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Abstract When deriving a numerical scheme for a system of PDEs coming for
instance from physics or engineering, it is crucial to propose a scheme which pre-
serves the asymptotic behaviour of the continuous system, with respect to time as
with respect to some parameters. In this paper, we want to show how the entropy
method can be applied to some finite volume schemes and permits to show that
some schemes are asymptotic preserving. We focus on two problems: the nonlinear
diffusion equation (long time behaviour) and the drift-diffusion system (long time
behaviour and quasi-neutral limit). Some results have been obtained in collabora-
tion with Jüngel and Schuchnigg [10] and the others with Bessemoulin-Chatard and
Vignal [4].

1 Introduction

1.1 Entropy Method and Long Time Behaviour

The entropy method is initially devoted to the study of the convergence to equilibrium
of systems composed of a large number of particules. Roughly speaking, the trend to
equilibrium is governed by a thermodynamical principle: a given functional, called
physical entropy, increases when the time increases and the equilibrium is defined
as the maximum of the entropy. The entropy method has been widely studied and
applied since the beginning of the 90s: see [1] and all the references therein. As
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written in this paper, it appears that “entropy methods have proved over the last years
to be an efficient tool for the understanding of the qualitative properties of physically
sound models, for accurate numerics and for a more mathematical understanding of
nonlinear PDEs”.

In order to explain the principles of the entropy method, let us consider a system
of partial differential equations written basically under the form:

∂t f + A f = 0, t ≥ 0,

f (0) = f0,

where A is a partial differential operator containing also the boundary conditions.
A stationary state is defined by A f∞ = 0. The question worthy of interest concerns
the convergence of f (t) towards f∞ when t tends to +∞. The strategy consists
in proving the convergence in relative entropy: considering an entropy (a convex
nonnegative Lyapunov functional), the idea is to prove that E( f ) → E( f∞) or
equivalently E( f | f∞) = E( f ) − E( f∞) → 0 when t → +∞. The result is based
on the relation

d

dt
(E( f (t)| f∞) + D( f (t))) = 0, with D( f ) = 〈A f, E ′( f )〉.

The term D( f ) is the entropy dissipation. It must be nonnegative so that the entropy
is nonincreasing (the mathematical entropy is the opposite of the physical entropy).
Moreover, if the dissipation is related to the entropy thanks to some relation like
D( f ) ≥ λE( f | f∞) (respectively D( f ) ≥ K E( f | f∞)1+γ ), an exponential (respec-
tively polynomial) convergence of the relative entropy towards the equilibrium can
be obtained.

This technique has been widely used for many systems of PDEs coming from
the physics in many different areas of applications. We can refer to the survey paper
[1] and the references therein. The entropy method has been applied for instance
for electro-reaction-diffusion systems [22], thin-film type equations [5], reaction-
diffusion equations [13], coagulation-fragmentation models [6].

In the sequel of the paper, we will consider two different problems: the nonlinear
diffusion equation (porous medium/fast diffusion equation) and the drift-diffusion
system coming from the modelling of semiconductor devices.

The Nonlinear Diffusion Equation

Let Ω be an open bounded domain of Rd such that m(Ω) = 1 and β > 0. We
consider the following nonlinear diffusion equation supplemented with initial and
homogeneous Neumann boundary conditions:

∂t u − Δ(uβ) = 0, in Ω, t > 0 with u(·, 0) = u0, in Ω, (1a)
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∇(uβ) · ν = 0, on ∂Ω, t > 0. (1b)

When β > 1, it is called the porous-medium equation, describing the flow of
an isentropic gas through a porous medium. When β < 1, it is referred as the fast-
diffusion equation. In [9], the entropy-entropy dissipation method was applied to (1a)
in the whole space to prove the decay of the solutions to the asymptotic self-similar
profile. The convergence towards the constant steady-state on the one-dimensional
torus was proved in [7].

We note that the solution to (1a), (1b) satisfies
∫
Ω

u(x, t)dx = ∫
Ω

u0(x)dx for
all t ≥ 0. Therefore, the stationary state is constant and equal to u∞ = ∫

Ω
u0(x)dx .

In order to study the convergence towards the stationary state, we introduce the
following family of zeroth-order relative entropies:

Eα(u) = 1

α + 1

(∫

Ω

uα+1dx −
(∫

Ω

udx

)α+1
)

, α > 0. (2)

In [10], we study, among other things, the algebraic and the exponential decay of these
entropies. The functional inequalities relating entropy and dissipation are obtained
from generalized Beckner inequalities.

