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Abstract We consider a Control Volume Finite Elements (CVFE) scheme for solv-
ing possibly degenerated parabolic equations. This scheme does not require the intro-
duction of the so-called Kirchhoff transform in its definition. The discrete solution
obtained via the scheme remains in the physical range whatever the anisotropy of the
problem, while the natural entropy of the problem decreases with time. Moreover,
the discrete solution converges towards the unique weak solution of the continuous
problem. Numerical results are provided and discussed.

1 The Continuous Problem and Objectives

Let Ω be a polygonal open bounded and connected subset of R2, and let tf > 0 be a
finite time horizon. We aim to approximate the solution of the (possibly) degenerate
parabolic equation

⎧
⎪⎨

⎪⎩

∂t u − ∇ · (η(u)Λ∇ p(u)) = 0 in Qtf := Ω × (0, tf),

η(u)Λ∇ p(u) · n = 0 on ∂Ω × (0, tf),

u|t=0 = u0 in Ω.
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In (1), Λ : Ω → M2(R) should be a measurable function, and we assume that there
exists 0 < λ ≤ λ such that

Λ(x) = Λ(x)T , λ|v|2 ≤ Λ(x)v · v ≤ λ|v|2 for all v ∈ R
2 and a.a.x ∈ Ω.

The function η is assumed to be continuous, to be such that η(s) > 0 if s ∈ (0, 1) and
η(s) = 0 otherwise. The function p belongs to C1((0, 1);R)∩ L1(0, 1), is supposed
to be increasing, and to be such that lims→{0,1} η(s)p(s) = 0. Note that p is not
necessarily bounded in the vicinity of 0 and 1. We also assume that

√
ηp′ belongs

to L1(0, 1), so that the Kirchhoff transforms

φ : u 	→
∫ u

0
η(s)p′(s)ds and ξ : u 	→

∫ u

0

√
η(s)p′(s)ds

are continuous and increasing on [0, 1]. The initial data u0 is assumed to belong to
L∞(Ω), and to be such that 0 ≤ u0(x) ≤ 1 for a.a. x ∈ Ω .

Using the Kirchhoff transform φ, the problem (1) can be rewritten as
⎧
⎪⎨

⎪⎩

∂t u − ∇ · (Λ∇φ(u)) = 0 in Qtf ,

Λ∇φ(u) · n = 0 on ∂Ω × (0, tf),

u|t=0 = u0 in Ω.

(2)

Following [1, 10], there exists a unique weak solution to the problem (2). Moreover,
the monotonicity of the problem ensures that

0 ≤ u(x, t) ≤ 1 for a.a. (x, t) ∈ Qtf . (3)

Considering formally p(u) − p(1/2) as a test function in (2) yields, for all
t ∈ [0, tf ],

∫

Ω

H(u(x, t))dx +
∫∫

Qt

Λ∇ξ(u) · ∇ξ(u)dxdτ =
∫

Ω

H(u0(x))dx < ∞, (4)

where H(u) = ∫ u
1/2(p(s) − p(1/2))ds is a nonnegative convex entropy to the prob-

lem (1), which is supposed to physically meaningful. As a consequence of (4), the
function ξ(u) belongs to L2((0, T ); H1(Ω)).

Since in many configurations like for example porous media flows, the physi-
cal meaning of the Kirchhoff transform φ is unclear (see e.g. [3, 11]), we aim to
discretize the problem in its form (1) rather than in its form (2). Moreover, we
aim to derive a method such that the L∞-estimate (3) remains true at the discrete
level despite the anisotropy of the problem, such that the discrete counterpart of the
entropy

∫

Ω
H(u(x, t))dx decreases with time as prescribed by (4) in the continuous

setting, and such that the discrete solution converges towards the unique weak solu-
tion as the discretization steps tend to 0. Let us stress that the decay of the entropy∫

Ω
H(u(x, t))dx plays an important role in the long-time behavior of the continuous

and discrete solutions [5, 6].
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2 The Implicit Nonlinear CVFE Scheme

