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Abstract In many fluid dynamics problems the boundary conditions may be
unknown, or the domain may be unbounded. Also mass conservation and stability
with respect to dominating convection is substantial. Therefore, we test two coupling
methods to address these issues on the prototype of a flow and transport problem.
More precisely, we couple the vertex-centered and the cell-centered finite volume
method with the boundary element method, FVM-BEM and CFVM-BEM, respec-
tively. Also robust refinement indicators are considered which allow us to steer an
adaptive mesh-refinement algorithm to treat efficiently problems with singularities
or boundary/internal layers—shown on two examples.

1 Model Problem and Notation

Due to the conservation of mass property and a stable approximation for convection
dominated problems finite volume methods are well established in fluid dynamics.
Boundary element methods can be used if the fundamental solution of the problem is
known. Since they reduce the approximation problem from a domain to its boundary,
they can be employed for problems on unbounded domains (with radiation condi-
tions) without truncating the domain. In a sense they also feature local conservation.
Two coupling methods of both schemes are considered here to benefit and merge
their properties. In an interior domain Ω ⊂ R

d (d = 2, 3), which is a bounded
and simply connected domain with polygonal/polyhedral Lipschitz boundary Γ , we
consider the prototype of a flow and transport problem and discretize it with a FVM.
Whereas in the corresponding unbounded exterior domain Ωe = R

d\Ω we approx-
imate a diffusive process with the BEM. Special care has to be taken on the so called
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coupling boundary Γ = ∂Ω = ∂Ωe, which is divided in an inflow and outflow part,
namely Γ in := {

x ∈ Γ
∣
∣ b(x) · n(x) < 0

}
and Γ out := {

x ∈ Γ
∣
∣ b(x) · n(x) ≥ 0

}
,

respectively. Here n is the normal vector on Γ pointing outward with respect to Ω .
The mathematical formulation of our problem reads: Find u and ue such that

div(−α∇u + bu) + γu = f in Ω, (1a)

�ue = 0 in Ωe, (1b)

ue(x) = a∞ + b∞ log |x| + o(1) for|x| → ∞, d = 2, (1c)

ue(x) = O(|x|−1) for|x| → ∞, d = 3, (1d)

u = ue + u0 on Γ, (1e)

(α∇u − bu) · n = ∂ue

∂n
+ t0 on Γ in, (1f)

(α∇u) · n = ∂ue

∂n
+ t0 on Γ out . (1g)

In the two dimensional case we can fix either a∞ ∈ R or b∞ ∈ R; see [1]. The
given data satisfy f ∈ L2(Ω), u0 ∈ H1/2(Γ ) and t0 ∈ L2(Γ ), where Lm(·) and
Hm(·), m > 0, denote the standard Lebesgue and Sobolev spaces equipped with
the usual norms ‖ · ‖L2(·) and ‖ · ‖Hm(·), respectively. The diffusion coefficient α is
positive, and there holds (div b)/2 + γ ≥ C1 ≥ 0 and ‖ div b + γ‖L∞(Ω) ≤ C2C1
with the constants C1, C2 ≥ 0 for the convection vector function b ∈ W1,∞(Ω)d

(vector of Lipschitz continuous functions) and the reaction function γ ∈ L∞(Ω).
It is shown in [1] that in aweak sense there exists a unique solution u ∈ H1(Ω) and

ue ∈ H1
�oc(Ωe) (set of all localH1-functions) of the model problem (1). Although not

explicitly stated in [1] the result is also valid (verbatim) for the 3-D case. The proof
is based on the fact that we can transform the unbounded exterior problem (1b)–(1d)
into an integral equation—the exterior Calderón system—with the Cauchy data ξ :=
ue|Γ ∈ H1/2(Γ ) andφ := ∂ue/∂n|Γ ∈ H−1/2(Γ ). Theweak formof this systemand
the interior weak form are coupled through the conditions (1e)–(1g). For more details
we refer to [1] and only remark that the Calderón system is based on some bounded
and linear integral operatorsV ∈ L

(
Hs−1/2(Γ ); Hs+1/2(Γ )

)
(single layer op.),K ∈

L
(
Hs+1/2(Γ ); Hs+1/2(Γ )

)
(double layer op.), K ∗ ∈ L

(
Hs−1/2(Γ ); Hs−1/2(Γ )

)

(adjoint double layer op.) and W ∈ L
(
Hs+1/2(Γ ); Hs−1/2(Γ )

)
(hypersingular inte-

gral op.) for s ∈ [−1/2, 1/2]. These operators are based on the fundamental solution
− 1

2π log |x| for the 2-D case and 1
4π

1
|x| for the 3-D case of the exterior problem; for

more details see e.g. [1].

