials vi and chemical activities ai . According to Boltzmann statistics we
have ui = uievi = ui ai , i = 1, . . . , m, where the reference densities ui express
the heterogeneity of the system. For the fluxes ji of the species Xi we make the
ansatz ji = −di ui∇vi = −di uievi ∇vi = −di ui∇ai , i = 1, . . . , m, with diffusion
coefficients di . LetR ⊂ Z

m+ ×Z
m+ be a finite subset. Each pair (α, β) ∈ R represents

the vectors of stoichiometric coefficients of a reversible reaction

α1X1 + · · · + αmXm � β1X1 + · · · + βmXm .
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According to the mass action law, the net rate of this pair of reactions is of the form
kαβ(aα − aβ), where kαβ is a reaction rate coefficient and aα := ∏m

i=1 aαi
i . The net

production rate of species Xi resulting from all reactions taking place is

Ri :=
∑

(α,β)∈R
kαβ(aα − aβ)(βi − αi ).

The problem under consideration consists of the m continuity equations

∂ui
∂t + ∇ · ji = Ri in R+ × Ω, ν · ji = 0 on R+ × ∂Ω,

ui (0) = Ui in Ω, i = 1, . . . , m.

}

(P)

The set S := span{α − β : (α, β) ∈ R} ⊂ R
m represents the stoichiomet-

ric subspace defined by the reaction system. Our essential assumptions on the
data are

(A1) Ω is an open, bounded, polyhedral domain in R
N , N = 2, 3;

ui , Ui ∈ L∞+ (Ω), ui , Ui ≥ δ > 0, i = 1, . . . , m, R⊂ Z
m+ × Z

m+ finite subset,
kαβ, di : Ω × R

m+ → R+ Carathéodory functions satisfying
di (x, a) ≥ δ, c ≥ kαβ(x, a) ≥ bαβ(x) f.a.a. x ∈ Ω , and all a ∈ R

m+,
where ‖bαβ‖L1 > 0 for all (α, β) ∈ R.
If N = 3 then max(α,β)∈R max

{ ∑m
i=1 αi ,

∑m
i=1 βi

} ≤ 3,
A ∩ ∂Rm+ = ∅, where
A := {

a ∈ R
m+ : aα = aβ for all (α, β) ∈ R,

∫
Ω

(ūa − U ) dx ∈ S
}
.

These assumptions allow us to handle a general class of reaction-diffusion systems,
including heterogeneous materials, reactions occurring in subdomains and diffusion
and reaction rate coefficients depending on the state variables, see [3, Remark 1].

The aim of the paper is to show for finite volume discretized versions of Prob-
lem (P) a Poincaré-like estimate of the discrete relative free energy by the discrete
dissipation rate uniformly for all meshes with (A2), see Theorem 1. The essential
new result is that our proof works without any restriction on the mesh size which is
needed in [4, Theorem 3.2]. Using discrete functional inequalities from [1] instead
of results in [5] the estimate is generalized from Voronoi meshes to admissible finite
volumemeshes.More general reaction rate and diffusion coefficients are treated, too.
Finally, for Euler backward in time and finite volume in space discretization schemes,
the discretized free energy along the discrete solutions decays exponentially to its
equilibrium value with a uniform decay rate for all discretizations fulfilling (A2),
see Theorem 2. This gives the discrete counterpart to the behavior in the continuous
case characterized by [6, Theorem 4.3] in a more general setting.
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2 Discretization Scheme and Main Result

An admissible mesh of Ω (see [2]) denoted by M = (P,T ,E ) is formed by a
family of grid pointsP in Ω̄ , a familyT of control volumes and a family E of parts
of hyperplanes inRN (which represent the faces of the boxes). Let M be the number
of grid points xK ∈ P , M = #P . |K | denotes the measure of the box K ∈ T .
For K , L ∈ T with K �= L either the (N − 1) dimensional Lebesgue measure of
K̄ ∩ L̄ is zero or K̄ ∩ L̄ = σ̄ for some σ ∈ E . The symbol σ = K |L denotes the
surface between K and L . The set of interior surfaces is called Eint ⊂ E . Moreover,
for σ ∈ E we denote by mσ the (N − 1) dimensional Lebesgue measure of the face
σ . For σ = K |L ∈ Eint let dσ be the Euclidean distance of xK and xL and σ is
assumed to be orthogonal to the line connecting xK and xL . EK is the subset of E
such that ∂K = K̄ \ K = ∪σ∈EK σ̄ . Concerning the discretization we suppose

(A2) Let M be an admissible finite volume mesh with
dist(xK , σ ) ≥ θdσ ∀K ∈ T ∀σ ∈ EK ∩ Eint (θ > 0).
Let Z = {t0, t1, . . . , tn, . . . } be a partition of R+ with t0 = 0, tn ∈ R+,
tn−1 < tn , n ∈ N, tn → +∞ as n → ∞, supn∈N(tn − tn−1) ≤ τ < ∞.