Let T be a conforming triangulation of Ω with size hT = maxT ∈T hT , where hT

is the diameter of T , and regularity θT = maxT ∈T hT
ρT

where ρT is the diameter
of the incircle of the triangle T . We denote by V the set of the vertices and by E
the set of the edges of T . For all K ∈ V (located at xK ), we denote by TK the set
of the triangles of T admitting K as a vertex, by VK the subset of V made of the
vertices connected to K via an edge, and by EK the set of the edges having xK as an
endpoint. The edge joining two vertices K and L is denoted by σK L . For all K ∈ V ,
the star-shaped open subset ωK of Ω is delimited by the centers of gravity xT of the
triangles T ∈ TK and xσ of the edges σ ∈ EK , yielding the dual barycentric mesh
M . We denote by

VT = { f ∈ C(Ω) | f|T ∈ P1(T ), ∀T ∈ T }

the usual P1-finite element space, and by (eK )K∈V the canonical basis of VT . We
also introduce the set

XM = { f ∈ L∞(Ω) | f|ωK
∈ P0(K ), ∀K ∈ V }

of the piecewise constant functions on the dual cells. For the ease of notations, we
restrict our study to the case of uniform time discretizations with step Δt = tf/N .
Setting tn = nΔt for 0 ≤ n ≤ N , we introduce the discrete functional sets

VT ,Δt ={ f ∈ L∞(Qtf ) | f (·, t) = f (·, nΔt) ∈ VT , ∀t ∈ (tn−1, tn], 1 ≤ n ≤ N },
XM ,Δt ={ f ∈ L∞(Qtf ) | f (·, t) = f (·, nΔt) ∈ XM , ∀t ∈ (tn−1, tn], 1 ≤ n ≤ N }.

Hence, given
(
νn

K

)

K∈V ,1≤0≤N , there exist two reconstructions νT ,Δt ∈ νT ,Δt and
νM ,Δt ∈ XM ,Δt such that

νT ,Δt (xK , tn) = νM ,Δt (xK , tn) = νn
K , for all K ∈ V and n ∈ {1, . . . , N }.

For K ∈ V , we setmK = ∫

ωK
dx = ∫

Ω
eK (x)dx. The initial data u0 is discretized

by u0
M ∈ XM , where

u0
K = 1

mK

∫

ωK

u0(x)dx, ∀K ∈ V . (5)

We introduce now the so-called implicitnonlinear CVFE scheme [2],which is closely

related to P1-finite elements with mass lumping. Let n ≥ 1, then for
(

un−1
K

)

K∈V in

[0, 1]#V , we look for
(
un

K

)

K∈V such that
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un
K − un−1

K

Δt
mK +

∑

L∈VK

aK Lηn
K L

(
p(un

K ) − p(un
L)

) = 0, ∀K ∈ V . (6)

In (6), we have set aK L = − ∫

Ω
Λ∇eK · ∇eLdx = aL K and

ηn
K L =

{
maxs∈I n

K L
η(s) if aK L > 0,

mins∈I n
K L

η(s) if aK L ≤ 0,
with I n

K L = [
min(un

K , un
L),max(un

K , un
L)

]
.

Setting Fn
K L = aK Lηn

K L

(
p(un

K ) − p(un
L)

)
, it is easy to check that for all n ≥ 1,

{
Fn

K L + Fn
L K = 0, ∀σK L ∈ E ,

un
K −un−1

K
Δt mK + ∑

L∈VK
Fn

K L = 0, ∀K ∈ V ,

leading naturally to the following statement.

Proposition 1 The scheme (6) is locally conservative on the dual mesh M .

As usually in CVFE schemes, the accumulation term is obtained thanks to mass-
lumping. The originality here comes from the treatment of the diffusion term. The
flux Fn

K L is obtained as the flux across the interface x = 0 corresponding to the
simili Riemann problem

⎧
⎪⎨

⎪⎩

∂t v + ∂x
(
η(v)qn

K L

) = 0, in R × R
∗+,

v|t=0 = un
K 1x<0 + un

L1x>0 in R,

qn
K L = aK L(p(un

K ) − p(un
L)).

3 Discrete Estimates and Convergence of the Scheme

All the numerical analysis results stated in this section are thoroughly justified in the
forthcoming paper [4]. First, let us give some a priori estimates.

Proposition 2 For all n ≥ 1, one has

∑

K∈V
H(un

K )mK + Δt
∑

σK L∈E
aK L

(
ξ(un

K ) − ξ(un
L)

)2

≤
∑

K∈V
H(un

K )mK + Δt
∑

σK L∈E
aK Lηn

K L

(
p(un

K ) − p(un
L)

)2 ≤
∑

K∈V
H(un−1

K )mK .