Triangulation: To simplify notation and the language we only note the construction
for the 2-D case. Throughout, T denotes a triangulation, the primal mesh, of Ω ,
where N and E are the corresponding set of nodes and edges, respectively. The
notation in this work is consistent in the sense that NI and NΓ denote the set of
nodes in the interior and on the boundary, respectively,E in

Γ ⊂ EΓ denotes all coupling
edges on Γ in, ET all edges of T , and so on. For brevity, the elements T ∈ T are
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non-degenerated triangles. The Euclidean diameter of T ∈ T is hT := supx,y∈T
|x − y| and hE denotes the length of an edge E ∈ E . The triangulation is regular,
i.e., the ratio hT of any element T ∈ T to the diameter of its largest inscribed
ball is bounded by a constant independent of hT . Additionally, we assume that the
triangulation T is aligned with the discontinuities (if any) of any given data, and n
denotes the unit normal vector to the boundary pointing outward the domain.

Dual mesh: If we connect the center of gravity of an element T ∈ T with the
midpoints of the edges E ∈ ET we get the dual mesh T ∗ with its boxes V ∈ T ∗. A
box associated with a vertex ai ∈ N (from the primal mesh, i = 1 . . . #N , which
lies in the box) is denoted by Vi ∈ T ∗. Note that this vertex is unique.

We denote by C (·) all continuous functions. The L2 scalar product is (·, ·)ω ,
ω ⊂ Ω . The duality between Hm(Γ ) and H−m(Γ ) is given by the extended L2-
scalar product 〈·, ·〉Γ . Moreover, we define the piecewise affine and globally contin-
uous function space onT byS 1(T ) := {

v ∈ C (Ω)
∣
∣ v|T affine for all T ∈ T

}
and

the piecewise constant space on T by P0(T ) := {
v ∈ L2(Ω)

∣
∣ v|T const. for all

T ∈ T }. The spaces S 1(EΓ ), P0(EΓ ), and P0(T ∗) are equivalently defined as
above and S 1∗ (EΓ ) isS 1(EΓ ) with integral mean zero over EΓ .

2 FVM (Vertex-Centered) and BEM Coupling

A detailed description and motivation of this type of coupling can be found in [1].
The discrete system reads for a∞ = 0: Find a discrete solution uh ∈ S 1(T ),
ξh ∈ S 1∗ (EΓ ) and φh ∈ P0(EΓ ) of our model problem such that

AV (uh, v∗) − (
φh, v∗)

Γ
= F(v∗), (2a)

−〈uh,ψh〉Γ − 〈V φh,ψh〉Γ + 〈(1/2 + K )ξh,ψh〉Γ = −〈u0,ψh〉Γ , (2b)
〈
(1/2 + K ∗)φh, θh

〉
Γ

+ 〈W ξh, θh〉Γ = 0 (2c)

for all v∗ ∈ P0(T ∗) (v∗ := ∑
xi∈N v∗

i χ
∗
i , v∗

i ∈ R), θh ∈ S 1∗ (EΓ ), ψh ∈ P0(EΓ ).
The bilinear form AV and the right-hand side F(v∗) are defined as

AV (uh, v∗) :=
∑

ai∈N
v∗

i

( ∫

∂Vi\Γ
(−α∇uh + buh) · n ds +

∫

Vi

γuh dx +
∫

∂Vi∩Γ out
b · n uh ds

)
,

F(v∗) :=
∑

ai∈N
v∗

i

( ∫

Vi

f dx +
∫

∂Vi∩Γ

t0 ds

)
.