X (M ) represents the set of functions from Ω to R which are constant on each
box of the mesh. For wh ∈ X (M ) the value at the box K ∈ T is called wK . For
wh ∈ X (M ) the discrete H1 seminorm |wh |1,M and H1 norm ‖wh‖1,M are defined
by

|wh |21,M =
∑

σ=K |L∈Eint

mσ

dσ

|wK − wL |2, ‖wh‖21,M = |wh |21,M + ‖wh‖2L2 . (1)

For K ∈ T we denote by ui K (tn) the constant density on K at tn . Associated to
the grid points we have chemical potentials vi K (tn) and chemical activities ai K (tn),
i = 1, . . . , m. Moreover we work with the vectors u, v, a ∈ R

Mm and the vectors
on a box uK , vK , aK ∈ R

m . We introduce the mean values on the control volumes
K ∈ T ,

ui K = 1
|K |

∫

K
ui (x) dx, kαβK (·) = 1

|K |
∫

K
kαβ(x, ·) dx

and the corresponding piecewise constant functions ūih and kαβ h . The discrete ver-
sion of Problem (P) is

ui K (tn) −ui K (tn−1)

tn − tn−1
|K | −

∑

σ=K |L∈EK

Y σ
i (tn)

(
ai L (tn) − ai K (tn)

)mσ

dσ

= RK
i (tn),

ui K (tn) = ui K evi K (tn) = ui K ai K (tn), i = 1, . . . , m, n ≥ 1,
ui K (0) = Ui K := 1

|K |
∫
Ω

Ui dx, i = 1, . . . , m, K ∈ T ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(PM )

where Y σ
i = Y σ

i (a) is a mean of di (x, a)ui (x) on the face σ and RK
i are given by
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RK
i = RK

i (aK ) =
∑

(α,β)∈R
(βi − αi )kαβK (aK )

(
aα

K − aβ
K

)
|K |.

We introduce the operator Ê : R
Mm → R

Mm , Êv = (
(ui K evi K )K∈T

)
i=1,...,m and

Û =
{

u ∈ R
Mm : ( ∑

K∈T
u1K |K |, . . . ,

∑

K∈T
umK |K |) ∈ S

}
.

The discrete dissipation rate D̂ : R
Mm → R corresponding to Problem (PM ) and

the discrete free energy F̂ : R
Mm → R take the form

D̂(v) =
m∑

i=1

∑

σ=K |L∈Eint

Y σ
i (evi K − evi L )(vi K − vi L)

mσ

dσ

+
∑

(α,β)∈R

∑

K∈T
kαβK

(
eα·vK − eβ·vK

)
(α − β) · vK |K |,

F̂(u) =
m∑

i=1

∑

K∈T

(
ui K ln

ui K

ui K
− ui K + ui K

)
|K |.

Assuming (A1), Problem (P) has exactly oneweak stationary solution (u∗, v∗) fulfill-
ing

∫
Ω

(u∗ −U ) dx ∈ S , see [6, Theorem 3.2]. It is the thermodynamic equilibrium
and the corresponding constant vector of chemical activitiesa∗ lies inA .Also the dis-
creteProblem (PM ) has a unique stationary solution (u ∗, v ∗)withu ∗−U ∈ Û which
again represents the thermodynamic equilibrium of the discrete problem (PM ), see
[4, Theorem 3.1]. Let u∗

h, v∗
h, a∗

h ∈ X (M ) be the piecewise constant functions cor-
responding to u ∗, v ∗, a ∗. According to [4, Corollary 3.1] we have u∗

ih = u∗
i uih/ui ,

i = 1, . . . , m, v∗
h = v∗, and a∗

h = a∗. Both results from [4] hold true for admissible
meshes, too.