The Drift-Diffusion System

The drift-diffusion-Poisson system has been introduced by van Roosbroeck [27]
for the modelling of semiconductor devices. Let Ω be an open bounded set of Rd

describing the geometry of the semiconductor device, the system writes:

∂t N + div (μN (−∇N + N∇Ψ )) = −R(N , P), in Ω, t > 0, (3a)

∂t P + div (μP (−∇ P − P∇Ψ )) = −R(N , P), in Ω, t > 0, (3b)

− λ2ΔΨ = P − N + C, in Ω, t > 0. (3c)

where the given function C(x) is the doping profile and R(N , P) the recombination-
generation rate. The dimensionless physical parametersμN ,μP andλ are the rescaled
mobilities of electrons and holes and the rescaled Debye length. This system is
generally supplemented with Dirichlet-Neumann boundary conditions (∂Ω = Γ D ∪
Γ N ):

N = N D, P = P D, Ψ = Ψ D on Γ D × (0, T ), (4a)

∇N · ν = 0, ∇ P · ν = 0, ∇Ψ · ν = 0, on Γ N × (0, T ), (4b)

and with initial conditions N0, P0.
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The stationary state for the drift-diffusion model is referred as the thermal equi-
librium (N∗, P∗, Ψ ∗). It is defined under some compatibility assumptions on the
boundary data. The convergence of the solution to (3a)–(4b) towards the thermal
equilibrium has been established by Jüngel in [24] (including the case of nonlinear
diffusion) and Gajewski and Gärtner in [16] (for the linear system with magnetic
field). Both proofs are based on an entropy method. In this case, the relative entropy
is defined by:

E(t) =
∫

Ω

(

H(N ) − H(N∗) − log(N∗)(N − N∗)

+ H(P) − H(P∗) − log(P∗)(P − P∗) + λ2

2
|∇Ψ − ∇Ψ ∗|2

)

dx,

with H(x) = x log x − x + 1.

1.2 Entropy Method and Quasi-Neutral Limit

In the drift-diffusion model (3a)–(4b), the quasi-neutral limit consists in letting the
scaled Debye length λ tend to 0. From a physical point of view, this means that only
the large scale structures with respect to the Debye length are taken into account.
For the sake of simplicity, we will now assume that μN = μP = 1, R(N , P) = 0
and that the doping profile vanishes. Under these hypotheses, the system (3a)–(4b)
will be denoted (Pλ). The quasi-neutral limit is formally obtained by setting λ = 0
in (Pλ). It implies that the Poisson equation reduces to an algebraic equation on
N and P . The system (P0) rewrites:

∂t N − ΔN = 0, (5a)

div(N∇Ψ ) = 0, (5b)

P = N . (5c)

Jüngel and Peng [25] performed rigorously the quasi-neutral limit for the drift-
diffusion system with a zero doping profile and mixed Dirichlet and homogeneous
Neumann boundary conditions. Under quasi-neutrality assumptions on the initial
and boundary conditions (N0 − P0 = 0 and N D − P D = 0), they prove that
a weak solution to (Pλ), denoted by (Nλ, Pλ, Ψ λ), converges, when λ → 0, to
(N 0, P0, Ψ 0) solution to (P0) in the following sense:

Nλ → N 0, Pλ → P0 in L p(Ω × (0, T )) strongly, for all p ∈ [1,+∞),

Nλ ⇀ N 0, Pλ ⇀ P0, Ψ λ ⇀ Ψ 0 in L2(0, T, H1(Ω)) weakly.
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The same kind of result is established for the drift-diffusion system with homoge-
neous Neumann boundary conditions by Gasser in [17] for a zero doping profile and
by Gasser et al. in [18] for a regular doping profile. In all these papers, the rigorous
proof of the quasi-neutral limit is based on an entropy method.

In the case of Dirichlet-Neumann boundary conditions, we will consider that
the boundary data N D, P D, Ψ D are defined on the whole domain Ω and verify
N D, P D ∈ L∞ ∩ H1(Ω), Ψ D ∈ H1(Ω). Then, the entropy functional, which has
the physical meaning of a free energy, is defined (see [25]) by

E(t) =
∫

Ω

(

H(N ) − H(N D) − log(N D)(N − N D)

+ H(P) − H(P D) − log(P D)(P − P D) + λ2

2
|∇Ψ − ∇Ψ D |2

)

dx

and the entropy dissipation functional is defined by

D(t) =
∫

Ω

(
N |∇(log N − Ψ )|2 + P |∇(log P + Ψ )|2

)
dxdt.

The entropy and the entropy dissipation satisfy the following relation:

dE

dt
(t) + 1

2
D(t) ≤ K D ∀t ≥ 0, (6)

where K D is a constant depending only on data. This inequality is crucial in order to
perform rigorously the quasi-neutral limit. Indeed, if E(0) is uniformly bounded in
λ, (6) provides a uniform bound on

∫ T
0 D(s)ds. It implies a priori uniform bounds on

(Nλ, Pλ, Ψ λ) solution to (Pλ) and therefore compactness of a sequence of solutions.