(7)

Sketch of the proof. In order to prove the second inequality of (7), multiply the
scheme (6) by Δt

(
p(un

K ) − p(1/2)
)
and to sum over K ∈ V . The inequality
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(un
K − un−1

K )
(

p(un
K ) − p(1/2)

) ≥ H(un
K ) − H(un−1

K )

stems from the definition and the convexity of H .
The first inequality of (7) is a consequence of the definitions of ξ and ηn

K L , which
ensure that

aK Lηn
K L

(
p(un

K ) − p(un
L)

)2 ≥ aK L
(
ξ(un

K ) − ξ(un
L)

)2
,

for all σK L ∈ E and all n ≥ 1.

Denoting by ξn
T the function of VT with nodal values

(
ξ(un

K )
)

K∈V , and by un
M

the function of XM with nodal values
(
un

K

)

K∈T , then Proposition 2 implies that

∫

Ω

H(un
M )dx +

∫ tn

tn−1

∫

Ω

Λ∇ξn
T · ∇ξn

T dxdt ≤
∫

Ω

H(un−1
M )dx,

ensuring that the entropy is dissipated at each time step.
The discrete diffusion operator appearing in the scheme (6) can be split into two

parts:

• a monotone part

(
un

K

)

K 	→
⎛

⎝
∑

L∈VK

(aK L)+ ηn
K L

(
p(un

K ) − p(un
L)

)

⎞

⎠

K

whose contribution preserves the maximum principle. This contribution consists
also in a diffusion operator, but it is not a consistent discretization of the continuous
operator u 	→ −∇ · (Λη(u)∇ p(u));

• a correcting part

(
un

K

)

K 	→
⎛

⎝−
∑

L∈VK

(aK L)− ηn
K L

(
p(un

K ) − p(un
L)

)

⎞

⎠

K

that ensures the consistency of the scheme. Due to the definition of ηn
K L , this

contribution is continuous and vanishes where η(un
K ) = 0, i.e.,

∑

L∈VK

(aK L)− ηn
K L

(
p(un

K ) − p(un
L)

) = 0 if un
K ∈ {0, 1}.

Therefore, the scheme preserves the natural L∞ bounds 0 and 1. This is the purpose
of Proposition 3 (the proof is given in [4]), that moreover ensures that all the terms
in (6) are finite.
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Proposition 3 For all n ≥ 1 and for all K ∈ V , 0 ≤ un
K ≤ 1. Moreover, if there exist

K� (resp. K �) in V such that u0
K�

> 0 (resp. u0
K � < 1), and if lims→0 p(s) = −∞

(resp. lims→1 p(s) = +∞), then for all K ∈ V and all n ≥ 1, one has

un
K ≥ c(u0

K�
,T ,Δt, n,Λ) > 0 (resp. un

K ≤ 1 − c(u0
K � ,T ,Δt, n,Λ) < 1).

(8)

All these a priori estimates allow us to prove the existence of a discrete solution(
un

K

)

K∈V ,n≥0 to the scheme (5)–(6).

Proposition 4 For all n ∈ {1, . . . , N }, there exists a solution
(
un

K

)

K∈V to the
scheme (5)–(6).

The proof of Proposition 4 is inspired from the existence proof given in [7]
and relies on a topological degree argument. Nevertheless, in the case where p is
unbounded, the application

(
un

K

)

K∈V 	→ ∑
L∈VK

aK Lηn
K L

(
p(un

K ) − p(un
L)

)
is not

continuous on [0, 1]#V . Therefore, the enhanced L∞-estimates (8) are mandatory to
restrict the study on a smaller domain [ε, 1− ε]#V on which the discrete operator is
uniformly continuous.

In what follows, we denote by uM ,Δt the unique element of XM ,Δt such that

uM ,Δt (xK , tn) = un
K , ∀K ∈ V , ∀n ∈ {1, . . . , N }. (9)

The convergence of the discrete solution uM ,Δt as the space and time discretization
steps tend to 0 towards the unique weak solution u of the continuous problem is the
purpose of the following theorem, whose proof is contained in [4].