Note that the discretization in the interior domain follows along the dual mesh T ∗,
uh approximates u, ξh ≈ ξ, and φh ≈ φ and the two are coupled through φh in (2a)
and uh in the Calderón system (2b)–(2c). See [1, Remark 3.1] why ξh has to be
the integral mean. If we want to apply a full upwind scheme for the finite volume
scheme, we replace buh in AV by its full upwind value buh,ij. Note that there exists
a τij = Vi ∩ Vj �= ∅ for Vi, Vj ∈ T ∗, i.e., τij consists two straight lines and is a
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part of ∂Vi and ∂Vj. With βij := ( ∫
τij

b · ni ds
)
/|τij| the upwind value is defined by

uh,ij := uh(ai) if βij ≥ 0, and uh,ij := uh(aj) otherwise. For a sufficient small mesh
size the discrete solution of system (2) and its upwind version exists, is unique, and
is of first order; see [1]. This result is also valid for three dimensions.

3 Cell-Centered FVM and BEM Coupling

The CFVM-BEM coupling reads for a∞ = 0: Find uh ∈ P0(T ), uh,Γ ∈ S 1(EΓ ),
ξh ∈ S 1∗ (EΓ ) and φh ∈ P0(EΓ ) such that

∑

E∈ET \EΓ

FD
T ,E(uh) +

∑

E∈ET \E in
Γ

FC
T ,E(uh) + FR

T (uh)

−
∫

∂T∩Γ

φh ds =
∫

T
f dx +

∫

∂T∩Γ

t0 ds,

(3a)

−ua + ua + ςa,h = −ςa,t0 , (3b)

− 〈
uh,Γ ,ψh

〉
Γ

− 〈V φh,ψh〉Γ + 〈(1/2 + K )ξh,ψh〉Γ = −〈u0,ψh〉Γ , (3c)
〈
(1/2 + K ∗)φh, θh

〉
Γ

+ 〈W ξh, θh〉Γ = 0 (3d)

for all T ∈ T , a ∈ NΓ , θh ∈ S 1∗ (EΓ ) and ψh ∈ P0(EΓ ). A detailed description of
this coupling method can be found in [2]. Note that the discretization in the interior
domain follows along the primal mesh T , uh approximates u, ξh ≈ ξ, and φh ≈ φ.
To allow local mesh-refinement we approximate the diffusion flux FD

T ,E(uh) by the

diamond path method as in [4]. For the convection flux FC
T ,E(uh) we can choose

the full upwind scheme as described in Sect. 2 and FR
T (uh) is simply the integral of

γ over T . The approximation of ua is done by an interpolation value ua of certain
values uT of T ∈ T , see also [4], and a mean value ςa = ςa,h + ςa,t0 . The latter is the
approximated conormal of ue onΓ , which is given by the solutionφh of the boundary
element method for the exterior problem and the jump term t0. The piecewise affine
discrete solution reads uh,Γ := ∑

a∈NΓ
uaηa(x) with the standard nodal linear basis

function ηa on EΓ . Note that the unknown ua on Γ is also needed for the diamond
path. CFVM and BEM are coupled through φh in (3a) and uh,Γ in the Calderón
system (3c)–(3d). We want to point out that there is neither an existence proof nor an
a priori result available for this type of coupling. Thus, we assume that this systems
is well-defined and gives a unique solution.

4 A Posteriori Error Estimator

For convection or reaction dominated problems robust a posteriori estimators are
essential. Therefore, we define βT := minx∈T

{
(div b(x))/2 + γ(x)

}
for all T ∈ T

and βE := min
{
βT1,βT2

}
for E ∈ EI with E ⊂ T1∩T2 or βE := βT for E ∈ EΓ with
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E ∈ ET . Furthermore, we introduce the quantities μT := min
{
β

−1/2
T , hT α−1/2

}
and

μE := min
{
β

−1/2
E , hEα−1/2

}
. We provide an a posteriori estimator of residual type

for both coupling schemes, which is based on the primal mesh T . For the CFVM-
BEM the estimator post processes the original piecewise finite volume approximation
in the interior domain to a conforming finite element space which leads to the so
called Morley interpolantI uh; see [2]. Let us write uFVM = uh for FVM-BEM and
uFVM = I uh for CFVM-BEM. Then the residual reads R := f − div(−α∇uFVM +
buFVM) − γ uFVM and an edge-residual J : L2(E ) → R is given by

J|E :=

⎧
⎪⎨

⎪⎩

(−α∇uFVM |T ′ + α∇uFVM |T ) · n for all E ∈ EI ,

(−α∇uFVM + buFVM) · n + φh + t0 for all E ∈ E in
Γ ,

−(α∇uFVM) · n + φh + t0 for all E ∈ E out
Γ ,

with E = T ∩ T ′, T , T ′ ∈ T for E ∈ EI and E ∈ ET otherwise, and n pointing
outward of T . First we define the refinement indicator for each element T ∈ T by