1.3 Aim of the Paper

The preservation of the structure of the equations (or system of equations) is a very
important property of a numerical scheme. Positivity, maximum principle, appro-
priate a priori estimates are the bases for the proof of convergence of finite volume
schemes for instance. The properties of entropy consistency or entropy dissipation
by numerical schemes are also crucial and have been investigated in different frame-
works, see for instance [8, 14, 19–21, 23].

In this paper, we want to present some recent results obtained with Jüngel and
Schuchnigg for the nonlinear diffusion equation [10] and with Bessemoulin-Chatard
and Vignal for the drift-diffusion system [4]. In both cases, we study the asymptotic
behaviour of some finite volume schemes using a discrete entropy method.

Section 2 is devoted to the presentation of the notations. In Sect. 3, we are interested
in the long time behaviour of some numerical schemes. We first present results
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obtained in [10] for the nonlinear diffusion equation. In this case, thanks to discrete
functional inequalities, we can establish polynomial or exponential decay of a family
of discrete relative entropies. We will also mention some known results for the
numerical approximation of the drift-diffusion system.

In Sect. 4, we consider a Euler implicit in time and finite volume in space scheme
for the drift-diffusion system. With the choice of Scharfetter-Gummel approximation
for the convection-diffusion fluxes [26], we can derive a discrete counterpart of (6).
We then prove that the scheme is asymptotic preserving at the quasi-neutral limit : it
converges for all λ ≥ 0 and the corresponding limit (N , P, Ψ ) is a solution to (Pλ),
for λ > 0 as for λ = 0.

2 Notations

In order to define the numerical schemes under consideration in this paper, we need to
introduce the discretization settings and some notations. We restrict the presentation
to a two-dimensional case but generalization to higher dimension is straightforward.
We consider that Ω is an open bounded polygonal subset of R2.

The mesh M = (T ,E ,P) is given by T , a family of open polygonal control
volumes, E , a family of edges and P = (xK )K∈T a family of points. As it is
classical in the finite volume discretization of elliptic or parabolic equations with a
two-points flux approximations, we assume that the mesh is admissible in the sense
of [15] (Definition 9.1).

We distinguish in E the interior edges, σ = K |L , from the exterior edges,
σ ⊂ ∂Ω . Therefore E is split into E = Eint ∪ Eext . Within the exterior edges,
we distinguish (if necessary) the edges included in Γ D from the edges included in
Γ N : Eext = E D

ext ∪ E N
ext . For a given control volume K ∈ T , we define EK the set

of its edges, which is also split into EK = EK ,int ∪ E D
K ,ext ∪ E N

K ,ext . For each edge
σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK . Then, we can denote
this cell Kσ . In the case where σ is an interior edge (σ = K |L), Kσ can be either
equal to K or to L .

For all edges σ ∈ E , we define dσ = d(xK , xL) if σ = K |L ∈ Eint and
dσ = d(xK , σ ) if σ ∈ Eext with σ ∈ EK . Then, the transmissibility coefficient is
defined by τσ = m(σ )/dσ , for all σ ∈ E . We assume that the mesh satisfies the
following regularity constraint:

∃ξ > 0 such that d(xK , σ ) ≥ ξ dσ , ∀K ∈ T ,∀σ ∈ EK . (7)

Let T > 0, we consider a subdivision of the interval [0, T ] defined by (tn =
nΔt)0≤n≤NT , where Δt is the time step and NT Δt = T . A classical finite volume
approximation provides an approximate solution which is constant on each cell of the
mesh and on each time interval. Let X (T ) be the linear space of functions Ω → R

which are constant on each cell K ∈ T . To a discrete set (uK )K∈T , we associate
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uT =
∑

K∈T
uK 1K ∈ X (T ). The L p-norm of uT is

‖uT ‖0,p =
⎛

⎝
∑

K∈T
m(K )|uK |p

⎞

⎠

1/p

.

When there are Dirichlet boundary conditions on a part of the boundary, we
need to define approximate values for u at the corresponding boundary edges:
uE D = (uσ )σ∈E D

ext
∈ R

θ D
(with θ D = Card(E D

ext )). Therefore, the vector containing
the approximate values in the control volumes and the approximate values at the
boundary edges is denoted by uM = (uT , uE D ). For any vector uM = (uT , uE D ),
we define, for all K ∈ T , for all σ ∈ EK ,

uK ,σ =
⎧
⎨

⎩

uL , if σ = K |L ∈ EK ,int ,

uσ , if σ ∈ E D
K ,ext ,

uK , if σ ∈ E N
K ,ext ,

(8a)

DuK ,σ = uK ,σ − uK and Dσ u = ∣
∣DuK ,σ

∣
∣ . (8b)

It permits to define the discrete H1-semi-norm | · |1,2,M :

|uM |21,2,M =
∑

σ∈E
τσ (Dσ u)2 , ∀uM = (uT , uE D ).