We now prove a Poincaré type inequality (similar to [6, Theorem 4.2] for the
continuous case) which gives for the discretized situation a uniform estimate of the
relative free energy F̂(u) − F̂(u ∗) by the dissipation rate D̂ being independent on
the underlying meshM . [4, Theorem 3.2] contains a proof for Voronoi meshes with
mesh sizes less than some constant depending on the data of the problem. Here we
establish a uniform estimate for all admissible finite volume meshes fulfilling (A2).

Theorem 1 We assume (A1) and (A2). Let (u ∗, v ∗) be the thermodynamic equilib-
rium of (PM ). Then for every ρ > 0 there is a constant cρ > 0 such that

F̂(Êv) − F̂(u ∗) ≤ cρ D̂(v) (2)

for all v ∈ N̂ρ :=
{

v ∈ R
Mm : F̂(Êv) − F̂(u ∗) ≤ ρ, u = Êv ∈ U + Û

}
,

uniformly for all admissible finite volume meshes.
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Proof In this proof we denote by c (possibly different) positive constants depending
only on the data but not depending on the mesh. Let ρ > 0 be arbitrarily given.

1. Let u = Êv ∈ U + Û . By [4, Lemma 3.1] there exist constants c1, c2 > 0 not
depending on the mesh M such that

c1

m∑

i=1

‖√uih −
√

u∗
ih‖2L2 ≤ F̂(u) − F̂(u ∗) ≤ c2

m∑

i=1

‖uih − u∗
ih‖2L2 . (3)

Using (A1) and the inequality (x − y) ln x
y ≥ |√x −√

y|2 for x, y > 0, we estimate

D̂(v) ≥ c
m∑

i=1

∑

σ∈Eint

|√evi K − √
evi L |2 mσ

dσ

+ c
∑

(α,β)∈R

∫

Ω

bαβh

(
e vh ·α/2 − e vh ·β/2

)2
dx =: D1(v), v ∈ R

Mm .

Therefore it suffices to prove the inequality

F̂(u) − F̂(u ∗) ≤ C D1(v) ∀v ∈ N̂ρ (4)

with some constant C > 0 not depending on the mesh M .
2. If (4) would be false, then there would be a sequence of admissible meshesMn

and corresponding vn ∈ N̂ρ , un = Êvn ∈ Un + Û , n ∈ N, such that

F̂(un) − F̂(u ∗
n ) = Cn D1(vn) > 0, (5)

and limn→∞ Cn = +∞. Clearly, for each Mn we have to use the corresponding
quantities M , Ê , F̂ , D1,... and setsEint , Û , N̂ρ . Butwedon’twrite themwith an index
Mn . Let ani K = evni K , K ∈ Tn . By unih, vnih, anih, ... ∈ X (Mn), i = 1, . . . , m,
we denote the corresponding piecewise constant functions. From (3) we obtain

‖√anih −
√

a∗
nih‖2L2 ≤ c‖√unih −

√
u∗

nih‖2L2 ≤ c

c1

(
F̂(un) − F̂(u∗

n)
) ≤ c(ρ). (6)

Thus by assumption and because of a∗
nih = a∗

i we find a suitable c̃(ρ) < ∞ with

‖√anih‖L2 ≤ c̃(ρ), i = 1, . . . , m, for all n. (7)

3. The definition of D1 and (4) gives
∑m

i=1 |√anih |21,Mn
≤ cD1(vn) → 0.Apply-

ing the discrete Poincaré inequality for functions with general boundary values (see
[1, Theorem 5]) we find for

√
anih ∈ X (Mn), i = 1, . . . , m,

√
anih − mΩ(

√
anih) → 0 in L2(Ω), where mΩ(

√
anih) := 1

|Ω|
∫

Ω

√
anih dx .
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The discrete Sobolev-Poincaré inequality (see [1, Theorem 3]) gives for q ∈
[1,∞) if N = 2 and forq ∈ [1, 6] if N = 3 the estimate‖√anih − mΩ(

√
anih)‖Lq ≤

cq‖√anih − mΩ(
√

anih)‖1,Mn ≤ c̃q(|√anih |1,Mn + ‖√anih − mΩ(
√

anih)‖L2)

→ 0.
SincemΩ(

√
anih) |Ω| = ‖√anih‖L1 ≤ c‖√anih‖L2 ≤ c(ρ) by (7) for allMn we

find (for a subsequence, andwe restrict our further investigations to this subsequence)
mΩ(