η2T := μ2
T ‖R‖2L2(T)

+ 1

2

∑

E∈EI∩ET

α−1/2μE‖J‖2L2(E)
+

∑

E∈EΓ ∩ET

α−1/2μE‖J‖2L2(E)

+
∑

E∈EΓ ∩ET

hE‖∂uh,Γ /∂s − ∂/∂s (u0 − V φh + (1/2 + K )ξh) ‖2L2(E)

+
∑

E∈EΓ ∩ET

hE‖W ξh + (1/2 + K ∗)φh‖2L2(E)
, (4)

where ∂/∂s denotes the arc length derivative. Note that uh,Γ will be replaced by uh
for FVM-BEM. For the upwind FVM-BEM, we additionally define

η2T ,up := α
−1/2
T μT

∑

τT
ij ∈DT

‖b · ni(uh − uT
h,ij)‖2L2(τT

ij )
(5)

for T ∈ T , where DT :=
{
τT

ij

∣
∣ τT

ij = Vi ∩ Vj ∩ T �= ∅ for Vi, Vj ∈ T ∗withVi

�= Vj
}
and uT

h,ij is the upwind value (see Sect. 2). The upper bound is proven in
[2, 3] (for FVM-BEM even for the 3-D case) and reads

C−2
rel

(|||u − uFVM |||Ω + ‖ξ − ξh‖H1/2(Γ ) + ‖φ − φh‖H−1/2(Γ )

)2

≤ η2 :=
∑

T∈T

(
η2T (+η2T ,up)

)
. (6)

The constant Crel depends only on the shape of the elements T but not on the size,
the number of elements or the model data, and
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|||v|||2Ω := ‖α1/2∇v‖2L2(Ω)
+ ∥

∥(
(div b)/2 + γ

)1/2
v
∥
∥2

L2(Ω)
for all v ∈ H1(Ω)

defines the energy (semi)norm. In [2] robustness is also shown against a piecewise
constant α. Furthermore, one can also find a proof for a local lower bound of (6)
in [2, 3], where the constant additionally depends on the local Péclet number.

5 Numerical Experiments

With the refinement indicators of (4) (plus (5) for FVM-BEM upwinding), we run
a standard refinement algorithm with the following criterion: construct a minimal
subset M (k) of T (k) at step k such that

θ
∑

T∈T (k)

(
η2T (+η2T ,up)

) ≤
∑

T∈M (k)

(
η2T (+η2T ,up)

)

and mark all elements in M (k) for refinement. We use θ = 1/2 for adaptive mesh-
refinement. The shape regularity constant is bounded in all our examples which can
be guaranteed by a red-green-blue refinement strategy.

5.1 The Classical L-Shaped Laplace Problem

The Laplace problem with Ω = (−1/4, 1/4)2\([0, 1/4] × [−1/4, 0]) can be seen
as a benchmark problem to test discrete systems, especially with adaptive mesh
refinement techniques. The given exact solutions read: u(x1, x2) = r2/3 sin(2ϕ/3)
with (x1, x2) = r(cosϕ, sinϕ) (r ∈ R

+
0 ,ϕ ∈ [0, 2π[) for (1a) and for (1b) and

(1c) ue(x1, x2) = log
√

(x1 + 0.125)2 + (x2 − 0.125)2 with a∞ = 0 and b∞ = 1.
The right-hand side is f = 0 if we choose α = 1, b = (0, 0)T and γ = 0 for
our model problem. The jumps u0 and t0 are calculated appropriately. We stress
that u has a generic singularity at the reentrant corner (0, 0). It is well known that
a first order scheme leads to a suboptimal O(N−1/3) order of convergence with
respect to the number of elements N := #T , or O(h2/3) if h denotes the uniform
mesh-size. An adaptive refinement algorithm may give us back the optimal order
of O(N−1/2). Table 1 shows the energy norm errors starting with a uniform mesh
#T (0) = 12. Note that the (not computable) BEM norms are estimated up to a
constant because of ‖ξ − ξh‖2H1/2(Γ )