If E D = ∅, we have uM = uT and we will write |uT |1,2,T = |uM |1,2,M .

3 Long Time Behaviour of Some Finite Volume Schemes

3.1 First Example: Nonlinear Diffusion Equations

In this section, we consider a classical Euler implicit in time and finite volume in
space discretization of the nonlinear diffusion Eq. (1a), (1b).

Theoretical Results

We assume that u0 ∈ L∞(Ω), with m ≤ u0 ≤ M a.e. on Ω , with m ≥ 0. For the
sake of simplicity, we also assume that m(Ω) = 1. The scheme writes:
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m(K )
un+1

K − un
K

Δt
+

∑

σ∈EK ,int ,
σ=K |L

τσ

(
(un+1

K )β − (un+1
L )β

)
= 0, (9a)

u0
K = 1

m(K )

∫

K
u0(x)dx . (9b)

Existence and uniqueness of a discrete solution to (9a), (9b) is a well-known
result (see [15]). Moreover, it is clear that m ≤ un

K ≤ M for all K ∈ T and for all
0 ≤ n ≤ NT . Due to the Neumann boundary conditions, we also have:

∑

K∈T
m(K )un

K = ‖u0‖L1(Ω).

At each time step, we can reconstruct the approximate solution un
T ∈ X (T ). Our

aim is to study the convergence of (un
T )n≥0 when n tends to +∞ towards the constant

function equal to ‖u0‖L1(Ω). Therefore, we can use the relative entropies Eα defined
in (2) for α > 0. Let us note that

Eα[un
T ] = 1

α + 1

⎛

⎜
⎝

∑

K∈T
m(K )(un

K )α+1 −
⎛

⎝
∑

K∈T
m(K )un

K

⎞

⎠

α+1
⎞

⎟
⎠ ,

Using the convexity of the function x �→ xα+1 and the scheme (9a), (9b), we
easily get:

Eα[un+1
T ] − Eα[un

T ] ≤ −Δt
∑

σ∈Eint ,
σ=K |L

τσ

(
(un+1

K )α − (un+1
L )α

) (
(un+1

K )β − (un+1
L )β

)
.

Then, using the following inequality:

(yα − xα)(yβ − xβ) ≥ 4αβ

(α + β)2 (y(α+β)/2 − x (α+β)/2)2, ∀x, y ≥ 0,

we get that

Eα[un+1
T ] − Eα[un

T ] ≤ − 4αβΔt

(α + β)2

∣
∣
∣(un+1

T )(α+β)/2
∣
∣
∣
2

1,2,T
. (10)

With another choice of inequality:

(yβ−xβ)(yα−xα) ≥ 4αβ

(α + 1)2 min(xβ−1, yβ−1)(y(α+1)/2−x (α+1)/2)2, ∀x, y ≥ 0,
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we get:

Eα[un+1
T ] − Eα[un

T ] ≤ − 4αβΔt

(α + 1)2 inf
K∈T

(un+1
K )β−1

∣
∣
∣(un+1

T )(α+1)/2
∣
∣
∣
2

1,2,T
. (11)

In both cases, the dissipation of the entropy of the approximate solution is stated
in terms of the discrete H1-semi-norm of some discrete function. In order to relate
the dissipation to the entropy, we need some functional inequalities. The relation
between either |(un+1

T )(α+β)/2|21,2,T or |(un+1
T )(α+1)/2|21,2,T , to Eα[un+1

T ] will be
done through discrete generalized Beckner inequalities, established in [10].

Lemma 1

• Let 0 < q < 2, pq > 1 or q = 2 and 0 < p ≤ 1, and fT ∈ X (T ). Then

∫

Ω

| fT |qdx −
(∫

Ω

| fT |1/pdx

)pq

≤ Cb(p, q)

ξq/2 | fT |q1,2,T (12)

holds, where Cb(p, q) only depends on p, q, Ω and with ξ defined in (7).
• Let 0 < q < 2, pq ≥ 1, and fT ∈ X (T ). Then

‖ fT ‖2−q
0,q,T

(∫

Ω

| fT |qdx −
(∫

Ω

| fT |1/pdx

)pq)

≤ C ′
b(p, q)

ξ
| fT |21,2,T

(13)

holds, where C ′
b(p, q) only depends on p, q, Ω and with ξ defined in (7).