Theorem 1 Let (Tm)m≥1 be a sequence of conforming triangulations of Ω such
that hTm → 0 as m → ∞, and such that θTm ≤ θ� < ∞, and let (Δtm)m≥1 be a
sequence of time steps such that Δtm → 0 as m → ∞, then, for all q ∈ [1,∞), the
discrete solution uMm ,Δtm converges in Lq(Qtf ) towards the unique weak solution
u of the problem (2) as m → ∞.

The proof of Theorem 1 follows (with some additional technical difficulties) the
path proposed in §4.3 of [8], that consists in first proving some compactness on
the family of discrete solutions

(
uMm ,Δtm

)

m≥1, and then to identify any limit value
(up to a subsequence) u = limm→∞ uMm ,Δtm as the unique weak solution to the
problem (2). The uniqueness of the limit ensures the convergence of the whole
sequence.

Remark 1 The choice of homogeneous Neumann boundary condition is not manda-
tory. A similar convergence result can be obtained in the case where an inhomoge-
neous Dirichlet condition u D is imposed on a part of the boundary as long as u D and
p(u D) are sufficiently regular. In this case, the entropy of the system if not necessar-
ily decreasing (but it remains bounded) because of a contribution coming from the
boundary.
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4 Numerical Illustration

This section illustrates the numerical behavior of the scheme (6). In order to com-
pare the numerical solution with an analytical solution, we apply our discretization
strategy on a test case that does not fully fits with our assumptions. Indeed, Dirichlet
boundary conditions are prescribed. But as mentioned in Remark 1, the convergence
of the scheme can be proved also in this case. The meshes used for the discretization
of the domain Ω = (0, 1)2 are issued from a 2D benchmark on anisotropic diffu-
sion problem [9]. These triangle meshes show no symmetry which could artificially
increase the convergence rate, and all angles of triangles are acute. This allows to
compare situations where all coefficients aK L defined previously are positive, with
situations where some of them are negative by introducing anisotropic permeability
tensors. This family of meshes is built through the same pattern, which is reproduced
at different scales.

In the following numerical experiments, we consider a diagonal permeability
tensor Λ = diag(lx , ly). A first constant time step, denoted by Δt1, is associated to
the coarsest mesh and then between two successive meshes, the time step is divided
by four since the mesh size is divided by two, so that the error due to the implicit
Euler-time discretization remains negligible compared to that issued from the space
discretization. The nonlinear systems obtained at each time step are solved by a
Newton-Raphson algorithm.

The test case deals with a degenerate parabolic equation with a Dirichlet boundary
condition. The functions involved in (1) are defined by ηn�(u) = 2min(u, 1 − u)

and pn�(u) = u. Since the continuous solution and the discrete one computed with
the nonlinear scheme (6) remain bounded between 0 and 0.5 (cf. Tables1 and 2), this
amounts to consider the porous medium equation

∂t u − ∇ ·
(
Λ∇u2

)
= 0,

and we compare the results with the scheme obtained by taking the following func-
tions p�(u) = u2 and η�(u) = 1 where the subscript � has been added for this
formulation called the quasilinear one. The numerical convergence of both schemes
has been studied through the following analytical solution,

ũ((x, y), t) = max(2lx t − x, 0),

for (x, y) ∈ Ω , t ∈ (0, tf), and where the final time tf has been fixed to 0.25s and
the first time step is given by Δt1 = 0.01024s. The values of ũ on ∂Ω × (0, tf)
are prescribed as Dirichlet boundary condition. Two permeability tensors have been
tested : the isotropic one lx = ly = 1 (cf. Table1) and an anisotropic one lx = 1,
ly = 102 (cf. Table2). For all tests we have computed the errors in the classical
discrete L1(Qtf ) and L∞(Qtf ) norms. Each table provides the mesh size h, the
discrete errors and the associated convergence rate, and finally the minimum and
maximum values of the discrete solutions.
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Fig. 1 2nd mesh. Discrete unknown u and its iso-values, for each scheme (right: quasilinear
diffusion scheme, left: nonlinear scheme), with an anisotropic tensor at the end of the simulation

We observe that, as expected, the convergence rates of the linear implementation
are better. Nevertheless, in the anisotropic case, the magnitude of the undershoots
(illustrated by Fig. 1) is such that the absolute value of the observed error is lower
in the nonlinear implementation than in the quasilinear one for the coarsest meshes,
which are currently used in industrial applications.
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