√
anih) → √

âi in R. Using that |√anih − √
âi | ≤ |√anih − mΩ(

√
anih)| +

|mΩ(
√

anih) − √
âi | we conclude
√

anih → √
âi in Lq(Ω), i = 1, . . . , m, (8)

for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6] if N = 3. From

anih − âi = (
√

anih −√
âi )(

√
anih +√

âi ) = (
√

anih −√
âi )

2+2
√

âi (
√

anih −√
âi )

we find that

‖anih − âi‖L2 ≤ ‖√anih − √
âi‖2L4 + 2

√
âi‖√anih − √

âi‖L2 → 0. (9)

4. Let rαβ(ah) := (aα/2
h −aβ/2

h )2.Using ‖bαβ‖L1 = ‖bαβ h‖L1 , taking into account
the restriction of the reaction order if N = 3 and (8) we have for all (α, β) ∈ R

0 ≤ ‖bαβrαβ (̂a)‖L1 = ‖bαβ hrαβ (̂a)‖L1

≤ ‖bαβ hrαβ(anh) − bαβ hrαβ (̂a)‖L1 + ‖bαβ hrαβ(anh)‖L1

≤ ‖bαβ h‖L∞‖rαβ(anh) − rαβ (̂a)‖L1 + cD1(vn) → 0.

Therefore, with ‖bαβ‖L1 > 0 we find necessarily that

âα = âβ ∀(α, β) ∈ R. (10)

5. We introduce û := (̂u1, . . . , ûm), ûi := ui âi , and show
∫
Ω

(̂u − U ) dx ∈ S .
Let γ ∈ S ⊥ (orthogonal complement of S in Rm) be arbitrarily given. Then

∣
∣
∣γ ·

∫

Ω

(uâ − U ) dx
∣
∣
∣ ≤

∣
∣
∣γ ·

∫

Ω

(̂a − anh)unh dx
∣
∣
∣ +

∣
∣
∣γ ·

∫

Ω

(anhunh − Unh) dx
∣
∣
∣.

By (9) the first integral on the right hand side tends to zero, the second is zero since
un − Un ∈ Û . Thus, together with (10) we find â ∈ A , and according to (A1) we
obtain that â = a∗. By the definition of û this yields û = u∗.

6. Because of (3) and (9) we have

λ2n := F̂(un) − F̂(u ∗
n ) ≤ c2

m∑

i=1

‖ui‖L∞‖anih − a∗
nih‖2L2 → 0 (11)
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as n → ∞. Additionally (according to (5)) we find

1

Cn
= 1

λ2n
D1(vn) → 0 as n → ∞. (12)

7. For all n we introduce

bnih := 1

λn

(√
anih

âi
− 1

)
∈ X (Mn), i = 1, . . . , m.

Because of (bni K − bni L)2 ≤ 1
λ2n âi

(
√

ani K − √
ani L)2 for all σ = K |L ∈ Eint

it results
∑m

i=1 |bnih |21,Mn
≤ cD1(vn)/λ2n → 0. As demonstrated in Step 3 (for√

anih), the discrete Poincaré and Sobolev-Poincaré inequality ensure for bnih the
convergence ‖bnih − mΩ(bnih)‖Lq → 0, i = 1, . . . , m, for q ∈ [1,∞) if N = 2
and for q ∈ [1, 6] if N = 3. Using âi = a∗

i = a∗
nih , (6) and (11) we obtain

|mΩ(bnih)| |Ω| ≤ 1

λn
√

âi

∫

Ω

|√anih − √
âi | dx ≤ 1

λn
√

a∗
i

‖√anih −
√

a∗
nih‖L1

≤ c

λn
‖√anih −

√
a∗

nih‖L2 ≤ c

λn
(F̂(un) − F̂(u ∗

n ))1/2 ≤ c

λn
λn = c

for allMn . Thus we find (for a subsequence) mΩ(bnih) → b̂i inR. By |bnih − b̂i | ≤
|bnih − mΩ(bnih)| + |mΩ(bnih) − b̂i | we conclude for i = 1, . . . , m that

bnih → b̂i in Lq(Ω) for q ∈ [1,∞) if N = 2 and for q ∈ [1, 6] if N = 3. (13)

8. We define ŷ = (ŷ1, . . . , ŷm), ŷi := 2b̂i u∗
i = 2b̂i âi ui and show

∫
Ω

ŷ dx ∈ S .
Let γ ∈ S ⊥. Since 2bnihâi unih = (unih − u∗

nih)/λn + bnih(
√

âi − √
anih)