Applying (12) with p = (α + β)/2, q = 2(α + 1)/(α + β) and fT =
(un+1

T )(α+β)/2, we deduce from (10):

Eα[un+1
T ] − Eα[un

T ] ≤ −KΔt Eα[un+1
T ](α+β)/(α+1),

with K depending on α, β, Ω and ξ . Then, a discrete nonlinear Gronwall lemma
(see [10]) leads to the polynomial decay of the discrete entropy.

Theorem 1 (Polynomial decay) Let α > 0 and β > 1. Let (un
T )n≥0 be the solution

to the finite-volume scheme (9a), (9b) with inf K∈T u0
K ≥ 0. Then

Eα[un
T ] ≤ 1

(c1tn + c2)(α+1)/(β−1)
, ∀n ≥ 0,

where c1 depends on α, β, Ω , ξ and Δt (but stays bounded when Δt tends to 0) and
c2 = Eα[u0

T ]−(β−1)/(α+1).

Applying (13) with p = (α + 1)/2, q = 2 and fT = (un+1
T )(α+1)/2, we deduce

from (11):
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Fig. 1 Evolution of the discrete entropies with respect to time for different values of α

Eα[un+1
T ] − Eα[un

T ] ≤ −K ′Δt inf
K∈T

(u0
K )β−1 Eα[un+1

T ],

with K ′ depending on α, β, Ω and ξ . Then, we can conclude to the exponential
decay of the discrete entropy.

Theorem 2 (Exponential decay) Let 0 < α ≤ 1 and β > 0. Let (un
T )n≥0 be the

solution to the finite-volume scheme (9a), (9b) with inf K∈T u0
K ≥ 0. Then

Eα[un
T ] ≤ Eα[u0

T ]e−λtn
, ∀n ≥ 0,

with λ depending on α, β, Ω , ξ and inf K∈T (u0
K )β−1.

Numerical Experiments

We illustrate on Fig. 1 the time decay of the solutions to the discretized porous-
medium equation (β = 2) and to the fast-diffusion equation (β = 1/2). Both test
cases are two-dimensional, with Ω = (0, 1) × (0, 1). When β = 2, we choose
a Barenblatt profile as initial condition. We observe that the decay of the discrete
entropies seems to be exponential for large times, even for values of α not covered
by Theorem 2. When β = 1/2, we choose u0(x) = C((R2 − |x − x0|2)+)2 with
x0 = (0.5, 0.5), R = 0.2, C = 3000 as initial condition. We observe similarly an
exponential decay of the discrete entropies for large times.
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3.2 Second Example: Drift-Diffusion System

As recalled in the introduction, the drift-diffusion system (3a), (3b), (3c) is made of
two convection-diffusion-reaction equations on the densities coupled with a Poisson
equation on the electric potential. Writing a two-points finite volume scheme for
this system is not difficult. However, the choice of the time discretization and of the
numerical approximation of the convection-diffusion fluxes will be crucial for the
preservation of the asymptotic behaviours.

When writing the scheme, we have to define for instance FK ,σ the numerical
approximation of

∫
σ
(−∇N + N∇Ψ ) · νK ,σ . Scharfetter and Gummel [26] have

proposed to discretize simultaneously the convection and diffusion terms. It leads to
the following numerical fluxes:

FK ,σ = τσ

(
B(−DΨK ,σ )NK − B(DΨK ,σ )NK ,σ

)

where B is the Bernoulli function defined by:

B(0) = 1 and B(x) = x

exp(x) − 1
∀x �= 0. (14)

Gajewski and Gärtner [16] have shown that the Euler implicit in time and finite vol-
ume in space scheme, with a Scharfetter-Gummel approximation of the convection-
diffusion fluxes, is entropy dissipative (the scheme is detailed in the next section).
Later, Chatard [12] has also obtained a discrete counterpart of the entropy method for
this scheme (with a different way of proof). The numerical experiments in [12] show
the exponential decay in time of the discrete entropy for the Scharfetter-Gummel
scheme. They also show that this property is no more satisfied by the scheme pro-
posed in [11], where the diffusion terms are discretized classically and the convection
terms are discretized with upwind fluxes.

4 Finite Volume Scheme at the Quasi-Neutral Limit

In this Section, we study a numerical scheme for the simplified drift-diffusion system
(Pλ), similar to the schemes studied in [16] or in [12]. We will use the entropy method
in order to show that the scheme is asymptotic preserving at the quasi-neutral limit
λ → 0. More precisely, we will establish that the a priori estimates needed for the
proof of convergence hold for all λ ≥ 0.