∼ |||ξ − ξh|||2W := 〈W (ξ − ξh), ξ − ξh〉Γ and

‖φ − φh‖2H−1/2(Γ )
∼ |||φ − φh|||2V := 〈V (φ − φh),φ − φh〉Γ . We stress that both

coupling schemes recover the optimal convergence rate O(N−1/2) in the sum of the
energy norms. However, the CFVM-BEM coupling has a stronger pre-refinement
phase in |||u − uFVM |||Ω , whereas all other norms are similar with respect to N .
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Table 1 Energy norms for different refinement levels k for both coupling systems for example 5.1

k Scheme N |||u − uFVM |||Ω |||ξ − ξh|||W |||φ − φh|||V ‖u − uFVM‖L2(Ω)

8 FVM-BEM 1106 1.70e − 02 4.85e − 03 4.72e − 03 9.90e − 05
CFVM-BEM 256 2.96e − 02 2.83e − 02 2.41e − 02 9.67e − 04

12 FVM-BEM 11592 5.02e − 03 6.12e − 04 6.19e − 04 1.02e − 05
CFVM-BEM 1148 8.25e − 03 4.63e − 03 4.20e − 03 1.22e − 04

16 FVM-BEM 121544 1.54e − 03 1.00e − 04 9.59e − 05 1.34e − 06
CFVM-BEM 9983 2.39e − 03 1.03e − 03 8.13e − 04 1.28e − 05

20 CFVM-BEM 94008 7.44e − 04 1.74e − 04 1.69e − 04 1.61e − 06

# (11) = 6808. # (15) = 5633.

Fig. 1 Adaptively generated mesh for FVM-BEM (left) and CFVM-BEM (right) for example 5.1

Figure1 shows adaptively refined meshes where we have chosen a mesh with almost
the same number of elements. Both look similar. As expected the refinement happens
around the singularity and a little bit on the coupling boundary.

5.2 A More Practical Example

Let us choose the same Ω as above and α = 0.1, b = (15, 10)T and γ = 10−2. The
volume force f is in the lower square, i.e., f = 5 for−0.2 ≤ x1 ≤ −0.1,−0.2 ≤ x2 ≤
−0.05 and f = 0 elsewhere. This example describes the stationary concentration of a
chemical dissolved and distributed in a fluid, where we have a convection dominated
problem in Ω and a diffusion distribution in Ωe. This is a prototype of a transport
problem but here without boundary conditions (which are “replaced” by the exterior
problem). We prescribe the jumps u0 = 0 and t0 = 0 and fix the radiation condition
b∞ = 0 and get additionally the constraint

∫
Γ

φh ds = 2πb∞. Note that we have an
additional term 〈a∞,ψh〉Γ on the left-hand side of (2b) and (3c)with the unknowna∞
and an additional equation as the counterpart. In Fig. 2 we see that the refinement for
both schemes happens from f along the convection b and the layers at the boundary.
However, the CFVM-BEM refinement is more local. The contour lines are generated
at the same level and show the flow also into the unbounded domain and look very
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# (9) = 4879. Contour lines for (9). # (8) = 6613. Contour lines for (8).

Fig. 2 Adaptively generated mesh and contour lines for FVM-BEM (left) and CFVM-BEM (right)
for example 5.2

similar. The values in Ωe can be calculated by the representation formula from the
Cauchy data ξh and φh; see [1, 2].

6 Conclusions

We have illustrated on practical experiments the effectiveness of both conserva-
tive adaptive coupling methods. Contrary to FEM-BEM couplings FVM-BEM and
CFVM-BEM do not have a global Galerkin orthogonality which leads to some dif-
ficulties in their analysis. CFVM-BEM uses the primal mesh (local conservation of
the fluxes) for the (non conforming) interior piecewise constant numerical solution,
which could be an advantages for using meshes with hanging nodes. On the other
hand CFVM-BEM has an additional block compared to FVM-BEM and one should
do more tests to show the robustness of this additional interpolation. With an interior
piecewise affine and globally continuous solution FEM-BEM is closer to the spirit of
FEM-BEM but with the robustness of a finite volume scheme in the interior domain
and mass conservation (but local fluxes on the dual mesh). The a posteriori esti-
mation for CFVM-BEM is more complicated because it relies on a post processed
Morley-type interpolant. Both a posteriori estimates are of residual type and robust
and semi-robust in the upper and lower bound, respectively. More rigorous testing
has to be done to recommend one over the other for a particular problem.
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