√
âi unih

it results

∣
∣
∣γ ·

∫

Ω

ŷ dx
∣
∣
∣ = 2

∣
∣
∣

m∑

i=1

∫

Ω

b̂i âi unihγi dx
∣
∣
∣ = 2

∣
∣
∣

m∑

i=1

∫

Ω

(
bnih âi unihγi + (̂bi − bnih )̂ai unihγi

)
dx

∣
∣
∣

≤
∣
∣
∣γ ·

∫

Ω

unh−u∗
nh

λn
dx

∣
∣
∣ + c‖bnh‖L2‖

√
âh − √

anh‖L2 + c‖bnh − b̂‖L2 ‖̂a‖L2 ,

where the first term on the last line is zero since un, u∗
n ∈ Û + Un and the last two

terms tend to zero asn → ∞by (8) and (13), respectively. This leads to
∫
Ω

ŷ dx ∈ S .
9. By the definition of rαβ(anh) and bnih we obtain for all (α, β) ∈ R,

â −αrαβ(anh) =
( m∏

i=1

(λnbnih + 1)αi −
m∏

i=1

(λnbnih + 1)βi
)2

=
(
λn

m∑

i=1

bnih(αi − βi )
)2 + Qn, (14)
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where |Qn| ≤ cλ3n(|bnh | + 1)p0 with 0 ≤ p0 ≤ 2max(α,β)∈R max
{ ∑m

i=1 αi ,∑m
i=1 βi

}
. (A1) ensures p0 ≤ 6 if N = 3. Since λn → 0 as n → ∞ (see (11)), we

find 1
λ2n

‖Qn‖L1 ≤ cλn
∫
Ω

(|bnh | + 1)p0 dx → 0 as n → ∞. This together with (12)

and (14) gives

lim
n→∞

∫

Ω

bαβh

( m∑

i=1

bnih(αi − βi )
)2

dx = 0 ∀(α, β) ∈ R.

Therefore, from (A1) we conclude b̂ = (̂b1, . . . , b̂m) ∈ S ⊥. This together
with the definition of ŷ and

∫
Ω

ŷ dx ∈ S (see Step 8) leads to b̂ · ∫
Ω

ŷ dx =
∑m

i=1

∫
Ω
2u∗

i b̂2i dx = 0 which ensures b̂ = 0 and ŷ = 0.
10. Using the definition of λn (see (11)), (3), bnih → 0 in L4(Ω) and (8) we find

1 = 1
λ2n

(
F̂(un) − F̂(u ∗

n )
)

≤ c
m∑

i=1

‖unih‖L∞‖ anih−âi
λn

‖2L2

≤ c
m∑

i=1

∫

Ω

(
√

anih−√
âi )

2

λ2n

(√
anih + √

âi

)2
dx ≤ c

m∑

i=1

b2nih âi

(
âi + |√anih − √

âi |2
)
dx

≤ c
m∑

i=1

‖bnih‖2L4

(
1 + ‖√anih − √

âi ‖2L4

)
→ 0.

This contradiction shows that the assumption made at the beginning of Step 2 of the
proof was wrong, i.e., (4) holds, and the proof is complete. ��

3 Conclusions

Since F̂(U) − F̂(u ∗) ≤ c(U, u∗, u) =: ρ uniformly for all discretizations we have
v(tn) ∈ N̂ρ for n ≥ 1 for solutions (u, v) to (PM ). Following the proof of [4,
Theorem 3.3], but now using the improved result of our Theorem 1, we can choose
in step 3 of that proof one λ > 0 such that λeλ τ cρ < 1 uniform for all M , see
(A2), too. Especially we do not have any upper restriction on the mesh size, can use
admissible finite volume meshes, and obtain

Theorem 2 We assume (A1) and (A2). Then there exists a universal λ > 0 such
that for all solutions (u, v) to (PM ) the estimate

F̂(u(tn)) − F̂(u ∗) ≤ e−λtn
(
F̂(U) − F̂(u ∗)

) ∀n ≥ 1

holds uniformly for all discretizations, especially the scheme (PM ) is dissipative.
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Theorem 2 (as discrete version of [6, Theorem 4.3]) enables us to provide uniform
positive lower bounds for the particle densities for the solutions of (PM ) if the order
of all reactions is less or equal to two and N = 2, see [3, Lemma 4, Theorem 4].
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