We make the following assumptions on the data:

N0, P0 ∈ L∞(Ω), (15a)

N D, P D ∈ L∞ ∩ H1(Ω), Ψ D ∈ H1(Ω), (15b)

∃m > 0, M > 0 such that m ≤ N0, P0, N D, P D ≤ M a.e. on Ω. (15c)
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4.1 Presentation of the Scheme

For u = N , P, Ψ , the approximate solution is defined by un
T and the approximate

values at the boundary are un
E D = (un

σ )σ∈E D
ext

, at each time step, 0 ≤ n ≤ NT .
Let us first discretize the initial and the boundary conditions. We set:

u0
K = 1

m(K )

∫

K
u0(x) dx, ∀K ∈ T , for u = N , P, (16)

u D
σ = 1

m(σ )

∫

σ

u(γ )dγ, ∀σ ∈ E D
ext , for u = N , P, Ψ.

Moreover, we define

un
σ = u D

σ , ∀σ ∈ E D
ext ,∀n ≥ 0, for u = N , P, Ψ. (17)

We consider a Euler implicit in time and finite volume in space discretization.
The scheme writes:

m(K )
N n+1

K − N n
K

Δt
+

∑

σ∈EK

F n+1
K ,σ = 0, ∀K ∈ T ,∀n ≥ 0, (18a)

m(K )
Pn+1

K − Pn
K

Δt
+

∑

σ∈EK

G n+1
K ,σ = 0, ∀K ∈ T ,∀n ≥ 0, (18b)

− λ2
∑

σ∈EK

τσ DΨ n
K ,σ = m(K )(Pn

K − N n
K ), ∀K ∈ T ,∀n ≥ 0. (18c)

We choose a Scharfetter-Gummel approximation for the convection-diffusion fluxes:

F n+1
K ,σ = τσ

(
B(−DΨ n+1

K ,σ )N n+1
K − B(DΨ n+1

K ,σ )N n+1
K ,σ

)
, ∀K ∈ T ,∀σ ∈ EK ,

(19a)

G n+1
K ,σ = τσ

(
B(DΨ n+1

K ,σ )Pn+1
K − B(−DΨ n+1

K ,σ )Pn+1
K ,σ

)
, ∀K ∈ T ,∀σ ∈ EK ,

(19b)

where B is the Bernoulli function defined by (14).
In the sequel, we denote by (Sλ) the scheme (16)–(19b). It is a fully implicit in

time scheme: the numerical solution (N n+1
K , Pn+1

K , Ψ n+1
K )K∈T at each time step is

defined as a solution of the nonlinear system of Eqs. (18a)–(19b). When choosing
DΨ n

K ,σ instead of DΨ n+1
K ,σ in the definition of the fluxes (19a), (19b), we would

get a decoupled scheme whose solution is obtained by solving successively three
linear systems of equations for N , P and Ψ . However, this other choice of time
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discretization induces a stability condition of the form Δt ≤ Cλ2 (see for instance
[2]). Therefore, it cannot be used in practice for small values of λ and it does not
preserve the quasi-neutral limit.

Setting λ = 0 in the scheme (Sλ) leads to the scheme (S0) defined hereafter.
The scheme for the Poisson Eq. (18c) becomes Pn

K − N n
K = 0 for all K ∈ T , n ∈ N.

In order to avoid any incompatibility condition at n = 0 (which would correspond
to an initial layer), we assume that the initial conditions N0 and P0 satisfy the quasi-
neutrality assumption:

P0 − N0 = 0. (20)

Adding and subtracting (18a) and (18b), and using Pn
K = N n

K for all K ∈ T and
n ∈ N, we get

m(K )
N n+1

K − N n
K

Δt
+ 1

2

∑

σ∈EK

(
F n+1

K ,σ + G n+1
K ,σ

)
= 0,∀K ∈ T ,∀n ≥ 0,

and
∑

σ∈EK

(
F n+1

K ,σ − G n+1
K ,σ

)
= 0,∀K ∈ T ,∀n ≥ 0.

But, using the following property of the Bernoulli function B(x) − B(−x) = −x ,
∀x ∈ R, we have, ∀K ∈ T ,∀σ ∈ EK ,int ∪ E N

K ,ext :

F n+1
K ,σ − G n+1

K ,σ = τσ DΨ n+1
K ,σ (N n+1

K + N n+1
K ,σ ),

and F n+1
K ,σ + G n+1

K ,σ = −τσ

(
B(DΨ n+1

K ,σ ) + B(−DΨ n+1
K ,σ )

)
DN n+1

K ,σ .

Let us note that these equalities still hold for each Dirichlet boundary edge σ ∈ E D
K ,ext

if N D
σ = P D

σ . In the sequel, when studying the scheme at the quasi-neutral limit (S0),
we assume the quasi-neutrality of the initial conditions (20) and of the boundary
conditions:

P D − N D = 0. (21)

Finally, the scheme (S0) can be rewritten: ∀K ∈ T , ∀n ≥ 0,

m(K )
N n+1

K − N n
K

Δt
−

∑

σ∈EK

τσ

B(DΨ n+1
K ,σ ) + B(−DΨ n+1

K ,σ )

2
DN n+1

K ,σ = 0, (22a)

−
∑

σ∈EK

τσ DΨ n+1
K ,σ (N n+1

K + N n+1
K ,σ ) = 0, (22b)

Pn
K − N n

K = 0, (22c)

with the initial conditions (15a), (15b), (15c) and the boundary conditions (17).
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Existence of a solution to the scheme (Sλ) is proved in [4] without any condition
on Δt and for all λ ≥ 0. Moreover, under the hypotheses (15a), (15b), (15c), we
have:

m ≤ N n
K , Pn

K ≤ M,∀n ∈ N.

It means in particular that all the densities are positive.

4.2 Entropy-Dissipation Estimate

In this Section, we establish the discrete counterpart of the entropy-dissipation
inequality (6). As N D , P D and Ψ D are defined on the whole domain, we can set:

u D
K = 1

m(K )

∫

K
u(x)dx, ∀K ∈ T , for u = N , P, Ψ.

Then, for all n ∈ N, the discrete entropy is defined by:

E
n =

∑

K∈T
m (K )

(
H(N n

K ) − H(N D
K ) − log(N D

K )
(

N n
K − N D

K

))

+
∑

K∈T
m (K )

(
H(Pn

K ) − H(P D
K ) − log(P D

K )(Pn
K − P D

K )
)

+ λ2

2

∣
∣
∣Ψ n

M − Ψ D
M

∣
∣
∣
2

1,2,M
,

and the discrete entropy dissipation by:

D
n =

∑

σ∈E ,
(K=Kσ )

τσ

[

min
(
N n

K , N n
K ,σ

) (
Dσ

(
log N n − Ψ n) )2

+ min
(
Pn

K , Pn
K ,σ

) (
Dσ

(
log Pn + Ψ n) )2

]

,

where the notation
∑

σ∈E ,
(K=Kσ )

means a sum over all the edges σ ∈ E , with K = Kσ

(and therefore σ is an edge of the cell K ) in the term inside the sum.

Theorem 3 (Discrete entropy-dissipation inequality) Let assume (15a), (15b), (15c)
and let T be an admissible mesh of Ω satisfying (7) and Δt > 0. Then, there exists
KE , not depending on λ, Δt and size(T ), such that, for all λ ≥ 0, a solution to the
scheme (Sλ), (N n

T , Pn
T , Ψ n

T )0≤n≤NT , satisfies the following inequality:
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E
n+1 − E

n

Δt
+ 1

2
D

n+1 ≤ KE , ∀n ≥ 0. (23a)

Furthermore, if N 0 and P0 satisfy the quasi-neutrality assumption (20), we have

NT −1∑

n=0

Δt Dn+1 ≤ KE (1 + λ2). (23b)

Sketch of the proof We mimic the proof at the continuous level. The scheme on N
(18a) is multiplied by Δt (log(N n+1

K − log(N D
K )) and a sum over the control volumes

K ∈ T is achieved. A similar procedure is applied to the scheme on P (18b). Both
terms are summed up and the sums are rearranged in order to use the scheme on Ψ

(18c). In order to let the discrete entropy dissipation appear Dn+1, we crucially use
the discretization by the Scharfetter-Gummel fluxes. In practice, the result is based
on the following properties satisfied by the Scharfetter-Gummel fluxes:

F n+1
K ,σ D(log N − Ψ )n+1

K ,σ ≤ − τσ min(N n+1
K , N n+1

K ,σ )
(

Dσ (log N − Ψ )n+1
)2

,

G n+1
K ,σ D(log P + Ψ )n+1

K ,σ ≤ − τσ min(Pn+1
K , Pn+1

K ,σ )
(

Dσ (log P + Ψ )n+1
)2

.

Moreover, if min(N n+1
K , N n+1

K ,σ ) ≥ 0 and min(Pn+1
K , Pn+1

K ,σ ) ≥ 0, we also have

∣
∣
∣F n+1

K ,σ

∣
∣
∣ ≤ τσ max(N n+1

K , N n+1
K ,σ )

∣
∣
∣Dσ (log N − Ψ )n+1

∣
∣
∣ ,

∣
∣
∣G n+1

K ,σ

∣
∣
∣ ≤ τσ max(Pn+1

K , Pn+1
K ,σ )

∣
∣
∣Dσ (log P + Ψ )n+1

∣
∣
∣ .

4.3 New a Priori Estimates in Order to Get the Compactness

As it is classical in the finite volume framework and especially for elliptic and par-
abolic equations, we want to prove some a priori estimates satisfied by the discrete
solution. In our case, it is crucial to establish a priori estimates which remain satisfied
when λ → 0. They will be deduced from the bound on the entropy dissipation (23b).

Theorem 4 (A priori estimates satisfied by the approximate solution) Let assume
(15a), (15b), (15c) and let T be an admissible mesh of Ω satisfying (7) and
Δt > 0. We also assume that the initial and boundary conditions satisfy the quasi-
neutrality relations (20) and (21). Then, there exists a constant K F not depending
on λ, Δt and size(T ), such that, for all λ ≥ 0, a solution to the scheme (Sλ),
(N n

T , Pn
T , Ψ n

T )0≤n≤NT , satisfies the following inequalities:
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NT −1∑

n=0

Δt
∑

σ∈E
τσ Dσ Ψ n+1

(

(Dσ Pn+1)2 + (Dσ N n+1)2
)

≤ KF (1 + λ2), (24a)

NT −1∑

n=0

Δt
∑

σ∈E
τσ (Dσ N n+1)2 +

NT −1∑

n=0

Δt
∑

σ∈E
τσ (Dσ Pn+1)2 ≤ KF (1 + λ2), (24b)

NT −1∑

n=0

Δt
∑

σ∈E
τσ (Dσ Ψ n+1)2 ≤ KF (1 + λ2). (24c)

We refer to [4] for the proof of this Theorem. The estimates are obtained suc-
cessively: first, we establish the weak-BV inequality on N and P (24a); then, we
deduce the L2(0, T, H1) estimate on N and P and finally we conclude with the
L2(0, T, H1) estimate on Ψ .

The L2(0, T, H1(Ω))-estimates on N , P (24b) and Ψ (24c) lead to compactness
in space of the sequences of approximate solutions. The compactness in time is
deduced from estimates on the time translates obtained by reusing the scheme. To
prove the convergence of the numerical method, it remains to pass to the limit in
the scheme and by this way prove that the limit of the sequence of approximate
solutions is a weak solution to (Pλ). It can be done as in [11], but dealing with the
Scharfetter-Gummel fluxes as in [3].

4.4 Some Numerical Experiments

We illustrate now the stability of the fully implicit Scharfetter-Gummel scheme for
all nonnegative values of the rescaled Debye length λ. Therefore, we consider a one
dimensional test case on Ω = (0, 1). Initial data are constant N0(x) = P0(x) = 0.5,
∀x ∈ (0, 1). We consider quasi-neutral Dirichlet boundary conditions N D(0) =
P D(0) = 0.1, Ψ D(0) = 0 and N D(1) = P D(1) = 0.9, Ψ D(1) = 4.

Since the exact solution to the problem (Pλ) is not available, we compute a
reference solution on a uniform mesh made of 10240 = 20×29 cells, with time step
Δt = 10−6, for different values of λ2 in [0, 1]. This reference solution is then used to
compute the L1 error for the variables N , P and Ψ . In order to prove the asymptotic
preserving behaviour of the scheme, we compute L1 errors at time T = 0.1 for
different numbers of cells θ = 20 × 2i , i ∈ {0, ..., 8}, with different time steps Δt
in [10−5, 10−2] and various rescaled Debye length λ2 in [0, 1]. Figure 2 presents the
L1 error on the electron density and on the electrostatic potential as functions of Δt
for different values of λ2. It clearly shows the uniform behaviour in the limit λ → 0
since the convergence rate is of order 1 for all variables even for small values of λ2,
including zero.
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Fig. 2 Errors in L1 norm as functions of Δt , for different values of λ2
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Fig. 3 Errors in L1 norm as functions of λ2, for different values of Δx

On Fig. 3, we plot the L1 errors as functions of λ2 for different values of the space
step. We still observe the asymptotic preserving property of the scheme in the limit
λ → 0. Moreover, the errors are independent of λ2.

Further numerical experiments (in 2D, with a non-vanishing doping profile,...)
can be found in [4].

5 Conclusion

In this paper, we have first presented some results obtained with Jüngel and Schuch-
nigg on the long time behaviour of a classical scheme for nonlinear diffusion equa-
tions. We have obtained the exponential/polynomial decay of discrete zeroth-order
relative entropies. The proof is based on an entropy method and on discrete func-
tional inequalities. We refer to [10] for further results on first-order entropies (like
the Fisher information).
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On the drift-diffusion system, we have explained how the discrete counterpart
of the entropy method can take part in the proof of convergence of a particular
(but widely used) finite volume scheme. Particularly, it permits to establish that the
considered scheme is asymptotic preserving at the quasi-neutral limit. We refer to
the joint work with Bessemoulin-Chatard and Vignal [4] for the details of the proofs.
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